• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18 
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/cleancache.h>
41 #include <asm/uaccess.h>
42 
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 
46 #include "ext4.h"
47 #include "ext4_extents.h"	/* Needed for trace points definition */
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
55 
56 static struct ext4_lazy_init *ext4_li_info;
57 static struct mutex ext4_li_mtx;
58 static int ext4_mballoc_ready;
59 static struct ratelimit_state ext4_mount_msg_ratelimit;
60 
61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
62 			     unsigned long journal_devnum);
63 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
64 static int ext4_commit_super(struct super_block *sb, int sync);
65 static void ext4_mark_recovery_complete(struct super_block *sb,
66 					struct ext4_super_block *es);
67 static void ext4_clear_journal_err(struct super_block *sb,
68 				   struct ext4_super_block *es);
69 static int ext4_sync_fs(struct super_block *sb, int wait);
70 static int ext4_remount(struct super_block *sb, int *flags, char *data);
71 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
72 static int ext4_unfreeze(struct super_block *sb);
73 static int ext4_freeze(struct super_block *sb);
74 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
75 		       const char *dev_name, void *data);
76 static inline int ext2_feature_set_ok(struct super_block *sb);
77 static inline int ext3_feature_set_ok(struct super_block *sb);
78 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
79 static void ext4_destroy_lazyinit_thread(void);
80 static void ext4_unregister_li_request(struct super_block *sb);
81 static void ext4_clear_request_list(void);
82 
83 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
84 static struct file_system_type ext2_fs_type = {
85 	.owner		= THIS_MODULE,
86 	.name		= "ext2",
87 	.mount		= ext4_mount,
88 	.kill_sb	= kill_block_super,
89 	.fs_flags	= FS_REQUIRES_DEV,
90 };
91 MODULE_ALIAS_FS("ext2");
92 MODULE_ALIAS("ext2");
93 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
94 #else
95 #define IS_EXT2_SB(sb) (0)
96 #endif
97 
98 
99 static struct file_system_type ext3_fs_type = {
100 	.owner		= THIS_MODULE,
101 	.name		= "ext3",
102 	.mount		= ext4_mount,
103 	.kill_sb	= kill_block_super,
104 	.fs_flags	= FS_REQUIRES_DEV,
105 };
106 MODULE_ALIAS_FS("ext3");
107 MODULE_ALIAS("ext3");
108 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
109 
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)110 static int ext4_verify_csum_type(struct super_block *sb,
111 				 struct ext4_super_block *es)
112 {
113 	if (!ext4_has_feature_metadata_csum(sb))
114 		return 1;
115 
116 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
117 }
118 
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)119 static __le32 ext4_superblock_csum(struct super_block *sb,
120 				   struct ext4_super_block *es)
121 {
122 	struct ext4_sb_info *sbi = EXT4_SB(sb);
123 	int offset = offsetof(struct ext4_super_block, s_checksum);
124 	__u32 csum;
125 
126 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
127 
128 	return cpu_to_le32(csum);
129 }
130 
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)131 static int ext4_superblock_csum_verify(struct super_block *sb,
132 				       struct ext4_super_block *es)
133 {
134 	if (!ext4_has_metadata_csum(sb))
135 		return 1;
136 
137 	return es->s_checksum == ext4_superblock_csum(sb, es);
138 }
139 
ext4_superblock_csum_set(struct super_block * sb)140 void ext4_superblock_csum_set(struct super_block *sb)
141 {
142 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
143 
144 	if (!ext4_has_metadata_csum(sb))
145 		return;
146 
147 	es->s_checksum = ext4_superblock_csum(sb, es);
148 }
149 
ext4_kvmalloc(size_t size,gfp_t flags)150 void *ext4_kvmalloc(size_t size, gfp_t flags)
151 {
152 	void *ret;
153 
154 	ret = kmalloc(size, flags | __GFP_NOWARN);
155 	if (!ret)
156 		ret = __vmalloc(size, flags, PAGE_KERNEL);
157 	return ret;
158 }
159 
ext4_kvzalloc(size_t size,gfp_t flags)160 void *ext4_kvzalloc(size_t size, gfp_t flags)
161 {
162 	void *ret;
163 
164 	ret = kzalloc(size, flags | __GFP_NOWARN);
165 	if (!ret)
166 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
167 	return ret;
168 }
169 
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)170 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
171 			       struct ext4_group_desc *bg)
172 {
173 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
174 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
175 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
176 }
177 
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)178 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
179 			       struct ext4_group_desc *bg)
180 {
181 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
182 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
183 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
184 }
185 
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)186 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
187 			      struct ext4_group_desc *bg)
188 {
189 	return le32_to_cpu(bg->bg_inode_table_lo) |
190 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
191 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
192 }
193 
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)194 __u32 ext4_free_group_clusters(struct super_block *sb,
195 			       struct ext4_group_desc *bg)
196 {
197 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
198 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
199 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
200 }
201 
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)202 __u32 ext4_free_inodes_count(struct super_block *sb,
203 			      struct ext4_group_desc *bg)
204 {
205 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
206 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
207 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
208 }
209 
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)210 __u32 ext4_used_dirs_count(struct super_block *sb,
211 			      struct ext4_group_desc *bg)
212 {
213 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
214 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
215 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
216 }
217 
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)218 __u32 ext4_itable_unused_count(struct super_block *sb,
219 			      struct ext4_group_desc *bg)
220 {
221 	return le16_to_cpu(bg->bg_itable_unused_lo) |
222 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
223 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
224 }
225 
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)226 void ext4_block_bitmap_set(struct super_block *sb,
227 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
228 {
229 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
230 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
231 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
232 }
233 
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)234 void ext4_inode_bitmap_set(struct super_block *sb,
235 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
236 {
237 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
238 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
239 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
240 }
241 
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)242 void ext4_inode_table_set(struct super_block *sb,
243 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
244 {
245 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
246 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
247 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
248 }
249 
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)250 void ext4_free_group_clusters_set(struct super_block *sb,
251 				  struct ext4_group_desc *bg, __u32 count)
252 {
253 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
254 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
255 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
256 }
257 
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)258 void ext4_free_inodes_set(struct super_block *sb,
259 			  struct ext4_group_desc *bg, __u32 count)
260 {
261 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
262 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
263 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
264 }
265 
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)266 void ext4_used_dirs_set(struct super_block *sb,
267 			  struct ext4_group_desc *bg, __u32 count)
268 {
269 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
270 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
271 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
272 }
273 
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)274 void ext4_itable_unused_set(struct super_block *sb,
275 			  struct ext4_group_desc *bg, __u32 count)
276 {
277 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
278 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
279 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
280 }
281 
282 
__save_error_info(struct super_block * sb,const char * func,unsigned int line)283 static void __save_error_info(struct super_block *sb, const char *func,
284 			    unsigned int line)
285 {
286 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
287 
288 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
289 	if (bdev_read_only(sb->s_bdev))
290 		return;
291 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
292 	es->s_last_error_time = cpu_to_le32(get_seconds());
293 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
294 	es->s_last_error_line = cpu_to_le32(line);
295 	if (!es->s_first_error_time) {
296 		es->s_first_error_time = es->s_last_error_time;
297 		strncpy(es->s_first_error_func, func,
298 			sizeof(es->s_first_error_func));
299 		es->s_first_error_line = cpu_to_le32(line);
300 		es->s_first_error_ino = es->s_last_error_ino;
301 		es->s_first_error_block = es->s_last_error_block;
302 	}
303 	/*
304 	 * Start the daily error reporting function if it hasn't been
305 	 * started already
306 	 */
307 	if (!es->s_error_count)
308 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
309 	le32_add_cpu(&es->s_error_count, 1);
310 }
311 
save_error_info(struct super_block * sb,const char * func,unsigned int line)312 static void save_error_info(struct super_block *sb, const char *func,
313 			    unsigned int line)
314 {
315 	__save_error_info(sb, func, line);
316 	if (!bdev_read_only(sb->s_bdev))
317 		ext4_commit_super(sb, 1);
318 }
319 
320 /*
321  * The del_gendisk() function uninitializes the disk-specific data
322  * structures, including the bdi structure, without telling anyone
323  * else.  Once this happens, any attempt to call mark_buffer_dirty()
324  * (for example, by ext4_commit_super), will cause a kernel OOPS.
325  * This is a kludge to prevent these oops until we can put in a proper
326  * hook in del_gendisk() to inform the VFS and file system layers.
327  */
block_device_ejected(struct super_block * sb)328 static int block_device_ejected(struct super_block *sb)
329 {
330 	struct inode *bd_inode = sb->s_bdev->bd_inode;
331 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
332 
333 	return bdi->dev == NULL;
334 }
335 
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)336 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
337 {
338 	struct super_block		*sb = journal->j_private;
339 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
340 	int				error = is_journal_aborted(journal);
341 	struct ext4_journal_cb_entry	*jce;
342 
343 	BUG_ON(txn->t_state == T_FINISHED);
344 	spin_lock(&sbi->s_md_lock);
345 	while (!list_empty(&txn->t_private_list)) {
346 		jce = list_entry(txn->t_private_list.next,
347 				 struct ext4_journal_cb_entry, jce_list);
348 		list_del_init(&jce->jce_list);
349 		spin_unlock(&sbi->s_md_lock);
350 		jce->jce_func(sb, jce, error);
351 		spin_lock(&sbi->s_md_lock);
352 	}
353 	spin_unlock(&sbi->s_md_lock);
354 }
355 
356 /* Deal with the reporting of failure conditions on a filesystem such as
357  * inconsistencies detected or read IO failures.
358  *
359  * On ext2, we can store the error state of the filesystem in the
360  * superblock.  That is not possible on ext4, because we may have other
361  * write ordering constraints on the superblock which prevent us from
362  * writing it out straight away; and given that the journal is about to
363  * be aborted, we can't rely on the current, or future, transactions to
364  * write out the superblock safely.
365  *
366  * We'll just use the jbd2_journal_abort() error code to record an error in
367  * the journal instead.  On recovery, the journal will complain about
368  * that error until we've noted it down and cleared it.
369  */
370 
ext4_handle_error(struct super_block * sb)371 static void ext4_handle_error(struct super_block *sb)
372 {
373 	if (sb->s_flags & MS_RDONLY)
374 		return;
375 
376 	if (!test_opt(sb, ERRORS_CONT)) {
377 		journal_t *journal = EXT4_SB(sb)->s_journal;
378 
379 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
380 		if (journal)
381 			jbd2_journal_abort(journal, -EIO);
382 	}
383 	if (test_opt(sb, ERRORS_RO)) {
384 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
385 		/*
386 		 * Make sure updated value of ->s_mount_flags will be visible
387 		 * before ->s_flags update
388 		 */
389 		smp_wmb();
390 		sb->s_flags |= MS_RDONLY;
391 	}
392 	if (test_opt(sb, ERRORS_PANIC)) {
393 		if (EXT4_SB(sb)->s_journal &&
394 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
395 			return;
396 		panic("EXT4-fs (device %s): panic forced after error\n",
397 			sb->s_id);
398 	}
399 }
400 
401 #define ext4_error_ratelimit(sb)					\
402 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
403 			     "EXT4-fs error")
404 
__ext4_error(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)405 void __ext4_error(struct super_block *sb, const char *function,
406 		  unsigned int line, const char *fmt, ...)
407 {
408 	struct va_format vaf;
409 	va_list args;
410 
411 	if (ext4_error_ratelimit(sb)) {
412 		va_start(args, fmt);
413 		vaf.fmt = fmt;
414 		vaf.va = &args;
415 		printk(KERN_CRIT
416 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
417 		       sb->s_id, function, line, current->comm, &vaf);
418 		va_end(args);
419 	}
420 	save_error_info(sb, function, line);
421 	ext4_handle_error(sb);
422 }
423 
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)424 void __ext4_error_inode(struct inode *inode, const char *function,
425 			unsigned int line, ext4_fsblk_t block,
426 			const char *fmt, ...)
427 {
428 	va_list args;
429 	struct va_format vaf;
430 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
431 
432 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
433 	es->s_last_error_block = cpu_to_le64(block);
434 	if (ext4_error_ratelimit(inode->i_sb)) {
435 		va_start(args, fmt);
436 		vaf.fmt = fmt;
437 		vaf.va = &args;
438 		if (block)
439 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
440 			       "inode #%lu: block %llu: comm %s: %pV\n",
441 			       inode->i_sb->s_id, function, line, inode->i_ino,
442 			       block, current->comm, &vaf);
443 		else
444 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
445 			       "inode #%lu: comm %s: %pV\n",
446 			       inode->i_sb->s_id, function, line, inode->i_ino,
447 			       current->comm, &vaf);
448 		va_end(args);
449 	}
450 	save_error_info(inode->i_sb, function, line);
451 	ext4_handle_error(inode->i_sb);
452 }
453 
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)454 void __ext4_error_file(struct file *file, const char *function,
455 		       unsigned int line, ext4_fsblk_t block,
456 		       const char *fmt, ...)
457 {
458 	va_list args;
459 	struct va_format vaf;
460 	struct ext4_super_block *es;
461 	struct inode *inode = file_inode(file);
462 	char pathname[80], *path;
463 
464 	es = EXT4_SB(inode->i_sb)->s_es;
465 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
466 	if (ext4_error_ratelimit(inode->i_sb)) {
467 		path = file_path(file, pathname, sizeof(pathname));
468 		if (IS_ERR(path))
469 			path = "(unknown)";
470 		va_start(args, fmt);
471 		vaf.fmt = fmt;
472 		vaf.va = &args;
473 		if (block)
474 			printk(KERN_CRIT
475 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
476 			       "block %llu: comm %s: path %s: %pV\n",
477 			       inode->i_sb->s_id, function, line, inode->i_ino,
478 			       block, current->comm, path, &vaf);
479 		else
480 			printk(KERN_CRIT
481 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
482 			       "comm %s: path %s: %pV\n",
483 			       inode->i_sb->s_id, function, line, inode->i_ino,
484 			       current->comm, path, &vaf);
485 		va_end(args);
486 	}
487 	save_error_info(inode->i_sb, function, line);
488 	ext4_handle_error(inode->i_sb);
489 }
490 
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])491 const char *ext4_decode_error(struct super_block *sb, int errno,
492 			      char nbuf[16])
493 {
494 	char *errstr = NULL;
495 
496 	switch (errno) {
497 	case -EFSCORRUPTED:
498 		errstr = "Corrupt filesystem";
499 		break;
500 	case -EFSBADCRC:
501 		errstr = "Filesystem failed CRC";
502 		break;
503 	case -EIO:
504 		errstr = "IO failure";
505 		break;
506 	case -ENOMEM:
507 		errstr = "Out of memory";
508 		break;
509 	case -EROFS:
510 		if (!sb || (EXT4_SB(sb)->s_journal &&
511 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
512 			errstr = "Journal has aborted";
513 		else
514 			errstr = "Readonly filesystem";
515 		break;
516 	default:
517 		/* If the caller passed in an extra buffer for unknown
518 		 * errors, textualise them now.  Else we just return
519 		 * NULL. */
520 		if (nbuf) {
521 			/* Check for truncated error codes... */
522 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
523 				errstr = nbuf;
524 		}
525 		break;
526 	}
527 
528 	return errstr;
529 }
530 
531 /* __ext4_std_error decodes expected errors from journaling functions
532  * automatically and invokes the appropriate error response.  */
533 
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)534 void __ext4_std_error(struct super_block *sb, const char *function,
535 		      unsigned int line, int errno)
536 {
537 	char nbuf[16];
538 	const char *errstr;
539 
540 	/* Special case: if the error is EROFS, and we're not already
541 	 * inside a transaction, then there's really no point in logging
542 	 * an error. */
543 	if (errno == -EROFS && journal_current_handle() == NULL &&
544 	    (sb->s_flags & MS_RDONLY))
545 		return;
546 
547 	if (ext4_error_ratelimit(sb)) {
548 		errstr = ext4_decode_error(sb, errno, nbuf);
549 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
550 		       sb->s_id, function, line, errstr);
551 	}
552 
553 	save_error_info(sb, function, line);
554 	ext4_handle_error(sb);
555 }
556 
557 /*
558  * ext4_abort is a much stronger failure handler than ext4_error.  The
559  * abort function may be used to deal with unrecoverable failures such
560  * as journal IO errors or ENOMEM at a critical moment in log management.
561  *
562  * We unconditionally force the filesystem into an ABORT|READONLY state,
563  * unless the error response on the fs has been set to panic in which
564  * case we take the easy way out and panic immediately.
565  */
566 
__ext4_abort(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)567 void __ext4_abort(struct super_block *sb, const char *function,
568 		unsigned int line, const char *fmt, ...)
569 {
570 	va_list args;
571 
572 	save_error_info(sb, function, line);
573 	va_start(args, fmt);
574 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
575 	       function, line);
576 	vprintk(fmt, args);
577 	printk("\n");
578 	va_end(args);
579 
580 	if ((sb->s_flags & MS_RDONLY) == 0) {
581 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
582 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
583 		/*
584 		 * Make sure updated value of ->s_mount_flags will be visible
585 		 * before ->s_flags update
586 		 */
587 		smp_wmb();
588 		sb->s_flags |= MS_RDONLY;
589 		if (EXT4_SB(sb)->s_journal)
590 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
591 		save_error_info(sb, function, line);
592 	}
593 	if (test_opt(sb, ERRORS_PANIC)) {
594 		if (EXT4_SB(sb)->s_journal &&
595 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
596 			return;
597 		panic("EXT4-fs panic from previous error\n");
598 	}
599 }
600 
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)601 void __ext4_msg(struct super_block *sb,
602 		const char *prefix, const char *fmt, ...)
603 {
604 	struct va_format vaf;
605 	va_list args;
606 
607 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
608 		return;
609 
610 	va_start(args, fmt);
611 	vaf.fmt = fmt;
612 	vaf.va = &args;
613 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
614 	va_end(args);
615 }
616 
617 #define ext4_warning_ratelimit(sb)					\
618 		___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),	\
619 			     "EXT4-fs warning")
620 
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)621 void __ext4_warning(struct super_block *sb, const char *function,
622 		    unsigned int line, const char *fmt, ...)
623 {
624 	struct va_format vaf;
625 	va_list args;
626 
627 	if (!ext4_warning_ratelimit(sb))
628 		return;
629 
630 	va_start(args, fmt);
631 	vaf.fmt = fmt;
632 	vaf.va = &args;
633 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
634 	       sb->s_id, function, line, &vaf);
635 	va_end(args);
636 }
637 
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)638 void __ext4_warning_inode(const struct inode *inode, const char *function,
639 			  unsigned int line, const char *fmt, ...)
640 {
641 	struct va_format vaf;
642 	va_list args;
643 
644 	if (!ext4_warning_ratelimit(inode->i_sb))
645 		return;
646 
647 	va_start(args, fmt);
648 	vaf.fmt = fmt;
649 	vaf.va = &args;
650 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
651 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
652 	       function, line, inode->i_ino, current->comm, &vaf);
653 	va_end(args);
654 }
655 
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)656 void __ext4_grp_locked_error(const char *function, unsigned int line,
657 			     struct super_block *sb, ext4_group_t grp,
658 			     unsigned long ino, ext4_fsblk_t block,
659 			     const char *fmt, ...)
660 __releases(bitlock)
661 __acquires(bitlock)
662 {
663 	struct va_format vaf;
664 	va_list args;
665 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
666 
667 	es->s_last_error_ino = cpu_to_le32(ino);
668 	es->s_last_error_block = cpu_to_le64(block);
669 	__save_error_info(sb, function, line);
670 
671 	if (ext4_error_ratelimit(sb)) {
672 		va_start(args, fmt);
673 		vaf.fmt = fmt;
674 		vaf.va = &args;
675 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
676 		       sb->s_id, function, line, grp);
677 		if (ino)
678 			printk(KERN_CONT "inode %lu: ", ino);
679 		if (block)
680 			printk(KERN_CONT "block %llu:",
681 			       (unsigned long long) block);
682 		printk(KERN_CONT "%pV\n", &vaf);
683 		va_end(args);
684 	}
685 
686 	if (test_opt(sb, ERRORS_CONT)) {
687 		ext4_commit_super(sb, 0);
688 		return;
689 	}
690 
691 	ext4_unlock_group(sb, grp);
692 	ext4_commit_super(sb, 1);
693 	ext4_handle_error(sb);
694 	/*
695 	 * We only get here in the ERRORS_RO case; relocking the group
696 	 * may be dangerous, but nothing bad will happen since the
697 	 * filesystem will have already been marked read/only and the
698 	 * journal has been aborted.  We return 1 as a hint to callers
699 	 * who might what to use the return value from
700 	 * ext4_grp_locked_error() to distinguish between the
701 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
702 	 * aggressively from the ext4 function in question, with a
703 	 * more appropriate error code.
704 	 */
705 	ext4_lock_group(sb, grp);
706 	return;
707 }
708 
ext4_update_dynamic_rev(struct super_block * sb)709 void ext4_update_dynamic_rev(struct super_block *sb)
710 {
711 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
712 
713 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
714 		return;
715 
716 	ext4_warning(sb,
717 		     "updating to rev %d because of new feature flag, "
718 		     "running e2fsck is recommended",
719 		     EXT4_DYNAMIC_REV);
720 
721 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
722 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
723 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
724 	/* leave es->s_feature_*compat flags alone */
725 	/* es->s_uuid will be set by e2fsck if empty */
726 
727 	/*
728 	 * The rest of the superblock fields should be zero, and if not it
729 	 * means they are likely already in use, so leave them alone.  We
730 	 * can leave it up to e2fsck to clean up any inconsistencies there.
