• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h>		/* init_rootfs */
20 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
21 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29 
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly = 100000;
32 
33 static unsigned int m_hash_mask __read_mostly;
34 static unsigned int m_hash_shift __read_mostly;
35 static unsigned int mp_hash_mask __read_mostly;
36 static unsigned int mp_hash_shift __read_mostly;
37 
38 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)39 static int __init set_mhash_entries(char *str)
40 {
41 	if (!str)
42 		return 0;
43 	mhash_entries = simple_strtoul(str, &str, 0);
44 	return 1;
45 }
46 __setup("mhash_entries=", set_mhash_entries);
47 
48 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)49 static int __init set_mphash_entries(char *str)
50 {
51 	if (!str)
52 		return 0;
53 	mphash_entries = simple_strtoul(str, &str, 0);
54 	return 1;
55 }
56 __setup("mphash_entries=", set_mphash_entries);
57 
58 static u64 event;
59 static DEFINE_IDA(mnt_id_ida);
60 static DEFINE_IDA(mnt_group_ida);
61 static DEFINE_SPINLOCK(mnt_id_lock);
62 static int mnt_id_start = 0;
63 static int mnt_group_start = 1;
64 
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
69 
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
73 
74 /*
75  * vfsmount lock may be taken for read to prevent changes to the
76  * vfsmount hash, ie. during mountpoint lookups or walking back
77  * up the tree.
78  *
79  * It should be taken for write in all cases where the vfsmount
80  * tree or hash is modified or when a vfsmount structure is modified.
81  */
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
83 
m_hash(struct vfsmount * mnt,struct dentry * dentry)84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
85 {
86 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 	tmp = tmp + (tmp >> m_hash_shift);
89 	return &mount_hashtable[tmp & m_hash_mask];
90 }
91 
mp_hash(struct dentry * dentry)92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
93 {
94 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 	tmp = tmp + (tmp >> mp_hash_shift);
96 	return &mountpoint_hashtable[tmp & mp_hash_mask];
97 }
98 
99 /*
100  * allocation is serialized by namespace_sem, but we need the spinlock to
101  * serialize with freeing.
102  */
mnt_alloc_id(struct mount * mnt)103 static int mnt_alloc_id(struct mount *mnt)
104 {
105 	int res;
106 
107 retry:
108 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
109 	spin_lock(&mnt_id_lock);
110 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
111 	if (!res)
112 		mnt_id_start = mnt->mnt_id + 1;
113 	spin_unlock(&mnt_id_lock);
114 	if (res == -EAGAIN)
115 		goto retry;
116 
117 	return res;
118 }
119 
mnt_free_id(struct mount * mnt)120 static void mnt_free_id(struct mount *mnt)
121 {
122 	int id = mnt->mnt_id;
123 	spin_lock(&mnt_id_lock);
124 	ida_remove(&mnt_id_ida, id);
125 	if (mnt_id_start > id)
126 		mnt_id_start = id;
127 	spin_unlock(&mnt_id_lock);
128 }
129 
130 /*
131  * Allocate a new peer group ID
132  *
133  * mnt_group_ida is protected by namespace_sem
134  */
mnt_alloc_group_id(struct mount * mnt)135 static int mnt_alloc_group_id(struct mount *mnt)
136 {
137 	int res;
138 
139 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
140 		return -ENOMEM;
141 
142 	res = ida_get_new_above(&mnt_group_ida,
143 				mnt_group_start,
144 				&mnt->mnt_group_id);
145 	if (!res)
146 		mnt_group_start = mnt->mnt_group_id + 1;
147 
148 	return res;
149 }
150 
151 /*
152  * Release a peer group ID
153  */
mnt_release_group_id(struct mount * mnt)154 void mnt_release_group_id(struct mount *mnt)
155 {
156 	int id = mnt->mnt_group_id;
157 	ida_remove(&mnt_group_ida, id);
158 	if (mnt_group_start > id)
159 		mnt_group_start = id;
160 	mnt->mnt_group_id = 0;
161 }
162 
163 /*
164  * vfsmount lock must be held for read
165  */
mnt_add_count(struct mount * mnt,int n)166 static inline void mnt_add_count(struct mount *mnt, int n)
167 {
168 #ifdef CONFIG_SMP
169 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
170 #else
171 	preempt_disable();
172 	mnt->mnt_count += n;
173 	preempt_enable();
174 #endif
175 }
176 
177 /*
178  * vfsmount lock must be held for write
179  */
mnt_get_count(struct mount * mnt)180 unsigned int mnt_get_count(struct mount *mnt)
181 {
182 #ifdef CONFIG_SMP
183 	unsigned int count = 0;
184 	int cpu;
185 
186 	for_each_possible_cpu(cpu) {
187 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
188 	}
189 
190 	return count;
191 #else
192 	return mnt->mnt_count;
193 #endif
194 }
195 
drop_mountpoint(struct fs_pin * p)196 static void drop_mountpoint(struct fs_pin *p)
197 {
198 	struct mount *m = container_of(p, struct mount, mnt_umount);
199 	dput(m->mnt_ex_mountpoint);
200 	pin_remove(p);
201 	mntput(&m->mnt);
202 }
203 
alloc_vfsmnt(const char * name)204 static struct mount *alloc_vfsmnt(const char *name)
205 {
206 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
207 	if (mnt) {
208 		int err;
209 
210 		err = mnt_alloc_id(mnt);
211 		if (err)
212 			goto out_free_cache;
213 
214 		if (name) {
215 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
216 			if (!mnt->mnt_devname)
217 				goto out_free_id;
218 		}
219 
220 #ifdef CONFIG_SMP
221 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
222 		if (!mnt->mnt_pcp)
223 			goto out_free_devname;
224 
225 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
226 #else
227 		mnt->mnt_count = 1;
228 		mnt->mnt_writers = 0;
229 #endif
230 		mnt->mnt.data = NULL;
231 
232 		INIT_HLIST_NODE(&mnt->mnt_hash);
233 		INIT_LIST_HEAD(&mnt->mnt_child);
234 		INIT_LIST_HEAD(&mnt->mnt_mounts);
235 		INIT_LIST_HEAD(&mnt->mnt_list);
236 		INIT_LIST_HEAD(&mnt->mnt_expire);
237 		INIT_LIST_HEAD(&mnt->mnt_share);
238 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
239 		INIT_LIST_HEAD(&mnt->mnt_slave);
240 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
241 		INIT_LIST_HEAD(&mnt->mnt_umounting);
242 #ifdef CONFIG_FSNOTIFY
243 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
244 #endif
245 		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
246 	}
247 	return mnt;
248 
249 #ifdef CONFIG_SMP
250 out_free_devname:
251 	kfree_const(mnt->mnt_devname);
252 #endif
253 out_free_id:
254 	mnt_free_id(mnt);
255 out_free_cache:
256 	kmem_cache_free(mnt_cache, mnt);
257 	return NULL;
258 }
259 
260 /*
261  * Most r/o checks on a fs are for operations that take
262  * discrete amounts of time, like a write() or unlink().
263  * We must keep track of when those operations start
264  * (for permission checks) and when they end, so that
265  * we can determine when writes are able to occur to
266  * a filesystem.
267  */
268 /*
269  * __mnt_is_readonly: check whether a mount is read-only
270  * @mnt: the mount to check for its write status
271  *
272  * This shouldn't be used directly ouside of the VFS.
273  * It does not guarantee that the filesystem will stay
274  * r/w, just that it is right *now*.  This can not and
275  * should not be used in place of IS_RDONLY(inode).
276  * mnt_want/drop_write() will _keep_ the filesystem
277  * r/w.
278  */
__mnt_is_readonly(struct vfsmount * mnt)279 int __mnt_is_readonly(struct vfsmount *mnt)
280 {
281 	if (mnt->mnt_flags & MNT_READONLY)
282 		return 1;
283 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
284 		return 1;
285 	return 0;
286 }
287 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
288 
mnt_inc_writers(struct mount * mnt)289 static inline void mnt_inc_writers(struct mount *mnt)
290 {
291 #ifdef CONFIG_SMP
292 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
293 #else
294 	mnt->mnt_writers++;
295 #endif
296 }
297 
mnt_dec_writers(struct mount * mnt)298 static inline void mnt_dec_writers(struct mount *mnt)
299 {
300 #ifdef CONFIG_SMP
301 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
302 #else
303 	mnt->mnt_writers--;
304 #endif
305 }
306 
mnt_get_writers(struct mount * mnt)307 static unsigned int mnt_get_writers(struct mount *mnt)
308 {
309 #ifdef CONFIG_SMP
310 	unsigned int count = 0;
311 	int cpu;
312 
313 	for_each_possible_cpu(cpu) {
314 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
315 	}
316 
317 	return count;
318 #else
319 	return mnt->mnt_writers;
320 #endif
321 }
322 
mnt_is_readonly(struct vfsmount * mnt)323 static int mnt_is_readonly(struct vfsmount *mnt)
324 {
325 	if (mnt->mnt_sb->s_readonly_remount)
326 		return 1;
327 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
328 	smp_rmb();
329 	return __mnt_is_readonly(mnt);
330 }
331 
332 /*
333  * Most r/o & frozen checks on a fs are for operations that take discrete
334  * amounts of time, like a write() or unlink().  We must keep track of when
335  * those operations start (for permission checks) and when they end, so that we
336  * can determine when writes are able to occur to a filesystem.
337  */
338 /**
339  * __mnt_want_write - get write access to a mount without freeze protection
340  * @m: the mount on which to take a write
341  *
342  * This tells the low-level filesystem that a write is about to be performed to
343  * it, and makes sure that writes are allowed (mnt it read-write) before
344  * returning success. This operation does not protect against filesystem being
345  * frozen. When the write operation is finished, __mnt_drop_write() must be
346  * called. This is effectively a refcount.
347  */
__mnt_want_write(struct vfsmount * m)348 int __mnt_want_write(struct vfsmount *m)
349 {
350 	struct mount *mnt = real_mount(m);
351 	int ret = 0;
352 
353 	preempt_disable();
354 	mnt_inc_writers(mnt);
355 	/*
356 	 * The store to mnt_inc_writers must be visible before we pass
357 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
358 	 * incremented count after it has set MNT_WRITE_HOLD.
359 	 */
360 	smp_mb();
361 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
362 		cpu_relax();
363 	/*
364 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
365 	 * be set to match its requirements. So we must not load that until
366 	 * MNT_WRITE_HOLD is cleared.
367 	 */
368 	smp_rmb();
369 	if (mnt_is_readonly(m)) {
370 		mnt_dec_writers(mnt);
371 		ret = -EROFS;
372 	}
373 	preempt_enable();
374 
375 	return ret;
376 }
377 
378 /**
379  * mnt_want_write - get write access to a mount
380  * @m: the mount on which to take a write
381  *
382  * This tells the low-level filesystem that a write is about to be performed to
383  * it, and makes sure that writes are allowed (mount is read-write, filesystem
384  * is not frozen) before returning success.  When the write operation is
385  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
386  */
mnt_want_write(struct vfsmount * m)387 int mnt_want_write(struct vfsmount *m)
388 {
389 	int ret;
390 
391 	sb_start_write(m->mnt_sb);
392 	ret = __mnt_want_write(m);
393 	if (ret)
394 		sb_end_write(m->mnt_sb);
395 	return ret;
396 }
397 EXPORT_SYMBOL_GPL(mnt_want_write);
398 
399 /**
400  * mnt_clone_write - get write access to a mount
401  * @mnt: the mount on which to take a write
402  *
403  * This is effectively like mnt_want_write, except
404  * it must only be used to take an extra write reference
405  * on a mountpoint that we already know has a write reference
406  * on it. This allows some optimisation.
407  *
408  * After finished, mnt_drop_write must be called as usual to
409  * drop the reference.
410  */
mnt_clone_write(struct vfsmount * mnt)411 int mnt_clone_write(struct vfsmount *mnt)
412 {
413 	/* superblock may be r/o */
414 	if (__mnt_is_readonly(mnt))
415 		return -EROFS;
416 	preempt_disable();
417 	mnt_inc_writers(real_mount(mnt));
418 	preempt_enable();
419 	return 0;
420 }
421 EXPORT_SYMBOL_GPL(mnt_clone_write);
422 
423 /**
424  * __mnt_want_write_file - get write access to a file's mount
425  * @file: the file who's mount on which to take a write
426  *
427  * This is like __mnt_want_write, but it takes a file and can
428  * do some optimisations if the file is open for write already
429  */
__mnt_want_write_file(struct file * file)430 int __mnt_want_write_file(struct file *file)
431 {
432 	if (!(file->f_mode & FMODE_WRITER))
433 		return __mnt_want_write(file->f_path.mnt);
434 	else
435 		return mnt_clone_write(file->f_path.mnt);
436 }
437 
438 /**
439  * mnt_want_write_file - get write access to a file's mount
440  * @file: the file who's mount on which to take a write
441  *
442  * This is like mnt_want_write, but it takes a file and can
443  * do some optimisations if the file is open for write already
444  */
mnt_want_write_file(struct file * file)445 int mnt_want_write_file(struct file *file)
446 {
447 	int ret;
448 
449 	sb_start_write(file->f_path.mnt->mnt_sb);
450 	ret = __mnt_want_write_file(file);
451 	if (ret)
452 		sb_end_write(file->f_path.mnt->mnt_sb);
453 	return ret;
454 }
455 EXPORT_SYMBOL_GPL(mnt_want_write_file);
456 
457 /**
458  * __mnt_drop_write - give up write access to a mount
459  * @mnt: the mount on which to give up write access
460  *
461  * Tells the low-level filesystem that we are done
462  * performing writes to it.  Must be matched with
463  * __mnt_want_write() call above.
464  */
__mnt_drop_write(struct vfsmount * mnt)465 void __mnt_drop_write(struct vfsmount *mnt)
466 {
467 	preempt_disable();
468 	mnt_dec_writers(real_mount(mnt));
469 	preempt_enable();
470 }
471 
472 /**
473  * mnt_drop_write - give up write access to a mount
474  * @mnt: the mount on which to give up write access
475  *
476  * Tells the low-level filesystem that we are done performing writes to it and
477  * also allows filesystem to be frozen again.  Must be matched with
478  * mnt_want_write() call above.
