1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/cleancache.h>
41 #include <asm/uaccess.h>
42
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45
46 #include "ext4.h"
47 #include "ext4_extents.h" /* Needed for trace points definition */
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
55
56 static struct ext4_lazy_init *ext4_li_info;
57 static struct mutex ext4_li_mtx;
58 static int ext4_mballoc_ready;
59 static struct ratelimit_state ext4_mount_msg_ratelimit;
60
61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
62 unsigned long journal_devnum);
63 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
64 static int ext4_commit_super(struct super_block *sb, int sync);
65 static void ext4_mark_recovery_complete(struct super_block *sb,
66 struct ext4_super_block *es);
67 static void ext4_clear_journal_err(struct super_block *sb,
68 struct ext4_super_block *es);
69 static int ext4_sync_fs(struct super_block *sb, int wait);
70 static int ext4_remount(struct super_block *sb, int *flags, char *data);
71 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
72 static int ext4_unfreeze(struct super_block *sb);
73 static int ext4_freeze(struct super_block *sb);
74 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
75 const char *dev_name, void *data);
76 static inline int ext2_feature_set_ok(struct super_block *sb);
77 static inline int ext3_feature_set_ok(struct super_block *sb);
78 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
79 static void ext4_destroy_lazyinit_thread(void);
80 static void ext4_unregister_li_request(struct super_block *sb);
81 static void ext4_clear_request_list(void);
82
83 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
84 static struct file_system_type ext2_fs_type = {
85 .owner = THIS_MODULE,
86 .name = "ext2",
87 .mount = ext4_mount,
88 .kill_sb = kill_block_super,
89 .fs_flags = FS_REQUIRES_DEV,
90 };
91 MODULE_ALIAS_FS("ext2");
92 MODULE_ALIAS("ext2");
93 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
94 #else
95 #define IS_EXT2_SB(sb) (0)
96 #endif
97
98
99 static struct file_system_type ext3_fs_type = {
100 .owner = THIS_MODULE,
101 .name = "ext3",
102 .mount = ext4_mount,
103 .kill_sb = kill_block_super,
104 .fs_flags = FS_REQUIRES_DEV,
105 };
106 MODULE_ALIAS_FS("ext3");
107 MODULE_ALIAS("ext3");
108 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
109
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)110 static int ext4_verify_csum_type(struct super_block *sb,
111 struct ext4_super_block *es)
112 {
113 if (!ext4_has_feature_metadata_csum(sb))
114 return 1;
115
116 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
117 }
118
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)119 static __le32 ext4_superblock_csum(struct super_block *sb,
120 struct ext4_super_block *es)
121 {
122 struct ext4_sb_info *sbi = EXT4_SB(sb);
123 int offset = offsetof(struct ext4_super_block, s_checksum);
124 __u32 csum;
125
126 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
127
128 return cpu_to_le32(csum);
129 }
130
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)131 static int ext4_superblock_csum_verify(struct super_block *sb,
132 struct ext4_super_block *es)
133 {
134 if (!ext4_has_metadata_csum(sb))
135 return 1;
136
137 return es->s_checksum == ext4_superblock_csum(sb, es);
138 }
139
ext4_superblock_csum_set(struct super_block * sb)140 void ext4_superblock_csum_set(struct super_block *sb)
141 {
142 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
143
144 if (!ext4_has_metadata_csum(sb))
145 return;
146
147 es->s_checksum = ext4_superblock_csum(sb, es);
148 }
149
ext4_kvmalloc(size_t size,gfp_t flags)150 void *ext4_kvmalloc(size_t size, gfp_t flags)
151 {
152 void *ret;
153
154 ret = kmalloc(size, flags | __GFP_NOWARN);
155 if (!ret)
156 ret = __vmalloc(size, flags, PAGE_KERNEL);
157 return ret;
158 }
159
ext4_kvzalloc(size_t size,gfp_t flags)160 void *ext4_kvzalloc(size_t size, gfp_t flags)
161 {
162 void *ret;
163
164 ret = kzalloc(size, flags | __GFP_NOWARN);
165 if (!ret)
166 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
167 return ret;
168 }
169
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)170 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
171 struct ext4_group_desc *bg)
172 {
173 return le32_to_cpu(bg->bg_block_bitmap_lo) |
174 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
175 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
176 }
177
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)178 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
179 struct ext4_group_desc *bg)
180 {
181 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
182 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
183 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
184 }
185
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)186 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
187 struct ext4_group_desc *bg)
188 {
189 return le32_to_cpu(bg->bg_inode_table_lo) |
190 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
191 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
192 }
193
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)194 __u32 ext4_free_group_clusters(struct super_block *sb,
195 struct ext4_group_desc *bg)
196 {
197 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
198 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
199 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
200 }
201
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)202 __u32 ext4_free_inodes_count(struct super_block *sb,
203 struct ext4_group_desc *bg)
204 {
205 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
206 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
207 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
208 }
209
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)210 __u32 ext4_used_dirs_count(struct super_block *sb,
211 struct ext4_group_desc *bg)
212 {
213 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
214 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
215 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
216 }
217
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)218 __u32 ext4_itable_unused_count(struct super_block *sb,
219 struct ext4_group_desc *bg)
220 {
221 return le16_to_cpu(bg->bg_itable_unused_lo) |
222 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
223 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
224 }
225
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)226 void ext4_block_bitmap_set(struct super_block *sb,
227 struct ext4_group_desc *bg, ext4_fsblk_t blk)
228 {
229 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
230 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
231 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
232 }
233
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)234 void ext4_inode_bitmap_set(struct super_block *sb,
235 struct ext4_group_desc *bg, ext4_fsblk_t blk)
236 {
237 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
238 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
239 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
240 }
241
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)242 void ext4_inode_table_set(struct super_block *sb,
243 struct ext4_group_desc *bg, ext4_fsblk_t blk)
244 {
245 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
246 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
247 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
248 }
249
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)250 void ext4_free_group_clusters_set(struct super_block *sb,
251 struct ext4_group_desc *bg, __u32 count)
252 {
253 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
254 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
255 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
256 }
257
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)258 void ext4_free_inodes_set(struct super_block *sb,
259 struct ext4_group_desc *bg, __u32 count)
260 {
261 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
262 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
263 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
264 }
265
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)266 void ext4_used_dirs_set(struct super_block *sb,
267 struct ext4_group_desc *bg, __u32 count)
268 {
269 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
270 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
271 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
272 }
273
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)274 void ext4_itable_unused_set(struct super_block *sb,
275 struct ext4_group_desc *bg, __u32 count)
276 {
277 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
278 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
279 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
280 }
281
282
__save_error_info(struct super_block * sb,const char * func,unsigned int line)283 static void __save_error_info(struct super_block *sb, const char *func,
284 unsigned int line)
285 {
286 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
287
288 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
289 if (bdev_read_only(sb->s_bdev))
290 return;
291 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
292 es->s_last_error_time = cpu_to_le32(get_seconds());
293 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
294 es->s_last_error_line = cpu_to_le32(line);
295 if (!es->s_first_error_time) {
296 es->s_first_error_time = es->s_last_error_time;
297 strncpy(es->s_first_error_func, func,
298 sizeof(es->s_first_error_func));
299 es->s_first_error_line = cpu_to_le32(line);
300 es->s_first_error_ino = es->s_last_error_ino;
301 es->s_first_error_block = es->s_last_error_block;
302 }
303 /*
304 * Start the daily error reporting function if it hasn't been
305 * started already
306 */
307 if (!es->s_error_count)
308 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
309 le32_add_cpu(&es->s_error_count, 1);
310 }
311
save_error_info(struct super_block * sb,const char * func,unsigned int line)312 static void save_error_info(struct super_block *sb, const char *func,
313 unsigned int line)
314 {
315 __save_error_info(sb, func, line);
316 if (!bdev_read_only(sb->s_bdev))
317 ext4_commit_super(sb, 1);
318 }
319
320 /*
321 * The del_gendisk() function uninitializes the disk-specific data
322 * structures, including the bdi structure, without telling anyone
323 * else. Once this happens, any attempt to call mark_buffer_dirty()
324 * (for example, by ext4_commit_super), will cause a kernel OOPS.
325 * This is a kludge to prevent these oops until we can put in a proper
326 * hook in del_gendisk() to inform the VFS and file system layers.
327 */
block_device_ejected(struct super_block * sb)328 static int block_device_ejected(struct super_block *sb)
329 {
330 struct inode *bd_inode = sb->s_bdev->bd_inode;
331 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
332
333 return bdi->dev == NULL;
334 }
335
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)336 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
337 {
338 struct super_block *sb = journal->j_private;
339 struct ext4_sb_info *sbi = EXT4_SB(sb);
340 int error = is_journal_aborted(journal);
341 struct ext4_journal_cb_entry *jce;
342
343 BUG_ON(txn->t_state == T_FINISHED);
344 spin_lock(&sbi->s_md_lock);
345 while (!list_empty(&txn->t_private_list)) {
346 jce = list_entry(txn->t_private_list.next,
347 struct ext4_journal_cb_entry, jce_list);
348 list_del_init(&jce->jce_list);
349 spin_unlock(&sbi->s_md_lock);
350 jce->jce_func(sb, jce, error);
351 spin_lock(&sbi->s_md_lock);
352 }
353 spin_unlock(&sbi->s_md_lock);
354 }
355
356 /* Deal with the reporting of failure conditions on a filesystem such as
357 * inconsistencies detected or read IO failures.
358 *
359 * On ext2, we can store the error state of the filesystem in the
360 * superblock. That is not possible on ext4, because we may have other
361 * write ordering constraints on the superblock which prevent us from
362 * writing it out straight away; and given that the journal is about to
363 * be aborted, we can't rely on the current, or future, transactions to
364 * write out the superblock safely.
365 *
366 * We'll just use the jbd2_journal_abort() error code to record an error in
367 * the journal instead. On recovery, the journal will complain about
368 * that error until we've noted it down and cleared it.
369 */
370
ext4_handle_error(struct super_block * sb)371 static void ext4_handle_error(struct super_block *sb)
372 {
373 if (sb->s_flags & MS_RDONLY)
374 return;
375
376 if (!test_opt(sb, ERRORS_CONT)) {
377 journal_t *journal = EXT4_SB(sb)->s_journal;
378
379 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
380 if (journal)
381 jbd2_journal_abort(journal, -EIO);
382 }
383 if (test_opt(sb, ERRORS_RO)) {
384 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
385 /*
386 * Make sure updated value of ->s_mount_flags will be visible
387 * before ->s_flags update
388 */
389 smp_wmb();
390 sb->s_flags |= MS_RDONLY;
391 }
392 if (test_opt(sb, ERRORS_PANIC)) {
393 if (EXT4_SB(sb)->s_journal &&
394 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
395 return;
396 panic("EXT4-fs (device %s): panic forced after error\n",
397 sb->s_id);
398 }
399 }
400
401 #define ext4_error_ratelimit(sb) \
402 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
403 "EXT4-fs error")
404
__ext4_error(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)405 void __ext4_error(struct super_block *sb, const char *function,
406 unsigned int line, const char *fmt, ...)
407 {
408 struct va_format vaf;
409 va_list args;
410
411 if (ext4_error_ratelimit(sb)) {
412 va_start(args, fmt);
413 vaf.fmt = fmt;
414 vaf.va = &args;
415 printk(KERN_CRIT
416 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
417 sb->s_id, function, line, current->comm, &vaf);
418 va_end(args);
419 }
420 save_error_info(sb, function, line);
421 ext4_handle_error(sb);
422 }
423
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)424 void __ext4_error_inode(struct inode *inode, const char *function,
425 unsigned int line, ext4_fsblk_t block,
426 const char *fmt, ...)
427 {
428 va_list args;
429 struct va_format vaf;
430 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
431
432 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
433 es->s_last_error_block = cpu_to_le64(block);
434 if (ext4_error_ratelimit(inode->i_sb)) {
435 va_start(args, fmt);
436 vaf.fmt = fmt;
437 vaf.va = &args;
438 if (block)
439 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
440 "inode #%lu: block %llu: comm %s: %pV\n",
441 inode->i_sb->s_id, function, line, inode->i_ino,
442 block, current->comm, &vaf);
443 else
444 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
445 "inode #%lu: comm %s: %pV\n",
446 inode->i_sb->s_id, function, line, inode->i_ino,
447 current->comm, &vaf);
448 va_end(args);
449 }
450 save_error_info(inode->i_sb, function, line);
451 ext4_handle_error(inode->i_sb);
452 }
453
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)454 void __ext4_error_file(struct file *file, const char *function,
455 unsigned int line, ext4_fsblk_t block,
456 const char *fmt, ...)
457 {
458 va_list args;
459 struct va_format vaf;
460 struct ext4_super_block *es;
461 struct inode *inode = file_inode(file);
462 char pathname[80], *path;
463
464 es = EXT4_SB(inode->i_sb)->s_es;
465 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
466 if (ext4_error_ratelimit(inode->i_sb)) {
467 path = file_path(file, pathname, sizeof(pathname));
468 if (IS_ERR(path))
469 path = "(unknown)";
470 va_start(args, fmt);
471 vaf.fmt = fmt;
472 vaf.va = &args;
473 if (block)
474 printk(KERN_CRIT
475 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
476 "block %llu: comm %s: path %s: %pV\n",
477 inode->i_sb->s_id, function, line, inode->i_ino,
478 block, current->comm, path, &vaf);
479 else
480 printk(KERN_CRIT
481 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
482 "comm %s: path %s: %pV\n",
483 inode->i_sb->s_id, function, line, inode->i_ino,
484 current->comm, path, &vaf);
485 va_end(args);
486 }
487 save_error_info(inode->i_sb, function, line);
488 ext4_handle_error(inode->i_sb);
489 }
490
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])491 const char *ext4_decode_error(struct super_block *sb, int errno,
492 char nbuf[16])
493 {
494 char *errstr = NULL;
495
496 switch (errno) {
497 case -EFSCORRUPTED:
498 errstr = "Corrupt filesystem";
499 break;
500 case -EFSBADCRC:
501 errstr = "Filesystem failed CRC";
502 break;
503 case -EIO:
504 errstr = "IO failure";
505 break;
506 case -ENOMEM:
507 errstr = "Out of memory";
508 break;
509 case -EROFS:
510 if (!sb || (EXT4_SB(sb)->s_journal &&
511 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
512 errstr = "Journal has aborted";
513 else
514 errstr = "Readonly filesystem";
515 break;
516 default:
517 /* If the caller passed in an extra buffer for unknown
518 * errors, textualise them now. Else we just return
519 * NULL. */
520 if (nbuf) {
521 /* Check for truncated error codes... */
522 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
523 errstr = nbuf;
524 }
525 break;
526 }
527
528 return errstr;
529 }
530
531 /* __ext4_std_error decodes expected errors from journaling functions
532 * automatically and invokes the appropriate error response. */
533
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)534 void __ext4_std_error(struct super_block *sb, const char *function,
535 unsigned int line, int errno)
536 {
537 char nbuf[16];
538 const char *errstr;
539
540 /* Special case: if the error is EROFS, and we're not already
541 * inside a transaction, then there's really no point in logging
542 * an error. */
543 if (errno == -EROFS && journal_current_handle() == NULL &&
544 (sb->s_flags & MS_RDONLY))
545 return;
546
547 if (ext4_error_ratelimit(sb)) {
548 errstr = ext4_decode_error(sb, errno, nbuf);
549 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
550 sb->s_id, function, line, errstr);
551 }
552
553 save_error_info(sb, function, line);
554 ext4_handle_error(sb);
555 }
556
557 /*
558 * ext4_abort is a much stronger failure handler than ext4_error. The
559 * abort function may be used to deal with unrecoverable failures such
560 * as journal IO errors or ENOMEM at a critical moment in log management.
561 *
562 * We unconditionally force the filesystem into an ABORT|READONLY state,
563 * unless the error response on the fs has been set to panic in which
564 * case we take the easy way out and panic immediately.
565 */
566
__ext4_abort(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)567 void __ext4_abort(struct super_block *sb, const char *function,
568 unsigned int line, const char *fmt, ...)
569 {
570 va_list args;
571
572 save_error_info(sb, function, line);
573 va_start(args, fmt);
574 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
575 function, line);
576 vprintk(fmt, args);
577 printk("\n");
578 va_end(args);
579
580 if ((sb->s_flags & MS_RDONLY) == 0) {
581 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
582 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
583 /*
584 * Make sure updated value of ->s_mount_flags will be visible
585 * before ->s_flags update
586 */
587 smp_wmb();
588 sb->s_flags |= MS_RDONLY;
589 if (EXT4_SB(sb)->s_journal)
590 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
591 save_error_info(sb, function, line);
592 }
593 if (test_opt(sb, ERRORS_PANIC)) {
594 if (EXT4_SB(sb)->s_journal &&
595 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
596 return;
597 panic("EXT4-fs panic from previous error\n");
598 }
599 }
600
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)601 void __ext4_msg(struct super_block *sb,
602 const char *prefix, const char *fmt, ...)
603 {
604 struct va_format vaf;
605 va_list args;
606
607 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
608 return;
609
610 va_start(args, fmt);
611 vaf.fmt = fmt;
612 vaf.va = &args;
613 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
614 va_end(args);
615 }
616
617 #define ext4_warning_ratelimit(sb) \
618 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
619 "EXT4-fs warning")
620
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)621 void __ext4_warning(struct super_block *sb, const char *function,
622 unsigned int line, const char *fmt, ...)
623 {
624 struct va_format vaf;
625 va_list args;
626
627 if (!ext4_warning_ratelimit(sb))
628 return;
629
630 va_start(args, fmt);
631 vaf.fmt = fmt;
632 vaf.va = &args;
633 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
634 sb->s_id, function, line, &vaf);
635 va_end(args);
636 }
637
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)638 void __ext4_warning_inode(const struct inode *inode, const char *function,
639 unsigned int line, const char *fmt, ...)
640 {
641 struct va_format vaf;
642 va_list args;
643
644 if (!ext4_warning_ratelimit(inode->i_sb))
645 return;
646
647 va_start(args, fmt);
648 vaf.fmt = fmt;
649 vaf.va = &args;
650 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
651 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
652 function, line, inode->i_ino, current->comm, &vaf);
653 va_end(args);
654 }
655
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)656 void __ext4_grp_locked_error(const char *function, unsigned int line,
657 struct super_block *sb, ext4_group_t grp,
658 unsigned long ino, ext4_fsblk_t block,
659 const char *fmt, ...)
660 __releases(bitlock)
661 __acquires(bitlock)
662 {
663 struct va_format vaf;
664 va_list args;
665 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
666
667 es->s_last_error_ino = cpu_to_le32(ino);
668 es->s_last_error_block = cpu_to_le64(block);
669 __save_error_info(sb, function, line);
670
671 if (ext4_error_ratelimit(sb)) {
672 va_start(args, fmt);
673 vaf.fmt = fmt;
674 vaf.va = &args;
675 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
676 sb->s_id, function, line, grp);
677 if (ino)
678 printk(KERN_CONT "inode %lu: ", ino);
679 if (block)
680 printk(KERN_CONT "block %llu:",
681 (unsigned long long) block);
682 printk(KERN_CONT "%pV\n", &vaf);
683 va_end(args);
684 }
685
686 if (test_opt(sb, ERRORS_CONT)) {
687 ext4_commit_super(sb, 0);
688 return;
689 }
690
691 ext4_unlock_group(sb, grp);
692 ext4_commit_super(sb, 1);
693 ext4_handle_error(sb);
694 /*
695 * We only get here in the ERRORS_RO case; relocking the group
696 * may be dangerous, but nothing bad will happen since the
697 * filesystem will have already been marked read/only and the
698 * journal has been aborted. We return 1 as a hint to callers
699 * who might what to use the return value from
700 * ext4_grp_locked_error() to distinguish between the
701 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
702 * aggressively from the ext4 function in question, with a
703 * more appropriate error code.
704 */
705 ext4_lock_group(sb, grp);
706 return;
707 }
708
ext4_update_dynamic_rev(struct super_block * sb)709 void ext4_update_dynamic_rev(struct super_block *sb)
710 {
711 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
712
713 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
714 return;
715
716 ext4_warning(sb,
717 "updating to rev %d because of new feature flag, "
718 "running e2fsck is recommended",
719 EXT4_DYNAMIC_REV);
720
721 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
722 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
723 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
724 /* leave es->s_feature_*compat flags alone */
725 /* es->s_uuid will be set by e2fsck if empty */
726
727 /*
728 * The rest of the superblock fields should be zero, and if not it
729 * means they are likely already in use, so leave them alone. We
730 * can leave it up to e2fsck to clean up any inconsistencies there.
