1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26 /*
27 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32 /*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 */
36
37 /** Implementation of client-side PortalRPC interfaces */
38
39 #define DEBUG_SUBSYSTEM S_RPC
40
41 #include "../include/obd_support.h"
42 #include "../include/obd_class.h"
43 #include "../include/lustre_lib.h"
44 #include "../include/lustre_ha.h"
45 #include "../include/lustre_import.h"
46 #include "../include/lustre_req_layout.h"
47
48 #include "ptlrpc_internal.h"
49
50 static int ptlrpc_send_new_req(struct ptlrpc_request *req);
51 static int ptlrpcd_check_work(struct ptlrpc_request *req);
52
53 /**
54 * Initialize passed in client structure \a cl.
55 */
ptlrpc_init_client(int req_portal,int rep_portal,char * name,struct ptlrpc_client * cl)56 void ptlrpc_init_client(int req_portal, int rep_portal, char *name,
57 struct ptlrpc_client *cl)
58 {
59 cl->cli_request_portal = req_portal;
60 cl->cli_reply_portal = rep_portal;
61 cl->cli_name = name;
62 }
63 EXPORT_SYMBOL(ptlrpc_init_client);
64
65 /**
66 * Return PortalRPC connection for remote uud \a uuid
67 */
ptlrpc_uuid_to_connection(struct obd_uuid * uuid)68 struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid)
69 {
70 struct ptlrpc_connection *c;
71 lnet_nid_t self;
72 lnet_process_id_t peer;
73 int err;
74
75 /*
76 * ptlrpc_uuid_to_peer() initializes its 2nd parameter
77 * before accessing its values.
78 * coverity[uninit_use_in_call]
79 */
80 err = ptlrpc_uuid_to_peer(uuid, &peer, &self);
81 if (err != 0) {
82 CNETERR("cannot find peer %s!\n", uuid->uuid);
83 return NULL;
84 }
85
86 c = ptlrpc_connection_get(peer, self, uuid);
87 if (c) {
88 memcpy(c->c_remote_uuid.uuid,
89 uuid->uuid, sizeof(c->c_remote_uuid.uuid));
90 }
91
92 CDEBUG(D_INFO, "%s -> %p\n", uuid->uuid, c);
93
94 return c;
95 }
96 EXPORT_SYMBOL(ptlrpc_uuid_to_connection);
97
98 /**
99 * Allocate and initialize new bulk descriptor on the sender.
100 * Returns pointer to the descriptor or NULL on error.
101 */
ptlrpc_new_bulk(unsigned npages,unsigned max_brw,unsigned type,unsigned portal)102 struct ptlrpc_bulk_desc *ptlrpc_new_bulk(unsigned npages, unsigned max_brw,
103 unsigned type, unsigned portal)
104 {
105 struct ptlrpc_bulk_desc *desc;
106 int i;
107
108 desc = kzalloc(offsetof(struct ptlrpc_bulk_desc, bd_iov[npages]),
109 GFP_NOFS);
110 if (!desc)
111 return NULL;
112
113 spin_lock_init(&desc->bd_lock);
114 init_waitqueue_head(&desc->bd_waitq);
115 desc->bd_max_iov = npages;
116 desc->bd_iov_count = 0;
117 desc->bd_portal = portal;
118 desc->bd_type = type;
119 desc->bd_md_count = 0;
120 LASSERT(max_brw > 0);
121 desc->bd_md_max_brw = min(max_brw, PTLRPC_BULK_OPS_COUNT);
122 /*
123 * PTLRPC_BULK_OPS_COUNT is the compile-time transfer limit for this
124 * node. Negotiated ocd_brw_size will always be <= this number.
125 */
126 for (i = 0; i < PTLRPC_BULK_OPS_COUNT; i++)
127 LNetInvalidateHandle(&desc->bd_mds[i]);
128
129 return desc;
130 }
131
132 /**
133 * Prepare bulk descriptor for specified outgoing request \a req that
134 * can fit \a npages * pages. \a type is bulk type. \a portal is where
135 * the bulk to be sent. Used on client-side.
136 * Returns pointer to newly allocated initialized bulk descriptor or NULL on
137 * error.
138 */
ptlrpc_prep_bulk_imp(struct ptlrpc_request * req,unsigned npages,unsigned max_brw,unsigned type,unsigned portal)139 struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req,
140 unsigned npages, unsigned max_brw,
141 unsigned type, unsigned portal)
142 {
143 struct obd_import *imp = req->rq_import;
144 struct ptlrpc_bulk_desc *desc;
145
146 LASSERT(type == BULK_PUT_SINK || type == BULK_GET_SOURCE);
147 desc = ptlrpc_new_bulk(npages, max_brw, type, portal);
148 if (desc == NULL)
149 return NULL;
150
151 desc->bd_import_generation = req->rq_import_generation;
152 desc->bd_import = class_import_get(imp);
153 desc->bd_req = req;
154
155 desc->bd_cbid.cbid_fn = client_bulk_callback;
156 desc->bd_cbid.cbid_arg = desc;
157
158 /* This makes req own desc, and free it when she frees herself */
159 req->rq_bulk = desc;
160
161 return desc;
162 }
163 EXPORT_SYMBOL(ptlrpc_prep_bulk_imp);
164
165 /**
166 * Add a page \a page to the bulk descriptor \a desc.
167 * Data to transfer in the page starts at offset \a pageoffset and
168 * amount of data to transfer from the page is \a len
169 */
__ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc * desc,struct page * page,int pageoffset,int len,int pin)170 void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc,
171 struct page *page, int pageoffset, int len, int pin)
172 {
173 LASSERT(desc->bd_iov_count < desc->bd_max_iov);
174 LASSERT(page != NULL);
175 LASSERT(pageoffset >= 0);
176 LASSERT(len > 0);
177 LASSERT(pageoffset + len <= PAGE_CACHE_SIZE);
178
179 desc->bd_nob += len;
180
181 if (pin)
182 page_cache_get(page);
183
184 ptlrpc_add_bulk_page(desc, page, pageoffset, len);
185 }
186 EXPORT_SYMBOL(__ptlrpc_prep_bulk_page);
187
188 /**
189 * Uninitialize and free bulk descriptor \a desc.
190 * Works on bulk descriptors both from server and client side.
191 */
__ptlrpc_free_bulk(struct ptlrpc_bulk_desc * desc,int unpin)192 void __ptlrpc_free_bulk(struct ptlrpc_bulk_desc *desc, int unpin)
193 {
194 int i;
195
196 LASSERT(desc != NULL);
197 LASSERT(desc->bd_iov_count != LI_POISON); /* not freed already */
198 LASSERT(desc->bd_md_count == 0); /* network hands off */
199 LASSERT((desc->bd_export != NULL) ^ (desc->bd_import != NULL));
200
201 sptlrpc_enc_pool_put_pages(desc);
202
203 if (desc->bd_export)
204 class_export_put(desc->bd_export);
205 else
206 class_import_put(desc->bd_import);
207
208 if (unpin) {
209 for (i = 0; i < desc->bd_iov_count; i++)
210 page_cache_release(desc->bd_iov[i].kiov_page);
211 }
212
213 kfree(desc);
214 }
215 EXPORT_SYMBOL(__ptlrpc_free_bulk);
216
217 /**
218 * Set server timelimit for this req, i.e. how long are we willing to wait
219 * for reply before timing out this request.
220 */
ptlrpc_at_set_req_timeout(struct ptlrpc_request * req)221 void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req)
222 {
223 __u32 serv_est;
224 int idx;
225 struct imp_at *at;
226
227 LASSERT(req->rq_import);
228
229 if (AT_OFF) {
230 /*
231 * non-AT settings
232 *
233 * \a imp_server_timeout means this is reverse import and
234 * we send (currently only) ASTs to the client and cannot afford
235 * to wait too long for the reply, otherwise the other client
236 * (because of which we are sending this request) would
237 * timeout waiting for us
238 */
239 req->rq_timeout = req->rq_import->imp_server_timeout ?
240 obd_timeout / 2 : obd_timeout;
241 } else {
242 at = &req->rq_import->imp_at;
243 idx = import_at_get_index(req->rq_import,
244 req->rq_request_portal);
245 serv_est = at_get(&at->iat_service_estimate[idx]);
246 req->rq_timeout = at_est2timeout(serv_est);
247 }
248 /*
249 * We could get even fancier here, using history to predict increased
250 * loading...
251 */
252
253 /*
254 * Let the server know what this RPC timeout is by putting it in the
255 * reqmsg
256 */
257 lustre_msg_set_timeout(req->rq_reqmsg, req->rq_timeout);
258 }
259 EXPORT_SYMBOL(ptlrpc_at_set_req_timeout);
260
261 /* Adjust max service estimate based on server value */
ptlrpc_at_adj_service(struct ptlrpc_request * req,unsigned int serv_est)262 static void ptlrpc_at_adj_service(struct ptlrpc_request *req,
263 unsigned int serv_est)
264 {
265 int idx;
266 unsigned int oldse;
267 struct imp_at *at;
268
269 LASSERT(req->rq_import);
270 at = &req->rq_import->imp_at;
271
272 idx = import_at_get_index(req->rq_import, req->rq_request_portal);
273 /*
274 * max service estimates are tracked on the server side,
275 * so just keep minimal history here
276 */
277 oldse = at_measured(&at->iat_service_estimate[idx], serv_est);
278 if (oldse != 0)
279 CDEBUG(D_ADAPTTO, "The RPC service estimate for %s ptl %d has changed from %d to %d\n",
280 req->rq_import->imp_obd->obd_name, req->rq_request_portal,
281 oldse, at_get(&at->iat_service_estimate[idx]));
282 }
283
284 /* Expected network latency per remote node (secs) */
ptlrpc_at_get_net_latency(struct ptlrpc_request * req)285 int ptlrpc_at_get_net_latency(struct ptlrpc_request *req)
286 {
287 return AT_OFF ? 0 : at_get(&req->rq_import->imp_at.iat_net_latency);
288 }
289
290 /* Adjust expected network latency */
ptlrpc_at_adj_net_latency(struct ptlrpc_request * req,unsigned int service_time)291 static void ptlrpc_at_adj_net_latency(struct ptlrpc_request *req,
292 unsigned int service_time)
293 {
294 unsigned int nl, oldnl;
295 struct imp_at *at;
296 time64_t now = ktime_get_real_seconds();
297
298 LASSERT(req->rq_import);
299
300 if (service_time > now - req->rq_sent + 3) {
301 /*
302 * bz16408, however, this can also happen if early reply
303 * is lost and client RPC is expired and resent, early reply
304 * or reply of original RPC can still be fit in reply buffer
305 * of resent RPC, now client is measuring time from the
306 * resent time, but server sent back service time of original
307 * RPC.
308 */
309 CDEBUG((lustre_msg_get_flags(req->rq_reqmsg) & MSG_RESENT) ?
310 D_ADAPTTO : D_WARNING,
311 "Reported service time %u > total measured time "
312 CFS_DURATION_T"\n", service_time,
313 (long)(now - req->rq_sent));
314 return;
315 }
316
317 /* Network latency is total time less server processing time */
318 nl = max_t(int, now - req->rq_sent -
319 service_time, 0) + 1; /* st rounding */
320 at = &req->rq_import->imp_at;
321
322 oldnl = at_measured(&at->iat_net_latency, nl);
323 if (oldnl != 0)
324 CDEBUG(D_ADAPTTO, "The network latency for %s (nid %s) has changed from %d to %d\n",
325 req->rq_import->imp_obd->obd_name,
326 obd_uuid2str(
327 &req->rq_import->imp_connection->c_remote_uuid),
328 oldnl, at_get(&at->iat_net_latency));
329 }
330
unpack_reply(struct ptlrpc_request * req)331 static int unpack_reply(struct ptlrpc_request *req)
332 {
333 int rc;
334
335 if (SPTLRPC_FLVR_POLICY(req->rq_flvr.sf_rpc) != SPTLRPC_POLICY_NULL) {
336 rc = ptlrpc_unpack_rep_msg(req, req->rq_replen);
337 if (rc) {
338 DEBUG_REQ(D_ERROR, req, "unpack_rep failed: %d", rc);
339 return -EPROTO;
340 }
341 }
342
343 rc = lustre_unpack_rep_ptlrpc_body(req, MSG_PTLRPC_BODY_OFF);
344 if (rc) {
345 DEBUG_REQ(D_ERROR, req, "unpack ptlrpc body failed: %d", rc);
346 return -EPROTO;
347 }
348 return 0;
349 }
350
351 /**
352 * Handle an early reply message, called with the rq_lock held.
353 * If anything goes wrong just ignore it - same as if it never happened
354 */
ptlrpc_at_recv_early_reply(struct ptlrpc_request * req)355 static int ptlrpc_at_recv_early_reply(struct ptlrpc_request *req)
356 {
357 struct ptlrpc_request *early_req;
358 time64_t olddl;
359 int rc;
360
361 req->rq_early = 0;
362 spin_unlock(&req->rq_lock);
363
364 rc = sptlrpc_cli_unwrap_early_reply(req, &early_req);
365 if (rc) {
366 spin_lock(&req->rq_lock);
367 return rc;
368 }
369
370 rc = unpack_reply(early_req);
371 if (rc == 0) {
372 /* Expecting to increase the service time estimate here */
373 ptlrpc_at_adj_service(req,
374 lustre_msg_get_timeout(early_req->rq_repmsg));
375 ptlrpc_at_adj_net_latency(req,
376 lustre_msg_get_service_time(early_req->rq_repmsg));
377 }
378
379 sptlrpc_cli_finish_early_reply(early_req);
380
381 if (rc != 0) {
382 spin_lock(&req->rq_lock);
383 return rc;
384 }
385
386 /* Adjust the local timeout for this req */
387 ptlrpc_at_set_req_timeout(req);
388
389 spin_lock(&req->rq_lock);
390 olddl = req->rq_deadline;
391 /*
392 * server assumes it now has rq_timeout from when it sent the
393 * early reply, so client should give it at least that long.
394 */
395 req->rq_deadline = ktime_get_real_seconds() + req->rq_timeout +
396 ptlrpc_at_get_net_latency(req);
397
398 DEBUG_REQ(D_ADAPTTO, req,
399 "Early reply #%d, new deadline in %lds (%lds)",
400 req->rq_early_count,
401 (long)(req->rq_deadline - ktime_get_real_seconds()),
402 (long)(req->rq_deadline - olddl));
403
404 return rc;
405 }
406
407 static struct kmem_cache *request_cache;
408
ptlrpc_request_cache_init(void)409 int ptlrpc_request_cache_init(void)
410 {
411 request_cache = kmem_cache_create("ptlrpc_cache",
412 sizeof(struct ptlrpc_request),
413 0, SLAB_HWCACHE_ALIGN, NULL);
414 return request_cache == NULL ? -ENOMEM : 0;
415 }
416
ptlrpc_request_cache_fini(void)417 void ptlrpc_request_cache_fini(void)
418 {
419 kmem_cache_destroy(request_cache);
420 }
421
ptlrpc_request_cache_alloc(gfp_t flags)422 struct ptlrpc_request *ptlrpc_request_cache_alloc(gfp_t flags)
423 {
424 struct ptlrpc_request *req;
425
426 req = kmem_cache_alloc(request_cache, flags | __GFP_ZERO);
427 return req;
428 }
429
ptlrpc_request_cache_free(struct ptlrpc_request * req)430 void ptlrpc_request_cache_free(struct ptlrpc_request *req)
431 {
432 kmem_cache_free(request_cache, req);
433 }
434
435 /**
436 * Wind down request pool \a pool.