479  */
mnt_drop_write(struct vfsmount * mnt)480 void mnt_drop_write(struct vfsmount *mnt)
481 {
482 	__mnt_drop_write(mnt);
483 	sb_end_write(mnt->mnt_sb);
484 }
485 EXPORT_SYMBOL_GPL(mnt_drop_write);
486 
__mnt_drop_write_file(struct file * file)487 void __mnt_drop_write_file(struct file *file)
488 {
489 	__mnt_drop_write(file->f_path.mnt);
490 }
491 
mnt_drop_write_file(struct file * file)492 void mnt_drop_write_file(struct file *file)
493 {
494 	mnt_drop_write(file->f_path.mnt);
495 }
496 EXPORT_SYMBOL(mnt_drop_write_file);
497 
mnt_make_readonly(struct mount * mnt)498 static int mnt_make_readonly(struct mount *mnt)
499 {
500 	int ret = 0;
501 
502 	lock_mount_hash();
503 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
504 	/*
505 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
506 	 * should be visible before we do.
507 	 */
508 	smp_mb();
509 
510 	/*
511 	 * With writers on hold, if this value is zero, then there are
512 	 * definitely no active writers (although held writers may subsequently
513 	 * increment the count, they'll have to wait, and decrement it after
514 	 * seeing MNT_READONLY).
515 	 *
516 	 * It is OK to have counter incremented on one CPU and decremented on
517 	 * another: the sum will add up correctly. The danger would be when we
518 	 * sum up each counter, if we read a counter before it is incremented,
519 	 * but then read another CPU's count which it has been subsequently
520 	 * decremented from -- we would see more decrements than we should.
521 	 * MNT_WRITE_HOLD protects against this scenario, because
522 	 * mnt_want_write first increments count, then smp_mb, then spins on
523 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
524 	 * we're counting up here.
525 	 */
526 	if (mnt_get_writers(mnt) > 0)
527 		ret = -EBUSY;
528 	else
529 		mnt->mnt.mnt_flags |= MNT_READONLY;
530 	/*
531 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
532 	 * that become unheld will see MNT_READONLY.
533 	 */
534 	smp_wmb();
535 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
536 	unlock_mount_hash();
537 	return ret;
538 }
539 
__mnt_unmake_readonly(struct mount * mnt)540 static void __mnt_unmake_readonly(struct mount *mnt)
541 {
542 	lock_mount_hash();
543 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
544 	unlock_mount_hash();
545 }
546 
sb_prepare_remount_readonly(struct super_block * sb)547 int sb_prepare_remount_readonly(struct super_block *sb)
548 {
549 	struct mount *mnt;
550 	int err = 0;
551 
552 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
553 	if (atomic_long_read(&sb->s_remove_count))
554 		return -EBUSY;
555 
556 	lock_mount_hash();
557 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
558 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
559 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
560 			smp_mb();
561 			if (mnt_get_writers(mnt) > 0) {
562 				err = -EBUSY;
563 				break;
564 			}
565 		}
566 	}
567 	if (!err && atomic_long_read(&sb->s_remove_count))
568 		err = -EBUSY;
569 
570 	if (!err) {
571 		sb->s_readonly_remount = 1;
572 		smp_wmb();
573 	}
574 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
575 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
576 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
577 	}
578 	unlock_mount_hash();
579 
580 	return err;
581 }
582 
free_vfsmnt(struct mount * mnt)583 static void free_vfsmnt(struct mount *mnt)
584 {
585 	kfree(mnt->mnt.data);
586 	kfree_const(mnt->mnt_devname);
587 #ifdef CONFIG_SMP
588 	free_percpu(mnt->mnt_pcp);
589 #endif
590 	kmem_cache_free(mnt_cache, mnt);
591 }
592 
delayed_free_vfsmnt(struct rcu_head * head)593 static void delayed_free_vfsmnt(struct rcu_head *head)
594 {
595 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
596 }
597 
598 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)599 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
600 {
601 	struct mount *mnt;
602 	if (read_seqretry(&mount_lock, seq))
603 		return 1;
604 	if (bastard == NULL)
605 		return 0;
606 	mnt = real_mount(bastard);
607 	mnt_add_count(mnt, 1);
608 	smp_mb();			// see mntput_no_expire()
609 	if (likely(!read_seqretry(&mount_lock, seq)))
610 		return 0;
611 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
612 		mnt_add_count(mnt, -1);
613 		return 1;
614 	}
615 	lock_mount_hash();
616 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
617 		mnt_add_count(mnt, -1);
618 		unlock_mount_hash();
619 		return 1;
620 	}
621 	unlock_mount_hash();
622 	/* caller will mntput() */
623 	return -1;
624 }
625 
626 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)627 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
628 {
629 	int res = __legitimize_mnt(bastard, seq);
630 	if (likely(!res))
631 		return true;
632 	if (unlikely(res < 0)) {
633 		rcu_read_unlock();
634 		mntput(bastard);
635 		rcu_read_lock();
636 	}
637 	return false;
638 }
639 
640 /*
641  * find the first mount at @dentry on vfsmount @mnt.
642  * call under rcu_read_lock()
643  */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)644 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
645 {
646 	struct hlist_head *head = m_hash(mnt, dentry);
647 	struct mount *p;
648 
649 	hlist_for_each_entry_rcu(p, head, mnt_hash)
650 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
651 			return p;
652 	return NULL;
653 }
654 
655 /*
656  * lookup_mnt - Return the first child mount mounted at path
657  *
658  * "First" means first mounted chronologically.  If you create the
659  * following mounts:
660  *
661  * mount /dev/sda1 /mnt
662  * mount /dev/sda2 /mnt
663  * mount /dev/sda3 /mnt
664  *
665  * Then lookup_mnt() on the base /mnt dentry in the root mount will
666  * return successively the root dentry and vfsmount of /dev/sda1, then
667  * /dev/sda2, then /dev/sda3, then NULL.
668  *
669  * lookup_mnt takes a reference to the found vfsmount.
670  */
lookup_mnt(struct path * path)671 struct vfsmount *lookup_mnt(struct path *path)
672 {
673 	struct mount *child_mnt;
674 	struct vfsmount *m;
675 	unsigned seq;
676 
677 	rcu_read_lock();
678 	do {
679 		seq = read_seqbegin(&mount_lock);
680 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
681 		m = child_mnt ? &child_mnt->mnt : NULL;
682 	} while (!legitimize_mnt(m, seq));
683 	rcu_read_unlock();
684 	return m;
685 }
686 
687 /*
688  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
689  *                         current mount namespace.
690  *
691  * The common case is dentries are not mountpoints at all and that
692  * test is handled inline.  For the slow case when we are actually
693  * dealing with a mountpoint of some kind, walk through all of the
694  * mounts in the current mount namespace and test to see if the dentry
695  * is a mountpoint.
696  *
697  * The mount_hashtable is not usable in the context because we
698  * need to identify all mounts that may be in the current mount
699  * namespace not just a mount that happens to have some specified
700  * parent mount.
701  */
__is_local_mountpoint(struct dentry * dentry)702 bool __is_local_mountpoint(struct dentry *dentry)
703 {
704 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
705 	struct mount *mnt;
706 	bool is_covered = false;
707 
708 	if (!d_mountpoint(dentry))
709 		goto out;
710 
711 	down_read(&namespace_sem);
712 	list_for_each_entry(mnt, &ns->list, mnt_list) {
713 		is_covered = (mnt->mnt_mountpoint == dentry);
714 		if (is_covered)
715 			break;
716 	}
717 	up_read(&namespace_sem);
718 out:
719 	return is_covered;
720 }
721 
lookup_mountpoint(struct dentry * dentry)722 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
723 {
724 	struct hlist_head *chain = mp_hash(dentry);
725 	struct mountpoint *mp;
726 
727 	hlist_for_each_entry(mp, chain, m_hash) {
728 		if (mp->m_dentry == dentry) {
729 			/* might be worth a WARN_ON() */
730 			if (d_unlinked(dentry))
731 				return ERR_PTR(-ENOENT);
732 			mp->m_count++;
733 			return mp;
734 		}
735 	}
736 	return NULL;
737 }
738 
get_mountpoint(struct dentry * dentry)739 static struct mountpoint *get_mountpoint(struct dentry *dentry)
740 {
741 	struct mountpoint *mp, *new = NULL;
742 	int ret;
743 
744 	if (d_mountpoint(dentry)) {
745 mountpoint:
746 		read_seqlock_excl(&mount_lock);
747 		mp = lookup_mountpoint(dentry);
748 		read_sequnlock_excl(&mount_lock);
749 		if (mp)
750 			goto done;
751 	}
752 
753 	if (!new)
754 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
755 	if (!new)
756 		return ERR_PTR(-ENOMEM);
757 
758 
759 	/* Exactly one processes may set d_mounted */
760 	ret = d_set_mounted(dentry);
761 
762 	/* Someone else set d_mounted? */
763 	if (ret == -EBUSY)
764 		goto mountpoint;
765 
766 	/* The dentry is not available as a mountpoint? */
767 	mp = ERR_PTR(ret);
768 	if (ret)
769 		goto done;
770 
771 	/* Add the new mountpoint to the hash table */
772 	read_seqlock_excl(&mount_lock);
773 	new->m_dentry = dentry;
774 	new->m_count = 1;
775 	hlist_add_head(&new->m_hash, mp_hash(dentry));
776 	INIT_HLIST_HEAD(&new->m_list);
777 	read_sequnlock_excl(&mount_lock);
778 
779 	mp = new;
780 	new = NULL;
781 done:
782 	kfree(new);
783 	return mp;
784 }
785 
put_mountpoint(struct mountpoint * mp)786 static void put_mountpoint(struct mountpoint *mp)
787 {
788 	if (!--mp->m_count) {
789 		struct dentry *dentry = mp->m_dentry;
790 		BUG_ON(!hlist_empty(&mp->m_list));
791 		spin_lock(&dentry->d_lock);
792 		dentry->d_flags &= ~DCACHE_MOUNTED;
793 		spin_unlock(&dentry->d_lock);
794 		hlist_del(&mp->m_hash);
795 		kfree(mp);
796 	}
797 }
798 
check_mnt(struct mount * mnt)799 static inline int check_mnt(struct mount *mnt)
800 {
801 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
802 }
803 
804 /*
805  * vfsmount lock must be held for write
806  */
touch_mnt_namespace(struct mnt_namespace * ns)807 static void touch_mnt_namespace(struct mnt_namespace *ns)
808 {
809 	if (ns) {
810 		ns->event = ++event;
811 		wake_up_interruptible(&ns->poll);
812 	}
813 }
814 
815 /*
816  * vfsmount lock must be held for write
817  */
__touch_mnt_namespace(struct mnt_namespace * ns)818 static void __touch_mnt_namespace(struct mnt_namespace *ns)
819 {
820 	if (ns && ns->event != event) {
821 		ns->event = event;
822 		wake_up_interruptible(&ns->poll);
823 	}
824 }
825 
826 /*
827  * vfsmount lock must be held for write
828  */
unhash_mnt(struct mount * mnt)829 static void unhash_mnt(struct mount *mnt)
830 {
831 	mnt->mnt_parent = mnt;
832 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
833 	list_del_init(&mnt->mnt_child);
834 	hlist_del_init_rcu(&mnt->mnt_hash);
835 	hlist_del_init(&mnt->mnt_mp_list);
836 	put_mountpoint(mnt->mnt_mp);
837 	mnt->mnt_mp = NULL;
838 }
839 
840 /*
841  * vfsmount lock must be held for write
842  */
detach_mnt(struct mount * mnt,struct path * old_path)843 static void detach_mnt(struct mount *mnt, struct path *old_path)
844 {
845 	old_path->dentry = mnt->mnt_mountpoint;
846 	old_path->mnt = &mnt->mnt_parent->mnt;
847 	unhash_mnt(mnt);
848 }
849 
850 /*
851  * vfsmount lock must be held for write
852  */
umount_mnt(struct mount * mnt)853 static void umount_mnt(struct mount *mnt)
854 {
855 	/* old mountpoint will be dropped when we can do that */
856 	mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
857 	unhash_mnt(mnt);
858 }
859 
860 /*
861  * vfsmount lock must be held for write
862  */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)863 void mnt_set_mountpoint(struct mount *mnt,
864 			struct mountpoint *mp,
865 			struct mount *child_mnt)
866 {
867 	mp->m_count++;
868 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
869 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
870 	child_mnt->mnt_parent = mnt;
871 	child_mnt->mnt_mp = mp;
872 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
873 }
874 
__attach_mnt(struct mount * mnt,struct mount * parent)875 static void __attach_mnt(struct mount *mnt, struct mount *parent)
876 {
877 	hlist_add_head_rcu(&mnt->mnt_hash,
878 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
879 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
880 }
881 
882 /*
883  * vfsmount lock must be held for write
884  */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)885 static void attach_mnt(struct mount *mnt,
886 			struct mount *parent,
887 			struct mountpoint *mp)
888 {
889 	mnt_set_mountpoint(parent, mp, mnt);
890 	__attach_mnt(mnt, parent);
891 }
892 
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)893 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
894 {
895 	struct mountpoint *old_mp = mnt->mnt_mp;
896 	struct dentry *old_mountpoint = mnt->mnt_mountpoint;
897 	struct mount *old_parent = mnt->mnt_parent;
898 
899 	list_del_init(&mnt->mnt_child);
900 	hlist_del_init(&mnt->mnt_mp_list);
901 	hlist_del_init_rcu(&mnt->mnt_hash);
902 
903 	attach_mnt(mnt, parent, mp);
904 
905 	put_mountpoint(old_mp);
906 
907 	/*
908 	 * Safely avoid even the suggestion this code might sleep or
909 	 * lock the mount hash by taking advantage of the knowledge that
910 	 * mnt_change_mountpoint will not release the final reference
911 	 * to a mountpoint.
912 	 *
913 	 * During mounting, the mount passed in as the parent mount will
914 	 * continue to use the old mountpoint and during unmounting, the
915 	 * old mountpoint will continue to exist until namespace_unlock,
916 	 * which happens well after mnt_change_mountpoint.
