1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; see the file COPYING. If not, write to
23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Module Name:
26 * commsup.c
27 *
28 * Abstract: Contain all routines that are required for FSA host/adapter
29 * communication.
30 *
31 */
32
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/sched.h>
37 #include <linux/pci.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/completion.h>
41 #include <linux/blkdev.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/interrupt.h>
45 #include <linux/semaphore.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_cmnd.h>
50
51 #include "aacraid.h"
52
53 /**
54 * fib_map_alloc - allocate the fib objects
55 * @dev: Adapter to allocate for
56 *
57 * Allocate and map the shared PCI space for the FIB blocks used to
58 * talk to the Adaptec firmware.
59 */
60
fib_map_alloc(struct aac_dev * dev)61 static int fib_map_alloc(struct aac_dev *dev)
62 {
63 dprintk((KERN_INFO
64 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
65 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
66 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
67 dev->hw_fib_va = pci_alloc_consistent(dev->pdev,
68 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr))
69 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
70 &dev->hw_fib_pa);
71 if (dev->hw_fib_va == NULL)
72 return -ENOMEM;
73 return 0;
74 }
75
76 /**
77 * aac_fib_map_free - free the fib objects
78 * @dev: Adapter to free
79 *
80 * Free the PCI mappings and the memory allocated for FIB blocks
81 * on this adapter.
82 */
83
aac_fib_map_free(struct aac_dev * dev)84 void aac_fib_map_free(struct aac_dev *dev)
85 {
86 if (dev->hw_fib_va && dev->max_fib_size) {
87 pci_free_consistent(dev->pdev,
88 (dev->max_fib_size *
89 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)),
90 dev->hw_fib_va, dev->hw_fib_pa);
91 }
92 dev->hw_fib_va = NULL;
93 dev->hw_fib_pa = 0;
94 }
95
aac_fib_vector_assign(struct aac_dev * dev)96 void aac_fib_vector_assign(struct aac_dev *dev)
97 {
98 u32 i = 0;
99 u32 vector = 1;
100 struct fib *fibptr = NULL;
101
102 for (i = 0, fibptr = &dev->fibs[i];
103 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
104 i++, fibptr++) {
105 if ((dev->max_msix == 1) ||
106 (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
107 - dev->vector_cap))) {
108 fibptr->vector_no = 0;
109 } else {
110 fibptr->vector_no = vector;
111 vector++;
112 if (vector == dev->max_msix)
113 vector = 1;
114 }
115 }
116 }
117
118 /**
119 * aac_fib_setup - setup the fibs
120 * @dev: Adapter to set up
121 *
122 * Allocate the PCI space for the fibs, map it and then initialise the
123 * fib area, the unmapped fib data and also the free list
124 */
125
aac_fib_setup(struct aac_dev * dev)126 int aac_fib_setup(struct aac_dev * dev)
127 {
128 struct fib *fibptr;
129 struct hw_fib *hw_fib;
130 dma_addr_t hw_fib_pa;
131 int i;
132
133 while (((i = fib_map_alloc(dev)) == -ENOMEM)
134 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
135 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
136 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
137 }
138 if (i<0)
139 return -ENOMEM;
140
141 /* 32 byte alignment for PMC */
142 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
143 dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
144 (hw_fib_pa - dev->hw_fib_pa));
145 dev->hw_fib_pa = hw_fib_pa;
146 memset(dev->hw_fib_va, 0,
147 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) *
148 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
149
150 /* add Xport header */
151 dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
152 sizeof(struct aac_fib_xporthdr));
153 dev->hw_fib_pa += sizeof(struct aac_fib_xporthdr);
154
155 hw_fib = dev->hw_fib_va;
156 hw_fib_pa = dev->hw_fib_pa;
157 /*
158 * Initialise the fibs
159 */
160 for (i = 0, fibptr = &dev->fibs[i];
161 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
162 i++, fibptr++)
163 {
164 fibptr->flags = 0;
165 fibptr->dev = dev;
166 fibptr->hw_fib_va = hw_fib;
167 fibptr->data = (void *) fibptr->hw_fib_va->data;
168 fibptr->next = fibptr+1; /* Forward chain the fibs */
169 sema_init(&fibptr->event_wait, 0);
170 spin_lock_init(&fibptr->event_lock);
171 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
172 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
173 fibptr->hw_fib_pa = hw_fib_pa;
174 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
175 dev->max_fib_size + sizeof(struct aac_fib_xporthdr));
176 hw_fib_pa = hw_fib_pa +
177 dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
178 }
179
180 /*
181 *Assign vector numbers to fibs
182 */
183 aac_fib_vector_assign(dev);
184
185 /*
186 * Add the fib chain to the free list
187 */
188 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
189 /*
190 * Enable this to debug out of queue space
191 */
192 dev->free_fib = &dev->fibs[0];
193 return 0;
194 }
195
196 /**
197 * aac_fib_alloc - allocate a fib
198 * @dev: Adapter to allocate the fib for
199 *
200 * Allocate a fib from the adapter fib pool. If the pool is empty we
201 * return NULL.