731 	 */
732 }
733 
734 /*
735  * Open the external journal device
736  */
ext4_blkdev_get(dev_t dev,struct super_block * sb)737 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
738 {
739 	struct block_device *bdev;
740 	char b[BDEVNAME_SIZE];
741 
742 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
743 	if (IS_ERR(bdev))
744 		goto fail;
745 	return bdev;
746 
747 fail:
748 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
749 			__bdevname(dev, b), PTR_ERR(bdev));
750 	return NULL;
751 }
752 
753 /*
754  * Release the journal device
755  */
ext4_blkdev_put(struct block_device * bdev)756 static void ext4_blkdev_put(struct block_device *bdev)
757 {
758 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
759 }
760 
ext4_blkdev_remove(struct ext4_sb_info * sbi)761 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
762 {
763 	struct block_device *bdev;
764 	bdev = sbi->journal_bdev;
765 	if (bdev) {
766 		ext4_blkdev_put(bdev);
767 		sbi->journal_bdev = NULL;
768 	}
769 }
770 
orphan_list_entry(struct list_head * l)771 static inline struct inode *orphan_list_entry(struct list_head *l)
772 {
773 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
774 }
775 
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)776 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
777 {
778 	struct list_head *l;
779 
780 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
781 		 le32_to_cpu(sbi->s_es->s_last_orphan));
782 
783 	printk(KERN_ERR "sb_info orphan list:\n");
784 	list_for_each(l, &sbi->s_orphan) {
785 		struct inode *inode = orphan_list_entry(l);
786 		printk(KERN_ERR "  "
787 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
788 		       inode->i_sb->s_id, inode->i_ino, inode,
789 		       inode->i_mode, inode->i_nlink,
790 		       NEXT_ORPHAN(inode));
791 	}
792 }
793 
ext4_put_super(struct super_block * sb)794 static void ext4_put_super(struct super_block *sb)
795 {
796 	struct ext4_sb_info *sbi = EXT4_SB(sb);
797 	struct ext4_super_block *es = sbi->s_es;
798 	struct buffer_head **group_desc;
799 	struct flex_groups **flex_groups;
800 	int aborted = 0;
801 	int i, err;
802 
803 	ext4_unregister_li_request(sb);
804 	dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
805 
806 	flush_workqueue(sbi->rsv_conversion_wq);
807 	destroy_workqueue(sbi->rsv_conversion_wq);
808 
809 	if (sbi->s_journal) {
810 		aborted = is_journal_aborted(sbi->s_journal);
811 		err = jbd2_journal_destroy(sbi->s_journal);
812 		sbi->s_journal = NULL;
813 		if ((err < 0) && !aborted)
814 			ext4_abort(sb, "Couldn't clean up the journal");
815 	}
816 
817 	ext4_unregister_sysfs(sb);
818 	ext4_es_unregister_shrinker(sbi);
819 	del_timer_sync(&sbi->s_err_report);
820 	ext4_release_system_zone(sb);
821 	ext4_mb_release(sb);
822 	ext4_ext_release(sb);
823 
824 	if (!(sb->s_flags & MS_RDONLY) && !aborted) {
825 		ext4_clear_feature_journal_needs_recovery(sb);
826 		es->s_state = cpu_to_le16(sbi->s_mount_state);
827 	}
828 	if (!(sb->s_flags & MS_RDONLY))
829 		ext4_commit_super(sb, 1);
830 
831 	rcu_read_lock();
832 	group_desc = rcu_dereference(sbi->s_group_desc);
833 	for (i = 0; i < sbi->s_gdb_count; i++)
834 		brelse(group_desc[i]);
835 	kvfree(group_desc);
836 	flex_groups = rcu_dereference(sbi->s_flex_groups);
837 	if (flex_groups) {
838 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
839 			kvfree(flex_groups[i]);
840 		kvfree(flex_groups);
841 	}
842 	rcu_read_unlock();
843 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
844 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
845 	percpu_counter_destroy(&sbi->s_dirs_counter);
846 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
847 	brelse(sbi->s_sbh);
848 #ifdef CONFIG_QUOTA
849 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
850 		kfree(sbi->s_qf_names[i]);
851 #endif
852 
853 	/* Debugging code just in case the in-memory inode orphan list
854 	 * isn't empty.  The on-disk one can be non-empty if we've
855 	 * detected an error and taken the fs readonly, but the
856 	 * in-memory list had better be clean by this point. */
857 	if (!list_empty(&sbi->s_orphan))
858 		dump_orphan_list(sb, sbi);
859 	J_ASSERT(list_empty(&sbi->s_orphan));
860 
861 	sync_blockdev(sb->s_bdev);
862 	invalidate_bdev(sb->s_bdev);
863 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
864 		/*
865 		 * Invalidate the journal device's buffers.  We don't want them
866 		 * floating about in memory - the physical journal device may
867 		 * hotswapped, and it breaks the `ro-after' testing code.
868 		 */
869 		sync_blockdev(sbi->journal_bdev);
870 		invalidate_bdev(sbi->journal_bdev);
871 		ext4_blkdev_remove(sbi);
872 	}
873 	if (sbi->s_mb_cache) {
874 		ext4_xattr_destroy_cache(sbi->s_mb_cache);
875 		sbi->s_mb_cache = NULL;
876 	}
877 	if (sbi->s_mmp_tsk)
878 		kthread_stop(sbi->s_mmp_tsk);
879 	sb->s_fs_info = NULL;
880 	/*
881 	 * Now that we are completely done shutting down the
882 	 * superblock, we need to actually destroy the kobject.
883 	 */
884 	kobject_put(&sbi->s_kobj);
885 	wait_for_completion(&sbi->s_kobj_unregister);
886 	if (sbi->s_chksum_driver)
887 		crypto_free_shash(sbi->s_chksum_driver);
888 	kfree(sbi->s_blockgroup_lock);
889 	kfree(sbi);
890 }
891 
892 static struct kmem_cache *ext4_inode_cachep;
893 
894 /*
895  * Called inside transaction, so use GFP_NOFS
896  */
ext4_alloc_inode(struct super_block * sb)897 static struct inode *ext4_alloc_inode(struct super_block *sb)
898 {
899 	struct ext4_inode_info *ei;
900 
901 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
902 	if (!ei)
903 		return NULL;
904 
905 	ei->vfs_inode.i_version = 1;
906 	spin_lock_init(&ei->i_raw_lock);
907 	INIT_LIST_HEAD(&ei->i_prealloc_list);
908 	spin_lock_init(&ei->i_prealloc_lock);
909 	ext4_es_init_tree(&ei->i_es_tree);
910 	rwlock_init(&ei->i_es_lock);
911 	INIT_LIST_HEAD(&ei->i_es_list);
912 	ei->i_es_all_nr = 0;
913 	ei->i_es_shk_nr = 0;
914 	ei->i_es_shrink_lblk = 0;
915 	ei->i_reserved_data_blocks = 0;
916 	ei->i_reserved_meta_blocks = 0;
917 	ei->i_allocated_meta_blocks = 0;
918 	ei->i_da_metadata_calc_len = 0;
919 	ei->i_da_metadata_calc_last_lblock = 0;
920 	spin_lock_init(&(ei->i_block_reservation_lock));
921 #ifdef CONFIG_QUOTA
922 	ei->i_reserved_quota = 0;
923 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
924 #endif
925 	ei->jinode = NULL;
926 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
927 	spin_lock_init(&ei->i_completed_io_lock);
928 	ei->i_sync_tid = 0;
929 	ei->i_datasync_tid = 0;
930 	atomic_set(&ei->i_ioend_count, 0);
931 	atomic_set(&ei->i_unwritten, 0);
932 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
933 #ifdef CONFIG_EXT4_FS_ENCRYPTION
934 	ei->i_crypt_info = NULL;
935 #endif
936 	return &ei->vfs_inode;
937 }
938 
ext4_drop_inode(struct inode * inode)939 static int ext4_drop_inode(struct inode *inode)
940 {
941 	int drop = generic_drop_inode(inode);
942 
943 	trace_ext4_drop_inode(inode, drop);
944 	return drop;
945 }
946 
ext4_i_callback(struct rcu_head * head)947 static void ext4_i_callback(struct rcu_head *head)
948 {
949 	struct inode *inode = container_of(head, struct inode, i_rcu);
950 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
951 }
952 
ext4_destroy_inode(struct inode * inode)953 static void ext4_destroy_inode(struct inode *inode)
954 {
955 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
956 		ext4_msg(inode->i_sb, KERN_ERR,
957 			 "Inode %lu (%p): orphan list check failed!",
958 			 inode->i_ino, EXT4_I(inode));
959 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
960 				EXT4_I(inode), sizeof(struct ext4_inode_info),
961 				true);
962 		dump_stack();
963 	}
964 	call_rcu(&inode->i_rcu, ext4_i_callback);
965 }
966 
init_once(void * foo)967 static void init_once(void *foo)
968 {
969 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
970 
971 	INIT_LIST_HEAD(&ei->i_orphan);
972 	init_rwsem(&ei->xattr_sem);
973 	init_rwsem(&ei->i_data_sem);
974 	init_rwsem(&ei->i_mmap_sem);
975 	inode_init_once(&ei->vfs_inode);
976 }
977 
init_inodecache(void)978 static int __init init_inodecache(void)
979 {
980 	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
981 					     sizeof(struct ext4_inode_info),
982 					     0, (SLAB_RECLAIM_ACCOUNT|
983 						SLAB_MEM_SPREAD),
984 					     init_once);
985 	if (ext4_inode_cachep == NULL)
986 		return -ENOMEM;
987 	return 0;
988 }
989 
destroy_inodecache(void)990 static void destroy_inodecache(void)
991 {
992 	/*
993 	 * Make sure all delayed rcu free inodes are flushed before we
994 	 * destroy cache.
995 	 */
996 	rcu_barrier();
997 	kmem_cache_destroy(ext4_inode_cachep);
998 }
999 
ext4_clear_inode(struct inode * inode)1000 void ext4_clear_inode(struct inode *inode)
1001 {
1002 	invalidate_inode_buffers(inode);
1003 	clear_inode(inode);
1004 	dquot_drop(inode);
1005 	ext4_discard_preallocations(inode);
1006 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1007 	if (EXT4_I(inode)->jinode) {
1008 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1009 					       EXT4_I(inode)->jinode);
1010 		jbd2_free_inode(EXT4_I(inode)->jinode);
1011 		EXT4_I(inode)->jinode = NULL;
1012 	}
1013 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1014 	if (EXT4_I(inode)->i_crypt_info)
1015 		ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info);
1016 #endif
1017 }
1018 
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1019 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1020 					u64 ino, u32 generation)
1021 {
1022 	struct inode *inode;
1023 
1024 	/*
1025 	 * Currently we don't know the generation for parent directory, so
1026 	 * a generation of 0 means "accept any"
1027 	 */
1028 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1029 	if (IS_ERR(inode))
1030 		return ERR_CAST(inode);
1031 	if (generation && inode->i_generation != generation) {
1032 		iput(inode);
1033 		return ERR_PTR(-ESTALE);
1034 	}
1035 
1036 	return inode;
1037 }
1038 
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1039 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1040 					int fh_len, int fh_type)
1041 {
1042 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1043 				    ext4_nfs_get_inode);
1044 }
1045 
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1046 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1047 					int fh_len, int fh_type)
1048 {
1049 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1050 				    ext4_nfs_get_inode);
1051 }
1052 
ext4_nfs_commit_metadata(struct inode * inode)1053 static int ext4_nfs_commit_metadata(struct inode *inode)
1054 {
1055 	struct writeback_control wbc = {
1056 		.sync_mode = WB_SYNC_ALL
1057 	};
1058 
1059 	trace_ext4_nfs_commit_metadata(inode);
1060 	return ext4_write_inode(inode, &wbc);
1061 }
1062 
1063 /*
1064  * Try to release metadata pages (indirect blocks, directories) which are
1065  * mapped via the block device.  Since these pages could have journal heads
1066  * which would prevent try_to_free_buffers() from freeing them, we must use
1067  * jbd2 layer's try_to_free_buffers() function to release them.
1068  */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)1069 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1070 				 gfp_t wait)
1071 {
1072 	journal_t *journal = EXT4_SB(sb)->s_journal;
1073 
1074 	WARN_ON(PageChecked(page));
1075 	if (!page_has_buffers(page))
1076 		return 0;
1077 	if (journal)
1078 		return jbd2_journal_try_to_free_buffers(journal, page,
1079 						wait & ~__GFP_DIRECT_RECLAIM);
1080 	return try_to_free_buffers(page);
1081 }
1082 
1083 #ifdef CONFIG_QUOTA
1084 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1085 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1086 
1087 static int ext4_write_dquot(struct dquot *dquot);
1088 static int ext4_acquire_dquot(struct dquot *dquot);
1089 static int ext4_release_dquot(struct dquot *dquot);
1090 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1091 static int ext4_write_info(struct super_block *sb, int type);
1092 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1093 			 struct path *path);
1094 static int ext4_quota_off(struct super_block *sb, int type);
1095 static int ext4_quota_on_mount(struct super_block *sb, int type);
1096 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1097 			       size_t len, loff_t off);
1098 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1099 				const char *data, size_t len, loff_t off);
1100 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1101 			     unsigned int flags);
1102 static int ext4_enable_quotas(struct super_block *sb);
1103 
ext4_get_dquots(struct inode * inode)1104 static struct dquot **ext4_get_dquots(struct inode *inode)
1105 {
1106 	return EXT4_I(inode)->i_dquot;
1107 }
1108 
1109 static const struct dquot_operations ext4_quota_operations = {
1110 	.get_reserved_space = ext4_get_reserved_space,
1111 	.write_dquot	= ext4_write_dquot,
1112 	.acquire_dquot	= ext4_acquire_dquot,
1113 	.release_dquot	= ext4_release_dquot,
1114 	.mark_dirty	= ext4_mark_dquot_dirty,
1115 	.write_info	= ext4_write_info,
1116 	.alloc_dquot	= dquot_alloc,
1117 	.destroy_dquot	= dquot_destroy,
1118 };
1119 
1120 static const struct quotactl_ops ext4_qctl_operations = {
1121 	.quota_on	= ext4_quota_on,
1122 	.quota_off	= ext4_quota_off,
1123 	.quota_sync	= dquot_quota_sync,
1124 	.get_state	= dquot_get_state,
1125 	.set_info	= dquot_set_dqinfo,
1126 	.get_dqblk	= dquot_get_dqblk,
1127 	.set_dqblk	= dquot_set_dqblk
1128 };
1129 #endif
1130 
1131 static const struct super_operations ext4_sops = {
1132 	.alloc_inode	= ext4_alloc_inode,
1133 	.destroy_inode	= ext4_destroy_inode,
1134 	.write_inode	= ext4_write_inode,
1135 	.dirty_inode	= ext4_dirty_inode,
1136 	.drop_inode	= ext4_drop_inode,
1137 	.evict_inode	= ext4_evict_inode,
1138 	.put_super	= ext4_put_super,
1139 	.sync_fs	= ext4_sync_fs,
1140 	.freeze_fs	= ext4_freeze,
1141 	.unfreeze_fs	= ext4_unfreeze,
1142 	.statfs		= ext4_statfs,
1143 	.remount_fs	= ext4_remount,
1144 	.show_options	= ext4_show_options,
1145 #ifdef CONFIG_QUOTA
1146 	.quota_read	= ext4_quota_read,
1147 	.quota_write	= ext4_quota_write,
1148 	.get_dquots	= ext4_get_dquots,
1149 #endif
1150 	.bdev_try_to_free_page = bdev_try_to_free_page,
1151 };
1152 
1153 static const struct export_operations ext4_export_ops = {
1154 	.fh_to_dentry = ext4_fh_to_dentry,
1155 	.fh_to_parent = ext4_fh_to_parent,
1156 	.get_parent = ext4_get_parent,
1157 	.commit_metadata = ext4_nfs_commit_metadata,
1158 };
1159 
1160 enum {
1161 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1162 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1163 	Opt_nouid32, Opt_debug, Opt_removed,
1164 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1165 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1166 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1167 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1168 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1169 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1170 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1171 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1172 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1173 	Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
1174 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1175 	Opt_lazytime, Opt_nolazytime,
1176 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1177 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1178 	Opt_dioread_nolock, Opt_dioread_lock,
1179 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1180 	Opt_max_dir_size_kb, Opt_nojournal_checksum,
1181 };
1182 
1183 static const match_table_t tokens = {
1184 	{Opt_bsd_df, "bsddf"},
1185 	{Opt_minix_df, "minixdf"},
1186 	{Opt_grpid, "grpid"},
1187 	{Opt_grpid, "bsdgroups"},
1188 	{Opt_nogrpid, "nogrpid"},
1189 	{Opt_nogrpid, "sysvgroups"},
1190 	{Opt_resgid, "resgid=%u"},
1191 	{Opt_resuid, "resuid=%u"},
1192 	{Opt_sb, "sb=%u"},
1193 	{Opt_err_cont, "errors=continue"},
1194 	{Opt_err_panic, "errors=panic"},
1195 	{Opt_err_ro, "errors=remount-ro"},
1196 	{Opt_nouid32, "nouid32"},
1197 	{Opt_debug, "debug"},
1198 	{Opt_removed, "oldalloc"},
1199 	{Opt_removed, "orlov"},
1200 	{Opt_user_xattr, "user_xattr"},
1201 	{Opt_nouser_xattr, "nouser_xattr"},
1202 	{Opt_acl, "acl"},
1203 	{Opt_noacl, "noacl"},
1204 	{Opt_noload, "norecovery"},
1205 	{Opt_noload, "noload"},
1206 	{Opt_removed, "nobh"},
1207 	{Opt_removed, "bh"},
1208 	{Opt_commit, "commit=%u"},
1209 	{Opt_min_batch_time, "min_batch_time=%u"},
1210 	{Opt_max_batch_time, "max_batch_time=%u"},
1211 	{Opt_journal_dev, "journal_dev=%u"},
1212 	{Opt_journal_path, "journal_path=%s"},
1213 	{Opt_journal_checksum, "journal_checksum"},
1214 	{Opt_nojournal_checksum, "nojournal_checksum"},
1215 	{Opt_journal_async_commit, "journal_async_commit"},
1216 	{Opt_abort, "abort"},
1217 	{Opt_data_journal, "data=journal"},
1218 	{Opt_data_ordered, "data=ordered"},
1219 	{Opt_data_writeback, "data=writeback"},
1220 	{Opt_data_err_abort, "data_err=abort"},
1221 	{Opt_data_err_ignore, "data_err=ignore"},
1222 	{Opt_offusrjquota, "usrjquota="},
1223 	{Opt_usrjquota, "usrjquota=%s"},
1224 	{Opt_offgrpjquota, "grpjquota="},
1225 	{Opt_grpjquota, "grpjquota=%s"},
1226 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1227 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1228 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1229 	{Opt_grpquota, "grpquota"},
1230 	{Opt_noquota, "noquota"},
1231 	{Opt_quota, "quota"},
1232 	{Opt_usrquota, "usrquota"},
1233 	{Opt_barrier, "barrier=%u"},
1234 	{Opt_barrier, "barrier"},
1235 	{Opt_nobarrier, "nobarrier"},
1236 	{Opt_i_version, "i_version"},
1237 	{Opt_dax, "dax"},
1238 	{Opt_stripe, "stripe=%u"},
1239 	{Opt_delalloc, "delalloc"},
1240 	{Opt_lazytime, "lazytime"},
1241 	{Opt_nolazytime, "nolazytime"},
1242 	{Opt_nodelalloc, "nodelalloc"},
1243 	{Opt_removed, "mblk_io_submit"},
1244 	{Opt_removed, "nomblk_io_submit"},
1245 	{Opt_block_validity, "block_validity"},
1246 	{Opt_noblock_validity, "noblock_validity"},
1247 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1248 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1249 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1250 	{Opt_auto_da_alloc, "auto_da_alloc"},
1251 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1252 	{Opt_dioread_nolock, "dioread_nolock"},
1253 	{Opt_dioread_lock, "dioread_lock"},
1254 	{Opt_discard, "discard"},
1255 	{Opt_nodiscard, "nodiscard"},
1256 	{Opt_init_itable, "init_itable=%u"},
1257 	{Opt_init_itable, "init_itable"},
1258 	{Opt_noinit_itable, "noinit_itable"},
1259 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1260 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1261 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1262 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1263 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1264 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1265 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1266 	{Opt_err, NULL},
1267 };
1268 
get_sb_block(void ** data)1269 static ext4_fsblk_t get_sb_block(void **data)
1270 {
1271 	ext4_fsblk_t	sb_block;
1272 	char		*options = (char *) *data;
1273 
1274 	if (!options || strncmp(options, "sb=", 3) != 0)
1275 		return 1;	/* Default location */
1276 
1277 	options += 3;
1278 	/* TODO: use simple_strtoll with >32bit ext4 */
1279 	sb_block = simple_strtoul(options, &options, 0);
1280 	if (*options && *options != ',') {
1281 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1282 		       (char *) *data);
1283 		return 1;
1284 	}
1285 	if (*options == ',')
1286 		options++;
1287 	*data = (void *) options;
1288 
1289 	return sb_block;
1290 }
1291 
1292 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1293 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1294 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1295 
1296 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1297 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1298 {
1299 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1300 	char *qname;
1301 	int ret = -1;
1302 
1303 	if (sb_any_quota_loaded(sb) &&
1304 		!sbi->s_qf_names[qtype]) {
1305 		ext4_msg(sb, KERN_ERR,
1306 			"Cannot change journaled "
1307 			"quota options when quota turned on");
1308 		return -1;
1309 	}
1310 	if (ext4_has_feature_quota(sb)) {
1311 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1312 			 "ignored when QUOTA feature is enabled");
1313 		return 1;
1314 	}
1315 	qname = match_strdup(args);
1316 	if (!qname) {
1317 		ext4_msg(sb, KERN_ERR,
1318 			"Not enough memory for storing quotafile name");
1319 		return -1;
1320 	}
1321 	if (sbi->s_qf_names[qtype]) {
1322 		if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1323 			ret = 1;
1324 		else
1325 			ext4_msg(sb, KERN_ERR,
1326 				 "%s quota file already specified",
1327 				 QTYPE2NAME(qtype));
1328 		goto errout;
1329 	}
1330 	if (strchr(qname, '/')) {
1331 		ext4_msg(sb, KERN_ERR,
1332 			"quotafile must be on filesystem root");
1333 		goto errout;
1334 	}
1335 	sbi->s_qf_names[qtype] = qname;
1336 	set_opt(sb, QUOTA);
1337 	return 1;
1338 errout:
1339 	kfree(qname);
1340 	return ret;
1341 }
1342 
clear_qf_name(struct super_block * sb,int qtype)1343 static int clear_qf_name(struct super_block *sb, int qtype)
1344 {
1345 
1346 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1347 
1348 	if (sb_any_quota_loaded(sb) &&
1349 		sbi->s_qf_names[qtype]) {
1350 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1351 			" when quota turned on");
1352 		return -1;
1353 	}
1354 	kfree(sbi->s_qf_names[qtype]);
1355 	sbi->s_qf_names[qtype] = NULL;
1356 	return 1;
1357 }
1358 #endif
1359 
1360 #define MOPT_SET	0x0001
1361 #define MOPT_CLEAR	0x0002
1362 #define MOPT_NOSUPPORT	0x0004
1363 #define MOPT_EXPLICIT	0x0008
1364 #define MOPT_CLEAR_ERR	0x0010
1365 #define MOPT_GTE0	0x0020
1366 #ifdef CONFIG_QUOTA
1367 #define MOPT_Q		0
1368 #define MOPT_QFMT	0x0040
1369 #else
1370 #define MOPT_Q		MOPT_NOSUPPORT
1371 #define MOPT_QFMT	MOPT_NOSUPPORT
1372 #endif
1373 #define MOPT_DATAJ	0x0080
1374 #define MOPT_NO_EXT2	0x0100
1375 #define MOPT_NO_EXT3	0x0200
1376 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1377 #define MOPT_STRING	0x0400
1378 
1379 static const struct mount_opts {
1380 	int	token;
1381 	int	mount_opt;
1382 	int	flags;
1383 } ext4_mount_opts[] = {
1384 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1385 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1386 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1387 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1388 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1389 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1390 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1391 	 MOPT_EXT4_ONLY | MOPT_SET},
1392 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1393 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1394 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1395 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1396 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1397 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1398 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1399 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1400 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1401 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1402 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1403 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1404 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1405 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1406 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1407 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1408 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1409 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1410 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1411 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1412 	 MOPT_NO_EXT2 | MOPT_SET},
1413 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1414 	 MOPT_NO_EXT2 | MOPT_CLEAR},
1415 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1416 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1417 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1418 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1419 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1420 	{Opt_commit, 0, MOPT_GTE0},
1421 	{Opt_max_batch_time, 0, MOPT_GTE0},
1422 	{Opt_min_batch_time, 0, MOPT_GTE0},
1423 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1424 	{Opt_init_itable, 0, MOPT_GTE0},
1425 	{Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1426 	{Opt_stripe, 0, MOPT_GTE0},
1427 	{Opt_resuid, 0, MOPT_GTE0},
1428 	{Opt_resgid, 0, MOPT_GTE0},
1429 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1430 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1431 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1432 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1433 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1434 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1435 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1436 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1437 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1438 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1439 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1440 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1441 #else
1442 	{Opt_acl, 0, MOPT_NOSUPPORT},
1443 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1444 #endif
1445 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1446 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1447 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1448 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1449 							MOPT_SET | MOPT_Q},
1450 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1451 							MOPT_SET | MOPT_Q},
1452 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1453 		       EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1454 	{Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
1455 	{Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
1456 	{Opt_offusrjquota, 0, MOPT_Q},
1457 	{Opt_offgrpjquota, 0, MOPT_Q},
1458 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1459 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1460 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1461 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1462 	{Opt_test_dummy_encryption, 0, MOPT_GTE0},
1463 	{Opt_err, 0, 0}
1464 };
1465 
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1466 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1467 			    substring_t *args, unsigned long *journal_devnum,
1468 			    unsigned int *journal_ioprio, int is_remount)
1469 {
1470 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1471 	const struct mount_opts *m;
1472 	kuid_t uid;
1473 	kgid_t gid;
1474 	int arg = 0;
1475 
1476 #ifdef CONFIG_QUOTA