917 	 */
918 	spin_lock(&old_mountpoint->d_lock);
919 	old_mountpoint->d_lockref.count--;
920 	spin_unlock(&old_mountpoint->d_lock);
921 
922 	mnt_add_count(old_parent, -1);
923 }
924 
925 /*
926  * vfsmount lock must be held for write
927  */
commit_tree(struct mount * mnt)928 static void commit_tree(struct mount *mnt)
929 {
930 	struct mount *parent = mnt->mnt_parent;
931 	struct mount *m;
932 	LIST_HEAD(head);
933 	struct mnt_namespace *n = parent->mnt_ns;
934 
935 	BUG_ON(parent == mnt);
936 
937 	list_add_tail(&head, &mnt->mnt_list);
938 	list_for_each_entry(m, &head, mnt_list)
939 		m->mnt_ns = n;
940 
941 	list_splice(&head, n->list.prev);
942 
943 	n->mounts += n->pending_mounts;
944 	n->pending_mounts = 0;
945 
946 	__attach_mnt(mnt, parent);
947 	touch_mnt_namespace(n);
948 }
949 
next_mnt(struct mount * p,struct mount * root)950 static struct mount *next_mnt(struct mount *p, struct mount *root)
951 {
952 	struct list_head *next = p->mnt_mounts.next;
953 	if (next == &p->mnt_mounts) {
954 		while (1) {
955 			if (p == root)
956 				return NULL;
957 			next = p->mnt_child.next;
958 			if (next != &p->mnt_parent->mnt_mounts)
959 				break;
960 			p = p->mnt_parent;
961 		}
962 	}
963 	return list_entry(next, struct mount, mnt_child);
964 }
965 
skip_mnt_tree(struct mount * p)966 static struct mount *skip_mnt_tree(struct mount *p)
967 {
968 	struct list_head *prev = p->mnt_mounts.prev;
969 	while (prev != &p->mnt_mounts) {
970 		p = list_entry(prev, struct mount, mnt_child);
971 		prev = p->mnt_mounts.prev;
972 	}
973 	return p;
974 }
975 
976 struct vfsmount *
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)977 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
978 {
979 	struct mount *mnt;
980 	struct dentry *root;
981 
982 	if (!type)
983 		return ERR_PTR(-ENODEV);
984 
985 	mnt = alloc_vfsmnt(name);
986 	if (!mnt)
987 		return ERR_PTR(-ENOMEM);
988 
989 	if (type->alloc_mnt_data) {
990 		mnt->mnt.data = type->alloc_mnt_data();
991 		if (!mnt->mnt.data) {
992 			mnt_free_id(mnt);
993 			free_vfsmnt(mnt);
994 			return ERR_PTR(-ENOMEM);
995 		}
996 	}
997 	if (flags & MS_KERNMOUNT)
998 		mnt->mnt.mnt_flags = MNT_INTERNAL;
999 
1000 	root = mount_fs(type, flags, name, &mnt->mnt, data);
1001 	if (IS_ERR(root)) {
1002 		mnt_free_id(mnt);
1003 		free_vfsmnt(mnt);
1004 		return ERR_CAST(root);
1005 	}
1006 
1007 	mnt->mnt.mnt_root = root;
1008 	mnt->mnt.mnt_sb = root->d_sb;
1009 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1010 	mnt->mnt_parent = mnt;
1011 	lock_mount_hash();
1012 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1013 	unlock_mount_hash();
1014 	return &mnt->mnt;
1015 }
1016 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1017 
clone_mnt(struct mount * old,struct dentry * root,int flag)1018 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1019 					int flag)
1020 {
1021 	struct super_block *sb = old->mnt.mnt_sb;
1022 	struct mount *mnt;
1023 	int err;
1024 
1025 	mnt = alloc_vfsmnt(old->mnt_devname);
1026 	if (!mnt)
1027 		return ERR_PTR(-ENOMEM);
1028 
1029 	if (sb->s_op->clone_mnt_data) {
1030 		mnt->mnt.data = sb->s_op->clone_mnt_data(old->mnt.data);
1031 		if (!mnt->mnt.data) {
1032 			err = -ENOMEM;
1033 			goto out_free;
1034 		}
1035 	}
1036 
1037 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1038 		mnt->mnt_group_id = 0; /* not a peer of original */
1039 	else
1040 		mnt->mnt_group_id = old->mnt_group_id;
1041 
1042 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1043 		err = mnt_alloc_group_id(mnt);
1044 		if (err)
1045 			goto out_free;
1046 	}
1047 
1048 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1049 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1050 	/* Don't allow unprivileged users to change mount flags */
1051 	if (flag & CL_UNPRIVILEGED) {
1052 		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1053 
1054 		if (mnt->mnt.mnt_flags & MNT_READONLY)
1055 			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1056 
1057 		if (mnt->mnt.mnt_flags & MNT_NODEV)
1058 			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1059 
1060 		if (mnt->mnt.mnt_flags & MNT_NOSUID)
1061 			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1062 
1063 		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1064 			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1065 	}
1066 
1067 	/* Don't allow unprivileged users to reveal what is under a mount */
1068 	if ((flag & CL_UNPRIVILEGED) &&
1069 	    (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1070 		mnt->mnt.mnt_flags |= MNT_LOCKED;
1071 
1072 	atomic_inc(&sb->s_active);
1073 	mnt->mnt.mnt_sb = sb;
1074 	mnt->mnt.mnt_root = dget(root);
1075 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1076 	mnt->mnt_parent = mnt;
1077 	lock_mount_hash();
1078 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1079 	unlock_mount_hash();
1080 
1081 	if ((flag & CL_SLAVE) ||
1082 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1083 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1084 		mnt->mnt_master = old;
1085 		CLEAR_MNT_SHARED(mnt);
1086 	} else if (!(flag & CL_PRIVATE)) {
1087 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1088 			list_add(&mnt->mnt_share, &old->mnt_share);
1089 		if (IS_MNT_SLAVE(old))
1090 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1091 		mnt->mnt_master = old->mnt_master;
1092 	}
1093 	if (flag & CL_MAKE_SHARED)
1094 		set_mnt_shared(mnt);
1095 
1096 	/* stick the duplicate mount on the same expiry list
1097 	 * as the original if that was on one */
1098 	if (flag & CL_EXPIRE) {
1099 		if (!list_empty(&old->mnt_expire))
1100 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1101 	}
1102 
1103 	return mnt;
1104 
1105  out_free:
1106 	mnt_free_id(mnt);
1107 	free_vfsmnt(mnt);
1108 	return ERR_PTR(err);
1109 }
1110 
cleanup_mnt(struct mount * mnt)1111 static void cleanup_mnt(struct mount *mnt)
1112 {
1113 	/*
1114 	 * This probably indicates that somebody messed
1115 	 * up a mnt_want/drop_write() pair.  If this
1116 	 * happens, the filesystem was probably unable
1117 	 * to make r/w->r/o transitions.
1118 	 */
1119 	/*
1120 	 * The locking used to deal with mnt_count decrement provides barriers,
1121 	 * so mnt_get_writers() below is safe.
1122 	 */
1123 	WARN_ON(mnt_get_writers(mnt));
1124 	if (unlikely(mnt->mnt_pins.first))
1125 		mnt_pin_kill(mnt);
1126 	fsnotify_vfsmount_delete(&mnt->mnt);
1127 	dput(mnt->mnt.mnt_root);
1128 	deactivate_super(mnt->mnt.mnt_sb);
1129 	mnt_free_id(mnt);
1130 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1131 }
1132 
__cleanup_mnt(struct rcu_head * head)1133 static void __cleanup_mnt(struct rcu_head *head)
1134 {
1135 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1136 }
1137 
1138 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1139 static void delayed_mntput(struct work_struct *unused)
1140 {
1141 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1142 	struct llist_node *next;
1143 
1144 	for (; node; node = next) {
1145 		next = llist_next(node);
1146 		cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1147 	}
1148 }
1149 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1150 
mntput_no_expire(struct mount * mnt)1151 static void mntput_no_expire(struct mount *mnt)
1152 {
1153 	rcu_read_lock();
1154 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1155 		/*
1156 		 * Since we don't do lock_mount_hash() here,
1157 		 * ->mnt_ns can change under us.  However, if it's
1158 		 * non-NULL, then there's a reference that won't
1159 		 * be dropped until after an RCU delay done after
1160 		 * turning ->mnt_ns NULL.  So if we observe it
1161 		 * non-NULL under rcu_read_lock(), the reference
1162 		 * we are dropping is not the final one.
1163 		 */
1164 		mnt_add_count(mnt, -1);
1165 		rcu_read_unlock();
1166 		return;
1167 	}
1168 	lock_mount_hash();
1169 	/*
1170 	 * make sure that if __legitimize_mnt() has not seen us grab
1171 	 * mount_lock, we'll see their refcount increment here.
1172 	 */
1173 	smp_mb();
1174 	mnt_add_count(mnt, -1);
1175 	if (mnt_get_count(mnt)) {
1176 		rcu_read_unlock();
1177 		unlock_mount_hash();
1178 		return;
1179 	}
1180 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1181 		rcu_read_unlock();
1182 		unlock_mount_hash();
1183 		return;
1184 	}
1185 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1186 	rcu_read_unlock();
1187 
1188 	list_del(&mnt->mnt_instance);
1189 
1190 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1191 		struct mount *p, *tmp;
1192 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1193 			umount_mnt(p);
1194 		}
1195 	}
1196 	unlock_mount_hash();
1197 
1198 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1199 		struct task_struct *task = current;
1200 		if (likely(!(task->flags & PF_KTHREAD))) {
1201 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1202 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1203 				return;
1204 		}
1205 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1206 			schedule_delayed_work(&delayed_mntput_work, 1);
1207 		return;
1208 	}
1209 	cleanup_mnt(mnt);
1210 }
1211 
mntput(struct vfsmount * mnt)1212 void mntput(struct vfsmount *mnt)
1213 {
1214 	if (mnt) {
1215 		struct mount *m = real_mount(mnt);
1216 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1217 		if (unlikely(m->mnt_expiry_mark))
1218 			m->mnt_expiry_mark = 0;
1219 		mntput_no_expire(m);
1220 	}
1221 }
1222 EXPORT_SYMBOL(mntput);
1223 
mntget(struct vfsmount * mnt)1224 struct vfsmount *mntget(struct vfsmount *mnt)
1225 {
1226 	if (mnt)
1227 		mnt_add_count(real_mount(mnt), 1);
1228 	return mnt;
1229 }
1230 EXPORT_SYMBOL(mntget);
1231 
mnt_clone_internal(struct path * path)1232 struct vfsmount *mnt_clone_internal(struct path *path)
1233 {
1234 	struct mount *p;
1235 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1236 	if (IS_ERR(p))
1237 		return ERR_CAST(p);
1238 	p->mnt.mnt_flags |= MNT_INTERNAL;
1239 	return &p->mnt;
1240 }
1241 
mangle(struct seq_file * m,const char * s)1242 static inline void mangle(struct seq_file *m, const char *s)
1243 {
1244 	seq_escape(m, s, " \t\n\\");
1245 }
1246 
1247 /*
1248  * Simple .show_options callback for filesystems which don't want to
1249  * implement more complex mount option showing.
1250  *
1251  * See also save_mount_options().
1252  */
generic_show_options(struct seq_file * m,struct dentry * root)1253 int generic_show_options(struct seq_file *m, struct dentry *root)
1254 {
1255 	const char *options;
1256 
1257 	rcu_read_lock();
1258 	options = rcu_dereference(root->d_sb->s_options);
1259 
1260 	if (options != NULL && options[0]) {
1261 		seq_putc(m, ',');
1262 		mangle(m, options);
1263 	}
1264 	rcu_read_unlock();
1265 
1266 	return 0;
1267 }
1268 EXPORT_SYMBOL(generic_show_options);
1269 
1270 /*
1271  * If filesystem uses generic_show_options(), this function should be
1272  * called from the fill_super() callback.
1273  *
1274  * The .remount_fs callback usually needs to be handled in a special
1275  * way, to make sure, that previous options are not overwritten if the
1276  * remount fails.
1277  *
1278  * Also note, that if the filesystem's .remount_fs function doesn't
1279  * reset all options to their default value, but changes only newly
1280  * given options, then the displayed options will not reflect reality
1281  * any more.
1282  */
save_mount_options(struct super_block * sb,char * options)1283 void save_mount_options(struct super_block *sb, char *options)
1284 {
1285 	BUG_ON(sb->s_options);
1286 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1287 }
1288 EXPORT_SYMBOL(save_mount_options);
1289 
replace_mount_options(struct super_block * sb,char * options)1290 void replace_mount_options(struct super_block *sb, char *options)
1291 {
1292 	char *old = sb->s_options;
1293 	rcu_assign_pointer(sb->s_options, options);
1294 	if (old) {
1295 		synchronize_rcu();
1296 		kfree(old);
1297 	}
1298 }
1299 EXPORT_SYMBOL(replace_mount_options);
1300 
1301 #ifdef CONFIG_PROC_FS
1302 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1303 static void *m_start(struct seq_file *m, loff_t *pos)
1304 {
1305 	struct proc_mounts *p = m->private;
1306 
1307 	down_read(&namespace_sem);
1308 	if (p->cached_event == p->ns->event) {
1309 		void *v = p->cached_mount;
1310 		if (*pos == p->cached_index)
1311 			return v;
1312 		if (*pos == p->cached_index + 1) {
1313 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1314 			return p->cached_mount = v;
1315 		}
1316 	}
1317 
1318 	p->cached_event = p->ns->event;
1319 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1320 	p->cached_index = *pos;
1321 	return p->cached_mount;
1322 }
1323 
m_next(struct seq_file * m,void * v,loff_t * pos)1324 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1325 {
1326 	struct proc_mounts *p = m->private;
1327 
1328 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1329 	p->cached_index = *pos;
1330 	return p->cached_mount;
1331 }
1332 
m_stop(struct seq_file * m,void * v)1333 static void m_stop(struct seq_file *m, void *v)
1334 {
1335 	up_read(&namespace_sem);
1336 }
1337 
m_show(struct seq_file * m,void * v)1338 static int m_show(struct seq_file *m, void *v)
1339 {
1340 	struct proc_mounts *p = m->private;
1341 	struct mount *r = list_entry(v, struct mount, mnt_list);
1342 	return p->show(m, &r->mnt);
1343 }
1344 
1345 const struct seq_operations mounts_op = {
1346 	.start	= m_start,
1347 	.next	= m_next,
1348 	.stop	= m_stop,
1349 	.show	= m_show,
1350 };
1351 #endif  /* CONFIG_PROC_FS */
1352 
1353 /**
1354  * may_umount_tree - check if a mount tree is busy
1355  * @mnt: root of mount tree
1356  *
1357  * This is called to check if a tree of mounts has any
1358  * open files, pwds, chroots or sub mounts that are
1359  * busy.
