• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
46 
47 #include "e1000.h"
48 
49 #define DRV_EXTRAVERSION "-k"
50 
51 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54 
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59 
60 static const struct e1000_info *e1000_info_tbl[] = {
61 	[board_82571]		= &e1000_82571_info,
62 	[board_82572]		= &e1000_82572_info,
63 	[board_82573]		= &e1000_82573_info,
64 	[board_82574]		= &e1000_82574_info,
65 	[board_82583]		= &e1000_82583_info,
66 	[board_80003es2lan]	= &e1000_es2_info,
67 	[board_ich8lan]		= &e1000_ich8_info,
68 	[board_ich9lan]		= &e1000_ich9_info,
69 	[board_ich10lan]	= &e1000_ich10_info,
70 	[board_pchlan]		= &e1000_pch_info,
71 	[board_pch2lan]		= &e1000_pch2_info,
72 	[board_pch_lpt]		= &e1000_pch_lpt_info,
73 	[board_pch_spt]		= &e1000_pch_spt_info,
74 };
75 
76 struct e1000_reg_info {
77 	u32 ofs;
78 	char *name;
79 };
80 
81 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
82 	/* General Registers */
83 	{E1000_CTRL, "CTRL"},
84 	{E1000_STATUS, "STATUS"},
85 	{E1000_CTRL_EXT, "CTRL_EXT"},
86 
87 	/* Interrupt Registers */
88 	{E1000_ICR, "ICR"},
89 
90 	/* Rx Registers */
91 	{E1000_RCTL, "RCTL"},
92 	{E1000_RDLEN(0), "RDLEN"},
93 	{E1000_RDH(0), "RDH"},
94 	{E1000_RDT(0), "RDT"},
95 	{E1000_RDTR, "RDTR"},
96 	{E1000_RXDCTL(0), "RXDCTL"},
97 	{E1000_ERT, "ERT"},
98 	{E1000_RDBAL(0), "RDBAL"},
99 	{E1000_RDBAH(0), "RDBAH"},
100 	{E1000_RDFH, "RDFH"},
101 	{E1000_RDFT, "RDFT"},
102 	{E1000_RDFHS, "RDFHS"},
103 	{E1000_RDFTS, "RDFTS"},
104 	{E1000_RDFPC, "RDFPC"},
105 
106 	/* Tx Registers */
107 	{E1000_TCTL, "TCTL"},
108 	{E1000_TDBAL(0), "TDBAL"},
109 	{E1000_TDBAH(0), "TDBAH"},
110 	{E1000_TDLEN(0), "TDLEN"},
111 	{E1000_TDH(0), "TDH"},
112 	{E1000_TDT(0), "TDT"},
113 	{E1000_TIDV, "TIDV"},
114 	{E1000_TXDCTL(0), "TXDCTL"},
115 	{E1000_TADV, "TADV"},
116 	{E1000_TARC(0), "TARC"},
117 	{E1000_TDFH, "TDFH"},
118 	{E1000_TDFT, "TDFT"},
119 	{E1000_TDFHS, "TDFHS"},
120 	{E1000_TDFTS, "TDFTS"},
121 	{E1000_TDFPC, "TDFPC"},
122 
123 	/* List Terminator */
124 	{0, NULL}
125 };
126 
127 /**
128  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
129  * @hw: pointer to the HW structure
130  *
131  * When updating the MAC CSR registers, the Manageability Engine (ME) could
132  * be accessing the registers at the same time.  Normally, this is handled in
133  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
134  * accesses later than it should which could result in the register to have
135  * an incorrect value.  Workaround this by checking the FWSM register which
136  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
137  * and try again a number of times.
138  **/
__ew32_prepare(struct e1000_hw * hw)139 static void __ew32_prepare(struct e1000_hw *hw)
140 {
141 	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
142 
143 	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
144 		udelay(50);
145 }
146 
__ew32(struct e1000_hw * hw,unsigned long reg,u32 val)147 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
148 {
149 	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
150 		__ew32_prepare(hw);
151 
152 	writel(val, hw->hw_addr + reg);
153 }
154 
155 /**
156  * e1000_regdump - register printout routine
157  * @hw: pointer to the HW structure
158  * @reginfo: pointer to the register info table
159  **/
e1000_regdump(struct e1000_hw * hw,struct e1000_reg_info * reginfo)160 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
161 {
162 	int n = 0;
163 	char rname[16];
164 	u32 regs[8];
165 
166 	switch (reginfo->ofs) {
167 	case E1000_RXDCTL(0):
168 		for (n = 0; n < 2; n++)
169 			regs[n] = __er32(hw, E1000_RXDCTL(n));
170 		break;
171 	case E1000_TXDCTL(0):
172 		for (n = 0; n < 2; n++)
173 			regs[n] = __er32(hw, E1000_TXDCTL(n));
174 		break;
175 	case E1000_TARC(0):
176 		for (n = 0; n < 2; n++)
177 			regs[n] = __er32(hw, E1000_TARC(n));
178 		break;
179 	default:
180 		pr_info("%-15s %08x\n",
181 			reginfo->name, __er32(hw, reginfo->ofs));
182 		return;
183 	}
184 
185 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
186 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
187 }
188 
e1000e_dump_ps_pages(struct e1000_adapter * adapter,struct e1000_buffer * bi)189 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
190 				 struct e1000_buffer *bi)
191 {
192 	int i;
193 	struct e1000_ps_page *ps_page;
194 
195 	for (i = 0; i < adapter->rx_ps_pages; i++) {
196 		ps_page = &bi->ps_pages[i];
197 
198 		if (ps_page->page) {
199 			pr_info("packet dump for ps_page %d:\n", i);
200 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
201 				       16, 1, page_address(ps_page->page),
202 				       PAGE_SIZE, true);
203 		}
204 	}
205 }
206 
207 /**
208  * e1000e_dump - Print registers, Tx-ring and Rx-ring
209  * @adapter: board private structure
210  **/
e1000e_dump(struct e1000_adapter * adapter)211 static void e1000e_dump(struct e1000_adapter *adapter)
212 {
213 	struct net_device *netdev = adapter->netdev;
214 	struct e1000_hw *hw = &adapter->hw;
215 	struct e1000_reg_info *reginfo;
216 	struct e1000_ring *tx_ring = adapter->tx_ring;
217 	struct e1000_tx_desc *tx_desc;
218 	struct my_u0 {
219 		__le64 a;
220 		__le64 b;
221 	} *u0;
222 	struct e1000_buffer *buffer_info;
223 	struct e1000_ring *rx_ring = adapter->rx_ring;
224 	union e1000_rx_desc_packet_split *rx_desc_ps;
225 	union e1000_rx_desc_extended *rx_desc;
226 	struct my_u1 {
227 		__le64 a;
228 		__le64 b;
229 		__le64 c;
230 		__le64 d;
231 	} *u1;
232 	u32 staterr;
233 	int i = 0;
234 
235 	if (!netif_msg_hw(adapter))
236 		return;
237 
238 	/* Print netdevice Info */
239 	if (netdev) {
240 		dev_info(&adapter->pdev->dev, "Net device Info\n");
241 		pr_info("Device Name     state            trans_start      last_rx\n");
242 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
243 			netdev->state, netdev->trans_start, netdev->last_rx);
244 	}
245 
246 	/* Print Registers */
247 	dev_info(&adapter->pdev->dev, "Register Dump\n");
248 	pr_info(" Register Name   Value\n");
249 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
250 	     reginfo->name; reginfo++) {
251 		e1000_regdump(hw, reginfo);
252 	}
253 
254 	/* Print Tx Ring Summary */
255 	if (!netdev || !netif_running(netdev))
256 		return;
257 
258 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
259 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
260 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
261 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
262 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
263 		(unsigned long long)buffer_info->dma,
264 		buffer_info->length,
265 		buffer_info->next_to_watch,
266 		(unsigned long long)buffer_info->time_stamp);
267 
268 	/* Print Tx Ring */
269 	if (!netif_msg_tx_done(adapter))
270 		goto rx_ring_summary;
271 
272 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
273 
274 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
275 	 *
276 	 * Legacy Transmit Descriptor
277 	 *   +--------------------------------------------------------------+
278 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
279 	 *   +--------------------------------------------------------------+
280 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
281 	 *   +--------------------------------------------------------------+
282 	 *   63       48 47        36 35    32 31     24 23    16 15        0
283 	 *
284 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
285 	 *   63      48 47    40 39       32 31             16 15    8 7      0
286 	 *   +----------------------------------------------------------------+
287 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
288 	 *   +----------------------------------------------------------------+
289 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
290 	 *   +----------------------------------------------------------------+
291 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
292 	 *
293 	 * Extended Data Descriptor (DTYP=0x1)
294 	 *   +----------------------------------------------------------------+
295 	 * 0 |                     Buffer Address [63:0]                      |
296 	 *   +----------------------------------------------------------------+
297 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
298 	 *   +----------------------------------------------------------------+
299 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
300 	 */
301 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
302 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
303 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
304 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
305 		const char *next_desc;
306 		tx_desc = E1000_TX_DESC(*tx_ring, i);
307 		buffer_info = &tx_ring->buffer_info[i];
308 		u0 = (struct my_u0 *)tx_desc;
309 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
310 			next_desc = " NTC/U";
311 		else if (i == tx_ring->next_to_use)
312 			next_desc = " NTU";
313 		else if (i == tx_ring->next_to_clean)
314 			next_desc = " NTC";
315 		else
316 			next_desc = "";
317 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
318 			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
319 			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
320 			i,
321 			(unsigned long long)le64_to_cpu(u0->a),
322 			(unsigned long long)le64_to_cpu(u0->b),
323 			(unsigned long long)buffer_info->dma,
324 			buffer_info->length, buffer_info->next_to_watch,
325 			(unsigned long long)buffer_info->time_stamp,
326 			buffer_info->skb, next_desc);
327 
328 		if (netif_msg_pktdata(adapter) && buffer_info->skb)
329 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
330 				       16, 1, buffer_info->skb->data,
331 				       buffer_info->skb->len, true);
332 	}
333 
334 	/* Print Rx Ring Summary */
335 rx_ring_summary:
336 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
337 	pr_info("Queue [NTU] [NTC]\n");
338 	pr_info(" %5d %5X %5X\n",
339 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
340 
341 	/* Print Rx Ring */
342 	if (!netif_msg_rx_status(adapter))
343 		return;
344 
345 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
346 	switch (adapter->rx_ps_pages) {
347 	case 1:
348 	case 2:
349 	case 3:
350 		/* [Extended] Packet Split Receive Descriptor Format
351 		 *
352 		 *    +-----------------------------------------------------+
353 		 *  0 |                Buffer Address 0 [63:0]              |
354 		 *    +-----------------------------------------------------+
355 		 *  8 |                Buffer Address 1 [63:0]              |
356 		 *    +-----------------------------------------------------+
357 		 * 16 |                Buffer Address 2 [63:0]              |
358 		 *    +-----------------------------------------------------+
359 		 * 24 |                Buffer Address 3 [63:0]              |
360 		 *    +-----------------------------------------------------+
361 		 */
362 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
363 		/* [Extended] Receive Descriptor (Write-Back) Format
364 		 *
365 		 *   63       48 47    32 31     13 12    8 7    4 3        0
366 		 *   +------------------------------------------------------+
367 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
368 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
369 		 *   +------------------------------------------------------+
370 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
371 		 *   +------------------------------------------------------+
372 		 *   63       48 47    32 31            20 19               0
373 		 */
374 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
375 		for (i = 0; i < rx_ring->count; i++) {
376 			const char *next_desc;
377 			buffer_info = &rx_ring->buffer_info[i];
378 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
379 			u1 = (struct my_u1 *)rx_desc_ps;
380 			staterr =
381 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
382 
383 			if (i == rx_ring->next_to_use)
384 				next_desc = " NTU";
385 			else if (i == rx_ring->next_to_clean)
386 				next_desc = " NTC";
387 			else
388 				next_desc = "";
389 
390 			if (staterr & E1000_RXD_STAT_DD) {
391 				/* Descriptor Done */
392 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
393 					"RWB", i,
394 					(unsigned long long)le64_to_cpu(u1->a),
395 					(unsigned long long)le64_to_cpu(u1->b),
396 					(unsigned long long)le64_to_cpu(u1->c),
397 					(unsigned long long)le64_to_cpu(u1->d),
398 					buffer_info->skb, next_desc);
399 			} else {
400 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
401 					"R  ", i,
402 					(unsigned long long)le64_to_cpu(u1->a),
403 					(unsigned long long)le64_to_cpu(u1->b),
404 					(unsigned long long)le64_to_cpu(u1->c),
405 					(unsigned long long)le64_to_cpu(u1->d),
406 					(unsigned long long)buffer_info->dma,
407 					buffer_info->skb, next_desc);
408 
409 				if (netif_msg_pktdata(adapter))
410 					e1000e_dump_ps_pages(adapter,
411 							     buffer_info);
412 			}
413 		}
414 		break;
415 	default:
416 	case 0:
417 		/* Extended Receive Descriptor (Read) Format
418 		 *
419 		 *   +-----------------------------------------------------+
420 		 * 0 |                Buffer Address [63:0]                |
421 		 *   +-----------------------------------------------------+
422 		 * 8 |                      Reserved                       |
423 		 *   +-----------------------------------------------------+
424 		 */
425 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
426 		/* Extended Receive Descriptor (Write-Back) Format
427 		 *
428 		 *   63       48 47    32 31    24 23            4 3        0
429 		 *   +------------------------------------------------------+
430 		 *   |     RSS Hash      |        |               |         |
431 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
432 		 *   | Packet   | IP     |        |               |  Type   |
433 		 *   | Checksum | Ident  |        |               |         |
434 		 *   +------------------------------------------------------+
435 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
436 		 *   +------------------------------------------------------+
437 		 *   63       48 47    32 31            20 19               0
438 		 */
439 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
440 
441 		for (i = 0; i < rx_ring->count; i++) {
442 			const char *next_desc;
443 
444 			buffer_info = &rx_ring->buffer_info[i];
445 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
446 			u1 = (struct my_u1 *)rx_desc;
447 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
448 
449 			if (i == rx_ring->next_to_use)
450 				next_desc = " NTU";
451 			else if (i == rx_ring->next_to_clean)
452 				next_desc = " NTC";
453 			else
454 				next_desc = "";
455 
456 			if (staterr & E1000_RXD_STAT_DD) {
457 				/* Descriptor Done */
458 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
459 					"RWB", i,
460 					(unsigned long long)le64_to_cpu(u1->a),
461 					(unsigned long long)le64_to_cpu(u1->b),
462 					buffer_info->skb, next_desc);
463 			} else {
464 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
465 					"R  ", i,
466 					(unsigned long long)le64_to_cpu(u1->a),
467 					(unsigned long long)le64_to_cpu(u1->b),
468 					(unsigned long long)buffer_info->dma,
469 					buffer_info->skb, next_desc);
470 
471 				if (netif_msg_pktdata(adapter) &&
472 				    buffer_info->skb)
473 					print_hex_dump(KERN_INFO, "",
474 						       DUMP_PREFIX_ADDRESS, 16,
475 						       1,
476 						       buffer_info->skb->data,
477 						       adapter->rx_buffer_len,
478 						       true);
479 			}
480 		}
481 	}
482 }
483 
484 /**
485  * e1000_desc_unused - calculate if we have unused descriptors
486  **/
e1000_desc_unused(struct e1000_ring * ring)487 static int e1000_desc_unused(struct e1000_ring *ring)
488 {
489 	if (ring->next_to_clean > ring->next_to_use)
490 		return ring->next_to_clean - ring->next_to_use - 1;
491 
492 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
493 }
494 
495 /**
496  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
497  * @adapter: board private structure
498  * @hwtstamps: time stamp structure to update
499  * @systim: unsigned 64bit system time value.
500  *
501  * Convert the system time value stored in the RX/TXSTMP registers into a
502  * hwtstamp which can be used by the upper level time stamping functions.
503  *
504  * The 'systim_lock' spinlock is used to protect the consistency of the
505  * system time value. This is needed because reading the 64 bit time
506  * value involves reading two 32 bit registers. The first read latches the
507  * value.
508  **/
e1000e_systim_to_hwtstamp(struct e1000_adapter * adapter,struct skb_shared_hwtstamps * hwtstamps,u64 systim)509 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
510 				      struct skb_shared_hwtstamps *hwtstamps,
511 				      u64 systim)
512 {
513 	u64 ns;
514 	unsigned long flags;
515 
516 	spin_lock_irqsave(&adapter->systim_lock, flags);
517 	ns = timecounter_cyc2time(&adapter->tc, systim);
518 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
519 
520 	memset(hwtstamps, 0, sizeof(*hwtstamps));
521 	hwtstamps->hwtstamp = ns_to_ktime(ns);
522 }
523 
524 /**
525  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
526  * @adapter: board private structure
527  * @status: descriptor extended error and status field
528  * @skb: particular skb to include time stamp
529  *
530  * If the time stamp is valid, convert it into the timecounter ns value
531  * and store that result into the shhwtstamps structure which is passed
532  * up the network stack.
533  **/
e1000e_rx_hwtstamp(struct e1000_adapter * adapter,u32 status,struct sk_buff * skb)534 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
535 			       struct sk_buff *skb)
536 {
537 	struct e1000_hw *hw = &adapter->hw;
538 	u64 rxstmp;
539 
540 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
541 	    !(status & E1000_RXDEXT_STATERR_TST) ||
542 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
543 		return;
544 
545 	/* The Rx time stamp registers contain the time stamp.  No other
546 	 * received packet will be time stamped until the Rx time stamp
547 	 * registers are read.  Because only one packet can be time stamped
548 	 * at a time, the register values must belong to this packet and
549 	 * therefore none of the other additional attributes need to be
550 	 * compared.
551 	 */
552 	rxstmp = (u64)er32(RXSTMPL);
553 	rxstmp |= (u64)er32(RXSTMPH) << 32;
554 	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
555 
556 	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
557 }
558 
559 /**
560  * e1000_receive_skb - helper function to handle Rx indications
561  * @adapter: board private structure
562  * @staterr: descriptor extended error and status field as written by hardware
563  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
564  * @skb: pointer to sk_buff to be indicated to stack
565  **/
e1000_receive_skb(struct e1000_adapter * adapter,struct net_device * netdev,struct sk_buff * skb,u32 staterr,__le16 vlan)566 static void e1000_receive_skb(struct e1000_adapter *adapter,
567 			      struct net_device *netdev, struct sk_buff *skb,
568 			      u32 staterr, __le16 vlan)
569 {
570 	u16 tag = le16_to_cpu(vlan);
571 
572 	e1000e_rx_hwtstamp(adapter, staterr, skb);
573 
574 	skb->protocol = eth_type_trans(skb, netdev);
575 
576 	if (staterr & E1000_RXD_STAT_VP)
577 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
578 
579 	napi_gro_receive(&adapter->napi, skb);
580 }
581 
582 /**
583  * e1000_rx_checksum - Receive Checksum Offload
584  * @adapter: board private structure
585  * @status_err: receive descriptor status and error fields
586  * @csum: receive descriptor csum field
587  * @sk_buff: socket buffer with received data
588  **/
e1000_rx_checksum(struct e1000_adapter * adapter,u32 status_err,struct sk_buff * skb)589 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
590 			      struct sk_buff *skb)
591 {
592 	u16 status = (u16)status_err;
593 	u8 errors = (u8)(status_err >> 24);
594 
595 	skb_checksum_none_assert(skb);
596 
597 	/* Rx checksum disabled */
598 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
599 		return;
600 
601 	/* Ignore Checksum bit is set */
602 	if (status & E1000_RXD_STAT_IXSM)
603 		return;
604 
605 	/* TCP/UDP checksum error bit or IP checksum error bit is set */
606 	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
607 		/* let the stack verify checksum errors */
608 		adapter->hw_csum_err++;
609 		return;
610 	}
611 
612 	/* TCP/UDP Checksum has not been calculated */
613 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
614 		return;
615 
616 	/* It must be a TCP or UDP packet with a valid checksum */
617 	skb->ip_summed = CHECKSUM_UNNECESSARY;
618 	adapter->hw_csum_good++;
619 }
620 
e1000e_update_rdt_wa(struct e1000_ring * rx_ring,unsigned int i)621 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
622 {
623 	struct e1000_adapter *adapter = rx_ring->adapter;
624 	struct e1000_hw *hw = &adapter->hw;
625 
626 	__ew32_prepare(hw);
627 	writel(i, rx_ring->tail);
628 
629 	if (unlikely(i != readl(rx_ring->tail))) {
630 		u32 rctl = er32(RCTL);
631 
632 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
633 		e_err("ME firmware caused invalid RDT - resetting\n");
634 		schedule_work(&adapter->reset_task);
635 	}
636 }
637 
e1000e_update_tdt_wa(struct e1000_ring * tx_ring,unsigned int i)638 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
639 {
640 	struct e1000_adapter *adapter = tx_ring->adapter;
641 	struct e1000_hw *hw = &adapter->hw;
642 
643 	__ew32_prepare(hw);
644 	writel(i, tx_ring->tail);
645 
646 	if (unlikely(i != readl(tx_ring->tail))) {
647 		u32 tctl = er32(TCTL);
648 
649 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
650 		e_err("ME firmware caused invalid TDT - resetting\n");
651 		schedule_work(&adapter->reset_task);
652 	}
653 }
654 
655 /**
656  * e1000_alloc_rx_buffers - Replace used receive buffers
657  * @rx_ring: Rx descriptor ring
658  **/
e1000_alloc_rx_buffers(struct e1000_ring * rx_ring,int cleaned_count,gfp_t gfp)659 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
660 				   int cleaned_count, gfp_t gfp)
661 {
662 	struct e1000_adapter *adapter = rx_ring->adapter;
663 	struct net_device *netdev = adapter->netdev;
664 	struct pci_dev *pdev = adapter->pdev;
665 	union e1000_rx_desc_extended *rx_desc;
666 	struct e1000_buffer *buffer_info;
667 	struct sk_buff *skb;
668 	unsigned int i;
669 	unsigned int bufsz = adapter->rx_buffer_len;
670 
671 	i = rx_ring->next_to_use;
672 	buffer_info = &rx_ring->buffer_info[i];
673 
674 	while (cleaned_count--) {
675 		skb = buffer_info->skb;
676 		if (skb) {
677 			skb_trim(skb, 0);
678 			goto map_skb;
679 		}
680 
681 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
682 		if (!skb) {
683 			/* Better luck next round */
684 			adapter->alloc_rx_buff_failed++;
685 			break;
686 		}
687 
688 		buffer_info->skb = skb;
689 map_skb:
690 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
691 						  adapter->rx_buffer_len,
692 						  DMA_FROM_DEVICE);
693 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
694 			dev_err(&pdev->dev, "Rx DMA map failed\n");
695 			adapter->rx_dma_failed++;
696 			break;
697 		}
698 
699 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
700 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
701 
702 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
703 			/* Force memory writes to complete before letting h/w
704 			 * know there are new descriptors to fetch.  (Only
705 			 * applicable for weak-ordered memory model archs,
706 			 * such as IA-64).
707 			 */
708 			wmb();
709 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
710 				e1000e_update_rdt_wa(rx_ring, i);
711 			else
712 				writel(i, rx_ring->tail);
713 		}
714 		i++;
715 		if (i == rx_ring->count)
716 			i = 0;
717 		buffer_info = &rx_ring->buffer_info[i];
718 	}
719 
720 	rx_ring->next_to_use = i;
721 }
722 
723 /**
724  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
725  * @rx_ring: Rx descriptor ring
726  **/
e1000_alloc_rx_buffers_ps(struct e1000_ring * rx_ring,int cleaned_count,gfp_t gfp)727 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
728 				      int cleaned_count, gfp_t gfp)
729 {
730 	struct e1000_adapter *adapter = rx_ring->adapter;
731 	struct net_device *netdev = adapter->netdev;
732 	struct pci_dev *pdev = adapter->pdev;
733 	union e1000_rx_desc_packet_split *rx_desc;
734 	struct e1000_buffer *buffer_info;
735 	struct e1000_ps_page *ps_page;
736 	struct sk_buff *skb;
737 	unsigned int i, j;
738 
739 	i = rx_ring->next_to_use;
740 	buffer_info = &rx_ring->buffer_info[i];
741 
742 	while (cleaned_count--) {
743 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
744 
745 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
746 			ps_page = &buffer_info->ps_pages[j];
747 			if (j >= adapter->rx_ps_pages) {
748 				/* all unused desc entries get hw null ptr */
749 				rx_desc->read.buffer_addr[j + 1] =
750 				    ~cpu_to_le64(0);
751 				continue;
752 			}
753 			if (!ps_page->page) {
754 				ps_page->page = alloc_page(gfp);
755 				if (!ps_page->page) {
756 					adapter->alloc_rx_buff_failed++;
757 					goto no_buffers;
758 				}
759 				ps_page->dma = dma_map_page(&pdev->dev,
760 							    ps_page->page,
761 							    0, PAGE_SIZE,
762 							    DMA_FROM_DEVICE);
763 				if (dma_mapping_error(&pdev->dev,
764 						      ps_page->dma)) {
765 					dev_err(&adapter->pdev->dev,
766 						"Rx DMA page map failed\n");
767 					adapter->rx_dma_failed++;
768 					goto no_buffers;
769 				}
770 			}
771 			/* Refresh the desc even if buffer_addrs
772 			 * didn't change because each write-back
773 			 * erases this info.
774 			 */
775 			rx_desc->read.buffer_addr[j + 1] =
776 			    cpu_to_le64(ps_page->dma);
777 		}
778 
779 		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
780 						  gfp);
781 
782 		if (!skb) {
783 			adapter->alloc_rx_buff_failed++;
784 			break;
785 		}
786 
787 		buffer_info->skb = skb;
788 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
789 						  adapter->rx_ps_bsize0,
790 						  DMA_FROM_DEVICE);
791 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
792 			dev_err(&pdev->dev, "Rx DMA map failed\n");
793 			adapter->rx_dma_failed++;
794 			/* cleanup skb */
795 			dev_kfree_skb_any(skb);
796 			buffer_info->skb = NULL;
797 			break;
798 		}
799 
800 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
801 
802 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
803 			/* Force memory writes to complete before letting h/w
804 			 * know there are new descriptors to fetch.  (Only
805 			 * applicable for weak-ordered memory model archs,
806 			 * such as IA-64).
807 			 */
808 			wmb();
809 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
810 				e1000e_update_rdt_wa(rx_ring, i << 1);
811 			else
812 				writel(i << 1, rx_ring->tail);
813 		}
814 
815 		i++;
816 		if (i == rx_ring->count)
817 			i = 0;
818 		buffer_info = &rx_ring->buffer_info[i];
819 	}
820 
821 no_buffers:
822 	rx_ring->next_to_use = i;
823 }
824 
825 /**
826  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
827  * @rx_ring: Rx descriptor ring
828  * @cleaned_count: number of buffers to allocate this pass
829  **/
830 
e1000_alloc_jumbo_rx_buffers(struct e1000_ring * rx_ring,int cleaned_count,gfp_t gfp)831 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
832 					 int cleaned_count, gfp_t gfp)
833 {
834 	struct e1000_adapter *adapter = rx_ring->adapter;
835 	struct net_device *netdev = adapter->netdev;
836 	struct pci_dev *pdev = adapter->pdev;
837 	union e1000_rx_desc_extended *rx_desc;
838 	struct e1000_buffer *buffer_info;
839 	struct sk_buff *skb;
840 	unsigned int i;
841 	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
842 
843 	i = rx_ring->next_to_use;
844 	buffer_info = &rx_ring->buffer_info[i];
845 
846 	while (cleaned_count--) {
847 		skb = buffer_info->skb;
848 		if (skb) {
849 			skb_trim(skb, 0);
850 			goto check_page;
851 		}
852 
853 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
854 		if (unlikely(!skb)) {
855 			/* Better luck next round */
856 			adapter->alloc_rx_buff_failed++;
857 			break;
858 		}
859 
860 		buffer_info->skb = skb;
861 check_page:
862 		/* allocate a new page if necessary */
863 		if (!buffer_info->page) {
864 			buffer_info->page = alloc_page(gfp);
865 			if (unlikely(!buffer_info->page)) {
866 				adapter->alloc_rx_buff_failed++;
867 				break;
868 			}
869 		}
870 
871 		if (!buffer_info->dma) {
872 			buffer_info->dma = dma_map_page(&pdev->dev,
873 							buffer_info->page, 0,
874 							PAGE_SIZE,
875 							DMA_FROM_DEVICE);
876 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
877 				adapter->alloc_rx_buff_failed++;
878 				break;
879 			}
880 		}
881 
882 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
883 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
884 
885 		if (unlikely(++i == rx_ring->count))
886 			i = 0;
887 		buffer_info = &rx_ring->buffer_info[i];
888 	}
889 
890 	if (likely(rx_ring->next_to_use != i)) {
891 		rx_ring->next_to_use = i;
892 		if (unlikely(i-- == 0))
893 			i = (rx_ring->count - 1);
894 
895 		/* Force memory writes to complete before letting h/w
896 		 * know there are new descriptors to fetch.  (Only
897 		 * applicable for weak-ordered memory model archs,
898 		 * such as IA-64).