1477 	if (token == Opt_usrjquota)
1478 		return set_qf_name(sb, USRQUOTA, &args[0]);
1479 	else if (token == Opt_grpjquota)
1480 		return set_qf_name(sb, GRPQUOTA, &args[0]);
1481 	else if (token == Opt_offusrjquota)
1482 		return clear_qf_name(sb, USRQUOTA);
1483 	else if (token == Opt_offgrpjquota)
1484 		return clear_qf_name(sb, GRPQUOTA);
1485 #endif
1486 	switch (token) {
1487 	case Opt_noacl:
1488 	case Opt_nouser_xattr:
1489 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1490 		break;
1491 	case Opt_sb:
1492 		return 1;	/* handled by get_sb_block() */
1493 	case Opt_removed:
1494 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1495 		return 1;
1496 	case Opt_abort:
1497 		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1498 		return 1;
1499 	case Opt_i_version:
1500 		sb->s_flags |= MS_I_VERSION;
1501 		return 1;
1502 	case Opt_lazytime:
1503 		sb->s_flags |= MS_LAZYTIME;
1504 		return 1;
1505 	case Opt_nolazytime:
1506 		sb->s_flags &= ~MS_LAZYTIME;
1507 		return 1;
1508 	}
1509 
1510 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
1511 		if (token == m->token)
1512 			break;
1513 
1514 	if (m->token == Opt_err) {
1515 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1516 			 "or missing value", opt);
1517 		return -1;
1518 	}
1519 
1520 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1521 		ext4_msg(sb, KERN_ERR,
1522 			 "Mount option \"%s\" incompatible with ext2", opt);
1523 		return -1;
1524 	}
1525 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1526 		ext4_msg(sb, KERN_ERR,
1527 			 "Mount option \"%s\" incompatible with ext3", opt);
1528 		return -1;
1529 	}
1530 
1531 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1532 		return -1;
1533 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1534 		return -1;
1535 	if (m->flags & MOPT_EXPLICIT) {
1536 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1537 			set_opt2(sb, EXPLICIT_DELALLOC);
1538 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1539 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1540 		} else
1541 			return -1;
1542 	}
1543 	if (m->flags & MOPT_CLEAR_ERR)
1544 		clear_opt(sb, ERRORS_MASK);
1545 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1546 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
1547 			 "options when quota turned on");
1548 		return -1;
1549 	}
1550 
1551 	if (m->flags & MOPT_NOSUPPORT) {
1552 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1553 	} else if (token == Opt_commit) {
1554 		if (arg == 0)
1555 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1556 		sbi->s_commit_interval = HZ * arg;
1557 	} else if (token == Opt_max_batch_time) {
1558 		sbi->s_max_batch_time = arg;
1559 	} else if (token == Opt_min_batch_time) {
1560 		sbi->s_min_batch_time = arg;
1561 	} else if (token == Opt_inode_readahead_blks) {
1562 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1563 			ext4_msg(sb, KERN_ERR,
1564 				 "EXT4-fs: inode_readahead_blks must be "
1565 				 "0 or a power of 2 smaller than 2^31");
1566 			return -1;
1567 		}
1568 		sbi->s_inode_readahead_blks = arg;
1569 	} else if (token == Opt_init_itable) {
1570 		set_opt(sb, INIT_INODE_TABLE);
1571 		if (!args->from)
1572 			arg = EXT4_DEF_LI_WAIT_MULT;
1573 		sbi->s_li_wait_mult = arg;
1574 	} else if (token == Opt_max_dir_size_kb) {
1575 		sbi->s_max_dir_size_kb = arg;
1576 	} else if (token == Opt_stripe) {
1577 		sbi->s_stripe = arg;
1578 	} else if (token == Opt_resuid) {
1579 		uid = make_kuid(current_user_ns(), arg);
1580 		if (!uid_valid(uid)) {
1581 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1582 			return -1;
1583 		}
1584 		sbi->s_resuid = uid;
1585 	} else if (token == Opt_resgid) {
1586 		gid = make_kgid(current_user_ns(), arg);
1587 		if (!gid_valid(gid)) {
1588 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1589 			return -1;
1590 		}
1591 		sbi->s_resgid = gid;
1592 	} else if (token == Opt_journal_dev) {
1593 		if (is_remount) {
1594 			ext4_msg(sb, KERN_ERR,
1595 				 "Cannot specify journal on remount");
1596 			return -1;
1597 		}
1598 		*journal_devnum = arg;
1599 	} else if (token == Opt_journal_path) {
1600 		char *journal_path;
1601 		struct inode *journal_inode;
1602 		struct path path;
1603 		int error;
1604 
1605 		if (is_remount) {
1606 			ext4_msg(sb, KERN_ERR,
1607 				 "Cannot specify journal on remount");
1608 			return -1;
1609 		}
1610 		journal_path = match_strdup(&args[0]);
1611 		if (!journal_path) {
1612 			ext4_msg(sb, KERN_ERR, "error: could not dup "
1613 				"journal device string");
1614 			return -1;
1615 		}
1616 
1617 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1618 		if (error) {
1619 			ext4_msg(sb, KERN_ERR, "error: could not find "
1620 				"journal device path: error %d", error);
1621 			kfree(journal_path);
1622 			return -1;
1623 		}
1624 
1625 		journal_inode = d_inode(path.dentry);
1626 		if (!S_ISBLK(journal_inode->i_mode)) {
1627 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
1628 				"is not a block device", journal_path);
1629 			path_put(&path);
1630 			kfree(journal_path);
1631 			return -1;
1632 		}
1633 
1634 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
1635 		path_put(&path);
1636 		kfree(journal_path);
1637 	} else if (token == Opt_journal_ioprio) {
1638 		if (arg > 7) {
1639 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1640 				 " (must be 0-7)");
1641 			return -1;
1642 		}
1643 		*journal_ioprio =
1644 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1645 	} else if (token == Opt_test_dummy_encryption) {
1646 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1647 		sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1648 		ext4_msg(sb, KERN_WARNING,
1649 			 "Test dummy encryption mode enabled");
1650 #else
1651 		ext4_msg(sb, KERN_WARNING,
1652 			 "Test dummy encryption mount option ignored");
1653 #endif
1654 	} else if (m->flags & MOPT_DATAJ) {
1655 		if (is_remount) {
1656 			if (!sbi->s_journal)
1657 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1658 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1659 				ext4_msg(sb, KERN_ERR,
1660 					 "Cannot change data mode on remount");
1661 				return -1;
1662 			}
1663 		} else {
1664 			clear_opt(sb, DATA_FLAGS);
1665 			sbi->s_mount_opt |= m->mount_opt;
1666 		}
1667 #ifdef CONFIG_QUOTA
1668 	} else if (m->flags & MOPT_QFMT) {
1669 		if (sb_any_quota_loaded(sb) &&
1670 		    sbi->s_jquota_fmt != m->mount_opt) {
1671 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1672 				 "quota options when quota turned on");
1673 			return -1;
1674 		}
1675 		if (ext4_has_feature_quota(sb)) {
1676 			ext4_msg(sb, KERN_INFO,
1677 				 "Quota format mount options ignored "
1678 				 "when QUOTA feature is enabled");
1679 			return 1;
1680 		}
1681 		sbi->s_jquota_fmt = m->mount_opt;
1682 #endif
1683 	} else if (token == Opt_dax) {
1684 #ifdef CONFIG_FS_DAX
1685 		ext4_msg(sb, KERN_WARNING,
1686 		"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1687 			sbi->s_mount_opt |= m->mount_opt;
1688 #else
1689 		ext4_msg(sb, KERN_INFO, "dax option not supported");
1690 		return -1;
1691 #endif
1692 	} else {
1693 		if (!args->from)
1694 			arg = 1;
1695 		if (m->flags & MOPT_CLEAR)
1696 			arg = !arg;
1697 		else if (unlikely(!(m->flags & MOPT_SET))) {
1698 			ext4_msg(sb, KERN_WARNING,
1699 				 "buggy handling of option %s", opt);
1700 			WARN_ON(1);
1701 			return -1;
1702 		}
1703 		if (arg != 0)
1704 			sbi->s_mount_opt |= m->mount_opt;
1705 		else
1706 			sbi->s_mount_opt &= ~m->mount_opt;
1707 	}
1708 	return 1;
1709 }
1710 
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1711 static int parse_options(char *options, struct super_block *sb,
1712 			 unsigned long *journal_devnum,
1713 			 unsigned int *journal_ioprio,
1714 			 int is_remount)
1715 {
1716 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1717 	char *p;
1718 	substring_t args[MAX_OPT_ARGS];
1719 	int token;
1720 
1721 	if (!options)
1722 		return 1;
1723 
1724 	while ((p = strsep(&options, ",")) != NULL) {
1725 		if (!*p)
1726 			continue;
1727 		/*
1728 		 * Initialize args struct so we know whether arg was
1729 		 * found; some options take optional arguments.
1730 		 */
1731 		args[0].to = args[0].from = NULL;
1732 		token = match_token(p, tokens, args);
1733 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
1734 				     journal_ioprio, is_remount) < 0)
1735 			return 0;
1736 	}
1737 #ifdef CONFIG_QUOTA
1738 	if (ext4_has_feature_quota(sb) &&
1739 	    (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1740 		ext4_msg(sb, KERN_INFO, "Quota feature enabled, usrquota and grpquota "
1741 			 "mount options ignored.");
1742 		clear_opt(sb, USRQUOTA);
1743 		clear_opt(sb, GRPQUOTA);
1744 	} else if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1745 		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1746 			clear_opt(sb, USRQUOTA);
1747 
1748 		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1749 			clear_opt(sb, GRPQUOTA);
1750 
1751 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1752 			ext4_msg(sb, KERN_ERR, "old and new quota "
1753 					"format mixing");
1754 			return 0;
1755 		}
1756 
1757 		if (!sbi->s_jquota_fmt) {
1758 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1759 					"not specified");
1760 			return 0;
1761 		}
1762 	}
1763 #endif
1764 	if (test_opt(sb, DIOREAD_NOLOCK)) {
1765 		int blocksize =
1766 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1767 
1768 		if (blocksize < PAGE_CACHE_SIZE) {
1769 			ext4_msg(sb, KERN_ERR, "can't mount with "
1770 				 "dioread_nolock if block size != PAGE_SIZE");
1771 			return 0;
1772 		}
1773 	}
1774 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1775 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1776 		ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1777 			 "in data=ordered mode");
1778 		return 0;
1779 	}
1780 	return 1;
1781 }
1782 
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)1783 static inline void ext4_show_quota_options(struct seq_file *seq,
1784 					   struct super_block *sb)
1785 {
1786 #if defined(CONFIG_QUOTA)
1787 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1788 
1789 	if (sbi->s_jquota_fmt) {
1790 		char *fmtname = "";
1791 
1792 		switch (sbi->s_jquota_fmt) {
1793 		case QFMT_VFS_OLD:
1794 			fmtname = "vfsold";
1795 			break;
1796 		case QFMT_VFS_V0:
1797 			fmtname = "vfsv0";
1798 			break;
1799 		case QFMT_VFS_V1:
1800 			fmtname = "vfsv1";
1801 			break;
1802 		}
1803 		seq_printf(seq, ",jqfmt=%s", fmtname);
1804 	}
1805 
1806 	if (sbi->s_qf_names[USRQUOTA])
1807 		seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1808 
1809 	if (sbi->s_qf_names[GRPQUOTA])
1810 		seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1811 #endif
1812 }
1813 
token2str(int token)1814 static const char *token2str(int token)
1815 {
1816 	const struct match_token *t;
1817 
1818 	for (t = tokens; t->token != Opt_err; t++)
1819 		if (t->token == token && !strchr(t->pattern, '='))
1820 			break;
1821 	return t->pattern;
1822 }
1823 
1824 /*
1825  * Show an option if
1826  *  - it's set to a non-default value OR
1827  *  - if the per-sb default is different from the global default
1828  */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)1829 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1830 			      int nodefs)
1831 {
1832 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1833 	struct ext4_super_block *es = sbi->s_es;
1834 	int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1835 	const struct mount_opts *m;
1836 	char sep = nodefs ? '\n' : ',';
1837 
1838 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1839 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1840 
1841 	if (sbi->s_sb_block != 1)
1842 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1843 
1844 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1845 		int want_set = m->flags & MOPT_SET;
1846 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1847 		    (m->flags & MOPT_CLEAR_ERR))
1848 			continue;
1849 		if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1850 			continue; /* skip if same as the default */
1851 		if ((want_set &&
1852 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1853 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1854 			continue; /* select Opt_noFoo vs Opt_Foo */
1855 		SEQ_OPTS_PRINT("%s", token2str(m->token));
1856 	}
1857 
1858 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1859 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1860 		SEQ_OPTS_PRINT("resuid=%u",
1861 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
1862 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1863 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1864 		SEQ_OPTS_PRINT("resgid=%u",
1865 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
1866 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1867 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1868 		SEQ_OPTS_PUTS("errors=remount-ro");
1869 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1870 		SEQ_OPTS_PUTS("errors=continue");
1871 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1872 		SEQ_OPTS_PUTS("errors=panic");
1873 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1874 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1875 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1876 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1877 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1878 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1879 	if (sb->s_flags & MS_I_VERSION)
1880 		SEQ_OPTS_PUTS("i_version");
1881 	if (nodefs || sbi->s_stripe)
1882 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1883 	if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1884 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1885 			SEQ_OPTS_PUTS("data=journal");
1886 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1887 			SEQ_OPTS_PUTS("data=ordered");
1888 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1889 			SEQ_OPTS_PUTS("data=writeback");
1890 	}
1891 	if (nodefs ||
1892 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1893 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1894 			       sbi->s_inode_readahead_blks);
1895 
1896 	if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1897 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1898 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1899 	if (nodefs || sbi->s_max_dir_size_kb)
1900 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1901 
1902 	ext4_show_quota_options(seq, sb);
1903 	return 0;
1904 }
1905 
ext4_show_options(struct seq_file * seq,struct dentry * root)1906 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1907 {
1908 	return _ext4_show_options(seq, root->d_sb, 0);
1909 }
1910 
ext4_seq_options_show(struct seq_file * seq,void * offset)1911 int ext4_seq_options_show(struct seq_file *seq, void *offset)
1912 {
1913 	struct super_block *sb = seq->private;
1914 	int rc;
1915 
1916 	seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1917 	rc = _ext4_show_options(seq, sb, 1);
1918 	seq_puts(seq, "\n");
1919 	return rc;
1920 }
1921 
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)1922 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1923 			    int read_only)
1924 {
1925 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1926 	int res = 0;
1927 
1928 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1929 		ext4_msg(sb, KERN_ERR, "revision level too high, "
1930 			 "forcing read-only mode");
1931 		res = MS_RDONLY;
1932 	}
1933 	if (read_only)
1934 		goto done;
1935 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
1936 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1937 			 "running e2fsck is recommended");
1938 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
1939 		ext4_msg(sb, KERN_WARNING,
1940 			 "warning: mounting fs with errors, "
1941 			 "running e2fsck is recommended");
1942 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1943 		 le16_to_cpu(es->s_mnt_count) >=
1944 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1945 		ext4_msg(sb, KERN_WARNING,
1946 			 "warning: maximal mount count reached, "
1947 			 "running e2fsck is recommended");
1948 	else if (le32_to_cpu(es->s_checkinterval) &&
1949 		(le32_to_cpu(es->s_lastcheck) +
1950 			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1951 		ext4_msg(sb, KERN_WARNING,
1952 			 "warning: checktime reached, "
1953 			 "running e2fsck is recommended");
1954 	if (!sbi->s_journal)
1955 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1956 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1957 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1958 	le16_add_cpu(&es->s_mnt_count, 1);
1959 	es->s_mtime = cpu_to_le32(get_seconds());
1960 	ext4_update_dynamic_rev(sb);
1961 	if (sbi->s_journal)
1962 		ext4_set_feature_journal_needs_recovery(sb);
1963 
1964 	ext4_commit_super(sb, 1);
1965 done:
1966 	if (test_opt(sb, DEBUG))
1967 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1968 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1969 			sb->s_blocksize,
1970 			sbi->s_groups_count,
1971 			EXT4_BLOCKS_PER_GROUP(sb),
1972 			EXT4_INODES_PER_GROUP(sb),
1973 			sbi->s_mount_opt, sbi->s_mount_opt2);
1974 
1975 	cleancache_init_fs(sb);
1976 	return res;
1977 }
1978 
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)1979 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1980 {
1981 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1982 	struct flex_groups **old_groups, **new_groups;
1983 	int size, i, j;
1984 
1985 	if (!sbi->s_log_groups_per_flex)
1986 		return 0;
1987 
1988 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
1989 	if (size <= sbi->s_flex_groups_allocated)
1990 		return 0;
1991 
1992 	new_groups = ext4_kvzalloc(roundup_pow_of_two(size *
1993 				   sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
1994 	if (!new_groups) {
1995 		ext4_msg(sb, KERN_ERR,
1996 			 "not enough memory for %d flex group pointers", size);
1997 		return -ENOMEM;
1998 	}
1999 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2000 		new_groups[i] = ext4_kvzalloc(roundup_pow_of_two(
2001 					      sizeof(struct flex_groups)),
2002 					      GFP_KERNEL);
2003 		if (!new_groups[i]) {
2004 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
2005 				kvfree(new_groups[j]);
2006 			kvfree(new_groups);
2007 			ext4_msg(sb, KERN_ERR,
2008 				 "not enough memory for %d flex groups", size);
2009 			return -ENOMEM;
2010 		}
2011 	}
2012 	rcu_read_lock();
2013 	old_groups = rcu_dereference(sbi->s_flex_groups);
2014 	if (old_groups)
2015 		memcpy(new_groups, old_groups,
2016 		       (sbi->s_flex_groups_allocated *
2017 			sizeof(struct flex_groups *)));
2018 	rcu_read_unlock();
2019 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2020 	sbi->s_flex_groups_allocated = size;
2021 	if (old_groups)
2022 		ext4_kvfree_array_rcu(old_groups);
2023 	return 0;
2024 }
2025 
ext4_fill_flex_info(struct super_block * sb)2026 static int ext4_fill_flex_info(struct super_block *sb)
2027 {
2028 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2029 	struct ext4_group_desc *gdp = NULL;
2030 	struct flex_groups *fg;
2031 	ext4_group_t flex_group;
2032 	int i, err;
2033 
2034 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2035 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2036 		sbi->s_log_groups_per_flex = 0;
2037 		return 1;
2038 	}
2039 
2040 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2041 	if (err)
2042 		goto failed;
2043 
2044 	for (i = 0; i < sbi->s_groups_count; i++) {
2045 		gdp = ext4_get_group_desc(sb, i, NULL);
2046 
2047 		flex_group = ext4_flex_group(sbi, i);
2048 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2049 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2050 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2051 			     &fg->free_clusters);
2052 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2053 	}
2054 
2055 	return 1;
2056 failed:
2057 	return 0;
2058 }
2059 
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2060 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2061 				   struct ext4_group_desc *gdp)
2062 {
2063 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2064 	__u16 crc = 0;
2065 	__le32 le_group = cpu_to_le32(block_group);
2066 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2067 
2068 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2069 		/* Use new metadata_csum algorithm */
2070 		__u32 csum32;
2071 		__u16 dummy_csum = 0;
2072 
2073 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2074 				     sizeof(le_group));
2075 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2076 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2077 				     sizeof(dummy_csum));
2078 		offset += sizeof(dummy_csum);
2079 		if (offset < sbi->s_desc_size)
2080 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2081 					     sbi->s_desc_size - offset);
2082 
2083 		crc = csum32 & 0xFFFF;
2084 		goto out;
2085 	}
2086 
2087 	/* old crc16 code */
2088 	if (!ext4_has_feature_gdt_csum(sb))
2089 		return 0;
2090 
2091 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2092 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2093 	crc = crc16(crc, (__u8 *)gdp, offset);
2094 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2095 	/* for checksum of struct ext4_group_desc do the rest...*/
2096 	if (ext4_has_feature_64bit(sb) &&
2097 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2098 		crc = crc16(crc, (__u8 *)gdp + offset,
2099 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2100 				offset);
2101 
2102 out:
2103 	return cpu_to_le16(crc);
2104 }
2105 
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2106 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2107 				struct ext4_group_desc *gdp)
2108 {
2109 	if (ext4_has_group_desc_csum(sb) &&
2110 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2111 		return 0;
2112 
2113 	return 1;
2114 }
2115 
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2116 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2117 			      struct ext4_group_desc *gdp)
2118 {
2119 	if (!ext4_has_group_desc_csum(sb))
2120 		return;
2121 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2122 }
2123 
2124 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)2125 static int ext4_check_descriptors(struct super_block *sb,
2126 				  ext4_fsblk_t sb_block,
2127 				  ext4_group_t *first_not_zeroed)
2128 {
2129 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2130 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2131 	ext4_fsblk_t last_block;
2132 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2133 	ext4_fsblk_t block_bitmap;
2134 	ext4_fsblk_t inode_bitmap;
2135 	ext4_fsblk_t inode_table;
2136 	int flexbg_flag = 0;
2137 	ext4_group_t i, grp = sbi->s_groups_count;
2138 
2139 	if (ext4_has_feature_flex_bg(sb))
2140 		flexbg_flag = 1;
2141 
2142 	ext4_debug("Checking group descriptors");
2143 
2144 	for (i = 0; i < sbi->s_groups_count; i++) {
2145 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2146 
2147 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2148 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2149 		else
2150 			last_block = first_block +
2151 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2152 
2153 		if ((grp == sbi->s_groups_count) &&
2154 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2155 			grp = i;
2156 
2157 		block_bitmap = ext4_block_bitmap(sb, gdp);
2158 		if (block_bitmap == sb_block) {
2159 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2160 				 "Block bitmap for group %u overlaps "
2161 				 "superblock", i);
2162 			if (!(sb->s_flags & MS_RDONLY))
2163 				return 0;
2164 		}
2165 		if (block_bitmap >= sb_block + 1 &&
2166 		    block_bitmap <= last_bg_block) {
2167 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2168 				 "Block bitmap for group %u overlaps "
2169 				 "block group descriptors", i);
2170 			if (!(sb->s_flags & MS_RDONLY))
2171 				return 0;
2172 		}
2173 		if (block_bitmap < first_block || block_bitmap > last_block) {
2174 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2175 			       "Block bitmap for group %u not in group "
2176 			       "(block %llu)!", i, block_bitmap);
2177 			return 0;
2178 		}
2179 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2180 		if (inode_bitmap == sb_block) {
2181 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2182 				 "Inode bitmap for group %u overlaps "
2183 				 "superblock", i);
2184 			if (!(sb->s_flags & MS_RDONLY))
2185 				return 0;
2186 		}
2187 		if (inode_bitmap >= sb_block + 1 &&
2188 		    inode_bitmap <= last_bg_block) {
2189 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2190 				 "Inode bitmap for group %u overlaps "
2191 				 "block group descriptors", i);
2192 			if (!(sb->s_flags & MS_RDONLY))
2193 				return 0;
2194 		}
2195 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2196 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2197 			       "Inode bitmap for group %u not in group "
2198 			       "(block %llu)!", i, inode_bitmap);
2199 			return 0;
2200 		}
2201 		inode_table = ext4_inode_table(sb, gdp);
2202 		if (inode_table == sb_block) {
2203 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2204 				 "Inode table for group %u overlaps "
2205 				 "superblock", i);
2206 			if (!(sb->s_flags & MS_RDONLY))
2207 				return 0;
2208 		}
2209 		if (inode_table >= sb_block + 1 &&
2210 		    inode_table <= last_bg_block) {
2211 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2212 				 "Inode table for group %u overlaps "
2213 				 "block group descriptors", i);
2214 			if (!(sb->s_flags & MS_RDONLY))
2215 				return 0;
2216 		}
2217 		if (inode_table < first_block ||
2218 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2219 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2220 			       "Inode table for group %u not in group "
2221 			       "(block %llu)!", i, inode_table);
2222 			return 0;
2223 		}
2224 		ext4_lock_group(sb, i);
2225 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2226 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2227 				 "Checksum for group %u failed (%u!=%u)",
2228 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2229 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2230 			if (!(sb->s_flags & MS_RDONLY)) {
2231 				ext4_unlock_group(sb, i);
2232 				return 0;
2233 			}
2234 		}
2235 		ext4_unlock_group(sb, i);
2236 		if (!flexbg_flag)
2237 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2238 	}
2239 	if (NULL != first_not_zeroed)
2240 		*first_not_zeroed = grp;
2241 	return 1;
2242 }
2243 
2244 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2245  * the superblock) which were deleted from all directories, but held open by
2246  * a process at the time of a crash.  We walk the list and try to delete these
2247  * inodes at recovery time (only with a read-write filesystem).