1360  */
may_umount_tree(struct vfsmount * m)1361 int may_umount_tree(struct vfsmount *m)
1362 {
1363 	struct mount *mnt = real_mount(m);
1364 	int actual_refs = 0;
1365 	int minimum_refs = 0;
1366 	struct mount *p;
1367 	BUG_ON(!m);
1368 
1369 	/* write lock needed for mnt_get_count */
1370 	lock_mount_hash();
1371 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1372 		actual_refs += mnt_get_count(p);
1373 		minimum_refs += 2;
1374 	}
1375 	unlock_mount_hash();
1376 
1377 	if (actual_refs > minimum_refs)
1378 		return 0;
1379 
1380 	return 1;
1381 }
1382 
1383 EXPORT_SYMBOL(may_umount_tree);
1384 
1385 /**
1386  * may_umount - check if a mount point is busy
1387  * @mnt: root of mount
1388  *
1389  * This is called to check if a mount point has any
1390  * open files, pwds, chroots or sub mounts. If the
1391  * mount has sub mounts this will return busy
1392  * regardless of whether the sub mounts are busy.
1393  *
1394  * Doesn't take quota and stuff into account. IOW, in some cases it will
1395  * give false negatives. The main reason why it's here is that we need
1396  * a non-destructive way to look for easily umountable filesystems.
1397  */
may_umount(struct vfsmount * mnt)1398 int may_umount(struct vfsmount *mnt)
1399 {
1400 	int ret = 1;
1401 	down_read(&namespace_sem);
1402 	lock_mount_hash();
1403 	if (propagate_mount_busy(real_mount(mnt), 2))
1404 		ret = 0;
1405 	unlock_mount_hash();
1406 	up_read(&namespace_sem);
1407 	return ret;
1408 }
1409 
1410 EXPORT_SYMBOL(may_umount);
1411 
1412 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1413 
namespace_unlock(void)1414 static void namespace_unlock(void)
1415 {
1416 	struct hlist_head head;
1417 
1418 	hlist_move_list(&unmounted, &head);
1419 
1420 	up_write(&namespace_sem);
1421 
1422 	if (likely(hlist_empty(&head)))
1423 		return;
1424 
1425 	synchronize_rcu();
1426 
1427 	group_pin_kill(&head);
1428 }
1429 
namespace_lock(void)1430 static inline void namespace_lock(void)
1431 {
1432 	down_write(&namespace_sem);
1433 }
1434 
1435 enum umount_tree_flags {
1436 	UMOUNT_SYNC = 1,
1437 	UMOUNT_PROPAGATE = 2,
1438 	UMOUNT_CONNECTED = 4,
1439 };
1440 
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1441 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1442 {
1443 	/* Leaving mounts connected is only valid for lazy umounts */
1444 	if (how & UMOUNT_SYNC)
1445 		return true;
1446 
1447 	/* A mount without a parent has nothing to be connected to */
1448 	if (!mnt_has_parent(mnt))
1449 		return true;
1450 
1451 	/* Because the reference counting rules change when mounts are
1452 	 * unmounted and connected, umounted mounts may not be
1453 	 * connected to mounted mounts.
1454 	 */
1455 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1456 		return true;
1457 
1458 	/* Has it been requested that the mount remain connected? */
1459 	if (how & UMOUNT_CONNECTED)
1460 		return false;
1461 
1462 	/* Is the mount locked such that it needs to remain connected? */
1463 	if (IS_MNT_LOCKED(mnt))
1464 		return false;
1465 
1466 	/* By default disconnect the mount */
1467 	return true;
1468 }
1469 
1470 /*
1471  * mount_lock must be held
1472  * namespace_sem must be held for write
1473  */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1474 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1475 {
1476 	LIST_HEAD(tmp_list);
1477 	struct mount *p;
1478 
1479 	if (how & UMOUNT_PROPAGATE)
1480 		propagate_mount_unlock(mnt);
1481 
1482 	/* Gather the mounts to umount */
1483 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1484 		p->mnt.mnt_flags |= MNT_UMOUNT;
1485 		list_move(&p->mnt_list, &tmp_list);
1486 	}
1487 
1488 	/* Hide the mounts from mnt_mounts */
1489 	list_for_each_entry(p, &tmp_list, mnt_list) {
1490 		list_del_init(&p->mnt_child);
1491 	}
1492 
1493 	/* Add propogated mounts to the tmp_list */
1494 	if (how & UMOUNT_PROPAGATE)
1495 		propagate_umount(&tmp_list);
1496 
1497 	while (!list_empty(&tmp_list)) {
1498 		struct mnt_namespace *ns;
1499 		bool disconnect;
1500 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1501 		list_del_init(&p->mnt_expire);
1502 		list_del_init(&p->mnt_list);
1503 		ns = p->mnt_ns;
1504 		if (ns) {
1505 			ns->mounts--;
1506 			__touch_mnt_namespace(ns);
1507 		}
1508 		p->mnt_ns = NULL;
1509 		if (how & UMOUNT_SYNC)
1510 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1511 
1512 		disconnect = disconnect_mount(p, how);
1513 
1514 		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1515 				 disconnect ? &unmounted : NULL);
1516 		if (mnt_has_parent(p)) {
1517 			mnt_add_count(p->mnt_parent, -1);
1518 			if (!disconnect) {
1519 				/* Don't forget about p */
1520 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1521 			} else {
1522 				umount_mnt(p);
1523 			}
1524 		}
1525 		change_mnt_propagation(p, MS_PRIVATE);
1526 	}
1527 }
1528 
1529 static void shrink_submounts(struct mount *mnt);
1530 
do_umount(struct mount * mnt,int flags)1531 static int do_umount(struct mount *mnt, int flags)
1532 {
1533 	struct super_block *sb = mnt->mnt.mnt_sb;
1534 	int retval;
1535 
1536 	retval = security_sb_umount(&mnt->mnt, flags);
1537 	if (retval)
1538 		return retval;
1539 
1540 	/*
1541 	 * Allow userspace to request a mountpoint be expired rather than
1542 	 * unmounting unconditionally. Unmount only happens if:
1543 	 *  (1) the mark is already set (the mark is cleared by mntput())
1544 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1545 	 */
1546 	if (flags & MNT_EXPIRE) {
1547 		if (&mnt->mnt == current->fs->root.mnt ||
1548 		    flags & (MNT_FORCE | MNT_DETACH))
1549 			return -EINVAL;
1550 
1551 		/*
1552 		 * probably don't strictly need the lock here if we examined
1553 		 * all race cases, but it's a slowpath.
1554 		 */
1555 		lock_mount_hash();
1556 		if (mnt_get_count(mnt) != 2) {
1557 			unlock_mount_hash();
1558 			return -EBUSY;
1559 		}
1560 		unlock_mount_hash();
1561 
1562 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1563 			return -EAGAIN;
1564 	}
1565 
1566 	/*
1567 	 * If we may have to abort operations to get out of this
1568 	 * mount, and they will themselves hold resources we must
1569 	 * allow the fs to do things. In the Unix tradition of
1570 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1571 	 * might fail to complete on the first run through as other tasks
1572 	 * must return, and the like. Thats for the mount program to worry
1573 	 * about for the moment.
1574 	 */
1575 
1576 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1577 		sb->s_op->umount_begin(sb);
1578 	}
1579 
1580 	/*
1581 	 * No sense to grab the lock for this test, but test itself looks
1582 	 * somewhat bogus. Suggestions for better replacement?
1583 	 * Ho-hum... In principle, we might treat that as umount + switch
1584 	 * to rootfs. GC would eventually take care of the old vfsmount.
1585 	 * Actually it makes sense, especially if rootfs would contain a
1586 	 * /reboot - static binary that would close all descriptors and
1587 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1588 	 */
1589 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1590 		/*
1591 		 * Special case for "unmounting" root ...
1592 		 * we just try to remount it readonly.
1593 		 */
1594 		if (!capable(CAP_SYS_ADMIN))
1595 			return -EPERM;
1596 		down_write(&sb->s_umount);
1597 		if (!(sb->s_flags & MS_RDONLY))
1598 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1599 		up_write(&sb->s_umount);
1600 		return retval;
1601 	}
1602 
1603 	namespace_lock();
1604 	lock_mount_hash();
1605 
1606 	/* Recheck MNT_LOCKED with the locks held */
1607 	retval = -EINVAL;
1608 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1609 		goto out;
1610 
1611 	event++;
1612 	if (flags & MNT_DETACH) {
1613 		if (!list_empty(&mnt->mnt_list))
1614 			umount_tree(mnt, UMOUNT_PROPAGATE);
1615 		retval = 0;
1616 	} else {
1617 		shrink_submounts(mnt);
1618 		retval = -EBUSY;
1619 		if (!propagate_mount_busy(mnt, 2)) {
1620 			if (!list_empty(&mnt->mnt_list))
1621 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1622 			retval = 0;
1623 		}
1624 	}
1625 out:
1626 	unlock_mount_hash();
1627 	namespace_unlock();
1628 	return retval;
1629 }
1630 
1631 /*
1632  * __detach_mounts - lazily unmount all mounts on the specified dentry
1633  *
1634  * During unlink, rmdir, and d_drop it is possible to loose the path
1635  * to an existing mountpoint, and wind up leaking the mount.
1636  * detach_mounts allows lazily unmounting those mounts instead of
1637  * leaking them.
1638  *
1639  * The caller may hold dentry->d_inode->i_mutex.
1640  */
__detach_mounts(struct dentry * dentry)1641 void __detach_mounts(struct dentry *dentry)
1642 {
1643 	struct mountpoint *mp;
1644 	struct mount *mnt;
1645 
1646 	namespace_lock();
1647 	lock_mount_hash();
1648 	mp = lookup_mountpoint(dentry);
1649 	if (IS_ERR_OR_NULL(mp))
1650 		goto out_unlock;
1651 
1652 	event++;
1653 	while (!hlist_empty(&mp->m_list)) {
1654 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1655 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1656 			hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1657 			umount_mnt(mnt);
1658 		}
1659 		else umount_tree(mnt, UMOUNT_CONNECTED);
1660 	}
1661 	put_mountpoint(mp);
1662 out_unlock:
1663 	unlock_mount_hash();
1664 	namespace_unlock();
1665 }
1666 
1667 /*
1668  * Is the caller allowed to modify his namespace?
1669  */
may_mount(void)1670 static inline bool may_mount(void)
1671 {
1672 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1673 }
1674 
1675 /*
1676  * Now umount can handle mount points as well as block devices.
1677  * This is important for filesystems which use unnamed block devices.
1678  *
1679  * We now support a flag for forced unmount like the other 'big iron'
1680  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1681  */
1682 
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)1683 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1684 {
1685 	struct path path;
1686 	struct mount *mnt;
1687 	int retval;
1688 	int lookup_flags = 0;
1689 
1690 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1691 		return -EINVAL;
1692 
1693 	if (!may_mount())
1694 		return -EPERM;
1695 
1696 	if (!(flags & UMOUNT_NOFOLLOW))
1697 		lookup_flags |= LOOKUP_FOLLOW;
1698 
1699 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1700 	if (retval)
1701 		goto out;
1702 	mnt = real_mount(path.mnt);
1703 	retval = -EINVAL;
1704 	if (path.dentry != path.mnt->mnt_root)
1705 		goto dput_and_out;
1706 	if (!check_mnt(mnt))
1707 		goto dput_and_out;
1708 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1709 		goto dput_and_out;
1710 	retval = -EPERM;
1711 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1712 		goto dput_and_out;
1713 
1714 	retval = do_umount(mnt, flags);
1715 dput_and_out:
1716 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1717 	dput(path.dentry);
1718 	mntput_no_expire(mnt);
1719 out:
1720 	return retval;
1721 }
1722 
1723 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1724 
1725 /*
1726  *	The 2.0 compatible umount. No flags.
1727  */
SYSCALL_DEFINE1(oldumount,char __user *,name)1728 SYSCALL_DEFINE1(oldumount, char __user *, name)
1729 {
1730 	return sys_umount(name, 0);
1731 }
1732 
1733 #endif
1734 
is_mnt_ns_file(struct dentry * dentry)1735 static bool is_mnt_ns_file(struct dentry *dentry)
1736 {
1737 	/* Is this a proxy for a mount namespace? */
1738 	return dentry->d_op == &ns_dentry_operations &&
1739 	       dentry->d_fsdata == &mntns_operations;
1740 }
1741 
to_mnt_ns(struct ns_common * ns)1742 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1743 {
1744 	return container_of(ns, struct mnt_namespace, ns);
1745 }
1746 
mnt_ns_loop(struct dentry * dentry)1747 static bool mnt_ns_loop(struct dentry *dentry)
1748 {
1749 	/* Could bind mounting the mount namespace inode cause a
1750 	 * mount namespace loop?