731 */
732 }
733
734 /*
735 * Open the external journal device
736 */
ext4_blkdev_get(dev_t dev,struct super_block * sb)737 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
738 {
739 struct block_device *bdev;
740 char b[BDEVNAME_SIZE];
741
742 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
743 if (IS_ERR(bdev))
744 goto fail;
745 return bdev;
746
747 fail:
748 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
749 __bdevname(dev, b), PTR_ERR(bdev));
750 return NULL;
751 }
752
753 /*
754 * Release the journal device
755 */
ext4_blkdev_put(struct block_device * bdev)756 static void ext4_blkdev_put(struct block_device *bdev)
757 {
758 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
759 }
760
ext4_blkdev_remove(struct ext4_sb_info * sbi)761 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
762 {
763 struct block_device *bdev;
764 bdev = sbi->journal_bdev;
765 if (bdev) {
766 ext4_blkdev_put(bdev);
767 sbi->journal_bdev = NULL;
768 }
769 }
770
orphan_list_entry(struct list_head * l)771 static inline struct inode *orphan_list_entry(struct list_head *l)
772 {
773 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
774 }
775
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)776 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
777 {
778 struct list_head *l;
779
780 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
781 le32_to_cpu(sbi->s_es->s_last_orphan));
782
783 printk(KERN_ERR "sb_info orphan list:\n");
784 list_for_each(l, &sbi->s_orphan) {
785 struct inode *inode = orphan_list_entry(l);
786 printk(KERN_ERR " "
787 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
788 inode->i_sb->s_id, inode->i_ino, inode,
789 inode->i_mode, inode->i_nlink,
790 NEXT_ORPHAN(inode));
791 }
792 }
793
ext4_put_super(struct super_block * sb)794 static void ext4_put_super(struct super_block *sb)
795 {
796 struct ext4_sb_info *sbi = EXT4_SB(sb);
797 struct ext4_super_block *es = sbi->s_es;
798 struct buffer_head **group_desc;
799 struct flex_groups **flex_groups;
800 int aborted = 0;
801 int i, err;
802
803 ext4_unregister_li_request(sb);
804 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
805
806 flush_workqueue(sbi->rsv_conversion_wq);
807 destroy_workqueue(sbi->rsv_conversion_wq);
808
809 if (sbi->s_journal) {
810 aborted = is_journal_aborted(sbi->s_journal);
811 err = jbd2_journal_destroy(sbi->s_journal);
812 sbi->s_journal = NULL;
813 if ((err < 0) && !aborted)
814 ext4_abort(sb, "Couldn't clean up the journal");
815 }
816
817 ext4_unregister_sysfs(sb);
818 ext4_es_unregister_shrinker(sbi);
819 del_timer_sync(&sbi->s_err_report);
820 ext4_release_system_zone(sb);
821 ext4_mb_release(sb);
822 ext4_ext_release(sb);
823
824 if (!(sb->s_flags & MS_RDONLY) && !aborted) {
825 ext4_clear_feature_journal_needs_recovery(sb);
826 es->s_state = cpu_to_le16(sbi->s_mount_state);
827 }
828 if (!(sb->s_flags & MS_RDONLY))
829 ext4_commit_super(sb, 1);
830
831 rcu_read_lock();
832 group_desc = rcu_dereference(sbi->s_group_desc);
833 for (i = 0; i < sbi->s_gdb_count; i++)
834 brelse(group_desc[i]);
835 kvfree(group_desc);
836 flex_groups = rcu_dereference(sbi->s_flex_groups);
837 if (flex_groups) {
838 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
839 kvfree(flex_groups[i]);
840 kvfree(flex_groups);
841 }
842 rcu_read_unlock();
843 percpu_counter_destroy(&sbi->s_freeclusters_counter);
844 percpu_counter_destroy(&sbi->s_freeinodes_counter);
845 percpu_counter_destroy(&sbi->s_dirs_counter);
846 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
847 brelse(sbi->s_sbh);
848 #ifdef CONFIG_QUOTA
849 for (i = 0; i < EXT4_MAXQUOTAS; i++)
850 kfree(sbi->s_qf_names[i]);
851 #endif
852
853 /* Debugging code just in case the in-memory inode orphan list
854 * isn't empty. The on-disk one can be non-empty if we've
855 * detected an error and taken the fs readonly, but the
856 * in-memory list had better be clean by this point. */
857 if (!list_empty(&sbi->s_orphan))
858 dump_orphan_list(sb, sbi);
859 J_ASSERT(list_empty(&sbi->s_orphan));
860
861 sync_blockdev(sb->s_bdev);
862 invalidate_bdev(sb->s_bdev);
863 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
864 /*
865 * Invalidate the journal device's buffers. We don't want them
866 * floating about in memory - the physical journal device may
867 * hotswapped, and it breaks the `ro-after' testing code.
868 */
869 sync_blockdev(sbi->journal_bdev);
870 invalidate_bdev(sbi->journal_bdev);
871 ext4_blkdev_remove(sbi);
872 }
873 if (sbi->s_mb_cache) {
874 ext4_xattr_destroy_cache(sbi->s_mb_cache);
875 sbi->s_mb_cache = NULL;
876 }
877 if (sbi->s_mmp_tsk)
878 kthread_stop(sbi->s_mmp_tsk);
879 sb->s_fs_info = NULL;
880 /*
881 * Now that we are completely done shutting down the
882 * superblock, we need to actually destroy the kobject.
883 */
884 kobject_put(&sbi->s_kobj);
885 wait_for_completion(&sbi->s_kobj_unregister);
886 if (sbi->s_chksum_driver)
887 crypto_free_shash(sbi->s_chksum_driver);
888 kfree(sbi->s_blockgroup_lock);
889 kfree(sbi);
890 }
891
892 static struct kmem_cache *ext4_inode_cachep;
893
894 /*
895 * Called inside transaction, so use GFP_NOFS
896 */
ext4_alloc_inode(struct super_block * sb)897 static struct inode *ext4_alloc_inode(struct super_block *sb)
898 {
899 struct ext4_inode_info *ei;
900
901 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
902 if (!ei)
903 return NULL;
904
905 ei->vfs_inode.i_version = 1;
906 spin_lock_init(&ei->i_raw_lock);
907 INIT_LIST_HEAD(&ei->i_prealloc_list);
908 spin_lock_init(&ei->i_prealloc_lock);
909 ext4_es_init_tree(&ei->i_es_tree);
910 rwlock_init(&ei->i_es_lock);
911 INIT_LIST_HEAD(&ei->i_es_list);
912 ei->i_es_all_nr = 0;
913 ei->i_es_shk_nr = 0;
914 ei->i_es_shrink_lblk = 0;
915 ei->i_reserved_data_blocks = 0;
916 ei->i_reserved_meta_blocks = 0;
917 ei->i_allocated_meta_blocks = 0;
918 ei->i_da_metadata_calc_len = 0;
919 ei->i_da_metadata_calc_last_lblock = 0;
920 spin_lock_init(&(ei->i_block_reservation_lock));
921 #ifdef CONFIG_QUOTA
922 ei->i_reserved_quota = 0;
923 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
924 #endif
925 ei->jinode = NULL;
926 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
927 spin_lock_init(&ei->i_completed_io_lock);
928 ei->i_sync_tid = 0;
929 ei->i_datasync_tid = 0;
930 atomic_set(&ei->i_ioend_count, 0);
931 atomic_set(&ei->i_unwritten, 0);
932 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
933 #ifdef CONFIG_EXT4_FS_ENCRYPTION
934 ei->i_crypt_info = NULL;
935 #endif
936 return &ei->vfs_inode;
937 }
938
ext4_drop_inode(struct inode * inode)939 static int ext4_drop_inode(struct inode *inode)
940 {
941 int drop = generic_drop_inode(inode);
942
943 trace_ext4_drop_inode(inode, drop);
944 return drop;
945 }
946
ext4_i_callback(struct rcu_head * head)947 static void ext4_i_callback(struct rcu_head *head)
948 {
949 struct inode *inode = container_of(head, struct inode, i_rcu);
950 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
951 }
952
ext4_destroy_inode(struct inode * inode)953 static void ext4_destroy_inode(struct inode *inode)
954 {
955 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
956 ext4_msg(inode->i_sb, KERN_ERR,
957 "Inode %lu (%p): orphan list check failed!",
958 inode->i_ino, EXT4_I(inode));
959 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
960 EXT4_I(inode), sizeof(struct ext4_inode_info),
961 true);
962 dump_stack();
963 }
964 call_rcu(&inode->i_rcu, ext4_i_callback);
965 }
966
init_once(void * foo)967 static void init_once(void *foo)
968 {
969 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
970
971 INIT_LIST_HEAD(&ei->i_orphan);
972 init_rwsem(&ei->xattr_sem);
973 init_rwsem(&ei->i_data_sem);
974 init_rwsem(&ei->i_mmap_sem);
975 inode_init_once(&ei->vfs_inode);
976 }
977
init_inodecache(void)978 static int __init init_inodecache(void)
979 {
980 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
981 sizeof(struct ext4_inode_info),
982 0, (SLAB_RECLAIM_ACCOUNT|
983 SLAB_MEM_SPREAD),
984 init_once);
985 if (ext4_inode_cachep == NULL)
986 return -ENOMEM;
987 return 0;
988 }
989
destroy_inodecache(void)990 static void destroy_inodecache(void)
991 {
992 /*
993 * Make sure all delayed rcu free inodes are flushed before we
994 * destroy cache.
995 */
996 rcu_barrier();
997 kmem_cache_destroy(ext4_inode_cachep);
998 }
999
ext4_clear_inode(struct inode * inode)1000 void ext4_clear_inode(struct inode *inode)
1001 {
1002 invalidate_inode_buffers(inode);
1003 clear_inode(inode);
1004 dquot_drop(inode);
1005 ext4_discard_preallocations(inode);
1006 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1007 if (EXT4_I(inode)->jinode) {
1008 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1009 EXT4_I(inode)->jinode);
1010 jbd2_free_inode(EXT4_I(inode)->jinode);
1011 EXT4_I(inode)->jinode = NULL;
1012 }
1013 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1014 if (EXT4_I(inode)->i_crypt_info)
1015 ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info);
1016 #endif
1017 }
1018
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1019 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1020 u64 ino, u32 generation)
1021 {
1022 struct inode *inode;
1023
1024 /*
1025 * Currently we don't know the generation for parent directory, so
1026 * a generation of 0 means "accept any"
1027 */
1028 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1029 if (IS_ERR(inode))
1030 return ERR_CAST(inode);
1031 if (generation && inode->i_generation != generation) {
1032 iput(inode);
1033 return ERR_PTR(-ESTALE);
1034 }
1035
1036 return inode;
1037 }
1038
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1039 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1040 int fh_len, int fh_type)
1041 {
1042 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1043 ext4_nfs_get_inode);
1044 }
1045
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1046 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1047 int fh_len, int fh_type)
1048 {
1049 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1050 ext4_nfs_get_inode);
1051 }
1052
ext4_nfs_commit_metadata(struct inode * inode)1053 static int ext4_nfs_commit_metadata(struct inode *inode)
1054 {
1055 struct writeback_control wbc = {
1056 .sync_mode = WB_SYNC_ALL
1057 };
1058
1059 trace_ext4_nfs_commit_metadata(inode);
1060 return ext4_write_inode(inode, &wbc);
1061 }
1062
1063 /*
1064 * Try to release metadata pages (indirect blocks, directories) which are
1065 * mapped via the block device. Since these pages could have journal heads
1066 * which would prevent try_to_free_buffers() from freeing them, we must use
1067 * jbd2 layer's try_to_free_buffers() function to release them.
1068 */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)1069 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1070 gfp_t wait)
1071 {
1072 journal_t *journal = EXT4_SB(sb)->s_journal;
1073
1074 WARN_ON(PageChecked(page));
1075 if (!page_has_buffers(page))
1076 return 0;
1077 if (journal)
1078 return jbd2_journal_try_to_free_buffers(journal, page,
1079 wait & ~__GFP_DIRECT_RECLAIM);
1080 return try_to_free_buffers(page);
1081 }
1082
1083 #ifdef CONFIG_QUOTA
1084 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1085 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1086
1087 static int ext4_write_dquot(struct dquot *dquot);
1088 static int ext4_acquire_dquot(struct dquot *dquot);
1089 static int ext4_release_dquot(struct dquot *dquot);
1090 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1091 static int ext4_write_info(struct super_block *sb, int type);
1092 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1093 struct path *path);
1094 static int ext4_quota_off(struct super_block *sb, int type);
1095 static int ext4_quota_on_mount(struct super_block *sb, int type);
1096 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1097 size_t len, loff_t off);
1098 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1099 const char *data, size_t len, loff_t off);
1100 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1101 unsigned int flags);
1102 static int ext4_enable_quotas(struct super_block *sb);
1103
ext4_get_dquots(struct inode * inode)1104 static struct dquot **ext4_get_dquots(struct inode *inode)
1105 {
1106 return EXT4_I(inode)->i_dquot;
1107 }
1108
1109 static const struct dquot_operations ext4_quota_operations = {
1110 .get_reserved_space = ext4_get_reserved_space,
1111 .write_dquot = ext4_write_dquot,
1112 .acquire_dquot = ext4_acquire_dquot,
1113 .release_dquot = ext4_release_dquot,
1114 .mark_dirty = ext4_mark_dquot_dirty,
1115 .write_info = ext4_write_info,
1116 .alloc_dquot = dquot_alloc,
1117 .destroy_dquot = dquot_destroy,
1118 };
1119
1120 static const struct quotactl_ops ext4_qctl_operations = {
1121 .quota_on = ext4_quota_on,
1122 .quota_off = ext4_quota_off,
1123 .quota_sync = dquot_quota_sync,
1124 .get_state = dquot_get_state,
1125 .set_info = dquot_set_dqinfo,
1126 .get_dqblk = dquot_get_dqblk,
1127 .set_dqblk = dquot_set_dqblk
1128 };
1129 #endif
1130
1131 static const struct super_operations ext4_sops = {
1132 .alloc_inode = ext4_alloc_inode,
1133 .destroy_inode = ext4_destroy_inode,
1134 .write_inode = ext4_write_inode,
1135 .dirty_inode = ext4_dirty_inode,
1136 .drop_inode = ext4_drop_inode,
1137 .evict_inode = ext4_evict_inode,
1138 .put_super = ext4_put_super,
1139 .sync_fs = ext4_sync_fs,
1140 .freeze_fs = ext4_freeze,
1141 .unfreeze_fs = ext4_unfreeze,
1142 .statfs = ext4_statfs,
1143 .remount_fs = ext4_remount,
1144 .show_options = ext4_show_options,
1145 #ifdef CONFIG_QUOTA
1146 .quota_read = ext4_quota_read,
1147 .quota_write = ext4_quota_write,
1148 .get_dquots = ext4_get_dquots,
1149 #endif
1150 .bdev_try_to_free_page = bdev_try_to_free_page,
1151 };
1152
1153 static const struct export_operations ext4_export_ops = {
1154 .fh_to_dentry = ext4_fh_to_dentry,
1155 .fh_to_parent = ext4_fh_to_parent,
1156 .get_parent = ext4_get_parent,
1157 .commit_metadata = ext4_nfs_commit_metadata,
1158 };
1159
1160 enum {
1161 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1162 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1163 Opt_nouid32, Opt_debug, Opt_removed,
1164 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1165 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1166 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1167 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1168 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1169 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1170 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1171 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1172 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1173 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
1174 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1175 Opt_lazytime, Opt_nolazytime,
1176 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1177 Opt_inode_readahead_blks, Opt_journal_ioprio,
1178 Opt_dioread_nolock, Opt_dioread_lock,
1179 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1180 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1181 };
1182
1183 static const match_table_t tokens = {
1184 {Opt_bsd_df, "bsddf"},
1185 {Opt_minix_df, "minixdf"},
1186 {Opt_grpid, "grpid"},
1187 {Opt_grpid, "bsdgroups"},
1188 {Opt_nogrpid, "nogrpid"},
1189 {Opt_nogrpid, "sysvgroups"},
1190 {Opt_resgid, "resgid=%u"},
1191 {Opt_resuid, "resuid=%u"},
1192 {Opt_sb, "sb=%u"},
1193 {Opt_err_cont, "errors=continue"},
1194 {Opt_err_panic, "errors=panic"},
1195 {Opt_err_ro, "errors=remount-ro"},
1196 {Opt_nouid32, "nouid32"},
1197 {Opt_debug, "debug"},
1198 {Opt_removed, "oldalloc"},
1199 {Opt_removed, "orlov"},
1200 {Opt_user_xattr, "user_xattr"},
1201 {Opt_nouser_xattr, "nouser_xattr"},
1202 {Opt_acl, "acl"},
1203 {Opt_noacl, "noacl"},
1204 {Opt_noload, "norecovery"},
1205 {Opt_noload, "noload"},
1206 {Opt_removed, "nobh"},
1207 {Opt_removed, "bh"},
1208 {Opt_commit, "commit=%u"},
1209 {Opt_min_batch_time, "min_batch_time=%u"},
1210 {Opt_max_batch_time, "max_batch_time=%u"},
1211 {Opt_journal_dev, "journal_dev=%u"},
1212 {Opt_journal_path, "journal_path=%s"},
1213 {Opt_journal_checksum, "journal_checksum"},
1214 {Opt_nojournal_checksum, "nojournal_checksum"},
1215 {Opt_journal_async_commit, "journal_async_commit"},
1216 {Opt_abort, "abort"},
1217 {Opt_data_journal, "data=journal"},
1218 {Opt_data_ordered, "data=ordered"},
1219 {Opt_data_writeback, "data=writeback"},
1220 {Opt_data_err_abort, "data_err=abort"},
1221 {Opt_data_err_ignore, "data_err=ignore"},
1222 {Opt_offusrjquota, "usrjquota="},
1223 {Opt_usrjquota, "usrjquota=%s"},
1224 {Opt_offgrpjquota, "grpjquota="},
1225 {Opt_grpjquota, "grpjquota=%s"},
1226 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1227 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1228 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1229 {Opt_grpquota, "grpquota"},
1230 {Opt_noquota, "noquota"},
1231 {Opt_quota, "quota"},
1232 {Opt_usrquota, "usrquota"},
1233 {Opt_barrier, "barrier=%u"},
1234 {Opt_barrier, "barrier"},
1235 {Opt_nobarrier, "nobarrier"},
1236 {Opt_i_version, "i_version"},
1237 {Opt_dax, "dax"},
1238 {Opt_stripe, "stripe=%u"},
1239 {Opt_delalloc, "delalloc"},
1240 {Opt_lazytime, "lazytime"},
1241 {Opt_nolazytime, "nolazytime"},
1242 {Opt_nodelalloc, "nodelalloc"},
1243 {Opt_removed, "mblk_io_submit"},
1244 {Opt_removed, "nomblk_io_submit"},
1245 {Opt_block_validity, "block_validity"},
1246 {Opt_noblock_validity, "noblock_validity"},
1247 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1248 {Opt_journal_ioprio, "journal_ioprio=%u"},
1249 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1250 {Opt_auto_da_alloc, "auto_da_alloc"},
1251 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1252 {Opt_dioread_nolock, "dioread_nolock"},
1253 {Opt_dioread_lock, "dioread_lock"},
1254 {Opt_discard, "discard"},
1255 {Opt_nodiscard, "nodiscard"},
1256 {Opt_init_itable, "init_itable=%u"},
1257 {Opt_init_itable, "init_itable"},
1258 {Opt_noinit_itable, "noinit_itable"},
1259 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1260 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1261 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1262 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1263 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1264 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1265 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1266 {Opt_err, NULL},
1267 };
1268
get_sb_block(void ** data)1269 static ext4_fsblk_t get_sb_block(void **data)
1270 {
1271 ext4_fsblk_t sb_block;
1272 char *options = (char *) *data;
1273
1274 if (!options || strncmp(options, "sb=", 3) != 0)
1275 return 1; /* Default location */
1276
1277 options += 3;
1278 /* TODO: use simple_strtoll with >32bit ext4 */
1279 sb_block = simple_strtoul(options, &options, 0);
1280 if (*options && *options != ',') {
1281 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1282 (char *) *data);
1283 return 1;
1284 }
1285 if (*options == ',')
1286 options++;
1287 *data = (void *) options;
1288
1289 return sb_block;
1290 }
1291
1292 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1293 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1294 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1295
1296 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1297 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1298 {
1299 struct ext4_sb_info *sbi = EXT4_SB(sb);
1300 char *qname;
1301 int ret = -1;
1302
1303 if (sb_any_quota_loaded(sb) &&
1304 !sbi->s_qf_names[qtype]) {
1305 ext4_msg(sb, KERN_ERR,
1306 "Cannot change journaled "
1307 "quota options when quota turned on");
1308 return -1;
1309 }
1310 if (ext4_has_feature_quota(sb)) {
1311 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1312 "ignored when QUOTA feature is enabled");
1313 return 1;
1314 }
1315 qname = match_strdup(args);
1316 if (!qname) {
1317 ext4_msg(sb, KERN_ERR,
1318 "Not enough memory for storing quotafile name");
1319 return -1;
1320 }
1321 if (sbi->s_qf_names[qtype]) {
1322 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1323 ret = 1;
1324 else
1325 ext4_msg(sb, KERN_ERR,
1326 "%s quota file already specified",
1327 QTYPE2NAME(qtype));
1328 goto errout;
1329 }
1330 if (strchr(qname, '/')) {
1331 ext4_msg(sb, KERN_ERR,
1332 "quotafile must be on filesystem root");
1333 goto errout;
1334 }
1335 sbi->s_qf_names[qtype] = qname;
1336 set_opt(sb, QUOTA);
1337 return 1;
1338 errout:
1339 kfree(qname);
1340 return ret;
1341 }
1342
clear_qf_name(struct super_block * sb,int qtype)1343 static int clear_qf_name(struct super_block *sb, int qtype)
1344 {
1345
1346 struct ext4_sb_info *sbi = EXT4_SB(sb);
1347
1348 if (sb_any_quota_loaded(sb) &&
1349 sbi->s_qf_names[qtype]) {
1350 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1351 " when quota turned on");
1352 return -1;
1353 }
1354 kfree(sbi->s_qf_names[qtype]);
1355 sbi->s_qf_names[qtype] = NULL;
1356 return 1;
1357 }
1358 #endif
1359
1360 #define MOPT_SET 0x0001
1361 #define MOPT_CLEAR 0x0002
1362 #define MOPT_NOSUPPORT 0x0004
1363 #define MOPT_EXPLICIT 0x0008
1364 #define MOPT_CLEAR_ERR 0x0010
1365 #define MOPT_GTE0 0x0020
1366 #ifdef CONFIG_QUOTA
1367 #define MOPT_Q 0
1368 #define MOPT_QFMT 0x0040
1369 #else
1370 #define MOPT_Q MOPT_NOSUPPORT
1371 #define MOPT_QFMT MOPT_NOSUPPORT
1372 #endif
1373 #define MOPT_DATAJ 0x0080
1374 #define MOPT_NO_EXT2 0x0100
1375 #define MOPT_NO_EXT3 0x0200
1376 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1377 #define MOPT_STRING 0x0400
1378
1379 static const struct mount_opts {
1380 int token;
1381 int mount_opt;
1382 int flags;
1383 } ext4_mount_opts[] = {
1384 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1385 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1386 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1387 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1388 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1389 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1390 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1391 MOPT_EXT4_ONLY | MOPT_SET},
1392 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1393 MOPT_EXT4_ONLY | MOPT_CLEAR},
1394 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1395 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1396 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1397 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1398 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1399 MOPT_EXT4_ONLY | MOPT_CLEAR},
1400 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1401 MOPT_EXT4_ONLY | MOPT_CLEAR},
1402 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1403 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1404 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1405 EXT4_MOUNT_JOURNAL_CHECKSUM),
1406 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1407 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1408 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1409 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1410 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1411 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1412 MOPT_NO_EXT2 | MOPT_SET},
1413 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1414 MOPT_NO_EXT2 | MOPT_CLEAR},
1415 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1416 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1417 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1418 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1419 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1420 {Opt_commit, 0, MOPT_GTE0},
1421 {Opt_max_batch_time, 0, MOPT_GTE0},
1422 {Opt_min_batch_time, 0, MOPT_GTE0},
1423 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1424 {Opt_init_itable, 0, MOPT_GTE0},
1425 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1426 {Opt_stripe, 0, MOPT_GTE0},
1427 {Opt_resuid, 0, MOPT_GTE0},
1428 {Opt_resgid, 0, MOPT_GTE0},
1429 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1430 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1431 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1432 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1433 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1434 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1435 MOPT_NO_EXT2 | MOPT_DATAJ},
1436 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1437 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1438 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1439 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1440 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1441 #else
1442 {Opt_acl, 0, MOPT_NOSUPPORT},
1443 {Opt_noacl, 0, MOPT_NOSUPPORT},
1444 #endif
1445 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1446 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1447 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1448 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1449 MOPT_SET | MOPT_Q},
1450 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1451 MOPT_SET | MOPT_Q},
1452 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1453 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1454 {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
1455 {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
1456 {Opt_offusrjquota, 0, MOPT_Q},
1457 {Opt_offgrpjquota, 0, MOPT_Q},
1458 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1459 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1460 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1461 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1462 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1463 {Opt_err, 0, 0}
1464 };
1465
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1466 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1467 substring_t *args, unsigned long *journal_devnum,