2248  *
2249  * In order to keep the orphan inode chain consistent during traversal (in
2250  * case of crash during recovery), we link each inode into the superblock
2251  * orphan list_head and handle it the same way as an inode deletion during
2252  * normal operation (which journals the operations for us).
2253  *
2254  * We only do an iget() and an iput() on each inode, which is very safe if we
2255  * accidentally point at an in-use or already deleted inode.  The worst that
2256  * can happen in this case is that we get a "bit already cleared" message from
2257  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2258  * e2fsck was run on this filesystem, and it must have already done the orphan
2259  * inode cleanup for us, so we can safely abort without any further action.
2260  */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2261 static void ext4_orphan_cleanup(struct super_block *sb,
2262 				struct ext4_super_block *es)
2263 {
2264 	unsigned int s_flags = sb->s_flags;
2265 	int nr_orphans = 0, nr_truncates = 0;
2266 #ifdef CONFIG_QUOTA
2267 	int quota_update = 0;
2268 	int i;
2269 #endif
2270 	if (!es->s_last_orphan) {
2271 		jbd_debug(4, "no orphan inodes to clean up\n");
2272 		return;
2273 	}
2274 
2275 	if (bdev_read_only(sb->s_bdev)) {
2276 		ext4_msg(sb, KERN_ERR, "write access "
2277 			"unavailable, skipping orphan cleanup");
2278 		return;
2279 	}
2280 
2281 	/* Check if feature set would not allow a r/w mount */
2282 	if (!ext4_feature_set_ok(sb, 0)) {
2283 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2284 			 "unknown ROCOMPAT features");
2285 		return;
2286 	}
2287 
2288 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2289 		/* don't clear list on RO mount w/ errors */
2290 		if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2291 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2292 				  "clearing orphan list.\n");
2293 			es->s_last_orphan = 0;
2294 		}
2295 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2296 		return;
2297 	}
2298 
2299 	if (s_flags & MS_RDONLY) {
2300 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2301 		sb->s_flags &= ~MS_RDONLY;
2302 	}
2303 #ifdef CONFIG_QUOTA
2304 	/* Needed for iput() to work correctly and not trash data */
2305 	sb->s_flags |= MS_ACTIVE;
2306 
2307 	/*
2308 	 * Turn on quotas which were not enabled for read-only mounts if
2309 	 * filesystem has quota feature, so that they are updated correctly.
2310 	 */
2311 	if (ext4_has_feature_quota(sb) && (s_flags & MS_RDONLY)) {
2312 		int ret = ext4_enable_quotas(sb);
2313 
2314 		if (!ret)
2315 			quota_update = 1;
2316 		else
2317 			ext4_msg(sb, KERN_ERR,
2318 				"Cannot turn on quotas: error %d", ret);
2319 	}
2320 
2321 	/* Turn on journaled quotas used for old sytle */
2322 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2323 		if (EXT4_SB(sb)->s_qf_names[i]) {
2324 			int ret = ext4_quota_on_mount(sb, i);
2325 
2326 			if (!ret)
2327 				quota_update = 1;
2328 			else
2329 				ext4_msg(sb, KERN_ERR,
2330 					"Cannot turn on journaled "
2331 					"quota: type %d: error %d", i, ret);
2332 		}
2333 	}
2334 #endif
2335 
2336 	while (es->s_last_orphan) {
2337 		struct inode *inode;
2338 
2339 		/*
2340 		 * We may have encountered an error during cleanup; if
2341 		 * so, skip the rest.
2342 		 */
2343 		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2344 			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2345 			es->s_last_orphan = 0;
2346 			break;
2347 		}
2348 
2349 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2350 		if (IS_ERR(inode)) {
2351 			es->s_last_orphan = 0;
2352 			break;
2353 		}
2354 
2355 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2356 		dquot_initialize(inode);
2357 		if (inode->i_nlink) {
2358 			if (test_opt(sb, DEBUG))
2359 				ext4_msg(sb, KERN_DEBUG,
2360 					"%s: truncating inode %lu to %lld bytes",
2361 					__func__, inode->i_ino, inode->i_size);
2362 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2363 				  inode->i_ino, inode->i_size);
2364 			mutex_lock(&inode->i_mutex);
2365 			truncate_inode_pages(inode->i_mapping, inode->i_size);
2366 			ext4_truncate(inode);
2367 			mutex_unlock(&inode->i_mutex);
2368 			nr_truncates++;
2369 		} else {
2370 			if (test_opt(sb, DEBUG))
2371 				ext4_msg(sb, KERN_DEBUG,
2372 					"%s: deleting unreferenced inode %lu",
2373 					__func__, inode->i_ino);
2374 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2375 				  inode->i_ino);
2376 			nr_orphans++;
2377 		}
2378 		iput(inode);  /* The delete magic happens here! */
2379 	}
2380 
2381 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2382 
2383 	if (nr_orphans)
2384 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2385 		       PLURAL(nr_orphans));
2386 	if (nr_truncates)
2387 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2388 		       PLURAL(nr_truncates));
2389 #ifdef CONFIG_QUOTA
2390 	/* Turn off quotas if they were enabled for orphan cleanup */
2391 	if (quota_update) {
2392 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2393 			if (sb_dqopt(sb)->files[i])
2394 				dquot_quota_off(sb, i);
2395 		}
2396 	}
2397 #endif
2398 	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2399 }
2400 
2401 /*
2402  * Maximal extent format file size.
2403  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2404  * extent format containers, within a sector_t, and within i_blocks
2405  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2406  * so that won't be a limiting factor.
2407  *
2408  * However there is other limiting factor. We do store extents in the form
2409  * of starting block and length, hence the resulting length of the extent
2410  * covering maximum file size must fit into on-disk format containers as
2411  * well. Given that length is always by 1 unit bigger than max unit (because
2412  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2413  *
2414  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2415  */
ext4_max_size(int blkbits,int has_huge_files)2416 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2417 {
2418 	loff_t res;
2419 	loff_t upper_limit = MAX_LFS_FILESIZE;
2420 
2421 	/* small i_blocks in vfs inode? */
2422 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2423 		/*
2424 		 * CONFIG_LBDAF is not enabled implies the inode
2425 		 * i_block represent total blocks in 512 bytes
2426 		 * 32 == size of vfs inode i_blocks * 8
2427 		 */
2428 		upper_limit = (1LL << 32) - 1;
2429 
2430 		/* total blocks in file system block size */
2431 		upper_limit >>= (blkbits - 9);
2432 		upper_limit <<= blkbits;
2433 	}
2434 
2435 	/*
2436 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2437 	 * by one fs block, so ee_len can cover the extent of maximum file
2438 	 * size
2439 	 */
2440 	res = (1LL << 32) - 1;
2441 	res <<= blkbits;
2442 
2443 	/* Sanity check against vm- & vfs- imposed limits */
2444 	if (res > upper_limit)
2445 		res = upper_limit;
2446 
2447 	return res;
2448 }
2449 
2450 /*
2451  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2452  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2453  * We need to be 1 filesystem block less than the 2^48 sector limit.
2454  */
ext4_max_bitmap_size(int bits,int has_huge_files)2455 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2456 {
2457 	loff_t res = EXT4_NDIR_BLOCKS;
2458 	int meta_blocks;
2459 	loff_t upper_limit;
2460 	/* This is calculated to be the largest file size for a dense, block
2461 	 * mapped file such that the file's total number of 512-byte sectors,
2462 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2463 	 *
2464 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2465 	 * number of 512-byte sectors of the file.
2466 	 */
2467 
2468 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2469 		/*
2470 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2471 		 * the inode i_block field represents total file blocks in
2472 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2473 		 */
2474 		upper_limit = (1LL << 32) - 1;
2475 
2476 		/* total blocks in file system block size */
2477 		upper_limit >>= (bits - 9);
2478 
2479 	} else {
2480 		/*
2481 		 * We use 48 bit ext4_inode i_blocks
2482 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2483 		 * represent total number of blocks in
2484 		 * file system block size
2485 		 */
2486 		upper_limit = (1LL << 48) - 1;
2487 
2488 	}
2489 
2490 	/* indirect blocks */
2491 	meta_blocks = 1;
2492 	/* double indirect blocks */
2493 	meta_blocks += 1 + (1LL << (bits-2));
2494 	/* tripple indirect blocks */
2495 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2496 
2497 	upper_limit -= meta_blocks;
2498 	upper_limit <<= bits;
2499 
2500 	res += 1LL << (bits-2);
2501 	res += 1LL << (2*(bits-2));
2502 	res += 1LL << (3*(bits-2));
2503 	res <<= bits;
2504 	if (res > upper_limit)
2505 		res = upper_limit;
2506 
2507 	if (res > MAX_LFS_FILESIZE)
2508 		res = MAX_LFS_FILESIZE;
2509 
2510 	return res;
2511 }
2512 
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)2513 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2514 				   ext4_fsblk_t logical_sb_block, int nr)
2515 {
2516 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2517 	ext4_group_t bg, first_meta_bg;
2518 	int has_super = 0;
2519 
2520 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2521 
2522 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2523 		return logical_sb_block + nr + 1;
2524 	bg = sbi->s_desc_per_block * nr;
2525 	if (ext4_bg_has_super(sb, bg))
2526 		has_super = 1;
2527 
2528 	/*
2529 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2530 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2531 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2532 	 * compensate.
2533 	 */
2534 	if (sb->s_blocksize == 1024 && nr == 0 &&
2535 	    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2536 		has_super++;
2537 
2538 	return (has_super + ext4_group_first_block_no(sb, bg));
2539 }
2540 
2541 /**
2542  * ext4_get_stripe_size: Get the stripe size.
2543  * @sbi: In memory super block info
2544  *
2545  * If we have specified it via mount option, then
2546  * use the mount option value. If the value specified at mount time is
2547  * greater than the blocks per group use the super block value.
2548  * If the super block value is greater than blocks per group return 0.
2549  * Allocator needs it be less than blocks per group.
2550  *
2551  */
ext4_get_stripe_size(struct ext4_sb_info * sbi)2552 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2553 {
2554 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2555 	unsigned long stripe_width =
2556 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2557 	int ret;
2558 
2559 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2560 		ret = sbi->s_stripe;
2561 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2562 		ret = stripe_width;
2563 	else if (stride && stride <= sbi->s_blocks_per_group)
2564 		ret = stride;
2565 	else
2566 		ret = 0;
2567 
2568 	/*
2569 	 * If the stripe width is 1, this makes no sense and
2570 	 * we set it to 0 to turn off stripe handling code.
2571 	 */
2572 	if (ret <= 1)
2573 		ret = 0;
2574 
2575 	return ret;
2576 }
2577 
2578 /*
2579  * Check whether this filesystem can be mounted based on
2580  * the features present and the RDONLY/RDWR mount requested.
2581  * Returns 1 if this filesystem can be mounted as requested,
2582  * 0 if it cannot be.
2583  */
ext4_feature_set_ok(struct super_block * sb,int readonly)2584 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2585 {
2586 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
2587 		ext4_msg(sb, KERN_ERR,
2588 			"Couldn't mount because of "
2589 			"unsupported optional features (%x)",
2590 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2591 			~EXT4_FEATURE_INCOMPAT_SUPP));
2592 		return 0;
2593 	}
2594 
2595 	if (readonly)
2596 		return 1;
2597 
2598 	if (ext4_has_feature_readonly(sb)) {
2599 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2600 		sb->s_flags |= MS_RDONLY;
2601 		return 1;
2602 	}
2603 
2604 	/* Check that feature set is OK for a read-write mount */
2605 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2606 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2607 			 "unsupported optional features (%x)",
2608 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2609 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2610 		return 0;
2611 	}
2612 	/*
2613 	 * Large file size enabled file system can only be mounted
2614 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2615 	 */
2616 	if (ext4_has_feature_huge_file(sb)) {
2617 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2618 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2619 				 "cannot be mounted RDWR without "
2620 				 "CONFIG_LBDAF");
2621 			return 0;
2622 		}
2623 	}
2624 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2625 		ext4_msg(sb, KERN_ERR,
2626 			 "Can't support bigalloc feature without "
2627 			 "extents feature\n");
2628 		return 0;
2629 	}
2630 
2631 #ifndef CONFIG_QUOTA
2632 	if (ext4_has_feature_quota(sb) && !readonly) {
2633 		ext4_msg(sb, KERN_ERR,
2634 			 "Filesystem with quota feature cannot be mounted RDWR "
2635 			 "without CONFIG_QUOTA");
2636 		return 0;
2637 	}
2638 #endif  /* CONFIG_QUOTA */
2639 	return 1;
2640 }
2641 
2642 /*
2643  * This function is called once a day if we have errors logged
2644  * on the file system
2645  */
print_daily_error_info(unsigned long arg)2646 static void print_daily_error_info(unsigned long arg)
2647 {
2648 	struct super_block *sb = (struct super_block *) arg;
2649 	struct ext4_sb_info *sbi;
2650 	struct ext4_super_block *es;
2651 
2652 	sbi = EXT4_SB(sb);
2653 	es = sbi->s_es;
2654 
2655 	if (es->s_error_count)
2656 		/* fsck newer than v1.41.13 is needed to clean this condition. */
2657 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2658 			 le32_to_cpu(es->s_error_count));
2659 	if (es->s_first_error_time) {
2660 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2661 		       sb->s_id, le32_to_cpu(es->s_first_error_time),
2662 		       (int) sizeof(es->s_first_error_func),
2663 		       es->s_first_error_func,
2664 		       le32_to_cpu(es->s_first_error_line));
2665 		if (es->s_first_error_ino)
2666 			printk(": inode %u",
2667 			       le32_to_cpu(es->s_first_error_ino));
2668 		if (es->s_first_error_block)
2669 			printk(": block %llu", (unsigned long long)
2670 			       le64_to_cpu(es->s_first_error_block));
2671 		printk("\n");
2672 	}
2673 	if (es->s_last_error_time) {
2674 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2675 		       sb->s_id, le32_to_cpu(es->s_last_error_time),
2676 		       (int) sizeof(es->s_last_error_func),
2677 		       es->s_last_error_func,
2678 		       le32_to_cpu(es->s_last_error_line));
2679 		if (es->s_last_error_ino)
2680 			printk(": inode %u",
2681 			       le32_to_cpu(es->s_last_error_ino));
2682 		if (es->s_last_error_block)
2683 			printk(": block %llu", (unsigned long long)
2684 			       le64_to_cpu(es->s_last_error_block));
2685 		printk("\n");
2686 	}
2687 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2688 }
2689 
2690 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)2691 static int ext4_run_li_request(struct ext4_li_request *elr)
2692 {
2693 	struct ext4_group_desc *gdp = NULL;
2694 	ext4_group_t group, ngroups;
2695 	struct super_block *sb;
2696 	unsigned long timeout = 0;
2697 	int ret = 0;
2698 
2699 	sb = elr->lr_super;
2700 	ngroups = EXT4_SB(sb)->s_groups_count;
2701 
2702 	sb_start_write(sb);
2703 	for (group = elr->lr_next_group; group < ngroups; group++) {
2704 		gdp = ext4_get_group_desc(sb, group, NULL);
2705 		if (!gdp) {
2706 			ret = 1;
2707 			break;
2708 		}
2709 
2710 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2711 			break;
2712 	}
2713 
2714 	if (group >= ngroups)
2715 		ret = 1;
2716 
2717 	if (!ret) {
2718 		timeout = jiffies;
2719 		ret = ext4_init_inode_table(sb, group,
2720 					    elr->lr_timeout ? 0 : 1);
2721 		if (elr->lr_timeout == 0) {
2722 			timeout = (jiffies - timeout) *
2723 				  elr->lr_sbi->s_li_wait_mult;
2724 			elr->lr_timeout = timeout;
2725 		}
2726 		elr->lr_next_sched = jiffies + elr->lr_timeout;
2727 		elr->lr_next_group = group + 1;
2728 	}
2729 	sb_end_write(sb);
2730 
2731 	return ret;
2732 }
2733 
2734 /*
2735  * Remove lr_request from the list_request and free the
2736  * request structure. Should be called with li_list_mtx held
2737  */
ext4_remove_li_request(struct ext4_li_request * elr)2738 static void ext4_remove_li_request(struct ext4_li_request *elr)
2739 {
2740 	struct ext4_sb_info *sbi;
2741 
2742 	if (!elr)
2743 		return;
2744 
2745 	sbi = elr->lr_sbi;
2746 
2747 	list_del(&elr->lr_request);
2748 	sbi->s_li_request = NULL;
2749 	kfree(elr);
2750 }
2751 
ext4_unregister_li_request(struct super_block * sb)2752 static void ext4_unregister_li_request(struct super_block *sb)
2753 {
2754 	mutex_lock(&ext4_li_mtx);
2755 	if (!ext4_li_info) {
2756 		mutex_unlock(&ext4_li_mtx);
2757 		return;
2758 	}
2759 
2760 	mutex_lock(&ext4_li_info->li_list_mtx);
2761 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2762 	mutex_unlock(&ext4_li_info->li_list_mtx);
2763 	mutex_unlock(&ext4_li_mtx);
2764 }
2765 
2766 static struct task_struct *ext4_lazyinit_task;
2767 
2768 /*
2769  * This is the function where ext4lazyinit thread lives. It walks
2770  * through the request list searching for next scheduled filesystem.
2771  * When such a fs is found, run the lazy initialization request
2772  * (ext4_rn_li_request) and keep track of the time spend in this
2773  * function. Based on that time we compute next schedule time of
2774  * the request. When walking through the list is complete, compute
2775  * next waking time and put itself into sleep.
2776  */
ext4_lazyinit_thread(void * arg)2777 static int ext4_lazyinit_thread(void *arg)
2778 {
2779 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2780 	struct list_head *pos, *n;
2781 	struct ext4_li_request *elr;
2782 	unsigned long next_wakeup, cur;
2783 
2784 	BUG_ON(NULL == eli);
2785 
2786 cont_thread:
2787 	while (true) {
2788 		next_wakeup = MAX_JIFFY_OFFSET;
2789 
2790 		mutex_lock(&eli->li_list_mtx);
2791 		if (list_empty(&eli->li_request_list)) {
2792 			mutex_unlock(&eli->li_list_mtx);
2793 			goto exit_thread;
2794 		}
2795 
2796 		list_for_each_safe(pos, n, &eli->li_request_list) {
2797 			elr = list_entry(pos, struct ext4_li_request,
2798 					 lr_request);
2799 
2800 			if (time_after_eq(jiffies, elr->lr_next_sched)) {
2801 				if (ext4_run_li_request(elr) != 0) {
2802 					/* error, remove the lazy_init job */
2803 					ext4_remove_li_request(elr);
2804 					continue;
2805 				}
2806 			}
2807 
2808 			if (time_before(elr->lr_next_sched, next_wakeup))
2809 				next_wakeup = elr->lr_next_sched;
2810 		}
2811 		mutex_unlock(&eli->li_list_mtx);
2812 
2813 		try_to_freeze();
2814 
2815 		cur = jiffies;
2816 		if ((time_after_eq(cur, next_wakeup)) ||
2817 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
2818 			cond_resched();
2819 			continue;
2820 		}
2821 
2822 		schedule_timeout_interruptible(next_wakeup - cur);
2823 
2824 		if (kthread_should_stop()) {
2825 			ext4_clear_request_list();
2826 			goto exit_thread;
2827 		}
2828 	}
2829 
2830 exit_thread:
2831 	/*
2832 	 * It looks like the request list is empty, but we need
2833 	 * to check it under the li_list_mtx lock, to prevent any
2834 	 * additions into it, and of course we should lock ext4_li_mtx
2835 	 * to atomically free the list and ext4_li_info, because at
2836 	 * this point another ext4 filesystem could be registering
2837 	 * new one.