1751 	 */
1752 	struct mnt_namespace *mnt_ns;
1753 	if (!is_mnt_ns_file(dentry))
1754 		return false;
1755 
1756 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1757 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1758 }
1759 
copy_tree(struct mount * mnt,struct dentry * dentry,int flag)1760 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1761 					int flag)
1762 {
1763 	struct mount *res, *p, *q, *r, *parent;
1764 
1765 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1766 		return ERR_PTR(-EINVAL);
1767 
1768 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1769 		return ERR_PTR(-EINVAL);
1770 
1771 	res = q = clone_mnt(mnt, dentry, flag);
1772 	if (IS_ERR(q))
1773 		return q;
1774 
1775 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1776 
1777 	p = mnt;
1778 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1779 		struct mount *s;
1780 		if (!is_subdir(r->mnt_mountpoint, dentry))
1781 			continue;
1782 
1783 		for (s = r; s; s = next_mnt(s, r)) {
1784 			if (!(flag & CL_COPY_UNBINDABLE) &&
1785 			    IS_MNT_UNBINDABLE(s)) {
1786 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1787 					/* Both unbindable and locked. */
1788 					q = ERR_PTR(-EPERM);
1789 					goto out;
1790 				} else {
1791 					s = skip_mnt_tree(s);
1792 					continue;
1793 				}
1794 			}
1795 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1796 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1797 				s = skip_mnt_tree(s);
1798 				continue;
1799 			}
1800 			while (p != s->mnt_parent) {
1801 				p = p->mnt_parent;
1802 				q = q->mnt_parent;
1803 			}
1804 			p = s;
1805 			parent = q;
1806 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1807 			if (IS_ERR(q))
1808 				goto out;
1809 			lock_mount_hash();
1810 			list_add_tail(&q->mnt_list, &res->mnt_list);
1811 			attach_mnt(q, parent, p->mnt_mp);
1812 			unlock_mount_hash();
1813 		}
1814 	}
1815 	return res;
1816 out:
1817 	if (res) {
1818 		lock_mount_hash();
1819 		umount_tree(res, UMOUNT_SYNC);
1820 		unlock_mount_hash();
1821 	}
1822 	return q;
1823 }
1824 
1825 /* Caller should check returned pointer for errors */
1826 
collect_mounts(struct path * path)1827 struct vfsmount *collect_mounts(struct path *path)
1828 {
1829 	struct mount *tree;
1830 	namespace_lock();
1831 	if (!check_mnt(real_mount(path->mnt)))
1832 		tree = ERR_PTR(-EINVAL);
1833 	else
1834 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1835 				 CL_COPY_ALL | CL_PRIVATE);
1836 	namespace_unlock();
1837 	if (IS_ERR(tree))
1838 		return ERR_CAST(tree);
1839 	return &tree->mnt;
1840 }
1841 
drop_collected_mounts(struct vfsmount * mnt)1842 void drop_collected_mounts(struct vfsmount *mnt)
1843 {
1844 	namespace_lock();
1845 	lock_mount_hash();
1846 	umount_tree(real_mount(mnt), 0);
1847 	unlock_mount_hash();
1848 	namespace_unlock();
1849 }
1850 
has_locked_children(struct mount * mnt,struct dentry * dentry)1851 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1852 {
1853 	struct mount *child;
1854 
1855 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1856 		if (!is_subdir(child->mnt_mountpoint, dentry))
1857 			continue;
1858 
1859 		if (child->mnt.mnt_flags & MNT_LOCKED)
1860 			return true;
1861 	}
1862 	return false;
1863 }
1864 
1865 /**
1866  * clone_private_mount - create a private clone of a path
1867  *
1868  * This creates a new vfsmount, which will be the clone of @path.  The new will
1869  * not be attached anywhere in the namespace and will be private (i.e. changes
1870  * to the originating mount won't be propagated into this).
1871  *
1872  * Release with mntput().
1873  */
clone_private_mount(struct path * path)1874 struct vfsmount *clone_private_mount(struct path *path)
1875 {
1876 	struct mount *old_mnt = real_mount(path->mnt);
1877 	struct mount *new_mnt;
1878 
1879 	down_read(&namespace_sem);
1880 	if (IS_MNT_UNBINDABLE(old_mnt))
1881 		goto invalid;
1882 
1883 	if (!check_mnt(old_mnt))
1884 		goto invalid;
1885 
1886 	if (has_locked_children(old_mnt, path->dentry))
1887 		goto invalid;
1888 
1889 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1890 	up_read(&namespace_sem);
1891 
1892 	if (IS_ERR(new_mnt))
1893 		return ERR_CAST(new_mnt);
1894 
1895 	return &new_mnt->mnt;
1896 
1897 invalid:
1898 	up_read(&namespace_sem);
1899 	return ERR_PTR(-EINVAL);
1900 }
1901 EXPORT_SYMBOL_GPL(clone_private_mount);
1902 
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)1903 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1904 		   struct vfsmount *root)
1905 {
1906 	struct mount *mnt;
1907 	int res = f(root, arg);
1908 	if (res)
1909 		return res;
1910 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1911 		res = f(&mnt->mnt, arg);
1912 		if (res)
1913 			return res;
1914 	}
1915 	return 0;
1916 }
1917 
cleanup_group_ids(struct mount * mnt,struct mount * end)1918 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1919 {
1920 	struct mount *p;
1921 
1922 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1923 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1924 			mnt_release_group_id(p);
1925 	}
1926 }
1927 
invent_group_ids(struct mount * mnt,bool recurse)1928 static int invent_group_ids(struct mount *mnt, bool recurse)
1929 {
1930 	struct mount *p;
1931 
1932 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1933 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1934 			int err = mnt_alloc_group_id(p);
1935 			if (err) {
1936 				cleanup_group_ids(mnt, p);
1937 				return err;
1938 			}
1939 		}
1940 	}
1941 
1942 	return 0;
1943 }
1944 
count_mounts(struct mnt_namespace * ns,struct mount * mnt)1945 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1946 {
1947 	unsigned int max = READ_ONCE(sysctl_mount_max);
1948 	unsigned int mounts = 0, old, pending, sum;
1949 	struct mount *p;
1950 
1951 	for (p = mnt; p; p = next_mnt(p, mnt))
1952 		mounts++;
1953 
1954 	old = ns->mounts;
1955 	pending = ns->pending_mounts;
1956 	sum = old + pending;
1957 	if ((old > sum) ||
1958 	    (pending > sum) ||
1959 	    (max < sum) ||
1960 	    (mounts > (max - sum)))
1961 		return -ENOSPC;
1962 
1963 	ns->pending_mounts = pending + mounts;
1964 	return 0;
1965 }
1966 
1967 /*
1968  *  @source_mnt : mount tree to be attached
1969  *  @nd         : place the mount tree @source_mnt is attached
1970  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1971  *  		   store the parent mount and mountpoint dentry.
1972  *  		   (done when source_mnt is moved)
1973  *
1974  *  NOTE: in the table below explains the semantics when a source mount
1975  *  of a given type is attached to a destination mount of a given type.
1976  * ---------------------------------------------------------------------------
1977  * |         BIND MOUNT OPERATION                                            |
1978  * |**************************************************************************
1979  * | source-->| shared        |       private  |       slave    | unbindable |
1980  * | dest     |               |                |                |            |
1981  * |   |      |               |                |                |            |
1982  * |   v      |               |                |                |            |
1983  * |**************************************************************************
1984  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1985  * |          |               |                |                |            |
1986  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1987  * ***************************************************************************
1988  * A bind operation clones the source mount and mounts the clone on the
1989  * destination mount.
1990  *
1991  * (++)  the cloned mount is propagated to all the mounts in the propagation
1992  * 	 tree of the destination mount and the cloned mount is added to
1993  * 	 the peer group of the source mount.
1994  * (+)   the cloned mount is created under the destination mount and is marked
1995  *       as shared. The cloned mount is added to the peer group of the source
1996  *       mount.
1997  * (+++) the mount is propagated to all the mounts in the propagation tree
1998  *       of the destination mount and the cloned mount is made slave
1999  *       of the same master as that of the source mount. The cloned mount
2000  *       is marked as 'shared and slave'.
2001  * (*)   the cloned mount is made a slave of the same master as that of the
2002  * 	 source mount.
2003  *
2004  * ---------------------------------------------------------------------------
2005  * |         		MOVE MOUNT OPERATION                                 |
2006  * |**************************************************************************
2007  * | source-->| shared        |       private  |       slave    | unbindable |
2008  * | dest     |               |                |                |            |
2009  * |   |      |               |                |                |            |
2010  * |   v      |               |                |                |            |
2011  * |**************************************************************************
2012  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2013  * |          |               |                |                |            |
2014  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2015  * ***************************************************************************
2016  *
2017  * (+)  the mount is moved to the destination. And is then propagated to
2018  * 	all the mounts in the propagation tree of the destination mount.
2019  * (+*)  the mount is moved to the destination.
2020  * (+++)  the mount is moved to the destination and is then propagated to
2021  * 	all the mounts belonging to the destination mount's propagation tree.
2022  * 	the mount is marked as 'shared and slave'.
2023  * (*)	the mount continues to be a slave at the new location.
2024  *
2025  * if the source mount is a tree, the operations explained above is
2026  * applied to each mount in the tree.
2027  * Must be called without spinlocks held, since this function can sleep
2028  * in allocations.
2029  */
attach_recursive_mnt(struct mount * source_mnt,struct mount * dest_mnt,struct mountpoint * dest_mp,struct path * parent_path)2030 static int attach_recursive_mnt(struct mount *source_mnt,
2031 			struct mount *dest_mnt,
2032 			struct mountpoint *dest_mp,
2033 			struct path *parent_path)
2034 {
2035 	HLIST_HEAD(tree_list);
2036 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2037 	struct mountpoint *smp;
2038 	struct mount *child, *p;
2039 	struct hlist_node *n;
2040 	int err;
2041 
2042 	/* Preallocate a mountpoint in case the new mounts need
2043 	 * to be tucked under other mounts.
2044 	 */
2045 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2046 	if (IS_ERR(smp))
2047 		return PTR_ERR(smp);
2048 
2049 	/* Is there space to add these mounts to the mount namespace? */
2050 	if (!parent_path) {
2051 		err = count_mounts(ns, source_mnt);
2052 		if (err)
2053 			goto out;
2054 	}
2055 
2056 	if (IS_MNT_SHARED(dest_mnt)) {
2057 		err = invent_group_ids(source_mnt, true);
2058 		if (err)
2059 			goto out;
2060 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2061 		lock_mount_hash();
2062 		if (err)
2063 			goto out_cleanup_ids;
2064 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2065 			set_mnt_shared(p);
2066 	} else {
2067 		lock_mount_hash();
2068 	}
2069 	if (parent_path) {
2070 		detach_mnt(source_mnt, parent_path);
2071 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2072 		touch_mnt_namespace(source_mnt->mnt_ns);
2073 	} else {
2074 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2075 		commit_tree(source_mnt);
2076 	}
2077 
2078 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2079 		struct mount *q;
2080 		hlist_del_init(&child->mnt_hash);
2081 		q = __lookup_mnt(&child->mnt_parent->mnt,
2082 				 child->mnt_mountpoint);
2083 		if (q)
2084 			mnt_change_mountpoint(child, smp, q);
2085 		commit_tree(child);
2086 	}
2087 	put_mountpoint(smp);
2088 	unlock_mount_hash();
2089 
2090 	return 0;
2091 
2092  out_cleanup_ids:
2093 	while (!hlist_empty(&tree_list)) {
2094 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2095 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2096 		umount_tree(child, UMOUNT_SYNC);
2097 	}
2098 	unlock_mount_hash();
2099 	cleanup_group_ids(source_mnt, NULL);
2100  out:
2101 	ns->pending_mounts = 0;
2102 
2103 	read_seqlock_excl(&mount_lock);
2104 	put_mountpoint(smp);
2105 	read_sequnlock_excl(&mount_lock);
2106 
2107 	return err;
2108 }
2109 
lock_mount(struct path * path)2110 static struct mountpoint *lock_mount(struct path *path)
2111 {
2112 	struct vfsmount *mnt;
2113 	struct dentry *dentry = path->dentry;
2114 retry:
2115 	mutex_lock(&dentry->d_inode->i_mutex);
2116 	if (unlikely(cant_mount(dentry))) {
2117 		mutex_unlock(&dentry->d_inode->i_mutex);
2118 		return ERR_PTR(-ENOENT);
2119 	}
2120 	namespace_lock();
2121 	mnt = lookup_mnt(path);
2122 	if (likely(!mnt)) {
2123 		struct mountpoint *mp = get_mountpoint(dentry);
2124 		if (IS_ERR(mp)) {
2125 			namespace_unlock();
2126 			mutex_unlock(&dentry->d_inode->i_mutex);
2127 			return mp;
2128 		}
2129 		return mp;
2130 	}
2131 	namespace_unlock();
2132 	mutex_unlock(&path->dentry->d_inode->i_mutex);
2133 	path_put(path);
2134 	path->mnt = mnt;
2135 	dentry = path->dentry = dget(mnt->mnt_root);
2136 	goto retry;
2137 }
2138 
unlock_mount(struct mountpoint * where)2139 static void unlock_mount(struct mountpoint *where)
2140 {
2141 	struct dentry *dentry = where->m_dentry;
2142 
2143 	read_seqlock_excl(&mount_lock);
2144 	put_mountpoint(where);
2145 	read_sequnlock_excl(&mount_lock);
2146 
2147 	namespace_unlock();
2148 	mutex_unlock(&dentry->d_inode->i_mutex);
2149 }
2150 
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)2151 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2152 {
2153 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2154 		return -EINVAL;
2155 
2156 	if (d_is_dir(mp->m_dentry) !=
2157 	      d_is_dir(mnt->mnt.mnt_root))
2158 		return -ENOTDIR;
2159 
2160 	return attach_recursive_mnt(mnt, p, mp, NULL);
2161 }
2162 
2163 /*
2164  * Sanity check the flags to change_mnt_propagation.
2165  */
2166 
flags_to_propagation_type(int flags)2167 static int flags_to_propagation_type(int flags)
2168 {
2169 	int type = flags & ~(MS_REC | MS_SILENT);
2170 
2171 	/* Fail if any non-propagation flags are set */
2172 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2173 		return 0;
2174 	/* Only one propagation flag should be set */
2175 	if (!is_power_of_2(type))
2176 		return 0;
2177 	return type;
2178 }
2179 
2180 /*
2181  * recursively change the type of the mountpoint.
2182  */
do_change_type(struct path * path,int flag)2183 static int do_change_type(struct path *path, int flag)
2184 {
2185 	struct mount *m;
2186 	struct mount *mnt = real_mount(path->mnt);
2187 	int recurse = flag & MS_REC;
2188 	int type;
2189 	int err = 0;
2190 
2191 	if (path->dentry != path->mnt->mnt_root)
2192 		return -EINVAL;
2193 
2194 	type = flags_to_propagation_type(flag);
2195 	if (!type)
2196 		return -EINVAL;
2197 
2198 	namespace_lock();
2199 	if (type == MS_SHARED) {
2200 		err = invent_group_ids(mnt, recurse);
2201 		if (err)
2202 			goto out_unlock;
2203 	}
2204 
2205 	lock_mount_hash();
2206 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2207 		change_mnt_propagation(m, type);
2208 	unlock_mount_hash();
2209 
2210  out_unlock:
2211 	namespace_unlock();
2212 	return err;
2213 }
2214 
2215 /*
2216  * do loopback mount.