437 * Frees all requests from the pool too
438 */
ptlrpc_free_rq_pool(struct ptlrpc_request_pool * pool)439 void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool)
440 {
441 struct list_head *l, *tmp;
442 struct ptlrpc_request *req;
443
444 LASSERT(pool != NULL);
445
446 spin_lock(&pool->prp_lock);
447 list_for_each_safe(l, tmp, &pool->prp_req_list) {
448 req = list_entry(l, struct ptlrpc_request, rq_list);
449 list_del(&req->rq_list);
450 LASSERT(req->rq_reqbuf);
451 LASSERT(req->rq_reqbuf_len == pool->prp_rq_size);
452 kvfree(req->rq_reqbuf);
453 ptlrpc_request_cache_free(req);
454 }
455 spin_unlock(&pool->prp_lock);
456 kfree(pool);
457 }
458 EXPORT_SYMBOL(ptlrpc_free_rq_pool);
459
460 /**
461 * Allocates, initializes and adds \a num_rq requests to the pool \a pool
462 */
ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool * pool,int num_rq)463 int ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq)
464 {
465 int i;
466 int size = 1;
467
468 while (size < pool->prp_rq_size)
469 size <<= 1;
470
471 LASSERTF(list_empty(&pool->prp_req_list) ||
472 size == pool->prp_rq_size,
473 "Trying to change pool size with nonempty pool from %d to %d bytes\n",
474 pool->prp_rq_size, size);
475
476 spin_lock(&pool->prp_lock);
477 pool->prp_rq_size = size;
478 for (i = 0; i < num_rq; i++) {
479 struct ptlrpc_request *req;
480 struct lustre_msg *msg;
481
482 spin_unlock(&pool->prp_lock);
483 req = ptlrpc_request_cache_alloc(GFP_NOFS);
484 if (!req)
485 return i;
486 msg = libcfs_kvzalloc(size, GFP_NOFS);
487 if (!msg) {
488 ptlrpc_request_cache_free(req);
489 return i;
490 }
491 req->rq_reqbuf = msg;
492 req->rq_reqbuf_len = size;
493 req->rq_pool = pool;
494 spin_lock(&pool->prp_lock);
495 list_add_tail(&req->rq_list, &pool->prp_req_list);
496 }
497 spin_unlock(&pool->prp_lock);
498 return num_rq;
499 }
500 EXPORT_SYMBOL(ptlrpc_add_rqs_to_pool);
501
502 /**
503 * Create and initialize new request pool with given attributes:
504 * \a num_rq - initial number of requests to create for the pool
505 * \a msgsize - maximum message size possible for requests in thid pool
506 * \a populate_pool - function to be called when more requests need to be added
507 * to the pool
508 * Returns pointer to newly created pool or NULL on error.
509 */
510 struct ptlrpc_request_pool *
ptlrpc_init_rq_pool(int num_rq,int msgsize,int (* populate_pool)(struct ptlrpc_request_pool *,int))511 ptlrpc_init_rq_pool(int num_rq, int msgsize,
512 int (*populate_pool)(struct ptlrpc_request_pool *, int))
513 {
514 struct ptlrpc_request_pool *pool;
515
516 pool = kzalloc(sizeof(struct ptlrpc_request_pool), GFP_NOFS);
517 if (!pool)
518 return NULL;
519
520 /*
521 * Request next power of two for the allocation, because internally
522 * kernel would do exactly this
523 */
524
525 spin_lock_init(&pool->prp_lock);
526 INIT_LIST_HEAD(&pool->prp_req_list);
527 pool->prp_rq_size = msgsize + SPTLRPC_MAX_PAYLOAD;
528 pool->prp_populate = populate_pool;
529
530 populate_pool(pool, num_rq);
531
532 return pool;
533 }
534 EXPORT_SYMBOL(ptlrpc_init_rq_pool);
535
536 /**
537 * Fetches one request from pool \a pool
538 */
539 static struct ptlrpc_request *
ptlrpc_prep_req_from_pool(struct ptlrpc_request_pool * pool)540 ptlrpc_prep_req_from_pool(struct ptlrpc_request_pool *pool)
541 {
542 struct ptlrpc_request *request;
543 struct lustre_msg *reqbuf;
544
545 if (!pool)
546 return NULL;
547
548 spin_lock(&pool->prp_lock);
549
550 /*
551 * See if we have anything in a pool, and bail out if nothing,
552 * in writeout path, where this matters, this is safe to do, because
553 * nothing is lost in this case, and when some in-flight requests
554 * complete, this code will be called again.
555 */
556 if (unlikely(list_empty(&pool->prp_req_list))) {
557 spin_unlock(&pool->prp_lock);
558 return NULL;
559 }
560
561 request = list_entry(pool->prp_req_list.next, struct ptlrpc_request,
562 rq_list);
563 list_del_init(&request->rq_list);
564 spin_unlock(&pool->prp_lock);
565
566 LASSERT(request->rq_reqbuf);
567 LASSERT(request->rq_pool);
568
569 reqbuf = request->rq_reqbuf;
570 memset(request, 0, sizeof(*request));
571 request->rq_reqbuf = reqbuf;
572 request->rq_reqbuf_len = pool->prp_rq_size;
573 request->rq_pool = pool;
574
575 return request;
576 }
577
578 /**
579 * Returns freed \a request to pool.
580 */
__ptlrpc_free_req_to_pool(struct ptlrpc_request * request)581 static void __ptlrpc_free_req_to_pool(struct ptlrpc_request *request)
582 {
583 struct ptlrpc_request_pool *pool = request->rq_pool;
584
585 spin_lock(&pool->prp_lock);
586 LASSERT(list_empty(&request->rq_list));
587 LASSERT(!request->rq_receiving_reply);
588 list_add_tail(&request->rq_list, &pool->prp_req_list);
589 spin_unlock(&pool->prp_lock);
590 }
591
__ptlrpc_request_bufs_pack(struct ptlrpc_request * request,__u32 version,int opcode,int count,__u32 * lengths,char ** bufs,struct ptlrpc_cli_ctx * ctx)592 static int __ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
593 __u32 version, int opcode,
594 int count, __u32 *lengths, char **bufs,
595 struct ptlrpc_cli_ctx *ctx)
596 {
597 struct obd_import *imp = request->rq_import;
598 int rc;
599
600 if (unlikely(ctx))
601 request->rq_cli_ctx = sptlrpc_cli_ctx_get(ctx);
602 else {
603 rc = sptlrpc_req_get_ctx(request);
604 if (rc)
605 goto out_free;
606 }
607
608 sptlrpc_req_set_flavor(request, opcode);
609
610 rc = lustre_pack_request(request, imp->imp_msg_magic, count,
611 lengths, bufs);
612 if (rc) {
613 LASSERT(!request->rq_pool);
614 goto out_ctx;
615 }
616
617 lustre_msg_add_version(request->rq_reqmsg, version);
618 request->rq_send_state = LUSTRE_IMP_FULL;
619 request->rq_type = PTL_RPC_MSG_REQUEST;
620 request->rq_export = NULL;
621
622 request->rq_req_cbid.cbid_fn = request_out_callback;
623 request->rq_req_cbid.cbid_arg = request;
624
625 request->rq_reply_cbid.cbid_fn = reply_in_callback;
626 request->rq_reply_cbid.cbid_arg = request;
627
628 request->rq_reply_deadline = 0;
629 request->rq_phase = RQ_PHASE_NEW;
630 request->rq_next_phase = RQ_PHASE_UNDEFINED;
631
632 request->rq_request_portal = imp->imp_client->cli_request_portal;
633 request->rq_reply_portal = imp->imp_client->cli_reply_portal;
634
635 ptlrpc_at_set_req_timeout(request);
636
637 spin_lock_init(&request->rq_lock);
638 INIT_LIST_HEAD(&request->rq_list);
639 INIT_LIST_HEAD(&request->rq_timed_list);
640 INIT_LIST_HEAD(&request->rq_replay_list);
641 INIT_LIST_HEAD(&request->rq_ctx_chain);
642 INIT_LIST_HEAD(&request->rq_set_chain);
643 INIT_LIST_HEAD(&request->rq_history_list);
644 INIT_LIST_HEAD(&request->rq_exp_list);
645 init_waitqueue_head(&request->rq_reply_waitq);
646 init_waitqueue_head(&request->rq_set_waitq);
647 request->rq_xid = ptlrpc_next_xid();
648 atomic_set(&request->rq_refcount, 1);
649
650 lustre_msg_set_opc(request->rq_reqmsg, opcode);
651
652 return 0;
653 out_ctx:
654 sptlrpc_cli_ctx_put(request->rq_cli_ctx, 1);
655 out_free:
656 class_import_put(imp);
657 return rc;
658 }
659
ptlrpc_request_bufs_pack(struct ptlrpc_request * request,__u32 version,int opcode,char ** bufs,struct ptlrpc_cli_ctx * ctx)660 int ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
661 __u32 version, int opcode, char **bufs,
662 struct ptlrpc_cli_ctx *ctx)
663 {
664 int count;
665
666 count = req_capsule_filled_sizes(&request->rq_pill, RCL_CLIENT);
667 return __ptlrpc_request_bufs_pack(request, version, opcode, count,
668 request->rq_pill.rc_area[RCL_CLIENT],
669 bufs, ctx);
670 }
671 EXPORT_SYMBOL(ptlrpc_request_bufs_pack);
672
673 /**
674 * Pack request buffers for network transfer, performing necessary encryption
675 * steps if necessary.
676 */
ptlrpc_request_pack(struct ptlrpc_request * request,__u32 version,int opcode)677 int ptlrpc_request_pack(struct ptlrpc_request *request,
678 __u32 version, int opcode)
679 {
680 int rc;
681
682 rc = ptlrpc_request_bufs_pack(request, version, opcode, NULL, NULL);
683 if (rc)
684 return rc;
685
686 /*
687 * For some old 1.8 clients (< 1.8.7), they will LASSERT the size of
688 * ptlrpc_body sent from server equal to local ptlrpc_body size, so we
689 * have to send old ptlrpc_body to keep interoperability with these
690 * clients.
691 *
692 * Only three kinds of server->client RPCs so far:
693 * - LDLM_BL_CALLBACK
694 * - LDLM_CP_CALLBACK
695 * - LDLM_GL_CALLBACK
696 *
697 * XXX This should be removed whenever we drop the interoperability with
698 * the these old clients.
699 */
700 if (opcode == LDLM_BL_CALLBACK || opcode == LDLM_CP_CALLBACK ||
701 opcode == LDLM_GL_CALLBACK)
702 req_capsule_shrink(&request->rq_pill, &RMF_PTLRPC_BODY,
703 sizeof(struct ptlrpc_body_v2), RCL_CLIENT);
704
705 return rc;
706 }
707 EXPORT_SYMBOL(ptlrpc_request_pack);
708
709 /**
710 * Helper function to allocate new request on import \a imp
711 * and possibly using existing request from pool \a pool if provided.
712 * Returns allocated request structure with import field filled or
713 * NULL on error.
714 */
715 static inline
__ptlrpc_request_alloc(struct obd_import * imp,struct ptlrpc_request_pool * pool)716 struct ptlrpc_request *__ptlrpc_request_alloc(struct obd_import *imp,
717 struct ptlrpc_request_pool *pool)
718 {
719 struct ptlrpc_request *request;
720
721 request = ptlrpc_request_cache_alloc(GFP_NOFS);
722
723 if (!request && pool)
724 request = ptlrpc_prep_req_from_pool(pool);
725
726 if (request) {
727 LASSERTF((unsigned long)imp > 0x1000, "%p", imp);
728 LASSERT(imp != LP_POISON);
729 LASSERTF((unsigned long)imp->imp_client > 0x1000, "%p",
730 imp->imp_client);
731 LASSERT(imp->imp_client != LP_POISON);
732
733 request->rq_import = class_import_get(imp);
734 } else {
735 CERROR("request allocation out of memory\n");
736 }
737
738 return request;
739 }
740
741 /**
742 * Helper function for creating a request.
743 * Calls __ptlrpc_request_alloc to allocate new request structure and inits
744 * buffer structures according to capsule template \a format.
745 * Returns allocated request structure pointer or NULL on error.
746 */
747 static struct ptlrpc_request *
ptlrpc_request_alloc_internal(struct obd_import * imp,struct ptlrpc_request_pool * pool,const struct req_format * format)748 ptlrpc_request_alloc_internal(struct obd_import *imp,
749 struct ptlrpc_request_pool *pool,
750 const struct req_format *format)
751 {
752 struct ptlrpc_request *request;
753
754 request = __ptlrpc_request_alloc(imp, pool);
755 if (request == NULL)
756 return NULL;
757
758 req_capsule_init(&request->rq_pill, request, RCL_CLIENT);
759 req_capsule_set(&request->rq_pill, format);
760 return request;
761 }
762
763 /**
764 * Allocate new request structure for import \a imp and initialize its
765 * buffer structure according to capsule template \a format.
766 */
ptlrpc_request_alloc(struct obd_import * imp,const struct req_format * format)767 struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp,
768 const struct req_format *format)
769 {
770 return ptlrpc_request_alloc_internal(imp, NULL, format);
771 }
772 EXPORT_SYMBOL(ptlrpc_request_alloc);
773
774 /**
775 * Allocate new request structure for import \a imp from pool \a pool and
776 * initialize its buffer structure according to capsule template \a format.
777 */
ptlrpc_request_alloc_pool(struct obd_import * imp,struct ptlrpc_request_pool * pool,const struct req_format * format)778 struct ptlrpc_request *ptlrpc_request_alloc_pool(struct obd_import *imp,
779 struct ptlrpc_request_pool *pool,
780 const struct req_format *format)
781 {
782 return ptlrpc_request_alloc_internal(imp, pool, format);
783 }
784 EXPORT_SYMBOL(ptlrpc_request_alloc_pool);
785
786 /**
787 * For requests not from pool, free memory of the request structure.
788 * For requests obtained from a pool earlier, return request back to pool.
789 */
ptlrpc_request_free(struct ptlrpc_request * request)790 void ptlrpc_request_free(struct ptlrpc_request *request)
791 {
792 if (request->rq_pool)
793 __ptlrpc_free_req_to_pool(request);
794 else
795 ptlrpc_request_cache_free(request);
796 }
797 EXPORT_SYMBOL(ptlrpc_request_free);
798
799 /**
800 * Allocate new request for operation \a opcode and immediately pack it for
801 * network transfer.
802 * Only used for simple requests like OBD_PING where the only important
803 * part of the request is operation itself.
804 * Returns allocated request or NULL on error.