1468 unsigned int *journal_ioprio, int is_remount)
1469 {
1470 struct ext4_sb_info *sbi = EXT4_SB(sb);
1471 const struct mount_opts *m;
1472 kuid_t uid;
1473 kgid_t gid;
1474 int arg = 0;
1475
1476 #ifdef CONFIG_QUOTA
1477 if (token == Opt_usrjquota)
1478 return set_qf_name(sb, USRQUOTA, &args[0]);
1479 else if (token == Opt_grpjquota)
1480 return set_qf_name(sb, GRPQUOTA, &args[0]);
1481 else if (token == Opt_offusrjquota)
1482 return clear_qf_name(sb, USRQUOTA);
1483 else if (token == Opt_offgrpjquota)
1484 return clear_qf_name(sb, GRPQUOTA);
1485 #endif
1486 switch (token) {
1487 case Opt_noacl:
1488 case Opt_nouser_xattr:
1489 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1490 break;
1491 case Opt_sb:
1492 return 1; /* handled by get_sb_block() */
1493 case Opt_removed:
1494 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1495 return 1;
1496 case Opt_abort:
1497 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1498 return 1;
1499 case Opt_i_version:
1500 sb->s_flags |= MS_I_VERSION;
1501 return 1;
1502 case Opt_lazytime:
1503 sb->s_flags |= MS_LAZYTIME;
1504 return 1;
1505 case Opt_nolazytime:
1506 sb->s_flags &= ~MS_LAZYTIME;
1507 return 1;
1508 }
1509
1510 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1511 if (token == m->token)
1512 break;
1513
1514 if (m->token == Opt_err) {
1515 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1516 "or missing value", opt);
1517 return -1;
1518 }
1519
1520 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1521 ext4_msg(sb, KERN_ERR,
1522 "Mount option \"%s\" incompatible with ext2", opt);
1523 return -1;
1524 }
1525 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1526 ext4_msg(sb, KERN_ERR,
1527 "Mount option \"%s\" incompatible with ext3", opt);
1528 return -1;
1529 }
1530
1531 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1532 return -1;
1533 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1534 return -1;
1535 if (m->flags & MOPT_EXPLICIT) {
1536 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1537 set_opt2(sb, EXPLICIT_DELALLOC);
1538 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1539 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1540 } else
1541 return -1;
1542 }
1543 if (m->flags & MOPT_CLEAR_ERR)
1544 clear_opt(sb, ERRORS_MASK);
1545 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1546 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1547 "options when quota turned on");
1548 return -1;
1549 }
1550
1551 if (m->flags & MOPT_NOSUPPORT) {
1552 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1553 } else if (token == Opt_commit) {
1554 if (arg == 0)
1555 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1556 sbi->s_commit_interval = HZ * arg;
1557 } else if (token == Opt_max_batch_time) {
1558 sbi->s_max_batch_time = arg;
1559 } else if (token == Opt_min_batch_time) {
1560 sbi->s_min_batch_time = arg;
1561 } else if (token == Opt_inode_readahead_blks) {
1562 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1563 ext4_msg(sb, KERN_ERR,
1564 "EXT4-fs: inode_readahead_blks must be "
1565 "0 or a power of 2 smaller than 2^31");
1566 return -1;
1567 }
1568 sbi->s_inode_readahead_blks = arg;
1569 } else if (token == Opt_init_itable) {
1570 set_opt(sb, INIT_INODE_TABLE);
1571 if (!args->from)
1572 arg = EXT4_DEF_LI_WAIT_MULT;
1573 sbi->s_li_wait_mult = arg;
1574 } else if (token == Opt_max_dir_size_kb) {
1575 sbi->s_max_dir_size_kb = arg;
1576 } else if (token == Opt_stripe) {
1577 sbi->s_stripe = arg;
1578 } else if (token == Opt_resuid) {
1579 uid = make_kuid(current_user_ns(), arg);
1580 if (!uid_valid(uid)) {
1581 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1582 return -1;
1583 }
1584 sbi->s_resuid = uid;
1585 } else if (token == Opt_resgid) {
1586 gid = make_kgid(current_user_ns(), arg);
1587 if (!gid_valid(gid)) {
1588 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1589 return -1;
1590 }
1591 sbi->s_resgid = gid;
1592 } else if (token == Opt_journal_dev) {
1593 if (is_remount) {
1594 ext4_msg(sb, KERN_ERR,
1595 "Cannot specify journal on remount");
1596 return -1;
1597 }
1598 *journal_devnum = arg;
1599 } else if (token == Opt_journal_path) {
1600 char *journal_path;
1601 struct inode *journal_inode;
1602 struct path path;
1603 int error;
1604
1605 if (is_remount) {
1606 ext4_msg(sb, KERN_ERR,
1607 "Cannot specify journal on remount");
1608 return -1;
1609 }
1610 journal_path = match_strdup(&args[0]);
1611 if (!journal_path) {
1612 ext4_msg(sb, KERN_ERR, "error: could not dup "
1613 "journal device string");
1614 return -1;
1615 }
1616
1617 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1618 if (error) {
1619 ext4_msg(sb, KERN_ERR, "error: could not find "
1620 "journal device path: error %d", error);
1621 kfree(journal_path);
1622 return -1;
1623 }
1624
1625 journal_inode = d_inode(path.dentry);
1626 if (!S_ISBLK(journal_inode->i_mode)) {
1627 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1628 "is not a block device", journal_path);
1629 path_put(&path);
1630 kfree(journal_path);
1631 return -1;
1632 }
1633
1634 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1635 path_put(&path);
1636 kfree(journal_path);
1637 } else if (token == Opt_journal_ioprio) {
1638 if (arg > 7) {
1639 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1640 " (must be 0-7)");
1641 return -1;
1642 }
1643 *journal_ioprio =
1644 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1645 } else if (token == Opt_test_dummy_encryption) {
1646 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1647 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1648 ext4_msg(sb, KERN_WARNING,
1649 "Test dummy encryption mode enabled");
1650 #else
1651 ext4_msg(sb, KERN_WARNING,
1652 "Test dummy encryption mount option ignored");
1653 #endif
1654 } else if (m->flags & MOPT_DATAJ) {
1655 if (is_remount) {
1656 if (!sbi->s_journal)
1657 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1658 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1659 ext4_msg(sb, KERN_ERR,
1660 "Cannot change data mode on remount");
1661 return -1;
1662 }
1663 } else {
1664 clear_opt(sb, DATA_FLAGS);
1665 sbi->s_mount_opt |= m->mount_opt;
1666 }
1667 #ifdef CONFIG_QUOTA
1668 } else if (m->flags & MOPT_QFMT) {
1669 if (sb_any_quota_loaded(sb) &&
1670 sbi->s_jquota_fmt != m->mount_opt) {
1671 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1672 "quota options when quota turned on");
1673 return -1;
1674 }
1675 if (ext4_has_feature_quota(sb)) {
1676 ext4_msg(sb, KERN_INFO,
1677 "Quota format mount options ignored "
1678 "when QUOTA feature is enabled");
1679 return 1;
1680 }
1681 sbi->s_jquota_fmt = m->mount_opt;
1682 #endif
1683 } else if (token == Opt_dax) {
1684 #ifdef CONFIG_FS_DAX
1685 ext4_msg(sb, KERN_WARNING,
1686 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1687 sbi->s_mount_opt |= m->mount_opt;
1688 #else
1689 ext4_msg(sb, KERN_INFO, "dax option not supported");
1690 return -1;
1691 #endif
1692 } else {
1693 if (!args->from)
1694 arg = 1;
1695 if (m->flags & MOPT_CLEAR)
1696 arg = !arg;
1697 else if (unlikely(!(m->flags & MOPT_SET))) {
1698 ext4_msg(sb, KERN_WARNING,
1699 "buggy handling of option %s", opt);
1700 WARN_ON(1);
1701 return -1;
1702 }
1703 if (arg != 0)
1704 sbi->s_mount_opt |= m->mount_opt;
1705 else
1706 sbi->s_mount_opt &= ~m->mount_opt;
1707 }
1708 return 1;
1709 }
1710
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1711 static int parse_options(char *options, struct super_block *sb,
1712 unsigned long *journal_devnum,
1713 unsigned int *journal_ioprio,
1714 int is_remount)
1715 {
1716 struct ext4_sb_info *sbi = EXT4_SB(sb);
1717 char *p;
1718 substring_t args[MAX_OPT_ARGS];
1719 int token;
1720
1721 if (!options)
1722 return 1;
1723
1724 while ((p = strsep(&options, ",")) != NULL) {
1725 if (!*p)
1726 continue;
1727 /*
1728 * Initialize args struct so we know whether arg was
1729 * found; some options take optional arguments.
1730 */
1731 args[0].to = args[0].from = NULL;
1732 token = match_token(p, tokens, args);
1733 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1734 journal_ioprio, is_remount) < 0)
1735 return 0;
1736 }
1737 #ifdef CONFIG_QUOTA
1738 if (ext4_has_feature_quota(sb) &&
1739 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1740 ext4_msg(sb, KERN_INFO, "Quota feature enabled, usrquota and grpquota "
1741 "mount options ignored.");
1742 clear_opt(sb, USRQUOTA);
1743 clear_opt(sb, GRPQUOTA);
1744 } else if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1745 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1746 clear_opt(sb, USRQUOTA);
1747
1748 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1749 clear_opt(sb, GRPQUOTA);
1750
1751 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1752 ext4_msg(sb, KERN_ERR, "old and new quota "
1753 "format mixing");
1754 return 0;
1755 }
1756
1757 if (!sbi->s_jquota_fmt) {
1758 ext4_msg(sb, KERN_ERR, "journaled quota format "
1759 "not specified");
1760 return 0;
1761 }
1762 }
1763 #endif
1764 if (test_opt(sb, DIOREAD_NOLOCK)) {
1765 int blocksize =
1766 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1767
1768 if (blocksize < PAGE_CACHE_SIZE) {
1769 ext4_msg(sb, KERN_ERR, "can't mount with "
1770 "dioread_nolock if block size != PAGE_SIZE");
1771 return 0;
1772 }
1773 }
1774 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1775 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1776 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1777 "in data=ordered mode");
1778 return 0;
1779 }
1780 return 1;
1781 }
1782
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)1783 static inline void ext4_show_quota_options(struct seq_file *seq,
1784 struct super_block *sb)
1785 {
1786 #if defined(CONFIG_QUOTA)
1787 struct ext4_sb_info *sbi = EXT4_SB(sb);
1788
1789 if (sbi->s_jquota_fmt) {
1790 char *fmtname = "";
1791
1792 switch (sbi->s_jquota_fmt) {
1793 case QFMT_VFS_OLD:
1794 fmtname = "vfsold";
1795 break;
1796 case QFMT_VFS_V0:
1797 fmtname = "vfsv0";
1798 break;
1799 case QFMT_VFS_V1:
1800 fmtname = "vfsv1";
1801 break;
1802 }
1803 seq_printf(seq, ",jqfmt=%s", fmtname);
1804 }
1805
1806 if (sbi->s_qf_names[USRQUOTA])
1807 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1808
1809 if (sbi->s_qf_names[GRPQUOTA])
1810 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1811 #endif
1812 }
1813
token2str(int token)1814 static const char *token2str(int token)
1815 {
1816 const struct match_token *t;
1817
1818 for (t = tokens; t->token != Opt_err; t++)
1819 if (t->token == token && !strchr(t->pattern, '='))
1820 break;
1821 return t->pattern;
1822 }
1823
1824 /*
1825 * Show an option if
1826 * - it's set to a non-default value OR
1827 * - if the per-sb default is different from the global default
1828 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)1829 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1830 int nodefs)
1831 {
1832 struct ext4_sb_info *sbi = EXT4_SB(sb);
1833 struct ext4_super_block *es = sbi->s_es;
1834 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1835 const struct mount_opts *m;
1836 char sep = nodefs ? '\n' : ',';
1837
1838 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1839 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1840
1841 if (sbi->s_sb_block != 1)
1842 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1843
1844 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1845 int want_set = m->flags & MOPT_SET;
1846 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1847 (m->flags & MOPT_CLEAR_ERR))
1848 continue;
1849 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1850 continue; /* skip if same as the default */
1851 if ((want_set &&
1852 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1853 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1854 continue; /* select Opt_noFoo vs Opt_Foo */
1855 SEQ_OPTS_PRINT("%s", token2str(m->token));
1856 }
1857
1858 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1859 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1860 SEQ_OPTS_PRINT("resuid=%u",
1861 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1862 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1863 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1864 SEQ_OPTS_PRINT("resgid=%u",
1865 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1866 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1867 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1868 SEQ_OPTS_PUTS("errors=remount-ro");
1869 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1870 SEQ_OPTS_PUTS("errors=continue");
1871 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1872 SEQ_OPTS_PUTS("errors=panic");
1873 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1874 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1875 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1876 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1877 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1878 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1879 if (sb->s_flags & MS_I_VERSION)
1880 SEQ_OPTS_PUTS("i_version");
1881 if (nodefs || sbi->s_stripe)
1882 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1883 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1884 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1885 SEQ_OPTS_PUTS("data=journal");
1886 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1887 SEQ_OPTS_PUTS("data=ordered");
1888 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1889 SEQ_OPTS_PUTS("data=writeback");
1890 }
1891 if (nodefs ||
1892 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1893 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1894 sbi->s_inode_readahead_blks);
1895
1896 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1897 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1898 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1899 if (nodefs || sbi->s_max_dir_size_kb)
1900 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1901
1902 ext4_show_quota_options(seq, sb);
1903 return 0;
1904 }
1905
ext4_show_options(struct seq_file * seq,struct dentry * root)1906 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1907 {
1908 return _ext4_show_options(seq, root->d_sb, 0);
1909 }
1910
ext4_seq_options_show(struct seq_file * seq,void * offset)1911 int ext4_seq_options_show(struct seq_file *seq, void *offset)
1912 {
1913 struct super_block *sb = seq->private;
1914 int rc;
1915
1916 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1917 rc = _ext4_show_options(seq, sb, 1);
1918 seq_puts(seq, "\n");
1919 return rc;
1920 }
1921
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)1922 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1923 int read_only)
1924 {
1925 struct ext4_sb_info *sbi = EXT4_SB(sb);
1926 int res = 0;
1927
1928 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1929 ext4_msg(sb, KERN_ERR, "revision level too high, "
1930 "forcing read-only mode");
1931 res = MS_RDONLY;
1932 }
1933 if (read_only)
1934 goto done;
1935 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1936 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1937 "running e2fsck is recommended");
1938 else if (sbi->s_mount_state & EXT4_ERROR_FS)
1939 ext4_msg(sb, KERN_WARNING,
1940 "warning: mounting fs with errors, "
1941 "running e2fsck is recommended");
1942 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1943 le16_to_cpu(es->s_mnt_count) >=
1944 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1945 ext4_msg(sb, KERN_WARNING,
1946 "warning: maximal mount count reached, "
1947 "running e2fsck is recommended");
1948 else if (le32_to_cpu(es->s_checkinterval) &&
1949 (le32_to_cpu(es->s_lastcheck) +
1950 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1951 ext4_msg(sb, KERN_WARNING,
1952 "warning: checktime reached, "
1953 "running e2fsck is recommended");
1954 if (!sbi->s_journal)
1955 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1956 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1957 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1958 le16_add_cpu(&es->s_mnt_count, 1);
1959 es->s_mtime = cpu_to_le32(get_seconds());
1960 ext4_update_dynamic_rev(sb);
1961 if (sbi->s_journal)
1962 ext4_set_feature_journal_needs_recovery(sb);
1963
1964 ext4_commit_super(sb, 1);
1965 done:
1966 if (test_opt(sb, DEBUG))
1967 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1968 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1969 sb->s_blocksize,
1970 sbi->s_groups_count,
1971 EXT4_BLOCKS_PER_GROUP(sb),
1972 EXT4_INODES_PER_GROUP(sb),
1973 sbi->s_mount_opt, sbi->s_mount_opt2);
1974
1975 cleancache_init_fs(sb);
1976 return res;
1977 }
1978
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)1979 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1980 {
1981 struct ext4_sb_info *sbi = EXT4_SB(sb);
1982 struct flex_groups **old_groups, **new_groups;
1983 int size, i, j;
1984
1985 if (!sbi->s_log_groups_per_flex)
1986 return 0;
1987
1988 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1989 if (size <= sbi->s_flex_groups_allocated)
1990 return 0;
1991
1992 new_groups = ext4_kvzalloc(roundup_pow_of_two(size *
1993 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
1994 if (!new_groups) {
1995 ext4_msg(sb, KERN_ERR,
1996 "not enough memory for %d flex group pointers", size);
1997 return -ENOMEM;
1998 }
1999 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2000 new_groups[i] = ext4_kvzalloc(roundup_pow_of_two(
2001 sizeof(struct flex_groups)),
2002 GFP_KERNEL);
2003 if (!new_groups[i]) {
2004 for (j = sbi->s_flex_groups_allocated; j < i; j++)
2005 kvfree(new_groups[j]);
2006 kvfree(new_groups);
2007 ext4_msg(sb, KERN_ERR,
2008 "not enough memory for %d flex groups", size);
2009 return -ENOMEM;
2010 }
2011 }
2012 rcu_read_lock();
2013 old_groups = rcu_dereference(sbi->s_flex_groups);
2014 if (old_groups)
2015 memcpy(new_groups, old_groups,
2016 (sbi->s_flex_groups_allocated *
2017 sizeof(struct flex_groups *)));
2018 rcu_read_unlock();
2019 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2020 sbi->s_flex_groups_allocated = size;
2021 if (old_groups)
2022 ext4_kvfree_array_rcu(old_groups);
2023 return 0;
2024 }
2025
ext4_fill_flex_info(struct super_block * sb)2026 static int ext4_fill_flex_info(struct super_block *sb)
2027 {
2028 struct ext4_sb_info *sbi = EXT4_SB(sb);
2029 struct ext4_group_desc *gdp = NULL;
2030 struct flex_groups *fg;
2031 ext4_group_t flex_group;
2032 int i, err;
2033
2034 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2035 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2036 sbi->s_log_groups_per_flex = 0;
2037 return 1;
2038 }
2039
2040 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2041 if (err)
2042 goto failed;
2043
2044 for (i = 0; i < sbi->s_groups_count; i++) {
2045 gdp = ext4_get_group_desc(sb, i, NULL);
2046
2047 flex_group = ext4_flex_group(sbi, i);
2048 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2049 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2050 atomic64_add(ext4_free_group_clusters(sb, gdp),
2051 &fg->free_clusters);
2052 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2053 }
2054
2055 return 1;
2056 failed:
2057 return 0;
2058 }
2059
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2060 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2061 struct ext4_group_desc *gdp)
2062 {
2063 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2064 __u16 crc = 0;
2065 __le32 le_group = cpu_to_le32(block_group);
2066 struct ext4_sb_info *sbi = EXT4_SB(sb);
2067
2068 if (ext4_has_metadata_csum(sbi->s_sb)) {
2069 /* Use new metadata_csum algorithm */
2070 __u32 csum32;
2071 __u16 dummy_csum = 0;
2072
2073 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2074 sizeof(le_group));
2075 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2076 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2077 sizeof(dummy_csum));
2078 offset += sizeof(dummy_csum);
2079 if (offset < sbi->s_desc_size)
2080 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2081 sbi->s_desc_size - offset);
2082
2083 crc = csum32 & 0xFFFF;
2084 goto out;
2085 }
2086
2087 /* old crc16 code */
2088 if (!ext4_has_feature_gdt_csum(sb))
2089 return 0;
2090
2091 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2092 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2093 crc = crc16(crc, (__u8 *)gdp, offset);
2094 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2095 /* for checksum of struct ext4_group_desc do the rest...*/
2096 if (ext4_has_feature_64bit(sb) &&
2097 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2098 crc = crc16(crc, (__u8 *)gdp + offset,
2099 le16_to_cpu(sbi->s_es->s_desc_size) -
2100 offset);
2101
2102 out:
2103 return cpu_to_le16(crc);
2104 }
2105
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2106 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2107 struct ext4_group_desc *gdp)
2108 {
2109 if (ext4_has_group_desc_csum(sb) &&
2110 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2111 return 0;
2112
2113 return 1;
2114 }
2115
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2116 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2117 struct ext4_group_desc *gdp)
2118 {
2119 if (!ext4_has_group_desc_csum(sb))
2120 return;
2121 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2122 }
2123
2124 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)2125 static int ext4_check_descriptors(struct super_block *sb,
2126 ext4_fsblk_t sb_block,
2127 ext4_group_t *first_not_zeroed)
2128 {
2129 struct ext4_sb_info *sbi = EXT4_SB(sb);
2130 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2131 ext4_fsblk_t last_block;
2132 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2133 ext4_fsblk_t block_bitmap;
2134 ext4_fsblk_t inode_bitmap;
2135 ext4_fsblk_t inode_table;
2136 int flexbg_flag = 0;
2137 ext4_group_t i, grp = sbi->s_groups_count;
2138
2139 if (ext4_has_feature_flex_bg(sb))
2140 flexbg_flag = 1;
2141
2142 ext4_debug("Checking group descriptors");
2143
2144 for (i = 0; i < sbi->s_groups_count; i++) {
2145 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2146
2147 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2148 last_block = ext4_blocks_count(sbi->s_es) - 1;
2149 else
2150 last_block = first_block +
2151 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2152
2153 if ((grp == sbi->s_groups_count) &&
2154 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2155 grp = i;
2156
2157 block_bitmap = ext4_block_bitmap(sb, gdp);
2158 if (block_bitmap == sb_block) {
2159 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2160 "Block bitmap for group %u overlaps "
2161 "superblock", i);
2162 if (!(sb->s_flags & MS_RDONLY))
2163 return 0;
2164 }
2165 if (block_bitmap >= sb_block + 1 &&
2166 block_bitmap <= last_bg_block) {
2167 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2168 "Block bitmap for group %u overlaps "
2169 "block group descriptors", i);
2170 if (!(sb->s_flags & MS_RDONLY))
2171 return 0;
2172 }
2173 if (block_bitmap < first_block || block_bitmap > last_block) {
2174 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2175 "Block bitmap for group %u not in group "
2176 "(block %llu)!", i, block_bitmap);
2177 return 0;
2178 }
2179 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2180 if (inode_bitmap == sb_block) {
2181 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2182 "Inode bitmap for group %u overlaps "
2183 "superblock", i);
2184 if (!(sb->s_flags & MS_RDONLY))
2185 return 0;
2186 }
2187 if (inode_bitmap >= sb_block + 1 &&
2188 inode_bitmap <= last_bg_block) {
2189 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2190 "Inode bitmap for group %u overlaps "
2191 "block group descriptors", i);
2192 if (!(sb->s_flags & MS_RDONLY))
2193 return 0;
2194 }
2195 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2196 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2197 "Inode bitmap for group %u not in group "
2198 "(block %llu)!", i, inode_bitmap);
2199 return 0;
2200 }
2201 inode_table = ext4_inode_table(sb, gdp);
2202 if (inode_table == sb_block) {
2203 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2204 "Inode table for group %u overlaps "
2205 "superblock", i);
2206 if (!(sb->s_flags & MS_RDONLY))
2207 return 0;
2208 }
2209 if (inode_table >= sb_block + 1 &&
2210 inode_table <= last_bg_block) {
2211 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2212 "Inode table for group %u overlaps "
2213 "block group descriptors", i);
2214 if (!(sb->s_flags & MS_RDONLY))
2215 return 0;
2216 }
2217 if (inode_table < first_block ||
2218 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2219 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2220 "Inode table for group %u not in group "
2221 "(block %llu)!", i, inode_table);
2222 return 0;
2223 }
2224 ext4_lock_group(sb, i);
2225 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2226 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2227 "Checksum for group %u failed (%u!=%u)",
2228 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2229 gdp)), le16_to_cpu(gdp->bg_checksum));
2230 if (!(sb->s_flags & MS_RDONLY)) {
2231 ext4_unlock_group(sb, i);
2232 return 0;
2233 }
2234 }
2235 ext4_unlock_group(sb, i);
2236 if (!flexbg_flag)
2237 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2238 }
2239 if (NULL != first_not_zeroed)
2240 *first_not_zeroed = grp;
2241 return 1;
2242 }
2243
2244 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2245 * the superblock) which were deleted from all directories, but held open by
2246 * a process at the time of a crash. We walk the list and try to delete these
2247 * inodes at recovery time (only with a read-write filesystem).