899 		 */
900 		wmb();
901 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
902 			e1000e_update_rdt_wa(rx_ring, i);
903 		else
904 			writel(i, rx_ring->tail);
905 	}
906 }
907 
e1000_rx_hash(struct net_device * netdev,__le32 rss,struct sk_buff * skb)908 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
909 				 struct sk_buff *skb)
910 {
911 	if (netdev->features & NETIF_F_RXHASH)
912 		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
913 }
914 
915 /**
916  * e1000_clean_rx_irq - Send received data up the network stack
917  * @rx_ring: Rx descriptor ring
918  *
919  * the return value indicates whether actual cleaning was done, there
920  * is no guarantee that everything was cleaned
921  **/
e1000_clean_rx_irq(struct e1000_ring * rx_ring,int * work_done,int work_to_do)922 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
923 			       int work_to_do)
924 {
925 	struct e1000_adapter *adapter = rx_ring->adapter;
926 	struct net_device *netdev = adapter->netdev;
927 	struct pci_dev *pdev = adapter->pdev;
928 	struct e1000_hw *hw = &adapter->hw;
929 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
930 	struct e1000_buffer *buffer_info, *next_buffer;
931 	u32 length, staterr;
932 	unsigned int i;
933 	int cleaned_count = 0;
934 	bool cleaned = false;
935 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
936 
937 	i = rx_ring->next_to_clean;
938 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
939 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
940 	buffer_info = &rx_ring->buffer_info[i];
941 
942 	while (staterr & E1000_RXD_STAT_DD) {
943 		struct sk_buff *skb;
944 
945 		if (*work_done >= work_to_do)
946 			break;
947 		(*work_done)++;
948 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
949 
950 		skb = buffer_info->skb;
951 		buffer_info->skb = NULL;
952 
953 		prefetch(skb->data - NET_IP_ALIGN);
954 
955 		i++;
956 		if (i == rx_ring->count)
957 			i = 0;
958 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
959 		prefetch(next_rxd);
960 
961 		next_buffer = &rx_ring->buffer_info[i];
962 
963 		cleaned = true;
964 		cleaned_count++;
965 		dma_unmap_single(&pdev->dev, buffer_info->dma,
966 				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
967 		buffer_info->dma = 0;
968 
969 		length = le16_to_cpu(rx_desc->wb.upper.length);
970 
971 		/* !EOP means multiple descriptors were used to store a single
972 		 * packet, if that's the case we need to toss it.  In fact, we
973 		 * need to toss every packet with the EOP bit clear and the
974 		 * next frame that _does_ have the EOP bit set, as it is by
975 		 * definition only a frame fragment
976 		 */
977 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
978 			adapter->flags2 |= FLAG2_IS_DISCARDING;
979 
980 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
981 			/* All receives must fit into a single buffer */
982 			e_dbg("Receive packet consumed multiple buffers\n");
983 			/* recycle */
984 			buffer_info->skb = skb;
985 			if (staterr & E1000_RXD_STAT_EOP)
986 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
987 			goto next_desc;
988 		}
989 
990 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
991 			     !(netdev->features & NETIF_F_RXALL))) {
992 			/* recycle */
993 			buffer_info->skb = skb;
994 			goto next_desc;
995 		}
996 
997 		/* adjust length to remove Ethernet CRC */
998 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
999 			/* If configured to store CRC, don't subtract FCS,
1000 			 * but keep the FCS bytes out of the total_rx_bytes
1001 			 * counter
1002 			 */
1003 			if (netdev->features & NETIF_F_RXFCS)
1004 				total_rx_bytes -= 4;
1005 			else
1006 				length -= 4;
1007 		}
1008 
1009 		total_rx_bytes += length;
1010 		total_rx_packets++;
1011 
1012 		/* code added for copybreak, this should improve
1013 		 * performance for small packets with large amounts
1014 		 * of reassembly being done in the stack
1015 		 */
1016 		if (length < copybreak) {
1017 			struct sk_buff *new_skb =
1018 				napi_alloc_skb(&adapter->napi, length);
1019 			if (new_skb) {
1020 				skb_copy_to_linear_data_offset(new_skb,
1021 							       -NET_IP_ALIGN,
1022 							       (skb->data -
1023 								NET_IP_ALIGN),
1024 							       (length +
1025 								NET_IP_ALIGN));
1026 				/* save the skb in buffer_info as good */
1027 				buffer_info->skb = skb;
1028 				skb = new_skb;
1029 			}
1030 			/* else just continue with the old one */
1031 		}
1032 		/* end copybreak code */
1033 		skb_put(skb, length);
1034 
1035 		/* Receive Checksum Offload */
1036 		e1000_rx_checksum(adapter, staterr, skb);
1037 
1038 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1039 
1040 		e1000_receive_skb(adapter, netdev, skb, staterr,
1041 				  rx_desc->wb.upper.vlan);
1042 
1043 next_desc:
1044 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1045 
1046 		/* return some buffers to hardware, one at a time is too slow */
1047 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1048 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1049 					      GFP_ATOMIC);
1050 			cleaned_count = 0;
1051 		}
1052 
1053 		/* use prefetched values */
1054 		rx_desc = next_rxd;
1055 		buffer_info = next_buffer;
1056 
1057 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1058 	}
1059 	rx_ring->next_to_clean = i;
1060 
1061 	cleaned_count = e1000_desc_unused(rx_ring);
1062 	if (cleaned_count)
1063 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1064 
1065 	adapter->total_rx_bytes += total_rx_bytes;
1066 	adapter->total_rx_packets += total_rx_packets;
1067 	return cleaned;
1068 }
1069 
e1000_put_txbuf(struct e1000_ring * tx_ring,struct e1000_buffer * buffer_info)1070 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1071 			    struct e1000_buffer *buffer_info)
1072 {
1073 	struct e1000_adapter *adapter = tx_ring->adapter;
1074 
1075 	if (buffer_info->dma) {
1076 		if (buffer_info->mapped_as_page)
1077 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1078 				       buffer_info->length, DMA_TO_DEVICE);
1079 		else
1080 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1081 					 buffer_info->length, DMA_TO_DEVICE);
1082 		buffer_info->dma = 0;
1083 	}
1084 	if (buffer_info->skb) {
1085 		dev_kfree_skb_any(buffer_info->skb);
1086 		buffer_info->skb = NULL;
1087 	}
1088 	buffer_info->time_stamp = 0;
1089 }
1090 
e1000_print_hw_hang(struct work_struct * work)1091 static void e1000_print_hw_hang(struct work_struct *work)
1092 {
1093 	struct e1000_adapter *adapter = container_of(work,
1094 						     struct e1000_adapter,
1095 						     print_hang_task);
1096 	struct net_device *netdev = adapter->netdev;
1097 	struct e1000_ring *tx_ring = adapter->tx_ring;
1098 	unsigned int i = tx_ring->next_to_clean;
1099 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1100 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1101 	struct e1000_hw *hw = &adapter->hw;
1102 	u16 phy_status, phy_1000t_status, phy_ext_status;
1103 	u16 pci_status;
1104 
1105 	if (test_bit(__E1000_DOWN, &adapter->state))
1106 		return;
1107 
1108 	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1109 		/* May be block on write-back, flush and detect again
1110 		 * flush pending descriptor writebacks to memory
1111 		 */
1112 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1113 		/* execute the writes immediately */
1114 		e1e_flush();
1115 		/* Due to rare timing issues, write to TIDV again to ensure
1116 		 * the write is successful
1117 		 */
1118 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1119 		/* execute the writes immediately */
1120 		e1e_flush();
1121 		adapter->tx_hang_recheck = true;
1122 		return;
1123 	}
1124 	adapter->tx_hang_recheck = false;
1125 
1126 	if (er32(TDH(0)) == er32(TDT(0))) {
1127 		e_dbg("false hang detected, ignoring\n");
1128 		return;
1129 	}
1130 
1131 	/* Real hang detected */
1132 	netif_stop_queue(netdev);
1133 
1134 	e1e_rphy(hw, MII_BMSR, &phy_status);
1135 	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1136 	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1137 
1138 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1139 
1140 	/* detected Hardware unit hang */
1141 	e_err("Detected Hardware Unit Hang:\n"
1142 	      "  TDH                  <%x>\n"
1143 	      "  TDT                  <%x>\n"
1144 	      "  next_to_use          <%x>\n"
1145 	      "  next_to_clean        <%x>\n"
1146 	      "buffer_info[next_to_clean]:\n"
1147 	      "  time_stamp           <%lx>\n"
1148 	      "  next_to_watch        <%x>\n"
1149 	      "  jiffies              <%lx>\n"
1150 	      "  next_to_watch.status <%x>\n"
1151 	      "MAC Status             <%x>\n"
1152 	      "PHY Status             <%x>\n"
1153 	      "PHY 1000BASE-T Status  <%x>\n"
1154 	      "PHY Extended Status    <%x>\n"
1155 	      "PCI Status             <%x>\n",
1156 	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1157 	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1158 	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1159 	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1160 
1161 	e1000e_dump(adapter);
1162 
1163 	/* Suggest workaround for known h/w issue */
1164 	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1165 		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1166 }
1167 
1168 /**
1169  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1170  * @work: pointer to work struct
1171  *
1172  * This work function polls the TSYNCTXCTL valid bit to determine when a
1173  * timestamp has been taken for the current stored skb.  The timestamp must
1174  * be for this skb because only one such packet is allowed in the queue.
1175  */
e1000e_tx_hwtstamp_work(struct work_struct * work)1176 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1177 {
1178 	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1179 						     tx_hwtstamp_work);
1180 	struct e1000_hw *hw = &adapter->hw;
1181 
1182 	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1183 		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1184 		struct skb_shared_hwtstamps shhwtstamps;
1185 		u64 txstmp;
1186 
1187 		txstmp = er32(TXSTMPL);
1188 		txstmp |= (u64)er32(TXSTMPH) << 32;
1189 
1190 		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1191 
1192 		/* Clear the global tx_hwtstamp_skb pointer and force writes
1193 		 * prior to notifying the stack of a Tx timestamp.
1194 		 */
1195 		adapter->tx_hwtstamp_skb = NULL;
1196 		wmb(); /* force write prior to skb_tstamp_tx */
1197 
1198 		skb_tstamp_tx(skb, &shhwtstamps);
1199 		dev_kfree_skb_any(skb);
1200 	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1201 			      + adapter->tx_timeout_factor * HZ)) {
1202 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1203 		adapter->tx_hwtstamp_skb = NULL;
1204 		adapter->tx_hwtstamp_timeouts++;
1205 		e_warn("clearing Tx timestamp hang\n");
1206 	} else {
1207 		/* reschedule to check later */
1208 		schedule_work(&adapter->tx_hwtstamp_work);
1209 	}
1210 }
1211 
1212 /**
1213  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1214  * @tx_ring: Tx descriptor ring
1215  *
1216  * the return value indicates whether actual cleaning was done, there
1217  * is no guarantee that everything was cleaned
1218  **/
e1000_clean_tx_irq(struct e1000_ring * tx_ring)1219 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1220 {
1221 	struct e1000_adapter *adapter = tx_ring->adapter;
1222 	struct net_device *netdev = adapter->netdev;
1223 	struct e1000_hw *hw = &adapter->hw;
1224 	struct e1000_tx_desc *tx_desc, *eop_desc;
1225 	struct e1000_buffer *buffer_info;
1226 	unsigned int i, eop;
1227 	unsigned int count = 0;
1228 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1229 	unsigned int bytes_compl = 0, pkts_compl = 0;
1230 
1231 	i = tx_ring->next_to_clean;
1232 	eop = tx_ring->buffer_info[i].next_to_watch;
1233 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1234 
1235 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1236 	       (count < tx_ring->count)) {
1237 		bool cleaned = false;
1238 
1239 		dma_rmb();		/* read buffer_info after eop_desc */
1240 		for (; !cleaned; count++) {
1241 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1242 			buffer_info = &tx_ring->buffer_info[i];
1243 			cleaned = (i == eop);
1244 
1245 			if (cleaned) {
1246 				total_tx_packets += buffer_info->segs;
1247 				total_tx_bytes += buffer_info->bytecount;
1248 				if (buffer_info->skb) {
1249 					bytes_compl += buffer_info->skb->len;
1250 					pkts_compl++;
1251 				}
1252 			}
1253 
1254 			e1000_put_txbuf(tx_ring, buffer_info);
1255 			tx_desc->upper.data = 0;
1256 
1257 			i++;
1258 			if (i == tx_ring->count)
1259 				i = 0;
1260 		}
1261 
1262 		if (i == tx_ring->next_to_use)
1263 			break;
1264 		eop = tx_ring->buffer_info[i].next_to_watch;
1265 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1266 	}
1267 
1268 	tx_ring->next_to_clean = i;
1269 
1270 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1271 
1272 #define TX_WAKE_THRESHOLD 32
1273 	if (count && netif_carrier_ok(netdev) &&
1274 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1275 		/* Make sure that anybody stopping the queue after this
1276 		 * sees the new next_to_clean.
1277 		 */
1278 		smp_mb();
1279 
1280 		if (netif_queue_stopped(netdev) &&
1281 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1282 			netif_wake_queue(netdev);
1283 			++adapter->restart_queue;
1284 		}
1285 	}
1286 
1287 	if (adapter->detect_tx_hung) {
1288 		/* Detect a transmit hang in hardware, this serializes the
1289 		 * check with the clearing of time_stamp and movement of i
1290 		 */
1291 		adapter->detect_tx_hung = false;
1292 		if (tx_ring->buffer_info[i].time_stamp &&
1293 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1294 			       + (adapter->tx_timeout_factor * HZ)) &&
1295 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1296 			schedule_work(&adapter->print_hang_task);
1297 		else
1298 			adapter->tx_hang_recheck = false;
1299 	}
1300 	adapter->total_tx_bytes += total_tx_bytes;
1301 	adapter->total_tx_packets += total_tx_packets;
1302 	return count < tx_ring->count;
1303 }
1304 
1305 /**
1306  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1307  * @rx_ring: Rx descriptor ring
1308  *
1309  * the return value indicates whether actual cleaning was done, there
1310  * is no guarantee that everything was cleaned
1311  **/
e1000_clean_rx_irq_ps(struct e1000_ring * rx_ring,int * work_done,int work_to_do)1312 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1313 				  int work_to_do)
1314 {
1315 	struct e1000_adapter *adapter = rx_ring->adapter;
1316 	struct e1000_hw *hw = &adapter->hw;
1317 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1318 	struct net_device *netdev = adapter->netdev;
1319 	struct pci_dev *pdev = adapter->pdev;
1320 	struct e1000_buffer *buffer_info, *next_buffer;
1321 	struct e1000_ps_page *ps_page;
1322 	struct sk_buff *skb;
1323 	unsigned int i, j;
1324 	u32 length, staterr;
1325 	int cleaned_count = 0;
1326 	bool cleaned = false;
1327 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1328 
1329 	i = rx_ring->next_to_clean;
1330 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1331 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1332 	buffer_info = &rx_ring->buffer_info[i];
1333 
1334 	while (staterr & E1000_RXD_STAT_DD) {
1335 		if (*work_done >= work_to_do)
1336 			break;
1337 		(*work_done)++;
1338 		skb = buffer_info->skb;
1339 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1340 
1341 		/* in the packet split case this is header only */
1342 		prefetch(skb->data - NET_IP_ALIGN);
1343 
1344 		i++;
1345 		if (i == rx_ring->count)
1346 			i = 0;
1347 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1348 		prefetch(next_rxd);
1349 
1350 		next_buffer = &rx_ring->buffer_info[i];
1351 
1352 		cleaned = true;
1353 		cleaned_count++;
1354 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1355 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1356 		buffer_info->dma = 0;
1357 
1358 		/* see !EOP comment in other Rx routine */
1359 		if (!(staterr & E1000_RXD_STAT_EOP))
1360 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1361 
1362 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1363 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1364 			dev_kfree_skb_irq(skb);
1365 			if (staterr & E1000_RXD_STAT_EOP)
1366 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1367 			goto next_desc;
1368 		}
1369 
1370 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1371 			     !(netdev->features & NETIF_F_RXALL))) {
1372 			dev_kfree_skb_irq(skb);
1373 			goto next_desc;
1374 		}
1375 
1376 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1377 
1378 		if (!length) {
1379 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1380 			dev_kfree_skb_irq(skb);
1381 			goto next_desc;
1382 		}
1383 
1384 		/* Good Receive */
1385 		skb_put(skb, length);
1386 
1387 		{
1388 			/* this looks ugly, but it seems compiler issues make
1389 			 * it more efficient than reusing j
1390 			 */
1391 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1392 
1393 			/* page alloc/put takes too long and effects small
1394 			 * packet throughput, so unsplit small packets and
1395 			 * save the alloc/put only valid in softirq (napi)
1396 			 * context to call kmap_*
1397 			 */
1398 			if (l1 && (l1 <= copybreak) &&
1399 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1400 				u8 *vaddr;
1401 
1402 				ps_page = &buffer_info->ps_pages[0];
1403 
1404 				/* there is no documentation about how to call
1405 				 * kmap_atomic, so we can't hold the mapping
1406 				 * very long
1407 				 */
1408 				dma_sync_single_for_cpu(&pdev->dev,
1409 							ps_page->dma,
1410 							PAGE_SIZE,
1411 							DMA_FROM_DEVICE);
1412 				vaddr = kmap_atomic(ps_page->page);
1413 				memcpy(skb_tail_pointer(skb), vaddr, l1);
1414 				kunmap_atomic(vaddr);
1415 				dma_sync_single_for_device(&pdev->dev,
1416 							   ps_page->dma,
1417 							   PAGE_SIZE,
1418 							   DMA_FROM_DEVICE);
1419 
1420 				/* remove the CRC */
1421 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1422 					if (!(netdev->features & NETIF_F_RXFCS))
1423 						l1 -= 4;
1424 				}
1425 
1426 				skb_put(skb, l1);
1427 				goto copydone;
1428 			}	/* if */
1429 		}
1430 
1431 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1432 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1433 			if (!length)
1434 				break;
1435 
1436 			ps_page = &buffer_info->ps_pages[j];
1437 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1438 				       DMA_FROM_DEVICE);
1439 			ps_page->dma = 0;
1440 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1441 			ps_page->page = NULL;
1442 			skb->len += length;
1443 			skb->data_len += length;
1444 			skb->truesize += PAGE_SIZE;
1445 		}
1446 
1447 		/* strip the ethernet crc, problem is we're using pages now so
1448 		 * this whole operation can get a little cpu intensive
1449 		 */
1450 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1451 			if (!(netdev->features & NETIF_F_RXFCS))
1452 				pskb_trim(skb, skb->len - 4);
1453 		}
1454 
1455 copydone:
1456 		total_rx_bytes += skb->len;
1457 		total_rx_packets++;
1458 
1459 		e1000_rx_checksum(adapter, staterr, skb);
1460 
1461 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1462 
1463 		if (rx_desc->wb.upper.header_status &
1464 		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1465 			adapter->rx_hdr_split++;
1466 
1467 		e1000_receive_skb(adapter, netdev, skb, staterr,
1468 				  rx_desc->wb.middle.vlan);
1469 
1470 next_desc:
1471 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1472 		buffer_info->skb = NULL;
1473 
1474 		/* return some buffers to hardware, one at a time is too slow */
1475 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1476 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1477 					      GFP_ATOMIC);
1478 			cleaned_count = 0;
1479 		}
1480 
1481 		/* use prefetched values */
1482 		rx_desc = next_rxd;
1483 		buffer_info = next_buffer;
1484 
1485 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1486 	}
1487 	rx_ring->next_to_clean = i;
1488 
1489 	cleaned_count = e1000_desc_unused(rx_ring);
1490 	if (cleaned_count)
1491 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1492 
1493 	adapter->total_rx_bytes += total_rx_bytes;
1494 	adapter->total_rx_packets += total_rx_packets;
1495 	return cleaned;
1496 }
1497 
1498 /**
1499  * e1000_consume_page - helper function
1500  **/
e1000_consume_page(struct e1000_buffer * bi,struct sk_buff * skb,u16 length)1501 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1502 			       u16 length)
1503 {
1504 	bi->page = NULL;
1505 	skb->len += length;
1506 	skb->data_len += length;
1507 	skb->truesize += PAGE_SIZE;
1508 }
1509 
1510 /**
1511  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1512  * @adapter: board private structure
1513  *
1514  * the return value indicates whether actual cleaning was done, there
1515  * is no guarantee that everything was cleaned
1516  **/
e1000_clean_jumbo_rx_irq(struct e1000_ring * rx_ring,int * work_done,int work_to_do)1517 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1518 				     int work_to_do)
1519 {
1520 	struct e1000_adapter *adapter = rx_ring->adapter;
1521 	struct net_device *netdev = adapter->netdev;
1522 	struct pci_dev *pdev = adapter->pdev;
1523 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1524 	struct e1000_buffer *buffer_info, *next_buffer;
1525 	u32 length, staterr;
1526 	unsigned int i;
1527 	int cleaned_count = 0;
1528 	bool cleaned = false;
1529 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1530 	struct skb_shared_info *shinfo;
1531 
1532 	i = rx_ring->next_to_clean;
1533 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1534 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1535 	buffer_info = &rx_ring->buffer_info[i];
1536 
1537 	while (staterr & E1000_RXD_STAT_DD) {
1538 		struct sk_buff *skb;
1539 
1540 		if (*work_done >= work_to_do)
1541 			break;
1542 		(*work_done)++;
1543 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1544 
1545 		skb = buffer_info->skb;
1546 		buffer_info->skb = NULL;
1547 
1548 		++i;
1549 		if (i == rx_ring->count)
1550 			i = 0;
1551 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1552 		prefetch(next_rxd);
1553 
1554 		next_buffer = &rx_ring->buffer_info[i];
1555 
1556 		cleaned = true;
1557 		cleaned_count++;
1558 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1559 			       DMA_FROM_DEVICE);
1560 		buffer_info->dma = 0;
1561 
1562 		length = le16_to_cpu(rx_desc->wb.upper.length);
1563 
1564 		/* errors is only valid for DD + EOP descriptors */
1565 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1566 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1567 			      !(netdev->features & NETIF_F_RXALL)))) {
1568 			/* recycle both page and skb */
1569 			buffer_info->skb = skb;
1570 			/* an error means any chain goes out the window too */
1571 			if (rx_ring->rx_skb_top)
1572 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1573 			rx_ring->rx_skb_top = NULL;
1574 			goto next_desc;
1575 		}
1576 #define rxtop (rx_ring->rx_skb_top)
1577 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1578 			/* this descriptor is only the beginning (or middle) */
1579 			if (!rxtop) {
1580 				/* this is the beginning of a chain */
1581 				rxtop = skb;
1582 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1583 						   0, length);
1584 			} else {
1585 				/* this is the middle of a chain */
1586 				shinfo = skb_shinfo(rxtop);
1587 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1588 						   buffer_info->page, 0,
1589 						   length);
1590 				/* re-use the skb, only consumed the page */
1591 				buffer_info->skb = skb;
1592 			}
1593 			e1000_consume_page(buffer_info, rxtop, length);
1594 			goto next_desc;
1595 		} else {
1596 			if (rxtop) {
1597 				/* end of the chain */
1598 				shinfo = skb_shinfo(rxtop);
1599 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1600 						   buffer_info->page, 0,
1601 						   length);
1602 				/* re-use the current skb, we only consumed the
1603 				 * page
1604 				 */
1605 				buffer_info->skb = skb;
1606 				skb = rxtop;
1607 				rxtop = NULL;
1608 				e1000_consume_page(buffer_info, skb, length);
1609 			} else {
1610 				/* no chain, got EOP, this buf is the packet
1611 				 * copybreak to save the put_page/alloc_page
1612 				 */
1613 				if (length <= copybreak &&
1614 				    skb_tailroom(skb) >= length) {
1615 					u8 *vaddr;
1616 					vaddr = kmap_atomic(buffer_info->page);
1617 					memcpy(skb_tail_pointer(skb), vaddr,
1618 					       length);
1619 					kunmap_atomic(vaddr);
1620 					/* re-use the page, so don't erase
1621 					 * buffer_info->page
1622 					 */
1623 					skb_put(skb, length);
1624 				} else {
1625 					skb_fill_page_desc(skb, 0,
1626 							   buffer_info->page, 0,
1627 							   length);
1628 					e1000_consume_page(buffer_info, skb,
1629 							   length);
1630 				}
1631 			}
1632 		}
1633 
1634 		/* Receive Checksum Offload */
1635 		e1000_rx_checksum(adapter, staterr, skb);
1636 
1637 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1638 
1639 		/* probably a little skewed due to removing CRC */
1640 		total_rx_bytes += skb->len;
1641 		total_rx_packets++;
1642 
1643 		/* eth type trans needs skb->data to point to something */
1644 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1645 			e_err("pskb_may_pull failed.\n");
1646 			dev_kfree_skb_irq(skb);
1647 			goto next_desc;
1648 		}
1649 
1650 		e1000_receive_skb(adapter, netdev, skb, staterr,
1651 				  rx_desc->wb.upper.vlan);
1652 
1653 next_desc:
1654 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1655 
1656 		/* return some buffers to hardware, one at a time is too slow */
1657 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1658 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1659 					      GFP_ATOMIC);
1660 			cleaned_count = 0;
1661 		}
1662 
1663 		/* use prefetched values */
1664 		rx_desc = next_rxd;
1665 		buffer_info = next_buffer;
1666 
1667 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1668 	}
1669 	rx_ring->next_to_clean = i;
1670 
1671 	cleaned_count = e1000_desc_unused(rx_ring);
1672 	if (cleaned_count)
1673 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1674 
1675 	adapter->total_rx_bytes += total_rx_bytes;
1676 	adapter->total_rx_packets += total_rx_packets;
1677 	return cleaned;
1678 }
1679 
1680 /**
1681  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1682  * @rx_ring: Rx descriptor ring
1683  **/
e1000_clean_rx_ring(struct e1000_ring * rx_ring)1684 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1685 {
1686 	struct e1000_adapter *adapter = rx_ring->adapter;
1687 	struct e1000_buffer *buffer_info;
1688 	struct e1000_ps_page *ps_page;
1689 	struct pci_dev *pdev = adapter->pdev;
1690 	unsigned int i, j;
1691 
1692 	/* Free all the Rx ring sk_buffs */
1693 	for (i = 0; i < rx_ring->count; i++) {
1694 		buffer_info = &rx_ring->buffer_info[i];
1695 		if (buffer_info->dma) {
1696 			if (adapter->clean_rx == e1000_clean_rx_irq)
1697 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1698 						 adapter->rx_buffer_len,
1699 						 DMA_FROM_DEVICE);
1700 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1701 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1702 					       PAGE_SIZE, DMA_FROM_DEVICE);
1703 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1704 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1705 						 adapter->rx_ps_bsize0,
1706 						 DMA_FROM_DEVICE);
1707 			buffer_info->dma = 0;
1708 		}
1709 
1710 		if (buffer_info->page) {
1711 			put_page(buffer_info->page);
1712 			buffer_info->page = NULL;
1713 		}
1714 
1715 		if (buffer_info->skb) {
1716 			dev_kfree_skb(buffer_info->skb);
1717 			buffer_info->skb = NULL;
1718 		}
1719 
1720 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1721 			ps_page = &buffer_info->ps_pages[j];
1722 			if (!ps_page->page)
1723 				break;
1724 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1725 				       DMA_FROM_DEVICE);
1726 			ps_page->dma = 0;
1727 			put_page(ps_page->page);
1728 			ps_page->page = NULL;
1729 		}
1730 	}
1731 
1732 	/* there also may be some cached data from a chained receive */
1733 	if (rx_ring->rx_skb_top) {
1734 		dev_kfree_skb(rx_ring->rx_skb_top);
1735 		rx_ring->rx_skb_top = NULL;
1736 	}
1737 
1738 	/* Zero out the descriptor ring */
1739 	memset(rx_ring->desc, 0, rx_ring->size);
1740 
1741 	rx_ring->next_to_clean = 0;
1742 	rx_ring->next_to_use = 0;
1743 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1744 }
1745 
e1000e_downshift_workaround(struct work_struct * work)1746 static void e1000e_downshift_workaround(struct work_struct *work)
1747 {
1748 	struct e1000_adapter *adapter = container_of(work,
1749 						     struct e1000_adapter,
1750 						     downshift_task);
1751 
1752 	if (test_bit(__E1000_DOWN, &adapter->state))
1753 		return;
1754 
1755 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1756 }
1757 
1758 /**
1759  * e1000_intr_msi - Interrupt Handler
1760  * @irq: interrupt number
1761  * @data: pointer to a network interface device structure
1762  **/
e1000_intr_msi(int __always_unused irq,void * data)1763 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1764 {
1765 	struct net_device *netdev = data;
1766 	struct e1000_adapter *adapter = netdev_priv(netdev);
1767 	struct e1000_hw *hw = &adapter->hw;
1768 	u32 icr = er32(ICR);
1769 
1770 	/* read ICR disables interrupts using IAM */
1771 	if (icr & E1000_ICR_LSC) {
1772 		hw->mac.get_link_status = true;
1773 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1774 		 * disconnect (LSC) before accessing any PHY registers
1775 		 */
1776 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1777 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1778 			schedule_work(&adapter->downshift_task);
1779 
1780 		/* 80003ES2LAN workaround-- For packet buffer work-around on
1781 		 * link down event; disable receives here in the ISR and reset
1782 		 * adapter in watchdog
1783 		 */
1784 		if (netif_carrier_ok(netdev) &&
1785 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1786 			/* disable receives */
1787 			u32 rctl = er32(RCTL);
1788 
1789 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1790 			adapter->flags |= FLAG_RESTART_NOW;
1791 		}
1792 		/* guard against interrupt when we're going down */
1793 		if (!test_bit(__E1000_DOWN, &adapter->state))
1794 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1795 	}
1796 
1797 	/* Reset on uncorrectable ECC error */
1798 	if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1799 					(hw->mac.type == e1000_pch_spt))) {
1800 		u32 pbeccsts = er32(PBECCSTS);
1801 
1802 		adapter->corr_errors +=
1803 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1804 		adapter->uncorr_errors +=
1805 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1806 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1807 
1808 		/* Do the reset outside of interrupt context */
1809 		schedule_work(&adapter->reset_task);
1810 
1811 		/* return immediately since reset is imminent */
1812 		return IRQ_HANDLED;
1813 	}
1814 
1815 	if (napi_schedule_prep(&adapter->napi)) {
1816 		adapter->total_tx_bytes = 0;
1817 		adapter->total_tx_packets = 0;
1818 		adapter->total_rx_bytes = 0;
1819 		adapter->total_rx_packets = 0;
1820 		__napi_schedule(&adapter->napi);
1821 	}
1822 
1823 	return IRQ_HANDLED;
1824 }
1825 
1826 /**
1827  * e1000_intr - Interrupt Handler
1828  * @irq: interrupt number
1829  * @data: pointer to a network interface device structure
1830  **/
e1000_intr(int __always_unused irq,void * data)1831 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1832 {
1833 	struct net_device *netdev = data;
1834 	struct e1000_adapter *adapter = netdev_priv(netdev);
1835 	struct e1000_hw *hw = &adapter->hw;
1836 	u32 rctl, icr = er32(ICR);
1837 
1838 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1839 		return IRQ_NONE;	/* Not our interrupt */
1840 
1841 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1842 	 * not set, then the adapter didn't send an interrupt
1843 	 */
1844 	if (!(icr & E1000_ICR_INT_ASSERTED))
1845 		return IRQ_NONE;
1846 
1847 	/* Interrupt Auto-Mask...upon reading ICR,
1848 	 * interrupts are masked.  No need for the
1849 	 * IMC write
1850 	 */
1851 
1852 	if (icr & E1000_ICR_LSC) {
1853 		hw->mac.get_link_status = true;
1854 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1855 		 * disconnect (LSC) before accessing any PHY registers
1856 		 */
1857 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1858 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1859 			schedule_work(&adapter->downshift_task);
1860 
1861 		/* 80003ES2LAN workaround--
1862 		 * For packet buffer work-around on link down event;
1863 		 * disable receives here in the ISR and
1864 		 * reset adapter in watchdog
1865 		 */
1866 		if (netif_carrier_ok(netdev) &&
1867 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1868 			/* disable receives */
1869 			rctl = er32(RCTL);
1870 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1871 			adapter->flags |= FLAG_RESTART_NOW;
1872 		}
1873 		/* guard against interrupt when we're going down */
1874 		if (!test_bit(__E1000_DOWN, &adapter->state))
1875 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1876 	}
1877 
1878 	/* Reset on uncorrectable ECC error */
1879 	if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1880 					(hw->mac.type == e1000_pch_spt))) {
1881 		u32 pbeccsts = er32(PBECCSTS);
1882 
1883 		adapter->corr_errors +=
1884 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1885 		adapter->uncorr_errors +=
1886 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1887 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1888 
1889 		/* Do the reset outside of interrupt context */
1890 		schedule_work(&adapter->reset_task);
1891 
1892 		/* return immediately since reset is imminent */
1893 		return IRQ_HANDLED;
1894 	}
1895 
1896 	if (napi_schedule_prep(&adapter->napi)) {
1897 		adapter->total_tx_bytes = 0;
1898 		adapter->total_tx_packets = 0;
1899 		adapter->total_rx_bytes = 0;
1900 		adapter->total_rx_packets = 0;
1901 		__napi_schedule(&adapter->napi);
1902 	}
1903 
1904 	return IRQ_HANDLED;
1905 }
1906 
e1000_msix_other(int __always_unused irq,void * data)1907 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1908 {
1909 	struct net_device *netdev = data;
1910 	struct e1000_adapter *adapter = netdev_priv(netdev);
1911 	struct e1000_hw *hw = &adapter->hw;
1912 	u32 icr = er32(ICR);
1913 
1914 	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1915 		if (!test_bit(__E1000_DOWN, &adapter->state))
1916 			ew32(IMS, E1000_IMS_OTHER);
1917 		return IRQ_NONE;
1918 	}
1919 
1920 	if (icr & adapter->eiac_mask)
1921 		ew32(ICS, (icr & adapter->eiac_mask));
1922 
1923 	if (icr & E1000_ICR_OTHER) {
1924 		if (!(icr & E1000_ICR_LSC))
1925 			goto no_link_interrupt;
1926 		hw->mac.get_link_status = true;
1927 		/* guard against interrupt when we're going down */
1928 		if (!test_bit(__E1000_DOWN, &adapter->state))
1929 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1930 	}
1931 
1932 no_link_interrupt:
1933 	if (!test_bit(__E1000_DOWN, &adapter->state))
1934 		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1935 
1936 	return IRQ_HANDLED;
1937 }
1938 
e1000_intr_msix_tx(int __always_unused irq,void * data)1939 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1940 {
1941 	struct net_device *netdev = data;
1942 	struct e1000_adapter *adapter = netdev_priv(netdev);
1943 	struct e1000_hw *hw = &adapter->hw;
1944 	struct e1000_ring *tx_ring = adapter->tx_ring;
1945 
1946 	adapter->total_tx_bytes = 0;
1947 	adapter->total_tx_packets = 0;
1948 
1949 	if (!e1000_clean_tx_irq(tx_ring))
1950 		/* Ring was not completely cleaned, so fire another interrupt */
1951 		ew32(ICS, tx_ring->ims_val);
1952 
1953 	return IRQ_HANDLED;
1954 }
1955 
e1000_intr_msix_rx(int __always_unused irq,void * data)1956 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1957 {
1958 	struct net_device *netdev = data;
1959 	struct e1000_adapter *adapter = netdev_priv(netdev);
1960 	struct e1000_ring *rx_ring = adapter->rx_ring;
1961 
1962 	/* Write the ITR value calculated at the end of the
1963 	 * previous interrupt.