805 */
ptlrpc_request_alloc_pack(struct obd_import * imp,const struct req_format * format,__u32 version,int opcode)806 struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *imp,
807 const struct req_format *format,
808 __u32 version, int opcode)
809 {
810 struct ptlrpc_request *req = ptlrpc_request_alloc(imp, format);
811 int rc;
812
813 if (req) {
814 rc = ptlrpc_request_pack(req, version, opcode);
815 if (rc) {
816 ptlrpc_request_free(req);
817 req = NULL;
818 }
819 }
820 return req;
821 }
822 EXPORT_SYMBOL(ptlrpc_request_alloc_pack);
823
824 /**
825 * Allocate and initialize new request set structure on the current CPT.
826 * Returns a pointer to the newly allocated set structure or NULL on error.
827 */
ptlrpc_prep_set(void)828 struct ptlrpc_request_set *ptlrpc_prep_set(void)
829 {
830 struct ptlrpc_request_set *set;
831 int cpt;
832
833 cpt = cfs_cpt_current(cfs_cpt_table, 0);
834 set = kzalloc_node(sizeof(*set), GFP_NOFS,
835 cfs_cpt_spread_node(cfs_cpt_table, cpt));
836 if (!set)
837 return NULL;
838 atomic_set(&set->set_refcount, 1);
839 INIT_LIST_HEAD(&set->set_requests);
840 init_waitqueue_head(&set->set_waitq);
841 atomic_set(&set->set_new_count, 0);
842 atomic_set(&set->set_remaining, 0);
843 spin_lock_init(&set->set_new_req_lock);
844 INIT_LIST_HEAD(&set->set_new_requests);
845 INIT_LIST_HEAD(&set->set_cblist);
846 set->set_max_inflight = UINT_MAX;
847 set->set_producer = NULL;
848 set->set_producer_arg = NULL;
849 set->set_rc = 0;
850
851 return set;
852 }
853 EXPORT_SYMBOL(ptlrpc_prep_set);
854
855 /**
856 * Allocate and initialize new request set structure with flow control
857 * extension. This extension allows to control the number of requests in-flight
858 * for the whole set. A callback function to generate requests must be provided
859 * and the request set will keep the number of requests sent over the wire to
860 * @max_inflight.
861 * Returns a pointer to the newly allocated set structure or NULL on error.
862 */
ptlrpc_prep_fcset(int max,set_producer_func func,void * arg)863 struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func,
864 void *arg)
865
866 {
867 struct ptlrpc_request_set *set;
868
869 set = ptlrpc_prep_set();
870 if (!set)
871 return NULL;
872
873 set->set_max_inflight = max;
874 set->set_producer = func;
875 set->set_producer_arg = arg;
876
877 return set;
878 }
879 EXPORT_SYMBOL(ptlrpc_prep_fcset);
880
881 /**
882 * Wind down and free request set structure previously allocated with
883 * ptlrpc_prep_set.
884 * Ensures that all requests on the set have completed and removes
885 * all requests from the request list in a set.
886 * If any unsent request happen to be on the list, pretends that they got
887 * an error in flight and calls their completion handler.
888 */
ptlrpc_set_destroy(struct ptlrpc_request_set * set)889 void ptlrpc_set_destroy(struct ptlrpc_request_set *set)
890 {
891 struct list_head *tmp;
892 struct list_head *next;
893 int expected_phase;
894 int n = 0;
895
896 /* Requests on the set should either all be completed, or all be new */
897 expected_phase = (atomic_read(&set->set_remaining) == 0) ?
898 RQ_PHASE_COMPLETE : RQ_PHASE_NEW;
899 list_for_each(tmp, &set->set_requests) {
900 struct ptlrpc_request *req =
901 list_entry(tmp, struct ptlrpc_request,
902 rq_set_chain);
903
904 LASSERT(req->rq_phase == expected_phase);
905 n++;
906 }
907
908 LASSERTF(atomic_read(&set->set_remaining) == 0 ||
909 atomic_read(&set->set_remaining) == n, "%d / %d\n",
910 atomic_read(&set->set_remaining), n);
911
912 list_for_each_safe(tmp, next, &set->set_requests) {
913 struct ptlrpc_request *req =
914 list_entry(tmp, struct ptlrpc_request,
915 rq_set_chain);
916 list_del_init(&req->rq_set_chain);
917
918 LASSERT(req->rq_phase == expected_phase);
919
920 if (req->rq_phase == RQ_PHASE_NEW) {
921 ptlrpc_req_interpret(NULL, req, -EBADR);
922 atomic_dec(&set->set_remaining);
923 }
924
925 spin_lock(&req->rq_lock);
926 req->rq_set = NULL;
927 req->rq_invalid_rqset = 0;
928 spin_unlock(&req->rq_lock);
929
930 ptlrpc_req_finished(req);
931 }
932
933 LASSERT(atomic_read(&set->set_remaining) == 0);
934
935 ptlrpc_reqset_put(set);
936 }
937 EXPORT_SYMBOL(ptlrpc_set_destroy);
938
939 /**
940 * Add a new request to the general purpose request set.
941 * Assumes request reference from the caller.
942 */
ptlrpc_set_add_req(struct ptlrpc_request_set * set,struct ptlrpc_request * req)943 void ptlrpc_set_add_req(struct ptlrpc_request_set *set,
944 struct ptlrpc_request *req)
945 {
946 LASSERT(list_empty(&req->rq_set_chain));
947
948 /* The set takes over the caller's request reference */
949 list_add_tail(&req->rq_set_chain, &set->set_requests);
950 req->rq_set = set;
951 atomic_inc(&set->set_remaining);
952 req->rq_queued_time = cfs_time_current();
953
954 if (req->rq_reqmsg != NULL)
955 lustre_msg_set_jobid(req->rq_reqmsg, NULL);
956
957 if (set->set_producer != NULL)
958 /*
959 * If the request set has a producer callback, the RPC must be
960 * sent straight away
961 */
962 ptlrpc_send_new_req(req);
963 }
964 EXPORT_SYMBOL(ptlrpc_set_add_req);
965
966 /**
967 * Add a request to a request with dedicated server thread
968 * and wake the thread to make any necessary processing.
969 * Currently only used for ptlrpcd.
970 */
ptlrpc_set_add_new_req(struct ptlrpcd_ctl * pc,struct ptlrpc_request * req)971 void ptlrpc_set_add_new_req(struct ptlrpcd_ctl *pc,
972 struct ptlrpc_request *req)
973 {
974 struct ptlrpc_request_set *set = pc->pc_set;
975 int count, i;
976
977 LASSERT(req->rq_set == NULL);
978 LASSERT(test_bit(LIOD_STOP, &pc->pc_flags) == 0);
979
980 spin_lock(&set->set_new_req_lock);
981 /* The set takes over the caller's request reference. */
982 req->rq_set = set;
983 req->rq_queued_time = cfs_time_current();
984 list_add_tail(&req->rq_set_chain, &set->set_new_requests);
985 count = atomic_inc_return(&set->set_new_count);
986 spin_unlock(&set->set_new_req_lock);
987
988 /* Only need to call wakeup once for the first entry. */
989 if (count == 1) {
990 wake_up(&set->set_waitq);
991
992 /*
993 * XXX: It maybe unnecessary to wakeup all the partners. But to
994 * guarantee the async RPC can be processed ASAP, we have
995 * no other better choice. It maybe fixed in future.
996 */
997 for (i = 0; i < pc->pc_npartners; i++)
998 wake_up(&pc->pc_partners[i]->pc_set->set_waitq);
999 }
1000 }
1001 EXPORT_SYMBOL(ptlrpc_set_add_new_req);
1002
1003 /**
1004 * Based on the current state of the import, determine if the request
1005 * can be sent, is an error, or should be delayed.
1006 *
1007 * Returns true if this request should be delayed. If false, and
1008 * *status is set, then the request can not be sent and *status is the
1009 * error code. If false and status is 0, then request can be sent.
1010 *
1011 * The imp->imp_lock must be held.
1012 */
ptlrpc_import_delay_req(struct obd_import * imp,struct ptlrpc_request * req,int * status)1013 static int ptlrpc_import_delay_req(struct obd_import *imp,
1014 struct ptlrpc_request *req, int *status)
1015 {
1016 int delay = 0;
1017
1018 LASSERT(status != NULL);
1019 *status = 0;
1020
1021 if (req->rq_ctx_init || req->rq_ctx_fini) {
1022 /* always allow ctx init/fini rpc go through */
1023 } else if (imp->imp_state == LUSTRE_IMP_NEW) {
1024 DEBUG_REQ(D_ERROR, req, "Uninitialized import.");
1025 *status = -EIO;
1026 } else if (imp->imp_state == LUSTRE_IMP_CLOSED) {
1027 /* pings may safely race with umount */
1028 DEBUG_REQ(lustre_msg_get_opc(req->rq_reqmsg) == OBD_PING ?
1029 D_HA : D_ERROR, req, "IMP_CLOSED ");
1030 *status = -EIO;
1031 } else if (ptlrpc_send_limit_expired(req)) {
1032 /* probably doesn't need to be a D_ERROR after initial testing */
1033 DEBUG_REQ(D_ERROR, req, "send limit expired ");
1034 *status = -EIO;
1035 } else if (req->rq_send_state == LUSTRE_IMP_CONNECTING &&
1036 imp->imp_state == LUSTRE_IMP_CONNECTING) {
1037 /* allow CONNECT even if import is invalid */
1038 if (atomic_read(&imp->imp_inval_count) != 0) {
1039 DEBUG_REQ(D_ERROR, req, "invalidate in flight");
1040 *status = -EIO;
1041 }
1042 } else if (imp->imp_invalid || imp->imp_obd->obd_no_recov) {
1043 if (!imp->imp_deactive)
1044 DEBUG_REQ(D_NET, req, "IMP_INVALID");
1045 *status = -ESHUTDOWN; /* bz 12940 */
1046 } else if (req->rq_import_generation != imp->imp_generation) {
1047 DEBUG_REQ(D_ERROR, req, "req wrong generation:");
1048 *status = -EIO;
1049 } else if (req->rq_send_state != imp->imp_state) {
1050 /* invalidate in progress - any requests should be drop */
1051 if (atomic_read(&imp->imp_inval_count) != 0) {
1052 DEBUG_REQ(D_ERROR, req, "invalidate in flight");
1053 *status = -EIO;
1054 } else if (imp->imp_dlm_fake || req->rq_no_delay) {
1055 *status = -EWOULDBLOCK;
1056 } else if (req->rq_allow_replay &&
1057 (imp->imp_state == LUSTRE_IMP_REPLAY ||
1058 imp->imp_state == LUSTRE_IMP_REPLAY_LOCKS ||
1059 imp->imp_state == LUSTRE_IMP_REPLAY_WAIT ||
1060 imp->imp_state == LUSTRE_IMP_RECOVER)) {
1061 DEBUG_REQ(D_HA, req, "allow during recovery.\n");
1062 } else {
1063 delay = 1;
1064 }
1065 }
1066
1067 return delay;
1068 }
1069
1070 /**
1071 * Decide if the error message regarding provided request \a req
1072 * should be printed to the console or not.
1073 * Makes it's decision on request status and other properties.
1074 * Returns 1 to print error on the system console or 0 if not.
1075 */
ptlrpc_console_allow(struct ptlrpc_request * req)1076 static int ptlrpc_console_allow(struct ptlrpc_request *req)
1077 {
1078 __u32 opc;
1079 int err;
1080
1081 LASSERT(req->rq_reqmsg != NULL);
1082 opc = lustre_msg_get_opc(req->rq_reqmsg);
1083
1084 /*
1085 * Suppress particular reconnect errors which are to be expected. No
1086 * errors are suppressed for the initial connection on an import
1087 */
1088 if ((lustre_handle_is_used(&req->rq_import->imp_remote_handle)) &&
1089 (opc == OST_CONNECT || opc == MDS_CONNECT || opc == MGS_CONNECT)) {
1090
1091 /* Suppress timed out reconnect requests */
1092 if (req->rq_timedout)
1093 return 0;
1094
1095 /* Suppress unavailable/again reconnect requests */
1096 err = lustre_msg_get_status(req->rq_repmsg);
1097 if (err == -ENODEV || err == -EAGAIN)
1098 return 0;
1099 }
1100
1101 return 1;
1102 }
1103
1104 /**
1105 * Check request processing status.
1106 * Returns the status.
1107 */
ptlrpc_check_status(struct ptlrpc_request * req)1108 static int ptlrpc_check_status(struct ptlrpc_request *req)
1109 {
1110 int err;
1111
1112 err = lustre_msg_get_status(req->rq_repmsg);
1113 if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR) {
1114 struct obd_import *imp = req->rq_import;
1115 __u32 opc = lustre_msg_get_opc(req->rq_reqmsg);
1116
1117 if (ptlrpc_console_allow(req))
1118 LCONSOLE_ERROR_MSG(0x011, "%s: Communicating with %s, operation %s failed with %d.\n",
1119 imp->imp_obd->obd_name,
1120 libcfs_nid2str(
1121 imp->imp_connection->c_peer.nid),
1122 ll_opcode2str(opc), err);
1123 return err < 0 ? err : -EINVAL;
1124 }
1125
1126 if (err < 0)
1127 DEBUG_REQ(D_INFO, req, "status is %d", err);
1128 else if (err > 0)
1129 /* XXX: translate this error from net to host */
1130 DEBUG_REQ(D_INFO, req, "status is %d", err);
1131
1132 return err;
1133 }
1134
1135 /**
1136 * save pre-versions of objects into request for replay.
1137 * Versions are obtained from server reply.
1138 * used for VBR.
1139 */
ptlrpc_save_versions(struct ptlrpc_request * req)1140 static void ptlrpc_save_versions(struct ptlrpc_request *req)
1141 {
1142 struct lustre_msg *repmsg = req->rq_repmsg;
1143 struct lustre_msg *reqmsg = req->rq_reqmsg;
1144 __u64 *versions = lustre_msg_get_versions(repmsg);
1145
1146 if (lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)
1147 return;
1148
1149 LASSERT(versions);
1150 lustre_msg_set_versions(reqmsg, versions);
1151 CDEBUG(D_INFO, "Client save versions [%#llx/%#llx]\n",
1152 versions[0], versions[1]);
1153 }
1154
1155 /**
1156 * Callback function called when client receives RPC reply for \a req.
1157 * Returns 0 on success or error code.
1158 * The return value would be assigned to req->rq_status by the caller
1159 * as request processing status.
1160 * This function also decides if the request needs to be saved for later replay.
1161 */
after_reply(struct ptlrpc_request * req)1162 static int after_reply(struct ptlrpc_request *req)
1163 {
1164 struct obd_import *imp = req->rq_import;
1165 struct obd_device *obd = req->rq_import->imp_obd;
1166 int rc;
1167 struct timespec64 work_start;
1168 long timediff;
1169
1170 LASSERT(obd != NULL);
1171 /* repbuf must be unlinked */
1172 LASSERT(!req->rq_receiving_reply && !req->rq_reply_unlink);
1173
1174 if (req->rq_reply_truncate) {
1175 if (ptlrpc_no_resend(req)) {
1176 DEBUG_REQ(D_ERROR, req, "reply buffer overflow, expected: %d, actual size: %d",
1177 req->rq_nob_received, req->rq_repbuf_len);
1178 return -EOVERFLOW;
1179 }
1180
1181 sptlrpc_cli_free_repbuf(req);
1182 /*
1183 * Pass the required reply buffer size (include space for early
1184 * reply). NB: no need to round up because alloc_repbuf will
1185 * round it up
1186 */
1187 req->rq_replen = req->rq_nob_received;
1188 req->rq_nob_received = 0;
1189 spin_lock(&req->rq_lock);
1190 req->rq_resend = 1;
1191 spin_unlock(&req->rq_lock);
1192 return 0;
1193 }
1194
1195 /*
1196 * NB Until this point, the whole of the incoming message,
1197 * including buflens, status etc is in the sender's byte order.