202 */
203
aac_fib_alloc(struct aac_dev * dev)204 struct fib *aac_fib_alloc(struct aac_dev *dev)
205 {
206 struct fib * fibptr;
207 unsigned long flags;
208 spin_lock_irqsave(&dev->fib_lock, flags);
209 fibptr = dev->free_fib;
210 if(!fibptr){
211 spin_unlock_irqrestore(&dev->fib_lock, flags);
212 return fibptr;
213 }
214 dev->free_fib = fibptr->next;
215 spin_unlock_irqrestore(&dev->fib_lock, flags);
216 /*
217 * Set the proper node type code and node byte size
218 */
219 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
220 fibptr->size = sizeof(struct fib);
221 /*
222 * Null out fields that depend on being zero at the start of
223 * each I/O
224 */
225 fibptr->hw_fib_va->header.XferState = 0;
226 fibptr->flags = 0;
227 fibptr->callback = NULL;
228 fibptr->callback_data = NULL;
229
230 return fibptr;
231 }
232
233 /**
234 * aac_fib_free - free a fib
235 * @fibptr: fib to free up
236 *
237 * Frees up a fib and places it on the appropriate queue
238 */
239
aac_fib_free(struct fib * fibptr)240 void aac_fib_free(struct fib *fibptr)
241 {
242 unsigned long flags;
243
244 if (fibptr->done == 2)
245 return;
246
247 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
248 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
249 aac_config.fib_timeouts++;
250 if (fibptr->hw_fib_va->header.XferState != 0) {
251 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
252 (void*)fibptr,
253 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
254 }
255 fibptr->next = fibptr->dev->free_fib;
256 fibptr->dev->free_fib = fibptr;
257 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
258 }
259
260 /**
261 * aac_fib_init - initialise a fib
262 * @fibptr: The fib to initialize
263 *
264 * Set up the generic fib fields ready for use
265 */
266
aac_fib_init(struct fib * fibptr)267 void aac_fib_init(struct fib *fibptr)
268 {
269 struct hw_fib *hw_fib = fibptr->hw_fib_va;
270
271 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
272 hw_fib->header.StructType = FIB_MAGIC;
273 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
274 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
275 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
276 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
277 }
278
279 /**
280 * fib_deallocate - deallocate a fib
281 * @fibptr: fib to deallocate
282 *
283 * Will deallocate and return to the free pool the FIB pointed to by the
284 * caller.
285 */
286
fib_dealloc(struct fib * fibptr)287 static void fib_dealloc(struct fib * fibptr)
288 {
289 struct hw_fib *hw_fib = fibptr->hw_fib_va;
290 hw_fib->header.XferState = 0;
291 }
292
293 /*
294 * Commuication primitives define and support the queuing method we use to
295 * support host to adapter commuication. All queue accesses happen through
296 * these routines and are the only routines which have a knowledge of the
297 * how these queues are implemented.
298 */
299
300 /**
301 * aac_get_entry - get a queue entry
302 * @dev: Adapter
303 * @qid: Queue Number
304 * @entry: Entry return
305 * @index: Index return
306 * @nonotify: notification control
307 *
308 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
309 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
310 * returned.
311 */
312
aac_get_entry(struct aac_dev * dev,u32 qid,struct aac_entry ** entry,u32 * index,unsigned long * nonotify)313 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
314 {
315 struct aac_queue * q;
316 unsigned long idx;
317
318 /*
319 * All of the queues wrap when they reach the end, so we check
320 * to see if they have reached the end and if they have we just
321 * set the index back to zero. This is a wrap. You could or off
322 * the high bits in all updates but this is a bit faster I think.
323 */
324
325 q = &dev->queues->queue[qid];
326
327 idx = *index = le32_to_cpu(*(q->headers.producer));
328 /* Interrupt Moderation, only interrupt for first two entries */
329 if (idx != le32_to_cpu(*(q->headers.consumer))) {
330 if (--idx == 0) {
331 if (qid == AdapNormCmdQueue)
332 idx = ADAP_NORM_CMD_ENTRIES;
333 else
334 idx = ADAP_NORM_RESP_ENTRIES;
335 }
336 if (idx != le32_to_cpu(*(q->headers.consumer)))
337 *nonotify = 1;
338 }
339
340 if (qid == AdapNormCmdQueue) {
341 if (*index >= ADAP_NORM_CMD_ENTRIES)
342 *index = 0; /* Wrap to front of the Producer Queue. */
343 } else {
344 if (*index >= ADAP_NORM_RESP_ENTRIES)
345 *index = 0; /* Wrap to front of the Producer Queue. */
346 }
347
348 /* Queue is full */
349 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
350 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
351 qid, atomic_read(&q->numpending));
352 return 0;
353 } else {
354 *entry = q->base + *index;
355 return 1;
356 }
357 }
358
359 /**
360 * aac_queue_get - get the next free QE
361 * @dev: Adapter
362 * @index: Returned index
363 * @priority: Priority of fib
364 * @fib: Fib to associate with the queue entry
365 * @wait: Wait if queue full
366 * @fibptr: Driver fib object to go with fib
367 * @nonotify: Don't notify the adapter
368 *
369 * Gets the next free QE off the requested priorty adapter command
370 * queue and associates the Fib with the QE. The QE represented by
371 * index is ready to insert on the queue when this routine returns
372 * success.
373 */
374
aac_queue_get(struct aac_dev * dev,u32 * index,u32 qid,struct hw_fib * hw_fib,int wait,struct fib * fibptr,unsigned long * nonotify)375 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
376 {
377 struct aac_entry * entry = NULL;
378 int map = 0;
379
380 if (qid == AdapNormCmdQueue) {
381 /* if no entries wait for some if caller wants to */
382 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
383 printk(KERN_ERR "GetEntries failed\n");
384 }
385 /*
386 * Setup queue entry with a command, status and fib mapped
387 */
388 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
389 map = 1;
390 } else {
391 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
392 /* if no entries wait for some if caller wants to */
393 }
394 /*
395 * Setup queue entry with command, status and fib mapped
396 */
397 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
398 entry->addr = hw_fib->header.SenderFibAddress;
399 /* Restore adapters pointer to the FIB */
400 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
401 map = 0;
402 }
403 /*
404 * If MapFib is true than we need to map the Fib and put pointers
405 * in the queue entry.