2248 *
2249 * In order to keep the orphan inode chain consistent during traversal (in
2250 * case of crash during recovery), we link each inode into the superblock
2251 * orphan list_head and handle it the same way as an inode deletion during
2252 * normal operation (which journals the operations for us).
2253 *
2254 * We only do an iget() and an iput() on each inode, which is very safe if we
2255 * accidentally point at an in-use or already deleted inode. The worst that
2256 * can happen in this case is that we get a "bit already cleared" message from
2257 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2258 * e2fsck was run on this filesystem, and it must have already done the orphan
2259 * inode cleanup for us, so we can safely abort without any further action.
2260 */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2261 static void ext4_orphan_cleanup(struct super_block *sb,
2262 struct ext4_super_block *es)
2263 {
2264 unsigned int s_flags = sb->s_flags;
2265 int nr_orphans = 0, nr_truncates = 0;
2266 #ifdef CONFIG_QUOTA
2267 int quota_update = 0;
2268 int i;
2269 #endif
2270 if (!es->s_last_orphan) {
2271 jbd_debug(4, "no orphan inodes to clean up\n");
2272 return;
2273 }
2274
2275 if (bdev_read_only(sb->s_bdev)) {
2276 ext4_msg(sb, KERN_ERR, "write access "
2277 "unavailable, skipping orphan cleanup");
2278 return;
2279 }
2280
2281 /* Check if feature set would not allow a r/w mount */
2282 if (!ext4_feature_set_ok(sb, 0)) {
2283 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2284 "unknown ROCOMPAT features");
2285 return;
2286 }
2287
2288 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2289 /* don't clear list on RO mount w/ errors */
2290 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2291 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2292 "clearing orphan list.\n");
2293 es->s_last_orphan = 0;
2294 }
2295 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2296 return;
2297 }
2298
2299 if (s_flags & MS_RDONLY) {
2300 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2301 sb->s_flags &= ~MS_RDONLY;
2302 }
2303 #ifdef CONFIG_QUOTA
2304 /* Needed for iput() to work correctly and not trash data */
2305 sb->s_flags |= MS_ACTIVE;
2306
2307 /*
2308 * Turn on quotas which were not enabled for read-only mounts if
2309 * filesystem has quota feature, so that they are updated correctly.
2310 */
2311 if (ext4_has_feature_quota(sb) && (s_flags & MS_RDONLY)) {
2312 int ret = ext4_enable_quotas(sb);
2313
2314 if (!ret)
2315 quota_update = 1;
2316 else
2317 ext4_msg(sb, KERN_ERR,
2318 "Cannot turn on quotas: error %d", ret);
2319 }
2320
2321 /* Turn on journaled quotas used for old sytle */
2322 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2323 if (EXT4_SB(sb)->s_qf_names[i]) {
2324 int ret = ext4_quota_on_mount(sb, i);
2325
2326 if (!ret)
2327 quota_update = 1;
2328 else
2329 ext4_msg(sb, KERN_ERR,
2330 "Cannot turn on journaled "
2331 "quota: type %d: error %d", i, ret);
2332 }
2333 }
2334 #endif
2335
2336 while (es->s_last_orphan) {
2337 struct inode *inode;
2338
2339 /*
2340 * We may have encountered an error during cleanup; if
2341 * so, skip the rest.
2342 */
2343 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2344 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2345 es->s_last_orphan = 0;
2346 break;
2347 }
2348
2349 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2350 if (IS_ERR(inode)) {
2351 es->s_last_orphan = 0;
2352 break;
2353 }
2354
2355 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2356 dquot_initialize(inode);
2357 if (inode->i_nlink) {
2358 if (test_opt(sb, DEBUG))
2359 ext4_msg(sb, KERN_DEBUG,
2360 "%s: truncating inode %lu to %lld bytes",
2361 __func__, inode->i_ino, inode->i_size);
2362 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2363 inode->i_ino, inode->i_size);
2364 mutex_lock(&inode->i_mutex);
2365 truncate_inode_pages(inode->i_mapping, inode->i_size);
2366 ext4_truncate(inode);
2367 mutex_unlock(&inode->i_mutex);
2368 nr_truncates++;
2369 } else {
2370 if (test_opt(sb, DEBUG))
2371 ext4_msg(sb, KERN_DEBUG,
2372 "%s: deleting unreferenced inode %lu",
2373 __func__, inode->i_ino);
2374 jbd_debug(2, "deleting unreferenced inode %lu\n",
2375 inode->i_ino);
2376 nr_orphans++;
2377 }
2378 iput(inode); /* The delete magic happens here! */
2379 }
2380
2381 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2382
2383 if (nr_orphans)
2384 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2385 PLURAL(nr_orphans));
2386 if (nr_truncates)
2387 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2388 PLURAL(nr_truncates));
2389 #ifdef CONFIG_QUOTA
2390 /* Turn off quotas if they were enabled for orphan cleanup */
2391 if (quota_update) {
2392 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2393 if (sb_dqopt(sb)->files[i])
2394 dquot_quota_off(sb, i);
2395 }
2396 }
2397 #endif
2398 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2399 }
2400
2401 /*
2402 * Maximal extent format file size.
2403 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2404 * extent format containers, within a sector_t, and within i_blocks
2405 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2406 * so that won't be a limiting factor.
2407 *
2408 * However there is other limiting factor. We do store extents in the form
2409 * of starting block and length, hence the resulting length of the extent
2410 * covering maximum file size must fit into on-disk format containers as
2411 * well. Given that length is always by 1 unit bigger than max unit (because
2412 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2413 *
2414 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2415 */
ext4_max_size(int blkbits,int has_huge_files)2416 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2417 {
2418 loff_t res;
2419 loff_t upper_limit = MAX_LFS_FILESIZE;
2420
2421 /* small i_blocks in vfs inode? */
2422 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2423 /*
2424 * CONFIG_LBDAF is not enabled implies the inode
2425 * i_block represent total blocks in 512 bytes
2426 * 32 == size of vfs inode i_blocks * 8
2427 */
2428 upper_limit = (1LL << 32) - 1;
2429
2430 /* total blocks in file system block size */
2431 upper_limit >>= (blkbits - 9);
2432 upper_limit <<= blkbits;
2433 }
2434
2435 /*
2436 * 32-bit extent-start container, ee_block. We lower the maxbytes
2437 * by one fs block, so ee_len can cover the extent of maximum file
2438 * size
2439 */
2440 res = (1LL << 32) - 1;
2441 res <<= blkbits;
2442
2443 /* Sanity check against vm- & vfs- imposed limits */
2444 if (res > upper_limit)
2445 res = upper_limit;
2446
2447 return res;
2448 }
2449
2450 /*
2451 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2452 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2453 * We need to be 1 filesystem block less than the 2^48 sector limit.
2454 */
ext4_max_bitmap_size(int bits,int has_huge_files)2455 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2456 {
2457 loff_t res = EXT4_NDIR_BLOCKS;
2458 int meta_blocks;
2459 loff_t upper_limit;
2460 /* This is calculated to be the largest file size for a dense, block
2461 * mapped file such that the file's total number of 512-byte sectors,
2462 * including data and all indirect blocks, does not exceed (2^48 - 1).
2463 *
2464 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2465 * number of 512-byte sectors of the file.
2466 */
2467
2468 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2469 /*
2470 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2471 * the inode i_block field represents total file blocks in
2472 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2473 */
2474 upper_limit = (1LL << 32) - 1;
2475
2476 /* total blocks in file system block size */
2477 upper_limit >>= (bits - 9);
2478
2479 } else {
2480 /*
2481 * We use 48 bit ext4_inode i_blocks
2482 * With EXT4_HUGE_FILE_FL set the i_blocks
2483 * represent total number of blocks in
2484 * file system block size
2485 */
2486 upper_limit = (1LL << 48) - 1;
2487
2488 }
2489
2490 /* indirect blocks */
2491 meta_blocks = 1;
2492 /* double indirect blocks */
2493 meta_blocks += 1 + (1LL << (bits-2));
2494 /* tripple indirect blocks */
2495 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2496
2497 upper_limit -= meta_blocks;
2498 upper_limit <<= bits;
2499
2500 res += 1LL << (bits-2);
2501 res += 1LL << (2*(bits-2));
2502 res += 1LL << (3*(bits-2));
2503 res <<= bits;
2504 if (res > upper_limit)
2505 res = upper_limit;
2506
2507 if (res > MAX_LFS_FILESIZE)
2508 res = MAX_LFS_FILESIZE;
2509
2510 return res;
2511 }
2512
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)2513 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2514 ext4_fsblk_t logical_sb_block, int nr)
2515 {
2516 struct ext4_sb_info *sbi = EXT4_SB(sb);
2517 ext4_group_t bg, first_meta_bg;
2518 int has_super = 0;
2519
2520 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2521
2522 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2523 return logical_sb_block + nr + 1;
2524 bg = sbi->s_desc_per_block * nr;
2525 if (ext4_bg_has_super(sb, bg))
2526 has_super = 1;
2527
2528 /*
2529 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2530 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2531 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2532 * compensate.
2533 */
2534 if (sb->s_blocksize == 1024 && nr == 0 &&
2535 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2536 has_super++;
2537
2538 return (has_super + ext4_group_first_block_no(sb, bg));
2539 }
2540
2541 /**
2542 * ext4_get_stripe_size: Get the stripe size.
2543 * @sbi: In memory super block info
2544 *
2545 * If we have specified it via mount option, then
2546 * use the mount option value. If the value specified at mount time is
2547 * greater than the blocks per group use the super block value.
2548 * If the super block value is greater than blocks per group return 0.
2549 * Allocator needs it be less than blocks per group.
2550 *
2551 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)2552 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2553 {
2554 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2555 unsigned long stripe_width =
2556 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2557 int ret;
2558
2559 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2560 ret = sbi->s_stripe;
2561 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2562 ret = stripe_width;
2563 else if (stride && stride <= sbi->s_blocks_per_group)
2564 ret = stride;
2565 else
2566 ret = 0;
2567
2568 /*
2569 * If the stripe width is 1, this makes no sense and
2570 * we set it to 0 to turn off stripe handling code.
2571 */
2572 if (ret <= 1)
2573 ret = 0;
2574
2575 return ret;
2576 }
2577
2578 /*
2579 * Check whether this filesystem can be mounted based on
2580 * the features present and the RDONLY/RDWR mount requested.
2581 * Returns 1 if this filesystem can be mounted as requested,
2582 * 0 if it cannot be.
2583 */
ext4_feature_set_ok(struct super_block * sb,int readonly)2584 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2585 {
2586 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2587 ext4_msg(sb, KERN_ERR,
2588 "Couldn't mount because of "
2589 "unsupported optional features (%x)",
2590 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2591 ~EXT4_FEATURE_INCOMPAT_SUPP));
2592 return 0;
2593 }
2594
2595 if (readonly)
2596 return 1;
2597
2598 if (ext4_has_feature_readonly(sb)) {
2599 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2600 sb->s_flags |= MS_RDONLY;
2601 return 1;
2602 }
2603
2604 /* Check that feature set is OK for a read-write mount */
2605 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2606 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2607 "unsupported optional features (%x)",
2608 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2609 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2610 return 0;
2611 }
2612 /*
2613 * Large file size enabled file system can only be mounted
2614 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2615 */
2616 if (ext4_has_feature_huge_file(sb)) {
2617 if (sizeof(blkcnt_t) < sizeof(u64)) {
2618 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2619 "cannot be mounted RDWR without "
2620 "CONFIG_LBDAF");
2621 return 0;
2622 }
2623 }
2624 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2625 ext4_msg(sb, KERN_ERR,
2626 "Can't support bigalloc feature without "
2627 "extents feature\n");
2628 return 0;
2629 }
2630
2631 #ifndef CONFIG_QUOTA
2632 if (ext4_has_feature_quota(sb) && !readonly) {
2633 ext4_msg(sb, KERN_ERR,
2634 "Filesystem with quota feature cannot be mounted RDWR "
2635 "without CONFIG_QUOTA");
2636 return 0;
2637 }
2638 #endif /* CONFIG_QUOTA */
2639 return 1;
2640 }
2641
2642 /*
2643 * This function is called once a day if we have errors logged
2644 * on the file system
2645 */
print_daily_error_info(unsigned long arg)2646 static void print_daily_error_info(unsigned long arg)
2647 {
2648 struct super_block *sb = (struct super_block *) arg;
2649 struct ext4_sb_info *sbi;
2650 struct ext4_super_block *es;
2651
2652 sbi = EXT4_SB(sb);
2653 es = sbi->s_es;
2654
2655 if (es->s_error_count)
2656 /* fsck newer than v1.41.13 is needed to clean this condition. */
2657 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2658 le32_to_cpu(es->s_error_count));
2659 if (es->s_first_error_time) {
2660 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2661 sb->s_id, le32_to_cpu(es->s_first_error_time),
2662 (int) sizeof(es->s_first_error_func),
2663 es->s_first_error_func,
2664 le32_to_cpu(es->s_first_error_line));
2665 if (es->s_first_error_ino)
2666 printk(": inode %u",
2667 le32_to_cpu(es->s_first_error_ino));
2668 if (es->s_first_error_block)
2669 printk(": block %llu", (unsigned long long)
2670 le64_to_cpu(es->s_first_error_block));
2671 printk("\n");
2672 }
2673 if (es->s_last_error_time) {
2674 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2675 sb->s_id, le32_to_cpu(es->s_last_error_time),
2676 (int) sizeof(es->s_last_error_func),
2677 es->s_last_error_func,
2678 le32_to_cpu(es->s_last_error_line));
2679 if (es->s_last_error_ino)
2680 printk(": inode %u",
2681 le32_to_cpu(es->s_last_error_ino));
2682 if (es->s_last_error_block)
2683 printk(": block %llu", (unsigned long long)
2684 le64_to_cpu(es->s_last_error_block));
2685 printk("\n");
2686 }
2687 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2688 }
2689
2690 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)2691 static int ext4_run_li_request(struct ext4_li_request *elr)
2692 {
2693 struct ext4_group_desc *gdp = NULL;
2694 ext4_group_t group, ngroups;
2695 struct super_block *sb;
2696 unsigned long timeout = 0;
2697 int ret = 0;
2698
2699 sb = elr->lr_super;
2700 ngroups = EXT4_SB(sb)->s_groups_count;
2701
2702 sb_start_write(sb);
2703 for (group = elr->lr_next_group; group < ngroups; group++) {
2704 gdp = ext4_get_group_desc(sb, group, NULL);
2705 if (!gdp) {
2706 ret = 1;
2707 break;
2708 }
2709
2710 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2711 break;
2712 }
2713
2714 if (group >= ngroups)
2715 ret = 1;
2716
2717 if (!ret) {
2718 timeout = jiffies;
2719 ret = ext4_init_inode_table(sb, group,
2720 elr->lr_timeout ? 0 : 1);
2721 if (elr->lr_timeout == 0) {
2722 timeout = (jiffies - timeout) *
2723 elr->lr_sbi->s_li_wait_mult;
2724 elr->lr_timeout = timeout;
2725 }
2726 elr->lr_next_sched = jiffies + elr->lr_timeout;
2727 elr->lr_next_group = group + 1;
2728 }
2729 sb_end_write(sb);
2730
2731 return ret;
2732 }
2733
2734 /*
2735 * Remove lr_request from the list_request and free the
2736 * request structure. Should be called with li_list_mtx held
2737 */
ext4_remove_li_request(struct ext4_li_request * elr)2738 static void ext4_remove_li_request(struct ext4_li_request *elr)
2739 {
2740 struct ext4_sb_info *sbi;
2741
2742 if (!elr)
2743 return;
2744
2745 sbi = elr->lr_sbi;
2746
2747 list_del(&elr->lr_request);
2748 sbi->s_li_request = NULL;
2749 kfree(elr);
2750 }
2751
ext4_unregister_li_request(struct super_block * sb)2752 static void ext4_unregister_li_request(struct super_block *sb)
2753 {
2754 mutex_lock(&ext4_li_mtx);
2755 if (!ext4_li_info) {
2756 mutex_unlock(&ext4_li_mtx);
2757 return;
2758 }
2759
2760 mutex_lock(&ext4_li_info->li_list_mtx);
2761 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2762 mutex_unlock(&ext4_li_info->li_list_mtx);
2763 mutex_unlock(&ext4_li_mtx);
2764 }
2765
2766 static struct task_struct *ext4_lazyinit_task;
2767
2768 /*
2769 * This is the function where ext4lazyinit thread lives. It walks
2770 * through the request list searching for next scheduled filesystem.
2771 * When such a fs is found, run the lazy initialization request
2772 * (ext4_rn_li_request) and keep track of the time spend in this
2773 * function. Based on that time we compute next schedule time of
2774 * the request. When walking through the list is complete, compute
2775 * next waking time and put itself into sleep.