1198 */
1199 rc = sptlrpc_cli_unwrap_reply(req);
1200 if (rc) {
1201 DEBUG_REQ(D_ERROR, req, "unwrap reply failed (%d):", rc);
1202 return rc;
1203 }
1204
1205 /* Security layer unwrap might ask resend this request. */
1206 if (req->rq_resend)
1207 return 0;
1208
1209 rc = unpack_reply(req);
1210 if (rc)
1211 return rc;
1212
1213 /* retry indefinitely on EINPROGRESS */
1214 if (lustre_msg_get_status(req->rq_repmsg) == -EINPROGRESS &&
1215 ptlrpc_no_resend(req) == 0 && !req->rq_no_retry_einprogress) {
1216 time64_t now = ktime_get_real_seconds();
1217
1218 DEBUG_REQ(D_RPCTRACE, req, "Resending request on EINPROGRESS");
1219 spin_lock(&req->rq_lock);
1220 req->rq_resend = 1;
1221 spin_unlock(&req->rq_lock);
1222 req->rq_nr_resend++;
1223
1224 /* allocate new xid to avoid reply reconstruction */
1225 if (!req->rq_bulk) {
1226 /* new xid is already allocated for bulk in ptlrpc_check_set() */
1227 req->rq_xid = ptlrpc_next_xid();
1228 DEBUG_REQ(D_RPCTRACE, req, "Allocating new xid for resend on EINPROGRESS");
1229 }
1230
1231 /* Readjust the timeout for current conditions */
1232 ptlrpc_at_set_req_timeout(req);
1233 /*
1234 * delay resend to give a chance to the server to get ready.
1235 * The delay is increased by 1s on every resend and is capped to
1236 * the current request timeout (i.e. obd_timeout if AT is off,
1237 * or AT service time x 125% + 5s, see at_est2timeout)
1238 */
1239 if (req->rq_nr_resend > req->rq_timeout)
1240 req->rq_sent = now + req->rq_timeout;
1241 else
1242 req->rq_sent = now + req->rq_nr_resend;
1243
1244 return 0;
1245 }
1246
1247 ktime_get_real_ts64(&work_start);
1248 timediff = (work_start.tv_sec - req->rq_arrival_time.tv_sec) * USEC_PER_SEC +
1249 (work_start.tv_nsec - req->rq_arrival_time.tv_nsec) / NSEC_PER_USEC;
1250 if (obd->obd_svc_stats != NULL) {
1251 lprocfs_counter_add(obd->obd_svc_stats, PTLRPC_REQWAIT_CNTR,
1252 timediff);
1253 ptlrpc_lprocfs_rpc_sent(req, timediff);
1254 }
1255
1256 if (lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_REPLY &&
1257 lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_ERR) {
1258 DEBUG_REQ(D_ERROR, req, "invalid packet received (type=%u)",
1259 lustre_msg_get_type(req->rq_repmsg));
1260 return -EPROTO;
1261 }
1262
1263 if (lustre_msg_get_opc(req->rq_reqmsg) != OBD_PING)
1264 CFS_FAIL_TIMEOUT(OBD_FAIL_PTLRPC_PAUSE_REP, cfs_fail_val);
1265 ptlrpc_at_adj_service(req, lustre_msg_get_timeout(req->rq_repmsg));
1266 ptlrpc_at_adj_net_latency(req,
1267 lustre_msg_get_service_time(req->rq_repmsg));
1268
1269 rc = ptlrpc_check_status(req);
1270 imp->imp_connect_error = rc;
1271
1272 if (rc) {
1273 /*
1274 * Either we've been evicted, or the server has failed for
1275 * some reason. Try to reconnect, and if that fails, punt to
1276 * the upcall.
1277 */
1278 if (ll_rpc_recoverable_error(rc)) {
1279 if (req->rq_send_state != LUSTRE_IMP_FULL ||
1280 imp->imp_obd->obd_no_recov || imp->imp_dlm_fake) {
1281 return rc;
1282 }
1283 ptlrpc_request_handle_notconn(req);
1284 return rc;
1285 }
1286 } else {
1287 /*
1288 * Let's look if server sent slv. Do it only for RPC with
1289 * rc == 0.
1290 */
1291 ldlm_cli_update_pool(req);
1292 }
1293
1294 /* Store transno in reqmsg for replay. */
1295 if (!(lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)) {
1296 req->rq_transno = lustre_msg_get_transno(req->rq_repmsg);
1297 lustre_msg_set_transno(req->rq_reqmsg, req->rq_transno);
1298 }
1299
1300 if (imp->imp_replayable) {
1301 spin_lock(&imp->imp_lock);
1302 /*
1303 * No point in adding already-committed requests to the replay
1304 * list, we will just remove them immediately. b=9829
1305 */
1306 if (req->rq_transno != 0 &&
1307 (req->rq_transno >
1308 lustre_msg_get_last_committed(req->rq_repmsg) ||
1309 req->rq_replay)) {
1310 /* version recovery */
1311 ptlrpc_save_versions(req);
1312 ptlrpc_retain_replayable_request(req, imp);
1313 } else if (req->rq_commit_cb != NULL &&
1314 list_empty(&req->rq_replay_list)) {
1315 /*
1316 * NB: don't call rq_commit_cb if it's already on
1317 * rq_replay_list, ptlrpc_free_committed() will call
1318 * it later, see LU-3618 for details
1319 */
1320 spin_unlock(&imp->imp_lock);
1321 req->rq_commit_cb(req);
1322 spin_lock(&imp->imp_lock);
1323 }
1324
1325 /* Replay-enabled imports return commit-status information. */
1326 if (lustre_msg_get_last_committed(req->rq_repmsg)) {
1327 imp->imp_peer_committed_transno =
1328 lustre_msg_get_last_committed(req->rq_repmsg);
1329 }
1330
1331 ptlrpc_free_committed(imp);
1332
1333 if (!list_empty(&imp->imp_replay_list)) {
1334 struct ptlrpc_request *last;
1335
1336 last = list_entry(imp->imp_replay_list.prev,
1337 struct ptlrpc_request,
1338 rq_replay_list);
1339 /*
1340 * Requests with rq_replay stay on the list even if no
1341 * commit is expected.
1342 */
1343 if (last->rq_transno > imp->imp_peer_committed_transno)
1344 ptlrpc_pinger_commit_expected(imp);
1345 }
1346
1347 spin_unlock(&imp->imp_lock);
1348 }
1349
1350 return rc;
1351 }
1352
1353 /**
1354 * Helper function to send request \a req over the network for the first time
1355 * Also adjusts request phase.
1356 * Returns 0 on success or error code.
1357 */
ptlrpc_send_new_req(struct ptlrpc_request * req)1358 static int ptlrpc_send_new_req(struct ptlrpc_request *req)
1359 {
1360 struct obd_import *imp = req->rq_import;
1361 int rc;
1362
1363 LASSERT(req->rq_phase == RQ_PHASE_NEW);
1364 if (req->rq_sent && (req->rq_sent > ktime_get_real_seconds()) &&
1365 (!req->rq_generation_set ||
1366 req->rq_import_generation == imp->imp_generation))
1367 return 0;
1368
1369 ptlrpc_rqphase_move(req, RQ_PHASE_RPC);
1370
1371 spin_lock(&imp->imp_lock);
1372
1373 if (!req->rq_generation_set)
1374 req->rq_import_generation = imp->imp_generation;
1375
1376 if (ptlrpc_import_delay_req(imp, req, &rc)) {
1377 spin_lock(&req->rq_lock);
1378 req->rq_waiting = 1;
1379 spin_unlock(&req->rq_lock);
1380
1381 DEBUG_REQ(D_HA, req, "req from PID %d waiting for recovery: (%s != %s)",
1382 lustre_msg_get_status(req->rq_reqmsg),
1383 ptlrpc_import_state_name(req->rq_send_state),
1384 ptlrpc_import_state_name(imp->imp_state));
1385 LASSERT(list_empty(&req->rq_list));
1386 list_add_tail(&req->rq_list, &imp->imp_delayed_list);
1387 atomic_inc(&req->rq_import->imp_inflight);
1388 spin_unlock(&imp->imp_lock);
1389 return 0;
1390 }
1391
1392 if (rc != 0) {
1393 spin_unlock(&imp->imp_lock);
1394 req->rq_status = rc;
1395 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1396 return rc;
1397 }
1398
1399 LASSERT(list_empty(&req->rq_list));
1400 list_add_tail(&req->rq_list, &imp->imp_sending_list);
1401 atomic_inc(&req->rq_import->imp_inflight);
1402 spin_unlock(&imp->imp_lock);
1403
1404 lustre_msg_set_status(req->rq_reqmsg, current_pid());
1405
1406 rc = sptlrpc_req_refresh_ctx(req, -1);
1407 if (rc) {
1408 if (req->rq_err) {
1409 req->rq_status = rc;
1410 return 1;
1411 }
1412 spin_lock(&req->rq_lock);
1413 req->rq_wait_ctx = 1;
1414 spin_unlock(&req->rq_lock);
1415 return 0;
1416 }
1417
1418 CDEBUG(D_RPCTRACE, "Sending RPC pname:cluuid:pid:xid:nid:opc %s:%s:%d:%llu:%s:%d\n",
1419 current_comm(),
1420 imp->imp_obd->obd_uuid.uuid,
1421 lustre_msg_get_status(req->rq_reqmsg), req->rq_xid,
1422 libcfs_nid2str(imp->imp_connection->c_peer.nid),
1423 lustre_msg_get_opc(req->rq_reqmsg));
1424
1425 rc = ptl_send_rpc(req, 0);
1426 if (rc) {
1427 DEBUG_REQ(D_HA, req, "send failed (%d); expect timeout", rc);
1428 spin_lock(&req->rq_lock);
1429 req->rq_net_err = 1;
1430 spin_unlock(&req->rq_lock);
1431 return rc;
1432 }
1433 return 0;
1434 }
1435
ptlrpc_set_producer(struct ptlrpc_request_set * set)1436 static inline int ptlrpc_set_producer(struct ptlrpc_request_set *set)
1437 {
1438 int remaining, rc;
1439
1440 LASSERT(set->set_producer != NULL);
1441
1442 remaining = atomic_read(&set->set_remaining);
1443
1444 /*
1445 * populate the ->set_requests list with requests until we
1446 * reach the maximum number of RPCs in flight for this set
1447 */
1448 while (atomic_read(&set->set_remaining) < set->set_max_inflight) {
1449 rc = set->set_producer(set, set->set_producer_arg);
1450 if (rc == -ENOENT) {
1451 /* no more RPC to produce */
1452 set->set_producer = NULL;
1453 set->set_producer_arg = NULL;
1454 return 0;
1455 }
1456 }
1457
1458 return (atomic_read(&set->set_remaining) - remaining);
1459 }
1460
1461 /**
1462 * this sends any unsent RPCs in \a set and returns 1 if all are sent
1463 * and no more replies are expected.
1464 * (it is possible to get less replies than requests sent e.g. due to timed out
1465 * requests or requests that we had trouble to send out)
1466 *
1467 * NOTE: This function contains a potential schedule point (cond_resched()).
1468 */
ptlrpc_check_set(const struct lu_env * env,struct ptlrpc_request_set * set)1469 int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set)
1470 {
1471 struct list_head *tmp, *next;
1472 struct list_head comp_reqs;
1473 int force_timer_recalc = 0;
1474
1475 if (atomic_read(&set->set_remaining) == 0)
1476 return 1;
1477
1478 INIT_LIST_HEAD(&comp_reqs);
1479 list_for_each_safe(tmp, next, &set->set_requests) {
1480 struct ptlrpc_request *req =
1481 list_entry(tmp, struct ptlrpc_request,
1482 rq_set_chain);
1483 struct obd_import *imp = req->rq_import;
1484 int unregistered = 0;
1485 int rc = 0;
1486
1487 /*
1488 * This schedule point is mainly for the ptlrpcd caller of this
1489 * function. Most ptlrpc sets are not long-lived and unbounded
1490 * in length, but at the least the set used by the ptlrpcd is.
1491 * Since the processing time is unbounded, we need to insert an
1492 * explicit schedule point to make the thread well-behaved.
1493 */
1494 cond_resched();
1495
1496 if (req->rq_phase == RQ_PHASE_NEW &&
1497 ptlrpc_send_new_req(req)) {
1498 force_timer_recalc = 1;
1499 }
1500
1501 /* delayed send - skip */
1502 if (req->rq_phase == RQ_PHASE_NEW && req->rq_sent)
1503 continue;
1504
1505 /* delayed resend - skip */
1506 if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend &&
1507 req->rq_sent > ktime_get_real_seconds())
1508 continue;
1509
1510 if (!(req->rq_phase == RQ_PHASE_RPC ||
1511 req->rq_phase == RQ_PHASE_BULK ||
1512 req->rq_phase == RQ_PHASE_INTERPRET ||
1513 req->rq_phase == RQ_PHASE_UNREGISTERING ||
1514 req->rq_phase == RQ_PHASE_COMPLETE)) {
1515 DEBUG_REQ(D_ERROR, req, "bad phase %x", req->rq_phase);
1516 LBUG();
1517 }
1518
1519 if (req->rq_phase == RQ_PHASE_UNREGISTERING) {
1520 LASSERT(req->rq_next_phase != req->rq_phase);
1521 LASSERT(req->rq_next_phase != RQ_PHASE_UNDEFINED);
1522
1523 /*
1524 * Skip processing until reply is unlinked. We
1525 * can't return to pool before that and we can't
1526 * call interpret before that. We need to make
1527 * sure that all rdma transfers finished and will
1528 * not corrupt any data.
1529 */
1530 if (ptlrpc_client_recv_or_unlink(req) ||
1531 ptlrpc_client_bulk_active(req))
1532 continue;
1533
1534 /*
1535 * Turn fail_loc off to prevent it from looping
1536 * forever.
1537 */
1538 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK)) {
1539 OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK,
1540 OBD_FAIL_ONCE);
1541 }
1542 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK)) {
1543 OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK,
1544 OBD_FAIL_ONCE);
1545 }
1546
1547 /* Move to next phase if reply was successfully
1548 * unlinked.