406 */
407 if (map)
408 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
409 return 0;
410 }
411
412 /*
413 * Define the highest level of host to adapter communication routines.
414 * These routines will support host to adapter FS commuication. These
415 * routines have no knowledge of the commuication method used. This level
416 * sends and receives FIBs. This level has no knowledge of how these FIBs
417 * get passed back and forth.
418 */
419
420 /**
421 * aac_fib_send - send a fib to the adapter
422 * @command: Command to send
423 * @fibptr: The fib
424 * @size: Size of fib data area
425 * @priority: Priority of Fib
426 * @wait: Async/sync select
427 * @reply: True if a reply is wanted
428 * @callback: Called with reply
429 * @callback_data: Passed to callback
430 *
431 * Sends the requested FIB to the adapter and optionally will wait for a
432 * response FIB. If the caller does not wish to wait for a response than
433 * an event to wait on must be supplied. This event will be set when a
434 * response FIB is received from the adapter.
435 */
436
aac_fib_send(u16 command,struct fib * fibptr,unsigned long size,int priority,int wait,int reply,fib_callback callback,void * callback_data)437 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
438 int priority, int wait, int reply, fib_callback callback,
439 void *callback_data)
440 {
441 struct aac_dev * dev = fibptr->dev;
442 struct hw_fib * hw_fib = fibptr->hw_fib_va;
443 unsigned long flags = 0;
444 unsigned long mflags = 0;
445 unsigned long sflags = 0;
446
447
448 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
449 return -EBUSY;
450 /*
451 * There are 5 cases with the wait and response requested flags.
452 * The only invalid cases are if the caller requests to wait and
453 * does not request a response and if the caller does not want a
454 * response and the Fib is not allocated from pool. If a response
455 * is not requesed the Fib will just be deallocaed by the DPC
456 * routine when the response comes back from the adapter. No
457 * further processing will be done besides deleting the Fib. We
458 * will have a debug mode where the adapter can notify the host
459 * it had a problem and the host can log that fact.
460 */
461 fibptr->flags = 0;
462 if (wait && !reply) {
463 return -EINVAL;
464 } else if (!wait && reply) {
465 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
466 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
467 } else if (!wait && !reply) {
468 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
469 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
470 } else if (wait && reply) {
471 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
472 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
473 }
474 /*
475 * Map the fib into 32bits by using the fib number
476 */
477
478 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
479 hw_fib->header.Handle = (u32)(fibptr - dev->fibs) + 1;
480 /*
481 * Set FIB state to indicate where it came from and if we want a
482 * response from the adapter. Also load the command from the
483 * caller.
484 *
485 * Map the hw fib pointer as a 32bit value
486 */
487 hw_fib->header.Command = cpu_to_le16(command);
488 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
489 /*
490 * Set the size of the Fib we want to send to the adapter
491 */
492 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
493 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
494 return -EMSGSIZE;
495 }
496 /*
497 * Get a queue entry connect the FIB to it and send an notify
498 * the adapter a command is ready.
499 */
500 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
501
502 /*
503 * Fill in the Callback and CallbackContext if we are not
504 * going to wait.
505 */
506 if (!wait) {
507 fibptr->callback = callback;
508 fibptr->callback_data = callback_data;
509 fibptr->flags = FIB_CONTEXT_FLAG;
510 }
511
512 fibptr->done = 0;
513
514 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
515
516 dprintk((KERN_DEBUG "Fib contents:.\n"));
517 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
518 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
519 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
520 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
521 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
522 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
523
524 if (!dev->queues)
525 return -EBUSY;
526
527 if (wait) {
528
529 spin_lock_irqsave(&dev->manage_lock, mflags);
530 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
531 printk(KERN_INFO "No management Fibs Available:%d\n",
532 dev->management_fib_count);
533 spin_unlock_irqrestore(&dev->manage_lock, mflags);
534 return -EBUSY;
535 }
536 dev->management_fib_count++;
537 spin_unlock_irqrestore(&dev->manage_lock, mflags);
538 spin_lock_irqsave(&fibptr->event_lock, flags);
539 }
540
541 if (dev->sync_mode) {
542 if (wait)
543 spin_unlock_irqrestore(&fibptr->event_lock, flags);
544 spin_lock_irqsave(&dev->sync_lock, sflags);
545 if (dev->sync_fib) {
546 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
547 spin_unlock_irqrestore(&dev->sync_lock, sflags);
548 } else {
549 dev->sync_fib = fibptr;
550 spin_unlock_irqrestore(&dev->sync_lock, sflags);
551 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
552 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
553 NULL, NULL, NULL, NULL, NULL);
554 }
555 if (wait) {
556 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
557 if (down_interruptible(&fibptr->event_wait)) {
558 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
559 return -EFAULT;
560 }
561 return 0;
562 }
563 return -EINPROGRESS;
564 }
565
566 if (aac_adapter_deliver(fibptr) != 0) {
567 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
568 if (wait) {
569 spin_unlock_irqrestore(&fibptr->event_lock, flags);
570 spin_lock_irqsave(&dev->manage_lock, mflags);
571 dev->management_fib_count--;
572 spin_unlock_irqrestore(&dev->manage_lock, mflags);
573 }
574 return -EBUSY;
575 }
576
577
578 /*
579 * If the caller wanted us to wait for response wait now.