2217  */
do_loopback(struct path * path,const char * old_name,int recurse)2218 static int do_loopback(struct path *path, const char *old_name,
2219 				int recurse)
2220 {
2221 	struct path old_path;
2222 	struct mount *mnt = NULL, *old, *parent;
2223 	struct mountpoint *mp;
2224 	int err;
2225 	if (!old_name || !*old_name)
2226 		return -EINVAL;
2227 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2228 	if (err)
2229 		return err;
2230 
2231 	err = -EINVAL;
2232 	if (mnt_ns_loop(old_path.dentry))
2233 		goto out;
2234 
2235 	mp = lock_mount(path);
2236 	err = PTR_ERR(mp);
2237 	if (IS_ERR(mp))
2238 		goto out;
2239 
2240 	old = real_mount(old_path.mnt);
2241 	parent = real_mount(path->mnt);
2242 
2243 	err = -EINVAL;
2244 	if (IS_MNT_UNBINDABLE(old))
2245 		goto out2;
2246 
2247 	if (!check_mnt(parent))
2248 		goto out2;
2249 
2250 	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2251 		goto out2;
2252 
2253 	if (!recurse && has_locked_children(old, old_path.dentry))
2254 		goto out2;
2255 
2256 	if (recurse)
2257 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2258 	else
2259 		mnt = clone_mnt(old, old_path.dentry, 0);
2260 
2261 	if (IS_ERR(mnt)) {
2262 		err = PTR_ERR(mnt);
2263 		goto out2;
2264 	}
2265 
2266 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2267 
2268 	err = graft_tree(mnt, parent, mp);
2269 	if (err) {
2270 		lock_mount_hash();
2271 		umount_tree(mnt, UMOUNT_SYNC);
2272 		unlock_mount_hash();
2273 	}
2274 out2:
2275 	unlock_mount(mp);
2276 out:
2277 	path_put(&old_path);
2278 	return err;
2279 }
2280 
change_mount_flags(struct vfsmount * mnt,int ms_flags)2281 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2282 {
2283 	int error = 0;
2284 	int readonly_request = 0;
2285 
2286 	if (ms_flags & MS_RDONLY)
2287 		readonly_request = 1;
2288 	if (readonly_request == __mnt_is_readonly(mnt))
2289 		return 0;
2290 
2291 	if (readonly_request)
2292 		error = mnt_make_readonly(real_mount(mnt));
2293 	else
2294 		__mnt_unmake_readonly(real_mount(mnt));
2295 	return error;
2296 }
2297 
2298 /*
2299  * change filesystem flags. dir should be a physical root of filesystem.
2300  * If you've mounted a non-root directory somewhere and want to do remount
2301  * on it - tough luck.
2302  */
do_remount(struct path * path,int flags,int mnt_flags,void * data)2303 static int do_remount(struct path *path, int flags, int mnt_flags,
2304 		      void *data)
2305 {
2306 	int err;
2307 	struct super_block *sb = path->mnt->mnt_sb;
2308 	struct mount *mnt = real_mount(path->mnt);
2309 
2310 	if (!check_mnt(mnt))
2311 		return -EINVAL;
2312 
2313 	if (path->dentry != path->mnt->mnt_root)
2314 		return -EINVAL;
2315 
2316 	/* Don't allow changing of locked mnt flags.
2317 	 *
2318 	 * No locks need to be held here while testing the various
2319 	 * MNT_LOCK flags because those flags can never be cleared
2320 	 * once they are set.
2321 	 */
2322 	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2323 	    !(mnt_flags & MNT_READONLY)) {
2324 		return -EPERM;
2325 	}
2326 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2327 	    !(mnt_flags & MNT_NODEV)) {
2328 		/* Was the nodev implicitly added in mount? */
2329 		if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2330 		    !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2331 			mnt_flags |= MNT_NODEV;
2332 		} else {
2333 			return -EPERM;
2334 		}
2335 	}
2336 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2337 	    !(mnt_flags & MNT_NOSUID)) {
2338 		return -EPERM;
2339 	}
2340 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2341 	    !(mnt_flags & MNT_NOEXEC)) {
2342 		return -EPERM;
2343 	}
2344 	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2345 	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2346 		return -EPERM;
2347 	}
2348 
2349 	err = security_sb_remount(sb, data);
2350 	if (err)
2351 		return err;
2352 
2353 	down_write(&sb->s_umount);
2354 	if (flags & MS_BIND)
2355 		err = change_mount_flags(path->mnt, flags);
2356 	else if (!capable(CAP_SYS_ADMIN))
2357 		err = -EPERM;
2358 	else {
2359 		err = do_remount_sb2(path->mnt, sb, flags, data, 0);
2360 		namespace_lock();
2361 		lock_mount_hash();
2362 		propagate_remount(mnt);
2363 		unlock_mount_hash();
2364 		namespace_unlock();
2365 	}
2366 	if (!err) {
2367 		lock_mount_hash();
2368 		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2369 		mnt->mnt.mnt_flags = mnt_flags;
2370 		touch_mnt_namespace(mnt->mnt_ns);
2371 		unlock_mount_hash();
2372 	}
2373 	up_write(&sb->s_umount);
2374 	return err;
2375 }
2376 
tree_contains_unbindable(struct mount * mnt)2377 static inline int tree_contains_unbindable(struct mount *mnt)
2378 {
2379 	struct mount *p;
2380 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2381 		if (IS_MNT_UNBINDABLE(p))
2382 			return 1;
2383 	}
2384 	return 0;
2385 }
2386 
do_move_mount(struct path * path,const char * old_name)2387 static int do_move_mount(struct path *path, const char *old_name)
2388 {
2389 	struct path old_path, parent_path;
2390 	struct mount *p;
2391 	struct mount *old;
2392 	struct mountpoint *mp;
2393 	int err;
2394 	if (!old_name || !*old_name)
2395 		return -EINVAL;
2396 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2397 	if (err)
2398 		return err;
2399 
2400 	mp = lock_mount(path);
2401 	err = PTR_ERR(mp);
2402 	if (IS_ERR(mp))
2403 		goto out;
2404 
2405 	old = real_mount(old_path.mnt);
2406 	p = real_mount(path->mnt);
2407 
2408 	err = -EINVAL;
2409 	if (!check_mnt(p) || !check_mnt(old))
2410 		goto out1;
2411 
2412 	if (old->mnt.mnt_flags & MNT_LOCKED)
2413 		goto out1;
2414 
2415 	err = -EINVAL;
2416 	if (old_path.dentry != old_path.mnt->mnt_root)
2417 		goto out1;
2418 
2419 	if (!mnt_has_parent(old))
2420 		goto out1;
2421 
2422 	if (d_is_dir(path->dentry) !=
2423 	      d_is_dir(old_path.dentry))
2424 		goto out1;
2425 	/*
2426 	 * Don't move a mount residing in a shared parent.
2427 	 */
2428 	if (IS_MNT_SHARED(old->mnt_parent))
2429 		goto out1;
2430 	/*
2431 	 * Don't move a mount tree containing unbindable mounts to a destination
2432 	 * mount which is shared.
2433 	 */
2434 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2435 		goto out1;
2436 	err = -ELOOP;
2437 	for (; mnt_has_parent(p); p = p->mnt_parent)
2438 		if (p == old)
2439 			goto out1;
2440 
2441 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2442 	if (err)
2443 		goto out1;
2444 
2445 	/* if the mount is moved, it should no longer be expire
2446 	 * automatically */
2447 	list_del_init(&old->mnt_expire);
2448 out1:
2449 	unlock_mount(mp);
2450 out:
2451 	if (!err)
2452 		path_put(&parent_path);
2453 	path_put(&old_path);
2454 	return err;
2455 }
2456 
fs_set_subtype(struct vfsmount * mnt,const char * fstype)2457 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2458 {
2459 	int err;
2460 	const char *subtype = strchr(fstype, '.');
2461 	if (subtype) {
2462 		subtype++;
2463 		err = -EINVAL;
2464 		if (!subtype[0])
2465 			goto err;
2466 	} else
2467 		subtype = "";
2468 
2469 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2470 	err = -ENOMEM;
2471 	if (!mnt->mnt_sb->s_subtype)
2472 		goto err;
2473 	return mnt;
2474 
2475  err:
2476 	mntput(mnt);
2477 	return ERR_PTR(err);
2478 }
2479 
2480 /*
2481  * add a mount into a namespace's mount tree
2482  */
do_add_mount(struct mount * newmnt,struct path * path,int mnt_flags)2483 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2484 {
2485 	struct mountpoint *mp;
2486 	struct mount *parent;
2487 	int err;
2488 
2489 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2490 
2491 	mp = lock_mount(path);
2492 	if (IS_ERR(mp))
2493 		return PTR_ERR(mp);
2494 
2495 	parent = real_mount(path->mnt);
2496 	err = -EINVAL;
2497 	if (unlikely(!check_mnt(parent))) {
2498 		/* that's acceptable only for automounts done in private ns */
2499 		if (!(mnt_flags & MNT_SHRINKABLE))
2500 			goto unlock;
2501 		/* ... and for those we'd better have mountpoint still alive */
2502 		if (!parent->mnt_ns)
2503 			goto unlock;
2504 	}
2505 
2506 	/* Refuse the same filesystem on the same mount point */
2507 	err = -EBUSY;
2508 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2509 	    path->mnt->mnt_root == path->dentry)
2510 		goto unlock;
2511 
2512 	err = -EINVAL;
2513 	if (d_is_symlink(newmnt->mnt.mnt_root))
2514 		goto unlock;
2515 
2516 	newmnt->mnt.mnt_flags = mnt_flags;
2517 	err = graft_tree(newmnt, parent, mp);
2518 
2519 unlock:
2520 	unlock_mount(mp);
2521 	return err;
2522 }
2523 
2524 static bool fs_fully_visible(struct file_system_type *fs_type, int *new_mnt_flags);
2525 
2526 /*
2527  * create a new mount for userspace and request it to be added into the
2528  * namespace's tree
2529  */
do_new_mount(struct path * path,const char * fstype,int flags,int mnt_flags,const char * name,void * data)2530 static int do_new_mount(struct path *path, const char *fstype, int flags,
2531 			int mnt_flags, const char *name, void *data)
2532 {
2533 	struct file_system_type *type;
2534 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2535 	struct vfsmount *mnt;
2536 	int err;
2537 
2538 	if (!fstype)
2539 		return -EINVAL;
2540 
2541 	type = get_fs_type(fstype);
2542 	if (!type)
2543 		return -ENODEV;
2544 
2545 	if (user_ns != &init_user_ns) {
2546 		if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2547 			put_filesystem(type);
2548 			return -EPERM;
2549 		}
2550 		/* Only in special cases allow devices from mounts
2551 		 * created outside the initial user namespace.
2552 		 */
2553 		if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2554 			flags |= MS_NODEV;
2555 			mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2556 		}
2557 		if (type->fs_flags & FS_USERNS_VISIBLE) {
2558 			if (!fs_fully_visible(type, &mnt_flags)) {
2559 				put_filesystem(type);
2560 				return -EPERM;
2561 			}
2562 		}
2563 	}
2564 
2565 	mnt = vfs_kern_mount(type, flags, name, data);
2566 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2567 	    !mnt->mnt_sb->s_subtype)
2568 		mnt = fs_set_subtype(mnt, fstype);
2569 
2570 	put_filesystem(type);
2571 	if (IS_ERR(mnt))
2572 		return PTR_ERR(mnt);
2573 
2574 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2575 	if (err)
2576 		mntput(mnt);
2577 	return err;
2578 }
2579 
finish_automount(struct vfsmount * m,struct path * path)2580 int finish_automount(struct vfsmount *m, struct path *path)
2581 {
2582 	struct mount *mnt = real_mount(m);
2583 	int err;
2584 	/* The new mount record should have at least 2 refs to prevent it being
2585 	 * expired before we get a chance to add it
2586 	 */
2587 	BUG_ON(mnt_get_count(mnt) < 2);
2588 
2589 	if (m->mnt_sb == path->mnt->mnt_sb &&
2590 	    m->mnt_root == path->dentry) {
2591 		err = -ELOOP;
2592 		goto fail;
2593 	}
2594 
2595 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2596 	if (!err)
2597 		return 0;
2598 fail:
2599 	/* remove m from any expiration list it may be on */
2600 	if (!list_empty(&mnt->mnt_expire)) {
2601 		namespace_lock();
2602 		list_del_init(&mnt->mnt_expire);
2603 		namespace_unlock();
2604 	}
2605 	mntput(m);
2606 	mntput(m);
2607 	return err;
2608 }
2609 
2610 /**
2611  * mnt_set_expiry - Put a mount on an expiration list
2612  * @mnt: The mount to list.
2613  * @expiry_list: The list to add the mount to.
2614  */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)2615 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2616 {
2617 	namespace_lock();
2618 
2619 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2620 
2621 	namespace_unlock();
2622 }
2623 EXPORT_SYMBOL(mnt_set_expiry);
2624 
2625 /*
2626  * process a list of expirable mountpoints with the intent of discarding any
2627  * mountpoints that aren't in use and haven't been touched since last we came
2628  * here
2629  */
mark_mounts_for_expiry(struct list_head * mounts)2630 void mark_mounts_for_expiry(struct list_head *mounts)
2631 {
2632 	struct mount *mnt, *next;
2633 	LIST_HEAD(graveyard);
2634 
2635 	if (list_empty(mounts))
2636 		return;
2637 
2638 	namespace_lock();
2639 	lock_mount_hash();
2640 
2641 	/* extract from the expiration list every vfsmount that matches the
2642 	 * following criteria:
2643 	 * - only referenced by its parent vfsmount
2644 	 * - still marked for expiry (marked on the last call here; marks are
2645 	 *   cleared by mntput())
2646 	 */
2647 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2648 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2649 			propagate_mount_busy(mnt, 1))
2650 			continue;
2651 		list_move(&mnt->mnt_expire, &graveyard);
2652 	}
2653 	while (!list_empty(&graveyard)) {
2654 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2655 		touch_mnt_namespace(mnt->mnt_ns);
2656 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2657 	}
2658 	unlock_mount_hash();
2659 	namespace_unlock();
2660 }
2661 
2662 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2663 
2664 /*
2665  * Ripoff of 'select_parent()'
2666  *
2667  * search the list of submounts for a given mountpoint, and move any
2668  * shrinkable submounts to the 'graveyard' list.