1964 	 */
1965 	if (rx_ring->set_itr) {
1966 		u32 itr = rx_ring->itr_val ?
1967 			  1000000000 / (rx_ring->itr_val * 256) : 0;
1968 
1969 		writel(itr, rx_ring->itr_register);
1970 		rx_ring->set_itr = 0;
1971 	}
1972 
1973 	if (napi_schedule_prep(&adapter->napi)) {
1974 		adapter->total_rx_bytes = 0;
1975 		adapter->total_rx_packets = 0;
1976 		__napi_schedule(&adapter->napi);
1977 	}
1978 	return IRQ_HANDLED;
1979 }
1980 
1981 /**
1982  * e1000_configure_msix - Configure MSI-X hardware
1983  *
1984  * e1000_configure_msix sets up the hardware to properly
1985  * generate MSI-X interrupts.
1986  **/
e1000_configure_msix(struct e1000_adapter * adapter)1987 static void e1000_configure_msix(struct e1000_adapter *adapter)
1988 {
1989 	struct e1000_hw *hw = &adapter->hw;
1990 	struct e1000_ring *rx_ring = adapter->rx_ring;
1991 	struct e1000_ring *tx_ring = adapter->tx_ring;
1992 	int vector = 0;
1993 	u32 ctrl_ext, ivar = 0;
1994 
1995 	adapter->eiac_mask = 0;
1996 
1997 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1998 	if (hw->mac.type == e1000_82574) {
1999 		u32 rfctl = er32(RFCTL);
2000 
2001 		rfctl |= E1000_RFCTL_ACK_DIS;
2002 		ew32(RFCTL, rfctl);
2003 	}
2004 
2005 	/* Configure Rx vector */
2006 	rx_ring->ims_val = E1000_IMS_RXQ0;
2007 	adapter->eiac_mask |= rx_ring->ims_val;
2008 	if (rx_ring->itr_val)
2009 		writel(1000000000 / (rx_ring->itr_val * 256),
2010 		       rx_ring->itr_register);
2011 	else
2012 		writel(1, rx_ring->itr_register);
2013 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2014 
2015 	/* Configure Tx vector */
2016 	tx_ring->ims_val = E1000_IMS_TXQ0;
2017 	vector++;
2018 	if (tx_ring->itr_val)
2019 		writel(1000000000 / (tx_ring->itr_val * 256),
2020 		       tx_ring->itr_register);
2021 	else
2022 		writel(1, tx_ring->itr_register);
2023 	adapter->eiac_mask |= tx_ring->ims_val;
2024 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2025 
2026 	/* set vector for Other Causes, e.g. link changes */
2027 	vector++;
2028 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2029 	if (rx_ring->itr_val)
2030 		writel(1000000000 / (rx_ring->itr_val * 256),
2031 		       hw->hw_addr + E1000_EITR_82574(vector));
2032 	else
2033 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2034 
2035 	/* Cause Tx interrupts on every write back */
2036 	ivar |= (1 << 31);
2037 
2038 	ew32(IVAR, ivar);
2039 
2040 	/* enable MSI-X PBA support */
2041 	ctrl_ext = er32(CTRL_EXT);
2042 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2043 
2044 	/* Auto-Mask Other interrupts upon ICR read */
2045 	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2046 	ctrl_ext |= E1000_CTRL_EXT_EIAME;
2047 	ew32(CTRL_EXT, ctrl_ext);
2048 	e1e_flush();
2049 }
2050 
e1000e_reset_interrupt_capability(struct e1000_adapter * adapter)2051 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2052 {
2053 	if (adapter->msix_entries) {
2054 		pci_disable_msix(adapter->pdev);
2055 		kfree(adapter->msix_entries);
2056 		adapter->msix_entries = NULL;
2057 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2058 		pci_disable_msi(adapter->pdev);
2059 		adapter->flags &= ~FLAG_MSI_ENABLED;
2060 	}
2061 }
2062 
2063 /**
2064  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2065  *
2066  * Attempt to configure interrupts using the best available
2067  * capabilities of the hardware and kernel.
2068  **/
e1000e_set_interrupt_capability(struct e1000_adapter * adapter)2069 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2070 {
2071 	int err;
2072 	int i;
2073 
2074 	switch (adapter->int_mode) {
2075 	case E1000E_INT_MODE_MSIX:
2076 		if (adapter->flags & FLAG_HAS_MSIX) {
2077 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2078 			adapter->msix_entries = kcalloc(adapter->num_vectors,
2079 							sizeof(struct
2080 							       msix_entry),
2081 							GFP_KERNEL);
2082 			if (adapter->msix_entries) {
2083 				struct e1000_adapter *a = adapter;
2084 
2085 				for (i = 0; i < adapter->num_vectors; i++)
2086 					adapter->msix_entries[i].entry = i;
2087 
2088 				err = pci_enable_msix_range(a->pdev,
2089 							    a->msix_entries,
2090 							    a->num_vectors,
2091 							    a->num_vectors);
2092 				if (err > 0)
2093 					return;
2094 			}
2095 			/* MSI-X failed, so fall through and try MSI */
2096 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2097 			e1000e_reset_interrupt_capability(adapter);
2098 		}
2099 		adapter->int_mode = E1000E_INT_MODE_MSI;
2100 		/* Fall through */
2101 	case E1000E_INT_MODE_MSI:
2102 		if (!pci_enable_msi(adapter->pdev)) {
2103 			adapter->flags |= FLAG_MSI_ENABLED;
2104 		} else {
2105 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2106 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2107 		}
2108 		/* Fall through */
2109 	case E1000E_INT_MODE_LEGACY:
2110 		/* Don't do anything; this is the system default */
2111 		break;
2112 	}
2113 
2114 	/* store the number of vectors being used */
2115 	adapter->num_vectors = 1;
2116 }
2117 
2118 /**
2119  * e1000_request_msix - Initialize MSI-X interrupts
2120  *
2121  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2122  * kernel.
2123  **/
e1000_request_msix(struct e1000_adapter * adapter)2124 static int e1000_request_msix(struct e1000_adapter *adapter)
2125 {
2126 	struct net_device *netdev = adapter->netdev;
2127 	int err = 0, vector = 0;
2128 
2129 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2130 		snprintf(adapter->rx_ring->name,
2131 			 sizeof(adapter->rx_ring->name) - 1,
2132 			 "%.14s-rx-0", netdev->name);
2133 	else
2134 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2135 	err = request_irq(adapter->msix_entries[vector].vector,
2136 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2137 			  netdev);
2138 	if (err)
2139 		return err;
2140 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2141 	    E1000_EITR_82574(vector);
2142 	adapter->rx_ring->itr_val = adapter->itr;
2143 	vector++;
2144 
2145 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2146 		snprintf(adapter->tx_ring->name,
2147 			 sizeof(adapter->tx_ring->name) - 1,
2148 			 "%.14s-tx-0", netdev->name);
2149 	else
2150 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2151 	err = request_irq(adapter->msix_entries[vector].vector,
2152 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2153 			  netdev);
2154 	if (err)
2155 		return err;
2156 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2157 	    E1000_EITR_82574(vector);
2158 	adapter->tx_ring->itr_val = adapter->itr;
2159 	vector++;
2160 
2161 	err = request_irq(adapter->msix_entries[vector].vector,
2162 			  e1000_msix_other, 0, netdev->name, netdev);
2163 	if (err)
2164 		return err;
2165 
2166 	e1000_configure_msix(adapter);
2167 
2168 	return 0;
2169 }
2170 
2171 /**
2172  * e1000_request_irq - initialize interrupts
2173  *
2174  * Attempts to configure interrupts using the best available
2175  * capabilities of the hardware and kernel.
2176  **/
e1000_request_irq(struct e1000_adapter * adapter)2177 static int e1000_request_irq(struct e1000_adapter *adapter)
2178 {
2179 	struct net_device *netdev = adapter->netdev;
2180 	int err;
2181 
2182 	if (adapter->msix_entries) {
2183 		err = e1000_request_msix(adapter);
2184 		if (!err)
2185 			return err;
2186 		/* fall back to MSI */
2187 		e1000e_reset_interrupt_capability(adapter);
2188 		adapter->int_mode = E1000E_INT_MODE_MSI;
2189 		e1000e_set_interrupt_capability(adapter);
2190 	}
2191 	if (adapter->flags & FLAG_MSI_ENABLED) {
2192 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2193 				  netdev->name, netdev);
2194 		if (!err)
2195 			return err;
2196 
2197 		/* fall back to legacy interrupt */
2198 		e1000e_reset_interrupt_capability(adapter);
2199 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2200 	}
2201 
2202 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2203 			  netdev->name, netdev);
2204 	if (err)
2205 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2206 
2207 	return err;
2208 }
2209 
e1000_free_irq(struct e1000_adapter * adapter)2210 static void e1000_free_irq(struct e1000_adapter *adapter)
2211 {
2212 	struct net_device *netdev = adapter->netdev;
2213 
2214 	if (adapter->msix_entries) {
2215 		int vector = 0;
2216 
2217 		free_irq(adapter->msix_entries[vector].vector, netdev);
2218 		vector++;
2219 
2220 		free_irq(adapter->msix_entries[vector].vector, netdev);
2221 		vector++;
2222 
2223 		/* Other Causes interrupt vector */
2224 		free_irq(adapter->msix_entries[vector].vector, netdev);
2225 		return;
2226 	}
2227 
2228 	free_irq(adapter->pdev->irq, netdev);
2229 }
2230 
2231 /**
2232  * e1000_irq_disable - Mask off interrupt generation on the NIC
2233  **/
e1000_irq_disable(struct e1000_adapter * adapter)2234 static void e1000_irq_disable(struct e1000_adapter *adapter)
2235 {
2236 	struct e1000_hw *hw = &adapter->hw;
2237 
2238 	ew32(IMC, ~0);
2239 	if (adapter->msix_entries)
2240 		ew32(EIAC_82574, 0);
2241 	e1e_flush();
2242 
2243 	if (adapter->msix_entries) {
2244 		int i;
2245 
2246 		for (i = 0; i < adapter->num_vectors; i++)
2247 			synchronize_irq(adapter->msix_entries[i].vector);
2248 	} else {
2249 		synchronize_irq(adapter->pdev->irq);
2250 	}
2251 }
2252 
2253 /**
2254  * e1000_irq_enable - Enable default interrupt generation settings
2255  **/
e1000_irq_enable(struct e1000_adapter * adapter)2256 static void e1000_irq_enable(struct e1000_adapter *adapter)
2257 {
2258 	struct e1000_hw *hw = &adapter->hw;
2259 
2260 	if (adapter->msix_entries) {
2261 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2262 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2263 	} else if ((hw->mac.type == e1000_pch_lpt) ||
2264 		   (hw->mac.type == e1000_pch_spt)) {
2265 		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2266 	} else {
2267 		ew32(IMS, IMS_ENABLE_MASK);
2268 	}
2269 	e1e_flush();
2270 }
2271 
2272 /**
2273  * e1000e_get_hw_control - get control of the h/w from f/w
2274  * @adapter: address of board private structure
2275  *
2276  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2277  * For ASF and Pass Through versions of f/w this means that
2278  * the driver is loaded. For AMT version (only with 82573)
2279  * of the f/w this means that the network i/f is open.
2280  **/
e1000e_get_hw_control(struct e1000_adapter * adapter)2281 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2282 {
2283 	struct e1000_hw *hw = &adapter->hw;
2284 	u32 ctrl_ext;
2285 	u32 swsm;
2286 
2287 	/* Let firmware know the driver has taken over */
2288 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2289 		swsm = er32(SWSM);
2290 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2291 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2292 		ctrl_ext = er32(CTRL_EXT);
2293 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2294 	}
2295 }
2296 
2297 /**
2298  * e1000e_release_hw_control - release control of the h/w to f/w
2299  * @adapter: address of board private structure
2300  *
2301  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2302  * For ASF and Pass Through versions of f/w this means that the
2303  * driver is no longer loaded. For AMT version (only with 82573) i
2304  * of the f/w this means that the network i/f is closed.
2305  *
2306  **/
e1000e_release_hw_control(struct e1000_adapter * adapter)2307 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2308 {
2309 	struct e1000_hw *hw = &adapter->hw;
2310 	u32 ctrl_ext;
2311 	u32 swsm;
2312 
2313 	/* Let firmware taken over control of h/w */
2314 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2315 		swsm = er32(SWSM);
2316 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2317 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2318 		ctrl_ext = er32(CTRL_EXT);
2319 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2320 	}
2321 }
2322 
2323 /**
2324  * e1000_alloc_ring_dma - allocate memory for a ring structure
2325  **/
e1000_alloc_ring_dma(struct e1000_adapter * adapter,struct e1000_ring * ring)2326 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2327 				struct e1000_ring *ring)
2328 {
2329 	struct pci_dev *pdev = adapter->pdev;
2330 
2331 	ring->desc = dma_zalloc_coherent(&pdev->dev, ring->size, &ring->dma,
2332 					 GFP_KERNEL);
2333 	if (!ring->desc)
2334 		return -ENOMEM;
2335 
2336 	return 0;
2337 }
2338 
2339 /**
2340  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2341  * @tx_ring: Tx descriptor ring
2342  *
2343  * Return 0 on success, negative on failure
2344  **/
e1000e_setup_tx_resources(struct e1000_ring * tx_ring)2345 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2346 {
2347 	struct e1000_adapter *adapter = tx_ring->adapter;
2348 	int err = -ENOMEM, size;
2349 
2350 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2351 	tx_ring->buffer_info = vzalloc(size);
2352 	if (!tx_ring->buffer_info)
2353 		goto err;
2354 
2355 	/* round up to nearest 4K */
2356 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2357 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2358 
2359 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2360 	if (err)
2361 		goto err;
2362 
2363 	tx_ring->next_to_use = 0;
2364 	tx_ring->next_to_clean = 0;
2365 
2366 	return 0;
2367 err:
2368 	vfree(tx_ring->buffer_info);
2369 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2370 	return err;
2371 }
2372 
2373 /**
2374  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2375  * @rx_ring: Rx descriptor ring
2376  *
2377  * Returns 0 on success, negative on failure
2378  **/
e1000e_setup_rx_resources(struct e1000_ring * rx_ring)2379 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2380 {
2381 	struct e1000_adapter *adapter = rx_ring->adapter;
2382 	struct e1000_buffer *buffer_info;
2383 	int i, size, desc_len, err = -ENOMEM;
2384 
2385 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2386 	rx_ring->buffer_info = vzalloc(size);
2387 	if (!rx_ring->buffer_info)
2388 		goto err;
2389 
2390 	for (i = 0; i < rx_ring->count; i++) {
2391 		buffer_info = &rx_ring->buffer_info[i];
2392 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2393 						sizeof(struct e1000_ps_page),
2394 						GFP_KERNEL);
2395 		if (!buffer_info->ps_pages)
2396 			goto err_pages;
2397 	}
2398 
2399 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2400 
2401 	/* Round up to nearest 4K */
2402 	rx_ring->size = rx_ring->count * desc_len;
2403 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2404 
2405 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2406 	if (err)
2407 		goto err_pages;
2408 
2409 	rx_ring->next_to_clean = 0;
2410 	rx_ring->next_to_use = 0;
2411 	rx_ring->rx_skb_top = NULL;
2412 
2413 	return 0;
2414 
2415 err_pages:
2416 	for (i = 0; i < rx_ring->count; i++) {
2417 		buffer_info = &rx_ring->buffer_info[i];
2418 		kfree(buffer_info->ps_pages);
2419 	}
2420 err:
2421 	vfree(rx_ring->buffer_info);
2422 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2423 	return err;
2424 }
2425 
2426 /**
2427  * e1000_clean_tx_ring - Free Tx Buffers
2428  * @tx_ring: Tx descriptor ring
2429  **/
e1000_clean_tx_ring(struct e1000_ring * tx_ring)2430 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2431 {
2432 	struct e1000_adapter *adapter = tx_ring->adapter;
2433 	struct e1000_buffer *buffer_info;
2434 	unsigned long size;
2435 	unsigned int i;
2436 
2437 	for (i = 0; i < tx_ring->count; i++) {
2438 		buffer_info = &tx_ring->buffer_info[i];
2439 		e1000_put_txbuf(tx_ring, buffer_info);
2440 	}
2441 
2442 	netdev_reset_queue(adapter->netdev);
2443 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2444 	memset(tx_ring->buffer_info, 0, size);
2445 
2446 	memset(tx_ring->desc, 0, tx_ring->size);
2447 
2448 	tx_ring->next_to_use = 0;
2449 	tx_ring->next_to_clean = 0;
2450 }
2451 
2452 /**
2453  * e1000e_free_tx_resources - Free Tx Resources per Queue
2454  * @tx_ring: Tx descriptor ring
2455  *
2456  * Free all transmit software resources
2457  **/
e1000e_free_tx_resources(struct e1000_ring * tx_ring)2458 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2459 {
2460 	struct e1000_adapter *adapter = tx_ring->adapter;
2461 	struct pci_dev *pdev = adapter->pdev;
2462 
2463 	e1000_clean_tx_ring(tx_ring);
2464 
2465 	vfree(tx_ring->buffer_info);
2466 	tx_ring->buffer_info = NULL;
2467 
2468 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2469 			  tx_ring->dma);
2470 	tx_ring->desc = NULL;
2471 }
2472 
2473 /**
2474  * e1000e_free_rx_resources - Free Rx Resources
2475  * @rx_ring: Rx descriptor ring
2476  *
2477  * Free all receive software resources
2478  **/
e1000e_free_rx_resources(struct e1000_ring * rx_ring)2479 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2480 {
2481 	struct e1000_adapter *adapter = rx_ring->adapter;
2482 	struct pci_dev *pdev = adapter->pdev;
2483 	int i;
2484 
2485 	e1000_clean_rx_ring(rx_ring);
2486 
2487 	for (i = 0; i < rx_ring->count; i++)
2488 		kfree(rx_ring->buffer_info[i].ps_pages);
2489 
2490 	vfree(rx_ring->buffer_info);
2491 	rx_ring->buffer_info = NULL;
2492 
2493 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2494 			  rx_ring->dma);
2495 	rx_ring->desc = NULL;
2496 }
2497 
2498 /**
2499  * e1000_update_itr - update the dynamic ITR value based on statistics
2500  * @adapter: pointer to adapter
2501  * @itr_setting: current adapter->itr
2502  * @packets: the number of packets during this measurement interval
2503  * @bytes: the number of bytes during this measurement interval
2504  *
2505  *      Stores a new ITR value based on packets and byte
2506  *      counts during the last interrupt.  The advantage of per interrupt
2507  *      computation is faster updates and more accurate ITR for the current
2508  *      traffic pattern.  Constants in this function were computed
2509  *      based on theoretical maximum wire speed and thresholds were set based
2510  *      on testing data as well as attempting to minimize response time
2511  *      while increasing bulk throughput.  This functionality is controlled
2512  *      by the InterruptThrottleRate module parameter.
2513  **/
e1000_update_itr(u16 itr_setting,int packets,int bytes)2514 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2515 {
2516 	unsigned int retval = itr_setting;
2517 
2518 	if (packets == 0)
2519 		return itr_setting;
2520 
2521 	switch (itr_setting) {
2522 	case lowest_latency:
2523 		/* handle TSO and jumbo frames */
2524 		if (bytes / packets > 8000)
2525 			retval = bulk_latency;
2526 		else if ((packets < 5) && (bytes > 512))
2527 			retval = low_latency;
2528 		break;
2529 	case low_latency:	/* 50 usec aka 20000 ints/s */
2530 		if (bytes > 10000) {
2531 			/* this if handles the TSO accounting */
2532 			if (bytes / packets > 8000)
2533 				retval = bulk_latency;
2534 			else if ((packets < 10) || ((bytes / packets) > 1200))
2535 				retval = bulk_latency;
2536 			else if ((packets > 35))
2537 				retval = lowest_latency;
2538 		} else if (bytes / packets > 2000) {
2539 			retval = bulk_latency;
2540 		} else if (packets <= 2 && bytes < 512) {
2541 			retval = lowest_latency;
2542 		}
2543 		break;
2544 	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2545 		if (bytes > 25000) {
2546 			if (packets > 35)
2547 				retval = low_latency;
2548 		} else if (bytes < 6000) {
2549 			retval = low_latency;
2550 		}
2551 		break;
2552 	}
2553 
2554 	return retval;
2555 }
2556 
e1000_set_itr(struct e1000_adapter * adapter)2557 static void e1000_set_itr(struct e1000_adapter *adapter)
2558 {
2559 	u16 current_itr;
2560 	u32 new_itr = adapter->itr;
2561 
2562 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2563 	if (adapter->link_speed != SPEED_1000) {
2564 		current_itr = 0;
2565 		new_itr = 4000;
2566 		goto set_itr_now;
2567 	}
2568 
2569 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2570 		new_itr = 0;
2571 		goto set_itr_now;
2572 	}
2573 
2574 	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2575 					   adapter->total_tx_packets,
2576 					   adapter->total_tx_bytes);
2577 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2578 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2579 		adapter->tx_itr = low_latency;
2580 
2581 	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2582 					   adapter->total_rx_packets,
2583 					   adapter->total_rx_bytes);
2584 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2585 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2586 		adapter->rx_itr = low_latency;
2587 
2588 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2589 
2590 	/* counts and packets in update_itr are dependent on these numbers */
2591 	switch (current_itr) {
2592 	case lowest_latency:
2593 		new_itr = 70000;
2594 		break;
2595 	case low_latency:
2596 		new_itr = 20000;	/* aka hwitr = ~200 */
2597 		break;
2598 	case bulk_latency:
2599 		new_itr = 4000;
2600 		break;
2601 	default:
2602 		break;
2603 	}
2604 
2605 set_itr_now:
2606 	if (new_itr != adapter->itr) {
2607 		/* this attempts to bias the interrupt rate towards Bulk
2608 		 * by adding intermediate steps when interrupt rate is
2609 		 * increasing
2610 		 */
2611 		new_itr = new_itr > adapter->itr ?
2612 		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2613 		adapter->itr = new_itr;
2614 		adapter->rx_ring->itr_val = new_itr;
2615 		if (adapter->msix_entries)
2616 			adapter->rx_ring->set_itr = 1;
2617 		else
2618 			e1000e_write_itr(adapter, new_itr);
2619 	}
2620 }
2621 
2622 /**
2623  * e1000e_write_itr - write the ITR value to the appropriate registers
2624  * @adapter: address of board private structure
2625  * @itr: new ITR value to program
2626  *
2627  * e1000e_write_itr determines if the adapter is in MSI-X mode
2628  * and, if so, writes the EITR registers with the ITR value.
2629  * Otherwise, it writes the ITR value into the ITR register.
2630  **/
e1000e_write_itr(struct e1000_adapter * adapter,u32 itr)2631 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2632 {
2633 	struct e1000_hw *hw = &adapter->hw;
2634 	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2635 
2636 	if (adapter->msix_entries) {
2637 		int vector;
2638 
2639 		for (vector = 0; vector < adapter->num_vectors; vector++)
2640 			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2641 	} else {
2642 		ew32(ITR, new_itr);
2643 	}
2644 }
2645 
2646 /**
2647  * e1000_alloc_queues - Allocate memory for all rings
2648  * @adapter: board private structure to initialize
2649  **/
e1000_alloc_queues(struct e1000_adapter * adapter)2650 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2651 {
2652 	int size = sizeof(struct e1000_ring);
2653 
2654 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2655 	if (!adapter->tx_ring)
2656 		goto err;
2657 	adapter->tx_ring->count = adapter->tx_ring_count;
2658 	adapter->tx_ring->adapter = adapter;
2659 
2660 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2661 	if (!adapter->rx_ring)
2662 		goto err;
2663 	adapter->rx_ring->count = adapter->rx_ring_count;
2664 	adapter->rx_ring->adapter = adapter;
2665 
2666 	return 0;
2667 err:
2668 	e_err("Unable to allocate memory for queues\n");
2669 	kfree(adapter->rx_ring);
2670 	kfree(adapter->tx_ring);
2671 	return -ENOMEM;
2672 }
2673 
2674 /**
2675  * e1000e_poll - NAPI Rx polling callback
2676  * @napi: struct associated with this polling callback
2677  * @weight: number of packets driver is allowed to process this poll
2678  **/
e1000e_poll(struct napi_struct * napi,int weight)2679 static int e1000e_poll(struct napi_struct *napi, int weight)
2680 {
2681 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2682 						     napi);
2683 	struct e1000_hw *hw = &adapter->hw;
2684 	struct net_device *poll_dev = adapter->netdev;
2685 	int tx_cleaned = 1, work_done = 0;
2686 
2687 	adapter = netdev_priv(poll_dev);
2688 
2689 	if (!adapter->msix_entries ||
2690 	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2691 		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2692 
2693 	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2694 
2695 	if (!tx_cleaned)
2696 		work_done = weight;
2697 
2698 	/* If weight not fully consumed, exit the polling mode */
2699 	if (work_done < weight) {
2700 		if (adapter->itr_setting & 3)
2701 			e1000_set_itr(adapter);
2702 		napi_complete_done(napi, work_done);
2703 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2704 			if (adapter->msix_entries)
2705 				ew32(IMS, adapter->rx_ring->ims_val);
2706 			else
2707 				e1000_irq_enable(adapter);
2708 		}
2709 	}
2710 
2711 	return work_done;
2712 }
2713 
e1000_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)2714 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2715 				 __always_unused __be16 proto, u16 vid)
2716 {
2717 	struct e1000_adapter *adapter = netdev_priv(netdev);
2718 	struct e1000_hw *hw = &adapter->hw;
2719 	u32 vfta, index;
2720 
2721 	/* don't update vlan cookie if already programmed */
2722 	if ((adapter->hw.mng_cookie.status &
2723 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2724 	    (vid == adapter->mng_vlan_id))
2725 		return 0;
2726 
2727 	/* add VID to filter table */
2728 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2729 		index = (vid >> 5) & 0x7F;
2730 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2731 		vfta |= (1 << (vid & 0x1F));
2732 		hw->mac.ops.write_vfta(hw, index, vfta);
2733 	}
2734 
2735 	set_bit(vid, adapter->active_vlans);
2736 
2737 	return 0;
2738 }
2739 
e1000_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)2740 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2741 				  __always_unused __be16 proto, u16 vid)
2742 {
2743 	struct e1000_adapter *adapter = netdev_priv(netdev);
2744 	struct e1000_hw *hw = &adapter->hw;
2745 	u32 vfta, index;
2746 
2747 	if ((adapter->hw.mng_cookie.status &
2748 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2749 	    (vid == adapter->mng_vlan_id)) {
2750 		/* release control to f/w */
2751 		e1000e_release_hw_control(adapter);
2752 		return 0;
2753 	}
2754 
2755 	/* remove VID from filter table */
2756 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2757 		index = (vid >> 5) & 0x7F;
2758 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2759 		vfta &= ~(1 << (vid & 0x1F));
2760 		hw->mac.ops.write_vfta(hw, index, vfta);
2761 	}
2762 
2763 	clear_bit(vid, adapter->active_vlans);
2764 
2765 	return 0;
2766 }
2767 
2768 /**
2769  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2770  * @adapter: board private structure to initialize
2771  **/
e1000e_vlan_filter_disable(struct e1000_adapter * adapter)2772 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2773 {
2774 	struct net_device *netdev = adapter->netdev;
2775 	struct e1000_hw *hw = &adapter->hw;
2776 	u32 rctl;
2777 
2778 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2779 		/* disable VLAN receive filtering */
2780 		rctl = er32(RCTL);
2781 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2782 		ew32(RCTL, rctl);
2783 
2784 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2785 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2786 					       adapter->mng_vlan_id);
2787 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2788 		}
2789 	}
2790 }
2791 
2792 /**
2793  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2794  * @adapter: board private structure to initialize
2795  **/
e1000e_vlan_filter_enable(struct e1000_adapter * adapter)2796 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2797 {
2798 	struct e1000_hw *hw = &adapter->hw;
2799 	u32 rctl;
2800 
2801 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2802 		/* enable VLAN receive filtering */
2803 		rctl = er32(RCTL);
2804 		rctl |= E1000_RCTL_VFE;
2805 		rctl &= ~E1000_RCTL_CFIEN;
2806 		ew32(RCTL, rctl);
2807 	}
2808 }
2809 
2810 /**
2811  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2812  * @adapter: board private structure to initialize
2813  **/
e1000e_vlan_strip_disable(struct e1000_adapter * adapter)2814 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2815 {
2816 	struct e1000_hw *hw = &adapter->hw;
2817 	u32 ctrl;
2818 
2819 	/* disable VLAN tag insert/strip */
2820 	ctrl = er32(CTRL);
2821 	ctrl &= ~E1000_CTRL_VME;
2822 	ew32(CTRL, ctrl);
2823 }
2824 
2825 /**
2826  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2827  * @adapter: board private structure to initialize
2828  **/
e1000e_vlan_strip_enable(struct e1000_adapter * adapter)2829 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2830 {
2831 	struct e1000_hw *hw = &adapter->hw;
2832 	u32 ctrl;
2833 
2834 	/* enable VLAN tag insert/strip */
2835 	ctrl = er32(CTRL);
2836 	ctrl |= E1000_CTRL_VME;
2837 	ew32(CTRL, ctrl);
2838 }
2839 
e1000_update_mng_vlan(struct e1000_adapter * adapter)2840 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2841 {
2842 	struct net_device *netdev = adapter->netdev;
2843 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2844 	u16 old_vid = adapter->mng_vlan_id;
2845 
2846 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2847 		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2848 		adapter->mng_vlan_id = vid;
2849 	}
2850 
2851 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2852 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2853 }
2854 
e1000_restore_vlan(struct e1000_adapter * adapter)2855 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2856 {
2857 	u16 vid;
2858 
2859 	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2860 
2861 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2862 	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2863 }
2864 
e1000_init_manageability_pt(struct e1000_adapter * adapter)2865 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2866 {
2867 	struct e1000_hw *hw = &adapter->hw;
2868 	u32 manc, manc2h, mdef, i, j;
2869 
2870 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2871 		return;
2872 
2873 	manc = er32(MANC);
2874 
2875 	/* enable receiving management packets to the host. this will probably
2876 	 * generate destination unreachable messages from the host OS, but
2877 	 * the packets will be handled on SMBUS
2878 	 */
2879 	manc |= E1000_MANC_EN_MNG2HOST;
2880 	manc2h = er32(MANC2H);
2881 
2882 	switch (hw->mac.type) {
2883 	default:
2884 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2885 		break;
2886 	case e1000_82574:
2887 	case e1000_82583:
2888 		/* Check if IPMI pass-through decision filter already exists;
2889 		 * if so, enable it.