580 */
581
582 if (wait) {
583 spin_unlock_irqrestore(&fibptr->event_lock, flags);
584 /* Only set for first known interruptable command */
585 if (wait < 0) {
586 /*
587 * *VERY* Dangerous to time out a command, the
588 * assumption is made that we have no hope of
589 * functioning because an interrupt routing or other
590 * hardware failure has occurred.
591 */
592 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
593 while (down_trylock(&fibptr->event_wait)) {
594 int blink;
595 if (time_is_before_eq_jiffies(timeout)) {
596 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
597 atomic_dec(&q->numpending);
598 if (wait == -1) {
599 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
600 "Usually a result of a PCI interrupt routing problem;\n"
601 "update mother board BIOS or consider utilizing one of\n"
602 "the SAFE mode kernel options (acpi, apic etc)\n");
603 }
604 return -ETIMEDOUT;
605 }
606 if ((blink = aac_adapter_check_health(dev)) > 0) {
607 if (wait == -1) {
608 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
609 "Usually a result of a serious unrecoverable hardware problem\n",
610 blink);
611 }
612 return -EFAULT;
613 }
614 /*
615 * Allow other processes / CPUS to use core
616 */
617 schedule();
618 }
619 } else if (down_interruptible(&fibptr->event_wait)) {
620 /* Do nothing ... satisfy
621 * down_interruptible must_check */
622 }
623
624 spin_lock_irqsave(&fibptr->event_lock, flags);
625 if (fibptr->done == 0) {
626 fibptr->done = 2; /* Tell interrupt we aborted */
627 spin_unlock_irqrestore(&fibptr->event_lock, flags);
628 return -ERESTARTSYS;
629 }
630 spin_unlock_irqrestore(&fibptr->event_lock, flags);
631 BUG_ON(fibptr->done == 0);
632
633 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
634 return -ETIMEDOUT;
635 return 0;
636 }
637 /*
638 * If the user does not want a response than return success otherwise
639 * return pending
640 */
641 if (reply)
642 return -EINPROGRESS;
643 else
644 return 0;
645 }
646
647 /**
648 * aac_consumer_get - get the top of the queue
649 * @dev: Adapter
650 * @q: Queue
651 * @entry: Return entry
652 *
653 * Will return a pointer to the entry on the top of the queue requested that
654 * we are a consumer of, and return the address of the queue entry. It does
655 * not change the state of the queue.
656 */
657
aac_consumer_get(struct aac_dev * dev,struct aac_queue * q,struct aac_entry ** entry)658 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
659 {
660 u32 index;
661 int status;
662 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
663 status = 0;
664 } else {
665 /*
666 * The consumer index must be wrapped if we have reached
667 * the end of the queue, else we just use the entry
668 * pointed to by the header index
669 */
670 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
671 index = 0;
672 else
673 index = le32_to_cpu(*q->headers.consumer);
674 *entry = q->base + index;
675 status = 1;
676 }
677 return(status);
678 }
679
680 /**
681 * aac_consumer_free - free consumer entry
682 * @dev: Adapter
683 * @q: Queue
684 * @qid: Queue ident
685 *
686 * Frees up the current top of the queue we are a consumer of. If the
687 * queue was full notify the producer that the queue is no longer full.
688 */
689
aac_consumer_free(struct aac_dev * dev,struct aac_queue * q,u32 qid)690 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
691 {
692 int wasfull = 0;
693 u32 notify;
694
695 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
696 wasfull = 1;
697
698 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
699 *q->headers.consumer = cpu_to_le32(1);
700 else
701 le32_add_cpu(q->headers.consumer, 1);
702
703 if (wasfull) {
704 switch (qid) {
705
706 case HostNormCmdQueue:
707 notify = HostNormCmdNotFull;
708 break;
709 case HostNormRespQueue:
710 notify = HostNormRespNotFull;
711 break;
712 default:
713 BUG();
714 return;
715 }
716 aac_adapter_notify(dev, notify);
717 }
718 }
719
720 /**
721 * aac_fib_adapter_complete - complete adapter issued fib
722 * @fibptr: fib to complete
723 * @size: size of fib
724 *
725 * Will do all necessary work to complete a FIB that was sent from
726 * the adapter.
727 */
728
aac_fib_adapter_complete(struct fib * fibptr,unsigned short size)729 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
730 {
731 struct hw_fib * hw_fib = fibptr->hw_fib_va;
732 struct aac_dev * dev = fibptr->dev;
733 struct aac_queue * q;
734 unsigned long nointr = 0;
735 unsigned long qflags;
736
737 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
738 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) {
739 kfree(hw_fib);
740 return 0;
741 }
742
743 if (hw_fib->header.XferState == 0) {
744 if (dev->comm_interface == AAC_COMM_MESSAGE)
745 kfree(hw_fib);
746 return 0;
747 }
748 /*
749 * If we plan to do anything check the structure type first.
750 */
751 if (hw_fib->header.StructType != FIB_MAGIC &&
752 hw_fib->header.StructType != FIB_MAGIC2 &&
753 hw_fib->header.StructType != FIB_MAGIC2_64) {
754 if (dev->comm_interface == AAC_COMM_MESSAGE)
755 kfree(hw_fib);
756 return -EINVAL;
757 }
758 /*
759 * This block handles the case where the adapter had sent us a
760 * command and we have finished processing the command. We
761 * call completeFib when we are done processing the command
762 * and want to send a response back to the adapter. This will
763 * send the completed cdb to the adapter.