2776 */
ext4_lazyinit_thread(void * arg)2777 static int ext4_lazyinit_thread(void *arg)
2778 {
2779 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2780 struct list_head *pos, *n;
2781 struct ext4_li_request *elr;
2782 unsigned long next_wakeup, cur;
2783
2784 BUG_ON(NULL == eli);
2785
2786 cont_thread:
2787 while (true) {
2788 next_wakeup = MAX_JIFFY_OFFSET;
2789
2790 mutex_lock(&eli->li_list_mtx);
2791 if (list_empty(&eli->li_request_list)) {
2792 mutex_unlock(&eli->li_list_mtx);
2793 goto exit_thread;
2794 }
2795
2796 list_for_each_safe(pos, n, &eli->li_request_list) {
2797 elr = list_entry(pos, struct ext4_li_request,
2798 lr_request);
2799
2800 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2801 if (ext4_run_li_request(elr) != 0) {
2802 /* error, remove the lazy_init job */
2803 ext4_remove_li_request(elr);
2804 continue;
2805 }
2806 }
2807
2808 if (time_before(elr->lr_next_sched, next_wakeup))
2809 next_wakeup = elr->lr_next_sched;
2810 }
2811 mutex_unlock(&eli->li_list_mtx);
2812
2813 try_to_freeze();
2814
2815 cur = jiffies;
2816 if ((time_after_eq(cur, next_wakeup)) ||
2817 (MAX_JIFFY_OFFSET == next_wakeup)) {
2818 cond_resched();
2819 continue;
2820 }
2821
2822 schedule_timeout_interruptible(next_wakeup - cur);
2823
2824 if (kthread_should_stop()) {
2825 ext4_clear_request_list();
2826 goto exit_thread;
2827 }
2828 }
2829
2830 exit_thread:
2831 /*
2832 * It looks like the request list is empty, but we need
2833 * to check it under the li_list_mtx lock, to prevent any
2834 * additions into it, and of course we should lock ext4_li_mtx
2835 * to atomically free the list and ext4_li_info, because at
2836 * this point another ext4 filesystem could be registering
2837 * new one.
2838 */
2839 mutex_lock(&ext4_li_mtx);
2840 mutex_lock(&eli->li_list_mtx);
2841 if (!list_empty(&eli->li_request_list)) {
2842 mutex_unlock(&eli->li_list_mtx);
2843 mutex_unlock(&ext4_li_mtx);
2844 goto cont_thread;
2845 }
2846 mutex_unlock(&eli->li_list_mtx);
2847 kfree(ext4_li_info);
2848 ext4_li_info = NULL;
2849 mutex_unlock(&ext4_li_mtx);
2850
2851 return 0;
2852 }
2853
ext4_clear_request_list(void)2854 static void ext4_clear_request_list(void)
2855 {
2856 struct list_head *pos, *n;
2857 struct ext4_li_request *elr;
2858
2859 mutex_lock(&ext4_li_info->li_list_mtx);
2860 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2861 elr = list_entry(pos, struct ext4_li_request,
2862 lr_request);
2863 ext4_remove_li_request(elr);
2864 }
2865 mutex_unlock(&ext4_li_info->li_list_mtx);
2866 }
2867
ext4_run_lazyinit_thread(void)2868 static int ext4_run_lazyinit_thread(void)
2869 {
2870 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2871 ext4_li_info, "ext4lazyinit");
2872 if (IS_ERR(ext4_lazyinit_task)) {
2873 int err = PTR_ERR(ext4_lazyinit_task);
2874 ext4_clear_request_list();
2875 kfree(ext4_li_info);
2876 ext4_li_info = NULL;
2877 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2878 "initialization thread\n",
2879 err);
2880 return err;
2881 }
2882 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2883 return 0;
2884 }
2885
2886 /*
2887 * Check whether it make sense to run itable init. thread or not.
2888 * If there is at least one uninitialized inode table, return
2889 * corresponding group number, else the loop goes through all
2890 * groups and return total number of groups.
2891 */
ext4_has_uninit_itable(struct super_block * sb)2892 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2893 {
2894 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2895 struct ext4_group_desc *gdp = NULL;
2896
2897 if (!ext4_has_group_desc_csum(sb))
2898 return ngroups;
2899
2900 for (group = 0; group < ngroups; group++) {
2901 gdp = ext4_get_group_desc(sb, group, NULL);
2902 if (!gdp)
2903 continue;
2904
2905 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2906 break;
2907 }
2908
2909 return group;
2910 }
2911
ext4_li_info_new(void)2912 static int ext4_li_info_new(void)
2913 {
2914 struct ext4_lazy_init *eli = NULL;
2915
2916 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2917 if (!eli)
2918 return -ENOMEM;
2919
2920 INIT_LIST_HEAD(&eli->li_request_list);
2921 mutex_init(&eli->li_list_mtx);
2922
2923 eli->li_state |= EXT4_LAZYINIT_QUIT;
2924
2925 ext4_li_info = eli;
2926
2927 return 0;
2928 }
2929
ext4_li_request_new(struct super_block * sb,ext4_group_t start)2930 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2931 ext4_group_t start)
2932 {
2933 struct ext4_sb_info *sbi = EXT4_SB(sb);
2934 struct ext4_li_request *elr;
2935
2936 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2937 if (!elr)
2938 return NULL;
2939
2940 elr->lr_super = sb;
2941 elr->lr_sbi = sbi;
2942 elr->lr_next_group = start;
2943
2944 /*
2945 * Randomize first schedule time of the request to
2946 * spread the inode table initialization requests
2947 * better.
2948 */
2949 elr->lr_next_sched = jiffies + (prandom_u32() %
2950 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2951 return elr;
2952 }
2953
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)2954 int ext4_register_li_request(struct super_block *sb,
2955 ext4_group_t first_not_zeroed)
2956 {
2957 struct ext4_sb_info *sbi = EXT4_SB(sb);
2958 struct ext4_li_request *elr = NULL;
2959 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2960 int ret = 0;
2961
2962 mutex_lock(&ext4_li_mtx);
2963 if (sbi->s_li_request != NULL) {
2964 /*
2965 * Reset timeout so it can be computed again, because
2966 * s_li_wait_mult might have changed.
2967 */
2968 sbi->s_li_request->lr_timeout = 0;
2969 goto out;
2970 }
2971
2972 if (first_not_zeroed == ngroups ||
2973 (sb->s_flags & MS_RDONLY) ||
2974 !test_opt(sb, INIT_INODE_TABLE))
2975 goto out;
2976
2977 elr = ext4_li_request_new(sb, first_not_zeroed);
2978 if (!elr) {
2979 ret = -ENOMEM;
2980 goto out;
2981 }
2982
2983 if (NULL == ext4_li_info) {
2984 ret = ext4_li_info_new();
2985 if (ret)
2986 goto out;
2987 }
2988
2989 mutex_lock(&ext4_li_info->li_list_mtx);
2990 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2991 mutex_unlock(&ext4_li_info->li_list_mtx);
2992
2993 sbi->s_li_request = elr;
2994 /*
2995 * set elr to NULL here since it has been inserted to
2996 * the request_list and the removal and free of it is
2997 * handled by ext4_clear_request_list from now on.
2998 */
2999 elr = NULL;
3000
3001 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3002 ret = ext4_run_lazyinit_thread();
3003 if (ret)
3004 goto out;
3005 }
3006 out:
3007 mutex_unlock(&ext4_li_mtx);
3008 if (ret)
3009 kfree(elr);
3010 return ret;
3011 }
3012
3013 /*
3014 * We do not need to lock anything since this is called on
3015 * module unload.
3016 */
ext4_destroy_lazyinit_thread(void)3017 static void ext4_destroy_lazyinit_thread(void)
3018 {
3019 /*
3020 * If thread exited earlier
3021 * there's nothing to be done.
3022 */
3023 if (!ext4_li_info || !ext4_lazyinit_task)
3024 return;
3025
3026 kthread_stop(ext4_lazyinit_task);
3027 }
3028
set_journal_csum_feature_set(struct super_block * sb)3029 static int set_journal_csum_feature_set(struct super_block *sb)
3030 {
3031 int ret = 1;
3032 int compat, incompat;
3033 struct ext4_sb_info *sbi = EXT4_SB(sb);
3034
3035 if (ext4_has_metadata_csum(sb)) {
3036 /* journal checksum v3 */
3037 compat = 0;
3038 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3039 } else {
3040 /* journal checksum v1 */
3041 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3042 incompat = 0;
3043 }
3044
3045 jbd2_journal_clear_features(sbi->s_journal,
3046 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3047 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3048 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3049 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3050 ret = jbd2_journal_set_features(sbi->s_journal,
3051 compat, 0,
3052 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3053 incompat);
3054 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3055 ret = jbd2_journal_set_features(sbi->s_journal,
3056 compat, 0,
3057 incompat);
3058 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3059 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3060 } else {
3061 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3062 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3063 }
3064
3065 return ret;
3066 }
3067
3068 /*
3069 * Note: calculating the overhead so we can be compatible with
3070 * historical BSD practice is quite difficult in the face of
3071 * clusters/bigalloc. This is because multiple metadata blocks from
3072 * different block group can end up in the same allocation cluster.
3073 * Calculating the exact overhead in the face of clustered allocation
3074 * requires either O(all block bitmaps) in memory or O(number of block
3075 * groups**2) in time. We will still calculate the superblock for
3076 * older file systems --- and if we come across with a bigalloc file
3077 * system with zero in s_overhead_clusters the estimate will be close to
3078 * correct especially for very large cluster sizes --- but for newer
3079 * file systems, it's better to calculate this figure once at mkfs
3080 * time, and store it in the superblock. If the superblock value is
3081 * present (even for non-bigalloc file systems), we will use it.
3082 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3083 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3084 char *buf)
3085 {
3086 struct ext4_sb_info *sbi = EXT4_SB(sb);
3087 struct ext4_group_desc *gdp;
3088 ext4_fsblk_t first_block, last_block, b;
3089 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3090 int s, j, count = 0;
3091
3092 if (!ext4_has_feature_bigalloc(sb))
3093 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3094 sbi->s_itb_per_group + 2);
3095
3096 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3097 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3098 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3099 for (i = 0; i < ngroups; i++) {
3100 gdp = ext4_get_group_desc(sb, i, NULL);
3101 b = ext4_block_bitmap(sb, gdp);
3102 if (b >= first_block && b <= last_block) {
3103 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3104 count++;
3105 }
3106 b = ext4_inode_bitmap(sb, gdp);
3107 if (b >= first_block && b <= last_block) {
3108 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3109 count++;
3110 }
3111 b = ext4_inode_table(sb, gdp);
3112 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3113 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3114 int c = EXT4_B2C(sbi, b - first_block);
3115 ext4_set_bit(c, buf);
3116 count++;
3117 }
3118 if (i != grp)
3119 continue;
3120 s = 0;
3121 if (ext4_bg_has_super(sb, grp)) {
3122 ext4_set_bit(s++, buf);
3123 count++;
3124 }
3125 j = ext4_bg_num_gdb(sb, grp);
3126 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3127 ext4_error(sb, "Invalid number of block group "
3128 "descriptor blocks: %d", j);
3129 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3130 }
3131 count += j;
3132 for (; j > 0; j--)
3133 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3134 }
3135 if (!count)
3136 return 0;
3137 return EXT4_CLUSTERS_PER_GROUP(sb) -
3138 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3139 }
3140
3141 /*
3142 * Compute the overhead and stash it in sbi->s_overhead
3143 */
ext4_calculate_overhead(struct super_block * sb)3144 int ext4_calculate_overhead(struct super_block *sb)
3145 {
3146 struct ext4_sb_info *sbi = EXT4_SB(sb);
3147 struct ext4_super_block *es = sbi->s_es;
3148 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3149 ext4_fsblk_t overhead = 0;
3150 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3151
3152 if (!buf)
3153 return -ENOMEM;
3154
3155 /*
3156 * Compute the overhead (FS structures). This is constant
3157 * for a given filesystem unless the number of block groups
3158 * changes so we cache the previous value until it does.
3159 */
3160
3161 /*
3162 * All of the blocks before first_data_block are overhead
3163 */
3164 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3165
3166 /*
3167 * Add the overhead found in each block group
3168 */
3169 for (i = 0; i < ngroups; i++) {
3170 int blks;
3171
3172 blks = count_overhead(sb, i, buf);
3173 overhead += blks;
3174 if (blks)
3175 memset(buf, 0, PAGE_SIZE);
3176 cond_resched();
3177 }
3178 /* Add the internal journal blocks as well */
3179 if (sbi->s_journal && !sbi->journal_bdev)
3180 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3181
3182 sbi->s_overhead = overhead;
3183 smp_wmb();
3184 free_page((unsigned long) buf);
3185 return 0;
3186 }
3187
ext4_clamp_want_extra_isize(struct super_block * sb)3188 static void ext4_clamp_want_extra_isize(struct super_block *sb)
3189 {
3190 struct ext4_sb_info *sbi = EXT4_SB(sb);
3191 struct ext4_super_block *es = sbi->s_es;
3192 unsigned def_extra_isize = sizeof(struct ext4_inode) -
3193 EXT4_GOOD_OLD_INODE_SIZE;
3194
3195 if (sbi->s_inode_size == EXT4_GOOD_OLD_INODE_SIZE) {
3196 sbi->s_want_extra_isize = 0;
3197 return;
3198 }
3199 if (sbi->s_want_extra_isize < 4) {
3200 sbi->s_want_extra_isize = def_extra_isize;
3201 if (ext4_has_feature_extra_isize(sb)) {
3202 if (sbi->s_want_extra_isize <
3203 le16_to_cpu(es->s_want_extra_isize))
3204 sbi->s_want_extra_isize =
3205 le16_to_cpu(es->s_want_extra_isize);
3206 if (sbi->s_want_extra_isize <
3207 le16_to_cpu(es->s_min_extra_isize))
3208 sbi->s_want_extra_isize =
3209 le16_to_cpu(es->s_min_extra_isize);
3210 }
3211 }
3212 /* Check if enough inode space is available */
3213 if ((sbi->s_want_extra_isize > sbi->s_inode_size) ||
3214 (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3215 sbi->s_inode_size)) {
3216 sbi->s_want_extra_isize = def_extra_isize;
3217 ext4_msg(sb, KERN_INFO,
3218 "required extra inode space not available");
3219 }
3220 }
3221
ext4_set_resv_clusters(struct super_block * sb)3222 static void ext4_set_resv_clusters(struct super_block *sb)
3223 {
3224 ext4_fsblk_t resv_clusters;
3225 struct ext4_sb_info *sbi = EXT4_SB(sb);
3226
3227 /*
3228 * There's no need to reserve anything when we aren't using extents.
3229 * The space estimates are exact, there are no unwritten extents,
3230 * hole punching doesn't need new metadata... This is needed especially
3231 * to keep ext2/3 backward compatibility.
3232 */
3233 if (!ext4_has_feature_extents(sb))
3234 return;
3235 /*
3236 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3237 * This should cover the situations where we can not afford to run
3238 * out of space like for example punch hole, or converting
3239 * unwritten extents in delalloc path. In most cases such
3240 * allocation would require 1, or 2 blocks, higher numbers are
3241 * very rare.
3242 */
3243 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3244 sbi->s_cluster_bits);
3245
3246 do_div(resv_clusters, 50);
3247 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3248
3249 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3250 }
3251
ext4_fill_super(struct super_block * sb,void * data,int silent)3252 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3253 {
3254 char *orig_data = kstrdup(data, GFP_KERNEL);
3255 struct buffer_head *bh, **group_desc;
3256 struct ext4_super_block *es = NULL;
3257 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3258 struct flex_groups **flex_groups;
3259 ext4_fsblk_t block;
3260 ext4_fsblk_t sb_block = get_sb_block(&data);
3261 ext4_fsblk_t logical_sb_block;
3262 unsigned long offset = 0;
3263 unsigned long journal_devnum = 0;
3264 unsigned long def_mount_opts;
3265 struct inode *root;
3266 const char *descr;
3267 int ret = -ENOMEM;
3268 int blocksize, clustersize;
3269 unsigned int db_count;
3270 unsigned int i;
3271 int needs_recovery, has_huge_files, has_bigalloc;
3272 __u64 blocks_count;
3273 int err = 0;
3274 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3275 ext4_group_t first_not_zeroed;
3276
3277 if ((data && !orig_data) || !sbi)
3278 goto out_free_base;
3279
3280 sbi->s_blockgroup_lock =
3281 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3282 if (!sbi->s_blockgroup_lock)
3283 goto out_free_base;
3284
3285 sb->s_fs_info = sbi;
3286 sbi->s_sb = sb;
3287 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3288 sbi->s_sb_block = sb_block;
3289 if (sb->s_bdev->bd_part)
3290 sbi->s_sectors_written_start =
3291 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3292
3293 /* Cleanup superblock name */
3294 strreplace(sb->s_id, '/', '!');
3295
3296 /* -EINVAL is default */
3297 ret = -EINVAL;
3298 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3299 if (!blocksize) {
3300 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3301 goto out_fail;
3302 }
3303
3304 /*
3305 * The ext4 superblock will not be buffer aligned for other than 1kB
3306 * block sizes. We need to calculate the offset from buffer start.
3307 */
3308 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3309 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3310 offset = do_div(logical_sb_block, blocksize);
3311 } else {
3312 logical_sb_block = sb_block;
3313 }
3314
3315 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3316 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3317 goto out_fail;
3318 }
3319 /*
3320 * Note: s_es must be initialized as soon as possible because
3321 * some ext4 macro-instructions depend on its value
3322 */
3323 es = (struct ext4_super_block *) (bh->b_data + offset);
3324 sbi->s_es = es;
3325 sb->s_magic = le16_to_cpu(es->s_magic);
3326 if (sb->s_magic != EXT4_SUPER_MAGIC)
3327 goto cantfind_ext4;
3328 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3329
3330 /* Warn if metadata_csum and gdt_csum are both set. */
3331 if (ext4_has_feature_metadata_csum(sb) &&
3332 ext4_has_feature_gdt_csum(sb))
3333 ext4_warning(sb, "metadata_csum and uninit_bg are "
3334 "redundant flags; please run fsck.");
3335
3336 /* Check for a known checksum algorithm */
3337 if (!ext4_verify_csum_type(sb, es)) {
3338 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3339 "unknown checksum algorithm.");
3340 silent = 1;
3341 goto cantfind_ext4;
3342 }
3343
3344 /* Load the checksum driver */
3345 if (ext4_has_feature_metadata_csum(sb)) {
3346 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3347 if (IS_ERR(sbi->s_chksum_driver)) {
3348 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3349 ret = PTR_ERR(sbi->s_chksum_driver);
3350 sbi->s_chksum_driver = NULL;
3351 goto failed_mount;
3352 }
3353 }
3354
3355 /* Check superblock checksum */
3356 if (!ext4_superblock_csum_verify(sb, es)) {
3357 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3358 "invalid superblock checksum. Run e2fsck?");
3359 silent = 1;
3360 ret = -EFSBADCRC;
3361 goto cantfind_ext4;
3362 }
3363
3364 /* Precompute checksum seed for all metadata */
3365 if (ext4_has_feature_csum_seed(sb))
3366 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3367 else if (ext4_has_metadata_csum(sb))
3368 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3369 sizeof(es->s_uuid));
3370
3371 /* Set defaults before we parse the mount options */
3372 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3373 set_opt(sb, INIT_INODE_TABLE);
3374 if (def_mount_opts & EXT4_DEFM_DEBUG)
3375 set_opt(sb, DEBUG);
3376 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3377 set_opt(sb, GRPID);
3378 if (def_mount_opts & EXT4_DEFM_UID16)
3379 set_opt(sb, NO_UID32);
3380 /* xattr user namespace & acls are now defaulted on */
3381 set_opt(sb, XATTR_USER);
3382 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3383 set_opt(sb, POSIX_ACL);
3384 #endif
3385 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3386 if (ext4_has_metadata_csum(sb))
3387 set_opt(sb, JOURNAL_CHECKSUM);
3388
3389 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3390 set_opt(sb, JOURNAL_DATA);
3391 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3392 set_opt(sb, ORDERED_DATA);
3393 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3394 set_opt(sb, WRITEBACK_DATA);
3395
3396 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3397 set_opt(sb, ERRORS_PANIC);
3398 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3399 set_opt(sb, ERRORS_CONT);
3400 else
3401 set_opt(sb, ERRORS_RO);
3402 /* block_validity enabled by default; disable with noblock_validity */
3403 set_opt(sb, BLOCK_VALIDITY);
3404 if (def_mount_opts & EXT4_DEFM_DISCARD)
3405 set_opt(sb, DISCARD);
3406
3407 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3408 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3409 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3410 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3411 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3412
3413 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3414 set_opt(sb, BARRIER);
3415
3416 /*
3417 * enable delayed allocation by default
3418 * Use -o nodelalloc to turn it off
3419 */
3420 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3421 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3422 set_opt(sb, DELALLOC);
3423
3424 /*
3425 * set default s_li_wait_mult for lazyinit, for the case there is
3426 * no mount option specified.