2890 		 */
2891 		for (i = 0, j = 0; i < 8; i++) {
2892 			mdef = er32(MDEF(i));
2893 
2894 			/* Ignore filters with anything other than IPMI ports */
2895 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2896 				continue;
2897 
2898 			/* Enable this decision filter in MANC2H */
2899 			if (mdef)
2900 				manc2h |= (1 << i);
2901 
2902 			j |= mdef;
2903 		}
2904 
2905 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2906 			break;
2907 
2908 		/* Create new decision filter in an empty filter */
2909 		for (i = 0, j = 0; i < 8; i++)
2910 			if (er32(MDEF(i)) == 0) {
2911 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2912 					       E1000_MDEF_PORT_664));
2913 				manc2h |= (1 << 1);
2914 				j++;
2915 				break;
2916 			}
2917 
2918 		if (!j)
2919 			e_warn("Unable to create IPMI pass-through filter\n");
2920 		break;
2921 	}
2922 
2923 	ew32(MANC2H, manc2h);
2924 	ew32(MANC, manc);
2925 }
2926 
2927 /**
2928  * e1000_configure_tx - Configure Transmit Unit after Reset
2929  * @adapter: board private structure
2930  *
2931  * Configure the Tx unit of the MAC after a reset.
2932  **/
e1000_configure_tx(struct e1000_adapter * adapter)2933 static void e1000_configure_tx(struct e1000_adapter *adapter)
2934 {
2935 	struct e1000_hw *hw = &adapter->hw;
2936 	struct e1000_ring *tx_ring = adapter->tx_ring;
2937 	u64 tdba;
2938 	u32 tdlen, tctl, tarc;
2939 
2940 	/* Setup the HW Tx Head and Tail descriptor pointers */
2941 	tdba = tx_ring->dma;
2942 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2943 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2944 	ew32(TDBAH(0), (tdba >> 32));
2945 	ew32(TDLEN(0), tdlen);
2946 	ew32(TDH(0), 0);
2947 	ew32(TDT(0), 0);
2948 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2949 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2950 
2951 	writel(0, tx_ring->head);
2952 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2953 		e1000e_update_tdt_wa(tx_ring, 0);
2954 	else
2955 		writel(0, tx_ring->tail);
2956 
2957 	/* Set the Tx Interrupt Delay register */
2958 	ew32(TIDV, adapter->tx_int_delay);
2959 	/* Tx irq moderation */
2960 	ew32(TADV, adapter->tx_abs_int_delay);
2961 
2962 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2963 		u32 txdctl = er32(TXDCTL(0));
2964 
2965 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2966 			    E1000_TXDCTL_WTHRESH);
2967 		/* set up some performance related parameters to encourage the
2968 		 * hardware to use the bus more efficiently in bursts, depends
2969 		 * on the tx_int_delay to be enabled,
2970 		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2971 		 * hthresh = 1 ==> prefetch when one or more available
2972 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2973 		 * BEWARE: this seems to work but should be considered first if
2974 		 * there are Tx hangs or other Tx related bugs
2975 		 */
2976 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2977 		ew32(TXDCTL(0), txdctl);
2978 	}
2979 	/* erratum work around: set txdctl the same for both queues */
2980 	ew32(TXDCTL(1), er32(TXDCTL(0)));
2981 
2982 	/* Program the Transmit Control Register */
2983 	tctl = er32(TCTL);
2984 	tctl &= ~E1000_TCTL_CT;
2985 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2986 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2987 
2988 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2989 		tarc = er32(TARC(0));
2990 		/* set the speed mode bit, we'll clear it if we're not at
2991 		 * gigabit link later
2992 		 */
2993 #define SPEED_MODE_BIT (1 << 21)
2994 		tarc |= SPEED_MODE_BIT;
2995 		ew32(TARC(0), tarc);
2996 	}
2997 
2998 	/* errata: program both queues to unweighted RR */
2999 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
3000 		tarc = er32(TARC(0));
3001 		tarc |= 1;
3002 		ew32(TARC(0), tarc);
3003 		tarc = er32(TARC(1));
3004 		tarc |= 1;
3005 		ew32(TARC(1), tarc);
3006 	}
3007 
3008 	/* Setup Transmit Descriptor Settings for eop descriptor */
3009 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3010 
3011 	/* only set IDE if we are delaying interrupts using the timers */
3012 	if (adapter->tx_int_delay)
3013 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3014 
3015 	/* enable Report Status bit */
3016 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
3017 
3018 	ew32(TCTL, tctl);
3019 
3020 	hw->mac.ops.config_collision_dist(hw);
3021 
3022 	/* SPT Si errata workaround to avoid data corruption */
3023 	if (hw->mac.type == e1000_pch_spt) {
3024 		u32 reg_val;
3025 
3026 		reg_val = er32(IOSFPC);
3027 		reg_val |= E1000_RCTL_RDMTS_HEX;
3028 		ew32(IOSFPC, reg_val);
3029 
3030 		reg_val = er32(TARC(0));
3031 		reg_val |= E1000_TARC0_CB_MULTIQ_3_REQ;
3032 		ew32(TARC(0), reg_val);
3033 	}
3034 }
3035 
3036 /**
3037  * e1000_setup_rctl - configure the receive control registers
3038  * @adapter: Board private structure
3039  **/
3040 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3041 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
e1000_setup_rctl(struct e1000_adapter * adapter)3042 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3043 {
3044 	struct e1000_hw *hw = &adapter->hw;
3045 	u32 rctl, rfctl;
3046 	u32 pages = 0;
3047 
3048 	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3049 	 * If jumbo frames not set, program related MAC/PHY registers
3050 	 * to h/w defaults
3051 	 */
3052 	if (hw->mac.type >= e1000_pch2lan) {
3053 		s32 ret_val;
3054 
3055 		if (adapter->netdev->mtu > ETH_DATA_LEN)
3056 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3057 		else
3058 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3059 
3060 		if (ret_val)
3061 			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3062 	}
3063 
3064 	/* Program MC offset vector base */
3065 	rctl = er32(RCTL);
3066 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3067 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3068 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3069 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3070 
3071 	/* Do not Store bad packets */
3072 	rctl &= ~E1000_RCTL_SBP;
3073 
3074 	/* Enable Long Packet receive */
3075 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3076 		rctl &= ~E1000_RCTL_LPE;
3077 	else
3078 		rctl |= E1000_RCTL_LPE;
3079 
3080 	/* Some systems expect that the CRC is included in SMBUS traffic. The
3081 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3082 	 * host memory when this is enabled
3083 	 */
3084 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3085 		rctl |= E1000_RCTL_SECRC;
3086 
3087 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3088 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3089 		u16 phy_data;
3090 
3091 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3092 		phy_data &= 0xfff8;
3093 		phy_data |= (1 << 2);
3094 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3095 
3096 		e1e_rphy(hw, 22, &phy_data);
3097 		phy_data &= 0x0fff;
3098 		phy_data |= (1 << 14);
3099 		e1e_wphy(hw, 0x10, 0x2823);
3100 		e1e_wphy(hw, 0x11, 0x0003);
3101 		e1e_wphy(hw, 22, phy_data);
3102 	}
3103 
3104 	/* Setup buffer sizes */
3105 	rctl &= ~E1000_RCTL_SZ_4096;
3106 	rctl |= E1000_RCTL_BSEX;
3107 	switch (adapter->rx_buffer_len) {
3108 	case 2048:
3109 	default:
3110 		rctl |= E1000_RCTL_SZ_2048;
3111 		rctl &= ~E1000_RCTL_BSEX;
3112 		break;
3113 	case 4096:
3114 		rctl |= E1000_RCTL_SZ_4096;
3115 		break;
3116 	case 8192:
3117 		rctl |= E1000_RCTL_SZ_8192;
3118 		break;
3119 	case 16384:
3120 		rctl |= E1000_RCTL_SZ_16384;
3121 		break;
3122 	}
3123 
3124 	/* Enable Extended Status in all Receive Descriptors */
3125 	rfctl = er32(RFCTL);
3126 	rfctl |= E1000_RFCTL_EXTEN;
3127 	ew32(RFCTL, rfctl);
3128 
3129 	/* 82571 and greater support packet-split where the protocol
3130 	 * header is placed in skb->data and the packet data is
3131 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3132 	 * In the case of a non-split, skb->data is linearly filled,
3133 	 * followed by the page buffers.  Therefore, skb->data is
3134 	 * sized to hold the largest protocol header.
3135 	 *
3136 	 * allocations using alloc_page take too long for regular MTU
3137 	 * so only enable packet split for jumbo frames
3138 	 *
3139 	 * Using pages when the page size is greater than 16k wastes
3140 	 * a lot of memory, since we allocate 3 pages at all times
3141 	 * per packet.
3142 	 */
3143 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3144 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3145 		adapter->rx_ps_pages = pages;
3146 	else
3147 		adapter->rx_ps_pages = 0;
3148 
3149 	if (adapter->rx_ps_pages) {
3150 		u32 psrctl = 0;
3151 
3152 		/* Enable Packet split descriptors */
3153 		rctl |= E1000_RCTL_DTYP_PS;
3154 
3155 		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3156 
3157 		switch (adapter->rx_ps_pages) {
3158 		case 3:
3159 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3160 			/* fall-through */
3161 		case 2:
3162 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3163 			/* fall-through */
3164 		case 1:
3165 			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3166 			break;
3167 		}
3168 
3169 		ew32(PSRCTL, psrctl);
3170 	}
3171 
3172 	/* This is useful for sniffing bad packets. */
3173 	if (adapter->netdev->features & NETIF_F_RXALL) {
3174 		/* UPE and MPE will be handled by normal PROMISC logic
3175 		 * in e1000e_set_rx_mode
3176 		 */
3177 		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3178 			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3179 			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3180 
3181 		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3182 			  E1000_RCTL_DPF |	/* Allow filtered pause */
3183 			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3184 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3185 		 * and that breaks VLANs.
3186 		 */
3187 	}
3188 
3189 	ew32(RCTL, rctl);
3190 	/* just started the receive unit, no need to restart */
3191 	adapter->flags &= ~FLAG_RESTART_NOW;
3192 }
3193 
3194 /**
3195  * e1000_configure_rx - Configure Receive Unit after Reset
3196  * @adapter: board private structure
3197  *
3198  * Configure the Rx unit of the MAC after a reset.
3199  **/
e1000_configure_rx(struct e1000_adapter * adapter)3200 static void e1000_configure_rx(struct e1000_adapter *adapter)
3201 {
3202 	struct e1000_hw *hw = &adapter->hw;
3203 	struct e1000_ring *rx_ring = adapter->rx_ring;
3204 	u64 rdba;
3205 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3206 
3207 	if (adapter->rx_ps_pages) {
3208 		/* this is a 32 byte descriptor */
3209 		rdlen = rx_ring->count *
3210 		    sizeof(union e1000_rx_desc_packet_split);
3211 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3212 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3213 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3214 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3215 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3216 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3217 	} else {
3218 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3219 		adapter->clean_rx = e1000_clean_rx_irq;
3220 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3221 	}
3222 
3223 	/* disable receives while setting up the descriptors */
3224 	rctl = er32(RCTL);
3225 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3226 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3227 	e1e_flush();
3228 	usleep_range(10000, 20000);
3229 
3230 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3231 		/* set the writeback threshold (only takes effect if the RDTR
3232 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3233 		 * enable prefetching of 0x20 Rx descriptors
3234 		 * granularity = 01
3235 		 * wthresh = 04,
3236 		 * hthresh = 04,
3237 		 * pthresh = 0x20
3238 		 */
3239 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3240 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3241 
3242 		/* override the delay timers for enabling bursting, only if
3243 		 * the value was not set by the user via module options
3244 		 */
3245 		if (adapter->rx_int_delay == DEFAULT_RDTR)
3246 			adapter->rx_int_delay = BURST_RDTR;
3247 		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3248 			adapter->rx_abs_int_delay = BURST_RADV;
3249 	}
3250 
3251 	/* set the Receive Delay Timer Register */
3252 	ew32(RDTR, adapter->rx_int_delay);
3253 
3254 	/* irq moderation */
3255 	ew32(RADV, adapter->rx_abs_int_delay);
3256 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3257 		e1000e_write_itr(adapter, adapter->itr);
3258 
3259 	ctrl_ext = er32(CTRL_EXT);
3260 	/* Auto-Mask interrupts upon ICR access */
3261 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3262 	ew32(IAM, 0xffffffff);
3263 	ew32(CTRL_EXT, ctrl_ext);
3264 	e1e_flush();
3265 
3266 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3267 	 * the Base and Length of the Rx Descriptor Ring
3268 	 */
3269 	rdba = rx_ring->dma;
3270 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3271 	ew32(RDBAH(0), (rdba >> 32));
3272 	ew32(RDLEN(0), rdlen);
3273 	ew32(RDH(0), 0);
3274 	ew32(RDT(0), 0);
3275 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3276 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3277 
3278 	writel(0, rx_ring->head);
3279 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3280 		e1000e_update_rdt_wa(rx_ring, 0);
3281 	else
3282 		writel(0, rx_ring->tail);
3283 
3284 	/* Enable Receive Checksum Offload for TCP and UDP */
3285 	rxcsum = er32(RXCSUM);
3286 	if (adapter->netdev->features & NETIF_F_RXCSUM)
3287 		rxcsum |= E1000_RXCSUM_TUOFL;
3288 	else
3289 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3290 	ew32(RXCSUM, rxcsum);
3291 
3292 	/* With jumbo frames, excessive C-state transition latencies result
3293 	 * in dropped transactions.
3294 	 */
3295 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3296 		u32 lat =
3297 		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3298 		     adapter->max_frame_size) * 8 / 1000;
3299 
3300 		if (adapter->flags & FLAG_IS_ICH) {
3301 			u32 rxdctl = er32(RXDCTL(0));
3302 
3303 			ew32(RXDCTL(0), rxdctl | 0x3);
3304 		}
3305 
3306 		pm_qos_update_request(&adapter->pm_qos_req, lat);
3307 	} else {
3308 		pm_qos_update_request(&adapter->pm_qos_req,
3309 				      PM_QOS_DEFAULT_VALUE);
3310 	}
3311 
3312 	/* Enable Receives */
3313 	ew32(RCTL, rctl);
3314 }
3315 
3316 /**
3317  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3318  * @netdev: network interface device structure
3319  *
3320  * Writes multicast address list to the MTA hash table.
3321  * Returns: -ENOMEM on failure
3322  *                0 on no addresses written
3323  *                X on writing X addresses to MTA
3324  */
e1000e_write_mc_addr_list(struct net_device * netdev)3325 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3326 {
3327 	struct e1000_adapter *adapter = netdev_priv(netdev);
3328 	struct e1000_hw *hw = &adapter->hw;
3329 	struct netdev_hw_addr *ha;
3330 	u8 *mta_list;
3331 	int i;
3332 
3333 	if (netdev_mc_empty(netdev)) {
3334 		/* nothing to program, so clear mc list */
3335 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3336 		return 0;
3337 	}
3338 
3339 	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3340 	if (!mta_list)
3341 		return -ENOMEM;
3342 
3343 	/* update_mc_addr_list expects a packed array of only addresses. */
3344 	i = 0;
3345 	netdev_for_each_mc_addr(ha, netdev)
3346 	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3347 
3348 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3349 	kfree(mta_list);
3350 
3351 	return netdev_mc_count(netdev);
3352 }
3353 
3354 /**
3355  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3356  * @netdev: network interface device structure
3357  *
3358  * Writes unicast address list to the RAR table.
3359  * Returns: -ENOMEM on failure/insufficient address space
3360  *                0 on no addresses written
3361  *                X on writing X addresses to the RAR table
3362  **/
e1000e_write_uc_addr_list(struct net_device * netdev)3363 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3364 {
3365 	struct e1000_adapter *adapter = netdev_priv(netdev);
3366 	struct e1000_hw *hw = &adapter->hw;
3367 	unsigned int rar_entries;
3368 	int count = 0;
3369 
3370 	rar_entries = hw->mac.ops.rar_get_count(hw);
3371 
3372 	/* save a rar entry for our hardware address */
3373 	rar_entries--;
3374 
3375 	/* save a rar entry for the LAA workaround */
3376 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3377 		rar_entries--;
3378 
3379 	/* return ENOMEM indicating insufficient memory for addresses */
3380 	if (netdev_uc_count(netdev) > rar_entries)
3381 		return -ENOMEM;
3382 
3383 	if (!netdev_uc_empty(netdev) && rar_entries) {
3384 		struct netdev_hw_addr *ha;
3385 
3386 		/* write the addresses in reverse order to avoid write
3387 		 * combining
3388 		 */
3389 		netdev_for_each_uc_addr(ha, netdev) {
3390 			int rval;
3391 
3392 			if (!rar_entries)
3393 				break;
3394 			rval = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3395 			if (rval < 0)
3396 				return -ENOMEM;
3397 			count++;
3398 		}
3399 	}
3400 
3401 	/* zero out the remaining RAR entries not used above */
3402 	for (; rar_entries > 0; rar_entries--) {
3403 		ew32(RAH(rar_entries), 0);
3404 		ew32(RAL(rar_entries), 0);
3405 	}
3406 	e1e_flush();
3407 
3408 	return count;
3409 }
3410 
3411 /**
3412  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3413  * @netdev: network interface device structure
3414  *
3415  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3416  * address list or the network interface flags are updated.  This routine is
3417  * responsible for configuring the hardware for proper unicast, multicast,
3418  * promiscuous mode, and all-multi behavior.
3419  **/
e1000e_set_rx_mode(struct net_device * netdev)3420 static void e1000e_set_rx_mode(struct net_device *netdev)
3421 {
3422 	struct e1000_adapter *adapter = netdev_priv(netdev);
3423 	struct e1000_hw *hw = &adapter->hw;
3424 	u32 rctl;
3425 
3426 	if (pm_runtime_suspended(netdev->dev.parent))
3427 		return;
3428 
3429 	/* Check for Promiscuous and All Multicast modes */
3430 	rctl = er32(RCTL);
3431 
3432 	/* clear the affected bits */
3433 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3434 
3435 	if (netdev->flags & IFF_PROMISC) {
3436 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3437 		/* Do not hardware filter VLANs in promisc mode */
3438 		e1000e_vlan_filter_disable(adapter);
3439 	} else {
3440 		int count;
3441 
3442 		if (netdev->flags & IFF_ALLMULTI) {
3443 			rctl |= E1000_RCTL_MPE;
3444 		} else {
3445 			/* Write addresses to the MTA, if the attempt fails
3446 			 * then we should just turn on promiscuous mode so
3447 			 * that we can at least receive multicast traffic
3448 			 */
3449 			count = e1000e_write_mc_addr_list(netdev);
3450 			if (count < 0)
3451 				rctl |= E1000_RCTL_MPE;
3452 		}
3453 		e1000e_vlan_filter_enable(adapter);
3454 		/* Write addresses to available RAR registers, if there is not
3455 		 * sufficient space to store all the addresses then enable
3456 		 * unicast promiscuous mode
3457 		 */
3458 		count = e1000e_write_uc_addr_list(netdev);
3459 		if (count < 0)
3460 			rctl |= E1000_RCTL_UPE;
3461 	}
3462 
3463 	ew32(RCTL, rctl);
3464 
3465 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3466 		e1000e_vlan_strip_enable(adapter);
3467 	else
3468 		e1000e_vlan_strip_disable(adapter);
3469 }
3470 
e1000e_setup_rss_hash(struct e1000_adapter * adapter)3471 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3472 {
3473 	struct e1000_hw *hw = &adapter->hw;
3474 	u32 mrqc, rxcsum;
3475 	u32 rss_key[10];
3476 	int i;
3477 
3478 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3479 	for (i = 0; i < 10; i++)
3480 		ew32(RSSRK(i), rss_key[i]);
3481 
3482 	/* Direct all traffic to queue 0 */
3483 	for (i = 0; i < 32; i++)
3484 		ew32(RETA(i), 0);
3485 
3486 	/* Disable raw packet checksumming so that RSS hash is placed in
3487 	 * descriptor on writeback.
3488 	 */
3489 	rxcsum = er32(RXCSUM);
3490 	rxcsum |= E1000_RXCSUM_PCSD;
3491 
3492 	ew32(RXCSUM, rxcsum);
3493 
3494 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3495 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3496 		E1000_MRQC_RSS_FIELD_IPV6 |
3497 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3498 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3499 
3500 	ew32(MRQC, mrqc);
3501 }
3502 
3503 /**
3504  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3505  * @adapter: board private structure
3506  * @timinca: pointer to returned time increment attributes
3507  *
3508  * Get attributes for incrementing the System Time Register SYSTIML/H at
3509  * the default base frequency, and set the cyclecounter shift value.
3510  **/
e1000e_get_base_timinca(struct e1000_adapter * adapter,u32 * timinca)3511 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3512 {
3513 	struct e1000_hw *hw = &adapter->hw;
3514 	u32 incvalue, incperiod, shift;
3515 
3516 	/* Make sure clock is enabled on I217/I218/I219  before checking
3517 	 * the frequency
3518 	 */
3519 	if (((hw->mac.type == e1000_pch_lpt) ||
3520 	     (hw->mac.type == e1000_pch_spt)) &&
3521 	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3522 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3523 		u32 fextnvm7 = er32(FEXTNVM7);
3524 
3525 		if (!(fextnvm7 & (1 << 0))) {
3526 			ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3527 			e1e_flush();
3528 		}
3529 	}
3530 
3531 	switch (hw->mac.type) {
3532 	case e1000_pch2lan:
3533 		/* Stable 96MHz frequency */
3534 		incperiod = INCPERIOD_96MHz;
3535 		incvalue = INCVALUE_96MHz;
3536 		shift = INCVALUE_SHIFT_96MHz;
3537 		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3538 		break;
3539 	case e1000_pch_lpt:
3540 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3541 			/* Stable 96MHz frequency */
3542 			incperiod = INCPERIOD_96MHz;
3543 			incvalue = INCVALUE_96MHz;
3544 			shift = INCVALUE_SHIFT_96MHz;
3545 			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3546 		} else {
3547 			/* Stable 25MHz frequency */
3548 			incperiod = INCPERIOD_25MHz;
3549 			incvalue = INCVALUE_25MHz;
3550 			shift = INCVALUE_SHIFT_25MHz;
3551 			adapter->cc.shift = shift;
3552 		}
3553 		break;
3554 	case e1000_pch_spt:
3555 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3556 			/* Stable 24MHz frequency */
3557 			incperiod = INCPERIOD_24MHz;
3558 			incvalue = INCVALUE_24MHz;
3559 			shift = INCVALUE_SHIFT_24MHz;
3560 			adapter->cc.shift = shift;
3561 			break;
3562 		}
3563 		return -EINVAL;
3564 	case e1000_82574:
3565 	case e1000_82583:
3566 		/* Stable 25MHz frequency */
3567 		incperiod = INCPERIOD_25MHz;
3568 		incvalue = INCVALUE_25MHz;
3569 		shift = INCVALUE_SHIFT_25MHz;
3570 		adapter->cc.shift = shift;
3571 		break;
3572 	default:
3573 		return -EINVAL;
3574 	}
3575 
3576 	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3577 		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3578 
3579 	return 0;
3580 }
3581 
3582 /**
3583  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3584  * @adapter: board private structure
3585  *
3586  * Outgoing time stamping can be enabled and disabled. Play nice and
3587  * disable it when requested, although it shouldn't cause any overhead
3588  * when no packet needs it. At most one packet in the queue may be
3589  * marked for time stamping, otherwise it would be impossible to tell
3590  * for sure to which packet the hardware time stamp belongs.
3591  *
3592  * Incoming time stamping has to be configured via the hardware filters.
3593  * Not all combinations are supported, in particular event type has to be
3594  * specified. Matching the kind of event packet is not supported, with the
3595  * exception of "all V2 events regardless of level 2 or 4".
3596  **/
e1000e_config_hwtstamp(struct e1000_adapter * adapter,struct hwtstamp_config * config)3597 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3598 				  struct hwtstamp_config *config)
3599 {
3600 	struct e1000_hw *hw = &adapter->hw;
3601 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3602 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3603 	u32 rxmtrl = 0;
3604 	u16 rxudp = 0;
3605 	bool is_l4 = false;
3606 	bool is_l2 = false;
3607 	u32 regval;
3608 	s32 ret_val;
3609 
3610 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3611 		return -EINVAL;
3612 
3613 	/* flags reserved for future extensions - must be zero */
3614 	if (config->flags)
3615 		return -EINVAL;
3616 
3617 	switch (config->tx_type) {
3618 	case HWTSTAMP_TX_OFF:
3619 		tsync_tx_ctl = 0;
3620 		break;
3621 	case HWTSTAMP_TX_ON:
3622 		break;
3623 	default:
3624 		return -ERANGE;
3625 	}
3626 
3627 	switch (config->rx_filter) {
3628 	case HWTSTAMP_FILTER_NONE:
3629 		tsync_rx_ctl = 0;
3630 		break;
3631 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3632 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3633 		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3634 		is_l4 = true;
3635 		break;
3636 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3637 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3638 		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3639 		is_l4 = true;
3640 		break;
3641 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3642 		/* Also time stamps V2 L2 Path Delay Request/Response */
3643 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3644 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3645 		is_l2 = true;
3646 		break;
3647 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3648 		/* Also time stamps V2 L2 Path Delay Request/Response. */
3649 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3650 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3651 		is_l2 = true;
3652 		break;
3653 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3654 		/* Hardware cannot filter just V2 L4 Sync messages;
3655 		 * fall-through to V2 (both L2 and L4) Sync.
3656 		 */
3657 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3658 		/* Also time stamps V2 Path Delay Request/Response. */
3659 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3660 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3661 		is_l2 = true;
3662 		is_l4 = true;
3663 		break;
3664 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3665 		/* Hardware cannot filter just V2 L4 Delay Request messages;
3666 		 * fall-through to V2 (both L2 and L4) Delay Request.
3667 		 */
3668 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3669 		/* Also time stamps V2 Path Delay Request/Response. */
3670 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3671 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3672 		is_l2 = true;
3673 		is_l4 = true;
3674 		break;
3675 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3676 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3677 		/* Hardware cannot filter just V2 L4 or L2 Event messages;
3678 		 * fall-through to all V2 (both L2 and L4) Events.
3679 		 */
3680 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3681 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3682 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3683 		is_l2 = true;
3684 		is_l4 = true;
3685 		break;
3686 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3687 		/* For V1, the hardware can only filter Sync messages or
3688 		 * Delay Request messages but not both so fall-through to
3689 		 * time stamp all packets.
3690 		 */
3691 	case HWTSTAMP_FILTER_ALL:
3692 		is_l2 = true;
3693 		is_l4 = true;
3694 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3695 		config->rx_filter = HWTSTAMP_FILTER_ALL;
3696 		break;
3697 	default:
3698 		return -ERANGE;
3699 	}
3700 
3701 	adapter->hwtstamp_config = *config;
3702 
3703 	/* enable/disable Tx h/w time stamping */
3704 	regval = er32(TSYNCTXCTL);
3705 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3706 	regval |= tsync_tx_ctl;
3707 	ew32(TSYNCTXCTL, regval);
3708 	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3709 	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3710 		e_err("Timesync Tx Control register not set as expected\n");
3711 		return -EAGAIN;
3712 	}
3713 
3714 	/* enable/disable Rx h/w time stamping */
3715 	regval = er32(TSYNCRXCTL);
3716 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3717 	regval |= tsync_rx_ctl;
3718 	ew32(TSYNCRXCTL, regval);
3719 	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3720 				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3721 	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3722 		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3723 		e_err("Timesync Rx Control register not set as expected\n");
3724 		return -EAGAIN;
3725 	}
3726 
3727 	/* L2: define ethertype filter for time stamped packets */
3728 	if (is_l2)
3729 		rxmtrl |= ETH_P_1588;
3730 
3731 	/* define which PTP packets get time stamped */
3732 	ew32(RXMTRL, rxmtrl);
3733 
3734 	/* Filter by destination port */
3735 	if (is_l4) {
3736 		rxudp = PTP_EV_PORT;
3737 		cpu_to_be16s(&rxudp);
3738 	}
3739 	ew32(RXUDP, rxudp);
3740 
3741 	e1e_flush();
3742 
3743 	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3744 	er32(RXSTMPH);
3745 	er32(TXSTMPH);
3746 
3747 	/* Get and set the System Time Register SYSTIM base frequency */
3748 	ret_val = e1000e_get_base_timinca(adapter, &regval);
3749 	if (ret_val)
3750 		return ret_val;
3751 	ew32(TIMINCA, regval);
3752 
3753 	/* reset the ns time counter */
3754 	timecounter_init(&adapter->tc, &adapter->cc,
3755 			 ktime_to_ns(ktime_get_real()));
3756 
3757 	return 0;
3758 }
3759 
3760 /**
3761  * e1000_configure - configure the hardware for Rx and Tx
3762  * @adapter: private board structure
3763  **/
e1000_configure(struct e1000_adapter * adapter)3764 static void e1000_configure(struct e1000_adapter *adapter)
3765 {
3766 	struct e1000_ring *rx_ring = adapter->rx_ring;
3767 
3768 	e1000e_set_rx_mode(adapter->netdev);
3769 
3770 	e1000_restore_vlan(adapter);
3771 	e1000_init_manageability_pt(adapter);
3772 
3773 	e1000_configure_tx(adapter);
3774 
3775 	if (adapter->netdev->features & NETIF_F_RXHASH)
3776 		e1000e_setup_rss_hash(adapter);
3777 	e1000_setup_rctl(adapter);
3778 	e1000_configure_rx(adapter);
3779 	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3780 }
3781 
3782 /**
3783  * e1000e_power_up_phy - restore link in case the phy was powered down
3784  * @adapter: address of board private structure
3785  *
3786  * The phy may be powered down to save power and turn off link when the
3787  * driver is unloaded and wake on lan is not enabled (among others)
3788  * *** this routine MUST be followed by a call to e1000e_reset ***
3789  **/
e1000e_power_up_phy(struct e1000_adapter * adapter)3790 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3791 {
3792 	if (adapter->hw.phy.ops.power_up)
3793 		adapter->hw.phy.ops.power_up(&adapter->hw);
3794 
3795 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3796 }
3797 
3798 /**
3799  * e1000_power_down_phy - Power down the PHY
3800  *
3801  * Power down the PHY so no link is implied when interface is down.
3802  * The PHY cannot be powered down if management or WoL is active.
3803  */
e1000_power_down_phy(struct e1000_adapter * adapter)3804 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3805 {
3806 	if (adapter->hw.phy.ops.power_down)
3807 		adapter->hw.phy.ops.power_down(&adapter->hw);
3808 }
3809 
3810 /**
3811  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3812  *
3813  * We want to clear all pending descriptors from the TX ring.
3814  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3815  * the data of the next descriptor. We don't care about the data we are about
3816  * to reset the HW.