764 */
765 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
766 if (dev->comm_interface == AAC_COMM_MESSAGE) {
767 kfree (hw_fib);
768 } else {
769 u32 index;
770 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
771 if (size) {
772 size += sizeof(struct aac_fibhdr);
773 if (size > le16_to_cpu(hw_fib->header.SenderSize))
774 return -EMSGSIZE;
775 hw_fib->header.Size = cpu_to_le16(size);
776 }
777 q = &dev->queues->queue[AdapNormRespQueue];
778 spin_lock_irqsave(q->lock, qflags);
779 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
780 *(q->headers.producer) = cpu_to_le32(index + 1);
781 spin_unlock_irqrestore(q->lock, qflags);
782 if (!(nointr & (int)aac_config.irq_mod))
783 aac_adapter_notify(dev, AdapNormRespQueue);
784 }
785 } else {
786 printk(KERN_WARNING "aac_fib_adapter_complete: "
787 "Unknown xferstate detected.\n");
788 BUG();
789 }
790 return 0;
791 }
792
793 /**
794 * aac_fib_complete - fib completion handler
795 * @fib: FIB to complete
796 *
797 * Will do all necessary work to complete a FIB.
798 */
799
aac_fib_complete(struct fib * fibptr)800 int aac_fib_complete(struct fib *fibptr)
801 {
802 struct hw_fib * hw_fib = fibptr->hw_fib_va;
803
804 /*
805 * Check for a fib which has already been completed
806 */
807
808 if (hw_fib->header.XferState == 0)
809 return 0;
810 /*
811 * If we plan to do anything check the structure type first.
812 */
813
814 if (hw_fib->header.StructType != FIB_MAGIC &&
815 hw_fib->header.StructType != FIB_MAGIC2 &&
816 hw_fib->header.StructType != FIB_MAGIC2_64)
817 return -EINVAL;
818 /*
819 * This block completes a cdb which orginated on the host and we
820 * just need to deallocate the cdb or reinit it. At this point the
821 * command is complete that we had sent to the adapter and this
822 * cdb could be reused.
823 */
824
825 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
826 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
827 {
828 fib_dealloc(fibptr);
829 }
830 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
831 {
832 /*
833 * This handles the case when the host has aborted the I/O
834 * to the adapter because the adapter is not responding
835 */
836 fib_dealloc(fibptr);
837 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
838 fib_dealloc(fibptr);
839 } else {
840 BUG();
841 }
842 return 0;
843 }
844
845 /**
846 * aac_printf - handle printf from firmware
847 * @dev: Adapter
848 * @val: Message info
849 *
850 * Print a message passed to us by the controller firmware on the
851 * Adaptec board
852 */
853
aac_printf(struct aac_dev * dev,u32 val)854 void aac_printf(struct aac_dev *dev, u32 val)
855 {
856 char *cp = dev->printfbuf;
857 if (dev->printf_enabled)
858 {
859 int length = val & 0xffff;
860 int level = (val >> 16) & 0xffff;
861
862 /*
863 * The size of the printfbuf is set in port.c
864 * There is no variable or define for it
865 */
866 if (length > 255)
867 length = 255;
868 if (cp[length] != 0)
869 cp[length] = 0;
870 if (level == LOG_AAC_HIGH_ERROR)
871 printk(KERN_WARNING "%s:%s", dev->name, cp);
872 else
873 printk(KERN_INFO "%s:%s", dev->name, cp);
874 }
875 memset(cp, 0, 256);
876 }
877
878
879 /**
880 * aac_handle_aif - Handle a message from the firmware
881 * @dev: Which adapter this fib is from
882 * @fibptr: Pointer to fibptr from adapter
883 *
884 * This routine handles a driver notify fib from the adapter and
885 * dispatches it to the appropriate routine for handling.
886 */
887
888 #define AIF_SNIFF_TIMEOUT (500*HZ)
aac_handle_aif(struct aac_dev * dev,struct fib * fibptr)889 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
890 {
891 struct hw_fib * hw_fib = fibptr->hw_fib_va;
892 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
893 u32 channel, id, lun, container;
894 struct scsi_device *device;
895 enum {
896 NOTHING,
897 DELETE,
898 ADD,
899 CHANGE
900 } device_config_needed = NOTHING;
901
902 /* Sniff for container changes */
903
904 if (!dev || !dev->fsa_dev)
905 return;
906 container = channel = id = lun = (u32)-1;
907
908 /*
909 * We have set this up to try and minimize the number of
910 * re-configures that take place. As a result of this when
911 * certain AIF's come in we will set a flag waiting for another
912 * type of AIF before setting the re-config flag.
913 */
914 switch (le32_to_cpu(aifcmd->command)) {
915 case AifCmdDriverNotify:
916 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
917 case AifRawDeviceRemove:
918 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
919 if ((container >> 28)) {
920 container = (u32)-1;
921 break;
922 }
923 channel = (container >> 24) & 0xF;
924 if (channel >= dev->maximum_num_channels) {
925 container = (u32)-1;
926 break;
927 }
928 id = container & 0xFFFF;
929 if (id >= dev->maximum_num_physicals) {
930 container = (u32)-1;
931 break;
932 }
933 lun = (container >> 16) & 0xFF;
934 container = (u32)-1;
935 channel = aac_phys_to_logical(channel);
936 device_config_needed =
937 (((__le32 *)aifcmd->data)[0] ==
938 cpu_to_le32(AifRawDeviceRemove)) ? DELETE : ADD;
939
940 if (device_config_needed == ADD) {
941 device = scsi_device_lookup(
942 dev->scsi_host_ptr,
943 channel, id, lun);
944 if (device) {
945 scsi_remove_device(device);
946 scsi_device_put(device);
947 }
948 }
949 break;
950 /*
951 * Morph or Expand complete
952 */
953 case AifDenMorphComplete:
954 case AifDenVolumeExtendComplete:
955 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
956 if (container >= dev->maximum_num_containers)
957 break;
958
959 /*
960 * Find the scsi_device associated with the SCSI
961 * address. Make sure we have the right array, and if
962 * so set the flag to initiate a new re-config once we
963 * see an AifEnConfigChange AIF come through.
