• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
6 #include <linux/err.h>
7 #include <linux/sched.h>
8 #include <linux/security.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
11 #include <linux/mman.h>
12 #include <linux/hugetlb.h>
13 #include <linux/vmalloc.h>
14 
15 #include <asm/sections.h>
16 #include <asm/uaccess.h>
17 
18 #include "internal.h"
19 
is_kernel_rodata(unsigned long addr)20 static inline int is_kernel_rodata(unsigned long addr)
21 {
22 	return addr >= (unsigned long)__start_rodata &&
23 		addr < (unsigned long)__end_rodata;
24 }
25 
26 /**
27  * kfree_const - conditionally free memory
28  * @x: pointer to the memory
29  *
30  * Function calls kfree only if @x is not in .rodata section.
31  */
kfree_const(const void * x)32 void kfree_const(const void *x)
33 {
34 	if (!is_kernel_rodata((unsigned long)x))
35 		kfree(x);
36 }
37 EXPORT_SYMBOL(kfree_const);
38 
39 /**
40  * kstrdup - allocate space for and copy an existing string
41  * @s: the string to duplicate
42  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
43  */
kstrdup(const char * s,gfp_t gfp)44 char *kstrdup(const char *s, gfp_t gfp)
45 {
46 	size_t len;
47 	char *buf;
48 
49 	if (!s)
50 		return NULL;
51 
52 	len = strlen(s) + 1;
53 	buf = kmalloc_track_caller(len, gfp);
54 	if (buf)
55 		memcpy(buf, s, len);
56 	return buf;
57 }
58 EXPORT_SYMBOL(kstrdup);
59 
60 /**
61  * kstrdup_const - conditionally duplicate an existing const string
62  * @s: the string to duplicate
63  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
64  *
65  * Function returns source string if it is in .rodata section otherwise it
66  * fallbacks to kstrdup.
67  * Strings allocated by kstrdup_const should be freed by kfree_const.
68  */
kstrdup_const(const char * s,gfp_t gfp)69 const char *kstrdup_const(const char *s, gfp_t gfp)
70 {
71 	if (is_kernel_rodata((unsigned long)s))
72 		return s;
73 
74 	return kstrdup(s, gfp);
75 }
76 EXPORT_SYMBOL(kstrdup_const);
77 
78 /**
79  * kstrndup - allocate space for and copy an existing string
80  * @s: the string to duplicate
81  * @max: read at most @max chars from @s
82  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
83  *
84  * Note: Use kmemdup_nul() instead if the size is known exactly.
85  */
kstrndup(const char * s,size_t max,gfp_t gfp)86 char *kstrndup(const char *s, size_t max, gfp_t gfp)
87 {
88 	size_t len;
89 	char *buf;
90 
91 	if (!s)
92 		return NULL;
93 
94 	len = strnlen(s, max);
95 	buf = kmalloc_track_caller(len+1, gfp);
96 	if (buf) {
97 		memcpy(buf, s, len);
98 		buf[len] = '\0';
99 	}
100 	return buf;
101 }
102 EXPORT_SYMBOL(kstrndup);
103 
104 /**
105  * kmemdup - duplicate region of memory
106  *
107  * @src: memory region to duplicate
108  * @len: memory region length
109  * @gfp: GFP mask to use
110  */
kmemdup(const void * src,size_t len,gfp_t gfp)111 void *kmemdup(const void *src, size_t len, gfp_t gfp)
112 {
113 	void *p;
114 
115 	p = kmalloc_track_caller(len, gfp);
116 	if (p)
117 		memcpy(p, src, len);
118 	return p;
119 }
120 EXPORT_SYMBOL(kmemdup);
121 
122 /**
123  * kmemdup_nul - Create a NUL-terminated string from unterminated data
124  * @s: The data to stringify
125  * @len: The size of the data
126  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
127  */
kmemdup_nul(const char * s,size_t len,gfp_t gfp)128 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
129 {
130 	char *buf;
131 
132 	if (!s)
133 		return NULL;
134 
135 	buf = kmalloc_track_caller(len + 1, gfp);
136 	if (buf) {
137 		memcpy(buf, s, len);
138 		buf[len] = '\0';
139 	}
140 	return buf;
141 }
142 EXPORT_SYMBOL(kmemdup_nul);
143 
144 /**
145  * memdup_user - duplicate memory region from user space
146  *
147  * @src: source address in user space
148  * @len: number of bytes to copy
149  *
150  * Returns an ERR_PTR() on failure.
151  */
memdup_user(const void __user * src,size_t len)152 void *memdup_user(const void __user *src, size_t len)
153 {
154 	void *p;
155 
156 	/*
157 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
158 	 * cause pagefault, which makes it pointless to use GFP_NOFS
159 	 * or GFP_ATOMIC.
160 	 */
161 	p = kmalloc_track_caller(len, GFP_KERNEL);
162 	if (!p)
163 		return ERR_PTR(-ENOMEM);
164 
165 	if (copy_from_user(p, src, len)) {
166 		kfree(p);
167 		return ERR_PTR(-EFAULT);
168 	}
169 
170 	return p;
171 }
172 EXPORT_SYMBOL(memdup_user);
173 
174 /*
175  * strndup_user - duplicate an existing string from user space
176  * @s: The string to duplicate
177  * @n: Maximum number of bytes to copy, including the trailing NUL.