3427 */
3428 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3429
3430 if (sbi->s_es->s_mount_opts[0]) {
3431 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3432 sizeof(sbi->s_es->s_mount_opts),
3433 GFP_KERNEL);
3434 if (!s_mount_opts)
3435 goto failed_mount;
3436 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3437 &journal_ioprio, 0)) {
3438 ext4_msg(sb, KERN_WARNING,
3439 "failed to parse options in superblock: %s",
3440 s_mount_opts);
3441 }
3442 kfree(s_mount_opts);
3443 }
3444 sbi->s_def_mount_opt = sbi->s_mount_opt;
3445 if (!parse_options((char *) data, sb, &journal_devnum,
3446 &journal_ioprio, 0))
3447 goto failed_mount;
3448
3449 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3450 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3451 "with data=journal disables delayed "
3452 "allocation and O_DIRECT support!\n");
3453 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3454 ext4_msg(sb, KERN_ERR, "can't mount with "
3455 "both data=journal and delalloc");
3456 goto failed_mount;
3457 }
3458 if (test_opt(sb, DIOREAD_NOLOCK)) {
3459 ext4_msg(sb, KERN_ERR, "can't mount with "
3460 "both data=journal and dioread_nolock");
3461 goto failed_mount;
3462 }
3463 if (test_opt(sb, DAX)) {
3464 ext4_msg(sb, KERN_ERR, "can't mount with "
3465 "both data=journal and dax");
3466 goto failed_mount;
3467 }
3468 if (ext4_has_feature_encrypt(sb)) {
3469 ext4_msg(sb, KERN_WARNING,
3470 "encrypted files will use data=ordered "
3471 "instead of data journaling mode");
3472 }
3473 if (test_opt(sb, DELALLOC))
3474 clear_opt(sb, DELALLOC);
3475 } else {
3476 sb->s_iflags |= SB_I_CGROUPWB;
3477 }
3478
3479 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3480 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3481
3482 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3483 (ext4_has_compat_features(sb) ||
3484 ext4_has_ro_compat_features(sb) ||
3485 ext4_has_incompat_features(sb)))
3486 ext4_msg(sb, KERN_WARNING,
3487 "feature flags set on rev 0 fs, "
3488 "running e2fsck is recommended");
3489
3490 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3491 set_opt2(sb, HURD_COMPAT);
3492 if (ext4_has_feature_64bit(sb)) {
3493 ext4_msg(sb, KERN_ERR,
3494 "The Hurd can't support 64-bit file systems");
3495 goto failed_mount;
3496 }
3497 }
3498
3499 if (IS_EXT2_SB(sb)) {
3500 if (ext2_feature_set_ok(sb))
3501 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3502 "using the ext4 subsystem");
3503 else {
3504 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3505 "to feature incompatibilities");
3506 goto failed_mount;
3507 }
3508 }
3509
3510 if (IS_EXT3_SB(sb)) {
3511 if (ext3_feature_set_ok(sb))
3512 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3513 "using the ext4 subsystem");
3514 else {
3515 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3516 "to feature incompatibilities");
3517 goto failed_mount;
3518 }
3519 }
3520
3521 /*
3522 * Check feature flags regardless of the revision level, since we
3523 * previously didn't change the revision level when setting the flags,
3524 * so there is a chance incompat flags are set on a rev 0 filesystem.
3525 */
3526 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3527 goto failed_mount;
3528
3529 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3530 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3531 blocksize > EXT4_MAX_BLOCK_SIZE) {
3532 ext4_msg(sb, KERN_ERR,
3533 "Unsupported filesystem blocksize %d (%d log_block_size)",
3534 blocksize, le32_to_cpu(es->s_log_block_size));
3535 goto failed_mount;
3536 }
3537 if (le32_to_cpu(es->s_log_block_size) >
3538 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3539 ext4_msg(sb, KERN_ERR,
3540 "Invalid log block size: %u",
3541 le32_to_cpu(es->s_log_block_size));
3542 goto failed_mount;
3543 }
3544 if (le32_to_cpu(es->s_log_cluster_size) >
3545 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3546 ext4_msg(sb, KERN_ERR,
3547 "Invalid log cluster size: %u",
3548 le32_to_cpu(es->s_log_cluster_size));
3549 goto failed_mount;
3550 }
3551
3552 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3553 ext4_msg(sb, KERN_ERR,
3554 "Number of reserved GDT blocks insanely large: %d",
3555 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3556 goto failed_mount;
3557 }
3558
3559 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3560 if (blocksize != PAGE_SIZE) {
3561 ext4_msg(sb, KERN_ERR,
3562 "error: unsupported blocksize for dax");
3563 goto failed_mount;
3564 }
3565 if (!sb->s_bdev->bd_disk->fops->direct_access) {
3566 ext4_msg(sb, KERN_ERR,
3567 "error: device does not support dax");
3568 goto failed_mount;
3569 }
3570 }
3571
3572 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3573 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3574 es->s_encryption_level);
3575 goto failed_mount;
3576 }
3577
3578 if (sb->s_blocksize != blocksize) {
3579 /* Validate the filesystem blocksize */
3580 if (!sb_set_blocksize(sb, blocksize)) {
3581 ext4_msg(sb, KERN_ERR, "bad block size %d",
3582 blocksize);
3583 goto failed_mount;
3584 }
3585
3586 brelse(bh);
3587 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3588 offset = do_div(logical_sb_block, blocksize);
3589 bh = sb_bread_unmovable(sb, logical_sb_block);
3590 if (!bh) {
3591 ext4_msg(sb, KERN_ERR,
3592 "Can't read superblock on 2nd try");
3593 goto failed_mount;
3594 }
3595 es = (struct ext4_super_block *)(bh->b_data + offset);
3596 sbi->s_es = es;
3597 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3598 ext4_msg(sb, KERN_ERR,
3599 "Magic mismatch, very weird!");
3600 goto failed_mount;
3601 }
3602 }
3603
3604 has_huge_files = ext4_has_feature_huge_file(sb);
3605 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3606 has_huge_files);
3607 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3608
3609 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3610 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3611 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3612 } else {
3613 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3614 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3615 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
3616 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
3617 sbi->s_first_ino);
3618 goto failed_mount;
3619 }
3620 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3621 (!is_power_of_2(sbi->s_inode_size)) ||
3622 (sbi->s_inode_size > blocksize)) {
3623 ext4_msg(sb, KERN_ERR,
3624 "unsupported inode size: %d",
3625 sbi->s_inode_size);
3626 goto failed_mount;
3627 }
3628 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3629 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3630 }
3631
3632 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3633 if (ext4_has_feature_64bit(sb)) {
3634 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3635 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3636 !is_power_of_2(sbi->s_desc_size)) {
3637 ext4_msg(sb, KERN_ERR,
3638 "unsupported descriptor size %lu",
3639 sbi->s_desc_size);
3640 goto failed_mount;
3641 }
3642 } else
3643 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3644
3645 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3646 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3647
3648 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3649 if (sbi->s_inodes_per_block == 0)
3650 goto cantfind_ext4;
3651 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3652 sbi->s_inodes_per_group > blocksize * 8) {
3653 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3654 sbi->s_inodes_per_group);
3655 goto failed_mount;
3656 }
3657 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3658 sbi->s_inodes_per_block;
3659 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3660 sbi->s_sbh = bh;
3661 sbi->s_mount_state = le16_to_cpu(es->s_state);
3662 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3663 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3664
3665 for (i = 0; i < 4; i++)
3666 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3667 sbi->s_def_hash_version = es->s_def_hash_version;
3668 if (ext4_has_feature_dir_index(sb)) {
3669 i = le32_to_cpu(es->s_flags);
3670 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3671 sbi->s_hash_unsigned = 3;
3672 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3673 #ifdef __CHAR_UNSIGNED__
3674 if (!(sb->s_flags & MS_RDONLY))
3675 es->s_flags |=
3676 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3677 sbi->s_hash_unsigned = 3;
3678 #else
3679 if (!(sb->s_flags & MS_RDONLY))
3680 es->s_flags |=
3681 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3682 #endif
3683 }
3684 }
3685
3686 /* Handle clustersize */
3687 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3688 has_bigalloc = ext4_has_feature_bigalloc(sb);
3689 if (has_bigalloc) {
3690 if (clustersize < blocksize) {
3691 ext4_msg(sb, KERN_ERR,
3692 "cluster size (%d) smaller than "
3693 "block size (%d)", clustersize, blocksize);
3694 goto failed_mount;
3695 }
3696 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3697 le32_to_cpu(es->s_log_block_size);
3698 sbi->s_clusters_per_group =
3699 le32_to_cpu(es->s_clusters_per_group);
3700 if (sbi->s_clusters_per_group > blocksize * 8) {
3701 ext4_msg(sb, KERN_ERR,
3702 "#clusters per group too big: %lu",
3703 sbi->s_clusters_per_group);
3704 goto failed_mount;
3705 }
3706 if (sbi->s_blocks_per_group !=
3707 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3708 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3709 "clusters per group (%lu) inconsistent",
3710 sbi->s_blocks_per_group,
3711 sbi->s_clusters_per_group);
3712 goto failed_mount;
3713 }
3714 } else {
3715 if (clustersize != blocksize) {
3716 ext4_msg(sb, KERN_ERR,
3717 "fragment/cluster size (%d) != "
3718 "block size (%d)", clustersize, blocksize);
3719 goto failed_mount;
3720 }
3721 if (sbi->s_blocks_per_group > blocksize * 8) {
3722 ext4_msg(sb, KERN_ERR,
3723 "#blocks per group too big: %lu",
3724 sbi->s_blocks_per_group);
3725 goto failed_mount;
3726 }
3727 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3728 sbi->s_cluster_bits = 0;
3729 }
3730 sbi->s_cluster_ratio = clustersize / blocksize;
3731
3732 /* Do we have standard group size of clustersize * 8 blocks ? */
3733 if (sbi->s_blocks_per_group == clustersize << 3)
3734 set_opt2(sb, STD_GROUP_SIZE);
3735
3736 /*
3737 * Test whether we have more sectors than will fit in sector_t,
3738 * and whether the max offset is addressable by the page cache.
3739 */
3740 err = generic_check_addressable(sb->s_blocksize_bits,
3741 ext4_blocks_count(es));
3742 if (err) {
3743 ext4_msg(sb, KERN_ERR, "filesystem"
3744 " too large to mount safely on this system");
3745 if (sizeof(sector_t) < 8)
3746 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3747 goto failed_mount;
3748 }
3749
3750 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3751 goto cantfind_ext4;
3752
3753 /* check blocks count against device size */
3754 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3755 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3756 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3757 "exceeds size of device (%llu blocks)",
3758 ext4_blocks_count(es), blocks_count);
3759 goto failed_mount;
3760 }
3761
3762 /*
3763 * It makes no sense for the first data block to be beyond the end
3764 * of the filesystem.
3765 */
3766 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3767 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3768 "block %u is beyond end of filesystem (%llu)",
3769 le32_to_cpu(es->s_first_data_block),
3770 ext4_blocks_count(es));
3771 goto failed_mount;
3772 }
3773 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
3774 (sbi->s_cluster_ratio == 1)) {
3775 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3776 "block is 0 with a 1k block and cluster size");
3777 goto failed_mount;
3778 }
3779
3780 blocks_count = (ext4_blocks_count(es) -
3781 le32_to_cpu(es->s_first_data_block) +
3782 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3783 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3784 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3785 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
3786 "(block count %llu, first data block %u, "
3787 "blocks per group %lu)", blocks_count,
3788 ext4_blocks_count(es),
3789 le32_to_cpu(es->s_first_data_block),
3790 EXT4_BLOCKS_PER_GROUP(sb));
3791 goto failed_mount;
3792 }
3793 sbi->s_groups_count = blocks_count;
3794 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3795 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3796 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
3797 le32_to_cpu(es->s_inodes_count)) {
3798 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
3799 le32_to_cpu(es->s_inodes_count),
3800 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
3801 ret = -EINVAL;
3802 goto failed_mount;
3803 }
3804 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3805 EXT4_DESC_PER_BLOCK(sb);
3806 if (ext4_has_feature_meta_bg(sb)) {
3807 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3808 ext4_msg(sb, KERN_WARNING,
3809 "first meta block group too large: %u "
3810 "(group descriptor block count %u)",
3811 le32_to_cpu(es->s_first_meta_bg), db_count);
3812 goto failed_mount;
3813 }
3814 }
3815 rcu_assign_pointer(sbi->s_group_desc,
3816 ext4_kvmalloc(db_count *
3817 sizeof(struct buffer_head *),
3818 GFP_KERNEL));
3819 if (sbi->s_group_desc == NULL) {
3820 ext4_msg(sb, KERN_ERR, "not enough memory");
3821 ret = -ENOMEM;
3822 goto failed_mount;
3823 }
3824
3825 bgl_lock_init(sbi->s_blockgroup_lock);
3826
3827 for (i = 0; i < db_count; i++) {
3828 struct buffer_head *bh;
3829
3830 block = descriptor_loc(sb, logical_sb_block, i);
3831 bh = sb_bread_unmovable(sb, block);
3832 if (!bh) {
3833 ext4_msg(sb, KERN_ERR,
3834 "can't read group descriptor %d", i);
3835 db_count = i;
3836 goto failed_mount2;
3837 }
3838 rcu_read_lock();
3839 rcu_dereference(sbi->s_group_desc)[i] = bh;
3840 rcu_read_unlock();
3841 }
3842 sbi->s_gdb_count = db_count;
3843 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3844 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3845 ret = -EFSCORRUPTED;
3846 goto failed_mount2;
3847 }
3848
3849 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3850 spin_lock_init(&sbi->s_next_gen_lock);
3851
3852 setup_timer(&sbi->s_err_report, print_daily_error_info,
3853 (unsigned long) sb);
3854
3855 /* Register extent status tree shrinker */
3856 if (ext4_es_register_shrinker(sbi))
3857 goto failed_mount3;
3858
3859 sbi->s_stripe = ext4_get_stripe_size(sbi);
3860 sbi->s_extent_max_zeroout_kb = 32;
3861
3862 /*
3863 * set up enough so that it can read an inode
3864 */
3865 sb->s_op = &ext4_sops;
3866 sb->s_export_op = &ext4_export_ops;
3867 sb->s_xattr = ext4_xattr_handlers;
3868 #ifdef CONFIG_QUOTA
3869 sb->dq_op = &ext4_quota_operations;
3870 if (ext4_has_feature_quota(sb))
3871 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3872 else
3873 sb->s_qcop = &ext4_qctl_operations;
3874 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
3875 #endif
3876 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3877
3878 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3879 mutex_init(&sbi->s_orphan_lock);
3880
3881 sb->s_root = NULL;
3882
3883 needs_recovery = (es->s_last_orphan != 0 ||
3884 ext4_has_feature_journal_needs_recovery(sb));
3885
3886 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3887 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3888 goto failed_mount3a;
3889
3890 /*
3891 * The first inode we look at is the journal inode. Don't try
3892 * root first: it may be modified in the journal!
3893 */
3894 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3895 err = ext4_load_journal(sb, es, journal_devnum);
3896 if (err)
3897 goto failed_mount3a;
3898 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3899 ext4_has_feature_journal_needs_recovery(sb)) {
3900 ext4_msg(sb, KERN_ERR, "required journal recovery "
3901 "suppressed and not mounted read-only");
3902 goto failed_mount_wq;
3903 } else {
3904 /* Nojournal mode, all journal mount options are illegal */
3905 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3906 ext4_msg(sb, KERN_ERR, "can't mount with "
3907 "journal_checksum, fs mounted w/o journal");
3908 goto failed_mount_wq;
3909 }
3910 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3911 ext4_msg(sb, KERN_ERR, "can't mount with "
3912 "journal_async_commit, fs mounted w/o journal");
3913 goto failed_mount_wq;
3914 }
3915 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3916 ext4_msg(sb, KERN_ERR, "can't mount with "
3917 "commit=%lu, fs mounted w/o journal",
3918 sbi->s_commit_interval / HZ);
3919 goto failed_mount_wq;
3920 }
3921 if (EXT4_MOUNT_DATA_FLAGS &
3922 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3923 ext4_msg(sb, KERN_ERR, "can't mount with "
3924 "data=, fs mounted w/o journal");
3925 goto failed_mount_wq;
3926 }
3927 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
3928 clear_opt(sb, JOURNAL_CHECKSUM);
3929 clear_opt(sb, DATA_FLAGS);
3930 sbi->s_journal = NULL;
3931 needs_recovery = 0;
3932 goto no_journal;
3933 }
3934
3935 if (ext4_has_feature_64bit(sb) &&
3936 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3937 JBD2_FEATURE_INCOMPAT_64BIT)) {
3938 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3939 goto failed_mount_wq;
3940 }
3941
3942 if (!set_journal_csum_feature_set(sb)) {
3943 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3944 "feature set");
3945 goto failed_mount_wq;
3946 }
3947
3948 /* We have now updated the journal if required, so we can
3949 * validate the data journaling mode. */
3950 switch (test_opt(sb, DATA_FLAGS)) {
3951 case 0:
3952 /* No mode set, assume a default based on the journal
3953 * capabilities: ORDERED_DATA if the journal can
3954 * cope, else JOURNAL_DATA
3955 */
3956 if (jbd2_journal_check_available_features
3957 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3958 set_opt(sb, ORDERED_DATA);
3959 else
3960 set_opt(sb, JOURNAL_DATA);
3961 break;
3962
3963 case EXT4_MOUNT_ORDERED_DATA:
3964 case EXT4_MOUNT_WRITEBACK_DATA:
3965 if (!jbd2_journal_check_available_features
3966 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3967 ext4_msg(sb, KERN_ERR, "Journal does not support "
3968 "requested data journaling mode");
3969 goto failed_mount_wq;
3970 }
3971 default:
3972 break;
3973 }
3974 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3975
3976 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3977
3978 no_journal:
3979 if (ext4_mballoc_ready) {
3980 sbi->s_mb_cache = ext4_xattr_create_cache();
3981 if (!sbi->s_mb_cache) {
3982 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
3983 goto failed_mount_wq;
3984 }
3985 }
3986
3987 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
3988 (blocksize != PAGE_CACHE_SIZE)) {
3989 ext4_msg(sb, KERN_ERR,
3990 "Unsupported blocksize for fs encryption");
3991 goto failed_mount_wq;
3992 }
3993
3994 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
3995 !ext4_has_feature_encrypt(sb)) {
3996 ext4_set_feature_encrypt(sb);
3997 ext4_commit_super(sb, 1);
3998 }
3999
4000 /*
4001 * Get the # of file system overhead blocks from the
4002 * superblock if present.
4003 */
4004 if (es->s_overhead_clusters)
4005 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4006 else {
4007 err = ext4_calculate_overhead(sb);
4008 if (err)
4009 goto failed_mount_wq;
4010 }
4011
4012 /*
4013 * The maximum number of concurrent works can be high and
4014 * concurrency isn't really necessary. Limit it to 1.
4015 */
4016 EXT4_SB(sb)->rsv_conversion_wq =
4017 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4018 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4019 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4020 ret = -ENOMEM;
4021 goto failed_mount4;
4022 }
4023
4024 /*
4025 * The jbd2_journal_load will have done any necessary log recovery,
4026 * so we can safely mount the rest of the filesystem now.
4027 */
4028
4029 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4030 if (IS_ERR(root)) {
4031 ext4_msg(sb, KERN_ERR, "get root inode failed");
4032 ret = PTR_ERR(root);
4033 root = NULL;
4034 goto failed_mount4;
4035 }
4036 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4037 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4038 iput(root);
4039 goto failed_mount4;
4040 }
4041 sb->s_root = d_make_root(root);
4042 if (!sb->s_root) {
4043 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4044 ret = -ENOMEM;
4045 goto failed_mount4;
4046 }
4047
4048 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4049 sb->s_flags |= MS_RDONLY;
4050
4051 ext4_clamp_want_extra_isize(sb);
4052
4053 ext4_set_resv_clusters(sb);
4054
4055 err = ext4_setup_system_zone(sb);
4056 if (err) {
4057 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4058 "zone (%d)", err);
4059 goto failed_mount4a;
4060 }
4061
4062 ext4_ext_init(sb);
4063 err = ext4_mb_init(sb);
4064 if (err) {
4065 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4066 err);
4067 goto failed_mount5;
4068 }
4069
4070 block = ext4_count_free_clusters(sb);
4071 ext4_free_blocks_count_set(sbi->s_es,
4072 EXT4_C2B(sbi, block));
4073 ext4_superblock_csum_set(sb);
4074 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4075 GFP_KERNEL);
4076 if (!err) {
4077 unsigned long freei = ext4_count_free_inodes(sb);
4078 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4079 ext4_superblock_csum_set(sb);
4080 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4081 GFP_KERNEL);
4082 }
4083 if (!err)
4084 err = percpu_counter_init(&sbi->s_dirs_counter,
4085 ext4_count_dirs(sb), GFP_KERNEL);
4086 if (!err)
4087 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4088 GFP_KERNEL);
4089 if (err) {
4090 ext4_msg(sb, KERN_ERR, "insufficient memory");
4091 goto failed_mount6;
4092 }
4093
4094 if (ext4_has_feature_flex_bg(sb))
4095 if (!ext4_fill_flex_info(sb)) {
4096 ext4_msg(sb, KERN_ERR,
4097 "unable to initialize "
4098 "flex_bg meta info!");
4099 goto failed_mount6;
4100 }
4101
4102 err = ext4_register_li_request(sb, first_not_zeroed);
4103 if (err)
4104 goto failed_mount6;
4105
4106 err = ext4_register_sysfs(sb);
4107 if (err)
4108 goto failed_mount7;
4109
4110 #ifdef CONFIG_QUOTA
4111 /* Enable quota usage during mount. */
4112 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
4113 err = ext4_enable_quotas(sb);
4114 if (err)
4115 goto failed_mount8;
4116 }
4117 #endif /* CONFIG_QUOTA */
4118
4119 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4120 ext4_orphan_cleanup(sb, es);
4121 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4122 if (needs_recovery) {
4123 ext4_msg(sb, KERN_INFO, "recovery complete");
4124 ext4_mark_recovery_complete(sb, es);
4125 }
4126 if (EXT4_SB(sb)->s_journal) {
4127 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4128 descr = " journalled data mode";
4129 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4130 descr = " ordered data mode";
4131 else
4132 descr = " writeback data mode";
4133 } else
4134 descr = "out journal";
4135
4136 if (test_opt(sb, DISCARD)) {
4137 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4138 if (!blk_queue_discard(q))
4139 ext4_msg(sb, KERN_WARNING,
4140 "mounting with \"discard\" option, but "
4141 "the device does not support discard");
4142 }
4143
4144 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4145 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4146 "Opts: %.*s%s%s", descr,
4147 (int) sizeof(sbi->s_es->s_mount_opts),
4148 sbi->s_es->s_mount_opts,
4149 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4150
4151 if (es->s_error_count)
4152 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4153
4154 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4155 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4156 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4157 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4158
4159 kfree(orig_data);
4160 return 0;
4161
4162 cantfind_ext4:
4163 if (!silent)
4164 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4165 goto failed_mount;
4166
4167 #ifdef CONFIG_QUOTA
4168 failed_mount8:
4169 ext4_unregister_sysfs(sb);
4170 kobject_put(&sbi->s_kobj);
4171 #endif
4172 failed_mount7:
4173 ext4_unregister_li_request(sb);
4174 failed_mount6:
4175 ext4_mb_release(sb);
4176 rcu_read_lock();
4177 flex_groups = rcu_dereference(sbi->s_flex_groups);
4178 if (flex_groups) {
4179 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
4180 kvfree(flex_groups[i]);
4181 kvfree(flex_groups);
4182 }
4183 rcu_read_unlock();
4184 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4185 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4186 percpu_counter_destroy(&sbi->s_dirs_counter);
4187 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4188 failed_mount5:
4189 ext4_ext_release(sb);
4190 ext4_release_system_zone(sb);
4191 failed_mount4a:
4192 dput(sb->s_root);
4193 sb->s_root = NULL;
4194 failed_mount4:
4195 ext4_msg(sb, KERN_ERR, "mount failed");
4196 if (EXT4_SB(sb)->rsv_conversion_wq)
4197 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4198 failed_mount_wq:
4199 if (sbi->s_mb_cache) {
4200 ext4_xattr_destroy_cache(sbi->s_mb_cache);
4201 sbi->s_mb_cache = NULL;
4202 }
4203 if (sbi->s_journal) {
4204 jbd2_journal_destroy(sbi->s_journal);
4205 sbi->s_journal = NULL;
4206 }
4207 failed_mount3a:
4208 ext4_es_unregister_shrinker(sbi);
4209 failed_mount3:
4210 del_timer_sync(&sbi->s_err_report);
4211 if (sbi->s_mmp_tsk)
4212 kthread_stop(sbi->s_mmp_tsk);
4213 failed_mount2:
4214 rcu_read_lock();
4215 group_desc = rcu_dereference(sbi->s_group_desc);
4216 for (i = 0; i < db_count; i++)
4217 brelse(group_desc[i]);
4218 kvfree(group_desc);
4219 rcu_read_unlock();
4220 failed_mount:
4221 if (sbi->s_chksum_driver)
4222 crypto_free_shash(sbi->s_chksum_driver);
4223 #ifdef CONFIG_QUOTA
4224 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4225 kfree(sbi->s_qf_names[i]);
4226 #endif
4227 ext4_blkdev_remove(sbi);
4228 brelse(bh);
4229 out_fail:
4230 sb->s_fs_info = NULL;
4231 kfree(sbi->s_blockgroup_lock);
4232 out_free_base:
4233 kfree(sbi);
4234 kfree(orig_data);
4235 return err ? err : ret;
4236 }
4237
4238 /*
4239 * Setup any per-fs journal parameters now. We'll do this both on
4240 * initial mount, once the journal has been initialised but before we've
4241 * done any recovery; and again on any subsequent remount.