964 */
965
966 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
967 device = scsi_device_lookup(dev->scsi_host_ptr,
968 CONTAINER_TO_CHANNEL(container),
969 CONTAINER_TO_ID(container),
970 CONTAINER_TO_LUN(container));
971 if (device) {
972 dev->fsa_dev[container].config_needed = CHANGE;
973 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
974 dev->fsa_dev[container].config_waiting_stamp = jiffies;
975 scsi_device_put(device);
976 }
977 }
978 }
979
980 /*
981 * If we are waiting on something and this happens to be
982 * that thing then set the re-configure flag.
983 */
984 if (container != (u32)-1) {
985 if (container >= dev->maximum_num_containers)
986 break;
987 if ((dev->fsa_dev[container].config_waiting_on ==
988 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
989 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
990 dev->fsa_dev[container].config_waiting_on = 0;
991 } else for (container = 0;
992 container < dev->maximum_num_containers; ++container) {
993 if ((dev->fsa_dev[container].config_waiting_on ==
994 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
995 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
996 dev->fsa_dev[container].config_waiting_on = 0;
997 }
998 break;
999
1000 case AifCmdEventNotify:
1001 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1002 case AifEnBatteryEvent:
1003 dev->cache_protected =
1004 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1005 break;
1006 /*
1007 * Add an Array.
1008 */
1009 case AifEnAddContainer:
1010 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1011 if (container >= dev->maximum_num_containers)
1012 break;
1013 dev->fsa_dev[container].config_needed = ADD;
1014 dev->fsa_dev[container].config_waiting_on =
1015 AifEnConfigChange;
1016 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1017 break;
1018
1019 /*
1020 * Delete an Array.
1021 */
1022 case AifEnDeleteContainer:
1023 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1024 if (container >= dev->maximum_num_containers)
1025 break;
1026 dev->fsa_dev[container].config_needed = DELETE;
1027 dev->fsa_dev[container].config_waiting_on =
1028 AifEnConfigChange;
1029 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1030 break;
1031
1032 /*
1033 * Container change detected. If we currently are not
1034 * waiting on something else, setup to wait on a Config Change.
1035 */
1036 case AifEnContainerChange:
1037 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1038 if (container >= dev->maximum_num_containers)
1039 break;
1040 if (dev->fsa_dev[container].config_waiting_on &&
1041 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1042 break;
1043 dev->fsa_dev[container].config_needed = CHANGE;
1044 dev->fsa_dev[container].config_waiting_on =
1045 AifEnConfigChange;
1046 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1047 break;
1048
1049 case AifEnConfigChange:
1050 break;
1051
1052 case AifEnAddJBOD:
1053 case AifEnDeleteJBOD:
1054 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1055 if ((container >> 28)) {
1056 container = (u32)-1;
1057 break;
1058 }
1059 channel = (container >> 24) & 0xF;
1060 if (channel >= dev->maximum_num_channels) {
1061 container = (u32)-1;
1062 break;
1063 }
1064 id = container & 0xFFFF;
1065 if (id >= dev->maximum_num_physicals) {
1066 container = (u32)-1;
1067 break;
1068 }
1069 lun = (container >> 16) & 0xFF;
1070 container = (u32)-1;
1071 channel = aac_phys_to_logical(channel);
1072 device_config_needed =
1073 (((__le32 *)aifcmd->data)[0] ==
1074 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1075 if (device_config_needed == ADD) {
1076 device = scsi_device_lookup(dev->scsi_host_ptr,
1077 channel,
1078 id,
1079 lun);
1080 if (device) {
1081 scsi_remove_device(device);
1082 scsi_device_put(device);
1083 }
1084 }
1085 break;
1086
1087 case AifEnEnclosureManagement:
1088 /*
1089 * If in JBOD mode, automatic exposure of new
1090 * physical target to be suppressed until configured.
1091 */
1092 if (dev->jbod)
1093 break;
1094 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1095 case EM_DRIVE_INSERTION:
1096 case EM_DRIVE_REMOVAL:
1097 case EM_SES_DRIVE_INSERTION:
1098 case EM_SES_DRIVE_REMOVAL:
1099 container = le32_to_cpu(
1100 ((__le32 *)aifcmd->data)[2]);
1101 if ((container >> 28)) {
1102 container = (u32)-1;
1103 break;
1104 }
1105 channel = (container >> 24) & 0xF;
1106 if (channel >= dev->maximum_num_channels) {
1107 container = (u32)-1;
1108 break;
1109 }
1110 id = container & 0xFFFF;
1111 lun = (container >> 16) & 0xFF;
1112 container = (u32)-1;
1113 if (id >= dev->maximum_num_physicals) {
1114 /* legacy dev_t ? */
1115 if ((0x2000 <= id) || lun || channel ||
1116 ((channel = (id >> 7) & 0x3F) >=
1117 dev->maximum_num_channels))
1118 break;
1119 lun = (id >> 4) & 7;
1120 id &= 0xF;
1121 }
1122 channel = aac_phys_to_logical(channel);
1123 device_config_needed =
1124 ((((__le32 *)aifcmd->data)[3]
1125 == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1126 (((__le32 *)aifcmd->data)[3]
1127 == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1128 ADD : DELETE;
1129 break;
1130 }
1131 break;
1132 }
1133
1134 /*
1135 * If we are waiting on something and this happens to be
1136 * that thing then set the re-configure flag.