1549 */
1550 ptlrpc_rqphase_move(req, req->rq_next_phase);
1551 }
1552
1553 if (req->rq_phase == RQ_PHASE_COMPLETE) {
1554 list_move_tail(&req->rq_set_chain, &comp_reqs);
1555 continue;
1556 }
1557
1558 if (req->rq_phase == RQ_PHASE_INTERPRET)
1559 goto interpret;
1560
1561 /* Note that this also will start async reply unlink. */
1562 if (req->rq_net_err && !req->rq_timedout) {
1563 ptlrpc_expire_one_request(req, 1);
1564
1565 /* Check if we still need to wait for unlink. */
1566 if (ptlrpc_client_recv_or_unlink(req) ||
1567 ptlrpc_client_bulk_active(req))
1568 continue;
1569 /* If there is no need to resend, fail it now. */
1570 if (req->rq_no_resend) {
1571 if (req->rq_status == 0)
1572 req->rq_status = -EIO;
1573 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1574 goto interpret;
1575 } else {
1576 continue;
1577 }
1578 }
1579
1580 if (req->rq_err) {
1581 spin_lock(&req->rq_lock);
1582 req->rq_replied = 0;
1583 spin_unlock(&req->rq_lock);
1584 if (req->rq_status == 0)
1585 req->rq_status = -EIO;
1586 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1587 goto interpret;
1588 }
1589
1590 /*
1591 * ptlrpc_set_wait->l_wait_event sets lwi_allow_intr
1592 * so it sets rq_intr regardless of individual rpc
1593 * timeouts. The synchronous IO waiting path sets
1594 * rq_intr irrespective of whether ptlrpcd
1595 * has seen a timeout. Our policy is to only interpret
1596 * interrupted rpcs after they have timed out, so we
1597 * need to enforce that here.
1598 */
1599
1600 if (req->rq_intr && (req->rq_timedout || req->rq_waiting ||
1601 req->rq_wait_ctx)) {
1602 req->rq_status = -EINTR;
1603 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1604 goto interpret;
1605 }
1606
1607 if (req->rq_phase == RQ_PHASE_RPC) {
1608 if (req->rq_timedout || req->rq_resend ||
1609 req->rq_waiting || req->rq_wait_ctx) {
1610 int status;
1611
1612 if (!ptlrpc_unregister_reply(req, 1))
1613 continue;
1614
1615 spin_lock(&imp->imp_lock);
1616 if (ptlrpc_import_delay_req(imp, req,
1617 &status)) {
1618 /*
1619 * put on delay list - only if we wait
1620 * recovery finished - before send
1621 */
1622 list_del_init(&req->rq_list);
1623 list_add_tail(&req->rq_list,
1624 &imp->
1625 imp_delayed_list);
1626 spin_unlock(&imp->imp_lock);
1627 continue;
1628 }
1629
1630 if (status != 0) {
1631 req->rq_status = status;
1632 ptlrpc_rqphase_move(req,
1633 RQ_PHASE_INTERPRET);
1634 spin_unlock(&imp->imp_lock);
1635 goto interpret;
1636 }
1637 if (ptlrpc_no_resend(req) &&
1638 !req->rq_wait_ctx) {
1639 req->rq_status = -ENOTCONN;
1640 ptlrpc_rqphase_move(req,
1641 RQ_PHASE_INTERPRET);
1642 spin_unlock(&imp->imp_lock);
1643 goto interpret;
1644 }
1645
1646 list_del_init(&req->rq_list);
1647 list_add_tail(&req->rq_list,
1648 &imp->imp_sending_list);
1649
1650 spin_unlock(&imp->imp_lock);
1651
1652 spin_lock(&req->rq_lock);
1653 req->rq_waiting = 0;
1654 spin_unlock(&req->rq_lock);
1655
1656 if (req->rq_timedout || req->rq_resend) {
1657 /* This is re-sending anyway, let's mark req as resend. */
1658 spin_lock(&req->rq_lock);
1659 req->rq_resend = 1;
1660 spin_unlock(&req->rq_lock);
1661 if (req->rq_bulk) {
1662 __u64 old_xid;
1663
1664 if (!ptlrpc_unregister_bulk(req, 1))
1665 continue;
1666
1667 /* ensure previous bulk fails */
1668 old_xid = req->rq_xid;
1669 req->rq_xid = ptlrpc_next_xid();
1670 CDEBUG(D_HA, "resend bulk old x%llu new x%llu\n",
1671 old_xid, req->rq_xid);
1672 }
1673 }
1674 /*
1675 * rq_wait_ctx is only touched by ptlrpcd,
1676 * so no lock is needed here.
1677 */
1678 status = sptlrpc_req_refresh_ctx(req, -1);
1679 if (status) {
1680 if (req->rq_err) {
1681 req->rq_status = status;
1682 spin_lock(&req->rq_lock);
1683 req->rq_wait_ctx = 0;
1684 spin_unlock(&req->rq_lock);
1685 force_timer_recalc = 1;
1686 } else {
1687 spin_lock(&req->rq_lock);
1688 req->rq_wait_ctx = 1;
1689 spin_unlock(&req->rq_lock);
1690 }
1691
1692 continue;
1693 } else {
1694 spin_lock(&req->rq_lock);
1695 req->rq_wait_ctx = 0;
1696 spin_unlock(&req->rq_lock);
1697 }
1698
1699 rc = ptl_send_rpc(req, 0);
1700 if (rc) {
1701 DEBUG_REQ(D_HA, req,
1702 "send failed: rc = %d", rc);
1703 force_timer_recalc = 1;
1704 spin_lock(&req->rq_lock);
1705 req->rq_net_err = 1;
1706 spin_unlock(&req->rq_lock);
1707 continue;
1708 }
1709 /* need to reset the timeout */
1710 force_timer_recalc = 1;
1711 }
1712
1713 spin_lock(&req->rq_lock);
1714
1715 if (ptlrpc_client_early(req)) {
1716 ptlrpc_at_recv_early_reply(req);
1717 spin_unlock(&req->rq_lock);
1718 continue;
1719 }
1720
1721 /* Still waiting for a reply? */
1722 if (ptlrpc_client_recv(req)) {
1723 spin_unlock(&req->rq_lock);
1724 continue;
1725 }
1726
1727 /* Did we actually receive a reply? */
1728 if (!ptlrpc_client_replied(req)) {
1729 spin_unlock(&req->rq_lock);
1730 continue;
1731 }
1732
1733 spin_unlock(&req->rq_lock);
1734
1735 /*
1736 * unlink from net because we are going to
1737 * swab in-place of reply buffer
1738 */
1739 unregistered = ptlrpc_unregister_reply(req, 1);
1740 if (!unregistered)
1741 continue;
1742
1743 req->rq_status = after_reply(req);
1744 if (req->rq_resend)
1745 continue;
1746
1747 /*
1748 * If there is no bulk associated with this request,
1749 * then we're done and should let the interpreter
1750 * process the reply. Similarly if the RPC returned
1751 * an error, and therefore the bulk will never arrive.
1752 */
1753 if (req->rq_bulk == NULL || req->rq_status < 0) {
1754 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1755 goto interpret;
1756 }
1757
1758 ptlrpc_rqphase_move(req, RQ_PHASE_BULK);
1759 }
1760
1761 LASSERT(req->rq_phase == RQ_PHASE_BULK);
1762 if (ptlrpc_client_bulk_active(req))
1763 continue;
1764
1765 if (req->rq_bulk->bd_failure) {
1766 /*
1767 * The RPC reply arrived OK, but the bulk screwed
1768 * up! Dead weird since the server told us the RPC
1769 * was good after getting the REPLY for her GET or
1770 * the ACK for her PUT.
1771 */
1772 DEBUG_REQ(D_ERROR, req, "bulk transfer failed");
1773 req->rq_status = -EIO;
1774 }
1775
1776 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1777
1778 interpret:
1779 LASSERT(req->rq_phase == RQ_PHASE_INTERPRET);
1780
1781 /*
1782 * This moves to "unregistering" phase we need to wait for
1783 * reply unlink.
1784 */
1785 if (!unregistered && !ptlrpc_unregister_reply(req, 1)) {
1786 /* start async bulk unlink too */
1787 ptlrpc_unregister_bulk(req, 1);
1788 continue;
1789 }
1790
1791 if (!ptlrpc_unregister_bulk(req, 1))
1792 continue;
1793
1794 /* When calling interpret receive should already be finished. */
1795 LASSERT(!req->rq_receiving_reply);
1796
1797 ptlrpc_req_interpret(env, req, req->rq_status);
1798
1799 if (ptlrpcd_check_work(req)) {
1800 atomic_dec(&set->set_remaining);
1801 continue;
1802 }
1803 ptlrpc_rqphase_move(req, RQ_PHASE_COMPLETE);
1804
1805 CDEBUG(req->rq_reqmsg != NULL ? D_RPCTRACE : 0,
1806 "Completed RPC pname:cluuid:pid:xid:nid:opc %s:%s:%d:%llu:%s:%d\n",
1807 current_comm(), imp->imp_obd->obd_uuid.uuid,
1808 lustre_msg_get_status(req->rq_reqmsg), req->rq_xid,
1809 libcfs_nid2str(imp->imp_connection->c_peer.nid),
1810 lustre_msg_get_opc(req->rq_reqmsg));
1811
1812 spin_lock(&imp->imp_lock);
1813 /*
1814 * Request already may be not on sending or delaying list. This
1815 * may happen in the case of marking it erroneous for the case
1816 * ptlrpc_import_delay_req(req, status) find it impossible to
1817 * allow sending this rpc and returns *status != 0.
1818 */
1819 if (!list_empty(&req->rq_list)) {
1820 list_del_init(&req->rq_list);
1821 atomic_dec(&imp->imp_inflight);
1822 }
1823 spin_unlock(&imp->imp_lock);
1824
1825 atomic_dec(&set->set_remaining);
1826 wake_up_all(&imp->imp_recovery_waitq);
1827
1828 if (set->set_producer) {
1829 /* produce a new request if possible */
1830 if (ptlrpc_set_producer(set) > 0)
1831 force_timer_recalc = 1;
1832
1833 /*
1834 * free the request that has just been completed
1835 * in order not to pollute set->set_requests
1836 */
1837 list_del_init(&req->rq_set_chain);
1838 spin_lock(&req->rq_lock);
1839 req->rq_set = NULL;
1840 req->rq_invalid_rqset = 0;
1841 spin_unlock(&req->rq_lock);
1842
1843 /* record rq_status to compute the final status later */
1844 if (req->rq_status != 0)
1845 set->set_rc = req->rq_status;
1846 ptlrpc_req_finished(req);
1847 } else {
1848 list_move_tail(&req->rq_set_chain, &comp_reqs);
1849 }
1850 }
1851
1852 /*
1853 * move completed request at the head of list so it's easier for
1854 * caller to find them
1855 */
1856 list_splice(&comp_reqs, &set->set_requests);
1857
1858 /* If we hit an error, we want to recover promptly. */
1859 return atomic_read(&set->set_remaining) == 0 || force_timer_recalc;
1860 }
1861 EXPORT_SYMBOL(ptlrpc_check_set);
1862
1863 /**
1864 * Time out request \a req. is \a async_unlink is set, that means do not wait
1865 * until LNet actually confirms network buffer unlinking.
1866 * Return 1 if we should give up further retrying attempts or 0 otherwise.
1867 */
ptlrpc_expire_one_request(struct ptlrpc_request * req,int async_unlink)1868 int ptlrpc_expire_one_request(struct ptlrpc_request *req, int async_unlink)
1869 {
1870 struct obd_import *imp = req->rq_import;
1871 int rc = 0;
1872
1873 spin_lock(&req->rq_lock);
1874 req->rq_timedout = 1;
1875 spin_unlock(&req->rq_lock);
1876
1877 DEBUG_REQ(D_WARNING, req, "Request sent has %s: [sent %lld/real %lld]",
1878 req->rq_net_err ? "failed due to network error" :
1879 ((req->rq_real_sent == 0 ||
1880 req->rq_real_sent < req->rq_sent ||
1881 req->rq_real_sent >= req->rq_deadline) ?
1882 "timed out for sent delay" : "timed out for slow reply"),
1883 (s64)req->rq_sent, (s64)req->rq_real_sent);
1884
1885 if (imp != NULL && obd_debug_peer_on_timeout)
1886 LNetCtl(IOC_LIBCFS_DEBUG_PEER, &imp->imp_connection->c_peer);
1887
1888 ptlrpc_unregister_reply(req, async_unlink);
1889 ptlrpc_unregister_bulk(req, async_unlink);
1890
1891 if (obd_dump_on_timeout)
1892 libcfs_debug_dumplog();
1893
1894 if (imp == NULL) {
1895 DEBUG_REQ(D_HA, req, "NULL import: already cleaned up?");
1896 return 1;
1897 }
1898
1899 atomic_inc(&imp->imp_timeouts);
1900
1901 /* The DLM server doesn't want recovery run on its imports. */
1902 if (imp->imp_dlm_fake)
1903 return 1;
1904
1905 /*
1906 * If this request is for recovery or other primordial tasks,
1907 * then error it out here.
1908 */
1909 if (req->rq_ctx_init || req->rq_ctx_fini ||
1910 req->rq_send_state != LUSTRE_IMP_FULL ||
1911 imp->imp_obd->obd_no_recov) {
1912 DEBUG_REQ(D_RPCTRACE, req, "err -110, sent_state=%s (now=%s)",
1913 ptlrpc_import_state_name(req->rq_send_state),
1914 ptlrpc_import_state_name(imp->imp_state));
1915 spin_lock(&req->rq_lock);
1916 req->rq_status = -ETIMEDOUT;
1917 req->rq_err = 1;
1918 spin_unlock(&req->rq_lock);
1919 return 1;
1920 }
1921
1922 /*
1923 * if a request can't be resent we can't wait for an answer after
1924 * the timeout
1925 */
1926 if (ptlrpc_no_resend(req)) {
1927 DEBUG_REQ(D_RPCTRACE, req, "TIMEOUT-NORESEND:");
1928 rc = 1;
1929 }
1930
1931 ptlrpc_fail_import(imp, lustre_msg_get_conn_cnt(req->rq_reqmsg));
1932
1933 return rc;
1934 }
1935
1936 /**
1937 * Time out all uncompleted requests in request set pointed by \a data
1938 * Callback used when waiting on sets with l_wait_event.
1939 * Always returns 1.
1940 */
ptlrpc_expired_set(void * data)1941 int ptlrpc_expired_set(void *data)
1942 {
1943 struct ptlrpc_request_set *set = data;
1944 struct list_head *tmp;
1945 time64_t now = ktime_get_real_seconds();
1946
1947 LASSERT(set != NULL);
1948
1949 /* A timeout expired. See which reqs it applies to... */
1950 list_for_each(tmp, &set->set_requests) {
1951 struct ptlrpc_request *req =
1952 list_entry(tmp, struct ptlrpc_request,
1953 rq_set_chain);
1954
1955 /* don't expire request waiting for context */
1956 if (req->rq_wait_ctx)
1957 continue;
1958
1959 /* Request in-flight? */
1960 if (!((req->rq_phase == RQ_PHASE_RPC &&
1961 !req->rq_waiting && !req->rq_resend) ||
1962 (req->rq_phase == RQ_PHASE_BULK)))
1963 continue;
1964
1965 if (req->rq_timedout || /* already dealt with */
1966 req->rq_deadline > now) /* not expired */
1967 continue;
1968
1969 /*
1970 * Deal with this guy. Do it asynchronously to not block
1971 * ptlrpcd thread.