3817  */
e1000_flush_tx_ring(struct e1000_adapter * adapter)3818 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3819 {
3820 	struct e1000_hw *hw = &adapter->hw;
3821 	struct e1000_ring *tx_ring = adapter->tx_ring;
3822 	struct e1000_tx_desc *tx_desc = NULL;
3823 	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3824 	u16 size = 512;
3825 
3826 	tctl = er32(TCTL);
3827 	ew32(TCTL, tctl | E1000_TCTL_EN);
3828 	tdt = er32(TDT(0));
3829 	BUG_ON(tdt != tx_ring->next_to_use);
3830 	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3831 	tx_desc->buffer_addr = tx_ring->dma;
3832 
3833 	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3834 	tx_desc->upper.data = 0;
3835 	/* flush descriptors to memory before notifying the HW */
3836 	wmb();
3837 	tx_ring->next_to_use++;
3838 	if (tx_ring->next_to_use == tx_ring->count)
3839 		tx_ring->next_to_use = 0;
3840 	ew32(TDT(0), tx_ring->next_to_use);
3841 	mmiowb();
3842 	usleep_range(200, 250);
3843 }
3844 
3845 /**
3846  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3847  *
3848  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3849  */
e1000_flush_rx_ring(struct e1000_adapter * adapter)3850 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3851 {
3852 	u32 rctl, rxdctl;
3853 	struct e1000_hw *hw = &adapter->hw;
3854 
3855 	rctl = er32(RCTL);
3856 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3857 	e1e_flush();
3858 	usleep_range(100, 150);
3859 
3860 	rxdctl = er32(RXDCTL(0));
3861 	/* zero the lower 14 bits (prefetch and host thresholds) */
3862 	rxdctl &= 0xffffc000;
3863 
3864 	/* update thresholds: prefetch threshold to 31, host threshold to 1
3865 	 * and make sure the granularity is "descriptors" and not "cache lines"
3866 	 */
3867 	rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3868 
3869 	ew32(RXDCTL(0), rxdctl);
3870 	/* momentarily enable the RX ring for the changes to take effect */
3871 	ew32(RCTL, rctl | E1000_RCTL_EN);
3872 	e1e_flush();
3873 	usleep_range(100, 150);
3874 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3875 }
3876 
3877 /**
3878  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3879  *
3880  * In i219, the descriptor rings must be emptied before resetting the HW
3881  * or before changing the device state to D3 during runtime (runtime PM).
3882  *
3883  * Failure to do this will cause the HW to enter a unit hang state which can
3884  * only be released by PCI reset on the device
3885  *
3886  */
3887 
e1000_flush_desc_rings(struct e1000_adapter * adapter)3888 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3889 {
3890 	u16 hang_state;
3891 	u32 fext_nvm11, tdlen;
3892 	struct e1000_hw *hw = &adapter->hw;
3893 
3894 	/* First, disable MULR fix in FEXTNVM11 */
3895 	fext_nvm11 = er32(FEXTNVM11);
3896 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3897 	ew32(FEXTNVM11, fext_nvm11);
3898 	/* do nothing if we're not in faulty state, or if the queue is empty */
3899 	tdlen = er32(TDLEN(0));
3900 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3901 			     &hang_state);
3902 	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3903 		return;
3904 	e1000_flush_tx_ring(adapter);
3905 	/* recheck, maybe the fault is caused by the rx ring */
3906 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3907 			     &hang_state);
3908 	if (hang_state & FLUSH_DESC_REQUIRED)
3909 		e1000_flush_rx_ring(adapter);
3910 }
3911 
3912 /**
3913  * e1000e_reset - bring the hardware into a known good state
3914  *
3915  * This function boots the hardware and enables some settings that
3916  * require a configuration cycle of the hardware - those cannot be
3917  * set/changed during runtime. After reset the device needs to be
3918  * properly configured for Rx, Tx etc.
3919  */
e1000e_reset(struct e1000_adapter * adapter)3920 void e1000e_reset(struct e1000_adapter *adapter)
3921 {
3922 	struct e1000_mac_info *mac = &adapter->hw.mac;
3923 	struct e1000_fc_info *fc = &adapter->hw.fc;
3924 	struct e1000_hw *hw = &adapter->hw;
3925 	u32 tx_space, min_tx_space, min_rx_space;
3926 	u32 pba = adapter->pba;
3927 	u16 hwm;
3928 
3929 	/* reset Packet Buffer Allocation to default */
3930 	ew32(PBA, pba);
3931 
3932 	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3933 		/* To maintain wire speed transmits, the Tx FIFO should be
3934 		 * large enough to accommodate two full transmit packets,
3935 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3936 		 * the Rx FIFO should be large enough to accommodate at least
3937 		 * one full receive packet and is similarly rounded up and
3938 		 * expressed in KB.
3939 		 */
3940 		pba = er32(PBA);
3941 		/* upper 16 bits has Tx packet buffer allocation size in KB */
3942 		tx_space = pba >> 16;
3943 		/* lower 16 bits has Rx packet buffer allocation size in KB */
3944 		pba &= 0xffff;
3945 		/* the Tx fifo also stores 16 bytes of information about the Tx
3946 		 * but don't include ethernet FCS because hardware appends it
3947 		 */
3948 		min_tx_space = (adapter->max_frame_size +
3949 				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3950 		min_tx_space = ALIGN(min_tx_space, 1024);
3951 		min_tx_space >>= 10;
3952 		/* software strips receive CRC, so leave room for it */
3953 		min_rx_space = adapter->max_frame_size;
3954 		min_rx_space = ALIGN(min_rx_space, 1024);
3955 		min_rx_space >>= 10;
3956 
3957 		/* If current Tx allocation is less than the min Tx FIFO size,
3958 		 * and the min Tx FIFO size is less than the current Rx FIFO
3959 		 * allocation, take space away from current Rx allocation
3960 		 */
3961 		if ((tx_space < min_tx_space) &&
3962 		    ((min_tx_space - tx_space) < pba)) {
3963 			pba -= min_tx_space - tx_space;
3964 
3965 			/* if short on Rx space, Rx wins and must trump Tx
3966 			 * adjustment
3967 			 */
3968 			if (pba < min_rx_space)
3969 				pba = min_rx_space;
3970 		}
3971 
3972 		ew32(PBA, pba);
3973 	}
3974 
3975 	/* flow control settings
3976 	 *
3977 	 * The high water mark must be low enough to fit one full frame
3978 	 * (or the size used for early receive) above it in the Rx FIFO.
3979 	 * Set it to the lower of:
3980 	 * - 90% of the Rx FIFO size, and
3981 	 * - the full Rx FIFO size minus one full frame
3982 	 */
3983 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3984 		fc->pause_time = 0xFFFF;
3985 	else
3986 		fc->pause_time = E1000_FC_PAUSE_TIME;
3987 	fc->send_xon = true;
3988 	fc->current_mode = fc->requested_mode;
3989 
3990 	switch (hw->mac.type) {
3991 	case e1000_ich9lan:
3992 	case e1000_ich10lan:
3993 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3994 			pba = 14;
3995 			ew32(PBA, pba);
3996 			fc->high_water = 0x2800;
3997 			fc->low_water = fc->high_water - 8;
3998 			break;
3999 		}
4000 		/* fall-through */
4001 	default:
4002 		hwm = min(((pba << 10) * 9 / 10),
4003 			  ((pba << 10) - adapter->max_frame_size));
4004 
4005 		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4006 		fc->low_water = fc->high_water - 8;
4007 		break;
4008 	case e1000_pchlan:
4009 		/* Workaround PCH LOM adapter hangs with certain network
4010 		 * loads.  If hangs persist, try disabling Tx flow control.
4011 		 */
4012 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4013 			fc->high_water = 0x3500;
4014 			fc->low_water = 0x1500;
4015 		} else {
4016 			fc->high_water = 0x5000;
4017 			fc->low_water = 0x3000;
4018 		}
4019 		fc->refresh_time = 0x1000;
4020 		break;
4021 	case e1000_pch2lan:
4022 	case e1000_pch_lpt:
4023 	case e1000_pch_spt:
4024 		fc->refresh_time = 0x0400;
4025 
4026 		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4027 			fc->high_water = 0x05C20;
4028 			fc->low_water = 0x05048;
4029 			fc->pause_time = 0x0650;
4030 			break;
4031 		}
4032 
4033 		pba = 14;
4034 		ew32(PBA, pba);
4035 		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4036 		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4037 		break;
4038 	}
4039 
4040 	/* Alignment of Tx data is on an arbitrary byte boundary with the
4041 	 * maximum size per Tx descriptor limited only to the transmit
4042 	 * allocation of the packet buffer minus 96 bytes with an upper
4043 	 * limit of 24KB due to receive synchronization limitations.
4044 	 */
4045 	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4046 				       24 << 10);
4047 
4048 	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4049 	 * fit in receive buffer.
4050 	 */
4051 	if (adapter->itr_setting & 0x3) {
4052 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4053 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4054 				dev_info(&adapter->pdev->dev,
4055 					 "Interrupt Throttle Rate off\n");
4056 				adapter->flags2 |= FLAG2_DISABLE_AIM;
4057 				e1000e_write_itr(adapter, 0);
4058 			}
4059 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4060 			dev_info(&adapter->pdev->dev,
4061 				 "Interrupt Throttle Rate on\n");
4062 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4063 			adapter->itr = 20000;
4064 			e1000e_write_itr(adapter, adapter->itr);
4065 		}
4066 	}
4067 
4068 	if (hw->mac.type == e1000_pch_spt)
4069 		e1000_flush_desc_rings(adapter);
4070 	/* Allow time for pending master requests to run */
4071 	mac->ops.reset_hw(hw);
4072 
4073 	/* For parts with AMT enabled, let the firmware know
4074 	 * that the network interface is in control
4075 	 */
4076 	if (adapter->flags & FLAG_HAS_AMT)
4077 		e1000e_get_hw_control(adapter);
4078 
4079 	ew32(WUC, 0);
4080 
4081 	if (mac->ops.init_hw(hw))
4082 		e_err("Hardware Error\n");
4083 
4084 	e1000_update_mng_vlan(adapter);
4085 
4086 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4087 	ew32(VET, ETH_P_8021Q);
4088 
4089 	e1000e_reset_adaptive(hw);
4090 
4091 	/* initialize systim and reset the ns time counter */
4092 	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
4093 
4094 	/* Set EEE advertisement as appropriate */
4095 	if (adapter->flags2 & FLAG2_HAS_EEE) {
4096 		s32 ret_val;
4097 		u16 adv_addr;
4098 
4099 		switch (hw->phy.type) {
4100 		case e1000_phy_82579:
4101 			adv_addr = I82579_EEE_ADVERTISEMENT;
4102 			break;
4103 		case e1000_phy_i217:
4104 			adv_addr = I217_EEE_ADVERTISEMENT;
4105 			break;
4106 		default:
4107 			dev_err(&adapter->pdev->dev,
4108 				"Invalid PHY type setting EEE advertisement\n");
4109 			return;
4110 		}
4111 
4112 		ret_val = hw->phy.ops.acquire(hw);
4113 		if (ret_val) {
4114 			dev_err(&adapter->pdev->dev,
4115 				"EEE advertisement - unable to acquire PHY\n");
4116 			return;
4117 		}
4118 
4119 		e1000_write_emi_reg_locked(hw, adv_addr,
4120 					   hw->dev_spec.ich8lan.eee_disable ?
4121 					   0 : adapter->eee_advert);
4122 
4123 		hw->phy.ops.release(hw);
4124 	}
4125 
4126 	if (!netif_running(adapter->netdev) &&
4127 	    !test_bit(__E1000_TESTING, &adapter->state))
4128 		e1000_power_down_phy(adapter);
4129 
4130 	e1000_get_phy_info(hw);
4131 
4132 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4133 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4134 		u16 phy_data = 0;
4135 		/* speed up time to link by disabling smart power down, ignore
4136 		 * the return value of this function because there is nothing
4137 		 * different we would do if it failed
4138 		 */
4139 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4140 		phy_data &= ~IGP02E1000_PM_SPD;
4141 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4142 	}
4143 	if (hw->mac.type == e1000_pch_spt && adapter->int_mode == 0) {
4144 		u32 reg;
4145 
4146 		/* Fextnvm7 @ 0xe4[2] = 1 */
4147 		reg = er32(FEXTNVM7);
4148 		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4149 		ew32(FEXTNVM7, reg);
4150 		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4151 		reg = er32(FEXTNVM9);
4152 		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4153 		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4154 		ew32(FEXTNVM9, reg);
4155 	}
4156 
4157 }
4158 
e1000e_up(struct e1000_adapter * adapter)4159 int e1000e_up(struct e1000_adapter *adapter)
4160 {
4161 	struct e1000_hw *hw = &adapter->hw;
4162 
4163 	/* hardware has been reset, we need to reload some things */
4164 	e1000_configure(adapter);
4165 
4166 	clear_bit(__E1000_DOWN, &adapter->state);
4167 
4168 	if (adapter->msix_entries)
4169 		e1000_configure_msix(adapter);
4170 	e1000_irq_enable(adapter);
4171 
4172 	/* Tx queue started by watchdog timer when link is up */
4173 
4174 	/* fire a link change interrupt to start the watchdog */
4175 	if (adapter->msix_entries)
4176 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4177 	else
4178 		ew32(ICS, E1000_ICS_LSC);
4179 
4180 	return 0;
4181 }
4182 
e1000e_flush_descriptors(struct e1000_adapter * adapter)4183 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4184 {
4185 	struct e1000_hw *hw = &adapter->hw;
4186 
4187 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4188 		return;
4189 
4190 	/* flush pending descriptor writebacks to memory */
4191 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4192 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4193 
4194 	/* execute the writes immediately */
4195 	e1e_flush();
4196 
4197 	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4198 	 * write is successful
4199 	 */
4200 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4201 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4202 
4203 	/* execute the writes immediately */
4204 	e1e_flush();
4205 }
4206 
4207 static void e1000e_update_stats(struct e1000_adapter *adapter);
4208 
4209 /**
4210  * e1000e_down - quiesce the device and optionally reset the hardware
4211  * @adapter: board private structure
4212  * @reset: boolean flag to reset the hardware or not
4213  */
e1000e_down(struct e1000_adapter * adapter,bool reset)4214 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4215 {
4216 	struct net_device *netdev = adapter->netdev;
4217 	struct e1000_hw *hw = &adapter->hw;
4218 	u32 tctl, rctl;
4219 
4220 	/* signal that we're down so the interrupt handler does not
4221 	 * reschedule our watchdog timer
4222 	 */
4223 	set_bit(__E1000_DOWN, &adapter->state);
4224 
4225 	netif_carrier_off(netdev);
4226 
4227 	/* disable receives in the hardware */
4228 	rctl = er32(RCTL);
4229 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4230 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4231 	/* flush and sleep below */
4232 
4233 	netif_stop_queue(netdev);
4234 
4235 	/* disable transmits in the hardware */
4236 	tctl = er32(TCTL);
4237 	tctl &= ~E1000_TCTL_EN;
4238 	ew32(TCTL, tctl);
4239 
4240 	/* flush both disables and wait for them to finish */
4241 	e1e_flush();
4242 	usleep_range(10000, 20000);
4243 
4244 	e1000_irq_disable(adapter);
4245 
4246 	napi_synchronize(&adapter->napi);
4247 
4248 	del_timer_sync(&adapter->watchdog_timer);
4249 	del_timer_sync(&adapter->phy_info_timer);
4250 
4251 	spin_lock(&adapter->stats64_lock);
4252 	e1000e_update_stats(adapter);
4253 	spin_unlock(&adapter->stats64_lock);
4254 
4255 	e1000e_flush_descriptors(adapter);
4256 
4257 	adapter->link_speed = 0;
4258 	adapter->link_duplex = 0;
4259 
4260 	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4261 	if ((hw->mac.type >= e1000_pch2lan) &&
4262 	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4263 	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4264 		e_dbg("failed to disable jumbo frame workaround mode\n");
4265 
4266 	if (!pci_channel_offline(adapter->pdev)) {
4267 		if (reset)
4268 			e1000e_reset(adapter);
4269 		else if (hw->mac.type == e1000_pch_spt)
4270 			e1000_flush_desc_rings(adapter);
4271 	}
4272 	e1000_clean_tx_ring(adapter->tx_ring);
4273 	e1000_clean_rx_ring(adapter->rx_ring);
4274 }
4275 
e1000e_reinit_locked(struct e1000_adapter * adapter)4276 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4277 {
4278 	might_sleep();
4279 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4280 		usleep_range(1000, 2000);
4281 	e1000e_down(adapter, true);
4282 	e1000e_up(adapter);
4283 	clear_bit(__E1000_RESETTING, &adapter->state);
4284 }
4285 
4286 /**
4287  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4288  * @cc: cyclecounter structure
4289  **/
e1000e_cyclecounter_read(const struct cyclecounter * cc)4290 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4291 {
4292 	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4293 						     cc);
4294 	struct e1000_hw *hw = &adapter->hw;
4295 	u32 systimel_1, systimel_2, systimeh;
4296 	cycle_t systim, systim_next;
4297 	/* SYSTIMH latching upon SYSTIML read does not work well.
4298 	 * This means that if SYSTIML overflows after we read it but before
4299 	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4300 	 * will experience a huge non linear increment in the systime value
4301 	 * to fix that we test for overflow and if true, we re-read systime.
4302 	 */
4303 	systimel_1 = er32(SYSTIML);
4304 	systimeh = er32(SYSTIMH);
4305 	systimel_2 = er32(SYSTIML);
4306 	/* Check for overflow. If there was no overflow, use the values */
4307 	if (systimel_1 < systimel_2) {
4308 		systim = (cycle_t)systimel_1;
4309 		systim |= (cycle_t)systimeh << 32;
4310 	} else {
4311 		/* There was an overflow, read again SYSTIMH, and use
4312 		 * systimel_2
4313 		 */
4314 		systimeh = er32(SYSTIMH);
4315 		systim = (cycle_t)systimel_2;
4316 		systim |= (cycle_t)systimeh << 32;
4317 	}
4318 
4319 	if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) {
4320 		u64 incvalue, time_delta, rem, temp;
4321 		int i;
4322 
4323 		/* errata for 82574/82583 possible bad bits read from SYSTIMH/L
4324 		 * check to see that the time is incrementing at a reasonable
4325 		 * rate and is a multiple of incvalue
4326 		 */
4327 		incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4328 		for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4329 			/* latch SYSTIMH on read of SYSTIML */
4330 			systim_next = (cycle_t)er32(SYSTIML);
4331 			systim_next |= (cycle_t)er32(SYSTIMH) << 32;
4332 
4333 			time_delta = systim_next - systim;
4334 			temp = time_delta;
4335 			rem = do_div(temp, incvalue);
4336 
4337 			systim = systim_next;
4338 
4339 			if ((time_delta < E1000_82574_SYSTIM_EPSILON) &&
4340 			    (rem == 0))
4341 				break;
4342 		}
4343 	}
4344 	return systim;
4345 }
4346 
4347 /**
4348  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4349  * @adapter: board private structure to initialize
4350  *
4351  * e1000_sw_init initializes the Adapter private data structure.
4352  * Fields are initialized based on PCI device information and
4353  * OS network device settings (MTU size).
4354  **/
e1000_sw_init(struct e1000_adapter * adapter)4355 static int e1000_sw_init(struct e1000_adapter *adapter)
4356 {
4357 	struct net_device *netdev = adapter->netdev;
4358 
4359 	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4360 	adapter->rx_ps_bsize0 = 128;
4361 	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4362 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4363 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4364 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4365 
4366 	spin_lock_init(&adapter->stats64_lock);
4367 
4368 	e1000e_set_interrupt_capability(adapter);
4369 
4370 	if (e1000_alloc_queues(adapter))
4371 		return -ENOMEM;
4372 
4373 	/* Setup hardware time stamping cyclecounter */
4374 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4375 		adapter->cc.read = e1000e_cyclecounter_read;
4376 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4377 		adapter->cc.mult = 1;
4378 		/* cc.shift set in e1000e_get_base_tininca() */
4379 
4380 		spin_lock_init(&adapter->systim_lock);
4381 		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4382 	}
4383 
4384 	/* Explicitly disable IRQ since the NIC can be in any state. */
4385 	e1000_irq_disable(adapter);
4386 
4387 	set_bit(__E1000_DOWN, &adapter->state);
4388 	return 0;
4389 }
4390 
4391 /**
4392  * e1000_intr_msi_test - Interrupt Handler
4393  * @irq: interrupt number
4394  * @data: pointer to a network interface device structure
4395  **/
e1000_intr_msi_test(int __always_unused irq,void * data)4396 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4397 {
4398 	struct net_device *netdev = data;
4399 	struct e1000_adapter *adapter = netdev_priv(netdev);
4400 	struct e1000_hw *hw = &adapter->hw;
4401 	u32 icr = er32(ICR);
4402 
4403 	e_dbg("icr is %08X\n", icr);
4404 	if (icr & E1000_ICR_RXSEQ) {
4405 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4406 		/* Force memory writes to complete before acknowledging the
4407 		 * interrupt is handled.
4408 		 */
4409 		wmb();
4410 	}
4411 
4412 	return IRQ_HANDLED;
4413 }
4414 
4415 /**
4416  * e1000_test_msi_interrupt - Returns 0 for successful test
4417  * @adapter: board private struct
4418  *
4419  * code flow taken from tg3.c
4420  **/
e1000_test_msi_interrupt(struct e1000_adapter * adapter)4421 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4422 {
4423 	struct net_device *netdev = adapter->netdev;
4424 	struct e1000_hw *hw = &adapter->hw;
4425 	int err;
4426 
4427 	/* poll_enable hasn't been called yet, so don't need disable */
4428 	/* clear any pending events */
4429 	er32(ICR);
4430 
4431 	/* free the real vector and request a test handler */
4432 	e1000_free_irq(adapter);
4433 	e1000e_reset_interrupt_capability(adapter);
4434 
4435 	/* Assume that the test fails, if it succeeds then the test
4436 	 * MSI irq handler will unset this flag
4437 	 */
4438 	adapter->flags |= FLAG_MSI_TEST_FAILED;
4439 
4440 	err = pci_enable_msi(adapter->pdev);
4441 	if (err)
4442 		goto msi_test_failed;
4443 
4444 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4445 			  netdev->name, netdev);
4446 	if (err) {
4447 		pci_disable_msi(adapter->pdev);
4448 		goto msi_test_failed;
4449 	}
4450 
4451 	/* Force memory writes to complete before enabling and firing an
4452 	 * interrupt.
4453 	 */
4454 	wmb();
4455 
4456 	e1000_irq_enable(adapter);
4457 
4458 	/* fire an unusual interrupt on the test handler */
4459 	ew32(ICS, E1000_ICS_RXSEQ);
4460 	e1e_flush();
4461 	msleep(100);
4462 
4463 	e1000_irq_disable(adapter);
4464 
4465 	rmb();			/* read flags after interrupt has been fired */
4466 
4467 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4468 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4469 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4470 	} else {
4471 		e_dbg("MSI interrupt test succeeded!\n");
4472 	}
4473 
4474 	free_irq(adapter->pdev->irq, netdev);
4475 	pci_disable_msi(adapter->pdev);
4476 
4477 msi_test_failed:
4478 	e1000e_set_interrupt_capability(adapter);
4479 	return e1000_request_irq(adapter);
4480 }
4481 
4482 /**
4483  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4484  * @adapter: board private struct
4485  *
4486  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4487  **/
e1000_test_msi(struct e1000_adapter * adapter)4488 static int e1000_test_msi(struct e1000_adapter *adapter)
4489 {
4490 	int err;
4491 	u16 pci_cmd;
4492 
4493 	if (!(adapter->flags & FLAG_MSI_ENABLED))
4494 		return 0;
4495 
4496 	/* disable SERR in case the MSI write causes a master abort */
4497 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4498 	if (pci_cmd & PCI_COMMAND_SERR)
4499 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4500 				      pci_cmd & ~PCI_COMMAND_SERR);
4501 
4502 	err = e1000_test_msi_interrupt(adapter);
4503 
4504 	/* re-enable SERR */
4505 	if (pci_cmd & PCI_COMMAND_SERR) {
4506 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4507 		pci_cmd |= PCI_COMMAND_SERR;
4508 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4509 	}
4510 
4511 	return err;
4512 }
4513 
4514 /**
4515  * e1000_open - Called when a network interface is made active
4516  * @netdev: network interface device structure
4517  *
4518  * Returns 0 on success, negative value on failure
4519  *
4520  * The open entry point is called when a network interface is made
4521  * active by the system (IFF_UP).  At this point all resources needed
4522  * for transmit and receive operations are allocated, the interrupt
4523  * handler is registered with the OS, the watchdog timer is started,
4524  * and the stack is notified that the interface is ready.
4525  **/
e1000_open(struct net_device * netdev)4526 static int e1000_open(struct net_device *netdev)
4527 {
4528 	struct e1000_adapter *adapter = netdev_priv(netdev);
4529 	struct e1000_hw *hw = &adapter->hw;
4530 	struct pci_dev *pdev = adapter->pdev;
4531 	int err;
4532 
4533 	/* disallow open during test */
4534 	if (test_bit(__E1000_TESTING, &adapter->state))
4535 		return -EBUSY;
4536 
4537 	pm_runtime_get_sync(&pdev->dev);
4538 
4539 	netif_carrier_off(netdev);
4540 	netif_stop_queue(netdev);
4541 
4542 	/* allocate transmit descriptors */
4543 	err = e1000e_setup_tx_resources(adapter->tx_ring);
4544 	if (err)
4545 		goto err_setup_tx;
4546 
4547 	/* allocate receive descriptors */
4548 	err = e1000e_setup_rx_resources(adapter->rx_ring);
4549 	if (err)
4550 		goto err_setup_rx;
4551 
4552 	/* If AMT is enabled, let the firmware know that the network
4553 	 * interface is now open and reset the part to a known state.
4554 	 */
4555 	if (adapter->flags & FLAG_HAS_AMT) {
4556 		e1000e_get_hw_control(adapter);
4557 		e1000e_reset(adapter);
4558 	}
4559 
4560 	e1000e_power_up_phy(adapter);
4561 
4562 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4563 	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4564 		e1000_update_mng_vlan(adapter);
4565 
4566 	/* DMA latency requirement to workaround jumbo issue */
4567 	pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4568 			   PM_QOS_DEFAULT_VALUE);
4569 
4570 	/* before we allocate an interrupt, we must be ready to handle it.
4571 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4572 	 * as soon as we call pci_request_irq, so we have to setup our
4573 	 * clean_rx handler before we do so.
4574 	 */
4575 	e1000_configure(adapter);
4576 
4577 	err = e1000_request_irq(adapter);
4578 	if (err)
4579 		goto err_req_irq;
4580 
4581 	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4582 	 * ignore e1000e MSI messages, which means we need to test our MSI
4583 	 * interrupt now
4584 	 */
4585 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4586 		err = e1000_test_msi(adapter);
4587 		if (err) {
4588 			e_err("Interrupt allocation failed\n");
4589 			goto err_req_irq;
4590 		}
4591 	}
4592 
4593 	/* From here on the code is the same as e1000e_up() */
4594 	clear_bit(__E1000_DOWN, &adapter->state);
4595 
4596 	napi_enable(&adapter->napi);
4597 
4598 	e1000_irq_enable(adapter);
4599 
4600 	adapter->tx_hang_recheck = false;
4601 
4602 	hw->mac.get_link_status = true;
4603 	pm_runtime_put(&pdev->dev);
4604 
4605 	/* fire a link status change interrupt to start the watchdog */
4606 	if (adapter->msix_entries)
4607 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4608 	else
4609 		ew32(ICS, E1000_ICS_LSC);
4610 
4611 	return 0;
4612 
4613 err_req_irq:
4614 	pm_qos_remove_request(&adapter->pm_qos_req);
4615 	e1000e_release_hw_control(adapter);
4616 	e1000_power_down_phy(adapter);
4617 	e1000e_free_rx_resources(adapter->rx_ring);
4618 err_setup_rx:
4619 	e1000e_free_tx_resources(adapter->tx_ring);
4620 err_setup_tx:
4621 	e1000e_reset(adapter);
4622 	pm_runtime_put_sync(&pdev->dev);
4623 
4624 	return err;
4625 }
4626 
4627 /**
4628  * e1000_close - Disables a network interface
4629  * @netdev: network interface device structure
4630  *
4631  * Returns 0, this is not allowed to fail
4632  *
4633  * The close entry point is called when an interface is de-activated
4634  * by the OS.  The hardware is still under the drivers control, but
4635  * needs to be disabled.  A global MAC reset is issued to stop the
4636  * hardware, and all transmit and receive resources are freed.
4637  **/
e1000_close(struct net_device * netdev)4638 static int e1000_close(struct net_device *netdev)
4639 {
4640 	struct e1000_adapter *adapter = netdev_priv(netdev);
4641 	struct pci_dev *pdev = adapter->pdev;
4642 	int count = E1000_CHECK_RESET_COUNT;
4643 
4644 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4645 		usleep_range(10000, 20000);
4646 
4647 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4648 
4649 	pm_runtime_get_sync(&pdev->dev);
4650 
4651 	if (!test_bit(__E1000_DOWN, &adapter->state)) {
4652 		e1000e_down(adapter, true);
4653 		e1000_free_irq(adapter);
4654 
4655 		/* Link status message must follow this format */
4656 		pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4657 	}
4658 
4659 	napi_disable(&adapter->napi);
4660 
4661 	e1000e_free_tx_resources(adapter->tx_ring);
4662 	e1000e_free_rx_resources(adapter->rx_ring);
4663 
4664 	/* kill manageability vlan ID if supported, but not if a vlan with
4665 	 * the same ID is registered on the host OS (let 8021q kill it)
4666 	 */
4667 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4668 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4669 				       adapter->mng_vlan_id);
4670 
4671 	/* If AMT is enabled, let the firmware know that the network
4672 	 * interface is now closed
4673 	 */
4674 	if ((adapter->flags & FLAG_HAS_AMT) &&
4675 	    !test_bit(__E1000_TESTING, &adapter->state))
4676 		e1000e_release_hw_control(adapter);
4677 
4678 	pm_qos_remove_request(&adapter->pm_qos_req);
4679 
4680 	pm_runtime_put_sync(&pdev->dev);
4681 
4682 	return 0;
4683 }
4684 
4685 /**
4686  * e1000_set_mac - Change the Ethernet Address of the NIC
4687  * @netdev: network interface device structure
4688  * @p: pointer to an address structure
4689  *
4690  * Returns 0 on success, negative on failure
4691  **/
e1000_set_mac(struct net_device * netdev,void * p)4692 static int e1000_set_mac(struct net_device *netdev, void *p)
4693 {
4694 	struct e1000_adapter *adapter = netdev_priv(netdev);
4695 	struct e1000_hw *hw = &adapter->hw;
4696 	struct sockaddr *addr = p;
4697 
4698 	if (!is_valid_ether_addr(addr->sa_data))
4699 		return -EADDRNOTAVAIL;
4700 
4701 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4702 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4703 
4704 	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4705 
4706 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4707 		/* activate the work around */
4708 		e1000e_set_laa_state_82571(&adapter->hw, 1);
4709 
4710 		/* Hold a copy of the LAA in RAR[14] This is done so that
4711 		 * between the time RAR[0] gets clobbered  and the time it
4712 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4713 		 * of the RARs and no incoming packets directed to this port
4714 		 * are dropped. Eventually the LAA will be in RAR[0] and
4715 		 * RAR[14]
4716 		 */
4717 		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4718 				    adapter->hw.mac.rar_entry_count - 1);
4719 	}
4720 
4721 	return 0;
4722 }
4723 
4724 /**
4725  * e1000e_update_phy_task - work thread to update phy
4726  * @work: pointer to our work struct
4727  *
4728  * this worker thread exists because we must acquire a
4729  * semaphore to read the phy, which we could msleep while
4730  * waiting for it, and we can't msleep in a timer.
4731  **/
e1000e_update_phy_task(struct work_struct * work)4732 static void e1000e_update_phy_task(struct work_struct *work)
4733 {
4734 	struct e1000_adapter *adapter = container_of(work,
4735 						     struct e1000_adapter,
4736 						     update_phy_task);
4737 	struct e1000_hw *hw = &adapter->hw;
4738 
4739 	if (test_bit(__E1000_DOWN, &adapter->state))
4740 		return;
4741 
4742 	e1000_get_phy_info(hw);
4743 
4744 	/* Enable EEE on 82579 after link up */
4745 	if (hw->phy.type >= e1000_phy_82579)
4746 		e1000_set_eee_pchlan(hw);
4747 }
4748 
4749 /**
4750  * e1000_update_phy_info - timre call-back to update PHY info
4751  * @data: pointer to adapter cast into an unsigned long
4752  *
4753  * Need to wait a few seconds after link up to get diagnostic information from
4754  * the phy
4755  **/
e1000_update_phy_info(unsigned long data)4756 static void e1000_update_phy_info(unsigned long data)
4757 {
4758 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4759 
4760 	if (test_bit(__E1000_DOWN, &adapter->state))
4761 		return;
4762 
4763 	schedule_work(&adapter->update_phy_task);
4764 }
4765 
4766 /**
4767  * e1000e_update_phy_stats - Update the PHY statistics counters
4768  * @adapter: board private structure
4769  *
4770  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4771  **/
e1000e_update_phy_stats(struct e1000_adapter * adapter)4772 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4773 {
4774 	struct e1000_hw *hw = &adapter->hw;
4775 	s32 ret_val;
4776 	u16 phy_data;
4777 
4778 	ret_val = hw->phy.ops.acquire(hw);
4779 	if (ret_val)
4780 		return;
4781 
4782 	/* A page set is expensive so check if already on desired page.