4242 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)4243 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4244 {
4245 struct ext4_sb_info *sbi = EXT4_SB(sb);
4246
4247 journal->j_commit_interval = sbi->s_commit_interval;
4248 journal->j_min_batch_time = sbi->s_min_batch_time;
4249 journal->j_max_batch_time = sbi->s_max_batch_time;
4250
4251 write_lock(&journal->j_state_lock);
4252 if (test_opt(sb, BARRIER))
4253 journal->j_flags |= JBD2_BARRIER;
4254 else
4255 journal->j_flags &= ~JBD2_BARRIER;
4256 if (test_opt(sb, DATA_ERR_ABORT))
4257 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4258 else
4259 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4260 write_unlock(&journal->j_state_lock);
4261 }
4262
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)4263 static journal_t *ext4_get_journal(struct super_block *sb,
4264 unsigned int journal_inum)
4265 {
4266 struct inode *journal_inode;
4267 journal_t *journal;
4268
4269 BUG_ON(!ext4_has_feature_journal(sb));
4270
4271 /*
4272 * Test for the existence of a valid inode on disk. Bad things
4273 * happen if we iget() an unused inode, as the subsequent iput()
4274 * will try to delete it.
4275 */
4276 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4277 if (IS_ERR(journal_inode)) {
4278 ext4_msg(sb, KERN_ERR, "no journal found");
4279 return NULL;
4280 }
4281 if (!journal_inode->i_nlink) {
4282 make_bad_inode(journal_inode);
4283 iput(journal_inode);
4284 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4285 return NULL;
4286 }
4287
4288 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4289 journal_inode, journal_inode->i_size);
4290 if (!S_ISREG(journal_inode->i_mode)) {
4291 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4292 iput(journal_inode);
4293 return NULL;
4294 }
4295
4296 journal = jbd2_journal_init_inode(journal_inode);
4297 if (!journal) {
4298 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4299 iput(journal_inode);
4300 return NULL;
4301 }
4302 journal->j_private = sb;
4303 ext4_init_journal_params(sb, journal);
4304 return journal;
4305 }
4306
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)4307 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4308 dev_t j_dev)
4309 {
4310 struct buffer_head *bh;
4311 journal_t *journal;
4312 ext4_fsblk_t start;
4313 ext4_fsblk_t len;
4314 int hblock, blocksize;
4315 ext4_fsblk_t sb_block;
4316 unsigned long offset;
4317 struct ext4_super_block *es;
4318 struct block_device *bdev;
4319
4320 BUG_ON(!ext4_has_feature_journal(sb));
4321
4322 bdev = ext4_blkdev_get(j_dev, sb);
4323 if (bdev == NULL)
4324 return NULL;
4325
4326 blocksize = sb->s_blocksize;
4327 hblock = bdev_logical_block_size(bdev);
4328 if (blocksize < hblock) {
4329 ext4_msg(sb, KERN_ERR,
4330 "blocksize too small for journal device");
4331 goto out_bdev;
4332 }
4333
4334 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4335 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4336 set_blocksize(bdev, blocksize);
4337 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4338 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4339 "external journal");
4340 goto out_bdev;
4341 }
4342
4343 es = (struct ext4_super_block *) (bh->b_data + offset);
4344 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4345 !(le32_to_cpu(es->s_feature_incompat) &
4346 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4347 ext4_msg(sb, KERN_ERR, "external journal has "
4348 "bad superblock");
4349 brelse(bh);
4350 goto out_bdev;
4351 }
4352
4353 if ((le32_to_cpu(es->s_feature_ro_compat) &
4354 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4355 es->s_checksum != ext4_superblock_csum(sb, es)) {
4356 ext4_msg(sb, KERN_ERR, "external journal has "
4357 "corrupt superblock");
4358 brelse(bh);
4359 goto out_bdev;
4360 }
4361
4362 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4363 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4364 brelse(bh);
4365 goto out_bdev;
4366 }
4367
4368 len = ext4_blocks_count(es);
4369 start = sb_block + 1;
4370 brelse(bh); /* we're done with the superblock */
4371
4372 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4373 start, len, blocksize);
4374 if (!journal) {
4375 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4376 goto out_bdev;
4377 }
4378 journal->j_private = sb;
4379 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4380 wait_on_buffer(journal->j_sb_buffer);
4381 if (!buffer_uptodate(journal->j_sb_buffer)) {
4382 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4383 goto out_journal;
4384 }
4385 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4386 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4387 "user (unsupported) - %d",
4388 be32_to_cpu(journal->j_superblock->s_nr_users));
4389 goto out_journal;
4390 }
4391 EXT4_SB(sb)->journal_bdev = bdev;
4392 ext4_init_journal_params(sb, journal);
4393 return journal;
4394
4395 out_journal:
4396 jbd2_journal_destroy(journal);
4397 out_bdev:
4398 ext4_blkdev_put(bdev);
4399 return NULL;
4400 }
4401
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)4402 static int ext4_load_journal(struct super_block *sb,
4403 struct ext4_super_block *es,
4404 unsigned long journal_devnum)
4405 {
4406 journal_t *journal;
4407 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4408 dev_t journal_dev;
4409 int err = 0;
4410 int really_read_only;
4411
4412 BUG_ON(!ext4_has_feature_journal(sb));
4413
4414 if (journal_devnum &&
4415 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4416 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4417 "numbers have changed");
4418 journal_dev = new_decode_dev(journal_devnum);
4419 } else
4420 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4421
4422 really_read_only = bdev_read_only(sb->s_bdev);
4423
4424 /*
4425 * Are we loading a blank journal or performing recovery after a
4426 * crash? For recovery, we need to check in advance whether we
4427 * can get read-write access to the device.
4428 */
4429 if (ext4_has_feature_journal_needs_recovery(sb)) {
4430 if (sb->s_flags & MS_RDONLY) {
4431 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4432 "required on readonly filesystem");
4433 if (really_read_only) {
4434 ext4_msg(sb, KERN_ERR, "write access "
4435 "unavailable, cannot proceed");
4436 return -EROFS;
4437 }
4438 ext4_msg(sb, KERN_INFO, "write access will "
4439 "be enabled during recovery");
4440 }
4441 }
4442
4443 if (journal_inum && journal_dev) {
4444 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4445 "and inode journals!");
4446 return -EINVAL;
4447 }
4448
4449 if (journal_inum) {
4450 if (!(journal = ext4_get_journal(sb, journal_inum)))
4451 return -EINVAL;
4452 } else {
4453 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4454 return -EINVAL;
4455 }
4456
4457 if (!(journal->j_flags & JBD2_BARRIER))
4458 ext4_msg(sb, KERN_INFO, "barriers disabled");
4459
4460 if (!ext4_has_feature_journal_needs_recovery(sb))
4461 err = jbd2_journal_wipe(journal, !really_read_only);
4462 if (!err) {
4463 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4464 if (save)
4465 memcpy(save, ((char *) es) +
4466 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4467 err = jbd2_journal_load(journal);
4468 if (save)
4469 memcpy(((char *) es) + EXT4_S_ERR_START,
4470 save, EXT4_S_ERR_LEN);
4471 kfree(save);
4472 }
4473
4474 if (err) {
4475 ext4_msg(sb, KERN_ERR, "error loading journal");
4476 jbd2_journal_destroy(journal);
4477 return err;
4478 }
4479
4480 EXT4_SB(sb)->s_journal = journal;
4481 ext4_clear_journal_err(sb, es);
4482
4483 if (!really_read_only && journal_devnum &&
4484 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4485 es->s_journal_dev = cpu_to_le32(journal_devnum);
4486
4487 /* Make sure we flush the recovery flag to disk. */
4488 ext4_commit_super(sb, 1);
4489 }
4490
4491 return 0;
4492 }
4493
ext4_commit_super(struct super_block * sb,int sync)4494 static int ext4_commit_super(struct super_block *sb, int sync)
4495 {
4496 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4497 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4498 int error = 0;
4499
4500 if (!sbh)
4501 return -EINVAL;
4502 if (block_device_ejected(sb))
4503 return -ENODEV;
4504
4505 /*
4506 * The superblock bh should be mapped, but it might not be if the
4507 * device was hot-removed. Not much we can do but fail the I/O.
4508 */
4509 if (!buffer_mapped(sbh))
4510 return error;
4511
4512 if (buffer_write_io_error(sbh)) {
4513 /*
4514 * Oh, dear. A previous attempt to write the
4515 * superblock failed. This could happen because the
4516 * USB device was yanked out. Or it could happen to
4517 * be a transient write error and maybe the block will
4518 * be remapped. Nothing we can do but to retry the
4519 * write and hope for the best.
4520 */
4521 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4522 "superblock detected");
4523 clear_buffer_write_io_error(sbh);
4524 set_buffer_uptodate(sbh);
4525 }
4526 /*
4527 * If the file system is mounted read-only, don't update the
4528 * superblock write time. This avoids updating the superblock
4529 * write time when we are mounting the root file system
4530 * read/only but we need to replay the journal; at that point,
4531 * for people who are east of GMT and who make their clock
4532 * tick in localtime for Windows bug-for-bug compatibility,
4533 * the clock is set in the future, and this will cause e2fsck
4534 * to complain and force a full file system check.
4535 */
4536 if (!(sb->s_flags & MS_RDONLY))
4537 es->s_wtime = cpu_to_le32(get_seconds());
4538 if (sb->s_bdev->bd_part)
4539 es->s_kbytes_written =
4540 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4541 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4542 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4543 else
4544 es->s_kbytes_written =
4545 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4546 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4547 ext4_free_blocks_count_set(es,
4548 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4549 &EXT4_SB(sb)->s_freeclusters_counter)));
4550 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4551 es->s_free_inodes_count =
4552 cpu_to_le32(percpu_counter_sum_positive(
4553 &EXT4_SB(sb)->s_freeinodes_counter));
4554 BUFFER_TRACE(sbh, "marking dirty");
4555 ext4_superblock_csum_set(sb);
4556 mark_buffer_dirty(sbh);
4557 if (sync) {
4558 error = __sync_dirty_buffer(sbh,
4559 test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC);
4560 if (error)
4561 return error;
4562
4563 error = buffer_write_io_error(sbh);
4564 if (error) {
4565 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4566 "superblock");
4567 clear_buffer_write_io_error(sbh);
4568 set_buffer_uptodate(sbh);
4569 }
4570 }
4571 return error;
4572 }
4573
4574 /*
4575 * Have we just finished recovery? If so, and if we are mounting (or
4576 * remounting) the filesystem readonly, then we will end up with a
4577 * consistent fs on disk. Record that fact.
4578 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)4579 static void ext4_mark_recovery_complete(struct super_block *sb,
4580 struct ext4_super_block *es)
4581 {
4582 journal_t *journal = EXT4_SB(sb)->s_journal;
4583
4584 if (!ext4_has_feature_journal(sb)) {
4585 BUG_ON(journal != NULL);
4586 return;
4587 }
4588 jbd2_journal_lock_updates(journal);
4589 if (jbd2_journal_flush(journal) < 0)
4590 goto out;
4591
4592 if (ext4_has_feature_journal_needs_recovery(sb) &&
4593 sb->s_flags & MS_RDONLY) {
4594 ext4_clear_feature_journal_needs_recovery(sb);
4595 ext4_commit_super(sb, 1);
4596 }
4597
4598 out:
4599 jbd2_journal_unlock_updates(journal);
4600 }
4601
4602 /*
4603 * If we are mounting (or read-write remounting) a filesystem whose journal
4604 * has recorded an error from a previous lifetime, move that error to the
4605 * main filesystem now.
4606 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)4607 static void ext4_clear_journal_err(struct super_block *sb,
4608 struct ext4_super_block *es)
4609 {
4610 journal_t *journal;
4611 int j_errno;
4612 const char *errstr;
4613
4614 BUG_ON(!ext4_has_feature_journal(sb));
4615
4616 journal = EXT4_SB(sb)->s_journal;
4617
4618 /*
4619 * Now check for any error status which may have been recorded in the
4620 * journal by a prior ext4_error() or ext4_abort()
4621 */
4622
4623 j_errno = jbd2_journal_errno(journal);
4624 if (j_errno) {
4625 char nbuf[16];
4626
4627 errstr = ext4_decode_error(sb, j_errno, nbuf);
4628 ext4_warning(sb, "Filesystem error recorded "
4629 "from previous mount: %s", errstr);
4630 ext4_warning(sb, "Marking fs in need of filesystem check.");
4631
4632 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4633 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4634 ext4_commit_super(sb, 1);
4635
4636 jbd2_journal_clear_err(journal);
4637 jbd2_journal_update_sb_errno(journal);
4638 }
4639 }
4640
4641 /*
4642 * Force the running and committing transactions to commit,
4643 * and wait on the commit.
4644 */
ext4_force_commit(struct super_block * sb)4645 int ext4_force_commit(struct super_block *sb)
4646 {
4647 journal_t *journal;
4648
4649 if (sb->s_flags & MS_RDONLY)
4650 return 0;
4651
4652 journal = EXT4_SB(sb)->s_journal;
4653 return ext4_journal_force_commit(journal);
4654 }
4655
ext4_sync_fs(struct super_block * sb,int wait)4656 static int ext4_sync_fs(struct super_block *sb, int wait)
4657 {
4658 int ret = 0;
4659 tid_t target;
4660 bool needs_barrier = false;
4661 struct ext4_sb_info *sbi = EXT4_SB(sb);
4662
4663 trace_ext4_sync_fs(sb, wait);
4664 flush_workqueue(sbi->rsv_conversion_wq);
4665 /*
4666 * Writeback quota in non-journalled quota case - journalled quota has
4667 * no dirty dquots
4668 */
4669 dquot_writeback_dquots(sb, -1);
4670 /*
4671 * Data writeback is possible w/o journal transaction, so barrier must
4672 * being sent at the end of the function. But we can skip it if
4673 * transaction_commit will do it for us.
4674 */
4675 if (sbi->s_journal) {
4676 target = jbd2_get_latest_transaction(sbi->s_journal);
4677 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4678 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4679 needs_barrier = true;
4680
4681 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4682 if (wait)
4683 ret = jbd2_log_wait_commit(sbi->s_journal,
4684 target);
4685 }
4686 } else if (wait && test_opt(sb, BARRIER))
4687 needs_barrier = true;
4688 if (needs_barrier) {
4689 int err;
4690 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4691 if (!ret)
4692 ret = err;
4693 }
4694
4695 return ret;
4696 }
4697
4698 /*
4699 * LVM calls this function before a (read-only) snapshot is created. This
4700 * gives us a chance to flush the journal completely and mark the fs clean.
4701 *
4702 * Note that only this function cannot bring a filesystem to be in a clean
4703 * state independently. It relies on upper layer to stop all data & metadata
4704 * modifications.
4705 */
ext4_freeze(struct super_block * sb)4706 static int ext4_freeze(struct super_block *sb)
4707 {
4708 int error = 0;
4709 journal_t *journal;
4710
4711 if (sb->s_flags & MS_RDONLY)
4712 return 0;
4713
4714 journal = EXT4_SB(sb)->s_journal;
4715
4716 if (journal) {
4717 /* Now we set up the journal barrier. */
4718 jbd2_journal_lock_updates(journal);
4719
4720 /*
4721 * Don't clear the needs_recovery flag if we failed to
4722 * flush the journal.
4723 */
4724 error = jbd2_journal_flush(journal);
4725 if (error < 0)
4726 goto out;
4727
4728 /* Journal blocked and flushed, clear needs_recovery flag. */
4729 ext4_clear_feature_journal_needs_recovery(sb);
4730 }
4731
4732 error = ext4_commit_super(sb, 1);
4733 out:
4734 if (journal)
4735 /* we rely on upper layer to stop further updates */
4736 jbd2_journal_unlock_updates(journal);
4737 return error;
4738 }
4739
4740 /*
4741 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4742 * flag here, even though the filesystem is not technically dirty yet.
4743 */
ext4_unfreeze(struct super_block * sb)4744 static int ext4_unfreeze(struct super_block *sb)
4745 {
4746 if (sb->s_flags & MS_RDONLY)
4747 return 0;
4748
4749 if (EXT4_SB(sb)->s_journal) {
4750 /* Reset the needs_recovery flag before the fs is unlocked. */
4751 ext4_set_feature_journal_needs_recovery(sb);
4752 }
4753
4754 ext4_commit_super(sb, 1);
4755 return 0;
4756 }
4757
4758 /*
4759 * Structure to save mount options for ext4_remount's benefit
4760 */
4761 struct ext4_mount_options {
4762 unsigned long s_mount_opt;
4763 unsigned long s_mount_opt2;
4764 kuid_t s_resuid;
4765 kgid_t s_resgid;
4766 unsigned long s_commit_interval;
4767 u32 s_min_batch_time, s_max_batch_time;
4768 #ifdef CONFIG_QUOTA
4769 int s_jquota_fmt;
4770 char *s_qf_names[EXT4_MAXQUOTAS];
4771 #endif
4772 };
4773
ext4_remount(struct super_block * sb,int * flags,char * data)4774 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4775 {
4776 struct ext4_super_block *es;
4777 struct ext4_sb_info *sbi = EXT4_SB(sb);
4778 unsigned long old_sb_flags;
4779 struct ext4_mount_options old_opts;
4780 int enable_quota = 0;
4781 ext4_group_t g;
4782 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4783 int err = 0;
4784 #ifdef CONFIG_QUOTA
4785 int i, j;
4786 #endif
4787 char *orig_data = kstrdup(data, GFP_KERNEL);
4788
4789 /* Store the original options */
4790 old_sb_flags = sb->s_flags;
4791 old_opts.s_mount_opt = sbi->s_mount_opt;
4792 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4793 old_opts.s_resuid = sbi->s_resuid;
4794 old_opts.s_resgid = sbi->s_resgid;
4795 old_opts.s_commit_interval = sbi->s_commit_interval;
4796 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4797 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4798 #ifdef CONFIG_QUOTA
4799 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4800 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4801 if (sbi->s_qf_names[i]) {
4802 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4803 GFP_KERNEL);
4804 if (!old_opts.s_qf_names[i]) {
4805 for (j = 0; j < i; j++)
4806 kfree(old_opts.s_qf_names[j]);
4807 kfree(orig_data);
4808 return -ENOMEM;
4809 }
4810 } else
4811 old_opts.s_qf_names[i] = NULL;
4812 #endif
4813 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4814 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4815
4816 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4817 err = -EINVAL;
4818 goto restore_opts;
4819 }
4820
4821 ext4_clamp_want_extra_isize(sb);
4822
4823 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4824 test_opt(sb, JOURNAL_CHECKSUM)) {
4825 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4826 "during remount not supported; ignoring");
4827 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4828 }
4829
4830 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4831 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4832 ext4_msg(sb, KERN_ERR, "can't mount with "
4833 "both data=journal and delalloc");
4834 err = -EINVAL;
4835 goto restore_opts;
4836 }
4837 if (test_opt(sb, DIOREAD_NOLOCK)) {
4838 ext4_msg(sb, KERN_ERR, "can't mount with "
4839 "both data=journal and dioread_nolock");
4840 err = -EINVAL;
4841 goto restore_opts;
4842 }
4843 if (test_opt(sb, DAX)) {
4844 ext4_msg(sb, KERN_ERR, "can't mount with "
4845 "both data=journal and dax");
4846 err = -EINVAL;
4847 goto restore_opts;
4848 }
4849 }
4850
4851 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4852 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4853 "dax flag with busy inodes while remounting");
4854 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4855 }
4856
4857 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4858 ext4_abort(sb, "Abort forced by user");
4859
4860 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4861 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4862
4863 es = sbi->s_es;
4864
4865 if (sbi->s_journal) {
4866 ext4_init_journal_params(sb, sbi->s_journal);
4867 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4868 }
4869
4870 if (*flags & MS_LAZYTIME)
4871 sb->s_flags |= MS_LAZYTIME;
4872
4873 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4874 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4875 err = -EROFS;
4876 goto restore_opts;
4877 }
4878
4879 if (*flags & MS_RDONLY) {
4880 err = sync_filesystem(sb);
4881 if (err < 0)
4882 goto restore_opts;
4883 err = dquot_suspend(sb, -1);
4884 if (err < 0)
4885 goto restore_opts;
4886
4887 /*
4888 * First of all, the unconditional stuff we have to do
4889 * to disable replay of the journal when we next remount
4890 */
4891 sb->s_flags |= MS_RDONLY;
4892
4893 /*
4894 * OK, test if we are remounting a valid rw partition
4895 * readonly, and if so set the rdonly flag and then
4896 * mark the partition as valid again.