2669  */
select_submounts(struct mount * parent,struct list_head * graveyard)2670 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2671 {
2672 	struct mount *this_parent = parent;
2673 	struct list_head *next;
2674 	int found = 0;
2675 
2676 repeat:
2677 	next = this_parent->mnt_mounts.next;
2678 resume:
2679 	while (next != &this_parent->mnt_mounts) {
2680 		struct list_head *tmp = next;
2681 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2682 
2683 		next = tmp->next;
2684 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2685 			continue;
2686 		/*
2687 		 * Descend a level if the d_mounts list is non-empty.
2688 		 */
2689 		if (!list_empty(&mnt->mnt_mounts)) {
2690 			this_parent = mnt;
2691 			goto repeat;
2692 		}
2693 
2694 		if (!propagate_mount_busy(mnt, 1)) {
2695 			list_move_tail(&mnt->mnt_expire, graveyard);
2696 			found++;
2697 		}
2698 	}
2699 	/*
2700 	 * All done at this level ... ascend and resume the search
2701 	 */
2702 	if (this_parent != parent) {
2703 		next = this_parent->mnt_child.next;
2704 		this_parent = this_parent->mnt_parent;
2705 		goto resume;
2706 	}
2707 	return found;
2708 }
2709 
2710 /*
2711  * process a list of expirable mountpoints with the intent of discarding any
2712  * submounts of a specific parent mountpoint
2713  *
2714  * mount_lock must be held for write
2715  */
shrink_submounts(struct mount * mnt)2716 static void shrink_submounts(struct mount *mnt)
2717 {
2718 	LIST_HEAD(graveyard);
2719 	struct mount *m;
2720 
2721 	/* extract submounts of 'mountpoint' from the expiration list */
2722 	while (select_submounts(mnt, &graveyard)) {
2723 		while (!list_empty(&graveyard)) {
2724 			m = list_first_entry(&graveyard, struct mount,
2725 						mnt_expire);
2726 			touch_mnt_namespace(m->mnt_ns);
2727 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2728 		}
2729 	}
2730 }
2731 
2732 /*
2733  * Some copy_from_user() implementations do not return the exact number of
2734  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2735  * Note that this function differs from copy_from_user() in that it will oops
2736  * on bad values of `to', rather than returning a short copy.
2737  */
exact_copy_from_user(void * to,const void __user * from,unsigned long n)2738 static long exact_copy_from_user(void *to, const void __user * from,
2739 				 unsigned long n)
2740 {
2741 	char *t = to;
2742 	const char __user *f = from;
2743 	char c;
2744 
2745 	if (!access_ok(VERIFY_READ, from, n))
2746 		return n;
2747 
2748 	while (n) {
2749 		if (__get_user(c, f)) {
2750 			memset(t, 0, n);
2751 			break;
2752 		}
2753 		*t++ = c;
2754 		f++;
2755 		n--;
2756 	}
2757 	return n;
2758 }
2759 
copy_mount_options(const void __user * data,unsigned long * where)2760 int copy_mount_options(const void __user * data, unsigned long *where)
2761 {
2762 	int i;
2763 	unsigned long page;
2764 	unsigned long size;
2765 
2766 	*where = 0;
2767 	if (!data)
2768 		return 0;
2769 
2770 	if (!(page = __get_free_page(GFP_KERNEL)))
2771 		return -ENOMEM;
2772 
2773 	/* We only care that *some* data at the address the user
2774 	 * gave us is valid.  Just in case, we'll zero
2775 	 * the remainder of the page.
2776 	 */
2777 	/* copy_from_user cannot cross TASK_SIZE ! */
2778 	size = TASK_SIZE - (unsigned long)data;
2779 	if (size > PAGE_SIZE)
2780 		size = PAGE_SIZE;
2781 
2782 	i = size - exact_copy_from_user((void *)page, data, size);
2783 	if (!i) {
2784 		free_page(page);
2785 		return -EFAULT;
2786 	}
2787 	if (i != PAGE_SIZE)
2788 		memset((char *)page + i, 0, PAGE_SIZE - i);
2789 	*where = page;
2790 	return 0;
2791 }
2792 
copy_mount_string(const void __user * data)2793 char *copy_mount_string(const void __user *data)
2794 {
2795 	return data ? strndup_user(data, PAGE_SIZE) : NULL;
2796 }
2797 
2798 /*
2799  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2800  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2801  *
2802  * data is a (void *) that can point to any structure up to
2803  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2804  * information (or be NULL).
2805  *
2806  * Pre-0.97 versions of mount() didn't have a flags word.
2807  * When the flags word was introduced its top half was required
2808  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2809  * Therefore, if this magic number is present, it carries no information
2810  * and must be discarded.
2811  */
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)2812 long do_mount(const char *dev_name, const char __user *dir_name,
2813 		const char *type_page, unsigned long flags, void *data_page)
2814 {
2815 	struct path path;
2816 	int retval = 0;
2817 	int mnt_flags = 0;
2818 
2819 	/* Discard magic */
2820 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2821 		flags &= ~MS_MGC_MSK;
2822 
2823 	/* Basic sanity checks */
2824 	if (data_page)
2825 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2826 
2827 	/* ... and get the mountpoint */
2828 	retval = user_path(dir_name, &path);
2829 	if (retval)
2830 		return retval;
2831 
2832 	retval = security_sb_mount(dev_name, &path,
2833 				   type_page, flags, data_page);
2834 	if (!retval && !may_mount())
2835 		retval = -EPERM;
2836 	if (retval)
2837 		goto dput_out;
2838 
2839 	/* Default to relatime unless overriden */
2840 	if (!(flags & MS_NOATIME))
2841 		mnt_flags |= MNT_RELATIME;
2842 
2843 	/* Separate the per-mountpoint flags */
2844 	if (flags & MS_NOSUID)
2845 		mnt_flags |= MNT_NOSUID;
2846 	if (flags & MS_NODEV)
2847 		mnt_flags |= MNT_NODEV;
2848 	if (flags & MS_NOEXEC)
2849 		mnt_flags |= MNT_NOEXEC;
2850 	if (flags & MS_NOATIME)
2851 		mnt_flags |= MNT_NOATIME;
2852 	if (flags & MS_NODIRATIME)
2853 		mnt_flags |= MNT_NODIRATIME;
2854 	if (flags & MS_STRICTATIME)
2855 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2856 	if (flags & MS_RDONLY)
2857 		mnt_flags |= MNT_READONLY;
2858 
2859 	/* The default atime for remount is preservation */
2860 	if ((flags & MS_REMOUNT) &&
2861 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2862 		       MS_STRICTATIME)) == 0)) {
2863 		mnt_flags &= ~MNT_ATIME_MASK;
2864 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2865 	}
2866 
2867 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2868 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2869 		   MS_STRICTATIME);
2870 
2871 	if (flags & MS_REMOUNT)
2872 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2873 				    data_page);
2874 	else if (flags & MS_BIND)
2875 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2876 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2877 		retval = do_change_type(&path, flags);
2878 	else if (flags & MS_MOVE)
2879 		retval = do_move_mount(&path, dev_name);
2880 	else
2881 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2882 				      dev_name, data_page);
2883 dput_out:
2884 	path_put(&path);
2885 	return retval;
2886 }
2887 
free_mnt_ns(struct mnt_namespace * ns)2888 static void free_mnt_ns(struct mnt_namespace *ns)
2889 {
2890 	ns_free_inum(&ns->ns);
2891 	put_user_ns(ns->user_ns);
2892 	kfree(ns);
2893 }
2894 
2895 /*
2896  * Assign a sequence number so we can detect when we attempt to bind
2897  * mount a reference to an older mount namespace into the current
2898  * mount namespace, preventing reference counting loops.  A 64bit
2899  * number incrementing at 10Ghz will take 12,427 years to wrap which
2900  * is effectively never, so we can ignore the possibility.
2901  */
2902 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2903 
alloc_mnt_ns(struct user_namespace * user_ns)2904 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2905 {
2906 	struct mnt_namespace *new_ns;
2907 	int ret;
2908 
2909 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2910 	if (!new_ns)
2911 		return ERR_PTR(-ENOMEM);
2912 	ret = ns_alloc_inum(&new_ns->ns);
2913 	if (ret) {
2914 		kfree(new_ns);
2915 		return ERR_PTR(ret);
2916 	}
2917 	new_ns->ns.ops = &mntns_operations;
2918 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2919 	atomic_set(&new_ns->count, 1);
2920 	new_ns->root = NULL;
2921 	INIT_LIST_HEAD(&new_ns->list);
2922 	init_waitqueue_head(&new_ns->poll);
2923 	new_ns->event = 0;
2924 	new_ns->user_ns = get_user_ns(user_ns);
2925 	new_ns->mounts = 0;
2926 	new_ns->pending_mounts = 0;
2927 	return new_ns;
2928 }
2929 
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)2930 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2931 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2932 {
2933 	struct mnt_namespace *new_ns;
2934 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2935 	struct mount *p, *q;
2936 	struct mount *old;
2937 	struct mount *new;
2938 	int copy_flags;
2939 
2940 	BUG_ON(!ns);
2941 
2942 	if (likely(!(flags & CLONE_NEWNS))) {
2943 		get_mnt_ns(ns);
2944 		return ns;
2945 	}
2946 
2947 	old = ns->root;
2948 
2949 	new_ns = alloc_mnt_ns(user_ns);
2950 	if (IS_ERR(new_ns))
2951 		return new_ns;
2952 
2953 	namespace_lock();
2954 	/* First pass: copy the tree topology */
2955 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2956 	if (user_ns != ns->user_ns)
2957 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2958 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2959 	if (IS_ERR(new)) {
2960 		namespace_unlock();
2961 		free_mnt_ns(new_ns);
2962 		return ERR_CAST(new);
2963 	}
2964 	new_ns->root = new;
2965 	list_add_tail(&new_ns->list, &new->mnt_list);
2966 
2967 	/*
2968 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2969 	 * as belonging to new namespace.  We have already acquired a private
2970 	 * fs_struct, so tsk->fs->lock is not needed.
2971 	 */
2972 	p = old;
2973 	q = new;
2974 	while (p) {
2975 		q->mnt_ns = new_ns;
2976 		new_ns->mounts++;
2977 		if (new_fs) {
2978 			if (&p->mnt == new_fs->root.mnt) {
2979 				new_fs->root.mnt = mntget(&q->mnt);
2980 				rootmnt = &p->mnt;
2981 			}
2982 			if (&p->mnt == new_fs->pwd.mnt) {
2983 				new_fs->pwd.mnt = mntget(&q->mnt);
2984 				pwdmnt = &p->mnt;
2985 			}
2986 		}
2987 		p = next_mnt(p, old);
2988 		q = next_mnt(q, new);
2989 		if (!q)
2990 			break;
2991 		while (p->mnt.mnt_root != q->mnt.mnt_root)
2992 			p = next_mnt(p, old);
2993 	}
2994 	namespace_unlock();
2995 
2996 	if (rootmnt)
2997 		mntput(rootmnt);
2998 	if (pwdmnt)
2999 		mntput(pwdmnt);
3000 
3001 	return new_ns;
3002 }
3003 
3004 /**
3005  * create_mnt_ns - creates a private namespace and adds a root filesystem
3006  * @mnt: pointer to the new root filesystem mountpoint
3007  */
create_mnt_ns(struct vfsmount * m)3008 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
3009 {
3010 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
3011 	if (!IS_ERR(new_ns)) {
3012 		struct mount *mnt = real_mount(m);
3013 		mnt->mnt_ns = new_ns;
3014 		new_ns->root = mnt;
3015 		new_ns->mounts++;
3016 		list_add(&mnt->mnt_list, &new_ns->list);
3017 	} else {
3018 		mntput(m);
3019 	}
3020 	return new_ns;
3021 }
3022 
mount_subtree(struct vfsmount * mnt,const char * name)3023 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3024 {
3025 	struct mnt_namespace *ns;
3026 	struct super_block *s;
3027 	struct path path;
3028 	int err;
3029 
3030 	ns = create_mnt_ns(mnt);
3031 	if (IS_ERR(ns))
3032 		return ERR_CAST(ns);
3033 
3034 	err = vfs_path_lookup(mnt->mnt_root, mnt,
3035 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3036 
3037 	put_mnt_ns(ns);
3038 
3039 	if (err)
3040 		return ERR_PTR(err);
3041 
3042 	/* trade a vfsmount reference for active sb one */
3043 	s = path.mnt->mnt_sb;
3044 	atomic_inc(&s->s_active);
3045 	mntput(path.mnt);
3046 	/* lock the sucker */
3047 	down_write(&s->s_umount);
3048 	/* ... and return the root of (sub)tree on it */
3049 	return path.dentry;
3050 }
3051 EXPORT_SYMBOL(mount_subtree);
3052 
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)3053 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3054 		char __user *, type, unsigned long, flags, void __user *, data)
3055 {
3056 	int ret;
3057 	char *kernel_type;
3058 	char *kernel_dev;
3059 	unsigned long data_page;
3060 
3061 	kernel_type = copy_mount_string(type);
3062 	ret = PTR_ERR(kernel_type);
3063 	if (IS_ERR(kernel_type))
3064 		goto out_type;
3065 
3066 	kernel_dev = copy_mount_string(dev_name);
3067 	ret = PTR_ERR(kernel_dev);
3068 	if (IS_ERR(kernel_dev))
3069 		goto out_dev;
3070 
3071 	ret = copy_mount_options(data, &data_page);
3072 	if (ret < 0)
3073 		goto out_data;
3074 
3075 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
3076 		(void *) data_page);
3077 
3078 	free_page(data_page);
3079 out_data:
3080 	kfree(kernel_dev);
3081 out_dev:
3082 	kfree(kernel_type);
3083 out_type:
3084 	return ret;
3085 }
3086 
3087 /*
3088  * Return true if path is reachable from root
3089  *
3090  * namespace_sem or mount_lock is held
3091  */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)3092 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3093 			 const struct path *root)
3094 {
3095 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3096 		dentry = mnt->mnt_mountpoint;
3097 		mnt = mnt->mnt_parent;
3098 	}
3099 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3100 }
3101 
path_is_under(struct path * path1,struct path * path2)3102 int path_is_under(struct path *path1, struct path *path2)
3103 {
3104 	int res;
3105 	read_seqlock_excl(&mount_lock);
3106 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3107 	read_sequnlock_excl(&mount_lock);
3108 	return res;
3109 }
3110 EXPORT_SYMBOL(path_is_under);
3111 
3112 /*
3113  * pivot_root Semantics:
3114  * Moves the root file system of the current process to the directory put_old,
3115  * makes new_root as the new root file system of the current process, and sets
3116  * root/cwd of all processes which had them on the current root to new_root.