1972 */
1973 ptlrpc_expire_one_request(req, 1);
1974 }
1975
1976 /*
1977 * When waiting for a whole set, we always break out of the
1978 * sleep so we can recalculate the timeout, or enable interrupts
1979 * if everyone's timed out.
1980 */
1981 return 1;
1982 }
1983 EXPORT_SYMBOL(ptlrpc_expired_set);
1984
1985 /**
1986 * Sets rq_intr flag in \a req under spinlock.
1987 */
ptlrpc_mark_interrupted(struct ptlrpc_request * req)1988 void ptlrpc_mark_interrupted(struct ptlrpc_request *req)
1989 {
1990 spin_lock(&req->rq_lock);
1991 req->rq_intr = 1;
1992 spin_unlock(&req->rq_lock);
1993 }
1994 EXPORT_SYMBOL(ptlrpc_mark_interrupted);
1995
1996 /**
1997 * Interrupts (sets interrupted flag) all uncompleted requests in
1998 * a set \a data. Callback for l_wait_event for interruptible waits.
1999 */
ptlrpc_interrupted_set(void * data)2000 void ptlrpc_interrupted_set(void *data)
2001 {
2002 struct ptlrpc_request_set *set = data;
2003 struct list_head *tmp;
2004
2005 LASSERT(set != NULL);
2006 CDEBUG(D_RPCTRACE, "INTERRUPTED SET %p\n", set);
2007
2008 list_for_each(tmp, &set->set_requests) {
2009 struct ptlrpc_request *req =
2010 list_entry(tmp, struct ptlrpc_request,
2011 rq_set_chain);
2012
2013 if (req->rq_phase != RQ_PHASE_RPC &&
2014 req->rq_phase != RQ_PHASE_UNREGISTERING)
2015 continue;
2016
2017 ptlrpc_mark_interrupted(req);
2018 }
2019 }
2020 EXPORT_SYMBOL(ptlrpc_interrupted_set);
2021
2022 /**
2023 * Get the smallest timeout in the set; this does NOT set a timeout.
2024 */
ptlrpc_set_next_timeout(struct ptlrpc_request_set * set)2025 int ptlrpc_set_next_timeout(struct ptlrpc_request_set *set)
2026 {
2027 struct list_head *tmp;
2028 time64_t now = ktime_get_real_seconds();
2029 int timeout = 0;
2030 struct ptlrpc_request *req;
2031 time64_t deadline;
2032
2033 list_for_each(tmp, &set->set_requests) {
2034 req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2035
2036 /* Request in-flight? */
2037 if (!(((req->rq_phase == RQ_PHASE_RPC) && !req->rq_waiting) ||
2038 (req->rq_phase == RQ_PHASE_BULK) ||
2039 (req->rq_phase == RQ_PHASE_NEW)))
2040 continue;
2041
2042 /* Already timed out. */
2043 if (req->rq_timedout)
2044 continue;
2045
2046 /* Waiting for ctx. */
2047 if (req->rq_wait_ctx)
2048 continue;
2049
2050 if (req->rq_phase == RQ_PHASE_NEW)
2051 deadline = req->rq_sent;
2052 else if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend)
2053 deadline = req->rq_sent;
2054 else
2055 deadline = req->rq_sent + req->rq_timeout;
2056
2057 if (deadline <= now) /* actually expired already */
2058 timeout = 1; /* ASAP */
2059 else if (timeout == 0 || timeout > deadline - now)
2060 timeout = deadline - now;
2061 }
2062 return timeout;
2063 }
2064 EXPORT_SYMBOL(ptlrpc_set_next_timeout);
2065
2066 /**
2067 * Send all unset request from the set and then wait until all
2068 * requests in the set complete (either get a reply, timeout, get an
2069 * error or otherwise be interrupted).
2070 * Returns 0 on success or error code otherwise.
2071 */
ptlrpc_set_wait(struct ptlrpc_request_set * set)2072 int ptlrpc_set_wait(struct ptlrpc_request_set *set)
2073 {
2074 struct list_head *tmp;
2075 struct ptlrpc_request *req;
2076 struct l_wait_info lwi;
2077 int rc, timeout;
2078
2079 if (set->set_producer)
2080 (void)ptlrpc_set_producer(set);
2081 else
2082 list_for_each(tmp, &set->set_requests) {
2083 req = list_entry(tmp, struct ptlrpc_request,
2084 rq_set_chain);
2085 if (req->rq_phase == RQ_PHASE_NEW)
2086 (void)ptlrpc_send_new_req(req);
2087 }
2088
2089 if (list_empty(&set->set_requests))
2090 return 0;
2091
2092 do {
2093 timeout = ptlrpc_set_next_timeout(set);
2094
2095 /*
2096 * wait until all complete, interrupted, or an in-flight
2097 * req times out
2098 */
2099 CDEBUG(D_RPCTRACE, "set %p going to sleep for %d seconds\n",
2100 set, timeout);
2101
2102 if (timeout == 0 && !cfs_signal_pending())
2103 /*
2104 * No requests are in-flight (ether timed out
2105 * or delayed), so we can allow interrupts.
2106 * We still want to block for a limited time,
2107 * so we allow interrupts during the timeout.
2108 */
2109 lwi = LWI_TIMEOUT_INTR_ALL(cfs_time_seconds(1),
2110 ptlrpc_expired_set,
2111 ptlrpc_interrupted_set, set);
2112 else
2113 /*
2114 * At least one request is in flight, so no
2115 * interrupts are allowed. Wait until all
2116 * complete, or an in-flight req times out.
2117 */
2118 lwi = LWI_TIMEOUT(cfs_time_seconds(timeout ? timeout : 1),
2119 ptlrpc_expired_set, set);
2120
2121 rc = l_wait_event(set->set_waitq, ptlrpc_check_set(NULL, set), &lwi);
2122
2123 /*
2124 * LU-769 - if we ignored the signal because it was already
2125 * pending when we started, we need to handle it now or we risk
2126 * it being ignored forever
2127 */
2128 if (rc == -ETIMEDOUT && !lwi.lwi_allow_intr &&
2129 cfs_signal_pending()) {
2130 sigset_t blocked_sigs =
2131 cfs_block_sigsinv(LUSTRE_FATAL_SIGS);
2132
2133 /*
2134 * In fact we only interrupt for the "fatal" signals
2135 * like SIGINT or SIGKILL. We still ignore less
2136 * important signals since ptlrpc set is not easily
2137 * reentrant from userspace again
2138 */
2139 if (cfs_signal_pending())
2140 ptlrpc_interrupted_set(set);
2141 cfs_restore_sigs(blocked_sigs);
2142 }
2143
2144 LASSERT(rc == 0 || rc == -EINTR || rc == -ETIMEDOUT);
2145
2146 /*
2147 * -EINTR => all requests have been flagged rq_intr so next
2148 * check completes.
2149 * -ETIMEDOUT => someone timed out. When all reqs have
2150 * timed out, signals are enabled allowing completion with
2151 * EINTR.
2152 * I don't really care if we go once more round the loop in
2153 * the error cases -eeb.
2154 */
2155 if (rc == 0 && atomic_read(&set->set_remaining) == 0) {
2156 list_for_each(tmp, &set->set_requests) {
2157 req = list_entry(tmp, struct ptlrpc_request,
2158 rq_set_chain);
2159 spin_lock(&req->rq_lock);
2160 req->rq_invalid_rqset = 1;
2161 spin_unlock(&req->rq_lock);
2162 }
2163 }
2164 } while (rc != 0 || atomic_read(&set->set_remaining) != 0);
2165
2166 LASSERT(atomic_read(&set->set_remaining) == 0);
2167
2168 rc = set->set_rc; /* rq_status of already freed requests if any */
2169 list_for_each(tmp, &set->set_requests) {
2170 req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2171
2172 LASSERT(req->rq_phase == RQ_PHASE_COMPLETE);
2173 if (req->rq_status != 0)
2174 rc = req->rq_status;
2175 }
2176
2177 if (set->set_interpret != NULL) {
2178 int (*interpreter)(struct ptlrpc_request_set *set, void *, int) =
2179 set->set_interpret;
2180 rc = interpreter(set, set->set_arg, rc);
2181 } else {
2182 struct ptlrpc_set_cbdata *cbdata, *n;
2183 int err;
2184
2185 list_for_each_entry_safe(cbdata, n,
2186 &set->set_cblist, psc_item) {
2187 list_del_init(&cbdata->psc_item);
2188 err = cbdata->psc_interpret(set, cbdata->psc_data, rc);
2189 if (err && !rc)
2190 rc = err;
2191 kfree(cbdata);
2192 }
2193 }
2194
2195 return rc;
2196 }
2197 EXPORT_SYMBOL(ptlrpc_set_wait);
2198
2199 /**
2200 * Helper function for request freeing.
2201 * Called when request count reached zero and request needs to be freed.
2202 * Removes request from all sorts of sending/replay lists it might be on,
2203 * frees network buffers if any are present.
2204 * If \a locked is set, that means caller is already holding import imp_lock
2205 * and so we no longer need to reobtain it (for certain lists manipulations)
2206 */
__ptlrpc_free_req(struct ptlrpc_request * request,int locked)2207 static void __ptlrpc_free_req(struct ptlrpc_request *request, int locked)
2208 {
2209 if (request == NULL)
2210 return;
2211 LASSERTF(!request->rq_receiving_reply, "req %p\n", request);
2212 LASSERTF(request->rq_rqbd == NULL, "req %p\n", request);/* client-side */
2213 LASSERTF(list_empty(&request->rq_list), "req %p\n", request);
2214 LASSERTF(list_empty(&request->rq_set_chain), "req %p\n", request);
2215 LASSERTF(list_empty(&request->rq_exp_list), "req %p\n", request);
2216 LASSERTF(!request->rq_replay, "req %p\n", request);
2217
2218 req_capsule_fini(&request->rq_pill);
2219
2220 /*
2221 * We must take it off the imp_replay_list first. Otherwise, we'll set
2222 * request->rq_reqmsg to NULL while osc_close is dereferencing it.
2223 */
2224 if (request->rq_import != NULL) {
2225 if (!locked)
2226 spin_lock(&request->rq_import->imp_lock);
2227 list_del_init(&request->rq_replay_list);
2228 if (!locked)
2229 spin_unlock(&request->rq_import->imp_lock);
2230 }
2231 LASSERTF(list_empty(&request->rq_replay_list), "req %p\n", request);
2232
2233 if (atomic_read(&request->rq_refcount) != 0) {
2234 DEBUG_REQ(D_ERROR, request,
2235 "freeing request with nonzero refcount");
2236 LBUG();
2237 }
2238
2239 if (request->rq_repbuf != NULL)
2240 sptlrpc_cli_free_repbuf(request);
2241 if (request->rq_export != NULL) {
2242 class_export_put(request->rq_export);
2243 request->rq_export = NULL;
2244 }
2245 if (request->rq_import != NULL) {
2246 class_import_put(request->rq_import);
2247 request->rq_import = NULL;
2248 }
2249 if (request->rq_bulk != NULL)
2250 ptlrpc_free_bulk_pin(request->rq_bulk);
2251
2252 if (request->rq_reqbuf != NULL || request->rq_clrbuf != NULL)
2253 sptlrpc_cli_free_reqbuf(request);
2254
2255 if (request->rq_cli_ctx)
2256 sptlrpc_req_put_ctx(request, !locked);
2257
2258 if (request->rq_pool)
2259 __ptlrpc_free_req_to_pool(request);
2260 else
2261 ptlrpc_request_cache_free(request);
2262 }
2263
2264 /**
2265 * Helper function
2266 * Drops one reference count for request \a request.
2267 * \a locked set indicates that caller holds import imp_lock.
2268 * Frees the request when reference count reaches zero.
2269 */
__ptlrpc_req_finished(struct ptlrpc_request * request,int locked)2270 static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked)
2271 {
2272 if (request == NULL)
2273 return 1;
2274
2275 if (request == LP_POISON ||
2276 request->rq_reqmsg == LP_POISON) {
2277 CERROR("dereferencing freed request (bug 575)\n");
2278 LBUG();
2279 return 1;
2280 }
2281
2282 DEBUG_REQ(D_INFO, request, "refcount now %u",
2283 atomic_read(&request->rq_refcount) - 1);
2284
2285 if (atomic_dec_and_test(&request->rq_refcount)) {
2286 __ptlrpc_free_req(request, locked);
2287 return 1;
2288 }
2289
2290 return 0;
2291 }
2292
2293 /**
2294 * Drops one reference count for a request.
2295 */
ptlrpc_req_finished(struct ptlrpc_request * request)2296 void ptlrpc_req_finished(struct ptlrpc_request *request)
2297 {
2298 __ptlrpc_req_finished(request, 0);
2299 }
2300 EXPORT_SYMBOL(ptlrpc_req_finished);
2301
2302 /**
2303 * Returns xid of a \a request
2304 */
ptlrpc_req_xid(struct ptlrpc_request * request)2305 __u64 ptlrpc_req_xid(struct ptlrpc_request *request)
2306 {
2307 return request->rq_xid;
2308 }
2309 EXPORT_SYMBOL(ptlrpc_req_xid);
2310
2311 /**
2312 * Disengage the client's reply buffer from the network
2313 * NB does _NOT_ unregister any client-side bulk.
2314 * IDEMPOTENT, but _not_ safe against concurrent callers.
2315 * The request owner (i.e. the thread doing the I/O) must call...
2316 * Returns 0 on success or 1 if unregistering cannot be made.
2317 */
ptlrpc_unregister_reply(struct ptlrpc_request * request,int async)2318 int ptlrpc_unregister_reply(struct ptlrpc_request *request, int async)
2319 {
2320 int rc;
2321 wait_queue_head_t *wq;
2322 struct l_wait_info lwi;
2323
2324 /* Might sleep. */
2325 LASSERT(!in_interrupt());
2326
2327 /* Let's setup deadline for reply unlink. */
2328 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
2329 async && request->rq_reply_deadline == 0)
2330 request->rq_reply_deadline = ktime_get_real_seconds()+LONG_UNLINK;
2331
2332 /* Nothing left to do. */
2333 if (!ptlrpc_client_recv_or_unlink(request))
2334 return 1;
2335
2336 LNetMDUnlink(request->rq_reply_md_h);
2337
2338 /* Let's check it once again. */
2339 if (!ptlrpc_client_recv_or_unlink(request))
2340 return 1;
2341
2342 /* Move to "Unregistering" phase as reply was not unlinked yet. */
2343 ptlrpc_rqphase_move(request, RQ_PHASE_UNREGISTERING);
2344
2345 /* Do not wait for unlink to finish. */
2346 if (async)
2347 return 0;
2348
2349 /*
2350 * We have to l_wait_event() whatever the result, to give liblustre
2351 * a chance to run reply_in_callback(), and to make sure we've
2352 * unlinked before returning a req to the pool.