1137 */
1138 if (container != (u32)-1) {
1139 if (container >= dev->maximum_num_containers)
1140 break;
1141 if ((dev->fsa_dev[container].config_waiting_on ==
1142 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1143 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1144 dev->fsa_dev[container].config_waiting_on = 0;
1145 } else for (container = 0;
1146 container < dev->maximum_num_containers; ++container) {
1147 if ((dev->fsa_dev[container].config_waiting_on ==
1148 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1149 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1150 dev->fsa_dev[container].config_waiting_on = 0;
1151 }
1152 break;
1153
1154 case AifCmdJobProgress:
1155 /*
1156 * These are job progress AIF's. When a Clear is being
1157 * done on a container it is initially created then hidden from
1158 * the OS. When the clear completes we don't get a config
1159 * change so we monitor the job status complete on a clear then
1160 * wait for a container change.
1161 */
1162
1163 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1164 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1165 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1166 for (container = 0;
1167 container < dev->maximum_num_containers;
1168 ++container) {
1169 /*
1170 * Stomp on all config sequencing for all
1171 * containers?
1172 */
1173 dev->fsa_dev[container].config_waiting_on =
1174 AifEnContainerChange;
1175 dev->fsa_dev[container].config_needed = ADD;
1176 dev->fsa_dev[container].config_waiting_stamp =
1177 jiffies;
1178 }
1179 }
1180 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1181 ((__le32 *)aifcmd->data)[6] == 0 &&
1182 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1183 for (container = 0;
1184 container < dev->maximum_num_containers;
1185 ++container) {
1186 /*
1187 * Stomp on all config sequencing for all
1188 * containers?
1189 */
1190 dev->fsa_dev[container].config_waiting_on =
1191 AifEnContainerChange;
1192 dev->fsa_dev[container].config_needed = DELETE;
1193 dev->fsa_dev[container].config_waiting_stamp =
1194 jiffies;
1195 }
1196 }
1197 break;
1198 }
1199
1200 container = 0;
1201 retry_next:
1202 if (device_config_needed == NOTHING)
1203 for (; container < dev->maximum_num_containers; ++container) {
1204 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1205 (dev->fsa_dev[container].config_needed != NOTHING) &&
1206 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1207 device_config_needed =
1208 dev->fsa_dev[container].config_needed;
1209 dev->fsa_dev[container].config_needed = NOTHING;
1210 channel = CONTAINER_TO_CHANNEL(container);
1211 id = CONTAINER_TO_ID(container);
1212 lun = CONTAINER_TO_LUN(container);
1213 break;
1214 }
1215 }
1216 if (device_config_needed == NOTHING)
1217 return;
1218
1219 /*
1220 * If we decided that a re-configuration needs to be done,
1221 * schedule it here on the way out the door, please close the door
1222 * behind you.
1223 */
1224
1225 /*
1226 * Find the scsi_device associated with the SCSI address,
1227 * and mark it as changed, invalidating the cache. This deals
1228 * with changes to existing device IDs.
1229 */
1230
1231 if (!dev || !dev->scsi_host_ptr)
1232 return;
1233 /*
1234 * force reload of disk info via aac_probe_container
1235 */
1236 if ((channel == CONTAINER_CHANNEL) &&
1237 (device_config_needed != NOTHING)) {
1238 if (dev->fsa_dev[container].valid == 1)
1239 dev->fsa_dev[container].valid = 2;
1240 aac_probe_container(dev, container);
1241 }
1242 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1243 if (device) {
1244 switch (device_config_needed) {
1245 case DELETE:
1246 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1247 scsi_remove_device(device);
1248 #else
1249 if (scsi_device_online(device)) {
1250 scsi_device_set_state(device, SDEV_OFFLINE);
1251 sdev_printk(KERN_INFO, device,
1252 "Device offlined - %s\n",
1253 (channel == CONTAINER_CHANNEL) ?
1254 "array deleted" :
1255 "enclosure services event");
1256 }
1257 #endif
1258 break;
1259 case ADD:
1260 if (!scsi_device_online(device)) {
1261 sdev_printk(KERN_INFO, device,
1262 "Device online - %s\n",
1263 (channel == CONTAINER_CHANNEL) ?
1264 "array created" :
1265 "enclosure services event");
1266 scsi_device_set_state(device, SDEV_RUNNING);
1267 }
1268 /* FALLTHRU */
1269 case CHANGE:
1270 if ((channel == CONTAINER_CHANNEL)
1271 && (!dev->fsa_dev[container].valid)) {
1272 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1273 scsi_remove_device(device);
1274 #else
1275 if (!scsi_device_online(device))
1276 break;
1277 scsi_device_set_state(device, SDEV_OFFLINE);
1278 sdev_printk(KERN_INFO, device,
1279 "Device offlined - %s\n",
1280 "array failed");
1281 #endif
1282 break;
1283 }
1284 scsi_rescan_device(&device->sdev_gendev);
1285
1286 default:
1287 break;
1288 }
1289 scsi_device_put(device);
1290 device_config_needed = NOTHING;
1291 }
1292 if (device_config_needed == ADD)
1293 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1294 if (channel == CONTAINER_CHANNEL) {
1295 container++;
1296 device_config_needed = NOTHING;
1297 goto retry_next;
1298 }
1299 }
1300
_aac_reset_adapter(struct aac_dev * aac,int forced)1301 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1302 {
1303 int index, quirks;
1304 int retval;
1305 struct Scsi_Host *host;
1306 struct scsi_device *dev;
1307 struct scsi_cmnd *command;
1308 struct scsi_cmnd *command_list;
1309 int jafo = 0;
1310
1311 /*
1312 * Assumptions:
1313 * - host is locked, unless called by the aacraid thread.