3117  *
3118  * Restrictions:
3119  * The new_root and put_old must be directories, and  must not be on the
3120  * same file  system as the current process root. The put_old  must  be
3121  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3122  * pointed to by put_old must yield the same directory as new_root. No other
3123  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3124  *
3125  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3126  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3127  * in this situation.
3128  *
3129  * Notes:
3130  *  - we don't move root/cwd if they are not at the root (reason: if something
3131  *    cared enough to change them, it's probably wrong to force them elsewhere)
3132  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3133  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3134  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3135  *    first.
3136  */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)3137 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3138 		const char __user *, put_old)
3139 {
3140 	struct path new, old, parent_path, root_parent, root;
3141 	struct mount *new_mnt, *root_mnt, *old_mnt;
3142 	struct mountpoint *old_mp, *root_mp;
3143 	int error;
3144 
3145 	if (!may_mount())
3146 		return -EPERM;
3147 
3148 	error = user_path_dir(new_root, &new);
3149 	if (error)
3150 		goto out0;
3151 
3152 	error = user_path_dir(put_old, &old);
3153 	if (error)
3154 		goto out1;
3155 
3156 	error = security_sb_pivotroot(&old, &new);
3157 	if (error)
3158 		goto out2;
3159 
3160 	get_fs_root(current->fs, &root);
3161 	old_mp = lock_mount(&old);
3162 	error = PTR_ERR(old_mp);
3163 	if (IS_ERR(old_mp))
3164 		goto out3;
3165 
3166 	error = -EINVAL;
3167 	new_mnt = real_mount(new.mnt);
3168 	root_mnt = real_mount(root.mnt);
3169 	old_mnt = real_mount(old.mnt);
3170 	if (IS_MNT_SHARED(old_mnt) ||
3171 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
3172 		IS_MNT_SHARED(root_mnt->mnt_parent))
3173 		goto out4;
3174 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3175 		goto out4;
3176 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3177 		goto out4;
3178 	error = -ENOENT;
3179 	if (d_unlinked(new.dentry))
3180 		goto out4;
3181 	error = -EBUSY;
3182 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3183 		goto out4; /* loop, on the same file system  */
3184 	error = -EINVAL;
3185 	if (root.mnt->mnt_root != root.dentry)
3186 		goto out4; /* not a mountpoint */
3187 	if (!mnt_has_parent(root_mnt))
3188 		goto out4; /* not attached */
3189 	root_mp = root_mnt->mnt_mp;
3190 	if (new.mnt->mnt_root != new.dentry)
3191 		goto out4; /* not a mountpoint */
3192 	if (!mnt_has_parent(new_mnt))
3193 		goto out4; /* not attached */
3194 	/* make sure we can reach put_old from new_root */
3195 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3196 		goto out4;
3197 	/* make certain new is below the root */
3198 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3199 		goto out4;
3200 	lock_mount_hash();
3201 	root_mp->m_count++; /* pin it so it won't go away */
3202 	detach_mnt(new_mnt, &parent_path);
3203 	detach_mnt(root_mnt, &root_parent);
3204 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3205 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3206 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3207 	}
3208 	/* mount old root on put_old */
3209 	attach_mnt(root_mnt, old_mnt, old_mp);
3210 	/* mount new_root on / */
3211 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3212 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3213 	/* A moved mount should not expire automatically */
3214 	list_del_init(&new_mnt->mnt_expire);
3215 	put_mountpoint(root_mp);
3216 	unlock_mount_hash();
3217 	chroot_fs_refs(&root, &new);
3218 	error = 0;
3219 out4:
3220 	unlock_mount(old_mp);
3221 	if (!error) {
3222 		path_put(&root_parent);
3223 		path_put(&parent_path);
3224 	}
3225 out3:
3226 	path_put(&root);
3227 out2:
3228 	path_put(&old);
3229 out1:
3230 	path_put(&new);
3231 out0:
3232 	return error;
3233 }
3234 
init_mount_tree(void)3235 static void __init init_mount_tree(void)
3236 {
3237 	struct vfsmount *mnt;
3238 	struct mnt_namespace *ns;
3239 	struct path root;
3240 	struct file_system_type *type;
3241 
3242 	type = get_fs_type("rootfs");
3243 	if (!type)
3244 		panic("Can't find rootfs type");
3245 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3246 	put_filesystem(type);
3247 	if (IS_ERR(mnt))
3248 		panic("Can't create rootfs");
3249 
3250 	ns = create_mnt_ns(mnt);
3251 	if (IS_ERR(ns))
3252 		panic("Can't allocate initial namespace");
3253 
3254 	init_task.nsproxy->mnt_ns = ns;
3255 	get_mnt_ns(ns);
3256 
3257 	root.mnt = mnt;
3258 	root.dentry = mnt->mnt_root;
3259 	mnt->mnt_flags |= MNT_LOCKED;
3260 
3261 	set_fs_pwd(current->fs, &root);
3262 	set_fs_root(current->fs, &root);
3263 }
3264 
mnt_init(void)3265 void __init mnt_init(void)
3266 {
3267 	unsigned u;
3268 	int err;
3269 
3270 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3271 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3272 
3273 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3274 				sizeof(struct hlist_head),
3275 				mhash_entries, 19,
3276 				0,
3277 				&m_hash_shift, &m_hash_mask, 0, 0);
3278 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3279 				sizeof(struct hlist_head),
3280 				mphash_entries, 19,
3281 				0,
3282 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3283 
3284 	if (!mount_hashtable || !mountpoint_hashtable)
3285 		panic("Failed to allocate mount hash table\n");
3286 
3287 	for (u = 0; u <= m_hash_mask; u++)
3288 		INIT_HLIST_HEAD(&mount_hashtable[u]);
3289 	for (u = 0; u <= mp_hash_mask; u++)
3290 		INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3291 
3292 	kernfs_init();
3293 
3294 	err = sysfs_init();
3295 	if (err)
3296 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3297 			__func__, err);
3298 	fs_kobj = kobject_create_and_add("fs", NULL);
3299 	if (!fs_kobj)
3300 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3301 	init_rootfs();
3302 	init_mount_tree();
3303 }
3304 
put_mnt_ns(struct mnt_namespace * ns)3305 void put_mnt_ns(struct mnt_namespace *ns)
3306 {
3307 	if (!atomic_dec_and_test(&ns->count))
3308 		return;
3309 	drop_collected_mounts(&ns->root->mnt);
3310 	free_mnt_ns(ns);
3311 }
3312 
kern_mount_data(struct file_system_type * type,void * data)3313 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3314 {
3315 	struct vfsmount *mnt;
3316 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3317 	if (!IS_ERR(mnt)) {
3318 		/*
3319 		 * it is a longterm mount, don't release mnt until
3320 		 * we unmount before file sys is unregistered
3321 		*/
3322 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3323 	}
3324 	return mnt;
3325 }
3326 EXPORT_SYMBOL_GPL(kern_mount_data);
3327 
kern_unmount(struct vfsmount * mnt)3328 void kern_unmount(struct vfsmount *mnt)
3329 {
3330 	/* release long term mount so mount point can be released */
3331 	if (!IS_ERR_OR_NULL(mnt)) {
3332 		real_mount(mnt)->mnt_ns = NULL;
3333 		synchronize_rcu();	/* yecchhh... */
3334 		mntput(mnt);
3335 	}
3336 }
3337 EXPORT_SYMBOL(kern_unmount);
3338 
our_mnt(struct vfsmount * mnt)3339 bool our_mnt(struct vfsmount *mnt)
3340 {
3341 	return check_mnt(real_mount(mnt));
3342 }
3343 
current_chrooted(void)3344 bool current_chrooted(void)
3345 {
3346 	/* Does the current process have a non-standard root */
3347 	struct path ns_root;
3348 	struct path fs_root;
3349 	bool chrooted;
3350 
3351 	/* Find the namespace root */
3352 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3353 	ns_root.dentry = ns_root.mnt->mnt_root;
3354 	path_get(&ns_root);
3355 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3356 		;
3357 
3358 	get_fs_root(current->fs, &fs_root);
3359 
3360 	chrooted = !path_equal(&fs_root, &ns_root);
3361 
3362 	path_put(&fs_root);
3363 	path_put(&ns_root);
3364 
3365 	return chrooted;
3366 }
3367 
fs_fully_visible(struct file_system_type * type,int * new_mnt_flags)3368 static bool fs_fully_visible(struct file_system_type *type, int *new_mnt_flags)
3369 {
3370 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3371 	int new_flags = *new_mnt_flags;
3372 	struct mount *mnt;
3373 	bool visible = false;
3374 
3375 	if (unlikely(!ns))
3376 		return false;
3377 
3378 	down_read(&namespace_sem);
3379 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3380 		struct mount *child;
3381 		int mnt_flags;
3382 
3383 		if (mnt->mnt.mnt_sb->s_type != type)
3384 			continue;
3385 
3386 		/* This mount is not fully visible if it's root directory
3387 		 * is not the root directory of the filesystem.
3388 		 */
3389 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3390 			continue;
3391 
3392 		/* Read the mount flags and filter out flags that
3393 		 * may safely be ignored.
3394 		 */
3395 		mnt_flags = mnt->mnt.mnt_flags;
3396 		if (mnt->mnt.mnt_sb->s_iflags & SB_I_NOEXEC)
3397 			mnt_flags &= ~(MNT_LOCK_NOSUID | MNT_LOCK_NOEXEC);
3398 
3399 		/* Don't miss readonly hidden in the superblock flags */
3400 		if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3401 			mnt_flags |= MNT_LOCK_READONLY;
3402 
3403 		/* Verify the mount flags are equal to or more permissive
3404 		 * than the proposed new mount.
3405 		 */
3406 		if ((mnt_flags & MNT_LOCK_READONLY) &&
3407 		    !(new_flags & MNT_READONLY))
3408 			continue;
3409 		if ((mnt_flags & MNT_LOCK_NODEV) &&
3410 		    !(new_flags & MNT_NODEV))
3411 			continue;
3412 		if ((mnt_flags & MNT_LOCK_NOSUID) &&
3413 		    !(new_flags & MNT_NOSUID))
3414 			continue;
3415 		if ((mnt_flags & MNT_LOCK_NOEXEC) &&
3416 		    !(new_flags & MNT_NOEXEC))
3417 			continue;
3418 		if ((mnt_flags & MNT_LOCK_ATIME) &&
3419 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3420 			continue;
3421 
3422 		/* This mount is not fully visible if there are any
3423 		 * locked child mounts that cover anything except for
3424 		 * empty directories.
3425 		 */
3426 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3427 			struct inode *inode = child->mnt_mountpoint->d_inode;
3428 			/* Only worry about locked mounts */
3429 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3430 				continue;
3431 			/* Is the directory permanetly empty? */
3432 			if (!is_empty_dir_inode(inode))
3433 				goto next;
3434 		}
3435 		/* Preserve the locked attributes */
3436 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3437 					       MNT_LOCK_NODEV    | \
3438 					       MNT_LOCK_NOSUID   | \
3439 					       MNT_LOCK_NOEXEC   | \
3440 					       MNT_LOCK_ATIME);
3441 		visible = true;
3442 		goto found;
3443 	next:	;
3444 	}
3445 found:
3446 	up_read(&namespace_sem);
3447 	return visible;
3448 }
3449 
mntns_get(struct task_struct * task)3450 static struct ns_common *mntns_get(struct task_struct *task)
3451 {
3452 	struct ns_common *ns = NULL;
3453 	struct nsproxy *nsproxy;
3454 
3455 	task_lock(task);
3456 	nsproxy = task->nsproxy;
3457 	if (nsproxy) {
3458 		ns = &nsproxy->mnt_ns->ns;
3459 		get_mnt_ns(to_mnt_ns(ns));
3460 	}
3461 	task_unlock(task);
3462 
3463 	return ns;
3464 }
3465 
mntns_put(struct ns_common * ns)3466 static void mntns_put(struct ns_common *ns)
3467 {
3468 	put_mnt_ns(to_mnt_ns(ns));
3469 }
3470 
mntns_install(struct nsproxy * nsproxy,struct ns_common * ns)3471 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3472 {
3473 	struct fs_struct *fs = current->fs;
3474 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3475 	struct path root;
3476 
3477 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3478 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3479 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3480 		return -EPERM;
3481 
3482 	if (fs->users != 1)
3483 		return -EINVAL;
3484 
3485 	get_mnt_ns(mnt_ns);
3486 	put_mnt_ns(nsproxy->mnt_ns);
3487 	nsproxy->mnt_ns = mnt_ns;
3488 
3489 	/* Find the root */
3490 	root.mnt    = &mnt_ns->root->mnt;
3491 	root.dentry = mnt_ns->root->mnt.mnt_root;
3492 	path_get(&root);
3493 	while(d_mountpoint(root.dentry) && follow_down_one(&root))
3494 		;
3495 
3496 	/* Update the pwd and root */
3497 	set_fs_pwd(fs, &root);
3498 	set_fs_root(fs, &root);
3499 
3500 	path_put(&root);
3501 	return 0;
3502 }
3503 
3504 const struct proc_ns_operations mntns_operations = {
3505 	.name		= "mnt",
3506 	.type		= CLONE_NEWNS,
3507 	.get		= mntns_get,
3508 	.put		= mntns_put,
3509 	.install	= mntns_install,
3510 };
3511