2838 	 */
2839 	mutex_lock(&ext4_li_mtx);
2840 	mutex_lock(&eli->li_list_mtx);
2841 	if (!list_empty(&eli->li_request_list)) {
2842 		mutex_unlock(&eli->li_list_mtx);
2843 		mutex_unlock(&ext4_li_mtx);
2844 		goto cont_thread;
2845 	}
2846 	mutex_unlock(&eli->li_list_mtx);
2847 	kfree(ext4_li_info);
2848 	ext4_li_info = NULL;
2849 	mutex_unlock(&ext4_li_mtx);
2850 
2851 	return 0;
2852 }
2853 
ext4_clear_request_list(void)2854 static void ext4_clear_request_list(void)
2855 {
2856 	struct list_head *pos, *n;
2857 	struct ext4_li_request *elr;
2858 
2859 	mutex_lock(&ext4_li_info->li_list_mtx);
2860 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2861 		elr = list_entry(pos, struct ext4_li_request,
2862 				 lr_request);
2863 		ext4_remove_li_request(elr);
2864 	}
2865 	mutex_unlock(&ext4_li_info->li_list_mtx);
2866 }
2867 
ext4_run_lazyinit_thread(void)2868 static int ext4_run_lazyinit_thread(void)
2869 {
2870 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2871 					 ext4_li_info, "ext4lazyinit");
2872 	if (IS_ERR(ext4_lazyinit_task)) {
2873 		int err = PTR_ERR(ext4_lazyinit_task);
2874 		ext4_clear_request_list();
2875 		kfree(ext4_li_info);
2876 		ext4_li_info = NULL;
2877 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2878 				 "initialization thread\n",
2879 				 err);
2880 		return err;
2881 	}
2882 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2883 	return 0;
2884 }
2885 
2886 /*
2887  * Check whether it make sense to run itable init. thread or not.
2888  * If there is at least one uninitialized inode table, return
2889  * corresponding group number, else the loop goes through all
2890  * groups and return total number of groups.
2891  */
ext4_has_uninit_itable(struct super_block * sb)2892 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2893 {
2894 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2895 	struct ext4_group_desc *gdp = NULL;
2896 
2897 	if (!ext4_has_group_desc_csum(sb))
2898 		return ngroups;
2899 
2900 	for (group = 0; group < ngroups; group++) {
2901 		gdp = ext4_get_group_desc(sb, group, NULL);
2902 		if (!gdp)
2903 			continue;
2904 
2905 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2906 			break;
2907 	}
2908 
2909 	return group;
2910 }
2911 
ext4_li_info_new(void)2912 static int ext4_li_info_new(void)
2913 {
2914 	struct ext4_lazy_init *eli = NULL;
2915 
2916 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2917 	if (!eli)
2918 		return -ENOMEM;
2919 
2920 	INIT_LIST_HEAD(&eli->li_request_list);
2921 	mutex_init(&eli->li_list_mtx);
2922 
2923 	eli->li_state |= EXT4_LAZYINIT_QUIT;
2924 
2925 	ext4_li_info = eli;
2926 
2927 	return 0;
2928 }
2929 
ext4_li_request_new(struct super_block * sb,ext4_group_t start)2930 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2931 					    ext4_group_t start)
2932 {
2933 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2934 	struct ext4_li_request *elr;
2935 
2936 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2937 	if (!elr)
2938 		return NULL;
2939 
2940 	elr->lr_super = sb;
2941 	elr->lr_sbi = sbi;
2942 	elr->lr_next_group = start;
2943 
2944 	/*
2945 	 * Randomize first schedule time of the request to
2946 	 * spread the inode table initialization requests
2947 	 * better.
2948 	 */
2949 	elr->lr_next_sched = jiffies + (prandom_u32() %
2950 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
2951 	return elr;
2952 }
2953 
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)2954 int ext4_register_li_request(struct super_block *sb,
2955 			     ext4_group_t first_not_zeroed)
2956 {
2957 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2958 	struct ext4_li_request *elr = NULL;
2959 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2960 	int ret = 0;
2961 
2962 	mutex_lock(&ext4_li_mtx);
2963 	if (sbi->s_li_request != NULL) {
2964 		/*
2965 		 * Reset timeout so it can be computed again, because
2966 		 * s_li_wait_mult might have changed.
2967 		 */
2968 		sbi->s_li_request->lr_timeout = 0;
2969 		goto out;
2970 	}
2971 
2972 	if (first_not_zeroed == ngroups ||
2973 	    (sb->s_flags & MS_RDONLY) ||
2974 	    !test_opt(sb, INIT_INODE_TABLE))
2975 		goto out;
2976 
2977 	elr = ext4_li_request_new(sb, first_not_zeroed);
2978 	if (!elr) {
2979 		ret = -ENOMEM;
2980 		goto out;
2981 	}
2982 
2983 	if (NULL == ext4_li_info) {
2984 		ret = ext4_li_info_new();
2985 		if (ret)
2986 			goto out;
2987 	}
2988 
2989 	mutex_lock(&ext4_li_info->li_list_mtx);
2990 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2991 	mutex_unlock(&ext4_li_info->li_list_mtx);
2992 
2993 	sbi->s_li_request = elr;
2994 	/*
2995 	 * set elr to NULL here since it has been inserted to
2996 	 * the request_list and the removal and free of it is
2997 	 * handled by ext4_clear_request_list from now on.
2998 	 */
2999 	elr = NULL;
3000 
3001 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3002 		ret = ext4_run_lazyinit_thread();
3003 		if (ret)
3004 			goto out;
3005 	}
3006 out:
3007 	mutex_unlock(&ext4_li_mtx);
3008 	if (ret)
3009 		kfree(elr);
3010 	return ret;
3011 }
3012 
3013 /*
3014  * We do not need to lock anything since this is called on
3015  * module unload.
3016  */
ext4_destroy_lazyinit_thread(void)3017 static void ext4_destroy_lazyinit_thread(void)
3018 {
3019 	/*
3020 	 * If thread exited earlier
3021 	 * there's nothing to be done.
3022 	 */
3023 	if (!ext4_li_info || !ext4_lazyinit_task)
3024 		return;
3025 
3026 	kthread_stop(ext4_lazyinit_task);
3027 }
3028 
set_journal_csum_feature_set(struct super_block * sb)3029 static int set_journal_csum_feature_set(struct super_block *sb)
3030 {
3031 	int ret = 1;
3032 	int compat, incompat;
3033 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3034 
3035 	if (ext4_has_metadata_csum(sb)) {
3036 		/* journal checksum v3 */
3037 		compat = 0;
3038 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3039 	} else {
3040 		/* journal checksum v1 */
3041 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3042 		incompat = 0;
3043 	}
3044 
3045 	jbd2_journal_clear_features(sbi->s_journal,
3046 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3047 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3048 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3049 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3050 		ret = jbd2_journal_set_features(sbi->s_journal,
3051 				compat, 0,
3052 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3053 				incompat);
3054 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3055 		ret = jbd2_journal_set_features(sbi->s_journal,
3056 				compat, 0,
3057 				incompat);
3058 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3059 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3060 	} else {
3061 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3062 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3063 	}
3064 
3065 	return ret;
3066 }
3067 
3068 /*
3069  * Note: calculating the overhead so we can be compatible with
3070  * historical BSD practice is quite difficult in the face of
3071  * clusters/bigalloc.  This is because multiple metadata blocks from
3072  * different block group can end up in the same allocation cluster.
3073  * Calculating the exact overhead in the face of clustered allocation
3074  * requires either O(all block bitmaps) in memory or O(number of block
3075  * groups**2) in time.  We will still calculate the superblock for
3076  * older file systems --- and if we come across with a bigalloc file
3077  * system with zero in s_overhead_clusters the estimate will be close to
3078  * correct especially for very large cluster sizes --- but for newer
3079  * file systems, it's better to calculate this figure once at mkfs
3080  * time, and store it in the superblock.  If the superblock value is
3081  * present (even for non-bigalloc file systems), we will use it.
3082  */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3083 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3084 			  char *buf)
3085 {
3086 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3087 	struct ext4_group_desc	*gdp;
3088 	ext4_fsblk_t		first_block, last_block, b;
3089 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3090 	int			s, j, count = 0;
3091 
3092 	if (!ext4_has_feature_bigalloc(sb))
3093 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3094 			sbi->s_itb_per_group + 2);
3095 
3096 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3097 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3098 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3099 	for (i = 0; i < ngroups; i++) {
3100 		gdp = ext4_get_group_desc(sb, i, NULL);
3101 		b = ext4_block_bitmap(sb, gdp);
3102 		if (b >= first_block && b <= last_block) {
3103 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3104 			count++;
3105 		}
3106 		b = ext4_inode_bitmap(sb, gdp);
3107 		if (b >= first_block && b <= last_block) {
3108 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3109 			count++;
3110 		}
3111 		b = ext4_inode_table(sb, gdp);
3112 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3113 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3114 				int c = EXT4_B2C(sbi, b - first_block);
3115 				ext4_set_bit(c, buf);
3116 				count++;
3117 			}
3118 		if (i != grp)
3119 			continue;
3120 		s = 0;
3121 		if (ext4_bg_has_super(sb, grp)) {
3122 			ext4_set_bit(s++, buf);
3123 			count++;
3124 		}
3125 		j = ext4_bg_num_gdb(sb, grp);
3126 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3127 			ext4_error(sb, "Invalid number of block group "
3128 				   "descriptor blocks: %d", j);
3129 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3130 		}
3131 		count += j;
3132 		for (; j > 0; j--)
3133 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3134 	}
3135 	if (!count)
3136 		return 0;
3137 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3138 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3139 }
3140 
3141 /*
3142  * Compute the overhead and stash it in sbi->s_overhead
3143  */
ext4_calculate_overhead(struct super_block * sb)3144 int ext4_calculate_overhead(struct super_block *sb)
3145 {
3146 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3147 	struct ext4_super_block *es = sbi->s_es;
3148 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3149 	ext4_fsblk_t overhead = 0;
3150 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3151 
3152 	if (!buf)
3153 		return -ENOMEM;
3154 
3155 	/*
3156 	 * Compute the overhead (FS structures).  This is constant
3157 	 * for a given filesystem unless the number of block groups
3158 	 * changes so we cache the previous value until it does.
3159 	 */
3160 
3161 	/*
3162 	 * All of the blocks before first_data_block are overhead
3163 	 */
3164 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3165 
3166 	/*
3167 	 * Add the overhead found in each block group
3168 	 */
3169 	for (i = 0; i < ngroups; i++) {
3170 		int blks;
3171 
3172 		blks = count_overhead(sb, i, buf);
3173 		overhead += blks;
3174 		if (blks)
3175 			memset(buf, 0, PAGE_SIZE);
3176 		cond_resched();
3177 	}
3178 	/* Add the internal journal blocks as well */
3179 	if (sbi->s_journal && !sbi->journal_bdev)
3180 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3181 
3182 	sbi->s_overhead = overhead;
3183 	smp_wmb();
3184 	free_page((unsigned long) buf);
3185 	return 0;
3186 }
3187 
ext4_clamp_want_extra_isize(struct super_block * sb)3188 static void ext4_clamp_want_extra_isize(struct super_block *sb)
3189 {
3190 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3191 	struct ext4_super_block *es = sbi->s_es;
3192 	unsigned def_extra_isize = sizeof(struct ext4_inode) -
3193 						EXT4_GOOD_OLD_INODE_SIZE;
3194 
3195 	if (sbi->s_inode_size == EXT4_GOOD_OLD_INODE_SIZE) {
3196 		sbi->s_want_extra_isize = 0;
3197 		return;
3198 	}
3199 	if (sbi->s_want_extra_isize < 4) {
3200 		sbi->s_want_extra_isize = def_extra_isize;
3201 		if (ext4_has_feature_extra_isize(sb)) {
3202 			if (sbi->s_want_extra_isize <
3203 			    le16_to_cpu(es->s_want_extra_isize))
3204 				sbi->s_want_extra_isize =
3205 					le16_to_cpu(es->s_want_extra_isize);
3206 			if (sbi->s_want_extra_isize <
3207 			    le16_to_cpu(es->s_min_extra_isize))
3208 				sbi->s_want_extra_isize =
3209 					le16_to_cpu(es->s_min_extra_isize);
3210 		}
3211 	}
3212 	/* Check if enough inode space is available */
3213 	if ((sbi->s_want_extra_isize > sbi->s_inode_size) ||
3214 	    (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3215 							sbi->s_inode_size)) {
3216 		sbi->s_want_extra_isize = def_extra_isize;
3217 		ext4_msg(sb, KERN_INFO,
3218 			 "required extra inode space not available");
3219 	}
3220 }
3221 
ext4_set_resv_clusters(struct super_block * sb)3222 static void ext4_set_resv_clusters(struct super_block *sb)
3223 {
3224 	ext4_fsblk_t resv_clusters;
3225 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3226 
3227 	/*
3228 	 * There's no need to reserve anything when we aren't using extents.
3229 	 * The space estimates are exact, there are no unwritten extents,
3230 	 * hole punching doesn't need new metadata... This is needed especially
3231 	 * to keep ext2/3 backward compatibility.
3232 	 */
3233 	if (!ext4_has_feature_extents(sb))
3234 		return;
3235 	/*
3236 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3237 	 * This should cover the situations where we can not afford to run
3238 	 * out of space like for example punch hole, or converting
3239 	 * unwritten extents in delalloc path. In most cases such
3240 	 * allocation would require 1, or 2 blocks, higher numbers are
3241 	 * very rare.
3242 	 */
3243 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3244 			 sbi->s_cluster_bits);
3245 
3246 	do_div(resv_clusters, 50);
3247 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3248 
3249 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3250 }
3251 
ext4_fill_super(struct super_block * sb,void * data,int silent)3252 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3253 {
3254 	char *orig_data = kstrdup(data, GFP_KERNEL);
3255 	struct buffer_head *bh, **group_desc;
3256 	struct ext4_super_block *es = NULL;
3257 	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3258 	struct flex_groups **flex_groups;
3259 	ext4_fsblk_t block;
3260 	ext4_fsblk_t sb_block = get_sb_block(&data);
3261 	ext4_fsblk_t logical_sb_block;
3262 	unsigned long offset = 0;
3263 	unsigned long journal_devnum = 0;
3264 	unsigned long def_mount_opts;
3265 	struct inode *root;
3266 	const char *descr;
3267 	int ret = -ENOMEM;
3268 	int blocksize, clustersize;
3269 	unsigned int db_count;
3270 	unsigned int i;
3271 	int needs_recovery, has_huge_files, has_bigalloc;
3272 	__u64 blocks_count;
3273 	int err = 0;
3274 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3275 	ext4_group_t first_not_zeroed;
3276 
3277 	if ((data && !orig_data) || !sbi)
3278 		goto out_free_base;
3279 
3280 	sbi->s_blockgroup_lock =
3281 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3282 	if (!sbi->s_blockgroup_lock)
3283 		goto out_free_base;
3284 
3285 	sb->s_fs_info = sbi;
3286 	sbi->s_sb = sb;
3287 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3288 	sbi->s_sb_block = sb_block;
3289 	if (sb->s_bdev->bd_part)
3290 		sbi->s_sectors_written_start =
3291 			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3292 
3293 	/* Cleanup superblock name */
3294 	strreplace(sb->s_id, '/', '!');
3295 
3296 	/* -EINVAL is default */
3297 	ret = -EINVAL;
3298 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3299 	if (!blocksize) {
3300 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3301 		goto out_fail;
3302 	}
3303 
3304 	/*
3305 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3306 	 * block sizes.  We need to calculate the offset from buffer start.
3307 	 */
3308 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3309 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3310 		offset = do_div(logical_sb_block, blocksize);
3311 	} else {
3312 		logical_sb_block = sb_block;
3313 	}
3314 
3315 	if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3316 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3317 		goto out_fail;
3318 	}
3319 	/*
3320 	 * Note: s_es must be initialized as soon as possible because
3321 	 *       some ext4 macro-instructions depend on its value
3322 	 */
3323 	es = (struct ext4_super_block *) (bh->b_data + offset);
3324 	sbi->s_es = es;
3325 	sb->s_magic = le16_to_cpu(es->s_magic);
3326 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3327 		goto cantfind_ext4;
3328 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3329 
3330 	/* Warn if metadata_csum and gdt_csum are both set. */
3331 	if (ext4_has_feature_metadata_csum(sb) &&
3332 	    ext4_has_feature_gdt_csum(sb))
3333 		ext4_warning(sb, "metadata_csum and uninit_bg are "
3334 			     "redundant flags; please run fsck.");
3335 
3336 	/* Check for a known checksum algorithm */
3337 	if (!ext4_verify_csum_type(sb, es)) {
3338 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3339 			 "unknown checksum algorithm.");
3340 		silent = 1;
3341 		goto cantfind_ext4;
3342 	}
3343 
3344 	/* Load the checksum driver */
3345 	if (ext4_has_feature_metadata_csum(sb)) {
3346 		sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3347 		if (IS_ERR(sbi->s_chksum_driver)) {
3348 			ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3349 			ret = PTR_ERR(sbi->s_chksum_driver);
3350 			sbi->s_chksum_driver = NULL;
3351 			goto failed_mount;
3352 		}
3353 	}
3354 
3355 	/* Check superblock checksum */
3356 	if (!ext4_superblock_csum_verify(sb, es)) {
3357 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3358 			 "invalid superblock checksum.  Run e2fsck?");
3359 		silent = 1;
3360 		ret = -EFSBADCRC;
3361 		goto cantfind_ext4;
3362 	}
3363 
3364 	/* Precompute checksum seed for all metadata */
3365 	if (ext4_has_feature_csum_seed(sb))
3366 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3367 	else if (ext4_has_metadata_csum(sb))
3368 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3369 					       sizeof(es->s_uuid));
3370 
3371 	/* Set defaults before we parse the mount options */
3372 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3373 	set_opt(sb, INIT_INODE_TABLE);
3374 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3375 		set_opt(sb, DEBUG);
3376 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3377 		set_opt(sb, GRPID);
3378 	if (def_mount_opts & EXT4_DEFM_UID16)
3379 		set_opt(sb, NO_UID32);
3380 	/* xattr user namespace & acls are now defaulted on */
3381 	set_opt(sb, XATTR_USER);
3382 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3383 	set_opt(sb, POSIX_ACL);
3384 #endif
3385 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
3386 	if (ext4_has_metadata_csum(sb))
3387 		set_opt(sb, JOURNAL_CHECKSUM);
3388 
3389 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3390 		set_opt(sb, JOURNAL_DATA);
3391 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3392 		set_opt(sb, ORDERED_DATA);
3393 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3394 		set_opt(sb, WRITEBACK_DATA);
3395 
3396 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3397 		set_opt(sb, ERRORS_PANIC);
3398 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3399 		set_opt(sb, ERRORS_CONT);
3400 	else
3401 		set_opt(sb, ERRORS_RO);
3402 	/* block_validity enabled by default; disable with noblock_validity */
3403 	set_opt(sb, BLOCK_VALIDITY);
3404 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3405 		set_opt(sb, DISCARD);
3406 
3407 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3408 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3409 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3410 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3411 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3412 
3413 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3414 		set_opt(sb, BARRIER);
3415 
3416 	/*
3417 	 * enable delayed allocation by default
3418 	 * Use -o nodelalloc to turn it off
3419 	 */
3420 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3421 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3422 		set_opt(sb, DELALLOC);
3423 
3424 	/*
3425 	 * set default s_li_wait_mult for lazyinit, for the case there is
3426 	 * no mount option specified.