4897 */
4898 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4899 (sbi->s_mount_state & EXT4_VALID_FS))
4900 es->s_state = cpu_to_le16(sbi->s_mount_state);
4901
4902 if (sbi->s_journal)
4903 ext4_mark_recovery_complete(sb, es);
4904 } else {
4905 /* Make sure we can mount this feature set readwrite */
4906 if (ext4_has_feature_readonly(sb) ||
4907 !ext4_feature_set_ok(sb, 0)) {
4908 err = -EROFS;
4909 goto restore_opts;
4910 }
4911 /*
4912 * Make sure the group descriptor checksums
4913 * are sane. If they aren't, refuse to remount r/w.
4914 */
4915 for (g = 0; g < sbi->s_groups_count; g++) {
4916 struct ext4_group_desc *gdp =
4917 ext4_get_group_desc(sb, g, NULL);
4918
4919 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4920 ext4_msg(sb, KERN_ERR,
4921 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4922 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
4923 le16_to_cpu(gdp->bg_checksum));
4924 err = -EFSBADCRC;
4925 goto restore_opts;
4926 }
4927 }
4928
4929 /*
4930 * If we have an unprocessed orphan list hanging
4931 * around from a previously readonly bdev mount,
4932 * require a full umount/remount for now.
4933 */
4934 if (es->s_last_orphan) {
4935 ext4_msg(sb, KERN_WARNING, "Couldn't "
4936 "remount RDWR because of unprocessed "
4937 "orphan inode list. Please "
4938 "umount/remount instead");
4939 err = -EINVAL;
4940 goto restore_opts;
4941 }
4942
4943 /*
4944 * Mounting a RDONLY partition read-write, so reread
4945 * and store the current valid flag. (It may have
4946 * been changed by e2fsck since we originally mounted
4947 * the partition.)
4948 */
4949 if (sbi->s_journal)
4950 ext4_clear_journal_err(sb, es);
4951 sbi->s_mount_state = le16_to_cpu(es->s_state);
4952 if (!ext4_setup_super(sb, es, 0))
4953 sb->s_flags &= ~MS_RDONLY;
4954 if (ext4_has_feature_mmp(sb))
4955 if (ext4_multi_mount_protect(sb,
4956 le64_to_cpu(es->s_mmp_block))) {
4957 err = -EROFS;
4958 goto restore_opts;
4959 }
4960 enable_quota = 1;
4961 }
4962 }
4963
4964 /*
4965 * Reinitialize lazy itable initialization thread based on
4966 * current settings
4967 */
4968 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4969 ext4_unregister_li_request(sb);
4970 else {
4971 ext4_group_t first_not_zeroed;
4972 first_not_zeroed = ext4_has_uninit_itable(sb);
4973 ext4_register_li_request(sb, first_not_zeroed);
4974 }
4975
4976 err = ext4_setup_system_zone(sb);
4977 if (err)
4978 goto restore_opts;
4979
4980 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4981 ext4_commit_super(sb, 1);
4982
4983 #ifdef CONFIG_QUOTA
4984 /* Release old quota file names */
4985 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4986 kfree(old_opts.s_qf_names[i]);
4987 if (enable_quota) {
4988 if (sb_any_quota_suspended(sb))
4989 dquot_resume(sb, -1);
4990 else if (ext4_has_feature_quota(sb)) {
4991 err = ext4_enable_quotas(sb);
4992 if (err)
4993 goto restore_opts;
4994 }
4995 }
4996 #endif
4997
4998 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
4999 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5000 kfree(orig_data);
5001 return 0;
5002
5003 restore_opts:
5004 sb->s_flags = old_sb_flags;
5005 sbi->s_mount_opt = old_opts.s_mount_opt;
5006 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5007 sbi->s_resuid = old_opts.s_resuid;
5008 sbi->s_resgid = old_opts.s_resgid;
5009 sbi->s_commit_interval = old_opts.s_commit_interval;
5010 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5011 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5012 #ifdef CONFIG_QUOTA
5013 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5014 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5015 kfree(sbi->s_qf_names[i]);
5016 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5017 }
5018 #endif
5019 kfree(orig_data);
5020 return err;
5021 }
5022
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)5023 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5024 {
5025 struct super_block *sb = dentry->d_sb;
5026 struct ext4_sb_info *sbi = EXT4_SB(sb);
5027 struct ext4_super_block *es = sbi->s_es;
5028 ext4_fsblk_t overhead = 0, resv_blocks;
5029 u64 fsid;
5030 s64 bfree;
5031 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5032
5033 if (!test_opt(sb, MINIX_DF))
5034 overhead = sbi->s_overhead;
5035
5036 buf->f_type = EXT4_SUPER_MAGIC;
5037 buf->f_bsize = sb->s_blocksize;
5038 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5039 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5040 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5041 /* prevent underflow in case that few free space is available */
5042 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5043 buf->f_bavail = buf->f_bfree -
5044 (ext4_r_blocks_count(es) + resv_blocks);
5045 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5046 buf->f_bavail = 0;
5047 buf->f_files = le32_to_cpu(es->s_inodes_count);
5048 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5049 buf->f_namelen = EXT4_NAME_LEN;
5050 fsid = le64_to_cpup((void *)es->s_uuid) ^
5051 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5052 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5053 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5054
5055 return 0;
5056 }
5057
5058 /* Helper function for writing quotas on sync - we need to start transaction
5059 * before quota file is locked for write. Otherwise the are possible deadlocks:
5060 * Process 1 Process 2
5061 * ext4_create() quota_sync()
5062 * jbd2_journal_start() write_dquot()
5063 * dquot_initialize() down(dqio_mutex)
5064 * down(dqio_mutex) jbd2_journal_start()
5065 *
5066 */
5067
5068 #ifdef CONFIG_QUOTA
5069
dquot_to_inode(struct dquot * dquot)5070 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5071 {
5072 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5073 }
5074
ext4_write_dquot(struct dquot * dquot)5075 static int ext4_write_dquot(struct dquot *dquot)
5076 {
5077 int ret, err;
5078 handle_t *handle;
5079 struct inode *inode;
5080
5081 inode = dquot_to_inode(dquot);
5082 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5083 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5084 if (IS_ERR(handle))
5085 return PTR_ERR(handle);
5086 ret = dquot_commit(dquot);
5087 err = ext4_journal_stop(handle);
5088 if (!ret)
5089 ret = err;
5090 return ret;
5091 }
5092
ext4_acquire_dquot(struct dquot * dquot)5093 static int ext4_acquire_dquot(struct dquot *dquot)
5094 {
5095 int ret, err;
5096 handle_t *handle;
5097
5098 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5099 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5100 if (IS_ERR(handle))
5101 return PTR_ERR(handle);
5102 ret = dquot_acquire(dquot);
5103 err = ext4_journal_stop(handle);
5104 if (!ret)
5105 ret = err;
5106 return ret;
5107 }
5108
ext4_release_dquot(struct dquot * dquot)5109 static int ext4_release_dquot(struct dquot *dquot)
5110 {
5111 int ret, err;
5112 handle_t *handle;
5113
5114 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5115 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5116 if (IS_ERR(handle)) {
5117 /* Release dquot anyway to avoid endless cycle in dqput() */
5118 dquot_release(dquot);
5119 return PTR_ERR(handle);
5120 }
5121 ret = dquot_release(dquot);
5122 err = ext4_journal_stop(handle);
5123 if (!ret)
5124 ret = err;
5125 return ret;
5126 }
5127
ext4_mark_dquot_dirty(struct dquot * dquot)5128 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5129 {
5130 struct super_block *sb = dquot->dq_sb;
5131 struct ext4_sb_info *sbi = EXT4_SB(sb);
5132
5133 /* Are we journaling quotas? */
5134 if (ext4_has_feature_quota(sb) ||
5135 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5136 dquot_mark_dquot_dirty(dquot);
5137 return ext4_write_dquot(dquot);
5138 } else {
5139 return dquot_mark_dquot_dirty(dquot);
5140 }
5141 }
5142
ext4_write_info(struct super_block * sb,int type)5143 static int ext4_write_info(struct super_block *sb, int type)
5144 {
5145 int ret, err;
5146 handle_t *handle;
5147
5148 /* Data block + inode block */
5149 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5150 if (IS_ERR(handle))
5151 return PTR_ERR(handle);
5152 ret = dquot_commit_info(sb, type);
5153 err = ext4_journal_stop(handle);
5154 if (!ret)
5155 ret = err;
5156 return ret;
5157 }
5158
5159 /*
5160 * Turn on quotas during mount time - we need to find
5161 * the quota file and such...
5162 */
ext4_quota_on_mount(struct super_block * sb,int type)5163 static int ext4_quota_on_mount(struct super_block *sb, int type)
5164 {
5165 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5166 EXT4_SB(sb)->s_jquota_fmt, type);
5167 }
5168
lockdep_set_quota_inode(struct inode * inode,int subclass)5169 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5170 {
5171 struct ext4_inode_info *ei = EXT4_I(inode);
5172
5173 /* The first argument of lockdep_set_subclass has to be
5174 * *exactly* the same as the argument to init_rwsem() --- in
5175 * this case, in init_once() --- or lockdep gets unhappy
5176 * because the name of the lock is set using the
5177 * stringification of the argument to init_rwsem().
5178 */
5179 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5180 lockdep_set_subclass(&ei->i_data_sem, subclass);
5181 }
5182
5183 /*
5184 * Standard function to be called on quota_on
5185 */
ext4_quota_on(struct super_block * sb,int type,int format_id,struct path * path)5186 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5187 struct path *path)
5188 {
5189 int err;
5190
5191 if (!test_opt(sb, QUOTA))
5192 return -EINVAL;
5193
5194 /* Quotafile not on the same filesystem? */
5195 if (path->dentry->d_sb != sb)
5196 return -EXDEV;
5197
5198 /* Quota already enabled for this file? */
5199 if (IS_NOQUOTA(d_inode(path->dentry)))
5200 return -EBUSY;
5201
5202 /* Journaling quota? */
5203 if (EXT4_SB(sb)->s_qf_names[type]) {
5204 /* Quotafile not in fs root? */
5205 if (path->dentry->d_parent != sb->s_root)
5206 ext4_msg(sb, KERN_WARNING,
5207 "Quota file not on filesystem root. "
5208 "Journaled quota will not work");
5209 }
5210
5211 /*
5212 * When we journal data on quota file, we have to flush journal to see
5213 * all updates to the file when we bypass pagecache...
5214 */
5215 if (EXT4_SB(sb)->s_journal &&
5216 ext4_should_journal_data(d_inode(path->dentry))) {
5217 /*
5218 * We don't need to lock updates but journal_flush() could
5219 * otherwise be livelocked...
5220 */
5221 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5222 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5223 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5224 if (err)
5225 return err;
5226 }
5227 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5228 err = dquot_quota_on(sb, type, format_id, path);
5229 if (err)
5230 lockdep_set_quota_inode(path->dentry->d_inode,
5231 I_DATA_SEM_NORMAL);
5232 return err;
5233 }
5234
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)5235 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5236 unsigned int flags)
5237 {
5238 int err;
5239 struct inode *qf_inode;
5240 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5241 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5242 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5243 };
5244
5245 BUG_ON(!ext4_has_feature_quota(sb));
5246
5247 if (!qf_inums[type])
5248 return -EPERM;
5249
5250 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
5251 if (IS_ERR(qf_inode)) {
5252 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5253 return PTR_ERR(qf_inode);
5254 }
5255
5256 /* Don't account quota for quota files to avoid recursion */
5257 qf_inode->i_flags |= S_NOQUOTA;
5258 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5259 err = dquot_enable(qf_inode, type, format_id, flags);
5260 if (err)
5261 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5262 iput(qf_inode);
5263
5264 return err;
5265 }
5266
5267 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)5268 static int ext4_enable_quotas(struct super_block *sb)
5269 {
5270 int type, err = 0;
5271 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5272 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5273 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5274 };
5275
5276 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5277 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5278 if (qf_inums[type]) {
5279 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5280 DQUOT_USAGE_ENABLED);
5281 if (err) {
5282 for (type--; type >= 0; type--)
5283 dquot_quota_off(sb, type);
5284
5285 ext4_warning(sb,
5286 "Failed to enable quota tracking "
5287 "(type=%d, err=%d). Please run "
5288 "e2fsck to fix.", type, err);
5289 return err;
5290 }
5291 }
5292 }
5293 return 0;
5294 }
5295
ext4_quota_off(struct super_block * sb,int type)5296 static int ext4_quota_off(struct super_block *sb, int type)
5297 {
5298 struct inode *inode = sb_dqopt(sb)->files[type];
5299 handle_t *handle;
5300
5301 /* Force all delayed allocation blocks to be allocated.
5302 * Caller already holds s_umount sem */
5303 if (test_opt(sb, DELALLOC))
5304 sync_filesystem(sb);
5305
5306 if (!inode)
5307 goto out;
5308
5309 /* Update modification times of quota files when userspace can
5310 * start looking at them */
5311 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5312 if (IS_ERR(handle))
5313 goto out;
5314 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5315 ext4_mark_inode_dirty(handle, inode);
5316 ext4_journal_stop(handle);
5317
5318 out:
5319 return dquot_quota_off(sb, type);
5320 }
5321
5322 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5323 * acquiring the locks... As quota files are never truncated and quota code
5324 * itself serializes the operations (and no one else should touch the files)
5325 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)5326 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5327 size_t len, loff_t off)
5328 {
5329 struct inode *inode = sb_dqopt(sb)->files[type];
5330 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5331 int offset = off & (sb->s_blocksize - 1);
5332 int tocopy;
5333 size_t toread;
5334 struct buffer_head *bh;
5335 loff_t i_size = i_size_read(inode);
5336
5337 if (off > i_size)
5338 return 0;
5339 if (off+len > i_size)
5340 len = i_size-off;
5341 toread = len;
5342 while (toread > 0) {
5343 tocopy = sb->s_blocksize - offset < toread ?
5344 sb->s_blocksize - offset : toread;
5345 bh = ext4_bread(NULL, inode, blk, 0);
5346 if (IS_ERR(bh))
5347 return PTR_ERR(bh);
5348 if (!bh) /* A hole? */
5349 memset(data, 0, tocopy);
5350 else
5351 memcpy(data, bh->b_data+offset, tocopy);
5352 brelse(bh);
5353 offset = 0;
5354 toread -= tocopy;
5355 data += tocopy;
5356 blk++;
5357 }
5358 return len;
5359 }
5360
5361 /* Write to quotafile (we know the transaction is already started and has
5362 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)5363 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5364 const char *data, size_t len, loff_t off)
5365 {
5366 struct inode *inode = sb_dqopt(sb)->files[type];
5367 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5368 int err, offset = off & (sb->s_blocksize - 1);
5369 int retries = 0;
5370 struct buffer_head *bh;
5371 handle_t *handle = journal_current_handle();
5372
5373 if (!handle) {
5374 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5375 " cancelled because transaction is not started",
5376 (unsigned long long)off, (unsigned long long)len);
5377 return -EIO;
5378 }
5379 /*
5380 * Since we account only one data block in transaction credits,
5381 * then it is impossible to cross a block boundary.
5382 */
5383 if (sb->s_blocksize - offset < len) {
5384 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5385 " cancelled because not block aligned",
5386 (unsigned long long)off, (unsigned long long)len);
5387 return -EIO;
5388 }
5389
5390 do {
5391 bh = ext4_bread(handle, inode, blk,
5392 EXT4_GET_BLOCKS_CREATE |
5393 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5394 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5395 ext4_should_retry_alloc(inode->i_sb, &retries));
5396 if (IS_ERR(bh))
5397 return PTR_ERR(bh);
5398 if (!bh)
5399 goto out;
5400 BUFFER_TRACE(bh, "get write access");
5401 err = ext4_journal_get_write_access(handle, bh);
5402 if (err) {
5403 brelse(bh);
5404 return err;
5405 }
5406 lock_buffer(bh);
5407 memcpy(bh->b_data+offset, data, len);
5408 flush_dcache_page(bh->b_page);
5409 unlock_buffer(bh);
5410 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5411 brelse(bh);
5412 out:
5413 if (inode->i_size < off + len) {
5414 i_size_write(inode, off + len);
5415 EXT4_I(inode)->i_disksize = inode->i_size;
5416 ext4_mark_inode_dirty(handle, inode);
5417 }
5418 return len;
5419 }
5420
5421 #endif
5422
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)5423 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5424 const char *dev_name, void *data)
5425 {
5426 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5427 }
5428
5429 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)5430 static inline void register_as_ext2(void)
5431 {
5432 int err = register_filesystem(&ext2_fs_type);
5433 if (err)
5434 printk(KERN_WARNING
5435 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5436 }
5437
unregister_as_ext2(void)5438 static inline void unregister_as_ext2(void)
5439 {
5440 unregister_filesystem(&ext2_fs_type);
5441 }
5442
ext2_feature_set_ok(struct super_block * sb)5443 static inline int ext2_feature_set_ok(struct super_block *sb)
5444 {
5445 if (ext4_has_unknown_ext2_incompat_features(sb))
5446 return 0;
5447 if (sb->s_flags & MS_RDONLY)
5448 return 1;
5449 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5450 return 0;
5451 return 1;
5452 }
5453 #else
register_as_ext2(void)5454 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)5455 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)5456 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5457 #endif
5458
register_as_ext3(void)5459 static inline void register_as_ext3(void)
5460 {
5461 int err = register_filesystem(&ext3_fs_type);
5462 if (err)
5463 printk(KERN_WARNING
5464 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5465 }
5466
unregister_as_ext3(void)5467 static inline void unregister_as_ext3(void)
5468 {
5469 unregister_filesystem(&ext3_fs_type);
5470 }
5471
ext3_feature_set_ok(struct super_block * sb)5472 static inline int ext3_feature_set_ok(struct super_block *sb)
5473 {
5474 if (ext4_has_unknown_ext3_incompat_features(sb))
5475 return 0;
5476 if (!ext4_has_feature_journal(sb))
5477 return 0;
5478 if (sb->s_flags & MS_RDONLY)
5479 return 1;
5480 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5481 return 0;
5482 return 1;
5483 }
5484
5485 static struct file_system_type ext4_fs_type = {
5486 .owner = THIS_MODULE,
5487 .name = "ext4",
5488 .mount = ext4_mount,
5489 .kill_sb = kill_block_super,
5490 .fs_flags = FS_REQUIRES_DEV,
5491 };
5492 MODULE_ALIAS_FS("ext4");
5493
5494 /* Shared across all ext4 file systems */
5495 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5496 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5497
ext4_init_fs(void)5498 static int __init ext4_init_fs(void)
5499 {
5500 int i, err;
5501
5502 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5503 ext4_li_info = NULL;
5504 mutex_init(&ext4_li_mtx);
5505
5506 /* Build-time check for flags consistency */
5507 ext4_check_flag_values();
5508
5509 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5510 mutex_init(&ext4__aio_mutex[i]);
5511 init_waitqueue_head(&ext4__ioend_wq[i]);
5512 }
5513
5514 err = ext4_init_es();
5515 if (err)
5516 return err;
5517
5518 err = ext4_init_pageio();
5519 if (err)
5520 goto out5;
5521
5522 err = ext4_init_system_zone();
5523 if (err)
5524 goto out4;
5525
5526 err = ext4_init_sysfs();
5527 if (err)
5528 goto out3;
5529
5530 err = ext4_init_mballoc();
5531 if (err)
5532 goto out2;
5533 else
5534 ext4_mballoc_ready = 1;
5535 err = init_inodecache();
5536 if (err)
5537 goto out1;
5538 register_as_ext3();
5539 register_as_ext2();
5540 err = register_filesystem(&ext4_fs_type);
5541 if (err)
5542 goto out;
5543
5544 return 0;
5545 out:
5546 unregister_as_ext2();
5547 unregister_as_ext3();
5548 destroy_inodecache();
5549 out1:
5550 ext4_mballoc_ready = 0;
5551 ext4_exit_mballoc();
5552 out2:
5553 ext4_exit_sysfs();
5554 out3:
5555 ext4_exit_system_zone();
5556 out4:
5557 ext4_exit_pageio();
5558 out5:
5559 ext4_exit_es();
5560
5561 return err;
5562 }
5563
ext4_exit_fs(void)5564 static void __exit ext4_exit_fs(void)
5565 {
5566 ext4_exit_crypto();
5567 ext4_destroy_lazyinit_thread();
5568 unregister_as_ext2();
5569 unregister_as_ext3();
5570 unregister_filesystem(&ext4_fs_type);
5571 destroy_inodecache();
5572 ext4_exit_mballoc();
5573 ext4_exit_sysfs();
5574 ext4_exit_system_zone();
5575 ext4_exit_pageio();
5576 ext4_exit_es();
5577 }
5578
5579 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5580 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5581 MODULE_LICENSE("GPL");
5582 module_init(ext4_init_fs)
5583 module_exit(ext4_exit_fs)
5584