4783 	 * If not, set to the page with the PHY status registers.
4784 	 */
4785 	hw->phy.addr = 1;
4786 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4787 					   &phy_data);
4788 	if (ret_val)
4789 		goto release;
4790 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4791 		ret_val = hw->phy.ops.set_page(hw,
4792 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4793 		if (ret_val)
4794 			goto release;
4795 	}
4796 
4797 	/* Single Collision Count */
4798 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4799 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4800 	if (!ret_val)
4801 		adapter->stats.scc += phy_data;
4802 
4803 	/* Excessive Collision Count */
4804 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4805 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4806 	if (!ret_val)
4807 		adapter->stats.ecol += phy_data;
4808 
4809 	/* Multiple Collision Count */
4810 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4811 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4812 	if (!ret_val)
4813 		adapter->stats.mcc += phy_data;
4814 
4815 	/* Late Collision Count */
4816 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4817 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4818 	if (!ret_val)
4819 		adapter->stats.latecol += phy_data;
4820 
4821 	/* Collision Count - also used for adaptive IFS */
4822 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4823 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4824 	if (!ret_val)
4825 		hw->mac.collision_delta = phy_data;
4826 
4827 	/* Defer Count */
4828 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4829 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4830 	if (!ret_val)
4831 		adapter->stats.dc += phy_data;
4832 
4833 	/* Transmit with no CRS */
4834 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4835 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4836 	if (!ret_val)
4837 		adapter->stats.tncrs += phy_data;
4838 
4839 release:
4840 	hw->phy.ops.release(hw);
4841 }
4842 
4843 /**
4844  * e1000e_update_stats - Update the board statistics counters
4845  * @adapter: board private structure
4846  **/
e1000e_update_stats(struct e1000_adapter * adapter)4847 static void e1000e_update_stats(struct e1000_adapter *adapter)
4848 {
4849 	struct net_device *netdev = adapter->netdev;
4850 	struct e1000_hw *hw = &adapter->hw;
4851 	struct pci_dev *pdev = adapter->pdev;
4852 
4853 	/* Prevent stats update while adapter is being reset, or if the pci
4854 	 * connection is down.
4855 	 */
4856 	if (adapter->link_speed == 0)
4857 		return;
4858 	if (pci_channel_offline(pdev))
4859 		return;
4860 
4861 	adapter->stats.crcerrs += er32(CRCERRS);
4862 	adapter->stats.gprc += er32(GPRC);
4863 	adapter->stats.gorc += er32(GORCL);
4864 	er32(GORCH);		/* Clear gorc */
4865 	adapter->stats.bprc += er32(BPRC);
4866 	adapter->stats.mprc += er32(MPRC);
4867 	adapter->stats.roc += er32(ROC);
4868 
4869 	adapter->stats.mpc += er32(MPC);
4870 
4871 	/* Half-duplex statistics */
4872 	if (adapter->link_duplex == HALF_DUPLEX) {
4873 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4874 			e1000e_update_phy_stats(adapter);
4875 		} else {
4876 			adapter->stats.scc += er32(SCC);
4877 			adapter->stats.ecol += er32(ECOL);
4878 			adapter->stats.mcc += er32(MCC);
4879 			adapter->stats.latecol += er32(LATECOL);
4880 			adapter->stats.dc += er32(DC);
4881 
4882 			hw->mac.collision_delta = er32(COLC);
4883 
4884 			if ((hw->mac.type != e1000_82574) &&
4885 			    (hw->mac.type != e1000_82583))
4886 				adapter->stats.tncrs += er32(TNCRS);
4887 		}
4888 		adapter->stats.colc += hw->mac.collision_delta;
4889 	}
4890 
4891 	adapter->stats.xonrxc += er32(XONRXC);
4892 	adapter->stats.xontxc += er32(XONTXC);
4893 	adapter->stats.xoffrxc += er32(XOFFRXC);
4894 	adapter->stats.xofftxc += er32(XOFFTXC);
4895 	adapter->stats.gptc += er32(GPTC);
4896 	adapter->stats.gotc += er32(GOTCL);
4897 	er32(GOTCH);		/* Clear gotc */
4898 	adapter->stats.rnbc += er32(RNBC);
4899 	adapter->stats.ruc += er32(RUC);
4900 
4901 	adapter->stats.mptc += er32(MPTC);
4902 	adapter->stats.bptc += er32(BPTC);
4903 
4904 	/* used for adaptive IFS */
4905 
4906 	hw->mac.tx_packet_delta = er32(TPT);
4907 	adapter->stats.tpt += hw->mac.tx_packet_delta;
4908 
4909 	adapter->stats.algnerrc += er32(ALGNERRC);
4910 	adapter->stats.rxerrc += er32(RXERRC);
4911 	adapter->stats.cexterr += er32(CEXTERR);
4912 	adapter->stats.tsctc += er32(TSCTC);
4913 	adapter->stats.tsctfc += er32(TSCTFC);
4914 
4915 	/* Fill out the OS statistics structure */
4916 	netdev->stats.multicast = adapter->stats.mprc;
4917 	netdev->stats.collisions = adapter->stats.colc;
4918 
4919 	/* Rx Errors */
4920 
4921 	/* RLEC on some newer hardware can be incorrect so build
4922 	 * our own version based on RUC and ROC
4923 	 */
4924 	netdev->stats.rx_errors = adapter->stats.rxerrc +
4925 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
4926 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4927 	netdev->stats.rx_length_errors = adapter->stats.ruc +
4928 	    adapter->stats.roc;
4929 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4930 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4931 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4932 
4933 	/* Tx Errors */
4934 	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4935 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4936 	netdev->stats.tx_window_errors = adapter->stats.latecol;
4937 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4938 
4939 	/* Tx Dropped needs to be maintained elsewhere */
4940 
4941 	/* Management Stats */
4942 	adapter->stats.mgptc += er32(MGTPTC);
4943 	adapter->stats.mgprc += er32(MGTPRC);
4944 	adapter->stats.mgpdc += er32(MGTPDC);
4945 
4946 	/* Correctable ECC Errors */
4947 	if ((hw->mac.type == e1000_pch_lpt) ||
4948 	    (hw->mac.type == e1000_pch_spt)) {
4949 		u32 pbeccsts = er32(PBECCSTS);
4950 
4951 		adapter->corr_errors +=
4952 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4953 		adapter->uncorr_errors +=
4954 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4955 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4956 	}
4957 }
4958 
4959 /**
4960  * e1000_phy_read_status - Update the PHY register status snapshot
4961  * @adapter: board private structure
4962  **/
e1000_phy_read_status(struct e1000_adapter * adapter)4963 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4964 {
4965 	struct e1000_hw *hw = &adapter->hw;
4966 	struct e1000_phy_regs *phy = &adapter->phy_regs;
4967 
4968 	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4969 	    (er32(STATUS) & E1000_STATUS_LU) &&
4970 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4971 		int ret_val;
4972 
4973 		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4974 		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4975 		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4976 		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4977 		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4978 		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4979 		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4980 		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4981 		if (ret_val)
4982 			e_warn("Error reading PHY register\n");
4983 	} else {
4984 		/* Do not read PHY registers if link is not up
4985 		 * Set values to typical power-on defaults
4986 		 */
4987 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4988 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4989 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4990 			     BMSR_ERCAP);
4991 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4992 				  ADVERTISE_ALL | ADVERTISE_CSMA);
4993 		phy->lpa = 0;
4994 		phy->expansion = EXPANSION_ENABLENPAGE;
4995 		phy->ctrl1000 = ADVERTISE_1000FULL;
4996 		phy->stat1000 = 0;
4997 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4998 	}
4999 }
5000 
e1000_print_link_info(struct e1000_adapter * adapter)5001 static void e1000_print_link_info(struct e1000_adapter *adapter)
5002 {
5003 	struct e1000_hw *hw = &adapter->hw;
5004 	u32 ctrl = er32(CTRL);
5005 
5006 	/* Link status message must follow this format for user tools */
5007 	pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5008 		adapter->netdev->name, adapter->link_speed,
5009 		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5010 		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5011 		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
5012 		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5013 }
5014 
e1000e_has_link(struct e1000_adapter * adapter)5015 static bool e1000e_has_link(struct e1000_adapter *adapter)
5016 {
5017 	struct e1000_hw *hw = &adapter->hw;
5018 	bool link_active = false;
5019 	s32 ret_val = 0;
5020 
5021 	/* get_link_status is set on LSC (link status) interrupt or
5022 	 * Rx sequence error interrupt.  get_link_status will stay
5023 	 * false until the check_for_link establishes link
5024 	 * for copper adapters ONLY
5025 	 */
5026 	switch (hw->phy.media_type) {
5027 	case e1000_media_type_copper:
5028 		if (hw->mac.get_link_status) {
5029 			ret_val = hw->mac.ops.check_for_link(hw);
5030 			link_active = ret_val > 0;
5031 		} else {
5032 			link_active = true;
5033 		}
5034 		break;
5035 	case e1000_media_type_fiber:
5036 		ret_val = hw->mac.ops.check_for_link(hw);
5037 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5038 		break;
5039 	case e1000_media_type_internal_serdes:
5040 		ret_val = hw->mac.ops.check_for_link(hw);
5041 		link_active = adapter->hw.mac.serdes_has_link;
5042 		break;
5043 	default:
5044 	case e1000_media_type_unknown:
5045 		break;
5046 	}
5047 
5048 	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5049 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5050 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5051 		e_info("Gigabit has been disabled, downgrading speed\n");
5052 	}
5053 
5054 	return link_active;
5055 }
5056 
e1000e_enable_receives(struct e1000_adapter * adapter)5057 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5058 {
5059 	/* make sure the receive unit is started */
5060 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5061 	    (adapter->flags & FLAG_RESTART_NOW)) {
5062 		struct e1000_hw *hw = &adapter->hw;
5063 		u32 rctl = er32(RCTL);
5064 
5065 		ew32(RCTL, rctl | E1000_RCTL_EN);
5066 		adapter->flags &= ~FLAG_RESTART_NOW;
5067 	}
5068 }
5069 
e1000e_check_82574_phy_workaround(struct e1000_adapter * adapter)5070 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5071 {
5072 	struct e1000_hw *hw = &adapter->hw;
5073 
5074 	/* With 82574 controllers, PHY needs to be checked periodically
5075 	 * for hung state and reset, if two calls return true
5076 	 */
5077 	if (e1000_check_phy_82574(hw))
5078 		adapter->phy_hang_count++;
5079 	else
5080 		adapter->phy_hang_count = 0;
5081 
5082 	if (adapter->phy_hang_count > 1) {
5083 		adapter->phy_hang_count = 0;
5084 		e_dbg("PHY appears hung - resetting\n");
5085 		schedule_work(&adapter->reset_task);
5086 	}
5087 }
5088 
5089 /**
5090  * e1000_watchdog - Timer Call-back
5091  * @data: pointer to adapter cast into an unsigned long
5092  **/
e1000_watchdog(unsigned long data)5093 static void e1000_watchdog(unsigned long data)
5094 {
5095 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
5096 
5097 	/* Do the rest outside of interrupt context */
5098 	schedule_work(&adapter->watchdog_task);
5099 
5100 	/* TODO: make this use queue_delayed_work() */
5101 }
5102 
e1000_watchdog_task(struct work_struct * work)5103 static void e1000_watchdog_task(struct work_struct *work)
5104 {
5105 	struct e1000_adapter *adapter = container_of(work,
5106 						     struct e1000_adapter,
5107 						     watchdog_task);
5108 	struct net_device *netdev = adapter->netdev;
5109 	struct e1000_mac_info *mac = &adapter->hw.mac;
5110 	struct e1000_phy_info *phy = &adapter->hw.phy;
5111 	struct e1000_ring *tx_ring = adapter->tx_ring;
5112 	struct e1000_hw *hw = &adapter->hw;
5113 	u32 link, tctl;
5114 
5115 	if (test_bit(__E1000_DOWN, &adapter->state))
5116 		return;
5117 
5118 	link = e1000e_has_link(adapter);
5119 	if ((netif_carrier_ok(netdev)) && link) {
5120 		/* Cancel scheduled suspend requests. */
5121 		pm_runtime_resume(netdev->dev.parent);
5122 
5123 		e1000e_enable_receives(adapter);
5124 		goto link_up;
5125 	}
5126 
5127 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5128 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5129 		e1000_update_mng_vlan(adapter);
5130 
5131 	if (link) {
5132 		if (!netif_carrier_ok(netdev)) {
5133 			bool txb2b = true;
5134 
5135 			/* Cancel scheduled suspend requests. */
5136 			pm_runtime_resume(netdev->dev.parent);
5137 
5138 			/* update snapshot of PHY registers on LSC */
5139 			e1000_phy_read_status(adapter);
5140 			mac->ops.get_link_up_info(&adapter->hw,
5141 						  &adapter->link_speed,
5142 						  &adapter->link_duplex);
5143 			e1000_print_link_info(adapter);
5144 
5145 			/* check if SmartSpeed worked */
5146 			e1000e_check_downshift(hw);
5147 			if (phy->speed_downgraded)
5148 				netdev_warn(netdev,
5149 					    "Link Speed was downgraded by SmartSpeed\n");
5150 
5151 			/* On supported PHYs, check for duplex mismatch only
5152 			 * if link has autonegotiated at 10/100 half
5153 			 */
5154 			if ((hw->phy.type == e1000_phy_igp_3 ||
5155 			     hw->phy.type == e1000_phy_bm) &&
5156 			    hw->mac.autoneg &&
5157 			    (adapter->link_speed == SPEED_10 ||
5158 			     adapter->link_speed == SPEED_100) &&
5159 			    (adapter->link_duplex == HALF_DUPLEX)) {
5160 				u16 autoneg_exp;
5161 
5162 				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5163 
5164 				if (!(autoneg_exp & EXPANSION_NWAY))
5165 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5166 			}
5167 
5168 			/* adjust timeout factor according to speed/duplex */
5169 			adapter->tx_timeout_factor = 1;
5170 			switch (adapter->link_speed) {
5171 			case SPEED_10:
5172 				txb2b = false;
5173 				adapter->tx_timeout_factor = 16;
5174 				break;
5175 			case SPEED_100:
5176 				txb2b = false;
5177 				adapter->tx_timeout_factor = 10;
5178 				break;
5179 			}
5180 
5181 			/* workaround: re-program speed mode bit after
5182 			 * link-up event
5183 			 */
5184 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5185 			    !txb2b) {
5186 				u32 tarc0;
5187 
5188 				tarc0 = er32(TARC(0));
5189 				tarc0 &= ~SPEED_MODE_BIT;
5190 				ew32(TARC(0), tarc0);
5191 			}
5192 
5193 			/* disable TSO for pcie and 10/100 speeds, to avoid
5194 			 * some hardware issues
5195 			 */
5196 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
5197 				switch (adapter->link_speed) {
5198 				case SPEED_10:
5199 				case SPEED_100:
5200 					e_info("10/100 speed: disabling TSO\n");
5201 					netdev->features &= ~NETIF_F_TSO;
5202 					netdev->features &= ~NETIF_F_TSO6;
5203 					break;
5204 				case SPEED_1000:
5205 					netdev->features |= NETIF_F_TSO;
5206 					netdev->features |= NETIF_F_TSO6;
5207 					break;
5208 				default:
5209 					/* oops */
5210 					break;
5211 				}
5212 			}
5213 
5214 			/* enable transmits in the hardware, need to do this
5215 			 * after setting TARC(0)
5216 			 */
5217 			tctl = er32(TCTL);
5218 			tctl |= E1000_TCTL_EN;
5219 			ew32(TCTL, tctl);
5220 
5221 			/* Perform any post-link-up configuration before
5222 			 * reporting link up.
5223 			 */
5224 			if (phy->ops.cfg_on_link_up)
5225 				phy->ops.cfg_on_link_up(hw);
5226 
5227 			netif_wake_queue(netdev);
5228 			netif_carrier_on(netdev);
5229 
5230 			if (!test_bit(__E1000_DOWN, &adapter->state))
5231 				mod_timer(&adapter->phy_info_timer,
5232 					  round_jiffies(jiffies + 2 * HZ));
5233 		}
5234 	} else {
5235 		if (netif_carrier_ok(netdev)) {
5236 			adapter->link_speed = 0;
5237 			adapter->link_duplex = 0;
5238 			/* Link status message must follow this format */
5239 			pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5240 			netif_carrier_off(netdev);
5241 			netif_stop_queue(netdev);
5242 			if (!test_bit(__E1000_DOWN, &adapter->state))
5243 				mod_timer(&adapter->phy_info_timer,
5244 					  round_jiffies(jiffies + 2 * HZ));
5245 
5246 			/* 8000ES2LAN requires a Rx packet buffer work-around
5247 			 * on link down event; reset the controller to flush
5248 			 * the Rx packet buffer.
5249 			 */
5250 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5251 				adapter->flags |= FLAG_RESTART_NOW;
5252 			else
5253 				pm_schedule_suspend(netdev->dev.parent,
5254 						    LINK_TIMEOUT);
5255 		}
5256 	}
5257 
5258 link_up:
5259 	spin_lock(&adapter->stats64_lock);
5260 	e1000e_update_stats(adapter);
5261 
5262 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5263 	adapter->tpt_old = adapter->stats.tpt;
5264 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5265 	adapter->colc_old = adapter->stats.colc;
5266 
5267 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5268 	adapter->gorc_old = adapter->stats.gorc;
5269 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5270 	adapter->gotc_old = adapter->stats.gotc;
5271 	spin_unlock(&adapter->stats64_lock);
5272 
5273 	/* If the link is lost the controller stops DMA, but
5274 	 * if there is queued Tx work it cannot be done.  So
5275 	 * reset the controller to flush the Tx packet buffers.
5276 	 */
5277 	if (!netif_carrier_ok(netdev) &&
5278 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5279 		adapter->flags |= FLAG_RESTART_NOW;
5280 
5281 	/* If reset is necessary, do it outside of interrupt context. */
5282 	if (adapter->flags & FLAG_RESTART_NOW) {
5283 		schedule_work(&adapter->reset_task);
5284 		/* return immediately since reset is imminent */
5285 		return;
5286 	}
5287 
5288 	e1000e_update_adaptive(&adapter->hw);
5289 
5290 	/* Simple mode for Interrupt Throttle Rate (ITR) */
5291 	if (adapter->itr_setting == 4) {
5292 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5293 		 * Total asymmetrical Tx or Rx gets ITR=8000;
5294 		 * everyone else is between 2000-8000.
5295 		 */
5296 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5297 		u32 dif = (adapter->gotc > adapter->gorc ?
5298 			   adapter->gotc - adapter->gorc :
5299 			   adapter->gorc - adapter->gotc) / 10000;
5300 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5301 
5302 		e1000e_write_itr(adapter, itr);
5303 	}
5304 
5305 	/* Cause software interrupt to ensure Rx ring is cleaned */
5306 	if (adapter->msix_entries)
5307 		ew32(ICS, adapter->rx_ring->ims_val);
5308 	else
5309 		ew32(ICS, E1000_ICS_RXDMT0);
5310 
5311 	/* flush pending descriptors to memory before detecting Tx hang */
5312 	e1000e_flush_descriptors(adapter);
5313 
5314 	/* Force detection of hung controller every watchdog period */
5315 	adapter->detect_tx_hung = true;
5316 
5317 	/* With 82571 controllers, LAA may be overwritten due to controller
5318 	 * reset from the other port. Set the appropriate LAA in RAR[0]
5319 	 */
5320 	if (e1000e_get_laa_state_82571(hw))
5321 		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5322 
5323 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5324 		e1000e_check_82574_phy_workaround(adapter);
5325 
5326 	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5327 	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5328 		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5329 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5330 			er32(RXSTMPH);
5331 			adapter->rx_hwtstamp_cleared++;
5332 		} else {
5333 			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5334 		}
5335 	}
5336 
5337 	/* Reset the timer */
5338 	if (!test_bit(__E1000_DOWN, &adapter->state))
5339 		mod_timer(&adapter->watchdog_timer,
5340 			  round_jiffies(jiffies + 2 * HZ));
5341 }
5342 
5343 #define E1000_TX_FLAGS_CSUM		0x00000001
5344 #define E1000_TX_FLAGS_VLAN		0x00000002
5345 #define E1000_TX_FLAGS_TSO		0x00000004
5346 #define E1000_TX_FLAGS_IPV4		0x00000008
5347 #define E1000_TX_FLAGS_NO_FCS		0x00000010
5348 #define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5349 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5350 #define E1000_TX_FLAGS_VLAN_SHIFT	16
5351 
e1000_tso(struct e1000_ring * tx_ring,struct sk_buff * skb,__be16 protocol)5352 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5353 		     __be16 protocol)
5354 {
5355 	struct e1000_context_desc *context_desc;
5356 	struct e1000_buffer *buffer_info;
5357 	unsigned int i;
5358 	u32 cmd_length = 0;
5359 	u16 ipcse = 0, mss;
5360 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5361 	int err;
5362 
5363 	if (!skb_is_gso(skb))
5364 		return 0;
5365 
5366 	err = skb_cow_head(skb, 0);
5367 	if (err < 0)
5368 		return err;
5369 
5370 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5371 	mss = skb_shinfo(skb)->gso_size;
5372 	if (protocol == htons(ETH_P_IP)) {
5373 		struct iphdr *iph = ip_hdr(skb);
5374 		iph->tot_len = 0;
5375 		iph->check = 0;
5376 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5377 							 0, IPPROTO_TCP, 0);
5378 		cmd_length = E1000_TXD_CMD_IP;
5379 		ipcse = skb_transport_offset(skb) - 1;
5380 	} else if (skb_is_gso_v6(skb)) {
5381 		ipv6_hdr(skb)->payload_len = 0;
5382 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5383 						       &ipv6_hdr(skb)->daddr,
5384 						       0, IPPROTO_TCP, 0);
5385 		ipcse = 0;
5386 	}
5387 	ipcss = skb_network_offset(skb);
5388 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5389 	tucss = skb_transport_offset(skb);
5390 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5391 
5392 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5393 		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5394 
5395 	i = tx_ring->next_to_use;
5396 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5397 	buffer_info = &tx_ring->buffer_info[i];
5398 
5399 	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5400 	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5401 	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5402 	context_desc->upper_setup.tcp_fields.tucss = tucss;
5403 	context_desc->upper_setup.tcp_fields.tucso = tucso;
5404 	context_desc->upper_setup.tcp_fields.tucse = 0;
5405 	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5406 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5407 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5408 
5409 	buffer_info->time_stamp = jiffies;
5410 	buffer_info->next_to_watch = i;
5411 
5412 	i++;
5413 	if (i == tx_ring->count)
5414 		i = 0;
5415 	tx_ring->next_to_use = i;
5416 
5417 	return 1;
5418 }
5419 
e1000_tx_csum(struct e1000_ring * tx_ring,struct sk_buff * skb,__be16 protocol)5420 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5421 			  __be16 protocol)
5422 {
5423 	struct e1000_adapter *adapter = tx_ring->adapter;
5424 	struct e1000_context_desc *context_desc;
5425 	struct e1000_buffer *buffer_info;
5426 	unsigned int i;
5427 	u8 css;
5428 	u32 cmd_len = E1000_TXD_CMD_DEXT;
5429 
5430 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5431 		return false;
5432 
5433 	switch (protocol) {
5434 	case cpu_to_be16(ETH_P_IP):
5435 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5436 			cmd_len |= E1000_TXD_CMD_TCP;
5437 		break;
5438 	case cpu_to_be16(ETH_P_IPV6):
5439 		/* XXX not handling all IPV6 headers */
5440 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5441 			cmd_len |= E1000_TXD_CMD_TCP;
5442 		break;
5443 	default:
5444 		if (unlikely(net_ratelimit()))
5445 			e_warn("checksum_partial proto=%x!\n",
5446 			       be16_to_cpu(protocol));
5447 		break;
5448 	}
5449 
5450 	css = skb_checksum_start_offset(skb);
5451 
5452 	i = tx_ring->next_to_use;
5453 	buffer_info = &tx_ring->buffer_info[i];
5454 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5455 
5456 	context_desc->lower_setup.ip_config = 0;
5457 	context_desc->upper_setup.tcp_fields.tucss = css;
5458 	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5459 	context_desc->upper_setup.tcp_fields.tucse = 0;
5460 	context_desc->tcp_seg_setup.data = 0;
5461 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5462 
5463 	buffer_info->time_stamp = jiffies;
5464 	buffer_info->next_to_watch = i;
5465 
5466 	i++;
5467 	if (i == tx_ring->count)
5468 		i = 0;
5469 	tx_ring->next_to_use = i;
5470 
5471 	return true;
5472 }
5473 
e1000_tx_map(struct e1000_ring * tx_ring,struct sk_buff * skb,unsigned int first,unsigned int max_per_txd,unsigned int nr_frags)5474 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5475 			unsigned int first, unsigned int max_per_txd,
5476 			unsigned int nr_frags)
5477 {
5478 	struct e1000_adapter *adapter = tx_ring->adapter;
5479 	struct pci_dev *pdev = adapter->pdev;
5480 	struct e1000_buffer *buffer_info;
5481 	unsigned int len = skb_headlen(skb);
5482 	unsigned int offset = 0, size, count = 0, i;
5483 	unsigned int f, bytecount, segs;
5484 
5485 	i = tx_ring->next_to_use;
5486 
5487 	while (len) {
5488 		buffer_info = &tx_ring->buffer_info[i];
5489 		size = min(len, max_per_txd);
5490 
5491 		buffer_info->length = size;
5492 		buffer_info->time_stamp = jiffies;
5493 		buffer_info->next_to_watch = i;
5494 		buffer_info->dma = dma_map_single(&pdev->dev,
5495 						  skb->data + offset,
5496 						  size, DMA_TO_DEVICE);
5497 		buffer_info->mapped_as_page = false;
5498 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5499 			goto dma_error;
5500 
5501 		len -= size;
5502 		offset += size;
5503 		count++;
5504 
5505 		if (len) {
5506 			i++;
5507 			if (i == tx_ring->count)
5508 				i = 0;
5509 		}
5510 	}
5511 
5512 	for (f = 0; f < nr_frags; f++) {
5513 		const struct skb_frag_struct *frag;
5514 
5515 		frag = &skb_shinfo(skb)->frags[f];
5516 		len = skb_frag_size(frag);
5517 		offset = 0;
5518 
5519 		while (len) {
5520 			i++;
5521 			if (i == tx_ring->count)
5522 				i = 0;
5523 
5524 			buffer_info = &tx_ring->buffer_info[i];
5525 			size = min(len, max_per_txd);
5526 
5527 			buffer_info->length = size;
5528 			buffer_info->time_stamp = jiffies;
5529 			buffer_info->next_to_watch = i;
5530 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5531 							    offset, size,
5532 							    DMA_TO_DEVICE);
5533 			buffer_info->mapped_as_page = true;
5534 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5535 				goto dma_error;
5536 
5537 			len -= size;
5538 			offset += size;
5539 			count++;
5540 		}
5541 	}
5542 
5543 	segs = skb_shinfo(skb)->gso_segs ? : 1;
5544 	/* multiply data chunks by size of headers */
5545 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5546 
5547 	tx_ring->buffer_info[i].skb = skb;
5548 	tx_ring->buffer_info[i].segs = segs;
5549 	tx_ring->buffer_info[i].bytecount = bytecount;
5550 	tx_ring->buffer_info[first].next_to_watch = i;
5551 
5552 	return count;
5553 
5554 dma_error:
5555 	dev_err(&pdev->dev, "Tx DMA map failed\n");
5556 	buffer_info->dma = 0;
5557 	if (count)
5558 		count--;
5559 
5560 	while (count--) {
5561 		if (i == 0)
5562 			i += tx_ring->count;
5563 		i--;
5564 		buffer_info = &tx_ring->buffer_info[i];
5565 		e1000_put_txbuf(tx_ring, buffer_info);
5566 	}
5567 
5568 	return 0;
5569 }
5570 
e1000_tx_queue(struct e1000_ring * tx_ring,int tx_flags,int count)5571 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5572 {
5573 	struct e1000_adapter *adapter = tx_ring->adapter;
5574 	struct e1000_tx_desc *tx_desc = NULL;
5575 	struct e1000_buffer *buffer_info;
5576 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5577 	unsigned int i;
5578 
5579 	if (tx_flags & E1000_TX_FLAGS_TSO) {
5580 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5581 		    E1000_TXD_CMD_TSE;
5582 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5583 
5584 		if (tx_flags & E1000_TX_FLAGS_IPV4)
5585 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5586 	}
5587 
5588 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5589 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5590 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5591 	}
5592 
5593 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5594 		txd_lower |= E1000_TXD_CMD_VLE;
5595 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5596 	}
5597 
5598 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5599 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5600 
5601 	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5602 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5603 		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5604 	}
5605 
5606 	i = tx_ring->next_to_use;
5607 
5608 	do {
5609 		buffer_info = &tx_ring->buffer_info[i];
5610 		tx_desc = E1000_TX_DESC(*tx_ring, i);
5611 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5612 		tx_desc->lower.data = cpu_to_le32(txd_lower |
5613 						  buffer_info->length);
5614 		tx_desc->upper.data = cpu_to_le32(txd_upper);
5615 
5616 		i++;
5617 		if (i == tx_ring->count)
5618 			i = 0;
5619 	} while (--count > 0);
5620 
5621 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5622 
5623 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5624 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5625 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5626 
5627 	/* Force memory writes to complete before letting h/w
5628 	 * know there are new descriptors to fetch.  (Only
5629 	 * applicable for weak-ordered memory model archs,
5630 	 * such as IA-64).
5631 	 */
5632 	wmb();
5633 
5634 	tx_ring->next_to_use = i;
5635 }
5636 
5637 #define MINIMUM_DHCP_PACKET_SIZE 282
e1000_transfer_dhcp_info(struct e1000_adapter * adapter,struct sk_buff * skb)5638 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5639 				    struct sk_buff *skb)
5640 {
5641 	struct e1000_hw *hw = &adapter->hw;
5642 	u16 length, offset;
5643 
5644 	if (skb_vlan_tag_present(skb) &&
5645 	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5646 	      (adapter->hw.mng_cookie.status &
5647 	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5648 		return 0;
5649 
5650 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5651 		return 0;
5652 
5653 	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5654 		return 0;
5655 
5656 	{
5657 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5658 		struct udphdr *udp;
5659 
5660 		if (ip->protocol != IPPROTO_UDP)
5661 			return 0;
5662 
5663 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5664 		if (ntohs(udp->dest) != 67)
5665 			return 0;
5666 
5667 		offset = (u8 *)udp + 8 - skb->data;
5668 		length = skb->len - offset;
5669 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5670 	}
5671 
5672 	return 0;
5673 }
5674 
__e1000_maybe_stop_tx(struct e1000_ring * tx_ring,int size)5675 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5676 {
5677 	struct e1000_adapter *adapter = tx_ring->adapter;
5678 
5679 	netif_stop_queue(adapter->netdev);
5680 	/* Herbert's original patch had:
5681 	 *  smp_mb__after_netif_stop_queue();
5682 	 * but since that doesn't exist yet, just open code it.