3427 	 */
3428 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3429 
3430 	if (sbi->s_es->s_mount_opts[0]) {
3431 		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3432 					      sizeof(sbi->s_es->s_mount_opts),
3433 					      GFP_KERNEL);
3434 		if (!s_mount_opts)
3435 			goto failed_mount;
3436 		if (!parse_options(s_mount_opts, sb, &journal_devnum,
3437 				   &journal_ioprio, 0)) {
3438 			ext4_msg(sb, KERN_WARNING,
3439 				 "failed to parse options in superblock: %s",
3440 				 s_mount_opts);
3441 		}
3442 		kfree(s_mount_opts);
3443 	}
3444 	sbi->s_def_mount_opt = sbi->s_mount_opt;
3445 	if (!parse_options((char *) data, sb, &journal_devnum,
3446 			   &journal_ioprio, 0))
3447 		goto failed_mount;
3448 
3449 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3450 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3451 			    "with data=journal disables delayed "
3452 			    "allocation and O_DIRECT support!\n");
3453 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3454 			ext4_msg(sb, KERN_ERR, "can't mount with "
3455 				 "both data=journal and delalloc");
3456 			goto failed_mount;
3457 		}
3458 		if (test_opt(sb, DIOREAD_NOLOCK)) {
3459 			ext4_msg(sb, KERN_ERR, "can't mount with "
3460 				 "both data=journal and dioread_nolock");
3461 			goto failed_mount;
3462 		}
3463 		if (test_opt(sb, DAX)) {
3464 			ext4_msg(sb, KERN_ERR, "can't mount with "
3465 				 "both data=journal and dax");
3466 			goto failed_mount;
3467 		}
3468 		if (ext4_has_feature_encrypt(sb)) {
3469 			ext4_msg(sb, KERN_WARNING,
3470 				 "encrypted files will use data=ordered "
3471 				 "instead of data journaling mode");
3472 		}
3473 		if (test_opt(sb, DELALLOC))
3474 			clear_opt(sb, DELALLOC);
3475 	} else {
3476 		sb->s_iflags |= SB_I_CGROUPWB;
3477 	}
3478 
3479 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3480 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3481 
3482 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3483 	    (ext4_has_compat_features(sb) ||
3484 	     ext4_has_ro_compat_features(sb) ||
3485 	     ext4_has_incompat_features(sb)))
3486 		ext4_msg(sb, KERN_WARNING,
3487 		       "feature flags set on rev 0 fs, "
3488 		       "running e2fsck is recommended");
3489 
3490 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3491 		set_opt2(sb, HURD_COMPAT);
3492 		if (ext4_has_feature_64bit(sb)) {
3493 			ext4_msg(sb, KERN_ERR,
3494 				 "The Hurd can't support 64-bit file systems");
3495 			goto failed_mount;
3496 		}
3497 	}
3498 
3499 	if (IS_EXT2_SB(sb)) {
3500 		if (ext2_feature_set_ok(sb))
3501 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3502 				 "using the ext4 subsystem");
3503 		else {
3504 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3505 				 "to feature incompatibilities");
3506 			goto failed_mount;
3507 		}
3508 	}
3509 
3510 	if (IS_EXT3_SB(sb)) {
3511 		if (ext3_feature_set_ok(sb))
3512 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3513 				 "using the ext4 subsystem");
3514 		else {
3515 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3516 				 "to feature incompatibilities");
3517 			goto failed_mount;
3518 		}
3519 	}
3520 
3521 	/*
3522 	 * Check feature flags regardless of the revision level, since we
3523 	 * previously didn't change the revision level when setting the flags,
3524 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3525 	 */
3526 	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3527 		goto failed_mount;
3528 
3529 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3530 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3531 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3532 		ext4_msg(sb, KERN_ERR,
3533 		       "Unsupported filesystem blocksize %d (%d log_block_size)",
3534 			 blocksize, le32_to_cpu(es->s_log_block_size));
3535 		goto failed_mount;
3536 	}
3537 	if (le32_to_cpu(es->s_log_block_size) >
3538 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3539 		ext4_msg(sb, KERN_ERR,
3540 			 "Invalid log block size: %u",
3541 			 le32_to_cpu(es->s_log_block_size));
3542 		goto failed_mount;
3543 	}
3544 	if (le32_to_cpu(es->s_log_cluster_size) >
3545 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3546 		ext4_msg(sb, KERN_ERR,
3547 			 "Invalid log cluster size: %u",
3548 			 le32_to_cpu(es->s_log_cluster_size));
3549 		goto failed_mount;
3550 	}
3551 
3552 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3553 		ext4_msg(sb, KERN_ERR,
3554 			 "Number of reserved GDT blocks insanely large: %d",
3555 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3556 		goto failed_mount;
3557 	}
3558 
3559 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3560 		if (blocksize != PAGE_SIZE) {
3561 			ext4_msg(sb, KERN_ERR,
3562 					"error: unsupported blocksize for dax");
3563 			goto failed_mount;
3564 		}
3565 		if (!sb->s_bdev->bd_disk->fops->direct_access) {
3566 			ext4_msg(sb, KERN_ERR,
3567 					"error: device does not support dax");
3568 			goto failed_mount;
3569 		}
3570 	}
3571 
3572 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3573 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3574 			 es->s_encryption_level);
3575 		goto failed_mount;
3576 	}
3577 
3578 	if (sb->s_blocksize != blocksize) {
3579 		/* Validate the filesystem blocksize */
3580 		if (!sb_set_blocksize(sb, blocksize)) {
3581 			ext4_msg(sb, KERN_ERR, "bad block size %d",
3582 					blocksize);
3583 			goto failed_mount;
3584 		}
3585 
3586 		brelse(bh);
3587 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3588 		offset = do_div(logical_sb_block, blocksize);
3589 		bh = sb_bread_unmovable(sb, logical_sb_block);
3590 		if (!bh) {
3591 			ext4_msg(sb, KERN_ERR,
3592 			       "Can't read superblock on 2nd try");
3593 			goto failed_mount;
3594 		}
3595 		es = (struct ext4_super_block *)(bh->b_data + offset);
3596 		sbi->s_es = es;
3597 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3598 			ext4_msg(sb, KERN_ERR,
3599 			       "Magic mismatch, very weird!");
3600 			goto failed_mount;
3601 		}
3602 	}
3603 
3604 	has_huge_files = ext4_has_feature_huge_file(sb);
3605 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3606 						      has_huge_files);
3607 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3608 
3609 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3610 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3611 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3612 	} else {
3613 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3614 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3615 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
3616 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
3617 				 sbi->s_first_ino);
3618 			goto failed_mount;
3619 		}
3620 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3621 		    (!is_power_of_2(sbi->s_inode_size)) ||
3622 		    (sbi->s_inode_size > blocksize)) {
3623 			ext4_msg(sb, KERN_ERR,
3624 			       "unsupported inode size: %d",
3625 			       sbi->s_inode_size);
3626 			goto failed_mount;
3627 		}
3628 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3629 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3630 	}
3631 
3632 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3633 	if (ext4_has_feature_64bit(sb)) {
3634 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3635 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3636 		    !is_power_of_2(sbi->s_desc_size)) {
3637 			ext4_msg(sb, KERN_ERR,
3638 			       "unsupported descriptor size %lu",
3639 			       sbi->s_desc_size);
3640 			goto failed_mount;
3641 		}
3642 	} else
3643 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3644 
3645 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3646 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3647 
3648 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3649 	if (sbi->s_inodes_per_block == 0)
3650 		goto cantfind_ext4;
3651 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3652 	    sbi->s_inodes_per_group > blocksize * 8) {
3653 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3654 			 sbi->s_inodes_per_group);
3655 		goto failed_mount;
3656 	}
3657 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3658 					sbi->s_inodes_per_block;
3659 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3660 	sbi->s_sbh = bh;
3661 	sbi->s_mount_state = le16_to_cpu(es->s_state);
3662 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3663 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3664 
3665 	for (i = 0; i < 4; i++)
3666 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3667 	sbi->s_def_hash_version = es->s_def_hash_version;
3668 	if (ext4_has_feature_dir_index(sb)) {
3669 		i = le32_to_cpu(es->s_flags);
3670 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
3671 			sbi->s_hash_unsigned = 3;
3672 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3673 #ifdef __CHAR_UNSIGNED__
3674 			if (!(sb->s_flags & MS_RDONLY))
3675 				es->s_flags |=
3676 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3677 			sbi->s_hash_unsigned = 3;
3678 #else
3679 			if (!(sb->s_flags & MS_RDONLY))
3680 				es->s_flags |=
3681 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3682 #endif
3683 		}
3684 	}
3685 
3686 	/* Handle clustersize */
3687 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3688 	has_bigalloc = ext4_has_feature_bigalloc(sb);
3689 	if (has_bigalloc) {
3690 		if (clustersize < blocksize) {
3691 			ext4_msg(sb, KERN_ERR,
3692 				 "cluster size (%d) smaller than "
3693 				 "block size (%d)", clustersize, blocksize);
3694 			goto failed_mount;
3695 		}
3696 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3697 			le32_to_cpu(es->s_log_block_size);
3698 		sbi->s_clusters_per_group =
3699 			le32_to_cpu(es->s_clusters_per_group);
3700 		if (sbi->s_clusters_per_group > blocksize * 8) {
3701 			ext4_msg(sb, KERN_ERR,
3702 				 "#clusters per group too big: %lu",
3703 				 sbi->s_clusters_per_group);
3704 			goto failed_mount;
3705 		}
3706 		if (sbi->s_blocks_per_group !=
3707 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3708 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3709 				 "clusters per group (%lu) inconsistent",
3710 				 sbi->s_blocks_per_group,
3711 				 sbi->s_clusters_per_group);
3712 			goto failed_mount;
3713 		}
3714 	} else {
3715 		if (clustersize != blocksize) {
3716 			ext4_msg(sb, KERN_ERR,
3717 				 "fragment/cluster size (%d) != "
3718 				 "block size (%d)", clustersize, blocksize);
3719 			goto failed_mount;
3720 		}
3721 		if (sbi->s_blocks_per_group > blocksize * 8) {
3722 			ext4_msg(sb, KERN_ERR,
3723 				 "#blocks per group too big: %lu",
3724 				 sbi->s_blocks_per_group);
3725 			goto failed_mount;
3726 		}
3727 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3728 		sbi->s_cluster_bits = 0;
3729 	}
3730 	sbi->s_cluster_ratio = clustersize / blocksize;
3731 
3732 	/* Do we have standard group size of clustersize * 8 blocks ? */
3733 	if (sbi->s_blocks_per_group == clustersize << 3)
3734 		set_opt2(sb, STD_GROUP_SIZE);
3735 
3736 	/*
3737 	 * Test whether we have more sectors than will fit in sector_t,
3738 	 * and whether the max offset is addressable by the page cache.
3739 	 */
3740 	err = generic_check_addressable(sb->s_blocksize_bits,
3741 					ext4_blocks_count(es));
3742 	if (err) {
3743 		ext4_msg(sb, KERN_ERR, "filesystem"
3744 			 " too large to mount safely on this system");
3745 		if (sizeof(sector_t) < 8)
3746 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3747 		goto failed_mount;
3748 	}
3749 
3750 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3751 		goto cantfind_ext4;
3752 
3753 	/* check blocks count against device size */
3754 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3755 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3756 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3757 		       "exceeds size of device (%llu blocks)",
3758 		       ext4_blocks_count(es), blocks_count);
3759 		goto failed_mount;
3760 	}
3761 
3762 	/*
3763 	 * It makes no sense for the first data block to be beyond the end
3764 	 * of the filesystem.
3765 	 */
3766 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3767 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3768 			 "block %u is beyond end of filesystem (%llu)",
3769 			 le32_to_cpu(es->s_first_data_block),
3770 			 ext4_blocks_count(es));
3771 		goto failed_mount;
3772 	}
3773 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
3774 	    (sbi->s_cluster_ratio == 1)) {
3775 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3776 			 "block is 0 with a 1k block and cluster size");
3777 		goto failed_mount;
3778 	}
3779 
3780 	blocks_count = (ext4_blocks_count(es) -
3781 			le32_to_cpu(es->s_first_data_block) +
3782 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3783 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3784 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3785 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
3786 		       "(block count %llu, first data block %u, "
3787 		       "blocks per group %lu)", blocks_count,
3788 		       ext4_blocks_count(es),
3789 		       le32_to_cpu(es->s_first_data_block),
3790 		       EXT4_BLOCKS_PER_GROUP(sb));
3791 		goto failed_mount;
3792 	}
3793 	sbi->s_groups_count = blocks_count;
3794 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3795 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3796 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
3797 	    le32_to_cpu(es->s_inodes_count)) {
3798 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
3799 			 le32_to_cpu(es->s_inodes_count),
3800 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
3801 		ret = -EINVAL;
3802 		goto failed_mount;
3803 	}
3804 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3805 		   EXT4_DESC_PER_BLOCK(sb);
3806 	if (ext4_has_feature_meta_bg(sb)) {
3807 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3808 			ext4_msg(sb, KERN_WARNING,
3809 				 "first meta block group too large: %u "
3810 				 "(group descriptor block count %u)",
3811 				 le32_to_cpu(es->s_first_meta_bg), db_count);
3812 			goto failed_mount;
3813 		}
3814 	}
3815 	rcu_assign_pointer(sbi->s_group_desc,
3816 			   ext4_kvmalloc(db_count *
3817 					  sizeof(struct buffer_head *),
3818 					  GFP_KERNEL));
3819 	if (sbi->s_group_desc == NULL) {
3820 		ext4_msg(sb, KERN_ERR, "not enough memory");
3821 		ret = -ENOMEM;
3822 		goto failed_mount;
3823 	}
3824 
3825 	bgl_lock_init(sbi->s_blockgroup_lock);
3826 
3827 	for (i = 0; i < db_count; i++) {
3828 		struct buffer_head *bh;
3829 
3830 		block = descriptor_loc(sb, logical_sb_block, i);
3831 		bh = sb_bread_unmovable(sb, block);
3832 		if (!bh) {
3833 			ext4_msg(sb, KERN_ERR,
3834 			       "can't read group descriptor %d", i);
3835 			db_count = i;
3836 			goto failed_mount2;
3837 		}
3838 		rcu_read_lock();
3839 		rcu_dereference(sbi->s_group_desc)[i] = bh;
3840 		rcu_read_unlock();
3841 	}
3842 	sbi->s_gdb_count = db_count;
3843 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3844 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3845 		ret = -EFSCORRUPTED;
3846 		goto failed_mount2;
3847 	}
3848 
3849 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3850 	spin_lock_init(&sbi->s_next_gen_lock);
3851 
3852 	setup_timer(&sbi->s_err_report, print_daily_error_info,
3853 		(unsigned long) sb);
3854 
3855 	/* Register extent status tree shrinker */
3856 	if (ext4_es_register_shrinker(sbi))
3857 		goto failed_mount3;
3858 
3859 	sbi->s_stripe = ext4_get_stripe_size(sbi);
3860 	sbi->s_extent_max_zeroout_kb = 32;
3861 
3862 	/*
3863 	 * set up enough so that it can read an inode
3864 	 */
3865 	sb->s_op = &ext4_sops;
3866 	sb->s_export_op = &ext4_export_ops;
3867 	sb->s_xattr = ext4_xattr_handlers;
3868 #ifdef CONFIG_QUOTA
3869 	sb->dq_op = &ext4_quota_operations;
3870 	if (ext4_has_feature_quota(sb))
3871 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
3872 	else
3873 		sb->s_qcop = &ext4_qctl_operations;
3874 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
3875 #endif
3876 	memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3877 
3878 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3879 	mutex_init(&sbi->s_orphan_lock);
3880 
3881 	sb->s_root = NULL;
3882 
3883 	needs_recovery = (es->s_last_orphan != 0 ||
3884 			  ext4_has_feature_journal_needs_recovery(sb));
3885 
3886 	if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3887 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3888 			goto failed_mount3a;
3889 
3890 	/*
3891 	 * The first inode we look at is the journal inode.  Don't try
3892 	 * root first: it may be modified in the journal!
3893 	 */
3894 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3895 		err = ext4_load_journal(sb, es, journal_devnum);
3896 		if (err)
3897 			goto failed_mount3a;
3898 	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3899 		   ext4_has_feature_journal_needs_recovery(sb)) {
3900 		ext4_msg(sb, KERN_ERR, "required journal recovery "
3901 		       "suppressed and not mounted read-only");
3902 		goto failed_mount_wq;
3903 	} else {
3904 		/* Nojournal mode, all journal mount options are illegal */
3905 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3906 			ext4_msg(sb, KERN_ERR, "can't mount with "
3907 				 "journal_checksum, fs mounted w/o journal");
3908 			goto failed_mount_wq;
3909 		}
3910 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3911 			ext4_msg(sb, KERN_ERR, "can't mount with "
3912 				 "journal_async_commit, fs mounted w/o journal");
3913 			goto failed_mount_wq;
3914 		}
3915 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3916 			ext4_msg(sb, KERN_ERR, "can't mount with "
3917 				 "commit=%lu, fs mounted w/o journal",
3918 				 sbi->s_commit_interval / HZ);
3919 			goto failed_mount_wq;
3920 		}
3921 		if (EXT4_MOUNT_DATA_FLAGS &
3922 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3923 			ext4_msg(sb, KERN_ERR, "can't mount with "
3924 				 "data=, fs mounted w/o journal");
3925 			goto failed_mount_wq;
3926 		}
3927 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
3928 		clear_opt(sb, JOURNAL_CHECKSUM);
3929 		clear_opt(sb, DATA_FLAGS);
3930 		sbi->s_journal = NULL;
3931 		needs_recovery = 0;
3932 		goto no_journal;
3933 	}
3934 
3935 	if (ext4_has_feature_64bit(sb) &&
3936 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3937 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
3938 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3939 		goto failed_mount_wq;
3940 	}
3941 
3942 	if (!set_journal_csum_feature_set(sb)) {
3943 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3944 			 "feature set");
3945 		goto failed_mount_wq;
3946 	}
3947 
3948 	/* We have now updated the journal if required, so we can
3949 	 * validate the data journaling mode. */
3950 	switch (test_opt(sb, DATA_FLAGS)) {
3951 	case 0:
3952 		/* No mode set, assume a default based on the journal
3953 		 * capabilities: ORDERED_DATA if the journal can
3954 		 * cope, else JOURNAL_DATA
3955 		 */
3956 		if (jbd2_journal_check_available_features
3957 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3958 			set_opt(sb, ORDERED_DATA);
3959 		else
3960 			set_opt(sb, JOURNAL_DATA);
3961 		break;
3962 
3963 	case EXT4_MOUNT_ORDERED_DATA:
3964 	case EXT4_MOUNT_WRITEBACK_DATA:
3965 		if (!jbd2_journal_check_available_features
3966 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3967 			ext4_msg(sb, KERN_ERR, "Journal does not support "
3968 			       "requested data journaling mode");
3969 			goto failed_mount_wq;
3970 		}
3971 	default:
3972 		break;
3973 	}
3974 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3975 
3976 	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3977 
3978 no_journal:
3979 	if (ext4_mballoc_ready) {
3980 		sbi->s_mb_cache = ext4_xattr_create_cache();
3981 		if (!sbi->s_mb_cache) {
3982 			ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
3983 			goto failed_mount_wq;
3984 		}
3985 	}
3986 
3987 	if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
3988 	    (blocksize != PAGE_CACHE_SIZE)) {
3989 		ext4_msg(sb, KERN_ERR,
3990 			 "Unsupported blocksize for fs encryption");
3991 		goto failed_mount_wq;
3992 	}
3993 
3994 	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
3995 	    !ext4_has_feature_encrypt(sb)) {
3996 		ext4_set_feature_encrypt(sb);
3997 		ext4_commit_super(sb, 1);
3998 	}
3999 
4000 	/*
4001 	 * Get the # of file system overhead blocks from the
4002 	 * superblock if present.
4003 	 */
4004 	if (es->s_overhead_clusters)
4005 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4006 	else {
4007 		err = ext4_calculate_overhead(sb);
4008 		if (err)
4009 			goto failed_mount_wq;
4010 	}
4011 
4012 	/*
4013 	 * The maximum number of concurrent works can be high and
4014 	 * concurrency isn't really necessary.  Limit it to 1.
4015 	 */
4016 	EXT4_SB(sb)->rsv_conversion_wq =
4017 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4018 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4019 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4020 		ret = -ENOMEM;
4021 		goto failed_mount4;
4022 	}
4023 
4024 	/*
4025 	 * The jbd2_journal_load will have done any necessary log recovery,
4026 	 * so we can safely mount the rest of the filesystem now.
4027 	 */
4028 
4029 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4030 	if (IS_ERR(root)) {
4031 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4032 		ret = PTR_ERR(root);
4033 		root = NULL;
4034 		goto failed_mount4;
4035 	}
4036 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4037 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4038 		iput(root);
4039 		goto failed_mount4;
4040 	}
4041 	sb->s_root = d_make_root(root);
4042 	if (!sb->s_root) {
4043 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4044 		ret = -ENOMEM;
4045 		goto failed_mount4;
4046 	}
4047 
4048 	if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4049 		sb->s_flags |= MS_RDONLY;
4050 
4051 	ext4_clamp_want_extra_isize(sb);
4052 
4053 	ext4_set_resv_clusters(sb);
4054 
4055 	err = ext4_setup_system_zone(sb);
4056 	if (err) {
4057 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
4058 			 "zone (%d)", err);
4059 		goto failed_mount4a;
4060 	}
4061 
4062 	ext4_ext_init(sb);
4063 	err = ext4_mb_init(sb);
4064 	if (err) {
4065 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4066 			 err);
4067 		goto failed_mount5;
4068 	}
4069 
4070 	block = ext4_count_free_clusters(sb);
4071 	ext4_free_blocks_count_set(sbi->s_es,
4072 				   EXT4_C2B(sbi, block));
4073 	ext4_superblock_csum_set(sb);
4074 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4075 				  GFP_KERNEL);
4076 	if (!err) {
4077 		unsigned long freei = ext4_count_free_inodes(sb);
4078 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4079 		ext4_superblock_csum_set(sb);
4080 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4081 					  GFP_KERNEL);
4082 	}
4083 	if (!err)
4084 		err = percpu_counter_init(&sbi->s_dirs_counter,
4085 					  ext4_count_dirs(sb), GFP_KERNEL);
4086 	if (!err)
4087 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4088 					  GFP_KERNEL);
4089 	if (err) {
4090 		ext4_msg(sb, KERN_ERR, "insufficient memory");
4091 		goto failed_mount6;
4092 	}
4093 
4094 	if (ext4_has_feature_flex_bg(sb))
4095 		if (!ext4_fill_flex_info(sb)) {
4096 			ext4_msg(sb, KERN_ERR,
4097 			       "unable to initialize "
4098 			       "flex_bg meta info!");
4099 			goto failed_mount6;
4100 		}
4101 
4102 	err = ext4_register_li_request(sb, first_not_zeroed);
4103 	if (err)
4104 		goto failed_mount6;
4105 
4106 	err = ext4_register_sysfs(sb);
4107 	if (err)
4108 		goto failed_mount7;
4109 
4110 #ifdef CONFIG_QUOTA
4111 	/* Enable quota usage during mount. */
4112 	if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
4113 		err = ext4_enable_quotas(sb);
4114 		if (err)
4115 			goto failed_mount8;
4116 	}
4117 #endif  /* CONFIG_QUOTA */
4118 
4119 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4120 	ext4_orphan_cleanup(sb, es);
4121 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4122 	if (needs_recovery) {
4123 		ext4_msg(sb, KERN_INFO, "recovery complete");
4124 		ext4_mark_recovery_complete(sb, es);
4125 	}
4126 	if (EXT4_SB(sb)->s_journal) {
4127 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4128 			descr = " journalled data mode";
4129 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4130 			descr = " ordered data mode";
4131 		else
4132 			descr = " writeback data mode";
4133 	} else
4134 		descr = "out journal";
4135 
4136 	if (test_opt(sb, DISCARD)) {
4137 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4138 		if (!blk_queue_discard(q))
4139 			ext4_msg(sb, KERN_WARNING,
4140 				 "mounting with \"discard\" option, but "
4141 				 "the device does not support discard");
4142 	}
4143 
4144 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4145 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4146 			 "Opts: %.*s%s%s", descr,
4147 			 (int) sizeof(sbi->s_es->s_mount_opts),
4148 			 sbi->s_es->s_mount_opts,
4149 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4150 
4151 	if (es->s_error_count)
4152 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4153 
4154 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4155 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4156 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4157 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4158 
4159 	kfree(orig_data);
4160 	return 0;
4161 
4162 cantfind_ext4:
4163 	if (!silent)
4164 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4165 	goto failed_mount;
4166 
4167 #ifdef CONFIG_QUOTA
4168 failed_mount8:
4169 	ext4_unregister_sysfs(sb);
4170 	kobject_put(&sbi->s_kobj);
4171 #endif
4172 failed_mount7:
4173 	ext4_unregister_li_request(sb);
4174 failed_mount6:
4175 	ext4_mb_release(sb);
4176 	rcu_read_lock();
4177 	flex_groups = rcu_dereference(sbi->s_flex_groups);
4178 	if (flex_groups) {
4179 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
4180 			kvfree(flex_groups[i]);
4181 		kvfree(flex_groups);
4182 	}
4183 	rcu_read_unlock();
4184 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
4185 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
4186 	percpu_counter_destroy(&sbi->s_dirs_counter);
4187 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4188 failed_mount5:
4189 	ext4_ext_release(sb);
4190 	ext4_release_system_zone(sb);
4191 failed_mount4a:
4192 	dput(sb->s_root);
4193 	sb->s_root = NULL;
4194 failed_mount4:
4195 	ext4_msg(sb, KERN_ERR, "mount failed");
4196 	if (EXT4_SB(sb)->rsv_conversion_wq)
4197 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4198 failed_mount_wq:
4199 	if (sbi->s_mb_cache) {
4200 		ext4_xattr_destroy_cache(sbi->s_mb_cache);
4201 		sbi->s_mb_cache = NULL;
4202 	}
4203 	if (sbi->s_journal) {
4204 		jbd2_journal_destroy(sbi->s_journal);
4205 		sbi->s_journal = NULL;
4206 	}
4207 failed_mount3a:
4208 	ext4_es_unregister_shrinker(sbi);
4209 failed_mount3:
4210 	del_timer_sync(&sbi->s_err_report);
4211 	if (sbi->s_mmp_tsk)
4212 		kthread_stop(sbi->s_mmp_tsk);
4213 failed_mount2:
4214 	rcu_read_lock();
4215 	group_desc = rcu_dereference(sbi->s_group_desc);
4216 	for (i = 0; i < db_count; i++)
4217 		brelse(group_desc[i]);
4218 	kvfree(group_desc);
4219 	rcu_read_unlock();
4220 failed_mount:
4221 	if (sbi->s_chksum_driver)
4222 		crypto_free_shash(sbi->s_chksum_driver);
4223 #ifdef CONFIG_QUOTA
4224 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4225 		kfree(sbi->s_qf_names[i]);
4226 #endif
4227 	ext4_blkdev_remove(sbi);
4228 	brelse(bh);
4229 out_fail:
4230 	sb->s_fs_info = NULL;
4231 	kfree(sbi->s_blockgroup_lock);
4232 out_free_base:
4233 	kfree(sbi);
4234 	kfree(orig_data);
4235 	return err ? err : ret;
4236 }
4237 
4238 /*
4239  * Setup any per-fs journal parameters now.  We'll do this both on
4240  * initial mount, once the journal has been initialised but before we've
4241  * done any recovery; and again on any subsequent remount.