178  */
strndup_user(const char __user * s,long n)179 char *strndup_user(const char __user *s, long n)
180 {
181 	char *p;
182 	long length;
183 
184 	length = strnlen_user(s, n);
185 
186 	if (!length)
187 		return ERR_PTR(-EFAULT);
188 
189 	if (length > n)
190 		return ERR_PTR(-EINVAL);
191 
192 	p = memdup_user(s, length);
193 
194 	if (IS_ERR(p))
195 		return p;
196 
197 	p[length - 1] = '\0';
198 
199 	return p;
200 }
201 EXPORT_SYMBOL(strndup_user);
202 
__vma_link_list(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node * rb_parent)203 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
204 		struct vm_area_struct *prev, struct rb_node *rb_parent)
205 {
206 	struct vm_area_struct *next;
207 
208 	vma->vm_prev = prev;
209 	if (prev) {
210 		next = prev->vm_next;
211 		prev->vm_next = vma;
212 	} else {
213 		mm->mmap = vma;
214 		if (rb_parent)
215 			next = rb_entry(rb_parent,
216 					struct vm_area_struct, vm_rb);
217 		else
218 			next = NULL;
219 	}
220 	vma->vm_next = next;
221 	if (next)
222 		next->vm_prev = vma;
223 }
224 
225 /* Check if the vma is being used as a stack by this task */
vma_is_stack_for_task(struct vm_area_struct * vma,struct task_struct * t)226 int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t)
227 {
228 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
229 }
230 
231 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
arch_pick_mmap_layout(struct mm_struct * mm)232 void arch_pick_mmap_layout(struct mm_struct *mm)
233 {
234 	mm->mmap_base = TASK_UNMAPPED_BASE;
235 	mm->get_unmapped_area = arch_get_unmapped_area;
236 }
237 #endif
238 
239 /*
240  * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
241  * back to the regular GUP.
242  * If the architecture not support this function, simply return with no
243  * page pinned
244  */
__get_user_pages_fast(unsigned long start,int nr_pages,int write,struct page ** pages)245 int __weak __get_user_pages_fast(unsigned long start,
246 				 int nr_pages, int write, struct page **pages)
247 {
248 	return 0;
249 }
250 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
251 
252 /**
253  * get_user_pages_fast() - pin user pages in memory
254  * @start:	starting user address
255  * @nr_pages:	number of pages from start to pin
256  * @write:	whether pages will be written to
257  * @pages:	array that receives pointers to the pages pinned.
258  *		Should be at least nr_pages long.
259  *
260  * Returns number of pages pinned. This may be fewer than the number
261  * requested. If nr_pages is 0 or negative, returns 0. If no pages
262  * were pinned, returns -errno.
263  *
264  * get_user_pages_fast provides equivalent functionality to get_user_pages,
265  * operating on current and current->mm, with force=0 and vma=NULL. However
266  * unlike get_user_pages, it must be called without mmap_sem held.
267  *
268  * get_user_pages_fast may take mmap_sem and page table locks, so no
269  * assumptions can be made about lack of locking. get_user_pages_fast is to be
270  * implemented in a way that is advantageous (vs get_user_pages()) when the
271  * user memory area is already faulted in and present in ptes. However if the
272  * pages have to be faulted in, it may turn out to be slightly slower so
273  * callers need to carefully consider what to use. On many architectures,
274  * get_user_pages_fast simply falls back to get_user_pages.