5683 	 */
5684 	smp_mb();
5685 
5686 	/* We need to check again in a case another CPU has just
5687 	 * made room available.
5688 	 */
5689 	if (e1000_desc_unused(tx_ring) < size)
5690 		return -EBUSY;
5691 
5692 	/* A reprieve! */
5693 	netif_start_queue(adapter->netdev);
5694 	++adapter->restart_queue;
5695 	return 0;
5696 }
5697 
e1000_maybe_stop_tx(struct e1000_ring * tx_ring,int size)5698 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5699 {
5700 	BUG_ON(size > tx_ring->count);
5701 
5702 	if (e1000_desc_unused(tx_ring) >= size)
5703 		return 0;
5704 	return __e1000_maybe_stop_tx(tx_ring, size);
5705 }
5706 
e1000_xmit_frame(struct sk_buff * skb,struct net_device * netdev)5707 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5708 				    struct net_device *netdev)
5709 {
5710 	struct e1000_adapter *adapter = netdev_priv(netdev);
5711 	struct e1000_ring *tx_ring = adapter->tx_ring;
5712 	unsigned int first;
5713 	unsigned int tx_flags = 0;
5714 	unsigned int len = skb_headlen(skb);
5715 	unsigned int nr_frags;
5716 	unsigned int mss;
5717 	int count = 0;
5718 	int tso;
5719 	unsigned int f;
5720 	__be16 protocol = vlan_get_protocol(skb);
5721 
5722 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5723 		dev_kfree_skb_any(skb);
5724 		return NETDEV_TX_OK;
5725 	}
5726 
5727 	if (skb->len <= 0) {
5728 		dev_kfree_skb_any(skb);
5729 		return NETDEV_TX_OK;
5730 	}
5731 
5732 	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5733 	 * pad skb in order to meet this minimum size requirement
5734 	 */
5735 	if (skb_put_padto(skb, 17))
5736 		return NETDEV_TX_OK;
5737 
5738 	mss = skb_shinfo(skb)->gso_size;
5739 	if (mss) {
5740 		u8 hdr_len;
5741 
5742 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5743 		 * points to just header, pull a few bytes of payload from
5744 		 * frags into skb->data
5745 		 */
5746 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5747 		/* we do this workaround for ES2LAN, but it is un-necessary,
5748 		 * avoiding it could save a lot of cycles
5749 		 */
5750 		if (skb->data_len && (hdr_len == len)) {
5751 			unsigned int pull_size;
5752 
5753 			pull_size = min_t(unsigned int, 4, skb->data_len);
5754 			if (!__pskb_pull_tail(skb, pull_size)) {
5755 				e_err("__pskb_pull_tail failed.\n");
5756 				dev_kfree_skb_any(skb);
5757 				return NETDEV_TX_OK;
5758 			}
5759 			len = skb_headlen(skb);
5760 		}
5761 	}
5762 
5763 	/* reserve a descriptor for the offload context */
5764 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5765 		count++;
5766 	count++;
5767 
5768 	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5769 
5770 	nr_frags = skb_shinfo(skb)->nr_frags;
5771 	for (f = 0; f < nr_frags; f++)
5772 		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5773 				      adapter->tx_fifo_limit);
5774 
5775 	if (adapter->hw.mac.tx_pkt_filtering)
5776 		e1000_transfer_dhcp_info(adapter, skb);
5777 
5778 	/* need: count + 2 desc gap to keep tail from touching
5779 	 * head, otherwise try next time
5780 	 */
5781 	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5782 		return NETDEV_TX_BUSY;
5783 
5784 	if (skb_vlan_tag_present(skb)) {
5785 		tx_flags |= E1000_TX_FLAGS_VLAN;
5786 		tx_flags |= (skb_vlan_tag_get(skb) <<
5787 			     E1000_TX_FLAGS_VLAN_SHIFT);
5788 	}
5789 
5790 	first = tx_ring->next_to_use;
5791 
5792 	tso = e1000_tso(tx_ring, skb, protocol);
5793 	if (tso < 0) {
5794 		dev_kfree_skb_any(skb);
5795 		return NETDEV_TX_OK;
5796 	}
5797 
5798 	if (tso)
5799 		tx_flags |= E1000_TX_FLAGS_TSO;
5800 	else if (e1000_tx_csum(tx_ring, skb, protocol))
5801 		tx_flags |= E1000_TX_FLAGS_CSUM;
5802 
5803 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5804 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5805 	 * no longer assume, we must.
5806 	 */
5807 	if (protocol == htons(ETH_P_IP))
5808 		tx_flags |= E1000_TX_FLAGS_IPV4;
5809 
5810 	if (unlikely(skb->no_fcs))
5811 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5812 
5813 	/* if count is 0 then mapping error has occurred */
5814 	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5815 			     nr_frags);
5816 	if (count) {
5817 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5818 		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP) &&
5819 		    !adapter->tx_hwtstamp_skb) {
5820 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5821 			tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5822 			adapter->tx_hwtstamp_skb = skb_get(skb);
5823 			adapter->tx_hwtstamp_start = jiffies;
5824 			schedule_work(&adapter->tx_hwtstamp_work);
5825 		} else {
5826 			skb_tx_timestamp(skb);
5827 		}
5828 
5829 		netdev_sent_queue(netdev, skb->len);
5830 		e1000_tx_queue(tx_ring, tx_flags, count);
5831 		/* Make sure there is space in the ring for the next send. */
5832 		e1000_maybe_stop_tx(tx_ring,
5833 				    (MAX_SKB_FRAGS *
5834 				     DIV_ROUND_UP(PAGE_SIZE,
5835 						  adapter->tx_fifo_limit) + 2));
5836 
5837 		if (!skb->xmit_more ||
5838 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5839 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5840 				e1000e_update_tdt_wa(tx_ring,
5841 						     tx_ring->next_to_use);
5842 			else
5843 				writel(tx_ring->next_to_use, tx_ring->tail);
5844 
5845 			/* we need this if more than one processor can write
5846 			 * to our tail at a time, it synchronizes IO on
5847 			 *IA64/Altix systems
5848 			 */
5849 			mmiowb();
5850 		}
5851 	} else {
5852 		dev_kfree_skb_any(skb);
5853 		tx_ring->buffer_info[first].time_stamp = 0;
5854 		tx_ring->next_to_use = first;
5855 	}
5856 
5857 	return NETDEV_TX_OK;
5858 }
5859 
5860 /**
5861  * e1000_tx_timeout - Respond to a Tx Hang
5862  * @netdev: network interface device structure
5863  **/
e1000_tx_timeout(struct net_device * netdev)5864 static void e1000_tx_timeout(struct net_device *netdev)
5865 {
5866 	struct e1000_adapter *adapter = netdev_priv(netdev);
5867 
5868 	/* Do the reset outside of interrupt context */
5869 	adapter->tx_timeout_count++;
5870 	schedule_work(&adapter->reset_task);
5871 }
5872 
e1000_reset_task(struct work_struct * work)5873 static void e1000_reset_task(struct work_struct *work)
5874 {
5875 	struct e1000_adapter *adapter;
5876 	adapter = container_of(work, struct e1000_adapter, reset_task);
5877 
5878 	rtnl_lock();
5879 	/* don't run the task if already down */
5880 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5881 		rtnl_unlock();
5882 		return;
5883 	}
5884 
5885 	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5886 		e1000e_dump(adapter);
5887 		e_err("Reset adapter unexpectedly\n");
5888 	}
5889 	e1000e_reinit_locked(adapter);
5890 	rtnl_unlock();
5891 }
5892 
5893 /**
5894  * e1000_get_stats64 - Get System Network Statistics
5895  * @netdev: network interface device structure
5896  * @stats: rtnl_link_stats64 pointer
5897  *
5898  * Returns the address of the device statistics structure.
5899  **/
e1000e_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5900 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5901 					     struct rtnl_link_stats64 *stats)
5902 {
5903 	struct e1000_adapter *adapter = netdev_priv(netdev);
5904 
5905 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
5906 	spin_lock(&adapter->stats64_lock);
5907 	e1000e_update_stats(adapter);
5908 	/* Fill out the OS statistics structure */
5909 	stats->rx_bytes = adapter->stats.gorc;
5910 	stats->rx_packets = adapter->stats.gprc;
5911 	stats->tx_bytes = adapter->stats.gotc;
5912 	stats->tx_packets = adapter->stats.gptc;
5913 	stats->multicast = adapter->stats.mprc;
5914 	stats->collisions = adapter->stats.colc;
5915 
5916 	/* Rx Errors */
5917 
5918 	/* RLEC on some newer hardware can be incorrect so build
5919 	 * our own version based on RUC and ROC
5920 	 */
5921 	stats->rx_errors = adapter->stats.rxerrc +
5922 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5923 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5924 	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5925 	stats->rx_crc_errors = adapter->stats.crcerrs;
5926 	stats->rx_frame_errors = adapter->stats.algnerrc;
5927 	stats->rx_missed_errors = adapter->stats.mpc;
5928 
5929 	/* Tx Errors */
5930 	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5931 	stats->tx_aborted_errors = adapter->stats.ecol;
5932 	stats->tx_window_errors = adapter->stats.latecol;
5933 	stats->tx_carrier_errors = adapter->stats.tncrs;
5934 
5935 	/* Tx Dropped needs to be maintained elsewhere */
5936 
5937 	spin_unlock(&adapter->stats64_lock);
5938 	return stats;
5939 }
5940 
5941 /**
5942  * e1000_change_mtu - Change the Maximum Transfer Unit
5943  * @netdev: network interface device structure
5944  * @new_mtu: new value for maximum frame size
5945  *
5946  * Returns 0 on success, negative on failure
5947  **/
e1000_change_mtu(struct net_device * netdev,int new_mtu)5948 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5949 {
5950 	struct e1000_adapter *adapter = netdev_priv(netdev);
5951 	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
5952 
5953 	/* Jumbo frame support */
5954 	if ((max_frame > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) &&
5955 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5956 		e_err("Jumbo Frames not supported.\n");
5957 		return -EINVAL;
5958 	}
5959 
5960 	/* Supported frame sizes */
5961 	if ((new_mtu < (VLAN_ETH_ZLEN + ETH_FCS_LEN)) ||
5962 	    (max_frame > adapter->max_hw_frame_size)) {
5963 		e_err("Unsupported MTU setting\n");
5964 		return -EINVAL;
5965 	}
5966 
5967 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5968 	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5969 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5970 	    (new_mtu > ETH_DATA_LEN)) {
5971 		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5972 		return -EINVAL;
5973 	}
5974 
5975 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5976 		usleep_range(1000, 2000);
5977 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5978 	adapter->max_frame_size = max_frame;
5979 	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5980 	netdev->mtu = new_mtu;
5981 
5982 	pm_runtime_get_sync(netdev->dev.parent);
5983 
5984 	if (netif_running(netdev))
5985 		e1000e_down(adapter, true);
5986 
5987 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5988 	 * means we reserve 2 more, this pushes us to allocate from the next
5989 	 * larger slab size.
5990 	 * i.e. RXBUFFER_2048 --> size-4096 slab
5991 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
5992 	 * fragmented skbs
5993 	 */
5994 
5995 	if (max_frame <= 2048)
5996 		adapter->rx_buffer_len = 2048;
5997 	else
5998 		adapter->rx_buffer_len = 4096;
5999 
6000 	/* adjust allocation if LPE protects us, and we aren't using SBP */
6001 	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6002 		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6003 
6004 	if (netif_running(netdev))
6005 		e1000e_up(adapter);
6006 	else
6007 		e1000e_reset(adapter);
6008 
6009 	pm_runtime_put_sync(netdev->dev.parent);
6010 
6011 	clear_bit(__E1000_RESETTING, &adapter->state);
6012 
6013 	return 0;
6014 }
6015 
e1000_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)6016 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6017 			   int cmd)
6018 {
6019 	struct e1000_adapter *adapter = netdev_priv(netdev);
6020 	struct mii_ioctl_data *data = if_mii(ifr);
6021 
6022 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6023 		return -EOPNOTSUPP;
6024 
6025 	switch (cmd) {
6026 	case SIOCGMIIPHY:
6027 		data->phy_id = adapter->hw.phy.addr;
6028 		break;
6029 	case SIOCGMIIREG:
6030 		e1000_phy_read_status(adapter);
6031 
6032 		switch (data->reg_num & 0x1F) {
6033 		case MII_BMCR:
6034 			data->val_out = adapter->phy_regs.bmcr;
6035 			break;
6036 		case MII_BMSR:
6037 			data->val_out = adapter->phy_regs.bmsr;
6038 			break;
6039 		case MII_PHYSID1:
6040 			data->val_out = (adapter->hw.phy.id >> 16);
6041 			break;
6042 		case MII_PHYSID2:
6043 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6044 			break;
6045 		case MII_ADVERTISE:
6046 			data->val_out = adapter->phy_regs.advertise;
6047 			break;
6048 		case MII_LPA:
6049 			data->val_out = adapter->phy_regs.lpa;
6050 			break;
6051 		case MII_EXPANSION:
6052 			data->val_out = adapter->phy_regs.expansion;
6053 			break;
6054 		case MII_CTRL1000:
6055 			data->val_out = adapter->phy_regs.ctrl1000;
6056 			break;
6057 		case MII_STAT1000:
6058 			data->val_out = adapter->phy_regs.stat1000;
6059 			break;
6060 		case MII_ESTATUS:
6061 			data->val_out = adapter->phy_regs.estatus;
6062 			break;
6063 		default:
6064 			return -EIO;
6065 		}
6066 		break;
6067 	case SIOCSMIIREG:
6068 	default:
6069 		return -EOPNOTSUPP;
6070 	}
6071 	return 0;
6072 }
6073 
6074 /**
6075  * e1000e_hwtstamp_ioctl - control hardware time stamping
6076  * @netdev: network interface device structure
6077  * @ifreq: interface request
6078  *
6079  * Outgoing time stamping can be enabled and disabled. Play nice and
6080  * disable it when requested, although it shouldn't cause any overhead
6081  * when no packet needs it. At most one packet in the queue may be
6082  * marked for time stamping, otherwise it would be impossible to tell
6083  * for sure to which packet the hardware time stamp belongs.
6084  *
6085  * Incoming time stamping has to be configured via the hardware filters.
6086  * Not all combinations are supported, in particular event type has to be
6087  * specified. Matching the kind of event packet is not supported, with the
6088  * exception of "all V2 events regardless of level 2 or 4".
6089  **/
e1000e_hwtstamp_set(struct net_device * netdev,struct ifreq * ifr)6090 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6091 {
6092 	struct e1000_adapter *adapter = netdev_priv(netdev);
6093 	struct hwtstamp_config config;
6094 	int ret_val;
6095 
6096 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6097 		return -EFAULT;
6098 
6099 	ret_val = e1000e_config_hwtstamp(adapter, &config);
6100 	if (ret_val)
6101 		return ret_val;
6102 
6103 	switch (config.rx_filter) {
6104 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6105 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6106 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6107 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6108 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6109 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6110 		/* With V2 type filters which specify a Sync or Delay Request,
6111 		 * Path Delay Request/Response messages are also time stamped
6112 		 * by hardware so notify the caller the requested packets plus
6113 		 * some others are time stamped.
6114 		 */
6115 		config.rx_filter = HWTSTAMP_FILTER_SOME;
6116 		break;
6117 	default:
6118 		break;
6119 	}
6120 
6121 	return copy_to_user(ifr->ifr_data, &config,
6122 			    sizeof(config)) ? -EFAULT : 0;
6123 }
6124 
e1000e_hwtstamp_get(struct net_device * netdev,struct ifreq * ifr)6125 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6126 {
6127 	struct e1000_adapter *adapter = netdev_priv(netdev);
6128 
6129 	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6130 			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6131 }
6132 
e1000_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)6133 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6134 {
6135 	switch (cmd) {
6136 	case SIOCGMIIPHY:
6137 	case SIOCGMIIREG:
6138 	case SIOCSMIIREG:
6139 		return e1000_mii_ioctl(netdev, ifr, cmd);
6140 	case SIOCSHWTSTAMP:
6141 		return e1000e_hwtstamp_set(netdev, ifr);
6142 	case SIOCGHWTSTAMP:
6143 		return e1000e_hwtstamp_get(netdev, ifr);
6144 	default:
6145 		return -EOPNOTSUPP;
6146 	}
6147 }
6148 
e1000_init_phy_wakeup(struct e1000_adapter * adapter,u32 wufc)6149 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6150 {
6151 	struct e1000_hw *hw = &adapter->hw;
6152 	u32 i, mac_reg, wuc;
6153 	u16 phy_reg, wuc_enable;
6154 	int retval;
6155 
6156 	/* copy MAC RARs to PHY RARs */
6157 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6158 
6159 	retval = hw->phy.ops.acquire(hw);
6160 	if (retval) {
6161 		e_err("Could not acquire PHY\n");
6162 		return retval;
6163 	}
6164 
6165 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6166 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6167 	if (retval)
6168 		goto release;
6169 
6170 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6171 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6172 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6173 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6174 					   (u16)(mac_reg & 0xFFFF));
6175 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6176 					   (u16)((mac_reg >> 16) & 0xFFFF));
6177 	}
6178 
6179 	/* configure PHY Rx Control register */
6180 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6181 	mac_reg = er32(RCTL);
6182 	if (mac_reg & E1000_RCTL_UPE)
6183 		phy_reg |= BM_RCTL_UPE;
6184 	if (mac_reg & E1000_RCTL_MPE)
6185 		phy_reg |= BM_RCTL_MPE;
6186 	phy_reg &= ~(BM_RCTL_MO_MASK);
6187 	if (mac_reg & E1000_RCTL_MO_3)
6188 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6189 			    << BM_RCTL_MO_SHIFT);
6190 	if (mac_reg & E1000_RCTL_BAM)
6191 		phy_reg |= BM_RCTL_BAM;
6192 	if (mac_reg & E1000_RCTL_PMCF)
6193 		phy_reg |= BM_RCTL_PMCF;
6194 	mac_reg = er32(CTRL);
6195 	if (mac_reg & E1000_CTRL_RFCE)
6196 		phy_reg |= BM_RCTL_RFCE;
6197 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6198 
6199 	wuc = E1000_WUC_PME_EN;
6200 	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6201 		wuc |= E1000_WUC_APME;
6202 
6203 	/* enable PHY wakeup in MAC register */
6204 	ew32(WUFC, wufc);
6205 	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6206 		   E1000_WUC_PME_STATUS | wuc));
6207 
6208 	/* configure and enable PHY wakeup in PHY registers */
6209 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6210 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6211 
6212 	/* activate PHY wakeup */
6213 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6214 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6215 	if (retval)
6216 		e_err("Could not set PHY Host Wakeup bit\n");
6217 release:
6218 	hw->phy.ops.release(hw);
6219 
6220 	return retval;
6221 }
6222 
e1000e_flush_lpic(struct pci_dev * pdev)6223 static void e1000e_flush_lpic(struct pci_dev *pdev)
6224 {
6225 	struct net_device *netdev = pci_get_drvdata(pdev);
6226 	struct e1000_adapter *adapter = netdev_priv(netdev);
6227 	struct e1000_hw *hw = &adapter->hw;
6228 	u32 ret_val;
6229 
6230 	pm_runtime_get_sync(netdev->dev.parent);
6231 
6232 	ret_val = hw->phy.ops.acquire(hw);
6233 	if (ret_val)
6234 		goto fl_out;
6235 
6236 	pr_info("EEE TX LPI TIMER: %08X\n",
6237 		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6238 
6239 	hw->phy.ops.release(hw);
6240 
6241 fl_out:
6242 	pm_runtime_put_sync(netdev->dev.parent);
6243 }
6244 
e1000e_pm_freeze(struct device * dev)6245 static int e1000e_pm_freeze(struct device *dev)
6246 {
6247 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6248 	struct e1000_adapter *adapter = netdev_priv(netdev);
6249 
6250 	netif_device_detach(netdev);
6251 
6252 	if (netif_running(netdev)) {
6253 		int count = E1000_CHECK_RESET_COUNT;
6254 
6255 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6256 			usleep_range(10000, 20000);
6257 
6258 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6259 
6260 		/* Quiesce the device without resetting the hardware */
6261 		e1000e_down(adapter, false);
6262 		e1000_free_irq(adapter);
6263 	}
6264 	e1000e_reset_interrupt_capability(adapter);
6265 
6266 	/* Allow time for pending master requests to run */
6267 	e1000e_disable_pcie_master(&adapter->hw);
6268 
6269 	return 0;
6270 }
6271 
__e1000_shutdown(struct pci_dev * pdev,bool runtime)6272 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6273 {
6274 	struct net_device *netdev = pci_get_drvdata(pdev);
6275 	struct e1000_adapter *adapter = netdev_priv(netdev);
6276 	struct e1000_hw *hw = &adapter->hw;
6277 	u32 ctrl, ctrl_ext, rctl, status, wufc;
6278 	int retval = 0;
6279 
6280 	/* Runtime suspend should only enable wakeup for link changes */
6281 	if (runtime)
6282 		wufc = E1000_WUFC_LNKC;
6283 	else if (device_may_wakeup(&pdev->dev))
6284 		wufc = adapter->wol;
6285 	else
6286 		wufc = 0;
6287 
6288 	status = er32(STATUS);
6289 	if (status & E1000_STATUS_LU)
6290 		wufc &= ~E1000_WUFC_LNKC;
6291 
6292 	if (wufc) {
6293 		e1000_setup_rctl(adapter);
6294 		e1000e_set_rx_mode(netdev);
6295 
6296 		/* turn on all-multi mode if wake on multicast is enabled */
6297 		if (wufc & E1000_WUFC_MC) {
6298 			rctl = er32(RCTL);
6299 			rctl |= E1000_RCTL_MPE;
6300 			ew32(RCTL, rctl);
6301 		}
6302 
6303 		ctrl = er32(CTRL);
6304 		ctrl |= E1000_CTRL_ADVD3WUC;
6305 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6306 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6307 		ew32(CTRL, ctrl);
6308 
6309 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6310 		    adapter->hw.phy.media_type ==
6311 		    e1000_media_type_internal_serdes) {
6312 			/* keep the laser running in D3 */
6313 			ctrl_ext = er32(CTRL_EXT);
6314 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6315 			ew32(CTRL_EXT, ctrl_ext);
6316 		}
6317 
6318 		if (!runtime)
6319 			e1000e_power_up_phy(adapter);
6320 
6321 		if (adapter->flags & FLAG_IS_ICH)
6322 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6323 
6324 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6325 			/* enable wakeup by the PHY */
6326 			retval = e1000_init_phy_wakeup(adapter, wufc);
6327 			if (retval)
6328 				return retval;
6329 		} else {
6330 			/* enable wakeup by the MAC */
6331 			ew32(WUFC, wufc);
6332 			ew32(WUC, E1000_WUC_PME_EN);
6333 		}
6334 	} else {
6335 		ew32(WUC, 0);
6336 		ew32(WUFC, 0);
6337 
6338 		e1000_power_down_phy(adapter);
6339 	}
6340 
6341 	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6342 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6343 	} else if ((hw->mac.type == e1000_pch_lpt) ||
6344 		   (hw->mac.type == e1000_pch_spt)) {
6345 		if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6346 			/* ULP does not support wake from unicast, multicast
6347 			 * or broadcast.
6348 			 */
6349 			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6350 
6351 		if (retval)
6352 			return retval;
6353 	}
6354 
6355 	/* Ensure that the appropriate bits are set in LPI_CTRL
6356 	 * for EEE in Sx
6357 	 */
6358 	if ((hw->phy.type >= e1000_phy_i217) &&
6359 	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6360 		u16 lpi_ctrl = 0;
6361 
6362 		retval = hw->phy.ops.acquire(hw);
6363 		if (!retval) {
6364 			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6365 						 &lpi_ctrl);
6366 			if (!retval) {
6367 				if (adapter->eee_advert &
6368 				    hw->dev_spec.ich8lan.eee_lp_ability &
6369 				    I82579_EEE_100_SUPPORTED)
6370 					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6371 				if (adapter->eee_advert &
6372 				    hw->dev_spec.ich8lan.eee_lp_ability &
6373 				    I82579_EEE_1000_SUPPORTED)
6374 					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6375 
6376 				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6377 							 lpi_ctrl);
6378 			}
6379 		}
6380 		hw->phy.ops.release(hw);
6381 	}
6382 
6383 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6384 	 * would have already happened in close and is redundant.
6385 	 */
6386 	e1000e_release_hw_control(adapter);
6387 
6388 	pci_clear_master(pdev);
6389 
6390 	/* The pci-e switch on some quad port adapters will report a
6391 	 * correctable error when the MAC transitions from D0 to D3.  To
6392 	 * prevent this we need to mask off the correctable errors on the
6393 	 * downstream port of the pci-e switch.
6394 	 *
6395 	 * We don't have the associated upstream bridge while assigning
6396 	 * the PCI device into guest. For example, the KVM on power is
6397 	 * one of the cases.
6398 	 */
6399 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6400 		struct pci_dev *us_dev = pdev->bus->self;
6401 		u16 devctl;
6402 
6403 		if (!us_dev)
6404 			return 0;
6405 
6406 		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6407 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6408 					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6409 
6410 		pci_save_state(pdev);
6411 		pci_prepare_to_sleep(pdev);
6412 
6413 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6414 	}
6415 
6416 	return 0;
6417 }
6418 
6419 /**
6420  * __e1000e_disable_aspm - Disable ASPM states
6421  * @pdev: pointer to PCI device struct
6422  * @state: bit-mask of ASPM states to disable
6423  * @locked: indication if this context holds pci_bus_sem locked.
6424  *
6425  * Some devices *must* have certain ASPM states disabled per hardware errata.
6426  **/
__e1000e_disable_aspm(struct pci_dev * pdev,u16 state,int locked)6427 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6428 {
6429 	struct pci_dev *parent = pdev->bus->self;
6430 	u16 aspm_dis_mask = 0;
6431 	u16 pdev_aspmc, parent_aspmc;
6432 
6433 	switch (state) {
6434 	case PCIE_LINK_STATE_L0S:
6435 	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6436 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6437 		/* fall-through - can't have L1 without L0s */
6438 	case PCIE_LINK_STATE_L1:
6439 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6440 		break;
6441 	default:
6442 		return;
6443 	}
6444 
6445 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6446 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6447 
6448 	if (parent) {
6449 		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6450 					  &parent_aspmc);
6451 		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6452 	}
6453 
6454 	/* Nothing to do if the ASPM states to be disabled already are */
6455 	if (!(pdev_aspmc & aspm_dis_mask) &&
6456 	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6457 		return;
6458 
6459 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6460 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6461 		 "L0s" : "",
6462 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6463 		 "L1" : "");
6464 
6465 #ifdef CONFIG_PCIEASPM
6466 	if (locked)
6467 		pci_disable_link_state_locked(pdev, state);
6468 	else
6469 		pci_disable_link_state(pdev, state);
6470 
6471 	/* Double-check ASPM control.  If not disabled by the above, the
6472 	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6473 	 * not enabled); override by writing PCI config space directly.
6474 	 */
6475 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6476 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6477 
6478 	if (!(aspm_dis_mask & pdev_aspmc))
6479 		return;
6480 #endif
6481 
6482 	/* Both device and parent should have the same ASPM setting.
6483 	 * Disable ASPM in downstream component first and then upstream.
6484 	 */
6485 	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6486 
6487 	if (parent)
6488 		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6489 					   aspm_dis_mask);
6490 }
6491 
6492 /**
6493  * e1000e_disable_aspm - Disable ASPM states.
6494  * @pdev: pointer to PCI device struct
6495  * @state: bit-mask of ASPM states to disable
6496  *
6497  * This function acquires the pci_bus_sem!
6498  * Some devices *must* have certain ASPM states disabled per hardware errata.
6499  **/
e1000e_disable_aspm(struct pci_dev * pdev,u16 state)6500 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6501 {
6502 	__e1000e_disable_aspm(pdev, state, 0);
6503 }
6504 
6505 /**
6506  * e1000e_disable_aspm_locked   Disable ASPM states.
6507  * @pdev: pointer to PCI device struct
6508  * @state: bit-mask of ASPM states to disable
6509  *
6510  * This function must be called with pci_bus_sem acquired!
6511  * Some devices *must* have certain ASPM states disabled per hardware errata.
6512  **/
e1000e_disable_aspm_locked(struct pci_dev * pdev,u16 state)6513 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6514 {
6515 	__e1000e_disable_aspm(pdev, state, 1);
6516 }
6517 
6518 #ifdef CONFIG_PM
__e1000_resume(struct pci_dev * pdev)6519 static int __e1000_resume(struct pci_dev *pdev)
6520 {
6521 	struct net_device *netdev = pci_get_drvdata(pdev);
6522 	struct e1000_adapter *adapter = netdev_priv(netdev);
6523 	struct e1000_hw *hw = &adapter->hw;
6524 	u16 aspm_disable_flag = 0;
6525 
6526 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6527 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6528 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6529 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6530 	if (aspm_disable_flag)
6531 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6532 
6533 	pci_set_master(pdev);
6534 
6535 	if (hw->mac.type >= e1000_pch2lan)
6536 		e1000_resume_workarounds_pchlan(&adapter->hw);
6537 
6538 	e1000e_power_up_phy(adapter);
6539 
6540 	/* report the system wakeup cause from S3/S4 */
6541 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6542 		u16 phy_data;
6543 
6544 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6545 		if (phy_data) {
6546 			e_info("PHY Wakeup cause - %s\n",
6547 			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6548 			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6549 			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6550 			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6551 			       phy_data & E1000_WUS_LNKC ?
6552 			       "Link Status Change" : "other");
6553 		}
6554 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6555 	} else {
6556 		u32 wus = er32(WUS);
6557 
6558 		if (wus) {
6559 			e_info("MAC Wakeup cause - %s\n",
6560 			       wus & E1000_WUS_EX ? "Unicast Packet" :
6561 			       wus & E1000_WUS_MC ? "Multicast Packet" :
6562 			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6563 			       wus & E1000_WUS_MAG ? "Magic Packet" :
6564 			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6565 			       "other");
6566 		}
6567 		ew32(WUS, ~0);
6568 	}
6569 
6570 	e1000e_reset(adapter);
6571 
6572 	e1000_init_manageability_pt(adapter);
6573 
6574 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6575 	 * is up.  For all other cases, let the f/w know that the h/w is now
6576 	 * under the control of the driver.