4242  */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)4243 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4244 {
4245 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4246 
4247 	journal->j_commit_interval = sbi->s_commit_interval;
4248 	journal->j_min_batch_time = sbi->s_min_batch_time;
4249 	journal->j_max_batch_time = sbi->s_max_batch_time;
4250 
4251 	write_lock(&journal->j_state_lock);
4252 	if (test_opt(sb, BARRIER))
4253 		journal->j_flags |= JBD2_BARRIER;
4254 	else
4255 		journal->j_flags &= ~JBD2_BARRIER;
4256 	if (test_opt(sb, DATA_ERR_ABORT))
4257 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4258 	else
4259 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4260 	write_unlock(&journal->j_state_lock);
4261 }
4262 
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)4263 static journal_t *ext4_get_journal(struct super_block *sb,
4264 				   unsigned int journal_inum)
4265 {
4266 	struct inode *journal_inode;
4267 	journal_t *journal;
4268 
4269 	BUG_ON(!ext4_has_feature_journal(sb));
4270 
4271 	/*
4272 	 * Test for the existence of a valid inode on disk.  Bad things
4273 	 * happen if we iget() an unused inode, as the subsequent iput()
4274 	 * will try to delete it.
4275 	 */
4276 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4277 	if (IS_ERR(journal_inode)) {
4278 		ext4_msg(sb, KERN_ERR, "no journal found");
4279 		return NULL;
4280 	}
4281 	if (!journal_inode->i_nlink) {
4282 		make_bad_inode(journal_inode);
4283 		iput(journal_inode);
4284 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4285 		return NULL;
4286 	}
4287 
4288 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4289 		  journal_inode, journal_inode->i_size);
4290 	if (!S_ISREG(journal_inode->i_mode)) {
4291 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
4292 		iput(journal_inode);
4293 		return NULL;
4294 	}
4295 
4296 	journal = jbd2_journal_init_inode(journal_inode);
4297 	if (!journal) {
4298 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4299 		iput(journal_inode);
4300 		return NULL;
4301 	}
4302 	journal->j_private = sb;
4303 	ext4_init_journal_params(sb, journal);
4304 	return journal;
4305 }
4306 
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)4307 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4308 				       dev_t j_dev)
4309 {
4310 	struct buffer_head *bh;
4311 	journal_t *journal;
4312 	ext4_fsblk_t start;
4313 	ext4_fsblk_t len;
4314 	int hblock, blocksize;
4315 	ext4_fsblk_t sb_block;
4316 	unsigned long offset;
4317 	struct ext4_super_block *es;
4318 	struct block_device *bdev;
4319 
4320 	BUG_ON(!ext4_has_feature_journal(sb));
4321 
4322 	bdev = ext4_blkdev_get(j_dev, sb);
4323 	if (bdev == NULL)
4324 		return NULL;
4325 
4326 	blocksize = sb->s_blocksize;
4327 	hblock = bdev_logical_block_size(bdev);
4328 	if (blocksize < hblock) {
4329 		ext4_msg(sb, KERN_ERR,
4330 			"blocksize too small for journal device");
4331 		goto out_bdev;
4332 	}
4333 
4334 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4335 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4336 	set_blocksize(bdev, blocksize);
4337 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
4338 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4339 		       "external journal");
4340 		goto out_bdev;
4341 	}
4342 
4343 	es = (struct ext4_super_block *) (bh->b_data + offset);
4344 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4345 	    !(le32_to_cpu(es->s_feature_incompat) &
4346 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4347 		ext4_msg(sb, KERN_ERR, "external journal has "
4348 					"bad superblock");
4349 		brelse(bh);
4350 		goto out_bdev;
4351 	}
4352 
4353 	if ((le32_to_cpu(es->s_feature_ro_compat) &
4354 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4355 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
4356 		ext4_msg(sb, KERN_ERR, "external journal has "
4357 				       "corrupt superblock");
4358 		brelse(bh);
4359 		goto out_bdev;
4360 	}
4361 
4362 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4363 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4364 		brelse(bh);
4365 		goto out_bdev;
4366 	}
4367 
4368 	len = ext4_blocks_count(es);
4369 	start = sb_block + 1;
4370 	brelse(bh);	/* we're done with the superblock */
4371 
4372 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4373 					start, len, blocksize);
4374 	if (!journal) {
4375 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
4376 		goto out_bdev;
4377 	}
4378 	journal->j_private = sb;
4379 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4380 	wait_on_buffer(journal->j_sb_buffer);
4381 	if (!buffer_uptodate(journal->j_sb_buffer)) {
4382 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4383 		goto out_journal;
4384 	}
4385 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4386 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4387 					"user (unsupported) - %d",
4388 			be32_to_cpu(journal->j_superblock->s_nr_users));
4389 		goto out_journal;
4390 	}
4391 	EXT4_SB(sb)->journal_bdev = bdev;
4392 	ext4_init_journal_params(sb, journal);
4393 	return journal;
4394 
4395 out_journal:
4396 	jbd2_journal_destroy(journal);
4397 out_bdev:
4398 	ext4_blkdev_put(bdev);
4399 	return NULL;
4400 }
4401 
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)4402 static int ext4_load_journal(struct super_block *sb,
4403 			     struct ext4_super_block *es,
4404 			     unsigned long journal_devnum)
4405 {
4406 	journal_t *journal;
4407 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4408 	dev_t journal_dev;
4409 	int err = 0;
4410 	int really_read_only;
4411 
4412 	BUG_ON(!ext4_has_feature_journal(sb));
4413 
4414 	if (journal_devnum &&
4415 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4416 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4417 			"numbers have changed");
4418 		journal_dev = new_decode_dev(journal_devnum);
4419 	} else
4420 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4421 
4422 	really_read_only = bdev_read_only(sb->s_bdev);
4423 
4424 	/*
4425 	 * Are we loading a blank journal or performing recovery after a
4426 	 * crash?  For recovery, we need to check in advance whether we
4427 	 * can get read-write access to the device.
4428 	 */
4429 	if (ext4_has_feature_journal_needs_recovery(sb)) {
4430 		if (sb->s_flags & MS_RDONLY) {
4431 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4432 					"required on readonly filesystem");
4433 			if (really_read_only) {
4434 				ext4_msg(sb, KERN_ERR, "write access "
4435 					"unavailable, cannot proceed");
4436 				return -EROFS;
4437 			}
4438 			ext4_msg(sb, KERN_INFO, "write access will "
4439 			       "be enabled during recovery");
4440 		}
4441 	}
4442 
4443 	if (journal_inum && journal_dev) {
4444 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4445 		       "and inode journals!");
4446 		return -EINVAL;
4447 	}
4448 
4449 	if (journal_inum) {
4450 		if (!(journal = ext4_get_journal(sb, journal_inum)))
4451 			return -EINVAL;
4452 	} else {
4453 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4454 			return -EINVAL;
4455 	}
4456 
4457 	if (!(journal->j_flags & JBD2_BARRIER))
4458 		ext4_msg(sb, KERN_INFO, "barriers disabled");
4459 
4460 	if (!ext4_has_feature_journal_needs_recovery(sb))
4461 		err = jbd2_journal_wipe(journal, !really_read_only);
4462 	if (!err) {
4463 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4464 		if (save)
4465 			memcpy(save, ((char *) es) +
4466 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4467 		err = jbd2_journal_load(journal);
4468 		if (save)
4469 			memcpy(((char *) es) + EXT4_S_ERR_START,
4470 			       save, EXT4_S_ERR_LEN);
4471 		kfree(save);
4472 	}
4473 
4474 	if (err) {
4475 		ext4_msg(sb, KERN_ERR, "error loading journal");
4476 		jbd2_journal_destroy(journal);
4477 		return err;
4478 	}
4479 
4480 	EXT4_SB(sb)->s_journal = journal;
4481 	ext4_clear_journal_err(sb, es);
4482 
4483 	if (!really_read_only && journal_devnum &&
4484 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4485 		es->s_journal_dev = cpu_to_le32(journal_devnum);
4486 
4487 		/* Make sure we flush the recovery flag to disk. */
4488 		ext4_commit_super(sb, 1);
4489 	}
4490 
4491 	return 0;
4492 }
4493 
ext4_commit_super(struct super_block * sb,int sync)4494 static int ext4_commit_super(struct super_block *sb, int sync)
4495 {
4496 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4497 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4498 	int error = 0;
4499 
4500 	if (!sbh)
4501 		return -EINVAL;
4502 	if (block_device_ejected(sb))
4503 		return -ENODEV;
4504 
4505 	/*
4506 	 * The superblock bh should be mapped, but it might not be if the
4507 	 * device was hot-removed. Not much we can do but fail the I/O.
4508 	 */
4509 	if (!buffer_mapped(sbh))
4510 		return error;
4511 
4512 	if (buffer_write_io_error(sbh)) {
4513 		/*
4514 		 * Oh, dear.  A previous attempt to write the
4515 		 * superblock failed.  This could happen because the
4516 		 * USB device was yanked out.  Or it could happen to
4517 		 * be a transient write error and maybe the block will
4518 		 * be remapped.  Nothing we can do but to retry the
4519 		 * write and hope for the best.
4520 		 */
4521 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4522 		       "superblock detected");
4523 		clear_buffer_write_io_error(sbh);
4524 		set_buffer_uptodate(sbh);
4525 	}
4526 	/*
4527 	 * If the file system is mounted read-only, don't update the
4528 	 * superblock write time.  This avoids updating the superblock
4529 	 * write time when we are mounting the root file system
4530 	 * read/only but we need to replay the journal; at that point,
4531 	 * for people who are east of GMT and who make their clock
4532 	 * tick in localtime for Windows bug-for-bug compatibility,
4533 	 * the clock is set in the future, and this will cause e2fsck
4534 	 * to complain and force a full file system check.
4535 	 */
4536 	if (!(sb->s_flags & MS_RDONLY))
4537 		es->s_wtime = cpu_to_le32(get_seconds());
4538 	if (sb->s_bdev->bd_part)
4539 		es->s_kbytes_written =
4540 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4541 			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4542 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4543 	else
4544 		es->s_kbytes_written =
4545 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4546 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4547 		ext4_free_blocks_count_set(es,
4548 			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4549 				&EXT4_SB(sb)->s_freeclusters_counter)));
4550 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4551 		es->s_free_inodes_count =
4552 			cpu_to_le32(percpu_counter_sum_positive(
4553 				&EXT4_SB(sb)->s_freeinodes_counter));
4554 	BUFFER_TRACE(sbh, "marking dirty");
4555 	ext4_superblock_csum_set(sb);
4556 	mark_buffer_dirty(sbh);
4557 	if (sync) {
4558 		error = __sync_dirty_buffer(sbh,
4559 			test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC);
4560 		if (error)
4561 			return error;
4562 
4563 		error = buffer_write_io_error(sbh);
4564 		if (error) {
4565 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4566 			       "superblock");
4567 			clear_buffer_write_io_error(sbh);
4568 			set_buffer_uptodate(sbh);
4569 		}
4570 	}
4571 	return error;
4572 }
4573 
4574 /*
4575  * Have we just finished recovery?  If so, and if we are mounting (or
4576  * remounting) the filesystem readonly, then we will end up with a
4577  * consistent fs on disk.  Record that fact.
4578  */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)4579 static void ext4_mark_recovery_complete(struct super_block *sb,
4580 					struct ext4_super_block *es)
4581 {
4582 	journal_t *journal = EXT4_SB(sb)->s_journal;
4583 
4584 	if (!ext4_has_feature_journal(sb)) {
4585 		BUG_ON(journal != NULL);
4586 		return;
4587 	}
4588 	jbd2_journal_lock_updates(journal);
4589 	if (jbd2_journal_flush(journal) < 0)
4590 		goto out;
4591 
4592 	if (ext4_has_feature_journal_needs_recovery(sb) &&
4593 	    sb->s_flags & MS_RDONLY) {
4594 		ext4_clear_feature_journal_needs_recovery(sb);
4595 		ext4_commit_super(sb, 1);
4596 	}
4597 
4598 out:
4599 	jbd2_journal_unlock_updates(journal);
4600 }
4601 
4602 /*
4603  * If we are mounting (or read-write remounting) a filesystem whose journal
4604  * has recorded an error from a previous lifetime, move that error to the
4605  * main filesystem now.
4606  */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)4607 static void ext4_clear_journal_err(struct super_block *sb,
4608 				   struct ext4_super_block *es)
4609 {
4610 	journal_t *journal;
4611 	int j_errno;
4612 	const char *errstr;
4613 
4614 	BUG_ON(!ext4_has_feature_journal(sb));
4615 
4616 	journal = EXT4_SB(sb)->s_journal;
4617 
4618 	/*
4619 	 * Now check for any error status which may have been recorded in the
4620 	 * journal by a prior ext4_error() or ext4_abort()
4621 	 */
4622 
4623 	j_errno = jbd2_journal_errno(journal);
4624 	if (j_errno) {
4625 		char nbuf[16];
4626 
4627 		errstr = ext4_decode_error(sb, j_errno, nbuf);
4628 		ext4_warning(sb, "Filesystem error recorded "
4629 			     "from previous mount: %s", errstr);
4630 		ext4_warning(sb, "Marking fs in need of filesystem check.");
4631 
4632 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4633 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4634 		ext4_commit_super(sb, 1);
4635 
4636 		jbd2_journal_clear_err(journal);
4637 		jbd2_journal_update_sb_errno(journal);
4638 	}
4639 }
4640 
4641 /*
4642  * Force the running and committing transactions to commit,
4643  * and wait on the commit.
4644  */
ext4_force_commit(struct super_block * sb)4645 int ext4_force_commit(struct super_block *sb)
4646 {
4647 	journal_t *journal;
4648 
4649 	if (sb->s_flags & MS_RDONLY)
4650 		return 0;
4651 
4652 	journal = EXT4_SB(sb)->s_journal;
4653 	return ext4_journal_force_commit(journal);
4654 }
4655 
ext4_sync_fs(struct super_block * sb,int wait)4656 static int ext4_sync_fs(struct super_block *sb, int wait)
4657 {
4658 	int ret = 0;
4659 	tid_t target;
4660 	bool needs_barrier = false;
4661 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4662 
4663 	trace_ext4_sync_fs(sb, wait);
4664 	flush_workqueue(sbi->rsv_conversion_wq);
4665 	/*
4666 	 * Writeback quota in non-journalled quota case - journalled quota has
4667 	 * no dirty dquots
4668 	 */
4669 	dquot_writeback_dquots(sb, -1);
4670 	/*
4671 	 * Data writeback is possible w/o journal transaction, so barrier must
4672 	 * being sent at the end of the function. But we can skip it if
4673 	 * transaction_commit will do it for us.
4674 	 */
4675 	if (sbi->s_journal) {
4676 		target = jbd2_get_latest_transaction(sbi->s_journal);
4677 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4678 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4679 			needs_barrier = true;
4680 
4681 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4682 			if (wait)
4683 				ret = jbd2_log_wait_commit(sbi->s_journal,
4684 							   target);
4685 		}
4686 	} else if (wait && test_opt(sb, BARRIER))
4687 		needs_barrier = true;
4688 	if (needs_barrier) {
4689 		int err;
4690 		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4691 		if (!ret)
4692 			ret = err;
4693 	}
4694 
4695 	return ret;
4696 }
4697 
4698 /*
4699  * LVM calls this function before a (read-only) snapshot is created.  This
4700  * gives us a chance to flush the journal completely and mark the fs clean.
4701  *
4702  * Note that only this function cannot bring a filesystem to be in a clean
4703  * state independently. It relies on upper layer to stop all data & metadata
4704  * modifications.
4705  */
ext4_freeze(struct super_block * sb)4706 static int ext4_freeze(struct super_block *sb)
4707 {
4708 	int error = 0;
4709 	journal_t *journal;
4710 
4711 	if (sb->s_flags & MS_RDONLY)
4712 		return 0;
4713 
4714 	journal = EXT4_SB(sb)->s_journal;
4715 
4716 	if (journal) {
4717 		/* Now we set up the journal barrier. */
4718 		jbd2_journal_lock_updates(journal);
4719 
4720 		/*
4721 		 * Don't clear the needs_recovery flag if we failed to
4722 		 * flush the journal.
4723 		 */
4724 		error = jbd2_journal_flush(journal);
4725 		if (error < 0)
4726 			goto out;
4727 
4728 		/* Journal blocked and flushed, clear needs_recovery flag. */
4729 		ext4_clear_feature_journal_needs_recovery(sb);
4730 	}
4731 
4732 	error = ext4_commit_super(sb, 1);
4733 out:
4734 	if (journal)
4735 		/* we rely on upper layer to stop further updates */
4736 		jbd2_journal_unlock_updates(journal);
4737 	return error;
4738 }
4739 
4740 /*
4741  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4742  * flag here, even though the filesystem is not technically dirty yet.
4743  */
ext4_unfreeze(struct super_block * sb)4744 static int ext4_unfreeze(struct super_block *sb)
4745 {
4746 	if (sb->s_flags & MS_RDONLY)
4747 		return 0;
4748 
4749 	if (EXT4_SB(sb)->s_journal) {
4750 		/* Reset the needs_recovery flag before the fs is unlocked. */
4751 		ext4_set_feature_journal_needs_recovery(sb);
4752 	}
4753 
4754 	ext4_commit_super(sb, 1);
4755 	return 0;
4756 }
4757 
4758 /*
4759  * Structure to save mount options for ext4_remount's benefit
4760  */
4761 struct ext4_mount_options {
4762 	unsigned long s_mount_opt;
4763 	unsigned long s_mount_opt2;
4764 	kuid_t s_resuid;
4765 	kgid_t s_resgid;
4766 	unsigned long s_commit_interval;
4767 	u32 s_min_batch_time, s_max_batch_time;
4768 #ifdef CONFIG_QUOTA
4769 	int s_jquota_fmt;
4770 	char *s_qf_names[EXT4_MAXQUOTAS];
4771 #endif
4772 };
4773 
ext4_remount(struct super_block * sb,int * flags,char * data)4774 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4775 {
4776 	struct ext4_super_block *es;
4777 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4778 	unsigned long old_sb_flags;
4779 	struct ext4_mount_options old_opts;
4780 	int enable_quota = 0;
4781 	ext4_group_t g;
4782 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4783 	int err = 0;
4784 #ifdef CONFIG_QUOTA
4785 	int i, j;
4786 #endif
4787 	char *orig_data = kstrdup(data, GFP_KERNEL);
4788 
4789 	/* Store the original options */
4790 	old_sb_flags = sb->s_flags;
4791 	old_opts.s_mount_opt = sbi->s_mount_opt;
4792 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4793 	old_opts.s_resuid = sbi->s_resuid;
4794 	old_opts.s_resgid = sbi->s_resgid;
4795 	old_opts.s_commit_interval = sbi->s_commit_interval;
4796 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
4797 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
4798 #ifdef CONFIG_QUOTA
4799 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4800 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4801 		if (sbi->s_qf_names[i]) {
4802 			old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4803 							 GFP_KERNEL);
4804 			if (!old_opts.s_qf_names[i]) {
4805 				for (j = 0; j < i; j++)
4806 					kfree(old_opts.s_qf_names[j]);
4807 				kfree(orig_data);
4808 				return -ENOMEM;
4809 			}
4810 		} else
4811 			old_opts.s_qf_names[i] = NULL;
4812 #endif
4813 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4814 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4815 
4816 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4817 		err = -EINVAL;
4818 		goto restore_opts;
4819 	}
4820 
4821 	ext4_clamp_want_extra_isize(sb);
4822 
4823 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4824 	    test_opt(sb, JOURNAL_CHECKSUM)) {
4825 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4826 			 "during remount not supported; ignoring");
4827 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4828 	}
4829 
4830 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4831 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4832 			ext4_msg(sb, KERN_ERR, "can't mount with "
4833 				 "both data=journal and delalloc");
4834 			err = -EINVAL;
4835 			goto restore_opts;
4836 		}
4837 		if (test_opt(sb, DIOREAD_NOLOCK)) {
4838 			ext4_msg(sb, KERN_ERR, "can't mount with "
4839 				 "both data=journal and dioread_nolock");
4840 			err = -EINVAL;
4841 			goto restore_opts;
4842 		}
4843 		if (test_opt(sb, DAX)) {
4844 			ext4_msg(sb, KERN_ERR, "can't mount with "
4845 				 "both data=journal and dax");
4846 			err = -EINVAL;
4847 			goto restore_opts;
4848 		}
4849 	}
4850 
4851 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4852 		ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4853 			"dax flag with busy inodes while remounting");
4854 		sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4855 	}
4856 
4857 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4858 		ext4_abort(sb, "Abort forced by user");
4859 
4860 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4861 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4862 
4863 	es = sbi->s_es;
4864 
4865 	if (sbi->s_journal) {
4866 		ext4_init_journal_params(sb, sbi->s_journal);
4867 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4868 	}
4869 
4870 	if (*flags & MS_LAZYTIME)
4871 		sb->s_flags |= MS_LAZYTIME;
4872 
4873 	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4874 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4875 			err = -EROFS;
4876 			goto restore_opts;
4877 		}
4878 
4879 		if (*flags & MS_RDONLY) {
4880 			err = sync_filesystem(sb);
4881 			if (err < 0)
4882 				goto restore_opts;
4883 			err = dquot_suspend(sb, -1);
4884 			if (err < 0)
4885 				goto restore_opts;
4886 
4887 			/*
4888 			 * First of all, the unconditional stuff we have to do
4889 			 * to disable replay of the journal when we next remount
4890 			 */
4891 			sb->s_flags |= MS_RDONLY;
4892 
4893 			/*
4894 			 * OK, test if we are remounting a valid rw partition
4895 			 * readonly, and if so set the rdonly flag and then
4896 			 * mark the partition as valid again.