2353 */
2354 if (request->rq_set != NULL)
2355 wq = &request->rq_set->set_waitq;
2356 else
2357 wq = &request->rq_reply_waitq;
2358
2359 for (;;) {
2360 /*
2361 * Network access will complete in finite time but the HUGE
2362 * timeout lets us CWARN for visibility of sluggish NALs
2363 */
2364 lwi = LWI_TIMEOUT_INTERVAL(cfs_time_seconds(LONG_UNLINK),
2365 cfs_time_seconds(1), NULL, NULL);
2366 rc = l_wait_event(*wq, !ptlrpc_client_recv_or_unlink(request),
2367 &lwi);
2368 if (rc == 0) {
2369 ptlrpc_rqphase_move(request, request->rq_next_phase);
2370 return 1;
2371 }
2372
2373 LASSERT(rc == -ETIMEDOUT);
2374 DEBUG_REQ(D_WARNING, request,
2375 "Unexpectedly long timeout rvcng=%d unlnk=%d/%d",
2376 request->rq_receiving_reply,
2377 request->rq_req_unlink, request->rq_reply_unlink);
2378 }
2379 return 0;
2380 }
2381 EXPORT_SYMBOL(ptlrpc_unregister_reply);
2382
ptlrpc_free_request(struct ptlrpc_request * req)2383 static void ptlrpc_free_request(struct ptlrpc_request *req)
2384 {
2385 spin_lock(&req->rq_lock);
2386 req->rq_replay = 0;
2387 spin_unlock(&req->rq_lock);
2388
2389 if (req->rq_commit_cb != NULL)
2390 req->rq_commit_cb(req);
2391 list_del_init(&req->rq_replay_list);
2392
2393 __ptlrpc_req_finished(req, 1);
2394 }
2395
2396 /**
2397 * the request is committed and dropped from the replay list of its import
2398 */
ptlrpc_request_committed(struct ptlrpc_request * req,int force)2399 void ptlrpc_request_committed(struct ptlrpc_request *req, int force)
2400 {
2401 struct obd_import *imp = req->rq_import;
2402
2403 spin_lock(&imp->imp_lock);
2404 if (list_empty(&req->rq_replay_list)) {
2405 spin_unlock(&imp->imp_lock);
2406 return;
2407 }
2408
2409 if (force || req->rq_transno <= imp->imp_peer_committed_transno)
2410 ptlrpc_free_request(req);
2411
2412 spin_unlock(&imp->imp_lock);
2413 }
2414 EXPORT_SYMBOL(ptlrpc_request_committed);
2415
2416 /**
2417 * Iterates through replay_list on import and prunes
2418 * all requests have transno smaller than last_committed for the
2419 * import and don't have rq_replay set.
2420 * Since requests are sorted in transno order, stops when meeting first
2421 * transno bigger than last_committed.
2422 * caller must hold imp->imp_lock
2423 */
ptlrpc_free_committed(struct obd_import * imp)2424 void ptlrpc_free_committed(struct obd_import *imp)
2425 {
2426 struct ptlrpc_request *req, *saved;
2427 struct ptlrpc_request *last_req = NULL; /* temporary fire escape */
2428 bool skip_committed_list = true;
2429
2430 LASSERT(imp != NULL);
2431 assert_spin_locked(&imp->imp_lock);
2432
2433 if (imp->imp_peer_committed_transno == imp->imp_last_transno_checked &&
2434 imp->imp_generation == imp->imp_last_generation_checked) {
2435 CDEBUG(D_INFO, "%s: skip recheck: last_committed %llu\n",
2436 imp->imp_obd->obd_name, imp->imp_peer_committed_transno);
2437 return;
2438 }
2439 CDEBUG(D_RPCTRACE, "%s: committing for last_committed %llu gen %d\n",
2440 imp->imp_obd->obd_name, imp->imp_peer_committed_transno,
2441 imp->imp_generation);
2442
2443 if (imp->imp_generation != imp->imp_last_generation_checked)
2444 skip_committed_list = false;
2445
2446 imp->imp_last_transno_checked = imp->imp_peer_committed_transno;
2447 imp->imp_last_generation_checked = imp->imp_generation;
2448
2449 list_for_each_entry_safe(req, saved, &imp->imp_replay_list,
2450 rq_replay_list) {
2451 /* XXX ok to remove when 1357 resolved - rread 05/29/03 */
2452 LASSERT(req != last_req);
2453 last_req = req;
2454
2455 if (req->rq_transno == 0) {
2456 DEBUG_REQ(D_EMERG, req, "zero transno during replay");
2457 LBUG();
2458 }
2459 if (req->rq_import_generation < imp->imp_generation) {
2460 DEBUG_REQ(D_RPCTRACE, req, "free request with old gen");
2461 goto free_req;
2462 }
2463
2464 /* not yet committed */
2465 if (req->rq_transno > imp->imp_peer_committed_transno) {
2466 DEBUG_REQ(D_RPCTRACE, req, "stopping search");
2467 break;
2468 }
2469
2470 if (req->rq_replay) {
2471 DEBUG_REQ(D_RPCTRACE, req, "keeping (FL_REPLAY)");
2472 list_move_tail(&req->rq_replay_list,
2473 &imp->imp_committed_list);
2474 continue;
2475 }
2476
2477 DEBUG_REQ(D_INFO, req, "commit (last_committed %llu)",
2478 imp->imp_peer_committed_transno);
2479 free_req:
2480 ptlrpc_free_request(req);
2481 }
2482 if (skip_committed_list)
2483 return;
2484
2485 list_for_each_entry_safe(req, saved, &imp->imp_committed_list,
2486 rq_replay_list) {
2487 LASSERT(req->rq_transno != 0);
2488 if (req->rq_import_generation < imp->imp_generation) {
2489 DEBUG_REQ(D_RPCTRACE, req, "free stale open request");
2490 ptlrpc_free_request(req);
2491 }
2492 }
2493 }
2494
2495 /**
2496 * Schedule previously sent request for resend.
2497 * For bulk requests we assign new xid (to avoid problems with
2498 * lost replies and therefore several transfers landing into same buffer
2499 * from different sending attempts).
2500 */
ptlrpc_resend_req(struct ptlrpc_request * req)2501 void ptlrpc_resend_req(struct ptlrpc_request *req)
2502 {
2503 DEBUG_REQ(D_HA, req, "going to resend");
2504 spin_lock(&req->rq_lock);
2505
2506 /*
2507 * Request got reply but linked to the import list still.
2508 * Let ptlrpc_check_set() to process it.
2509 */
2510 if (ptlrpc_client_replied(req)) {
2511 spin_unlock(&req->rq_lock);
2512 DEBUG_REQ(D_HA, req, "it has reply, so skip it");
2513 return;
2514 }
2515
2516 lustre_msg_set_handle(req->rq_reqmsg, &(struct lustre_handle){ 0 });
2517 req->rq_status = -EAGAIN;
2518
2519 req->rq_resend = 1;
2520 req->rq_net_err = 0;
2521 req->rq_timedout = 0;
2522 if (req->rq_bulk) {
2523 __u64 old_xid = req->rq_xid;
2524
2525 /* ensure previous bulk fails */
2526 req->rq_xid = ptlrpc_next_xid();
2527 CDEBUG(D_HA, "resend bulk old x%llu new x%llu\n",
2528 old_xid, req->rq_xid);
2529 }
2530 ptlrpc_client_wake_req(req);
2531 spin_unlock(&req->rq_lock);
2532 }
2533 EXPORT_SYMBOL(ptlrpc_resend_req);
2534
2535 /**
2536 * Grab additional reference on a request \a req
2537 */
ptlrpc_request_addref(struct ptlrpc_request * req)2538 struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req)
2539 {
2540 atomic_inc(&req->rq_refcount);
2541 return req;
2542 }
2543 EXPORT_SYMBOL(ptlrpc_request_addref);
2544
2545 /**
2546 * Add a request to import replay_list.
2547 * Must be called under imp_lock
2548 */
ptlrpc_retain_replayable_request(struct ptlrpc_request * req,struct obd_import * imp)2549 void ptlrpc_retain_replayable_request(struct ptlrpc_request *req,
2550 struct obd_import *imp)
2551 {
2552 struct list_head *tmp;
2553
2554 assert_spin_locked(&imp->imp_lock);
2555
2556 if (req->rq_transno == 0) {
2557 DEBUG_REQ(D_EMERG, req, "saving request with zero transno");
2558 LBUG();
2559 }
2560
2561 /*
2562 * clear this for new requests that were resent as well
2563 * as resent replayed requests.
2564 */
2565 lustre_msg_clear_flags(req->rq_reqmsg, MSG_RESENT);
2566
2567 /* don't re-add requests that have been replayed */
2568 if (!list_empty(&req->rq_replay_list))
2569 return;
2570
2571 lustre_msg_add_flags(req->rq_reqmsg, MSG_REPLAY);
2572
2573 LASSERT(imp->imp_replayable);
2574 /* Balanced in ptlrpc_free_committed, usually. */
2575 ptlrpc_request_addref(req);
2576 list_for_each_prev(tmp, &imp->imp_replay_list) {
2577 struct ptlrpc_request *iter =
2578 list_entry(tmp, struct ptlrpc_request,
2579 rq_replay_list);
2580
2581 /*
2582 * We may have duplicate transnos if we create and then
2583 * open a file, or for closes retained if to match creating
2584 * opens, so use req->rq_xid as a secondary key.
2585 * (See bugs 684, 685, and 428.)
2586 * XXX no longer needed, but all opens need transnos!
2587 */
2588 if (iter->rq_transno > req->rq_transno)
2589 continue;
2590
2591 if (iter->rq_transno == req->rq_transno) {
2592 LASSERT(iter->rq_xid != req->rq_xid);
2593 if (iter->rq_xid > req->rq_xid)
2594 continue;
2595 }
2596
2597 list_add(&req->rq_replay_list, &iter->rq_replay_list);
2598 return;
2599 }
2600
2601 list_add(&req->rq_replay_list, &imp->imp_replay_list);
2602 }
2603 EXPORT_SYMBOL(ptlrpc_retain_replayable_request);
2604
2605 /**
2606 * Send request and wait until it completes.
2607 * Returns request processing status.
2608 */
ptlrpc_queue_wait(struct ptlrpc_request * req)2609 int ptlrpc_queue_wait(struct ptlrpc_request *req)
2610 {
2611 struct ptlrpc_request_set *set;
2612 int rc;
2613
2614 LASSERT(req->rq_set == NULL);
2615 LASSERT(!req->rq_receiving_reply);
2616
2617 set = ptlrpc_prep_set();
2618 if (set == NULL) {
2619 CERROR("Unable to allocate ptlrpc set.");
2620 return -ENOMEM;
2621 }
2622
2623 /* for distributed debugging */
2624 lustre_msg_set_status(req->rq_reqmsg, current_pid());
2625
2626 /* add a ref for the set (see comment in ptlrpc_set_add_req) */
2627 ptlrpc_request_addref(req);
2628 ptlrpc_set_add_req(set, req);
2629 rc = ptlrpc_set_wait(set);
2630 ptlrpc_set_destroy(set);
2631
2632 return rc;
2633 }
2634 EXPORT_SYMBOL(ptlrpc_queue_wait);
2635
2636 struct ptlrpc_replay_async_args {
2637 int praa_old_state;
2638 int praa_old_status;
2639 };
2640
2641 /**
2642 * Callback used for replayed requests reply processing.
2643 * In case of successful reply calls registered request replay callback.
2644 * In case of error restart replay process.
2645 */
ptlrpc_replay_interpret(const struct lu_env * env,struct ptlrpc_request * req,void * data,int rc)2646 static int ptlrpc_replay_interpret(const struct lu_env *env,
2647 struct ptlrpc_request *req,
2648 void *data, int rc)
2649 {
2650 struct ptlrpc_replay_async_args *aa = data;
2651 struct obd_import *imp = req->rq_import;
2652
2653 atomic_dec(&imp->imp_replay_inflight);
2654
2655 if (!ptlrpc_client_replied(req)) {
2656 CERROR("request replay timed out, restarting recovery\n");
2657 rc = -ETIMEDOUT;
2658 goto out;
2659 }
2660
2661 if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR &&
2662 (lustre_msg_get_status(req->rq_repmsg) == -ENOTCONN ||
2663 lustre_msg_get_status(req->rq_repmsg) == -ENODEV)) {
2664 rc = lustre_msg_get_status(req->rq_repmsg);
2665 goto out;
2666 }
2667
2668 /** VBR: check version failure */
2669 if (lustre_msg_get_status(req->rq_repmsg) == -EOVERFLOW) {
2670 /** replay was failed due to version mismatch */
2671 DEBUG_REQ(D_WARNING, req, "Version mismatch during replay\n");
2672 spin_lock(&imp->imp_lock);
2673 imp->imp_vbr_failed = 1;
2674 imp->imp_no_lock_replay = 1;
2675 spin_unlock(&imp->imp_lock);
2676 lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
2677 } else {
2678 /** The transno had better not change over replay. */
2679 LASSERTF(lustre_msg_get_transno(req->rq_reqmsg) ==
2680 lustre_msg_get_transno(req->rq_repmsg) ||
2681 lustre_msg_get_transno(req->rq_repmsg) == 0,
2682 "%#llx/%#llx\n",
2683 lustre_msg_get_transno(req->rq_reqmsg),
2684 lustre_msg_get_transno(req->rq_repmsg));
2685 }
2686
2687 spin_lock(&imp->imp_lock);
2688 /** if replays by version then gap occur on server, no trust to locks */
2689 if (lustre_msg_get_flags(req->rq_repmsg) & MSG_VERSION_REPLAY)
2690 imp->imp_no_lock_replay = 1;
2691 imp->imp_last_replay_transno = lustre_msg_get_transno(req->rq_reqmsg);
2692 spin_unlock(&imp->imp_lock);
2693 LASSERT(imp->imp_last_replay_transno);
2694
2695 /* transaction number shouldn't be bigger than the latest replayed */
2696 if (req->rq_transno > lustre_msg_get_transno(req->rq_reqmsg)) {
2697 DEBUG_REQ(D_ERROR, req,
2698 "Reported transno %llu is bigger than the replayed one: %llu",
2699 req->rq_transno,
2700 lustre_msg_get_transno(req->rq_reqmsg));
2701 rc = -EINVAL;
2702 goto out;
2703 }
2704
2705 DEBUG_REQ(D_HA, req, "got rep");
2706
2707 /* let the callback do fixups, possibly including in the request */
2708 if (req->rq_replay_cb)
2709 req->rq_replay_cb(req);
2710
2711 if (ptlrpc_client_replied(req) &&
2712 lustre_msg_get_status(req->rq_repmsg) != aa->praa_old_status) {
2713 DEBUG_REQ(D_ERROR, req, "status %d, old was %d",
2714 lustre_msg_get_status(req->rq_repmsg),
2715 aa->praa_old_status);
2716 } else {
2717 /* Put it back for re-replay. */
2718 lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
2719 }
2720
2721 /*
2722 * Errors while replay can set transno to 0, but
2723 * imp_last_replay_transno shouldn't be set to 0 anyway
2724 */
2725 if (req->rq_transno == 0)
2726 CERROR("Transno is 0 during replay!\n");
2727
2728 /* continue with recovery */
2729 rc = ptlrpc_import_recovery_state_machine(imp);
2730 out:
2731 req->rq_send_state = aa->praa_old_state;
2732
2733 if (rc != 0)
2734 /* this replay failed, so restart recovery */
2735 ptlrpc_connect_import(imp);
2736
2737 return rc;
2738 }
2739
2740 /**
2741 * Prepares and queues request for replay.