6577 	 */
6578 	if (!(adapter->flags & FLAG_HAS_AMT))
6579 		e1000e_get_hw_control(adapter);
6580 
6581 	return 0;
6582 }
6583 
6584 #ifdef CONFIG_PM_SLEEP
e1000e_pm_thaw(struct device * dev)6585 static int e1000e_pm_thaw(struct device *dev)
6586 {
6587 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6588 	struct e1000_adapter *adapter = netdev_priv(netdev);
6589 
6590 	e1000e_set_interrupt_capability(adapter);
6591 	if (netif_running(netdev)) {
6592 		u32 err = e1000_request_irq(adapter);
6593 
6594 		if (err)
6595 			return err;
6596 
6597 		e1000e_up(adapter);
6598 	}
6599 
6600 	netif_device_attach(netdev);
6601 
6602 	return 0;
6603 }
6604 
e1000e_pm_suspend(struct device * dev)6605 static int e1000e_pm_suspend(struct device *dev)
6606 {
6607 	struct pci_dev *pdev = to_pci_dev(dev);
6608 	int rc;
6609 
6610 	e1000e_flush_lpic(pdev);
6611 
6612 	e1000e_pm_freeze(dev);
6613 
6614 	rc = __e1000_shutdown(pdev, false);
6615 	if (rc)
6616 		e1000e_pm_thaw(dev);
6617 
6618 	return rc;
6619 }
6620 
e1000e_pm_resume(struct device * dev)6621 static int e1000e_pm_resume(struct device *dev)
6622 {
6623 	struct pci_dev *pdev = to_pci_dev(dev);
6624 	int rc;
6625 
6626 	rc = __e1000_resume(pdev);
6627 	if (rc)
6628 		return rc;
6629 
6630 	return e1000e_pm_thaw(dev);
6631 }
6632 #endif /* CONFIG_PM_SLEEP */
6633 
e1000e_pm_runtime_idle(struct device * dev)6634 static int e1000e_pm_runtime_idle(struct device *dev)
6635 {
6636 	struct pci_dev *pdev = to_pci_dev(dev);
6637 	struct net_device *netdev = pci_get_drvdata(pdev);
6638 	struct e1000_adapter *adapter = netdev_priv(netdev);
6639 	u16 eee_lp;
6640 
6641 	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6642 
6643 	if (!e1000e_has_link(adapter)) {
6644 		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6645 		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6646 	}
6647 
6648 	return -EBUSY;
6649 }
6650 
e1000e_pm_runtime_resume(struct device * dev)6651 static int e1000e_pm_runtime_resume(struct device *dev)
6652 {
6653 	struct pci_dev *pdev = to_pci_dev(dev);
6654 	struct net_device *netdev = pci_get_drvdata(pdev);
6655 	struct e1000_adapter *adapter = netdev_priv(netdev);
6656 	int rc;
6657 
6658 	rc = __e1000_resume(pdev);
6659 	if (rc)
6660 		return rc;
6661 
6662 	if (netdev->flags & IFF_UP)
6663 		rc = e1000e_up(adapter);
6664 
6665 	return rc;
6666 }
6667 
e1000e_pm_runtime_suspend(struct device * dev)6668 static int e1000e_pm_runtime_suspend(struct device *dev)
6669 {
6670 	struct pci_dev *pdev = to_pci_dev(dev);
6671 	struct net_device *netdev = pci_get_drvdata(pdev);
6672 	struct e1000_adapter *adapter = netdev_priv(netdev);
6673 
6674 	if (netdev->flags & IFF_UP) {
6675 		int count = E1000_CHECK_RESET_COUNT;
6676 
6677 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6678 			usleep_range(10000, 20000);
6679 
6680 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6681 
6682 		/* Down the device without resetting the hardware */
6683 		e1000e_down(adapter, false);
6684 	}
6685 
6686 	if (__e1000_shutdown(pdev, true)) {
6687 		e1000e_pm_runtime_resume(dev);
6688 		return -EBUSY;
6689 	}
6690 
6691 	return 0;
6692 }
6693 #endif /* CONFIG_PM */
6694 
e1000_shutdown(struct pci_dev * pdev)6695 static void e1000_shutdown(struct pci_dev *pdev)
6696 {
6697 	e1000e_flush_lpic(pdev);
6698 
6699 	e1000e_pm_freeze(&pdev->dev);
6700 
6701 	__e1000_shutdown(pdev, false);
6702 }
6703 
6704 #ifdef CONFIG_NET_POLL_CONTROLLER
6705 
e1000_intr_msix(int __always_unused irq,void * data)6706 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6707 {
6708 	struct net_device *netdev = data;
6709 	struct e1000_adapter *adapter = netdev_priv(netdev);
6710 
6711 	if (adapter->msix_entries) {
6712 		int vector, msix_irq;
6713 
6714 		vector = 0;
6715 		msix_irq = adapter->msix_entries[vector].vector;
6716 		disable_irq(msix_irq);
6717 		e1000_intr_msix_rx(msix_irq, netdev);
6718 		enable_irq(msix_irq);
6719 
6720 		vector++;
6721 		msix_irq = adapter->msix_entries[vector].vector;
6722 		disable_irq(msix_irq);
6723 		e1000_intr_msix_tx(msix_irq, netdev);
6724 		enable_irq(msix_irq);
6725 
6726 		vector++;
6727 		msix_irq = adapter->msix_entries[vector].vector;
6728 		disable_irq(msix_irq);
6729 		e1000_msix_other(msix_irq, netdev);
6730 		enable_irq(msix_irq);
6731 	}
6732 
6733 	return IRQ_HANDLED;
6734 }
6735 
6736 /**
6737  * e1000_netpoll
6738  * @netdev: network interface device structure
6739  *
6740  * Polling 'interrupt' - used by things like netconsole to send skbs
6741  * without having to re-enable interrupts. It's not called while
6742  * the interrupt routine is executing.
6743  */
e1000_netpoll(struct net_device * netdev)6744 static void e1000_netpoll(struct net_device *netdev)
6745 {
6746 	struct e1000_adapter *adapter = netdev_priv(netdev);
6747 
6748 	switch (adapter->int_mode) {
6749 	case E1000E_INT_MODE_MSIX:
6750 		e1000_intr_msix(adapter->pdev->irq, netdev);
6751 		break;
6752 	case E1000E_INT_MODE_MSI:
6753 		disable_irq(adapter->pdev->irq);
6754 		e1000_intr_msi(adapter->pdev->irq, netdev);
6755 		enable_irq(adapter->pdev->irq);
6756 		break;
6757 	default:		/* E1000E_INT_MODE_LEGACY */
6758 		disable_irq(adapter->pdev->irq);
6759 		e1000_intr(adapter->pdev->irq, netdev);
6760 		enable_irq(adapter->pdev->irq);
6761 		break;
6762 	}
6763 }
6764 #endif
6765 
6766 /**
6767  * e1000_io_error_detected - called when PCI error is detected
6768  * @pdev: Pointer to PCI device
6769  * @state: The current pci connection state
6770  *
6771  * This function is called after a PCI bus error affecting
6772  * this device has been detected.
6773  */
e1000_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)6774 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6775 						pci_channel_state_t state)
6776 {
6777 	struct net_device *netdev = pci_get_drvdata(pdev);
6778 	struct e1000_adapter *adapter = netdev_priv(netdev);
6779 
6780 	netif_device_detach(netdev);
6781 
6782 	if (state == pci_channel_io_perm_failure)
6783 		return PCI_ERS_RESULT_DISCONNECT;
6784 
6785 	if (netif_running(netdev))
6786 		e1000e_down(adapter, true);
6787 	pci_disable_device(pdev);
6788 
6789 	/* Request a slot slot reset. */
6790 	return PCI_ERS_RESULT_NEED_RESET;
6791 }
6792 
6793 /**
6794  * e1000_io_slot_reset - called after the pci bus has been reset.
6795  * @pdev: Pointer to PCI device
6796  *
6797  * Restart the card from scratch, as if from a cold-boot. Implementation
6798  * resembles the first-half of the e1000e_pm_resume routine.
6799  */
e1000_io_slot_reset(struct pci_dev * pdev)6800 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6801 {
6802 	struct net_device *netdev = pci_get_drvdata(pdev);
6803 	struct e1000_adapter *adapter = netdev_priv(netdev);
6804 	struct e1000_hw *hw = &adapter->hw;
6805 	u16 aspm_disable_flag = 0;
6806 	int err;
6807 	pci_ers_result_t result;
6808 
6809 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6810 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6811 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6812 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6813 	if (aspm_disable_flag)
6814 		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6815 
6816 	err = pci_enable_device_mem(pdev);
6817 	if (err) {
6818 		dev_err(&pdev->dev,
6819 			"Cannot re-enable PCI device after reset.\n");
6820 		result = PCI_ERS_RESULT_DISCONNECT;
6821 	} else {
6822 		pdev->state_saved = true;
6823 		pci_restore_state(pdev);
6824 		pci_set_master(pdev);
6825 
6826 		pci_enable_wake(pdev, PCI_D3hot, 0);
6827 		pci_enable_wake(pdev, PCI_D3cold, 0);
6828 
6829 		e1000e_reset(adapter);
6830 		ew32(WUS, ~0);
6831 		result = PCI_ERS_RESULT_RECOVERED;
6832 	}
6833 
6834 	pci_cleanup_aer_uncorrect_error_status(pdev);
6835 
6836 	return result;
6837 }
6838 
6839 /**
6840  * e1000_io_resume - called when traffic can start flowing again.
6841  * @pdev: Pointer to PCI device
6842  *
6843  * This callback is called when the error recovery driver tells us that
6844  * its OK to resume normal operation. Implementation resembles the
6845  * second-half of the e1000e_pm_resume routine.
6846  */
e1000_io_resume(struct pci_dev * pdev)6847 static void e1000_io_resume(struct pci_dev *pdev)
6848 {
6849 	struct net_device *netdev = pci_get_drvdata(pdev);
6850 	struct e1000_adapter *adapter = netdev_priv(netdev);
6851 
6852 	e1000_init_manageability_pt(adapter);
6853 
6854 	if (netif_running(netdev)) {
6855 		if (e1000e_up(adapter)) {
6856 			dev_err(&pdev->dev,
6857 				"can't bring device back up after reset\n");
6858 			return;
6859 		}
6860 	}
6861 
6862 	netif_device_attach(netdev);
6863 
6864 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6865 	 * is up.  For all other cases, let the f/w know that the h/w is now
6866 	 * under the control of the driver.
6867 	 */
6868 	if (!(adapter->flags & FLAG_HAS_AMT))
6869 		e1000e_get_hw_control(adapter);
6870 }
6871 
e1000_print_device_info(struct e1000_adapter * adapter)6872 static void e1000_print_device_info(struct e1000_adapter *adapter)
6873 {
6874 	struct e1000_hw *hw = &adapter->hw;
6875 	struct net_device *netdev = adapter->netdev;
6876 	u32 ret_val;
6877 	u8 pba_str[E1000_PBANUM_LENGTH];
6878 
6879 	/* print bus type/speed/width info */
6880 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6881 	       /* bus width */
6882 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6883 		"Width x1"),
6884 	       /* MAC address */
6885 	       netdev->dev_addr);
6886 	e_info("Intel(R) PRO/%s Network Connection\n",
6887 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6888 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
6889 						E1000_PBANUM_LENGTH);
6890 	if (ret_val)
6891 		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6892 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6893 	       hw->mac.type, hw->phy.type, pba_str);
6894 }
6895 
e1000_eeprom_checks(struct e1000_adapter * adapter)6896 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6897 {
6898 	struct e1000_hw *hw = &adapter->hw;
6899 	int ret_val;
6900 	u16 buf = 0;
6901 
6902 	if (hw->mac.type != e1000_82573)
6903 		return;
6904 
6905 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6906 	le16_to_cpus(&buf);
6907 	if (!ret_val && (!(buf & (1 << 0)))) {
6908 		/* Deep Smart Power Down (DSPD) */
6909 		dev_warn(&adapter->pdev->dev,
6910 			 "Warning: detected DSPD enabled in EEPROM\n");
6911 	}
6912 }
6913 
e1000_fix_features(struct net_device * netdev,netdev_features_t features)6914 static netdev_features_t e1000_fix_features(struct net_device *netdev,
6915 					    netdev_features_t features)
6916 {
6917 	struct e1000_adapter *adapter = netdev_priv(netdev);
6918 	struct e1000_hw *hw = &adapter->hw;
6919 
6920 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6921 	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6922 		features &= ~NETIF_F_RXFCS;
6923 
6924 	return features;
6925 }
6926 
e1000_set_features(struct net_device * netdev,netdev_features_t features)6927 static int e1000_set_features(struct net_device *netdev,
6928 			      netdev_features_t features)
6929 {
6930 	struct e1000_adapter *adapter = netdev_priv(netdev);
6931 	netdev_features_t changed = features ^ netdev->features;
6932 
6933 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6934 		adapter->flags |= FLAG_TSO_FORCE;
6935 
6936 	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6937 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6938 			 NETIF_F_RXALL)))
6939 		return 0;
6940 
6941 	if (changed & NETIF_F_RXFCS) {
6942 		if (features & NETIF_F_RXFCS) {
6943 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6944 		} else {
6945 			/* We need to take it back to defaults, which might mean
6946 			 * stripping is still disabled at the adapter level.
6947 			 */
6948 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6949 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
6950 			else
6951 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6952 		}
6953 	}
6954 
6955 	netdev->features = features;
6956 
6957 	if (netif_running(netdev))
6958 		e1000e_reinit_locked(adapter);
6959 	else
6960 		e1000e_reset(adapter);
6961 
6962 	return 0;
6963 }
6964 
6965 static const struct net_device_ops e1000e_netdev_ops = {
6966 	.ndo_open		= e1000_open,
6967 	.ndo_stop		= e1000_close,
6968 	.ndo_start_xmit		= e1000_xmit_frame,
6969 	.ndo_get_stats64	= e1000e_get_stats64,
6970 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6971 	.ndo_set_mac_address	= e1000_set_mac,
6972 	.ndo_change_mtu		= e1000_change_mtu,
6973 	.ndo_do_ioctl		= e1000_ioctl,
6974 	.ndo_tx_timeout		= e1000_tx_timeout,
6975 	.ndo_validate_addr	= eth_validate_addr,
6976 
6977 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
6978 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
6979 #ifdef CONFIG_NET_POLL_CONTROLLER
6980 	.ndo_poll_controller	= e1000_netpoll,
6981 #endif
6982 	.ndo_set_features = e1000_set_features,
6983 	.ndo_fix_features = e1000_fix_features,
6984 	.ndo_features_check	= passthru_features_check,
6985 };
6986 
6987 /**
6988  * e1000_probe - Device Initialization Routine
6989  * @pdev: PCI device information struct
6990  * @ent: entry in e1000_pci_tbl
6991  *
6992  * Returns 0 on success, negative on failure
6993  *
6994  * e1000_probe initializes an adapter identified by a pci_dev structure.
6995  * The OS initialization, configuring of the adapter private structure,
6996  * and a hardware reset occur.
6997  **/
e1000_probe(struct pci_dev * pdev,const struct pci_device_id * ent)6998 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6999 {
7000 	struct net_device *netdev;
7001 	struct e1000_adapter *adapter;
7002 	struct e1000_hw *hw;
7003 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7004 	resource_size_t mmio_start, mmio_len;
7005 	resource_size_t flash_start, flash_len;
7006 	static int cards_found;
7007 	u16 aspm_disable_flag = 0;
7008 	int bars, i, err, pci_using_dac;
7009 	u16 eeprom_data = 0;
7010 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7011 	s32 rval = 0;
7012 
7013 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7014 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7015 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7016 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7017 	if (aspm_disable_flag)
7018 		e1000e_disable_aspm(pdev, aspm_disable_flag);
7019 
7020 	err = pci_enable_device_mem(pdev);
7021 	if (err)
7022 		return err;
7023 
7024 	pci_using_dac = 0;
7025 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7026 	if (!err) {
7027 		pci_using_dac = 1;
7028 	} else {
7029 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7030 		if (err) {
7031 			dev_err(&pdev->dev,
7032 				"No usable DMA configuration, aborting\n");
7033 			goto err_dma;
7034 		}
7035 	}
7036 
7037 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7038 	err = pci_request_selected_regions_exclusive(pdev, bars,
7039 						     e1000e_driver_name);
7040 	if (err)
7041 		goto err_pci_reg;
7042 
7043 	/* AER (Advanced Error Reporting) hooks */
7044 	pci_enable_pcie_error_reporting(pdev);
7045 
7046 	pci_set_master(pdev);
7047 	/* PCI config space info */
7048 	err = pci_save_state(pdev);
7049 	if (err)
7050 		goto err_alloc_etherdev;
7051 
7052 	err = -ENOMEM;
7053 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7054 	if (!netdev)
7055 		goto err_alloc_etherdev;
7056 
7057 	SET_NETDEV_DEV(netdev, &pdev->dev);
7058 
7059 	netdev->irq = pdev->irq;
7060 
7061 	pci_set_drvdata(pdev, netdev);
7062 	adapter = netdev_priv(netdev);
7063 	hw = &adapter->hw;
7064 	adapter->netdev = netdev;
7065 	adapter->pdev = pdev;
7066 	adapter->ei = ei;
7067 	adapter->pba = ei->pba;
7068 	adapter->flags = ei->flags;
7069 	adapter->flags2 = ei->flags2;
7070 	adapter->hw.adapter = adapter;
7071 	adapter->hw.mac.type = ei->mac;
7072 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7073 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7074 
7075 	mmio_start = pci_resource_start(pdev, 0);
7076 	mmio_len = pci_resource_len(pdev, 0);
7077 
7078 	err = -EIO;
7079 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7080 	if (!adapter->hw.hw_addr)
7081 		goto err_ioremap;
7082 
7083 	if ((adapter->flags & FLAG_HAS_FLASH) &&
7084 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7085 	    (hw->mac.type < e1000_pch_spt)) {
7086 		flash_start = pci_resource_start(pdev, 1);
7087 		flash_len = pci_resource_len(pdev, 1);
7088 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7089 		if (!adapter->hw.flash_address)
7090 			goto err_flashmap;
7091 	}
7092 
7093 	/* Set default EEE advertisement */
7094 	if (adapter->flags2 & FLAG2_HAS_EEE)
7095 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7096 
7097 	/* construct the net_device struct */
7098 	netdev->netdev_ops = &e1000e_netdev_ops;
7099 	e1000e_set_ethtool_ops(netdev);
7100 	netdev->watchdog_timeo = 5 * HZ;
7101 	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7102 	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7103 
7104 	netdev->mem_start = mmio_start;
7105 	netdev->mem_end = mmio_start + mmio_len;
7106 
7107 	adapter->bd_number = cards_found++;
7108 
7109 	e1000e_check_options(adapter);
7110 
7111 	/* setup adapter struct */
7112 	err = e1000_sw_init(adapter);
7113 	if (err)
7114 		goto err_sw_init;
7115 
7116 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7117 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7118 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7119 
7120 	err = ei->get_variants(adapter);
7121 	if (err)
7122 		goto err_hw_init;
7123 
7124 	if ((adapter->flags & FLAG_IS_ICH) &&
7125 	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7126 	    (hw->mac.type < e1000_pch_spt))
7127 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7128 
7129 	hw->mac.ops.get_bus_info(&adapter->hw);
7130 
7131 	adapter->hw.phy.autoneg_wait_to_complete = 0;
7132 
7133 	/* Copper options */
7134 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7135 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7136 		adapter->hw.phy.disable_polarity_correction = 0;
7137 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7138 	}
7139 
7140 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7141 		dev_info(&pdev->dev,
7142 			 "PHY reset is blocked due to SOL/IDER session.\n");
7143 
7144 	/* Set initial default active device features */
7145 	netdev->features = (NETIF_F_SG |
7146 			    NETIF_F_HW_VLAN_CTAG_RX |
7147 			    NETIF_F_HW_VLAN_CTAG_TX |
7148 			    NETIF_F_TSO |
7149 			    NETIF_F_TSO6 |
7150 			    NETIF_F_RXHASH |
7151 			    NETIF_F_RXCSUM |
7152 			    NETIF_F_HW_CSUM);
7153 
7154 	/* Set user-changeable features (subset of all device features) */
7155 	netdev->hw_features = netdev->features;
7156 	netdev->hw_features |= NETIF_F_RXFCS;
7157 	netdev->priv_flags |= IFF_SUPP_NOFCS;
7158 	netdev->hw_features |= NETIF_F_RXALL;
7159 
7160 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7161 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7162 
7163 	netdev->vlan_features |= (NETIF_F_SG |
7164 				  NETIF_F_TSO |
7165 				  NETIF_F_TSO6 |
7166 				  NETIF_F_HW_CSUM);
7167 
7168 	netdev->priv_flags |= IFF_UNICAST_FLT;
7169 
7170 	if (pci_using_dac) {
7171 		netdev->features |= NETIF_F_HIGHDMA;
7172 		netdev->vlan_features |= NETIF_F_HIGHDMA;
7173 	}
7174 
7175 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7176 		adapter->flags |= FLAG_MNG_PT_ENABLED;
7177 
7178 	/* before reading the NVM, reset the controller to
7179 	 * put the device in a known good starting state
7180 	 */
7181 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7182 
7183 	/* systems with ASPM and others may see the checksum fail on the first
7184 	 * attempt. Let's give it a few tries
7185 	 */
7186 	for (i = 0;; i++) {
7187 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7188 			break;
7189 		if (i == 2) {
7190 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7191 			err = -EIO;
7192 			goto err_eeprom;
7193 		}
7194 	}
7195 
7196 	e1000_eeprom_checks(adapter);
7197 
7198 	/* copy the MAC address */
7199 	if (e1000e_read_mac_addr(&adapter->hw))
7200 		dev_err(&pdev->dev,
7201 			"NVM Read Error while reading MAC address\n");
7202 
7203 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7204 
7205 	if (!is_valid_ether_addr(netdev->dev_addr)) {
7206 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7207 			netdev->dev_addr);
7208 		err = -EIO;
7209 		goto err_eeprom;
7210 	}
7211 
7212 	init_timer(&adapter->watchdog_timer);
7213 	adapter->watchdog_timer.function = e1000_watchdog;
7214 	adapter->watchdog_timer.data = (unsigned long)adapter;
7215 
7216 	init_timer(&adapter->phy_info_timer);
7217 	adapter->phy_info_timer.function = e1000_update_phy_info;
7218 	adapter->phy_info_timer.data = (unsigned long)adapter;
7219 
7220 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7221 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7222 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7223 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7224 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7225 
7226 	/* Initialize link parameters. User can change them with ethtool */
7227 	adapter->hw.mac.autoneg = 1;
7228 	adapter->fc_autoneg = true;
7229 	adapter->hw.fc.requested_mode = e1000_fc_default;
7230 	adapter->hw.fc.current_mode = e1000_fc_default;
7231 	adapter->hw.phy.autoneg_advertised = 0x2f;
7232 
7233 	/* Initial Wake on LAN setting - If APM wake is enabled in
7234 	 * the EEPROM, enable the ACPI Magic Packet filter
7235 	 */
7236 	if (adapter->flags & FLAG_APME_IN_WUC) {
7237 		/* APME bit in EEPROM is mapped to WUC.APME */
7238 		eeprom_data = er32(WUC);
7239 		eeprom_apme_mask = E1000_WUC_APME;
7240 		if ((hw->mac.type > e1000_ich10lan) &&
7241 		    (eeprom_data & E1000_WUC_PHY_WAKE))
7242 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7243 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7244 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7245 		    (adapter->hw.bus.func == 1))
7246 			rval = e1000_read_nvm(&adapter->hw,
7247 					      NVM_INIT_CONTROL3_PORT_B,
7248 					      1, &eeprom_data);
7249 		else
7250 			rval = e1000_read_nvm(&adapter->hw,
7251 					      NVM_INIT_CONTROL3_PORT_A,
7252 					      1, &eeprom_data);
7253 	}
7254 
7255 	/* fetch WoL from EEPROM */
7256 	if (rval)
7257 		e_dbg("NVM read error getting WoL initial values: %d\n", rval);
7258 	else if (eeprom_data & eeprom_apme_mask)
7259 		adapter->eeprom_wol |= E1000_WUFC_MAG;
7260 
7261 	/* now that we have the eeprom settings, apply the special cases
7262 	 * where the eeprom may be wrong or the board simply won't support
7263 	 * wake on lan on a particular port
7264 	 */
7265 	if (!(adapter->flags & FLAG_HAS_WOL))
7266 		adapter->eeprom_wol = 0;
7267 
7268 	/* initialize the wol settings based on the eeprom settings */
7269 	adapter->wol = adapter->eeprom_wol;
7270 
7271 	/* make sure adapter isn't asleep if manageability is enabled */
7272 	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7273 	    (hw->mac.ops.check_mng_mode(hw)))
7274 		device_wakeup_enable(&pdev->dev);
7275 
7276 	/* save off EEPROM version number */
7277 	rval = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7278 
7279 	if (rval) {
7280 		e_dbg("NVM read error getting EEPROM version: %d\n", rval);
7281 		adapter->eeprom_vers = 0;
7282 	}
7283 
7284 	/* reset the hardware with the new settings */
7285 	e1000e_reset(adapter);
7286 
7287 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7288 	 * is up.  For all other cases, let the f/w know that the h/w is now
7289 	 * under the control of the driver.
7290 	 */
7291 	if (!(adapter->flags & FLAG_HAS_AMT))
7292 		e1000e_get_hw_control(adapter);
7293 
7294 	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7295 	err = register_netdev(netdev);
7296 	if (err)
7297 		goto err_register;
7298 
7299 	/* carrier off reporting is important to ethtool even BEFORE open */
7300 	netif_carrier_off(netdev);
7301 
7302 	/* init PTP hardware clock */
7303 	e1000e_ptp_init(adapter);
7304 
7305 	e1000_print_device_info(adapter);
7306 
7307 	if (pci_dev_run_wake(pdev))
7308 		pm_runtime_put_noidle(&pdev->dev);
7309 
7310 	return 0;
7311 
7312 err_register:
7313 	if (!(adapter->flags & FLAG_HAS_AMT))
7314 		e1000e_release_hw_control(adapter);
7315 err_eeprom:
7316 	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7317 		e1000_phy_hw_reset(&adapter->hw);
7318 err_hw_init:
7319 	kfree(adapter->tx_ring);
7320 	kfree(adapter->rx_ring);
7321 err_sw_init:
7322 	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7323 		iounmap(adapter->hw.flash_address);
7324 	e1000e_reset_interrupt_capability(adapter);
7325 err_flashmap:
7326 	iounmap(adapter->hw.hw_addr);
7327 err_ioremap:
7328 	free_netdev(netdev);
7329 err_alloc_etherdev:
7330 	pci_release_selected_regions(pdev,
7331 				     pci_select_bars(pdev, IORESOURCE_MEM));
7332 err_pci_reg:
7333 err_dma:
7334 	pci_disable_device(pdev);
7335 	return err;
7336 }
7337 
7338 /**
7339  * e1000_remove - Device Removal Routine
7340  * @pdev: PCI device information struct
7341  *
7342  * e1000_remove is called by the PCI subsystem to alert the driver
7343  * that it should release a PCI device.  The could be caused by a
7344  * Hot-Plug event, or because the driver is going to be removed from
7345  * memory.
7346  **/
e1000_remove(struct pci_dev * pdev)7347 static void e1000_remove(struct pci_dev *pdev)
7348 {
7349 	struct net_device *netdev = pci_get_drvdata(pdev);
7350 	struct e1000_adapter *adapter = netdev_priv(netdev);
7351 	bool down = test_bit(__E1000_DOWN, &adapter->state);
7352 
7353 	e1000e_ptp_remove(adapter);
7354 
7355 	/* The timers may be rescheduled, so explicitly disable them
7356 	 * from being rescheduled.
7357 	 */
7358 	if (!down)
7359 		set_bit(__E1000_DOWN, &adapter->state);
7360 	del_timer_sync(&adapter->watchdog_timer);
7361 	del_timer_sync(&adapter->phy_info_timer);
7362 
7363 	cancel_work_sync(&adapter->reset_task);
7364 	cancel_work_sync(&adapter->watchdog_task);
7365 	cancel_work_sync(&adapter->downshift_task);
7366 	cancel_work_sync(&adapter->update_phy_task);
7367 	cancel_work_sync(&adapter->print_hang_task);
7368 
7369 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7370 		cancel_work_sync(&adapter->tx_hwtstamp_work);
7371 		if (adapter->tx_hwtstamp_skb) {
7372 			dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
7373 			adapter->tx_hwtstamp_skb = NULL;
7374 		}
7375 	}
7376 
7377 	/* Don't lie to e1000_close() down the road. */
7378 	if (!down)
7379 		clear_bit(__E1000_DOWN, &adapter->state);
7380 	unregister_netdev(netdev);
7381 
7382 	if (pci_dev_run_wake(pdev))
7383 		pm_runtime_get_noresume(&pdev->dev);
7384 
7385 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7386 	 * would have already happened in close and is redundant.
7387 	 */
7388 	e1000e_release_hw_control(adapter);
7389 
7390 	e1000e_reset_interrupt_capability(adapter);
7391 	kfree(adapter->tx_ring);
7392 	kfree(adapter->rx_ring);
7393 
7394 	iounmap(adapter->hw.hw_addr);
7395 	if ((adapter->hw.flash_address) &&
7396 	    (adapter->hw.mac.type < e1000_pch_spt))
7397 		iounmap(adapter->hw.flash_address);
7398 	pci_release_selected_regions(pdev,
7399 				     pci_select_bars(pdev, IORESOURCE_MEM));
7400 
7401 	free_netdev(netdev);
7402 
7403 	/* AER disable */
7404 	pci_disable_pcie_error_reporting(pdev);
7405 
7406 	pci_disable_device(pdev);
7407 }
7408 
7409 /* PCI Error Recovery (ERS) */
7410 static const struct pci_error_handlers e1000_err_handler = {
7411 	.error_detected = e1000_io_error_detected,
7412 	.slot_reset = e1000_io_slot_reset,
7413 	.resume = e1000_io_resume,
7414 };
7415 
7416 static const struct pci_device_id e1000_pci_tbl[] = {
7417 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7418 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7419 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7420 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7421 	  board_82571 },
7422 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7423 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7424 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7425 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7426 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7427 
7428 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7429 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7430 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7431 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7432 
7433 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7434 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7435 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7436 
7437 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7438 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7439 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7440 
7441 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7442 	  board_80003es2lan },
7443 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7444 	  board_80003es2lan },
7445 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7446 	  board_80003es2lan },
7447 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7448 	  board_80003es2lan },
7449 
7450 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7451 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7452 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7453 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7454 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7455 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7456 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7457 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7458 
7459 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7460 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7461 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7462 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7463 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7464 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7465 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7466 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7467 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7468 
7469 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7470 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7471 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7472 
7473 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7474 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7475 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7476 
7477 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7478 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7479 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7480 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7481 
7482 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7483 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7484 
7485 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7486 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7487 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7488 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7489 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7490 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7491 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7492 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7493 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7494 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7495 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7496 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7497 
7498 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7499 };
7500 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7501 
7502 static const struct dev_pm_ops e1000_pm_ops = {
7503 #ifdef CONFIG_PM_SLEEP
7504 	.suspend	= e1000e_pm_suspend,
7505 	.resume		= e1000e_pm_resume,
7506 	.freeze		= e1000e_pm_freeze,
7507 	.thaw		= e1000e_pm_thaw,
7508 	.poweroff	= e1000e_pm_suspend,
7509 	.restore	= e1000e_pm_resume,
7510 #endif
7511 	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7512 			   e1000e_pm_runtime_idle)
7513 };
7514 
7515 /* PCI Device API Driver */
7516 static struct pci_driver e1000_driver = {
7517 	.name     = e1000e_driver_name,
7518 	.id_table = e1000_pci_tbl,
7519 	.probe    = e1000_probe,
7520 	.remove   = e1000_remove,
7521 	.driver   = {
7522 		.pm = &e1000_pm_ops,
7523 	},
7524 	.shutdown = e1000_shutdown,
7525 	.err_handler = &e1000_err_handler
7526 };
7527 
7528 /**
7529  * e1000_init_module - Driver Registration Routine
7530  *
7531  * e1000_init_module is the first routine called when the driver is
7532  * loaded. All it does is register with the PCI subsystem.
7533  **/
e1000_init_module(void)7534 static int __init e1000_init_module(void)
7535 {
7536 	int ret;
7537 
7538 	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7539 		e1000e_driver_version);
7540 	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7541 	ret = pci_register_driver(&e1000_driver);
7542 
7543 	return ret;
7544 }
7545 module_init(e1000_init_module);
7546 
7547 /**
7548  * e1000_exit_module - Driver Exit Cleanup Routine
7549  *
7550  * e1000_exit_module is called just before the driver is removed
7551  * from memory.
7552  **/
e1000_exit_module(void)7553 static void __exit e1000_exit_module(void)
7554 {
7555 	pci_unregister_driver(&e1000_driver);
7556 }
7557 module_exit(e1000_exit_module);
7558 
7559 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7560 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7561 MODULE_LICENSE("GPL");
7562 MODULE_VERSION(DRV_VERSION);
7563 
7564 /* netdev.c */
7565