4897 			 */
4898 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4899 			    (sbi->s_mount_state & EXT4_VALID_FS))
4900 				es->s_state = cpu_to_le16(sbi->s_mount_state);
4901 
4902 			if (sbi->s_journal)
4903 				ext4_mark_recovery_complete(sb, es);
4904 		} else {
4905 			/* Make sure we can mount this feature set readwrite */
4906 			if (ext4_has_feature_readonly(sb) ||
4907 			    !ext4_feature_set_ok(sb, 0)) {
4908 				err = -EROFS;
4909 				goto restore_opts;
4910 			}
4911 			/*
4912 			 * Make sure the group descriptor checksums
4913 			 * are sane.  If they aren't, refuse to remount r/w.
4914 			 */
4915 			for (g = 0; g < sbi->s_groups_count; g++) {
4916 				struct ext4_group_desc *gdp =
4917 					ext4_get_group_desc(sb, g, NULL);
4918 
4919 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4920 					ext4_msg(sb, KERN_ERR,
4921 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
4922 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
4923 					       le16_to_cpu(gdp->bg_checksum));
4924 					err = -EFSBADCRC;
4925 					goto restore_opts;
4926 				}
4927 			}
4928 
4929 			/*
4930 			 * If we have an unprocessed orphan list hanging
4931 			 * around from a previously readonly bdev mount,
4932 			 * require a full umount/remount for now.
4933 			 */
4934 			if (es->s_last_orphan) {
4935 				ext4_msg(sb, KERN_WARNING, "Couldn't "
4936 				       "remount RDWR because of unprocessed "
4937 				       "orphan inode list.  Please "
4938 				       "umount/remount instead");
4939 				err = -EINVAL;
4940 				goto restore_opts;
4941 			}
4942 
4943 			/*
4944 			 * Mounting a RDONLY partition read-write, so reread
4945 			 * and store the current valid flag.  (It may have
4946 			 * been changed by e2fsck since we originally mounted
4947 			 * the partition.)
4948 			 */
4949 			if (sbi->s_journal)
4950 				ext4_clear_journal_err(sb, es);
4951 			sbi->s_mount_state = le16_to_cpu(es->s_state);
4952 			if (!ext4_setup_super(sb, es, 0))
4953 				sb->s_flags &= ~MS_RDONLY;
4954 			if (ext4_has_feature_mmp(sb))
4955 				if (ext4_multi_mount_protect(sb,
4956 						le64_to_cpu(es->s_mmp_block))) {
4957 					err = -EROFS;
4958 					goto restore_opts;
4959 				}
4960 			enable_quota = 1;
4961 		}
4962 	}
4963 
4964 	/*
4965 	 * Reinitialize lazy itable initialization thread based on
4966 	 * current settings
4967 	 */
4968 	if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4969 		ext4_unregister_li_request(sb);
4970 	else {
4971 		ext4_group_t first_not_zeroed;
4972 		first_not_zeroed = ext4_has_uninit_itable(sb);
4973 		ext4_register_li_request(sb, first_not_zeroed);
4974 	}
4975 
4976 	err = ext4_setup_system_zone(sb);
4977 	if (err)
4978 		goto restore_opts;
4979 
4980 	if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4981 		ext4_commit_super(sb, 1);
4982 
4983 #ifdef CONFIG_QUOTA
4984 	/* Release old quota file names */
4985 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4986 		kfree(old_opts.s_qf_names[i]);
4987 	if (enable_quota) {
4988 		if (sb_any_quota_suspended(sb))
4989 			dquot_resume(sb, -1);
4990 		else if (ext4_has_feature_quota(sb)) {
4991 			err = ext4_enable_quotas(sb);
4992 			if (err)
4993 				goto restore_opts;
4994 		}
4995 	}
4996 #endif
4997 
4998 	*flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
4999 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5000 	kfree(orig_data);
5001 	return 0;
5002 
5003 restore_opts:
5004 	sb->s_flags = old_sb_flags;
5005 	sbi->s_mount_opt = old_opts.s_mount_opt;
5006 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5007 	sbi->s_resuid = old_opts.s_resuid;
5008 	sbi->s_resgid = old_opts.s_resgid;
5009 	sbi->s_commit_interval = old_opts.s_commit_interval;
5010 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
5011 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
5012 #ifdef CONFIG_QUOTA
5013 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5014 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5015 		kfree(sbi->s_qf_names[i]);
5016 		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5017 	}
5018 #endif
5019 	kfree(orig_data);
5020 	return err;
5021 }
5022 
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)5023 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5024 {
5025 	struct super_block *sb = dentry->d_sb;
5026 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5027 	struct ext4_super_block *es = sbi->s_es;
5028 	ext4_fsblk_t overhead = 0, resv_blocks;
5029 	u64 fsid;
5030 	s64 bfree;
5031 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5032 
5033 	if (!test_opt(sb, MINIX_DF))
5034 		overhead = sbi->s_overhead;
5035 
5036 	buf->f_type = EXT4_SUPER_MAGIC;
5037 	buf->f_bsize = sb->s_blocksize;
5038 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5039 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5040 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5041 	/* prevent underflow in case that few free space is available */
5042 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5043 	buf->f_bavail = buf->f_bfree -
5044 			(ext4_r_blocks_count(es) + resv_blocks);
5045 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5046 		buf->f_bavail = 0;
5047 	buf->f_files = le32_to_cpu(es->s_inodes_count);
5048 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5049 	buf->f_namelen = EXT4_NAME_LEN;
5050 	fsid = le64_to_cpup((void *)es->s_uuid) ^
5051 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5052 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5053 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5054 
5055 	return 0;
5056 }
5057 
5058 /* Helper function for writing quotas on sync - we need to start transaction
5059  * before quota file is locked for write. Otherwise the are possible deadlocks:
5060  * Process 1                         Process 2
5061  * ext4_create()                     quota_sync()
5062  *   jbd2_journal_start()                  write_dquot()
5063  *   dquot_initialize()                         down(dqio_mutex)
5064  *     down(dqio_mutex)                    jbd2_journal_start()
5065  *
5066  */
5067 
5068 #ifdef CONFIG_QUOTA
5069 
dquot_to_inode(struct dquot * dquot)5070 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5071 {
5072 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5073 }
5074 
ext4_write_dquot(struct dquot * dquot)5075 static int ext4_write_dquot(struct dquot *dquot)
5076 {
5077 	int ret, err;
5078 	handle_t *handle;
5079 	struct inode *inode;
5080 
5081 	inode = dquot_to_inode(dquot);
5082 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5083 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5084 	if (IS_ERR(handle))
5085 		return PTR_ERR(handle);
5086 	ret = dquot_commit(dquot);
5087 	err = ext4_journal_stop(handle);
5088 	if (!ret)
5089 		ret = err;
5090 	return ret;
5091 }
5092 
ext4_acquire_dquot(struct dquot * dquot)5093 static int ext4_acquire_dquot(struct dquot *dquot)
5094 {
5095 	int ret, err;
5096 	handle_t *handle;
5097 
5098 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5099 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5100 	if (IS_ERR(handle))
5101 		return PTR_ERR(handle);
5102 	ret = dquot_acquire(dquot);
5103 	err = ext4_journal_stop(handle);
5104 	if (!ret)
5105 		ret = err;
5106 	return ret;
5107 }
5108 
ext4_release_dquot(struct dquot * dquot)5109 static int ext4_release_dquot(struct dquot *dquot)
5110 {
5111 	int ret, err;
5112 	handle_t *handle;
5113 
5114 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5115 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5116 	if (IS_ERR(handle)) {
5117 		/* Release dquot anyway to avoid endless cycle in dqput() */
5118 		dquot_release(dquot);
5119 		return PTR_ERR(handle);
5120 	}
5121 	ret = dquot_release(dquot);
5122 	err = ext4_journal_stop(handle);
5123 	if (!ret)
5124 		ret = err;
5125 	return ret;
5126 }
5127 
ext4_mark_dquot_dirty(struct dquot * dquot)5128 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5129 {
5130 	struct super_block *sb = dquot->dq_sb;
5131 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5132 
5133 	/* Are we journaling quotas? */
5134 	if (ext4_has_feature_quota(sb) ||
5135 	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5136 		dquot_mark_dquot_dirty(dquot);
5137 		return ext4_write_dquot(dquot);
5138 	} else {
5139 		return dquot_mark_dquot_dirty(dquot);
5140 	}
5141 }
5142 
ext4_write_info(struct super_block * sb,int type)5143 static int ext4_write_info(struct super_block *sb, int type)
5144 {
5145 	int ret, err;
5146 	handle_t *handle;
5147 
5148 	/* Data block + inode block */
5149 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5150 	if (IS_ERR(handle))
5151 		return PTR_ERR(handle);
5152 	ret = dquot_commit_info(sb, type);
5153 	err = ext4_journal_stop(handle);
5154 	if (!ret)
5155 		ret = err;
5156 	return ret;
5157 }
5158 
5159 /*
5160  * Turn on quotas during mount time - we need to find
5161  * the quota file and such...
5162  */
ext4_quota_on_mount(struct super_block * sb,int type)5163 static int ext4_quota_on_mount(struct super_block *sb, int type)
5164 {
5165 	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5166 					EXT4_SB(sb)->s_jquota_fmt, type);
5167 }
5168 
lockdep_set_quota_inode(struct inode * inode,int subclass)5169 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5170 {
5171 	struct ext4_inode_info *ei = EXT4_I(inode);
5172 
5173 	/* The first argument of lockdep_set_subclass has to be
5174 	 * *exactly* the same as the argument to init_rwsem() --- in
5175 	 * this case, in init_once() --- or lockdep gets unhappy
5176 	 * because the name of the lock is set using the
5177 	 * stringification of the argument to init_rwsem().
5178 	 */
5179 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
5180 	lockdep_set_subclass(&ei->i_data_sem, subclass);
5181 }
5182 
5183 /*
5184  * Standard function to be called on quota_on
5185  */
ext4_quota_on(struct super_block * sb,int type,int format_id,struct path * path)5186 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5187 			 struct path *path)
5188 {
5189 	int err;
5190 
5191 	if (!test_opt(sb, QUOTA))
5192 		return -EINVAL;
5193 
5194 	/* Quotafile not on the same filesystem? */
5195 	if (path->dentry->d_sb != sb)
5196 		return -EXDEV;
5197 
5198 	/* Quota already enabled for this file? */
5199 	if (IS_NOQUOTA(d_inode(path->dentry)))
5200 		return -EBUSY;
5201 
5202 	/* Journaling quota? */
5203 	if (EXT4_SB(sb)->s_qf_names[type]) {
5204 		/* Quotafile not in fs root? */
5205 		if (path->dentry->d_parent != sb->s_root)
5206 			ext4_msg(sb, KERN_WARNING,
5207 				"Quota file not on filesystem root. "
5208 				"Journaled quota will not work");
5209 	}
5210 
5211 	/*
5212 	 * When we journal data on quota file, we have to flush journal to see
5213 	 * all updates to the file when we bypass pagecache...
5214 	 */
5215 	if (EXT4_SB(sb)->s_journal &&
5216 	    ext4_should_journal_data(d_inode(path->dentry))) {
5217 		/*
5218 		 * We don't need to lock updates but journal_flush() could
5219 		 * otherwise be livelocked...
5220 		 */
5221 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5222 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5223 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5224 		if (err)
5225 			return err;
5226 	}
5227 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5228 	err = dquot_quota_on(sb, type, format_id, path);
5229 	if (err)
5230 		lockdep_set_quota_inode(path->dentry->d_inode,
5231 					     I_DATA_SEM_NORMAL);
5232 	return err;
5233 }
5234 
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)5235 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5236 			     unsigned int flags)
5237 {
5238 	int err;
5239 	struct inode *qf_inode;
5240 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5241 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5242 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5243 	};
5244 
5245 	BUG_ON(!ext4_has_feature_quota(sb));
5246 
5247 	if (!qf_inums[type])
5248 		return -EPERM;
5249 
5250 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
5251 	if (IS_ERR(qf_inode)) {
5252 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5253 		return PTR_ERR(qf_inode);
5254 	}
5255 
5256 	/* Don't account quota for quota files to avoid recursion */
5257 	qf_inode->i_flags |= S_NOQUOTA;
5258 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5259 	err = dquot_enable(qf_inode, type, format_id, flags);
5260 	if (err)
5261 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5262 	iput(qf_inode);
5263 
5264 	return err;
5265 }
5266 
5267 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)5268 static int ext4_enable_quotas(struct super_block *sb)
5269 {
5270 	int type, err = 0;
5271 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5272 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5273 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5274 	};
5275 
5276 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5277 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5278 		if (qf_inums[type]) {
5279 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5280 						DQUOT_USAGE_ENABLED);
5281 			if (err) {
5282 				for (type--; type >= 0; type--)
5283 					dquot_quota_off(sb, type);
5284 
5285 				ext4_warning(sb,
5286 					"Failed to enable quota tracking "
5287 					"(type=%d, err=%d). Please run "
5288 					"e2fsck to fix.", type, err);
5289 				return err;
5290 			}
5291 		}
5292 	}
5293 	return 0;
5294 }
5295 
ext4_quota_off(struct super_block * sb,int type)5296 static int ext4_quota_off(struct super_block *sb, int type)
5297 {
5298 	struct inode *inode = sb_dqopt(sb)->files[type];
5299 	handle_t *handle;
5300 
5301 	/* Force all delayed allocation blocks to be allocated.
5302 	 * Caller already holds s_umount sem */
5303 	if (test_opt(sb, DELALLOC))
5304 		sync_filesystem(sb);
5305 
5306 	if (!inode)
5307 		goto out;
5308 
5309 	/* Update modification times of quota files when userspace can
5310 	 * start looking at them */
5311 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5312 	if (IS_ERR(handle))
5313 		goto out;
5314 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5315 	ext4_mark_inode_dirty(handle, inode);
5316 	ext4_journal_stop(handle);
5317 
5318 out:
5319 	return dquot_quota_off(sb, type);
5320 }
5321 
5322 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5323  * acquiring the locks... As quota files are never truncated and quota code
5324  * itself serializes the operations (and no one else should touch the files)
5325  * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)5326 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5327 			       size_t len, loff_t off)
5328 {
5329 	struct inode *inode = sb_dqopt(sb)->files[type];
5330 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5331 	int offset = off & (sb->s_blocksize - 1);
5332 	int tocopy;
5333 	size_t toread;
5334 	struct buffer_head *bh;
5335 	loff_t i_size = i_size_read(inode);
5336 
5337 	if (off > i_size)
5338 		return 0;
5339 	if (off+len > i_size)
5340 		len = i_size-off;
5341 	toread = len;
5342 	while (toread > 0) {
5343 		tocopy = sb->s_blocksize - offset < toread ?
5344 				sb->s_blocksize - offset : toread;
5345 		bh = ext4_bread(NULL, inode, blk, 0);
5346 		if (IS_ERR(bh))
5347 			return PTR_ERR(bh);
5348 		if (!bh)	/* A hole? */
5349 			memset(data, 0, tocopy);
5350 		else
5351 			memcpy(data, bh->b_data+offset, tocopy);
5352 		brelse(bh);
5353 		offset = 0;
5354 		toread -= tocopy;
5355 		data += tocopy;
5356 		blk++;
5357 	}
5358 	return len;
5359 }
5360 
5361 /* Write to quotafile (we know the transaction is already started and has
5362  * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)5363 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5364 				const char *data, size_t len, loff_t off)
5365 {
5366 	struct inode *inode = sb_dqopt(sb)->files[type];
5367 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5368 	int err, offset = off & (sb->s_blocksize - 1);
5369 	int retries = 0;
5370 	struct buffer_head *bh;
5371 	handle_t *handle = journal_current_handle();
5372 
5373 	if (!handle) {
5374 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5375 			" cancelled because transaction is not started",
5376 			(unsigned long long)off, (unsigned long long)len);
5377 		return -EIO;
5378 	}
5379 	/*
5380 	 * Since we account only one data block in transaction credits,
5381 	 * then it is impossible to cross a block boundary.
5382 	 */
5383 	if (sb->s_blocksize - offset < len) {
5384 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5385 			" cancelled because not block aligned",
5386 			(unsigned long long)off, (unsigned long long)len);
5387 		return -EIO;
5388 	}
5389 
5390 	do {
5391 		bh = ext4_bread(handle, inode, blk,
5392 				EXT4_GET_BLOCKS_CREATE |
5393 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
5394 	} while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5395 		 ext4_should_retry_alloc(inode->i_sb, &retries));
5396 	if (IS_ERR(bh))
5397 		return PTR_ERR(bh);
5398 	if (!bh)
5399 		goto out;
5400 	BUFFER_TRACE(bh, "get write access");
5401 	err = ext4_journal_get_write_access(handle, bh);
5402 	if (err) {
5403 		brelse(bh);
5404 		return err;
5405 	}
5406 	lock_buffer(bh);
5407 	memcpy(bh->b_data+offset, data, len);
5408 	flush_dcache_page(bh->b_page);
5409 	unlock_buffer(bh);
5410 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5411 	brelse(bh);
5412 out:
5413 	if (inode->i_size < off + len) {
5414 		i_size_write(inode, off + len);
5415 		EXT4_I(inode)->i_disksize = inode->i_size;
5416 		ext4_mark_inode_dirty(handle, inode);
5417 	}
5418 	return len;
5419 }
5420 
5421 #endif
5422 
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)5423 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5424 		       const char *dev_name, void *data)
5425 {
5426 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5427 }
5428 
5429 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)5430 static inline void register_as_ext2(void)
5431 {
5432 	int err = register_filesystem(&ext2_fs_type);
5433 	if (err)
5434 		printk(KERN_WARNING
5435 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5436 }
5437 
unregister_as_ext2(void)5438 static inline void unregister_as_ext2(void)
5439 {
5440 	unregister_filesystem(&ext2_fs_type);
5441 }
5442 
ext2_feature_set_ok(struct super_block * sb)5443 static inline int ext2_feature_set_ok(struct super_block *sb)
5444 {
5445 	if (ext4_has_unknown_ext2_incompat_features(sb))
5446 		return 0;
5447 	if (sb->s_flags & MS_RDONLY)
5448 		return 1;
5449 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
5450 		return 0;
5451 	return 1;
5452 }
5453 #else
register_as_ext2(void)5454 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)5455 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)5456 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5457 #endif
5458 
register_as_ext3(void)5459 static inline void register_as_ext3(void)
5460 {
5461 	int err = register_filesystem(&ext3_fs_type);
5462 	if (err)
5463 		printk(KERN_WARNING
5464 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5465 }
5466 
unregister_as_ext3(void)5467 static inline void unregister_as_ext3(void)
5468 {
5469 	unregister_filesystem(&ext3_fs_type);
5470 }
5471 
ext3_feature_set_ok(struct super_block * sb)5472 static inline int ext3_feature_set_ok(struct super_block *sb)
5473 {
5474 	if (ext4_has_unknown_ext3_incompat_features(sb))
5475 		return 0;
5476 	if (!ext4_has_feature_journal(sb))
5477 		return 0;
5478 	if (sb->s_flags & MS_RDONLY)
5479 		return 1;
5480 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
5481 		return 0;
5482 	return 1;
5483 }
5484 
5485 static struct file_system_type ext4_fs_type = {
5486 	.owner		= THIS_MODULE,
5487 	.name		= "ext4",
5488 	.mount		= ext4_mount,
5489 	.kill_sb	= kill_block_super,
5490 	.fs_flags	= FS_REQUIRES_DEV,
5491 };
5492 MODULE_ALIAS_FS("ext4");
5493 
5494 /* Shared across all ext4 file systems */
5495 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5496 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5497 
ext4_init_fs(void)5498 static int __init ext4_init_fs(void)
5499 {
5500 	int i, err;
5501 
5502 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5503 	ext4_li_info = NULL;
5504 	mutex_init(&ext4_li_mtx);
5505 
5506 	/* Build-time check for flags consistency */
5507 	ext4_check_flag_values();
5508 
5509 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5510 		mutex_init(&ext4__aio_mutex[i]);
5511 		init_waitqueue_head(&ext4__ioend_wq[i]);
5512 	}
5513 
5514 	err = ext4_init_es();
5515 	if (err)
5516 		return err;
5517 
5518 	err = ext4_init_pageio();
5519 	if (err)
5520 		goto out5;
5521 
5522 	err = ext4_init_system_zone();
5523 	if (err)
5524 		goto out4;
5525 
5526 	err = ext4_init_sysfs();
5527 	if (err)
5528 		goto out3;
5529 
5530 	err = ext4_init_mballoc();
5531 	if (err)
5532 		goto out2;
5533 	else
5534 		ext4_mballoc_ready = 1;
5535 	err = init_inodecache();
5536 	if (err)
5537 		goto out1;
5538 	register_as_ext3();
5539 	register_as_ext2();
5540 	err = register_filesystem(&ext4_fs_type);
5541 	if (err)
5542 		goto out;
5543 
5544 	return 0;
5545 out:
5546 	unregister_as_ext2();
5547 	unregister_as_ext3();
5548 	destroy_inodecache();
5549 out1:
5550 	ext4_mballoc_ready = 0;
5551 	ext4_exit_mballoc();
5552 out2:
5553 	ext4_exit_sysfs();
5554 out3:
5555 	ext4_exit_system_zone();
5556 out4:
5557 	ext4_exit_pageio();
5558 out5:
5559 	ext4_exit_es();
5560 
5561 	return err;
5562 }
5563 
ext4_exit_fs(void)5564 static void __exit ext4_exit_fs(void)
5565 {
5566 	ext4_exit_crypto();
5567 	ext4_destroy_lazyinit_thread();
5568 	unregister_as_ext2();
5569 	unregister_as_ext3();
5570 	unregister_filesystem(&ext4_fs_type);
5571 	destroy_inodecache();
5572 	ext4_exit_mballoc();
5573 	ext4_exit_sysfs();
5574 	ext4_exit_system_zone();
5575 	ext4_exit_pageio();
5576 	ext4_exit_es();
5577 }
5578 
5579 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5580 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5581 MODULE_LICENSE("GPL");
5582 module_init(ext4_init_fs)
5583 module_exit(ext4_exit_fs)
5584