2742 * Adds it to ptlrpcd queue for actual sending.
2743 * Returns 0 on success.
2744 */
ptlrpc_replay_req(struct ptlrpc_request * req)2745 int ptlrpc_replay_req(struct ptlrpc_request *req)
2746 {
2747 struct ptlrpc_replay_async_args *aa;
2748
2749 LASSERT(req->rq_import->imp_state == LUSTRE_IMP_REPLAY);
2750
2751 LASSERT(sizeof(*aa) <= sizeof(req->rq_async_args));
2752 aa = ptlrpc_req_async_args(req);
2753 memset(aa, 0, sizeof(*aa));
2754
2755 /* Prepare request to be resent with ptlrpcd */
2756 aa->praa_old_state = req->rq_send_state;
2757 req->rq_send_state = LUSTRE_IMP_REPLAY;
2758 req->rq_phase = RQ_PHASE_NEW;
2759 req->rq_next_phase = RQ_PHASE_UNDEFINED;
2760 if (req->rq_repmsg)
2761 aa->praa_old_status = lustre_msg_get_status(req->rq_repmsg);
2762 req->rq_status = 0;
2763 req->rq_interpret_reply = ptlrpc_replay_interpret;
2764 /* Readjust the timeout for current conditions */
2765 ptlrpc_at_set_req_timeout(req);
2766
2767 /*
2768 * Tell server the net_latency, so the server can calculate how long
2769 * it should wait for next replay
2770 */
2771 lustre_msg_set_service_time(req->rq_reqmsg,
2772 ptlrpc_at_get_net_latency(req));
2773 DEBUG_REQ(D_HA, req, "REPLAY");
2774
2775 atomic_inc(&req->rq_import->imp_replay_inflight);
2776 ptlrpc_request_addref(req); /* ptlrpcd needs a ref */
2777
2778 ptlrpcd_add_req(req);
2779 return 0;
2780 }
2781 EXPORT_SYMBOL(ptlrpc_replay_req);
2782
2783 /**
2784 * Aborts all in-flight request on import \a imp sending and delayed lists
2785 */
ptlrpc_abort_inflight(struct obd_import * imp)2786 void ptlrpc_abort_inflight(struct obd_import *imp)
2787 {
2788 struct list_head *tmp, *n;
2789
2790 /*
2791 * Make sure that no new requests get processed for this import.
2792 * ptlrpc_{queue,set}_wait must (and does) hold imp_lock while testing
2793 * this flag and then putting requests on sending_list or delayed_list.
2794 */
2795 spin_lock(&imp->imp_lock);
2796
2797 /*
2798 * XXX locking? Maybe we should remove each request with the list
2799 * locked? Also, how do we know if the requests on the list are
2800 * being freed at this time?
2801 */
2802 list_for_each_safe(tmp, n, &imp->imp_sending_list) {
2803 struct ptlrpc_request *req =
2804 list_entry(tmp, struct ptlrpc_request, rq_list);
2805
2806 DEBUG_REQ(D_RPCTRACE, req, "inflight");
2807
2808 spin_lock(&req->rq_lock);
2809 if (req->rq_import_generation < imp->imp_generation) {
2810 req->rq_err = 1;
2811 req->rq_status = -EIO;
2812 ptlrpc_client_wake_req(req);
2813 }
2814 spin_unlock(&req->rq_lock);
2815 }
2816
2817 list_for_each_safe(tmp, n, &imp->imp_delayed_list) {
2818 struct ptlrpc_request *req =
2819 list_entry(tmp, struct ptlrpc_request, rq_list);
2820
2821 DEBUG_REQ(D_RPCTRACE, req, "aborting waiting req");
2822
2823 spin_lock(&req->rq_lock);
2824 if (req->rq_import_generation < imp->imp_generation) {
2825 req->rq_err = 1;
2826 req->rq_status = -EIO;
2827 ptlrpc_client_wake_req(req);
2828 }
2829 spin_unlock(&req->rq_lock);
2830 }
2831
2832 /*
2833 * Last chance to free reqs left on the replay list, but we
2834 * will still leak reqs that haven't committed.
2835 */
2836 if (imp->imp_replayable)
2837 ptlrpc_free_committed(imp);
2838
2839 spin_unlock(&imp->imp_lock);
2840 }
2841 EXPORT_SYMBOL(ptlrpc_abort_inflight);
2842
2843 /**
2844 * Abort all uncompleted requests in request set \a set
2845 */
ptlrpc_abort_set(struct ptlrpc_request_set * set)2846 void ptlrpc_abort_set(struct ptlrpc_request_set *set)
2847 {
2848 struct list_head *tmp, *pos;
2849
2850 LASSERT(set != NULL);
2851
2852 list_for_each_safe(pos, tmp, &set->set_requests) {
2853 struct ptlrpc_request *req =
2854 list_entry(pos, struct ptlrpc_request,
2855 rq_set_chain);
2856
2857 spin_lock(&req->rq_lock);
2858 if (req->rq_phase != RQ_PHASE_RPC) {
2859 spin_unlock(&req->rq_lock);
2860 continue;
2861 }
2862
2863 req->rq_err = 1;
2864 req->rq_status = -EINTR;
2865 ptlrpc_client_wake_req(req);
2866 spin_unlock(&req->rq_lock);
2867 }
2868 }
2869
2870 static __u64 ptlrpc_last_xid;
2871 static spinlock_t ptlrpc_last_xid_lock;
2872
2873 /**
2874 * Initialize the XID for the node. This is common among all requests on
2875 * this node, and only requires the property that it is monotonically
2876 * increasing. It does not need to be sequential. Since this is also used
2877 * as the RDMA match bits, it is important that a single client NOT have
2878 * the same match bits for two different in-flight requests, hence we do
2879 * NOT want to have an XID per target or similar.
2880 *
2881 * To avoid an unlikely collision between match bits after a client reboot
2882 * (which would deliver old data into the wrong RDMA buffer) initialize
2883 * the XID based on the current time, assuming a maximum RPC rate of 1M RPC/s.
2884 * If the time is clearly incorrect, we instead use a 62-bit random number.
2885 * In the worst case the random number will overflow 1M RPCs per second in
2886 * 9133 years, or permutations thereof.
2887 */
2888 #define YEAR_2004 (1ULL << 30)
ptlrpc_init_xid(void)2889 void ptlrpc_init_xid(void)
2890 {
2891 time64_t now = ktime_get_real_seconds();
2892
2893 spin_lock_init(&ptlrpc_last_xid_lock);
2894 if (now < YEAR_2004) {
2895 cfs_get_random_bytes(&ptlrpc_last_xid, sizeof(ptlrpc_last_xid));
2896 ptlrpc_last_xid >>= 2;
2897 ptlrpc_last_xid |= (1ULL << 61);
2898 } else {
2899 ptlrpc_last_xid = (__u64)now << 20;
2900 }
2901
2902 /* Always need to be aligned to a power-of-two for multi-bulk BRW */
2903 CLASSERT(((PTLRPC_BULK_OPS_COUNT - 1) & PTLRPC_BULK_OPS_COUNT) == 0);
2904 ptlrpc_last_xid &= PTLRPC_BULK_OPS_MASK;
2905 }
2906
2907 /**
2908 * Increase xid and returns resulting new value to the caller.
2909 *
2910 * Multi-bulk BRW RPCs consume multiple XIDs for each bulk transfer, starting
2911 * at the returned xid, up to xid + PTLRPC_BULK_OPS_COUNT - 1. The BRW RPC
2912 * itself uses the last bulk xid needed, so the server can determine the
2913 * the number of bulk transfers from the RPC XID and a bitmask. The starting
2914 * xid must align to a power-of-two value.
2915 *
2916 * This is assumed to be true due to the initial ptlrpc_last_xid
2917 * value also being initialized to a power-of-two value. LU-1431
2918 */
ptlrpc_next_xid(void)2919 __u64 ptlrpc_next_xid(void)
2920 {
2921 __u64 next;
2922
2923 spin_lock(&ptlrpc_last_xid_lock);
2924 next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
2925 ptlrpc_last_xid = next;
2926 spin_unlock(&ptlrpc_last_xid_lock);
2927
2928 return next;
2929 }
2930 EXPORT_SYMBOL(ptlrpc_next_xid);
2931
2932 /**
2933 * Get a glimpse at what next xid value might have been.
2934 * Returns possible next xid.
2935 */
ptlrpc_sample_next_xid(void)2936 __u64 ptlrpc_sample_next_xid(void)
2937 {
2938 #if BITS_PER_LONG == 32
2939 /* need to avoid possible word tearing on 32-bit systems */
2940 __u64 next;
2941
2942 spin_lock(&ptlrpc_last_xid_lock);
2943 next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
2944 spin_unlock(&ptlrpc_last_xid_lock);
2945
2946 return next;
2947 #else
2948 /* No need to lock, since returned value is racy anyways */
2949 return ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
2950 #endif
2951 }
2952 EXPORT_SYMBOL(ptlrpc_sample_next_xid);
2953
2954 /**
2955 * Functions for operating ptlrpc workers.
2956 *
2957 * A ptlrpc work is a function which will be running inside ptlrpc context.
2958 * The callback shouldn't sleep otherwise it will block that ptlrpcd thread.
2959 *
2960 * 1. after a work is created, it can be used many times, that is:
2961 * handler = ptlrpcd_alloc_work();
2962 * ptlrpcd_queue_work();
2963 *
2964 * queue it again when necessary:
2965 * ptlrpcd_queue_work();
2966 * ptlrpcd_destroy_work();
2967 * 2. ptlrpcd_queue_work() can be called by multiple processes meanwhile, but
2968 * it will only be queued once in any time. Also as its name implies, it may
2969 * have delay before it really runs by ptlrpcd thread.
2970 */
2971 struct ptlrpc_work_async_args {
2972 int (*cb)(const struct lu_env *, void *);
2973 void *cbdata;
2974 };
2975
ptlrpcd_add_work_req(struct ptlrpc_request * req)2976 static void ptlrpcd_add_work_req(struct ptlrpc_request *req)
2977 {
2978 /* re-initialize the req */
2979 req->rq_timeout = obd_timeout;
2980 req->rq_sent = ktime_get_real_seconds();
2981 req->rq_deadline = req->rq_sent + req->rq_timeout;
2982 req->rq_reply_deadline = req->rq_deadline;
2983 req->rq_phase = RQ_PHASE_INTERPRET;
2984 req->rq_next_phase = RQ_PHASE_COMPLETE;
2985 req->rq_xid = ptlrpc_next_xid();
2986 req->rq_import_generation = req->rq_import->imp_generation;
2987
2988 ptlrpcd_add_req(req);
2989 }
2990
work_interpreter(const struct lu_env * env,struct ptlrpc_request * req,void * data,int rc)2991 static int work_interpreter(const struct lu_env *env,
2992 struct ptlrpc_request *req, void *data, int rc)
2993 {
2994 struct ptlrpc_work_async_args *arg = data;
2995
2996 LASSERT(ptlrpcd_check_work(req));
2997 LASSERT(arg->cb != NULL);
2998
2999 rc = arg->cb(env, arg->cbdata);
3000
3001 list_del_init(&req->rq_set_chain);
3002 req->rq_set = NULL;
3003
3004 if (atomic_dec_return(&req->rq_refcount) > 1) {
3005 atomic_set(&req->rq_refcount, 2);
3006 ptlrpcd_add_work_req(req);
3007 }
3008 return rc;
3009 }
3010
3011 static int worker_format;
3012
ptlrpcd_check_work(struct ptlrpc_request * req)3013 static int ptlrpcd_check_work(struct ptlrpc_request *req)
3014 {
3015 return req->rq_pill.rc_fmt == (void *)&worker_format;
3016 }
3017
3018 /**
3019 * Create a work for ptlrpc.
3020 */
ptlrpcd_alloc_work(struct obd_import * imp,int (* cb)(const struct lu_env *,void *),void * cbdata)3021 void *ptlrpcd_alloc_work(struct obd_import *imp,
3022 int (*cb)(const struct lu_env *, void *), void *cbdata)
3023 {
3024 struct ptlrpc_request *req = NULL;
3025 struct ptlrpc_work_async_args *args;
3026
3027 might_sleep();
3028
3029 if (cb == NULL)
3030 return ERR_PTR(-EINVAL);
3031
3032 /* copy some code from deprecated fakereq. */
3033 req = ptlrpc_request_cache_alloc(GFP_NOFS);
3034 if (req == NULL) {
3035 CERROR("ptlrpc: run out of memory!\n");
3036 return ERR_PTR(-ENOMEM);
3037 }
3038
3039 req->rq_send_state = LUSTRE_IMP_FULL;
3040 req->rq_type = PTL_RPC_MSG_REQUEST;
3041 req->rq_import = class_import_get(imp);
3042 req->rq_export = NULL;
3043 req->rq_interpret_reply = work_interpreter;
3044 /* don't want reply */
3045 req->rq_receiving_reply = 0;
3046 req->rq_req_unlink = req->rq_reply_unlink = 0;
3047 req->rq_no_delay = req->rq_no_resend = 1;
3048 req->rq_pill.rc_fmt = (void *)&worker_format;
3049
3050 spin_lock_init(&req->rq_lock);
3051 INIT_LIST_HEAD(&req->rq_list);
3052 INIT_LIST_HEAD(&req->rq_replay_list);
3053 INIT_LIST_HEAD(&req->rq_set_chain);
3054 INIT_LIST_HEAD(&req->rq_history_list);
3055 INIT_LIST_HEAD(&req->rq_exp_list);
3056 init_waitqueue_head(&req->rq_reply_waitq);
3057 init_waitqueue_head(&req->rq_set_waitq);
3058 atomic_set(&req->rq_refcount, 1);
3059
3060 CLASSERT(sizeof(*args) <= sizeof(req->rq_async_args));
3061 args = ptlrpc_req_async_args(req);
3062 args->cb = cb;
3063 args->cbdata = cbdata;
3064
3065 return req;
3066 }
3067 EXPORT_SYMBOL(ptlrpcd_alloc_work);
3068
ptlrpcd_destroy_work(void * handler)3069 void ptlrpcd_destroy_work(void *handler)
3070 {
3071 struct ptlrpc_request *req = handler;
3072
3073 if (req)
3074 ptlrpc_req_finished(req);
3075 }
3076 EXPORT_SYMBOL(ptlrpcd_destroy_work);
3077
ptlrpcd_queue_work(void * handler)3078 int ptlrpcd_queue_work(void *handler)
3079 {
3080 struct ptlrpc_request *req = handler;
3081
3082 /*
3083 * Check if the req is already being queued.
3084 *
3085 * Here comes a trick: it lacks a way of checking if a req is being
3086 * processed reliably in ptlrpc. Here I have to use refcount of req
3087 * for this purpose. This is okay because the caller should use this
3088 * req as opaque data. - Jinshan
3089 */
3090 LASSERT(atomic_read(&req->rq_refcount) > 0);
3091 if (atomic_inc_return(&req->rq_refcount) == 2)
3092 ptlrpcd_add_work_req(req);
3093 return 0;
3094 }
3095 EXPORT_SYMBOL(ptlrpcd_queue_work);
3096