275  */
get_user_pages_fast(unsigned long start,int nr_pages,int write,struct page ** pages)276 int __weak get_user_pages_fast(unsigned long start,
277 				int nr_pages, int write, struct page **pages)
278 {
279 	struct mm_struct *mm = current->mm;
280 	return get_user_pages_unlocked(current, mm, start, nr_pages,
281 				       pages, write ? FOLL_WRITE : 0);
282 }
283 EXPORT_SYMBOL_GPL(get_user_pages_fast);
284 
vm_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long pgoff)285 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
286 	unsigned long len, unsigned long prot,
287 	unsigned long flag, unsigned long pgoff)
288 {
289 	unsigned long ret;
290 	struct mm_struct *mm = current->mm;
291 	unsigned long populate;
292 
293 	ret = security_mmap_file(file, prot, flag);
294 	if (!ret) {
295 		down_write(&mm->mmap_sem);
296 		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
297 				    &populate);
298 		up_write(&mm->mmap_sem);
299 		if (populate)
300 			mm_populate(ret, populate);
301 	}
302 	return ret;
303 }
304 
vm_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long offset)305 unsigned long vm_mmap(struct file *file, unsigned long addr,
306 	unsigned long len, unsigned long prot,
307 	unsigned long flag, unsigned long offset)
308 {
309 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
310 		return -EINVAL;
311 	if (unlikely(offset_in_page(offset)))
312 		return -EINVAL;
313 
314 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
315 }
316 EXPORT_SYMBOL(vm_mmap);
317 
kvfree(const void * addr)318 void kvfree(const void *addr)
319 {
320 	if (is_vmalloc_addr(addr))
321 		vfree(addr);
322 	else
323 		kfree(addr);
324 }
325 EXPORT_SYMBOL(kvfree);
326 
__page_rmapping(struct page * page)327 static inline void *__page_rmapping(struct page *page)
328 {
329 	unsigned long mapping;
330 
331 	mapping = (unsigned long)page->mapping;
332 	mapping &= ~PAGE_MAPPING_FLAGS;
333 
334 	return (void *)mapping;
335 }
336 
337 /* Neutral page->mapping pointer to address_space or anon_vma or other */
page_rmapping(struct page * page)338 void *page_rmapping(struct page *page)
339 {
340 	page = compound_head(page);
341 	return __page_rmapping(page);
342 }
343 
page_anon_vma(struct page * page)344 struct anon_vma *page_anon_vma(struct page *page)
345 {
346 	unsigned long mapping;
347 
348 	page = compound_head(page);
349 	mapping = (unsigned long)page->mapping;
350 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
351 		return NULL;
352 	return __page_rmapping(page);
353 }
354 
page_mapping(struct page * page)355 struct address_space *page_mapping(struct page *page)
356 {
357 	unsigned long mapping;
358 
359 	/* This happens if someone calls flush_dcache_page on slab page */
360 	if (unlikely(PageSlab(page)))
361 		return NULL;
362 
363 	if (unlikely(PageSwapCache(page))) {
364 		swp_entry_t entry;
365 
366 		entry.val = page_private(page);
367 		return swap_address_space(entry);
368 	}
369 
370 	mapping = (unsigned long)page->mapping;
371 	if (mapping & PAGE_MAPPING_FLAGS)
372 		return NULL;
373 	return page->mapping;
374 }
375 EXPORT_SYMBOL(page_mapping);
376 
overcommit_ratio_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)377 int overcommit_ratio_handler(struct ctl_table *table, int write,
378 			     void __user *buffer, size_t *lenp,
379 			     loff_t *ppos)
380 {
381 	int ret;
382 
383 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
384 	if (ret == 0 && write)
385 		sysctl_overcommit_kbytes = 0;
386 	return ret;
387 }
388 
overcommit_kbytes_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)389 int overcommit_kbytes_handler(struct ctl_table *table, int write,
390 			     void __user *buffer, size_t *lenp,
391 			     loff_t *ppos)
392 {
393 	int ret;
394 
395 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
396 	if (ret == 0 && write)
397 		sysctl_overcommit_ratio = 0;
398 	return ret;
399 }
400 
401 /*
402  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
403  */
vm_commit_limit(void)404 unsigned long vm_commit_limit(void)
405 {
406 	unsigned long allowed;
407 
408 	if (sysctl_overcommit_kbytes)
409 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
410 	else
411 		allowed = ((totalram_pages - hugetlb_total_pages())
412 			   * sysctl_overcommit_ratio / 100);
413 	allowed += total_swap_pages;
414 
415 	return allowed;
416 }
417 
418 /**
419  * get_cmdline() - copy the cmdline value to a buffer.
420  * @task:     the task whose cmdline value to copy.
421  * @buffer:   the buffer to copy to.
422  * @buflen:   the length of the buffer. Larger cmdline values are truncated
423  *            to this length.
424  * Returns the size of the cmdline field copied. Note that the copy does
425  * not guarantee an ending NULL byte.
426  */
get_cmdline(struct task_struct * task,char * buffer,int buflen)427 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
428 {
429 	int res = 0;
430 	unsigned int len;
431 	struct mm_struct *mm = get_task_mm(task);
432 	unsigned long arg_start, arg_end, env_start, env_end;
433 	if (!mm)
434 		goto out;
435 	if (!mm->arg_end)
436 		goto out_mm;	/* Shh! No looking before we're done */
437 
438 	down_read(&mm->mmap_sem);
439 	arg_start = mm->arg_start;
440 	arg_end = mm->arg_end;
441 	env_start = mm->env_start;
442 	env_end = mm->env_end;
443 	up_read(&mm->mmap_sem);
444 
445 	len = arg_end - arg_start;
446 
447 	if (len > buflen)
448 		len = buflen;
449 
450 	res = access_process_vm(task, arg_start, buffer, len, 0);
451 
452 	/*
453 	 * If the nul at the end of args has been overwritten, then
454 	 * assume application is using setproctitle(3).
455 	 */
456 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
457 		len = strnlen(buffer, res);
458 		if (len < res) {
459 			res = len;
460 		} else {
461 			len = env_end - env_start;
462 			if (len > buflen - res)
463 				len = buflen - res;
464 			res += access_process_vm(task, env_start,
465 						 buffer+res, len, 0);
466 			res = strnlen(buffer, res);
467 		}
468 	}
469 out_mm:
470 	mmput(mm);
471 out:
472 	return res;
473 }
474