1314 * (a matter of convenience, due to legacy issues surrounding
1315 * eh_host_adapter_reset).
1316 * - in_reset is asserted, so no new i/o is getting to the
1317 * card.
1318 * - The card is dead, or will be very shortly ;-/ so no new
1319 * commands are completing in the interrupt service.
1320 */
1321 host = aac->scsi_host_ptr;
1322 scsi_block_requests(host);
1323 aac_adapter_disable_int(aac);
1324 if (aac->thread && aac->thread->pid != current->pid) {
1325 spin_unlock_irq(host->host_lock);
1326 kthread_stop(aac->thread);
1327 aac->thread = NULL;
1328 jafo = 1;
1329 }
1330
1331 /*
1332 * If a positive health, means in a known DEAD PANIC
1333 * state and the adapter could be reset to `try again'.
1334 */
1335 retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1336
1337 if (retval)
1338 goto out;
1339
1340 /*
1341 * Loop through the fibs, close the synchronous FIBS
1342 */
1343 for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1344 struct fib *fib = &aac->fibs[index];
1345 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1346 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1347 unsigned long flagv;
1348 spin_lock_irqsave(&fib->event_lock, flagv);
1349 up(&fib->event_wait);
1350 spin_unlock_irqrestore(&fib->event_lock, flagv);
1351 schedule();
1352 retval = 0;
1353 }
1354 }
1355 /* Give some extra time for ioctls to complete. */
1356 if (retval == 0)
1357 ssleep(2);
1358 index = aac->cardtype;
1359
1360 /*
1361 * Re-initialize the adapter, first free resources, then carefully
1362 * apply the initialization sequence to come back again. Only risk
1363 * is a change in Firmware dropping cache, it is assumed the caller
1364 * will ensure that i/o is queisced and the card is flushed in that
1365 * case.
1366 */
1367 aac_free_irq(aac);
1368 aac_fib_map_free(aac);
1369 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1370 aac->comm_addr = NULL;
1371 aac->comm_phys = 0;
1372 kfree(aac->queues);
1373 aac->queues = NULL;
1374 kfree(aac->fsa_dev);
1375 aac->fsa_dev = NULL;
1376 quirks = aac_get_driver_ident(index)->quirks;
1377 if (quirks & AAC_QUIRK_31BIT) {
1378 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1379 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1380 goto out;
1381 } else {
1382 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1383 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1384 goto out;
1385 }
1386 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1387 goto out;
1388 if (quirks & AAC_QUIRK_31BIT)
1389 if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1390 goto out;
1391 if (jafo) {
1392 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1393 aac->name);
1394 if (IS_ERR(aac->thread)) {
1395 retval = PTR_ERR(aac->thread);
1396 aac->thread = NULL;
1397 goto out;
1398 }
1399 }
1400 (void)aac_get_adapter_info(aac);
1401 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1402 host->sg_tablesize = 34;
1403 host->max_sectors = (host->sg_tablesize * 8) + 112;
1404 }
1405 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1406 host->sg_tablesize = 17;
1407 host->max_sectors = (host->sg_tablesize * 8) + 112;
1408 }
1409 aac_get_config_status(aac, 1);
1410 aac_get_containers(aac);
1411 /*
1412 * This is where the assumption that the Adapter is quiesced
1413 * is important.
1414 */
1415 command_list = NULL;
1416 __shost_for_each_device(dev, host) {
1417 unsigned long flags;
1418 spin_lock_irqsave(&dev->list_lock, flags);
1419 list_for_each_entry(command, &dev->cmd_list, list)
1420 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1421 command->SCp.buffer = (struct scatterlist *)command_list;
1422 command_list = command;
1423 }
1424 spin_unlock_irqrestore(&dev->list_lock, flags);
1425 }
1426 while ((command = command_list)) {
1427 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1428 command->SCp.buffer = NULL;
1429 command->result = DID_OK << 16
1430 | COMMAND_COMPLETE << 8
1431 | SAM_STAT_TASK_SET_FULL;
1432 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1433 command->scsi_done(command);
1434 }
1435 retval = 0;
1436
1437 out:
1438 aac->in_reset = 0;
1439 scsi_unblock_requests(host);
1440 if (jafo) {
1441 spin_lock_irq(host->host_lock);
1442 }
1443 return retval;
1444 }
1445
aac_reset_adapter(struct aac_dev * aac,int forced)1446 int aac_reset_adapter(struct aac_dev * aac, int forced)
1447 {
1448 unsigned long flagv = 0;
1449 int retval;
1450 struct Scsi_Host * host;
1451
1452 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1453 return -EBUSY;
1454
1455 if (aac->in_reset) {
1456 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1457 return -EBUSY;
1458 }
1459 aac->in_reset = 1;
1460 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1461
1462 /*
1463 * Wait for all commands to complete to this specific
1464 * target (block maximum 60 seconds). Although not necessary,
1465 * it does make us a good storage citizen.
1466 */
1467 host = aac->scsi_host_ptr;
1468 scsi_block_requests(host);
1469 if (forced < 2) for (retval = 60; retval; --retval) {
1470 struct scsi_device * dev;
1471 struct scsi_cmnd * command;
1472 int active = 0;
1473
1474 __shost_for_each_device(dev, host) {
1475 spin_lock_irqsave(&dev->list_lock, flagv);
1476 list_for_each_entry(command, &dev->cmd_list, list) {
1477 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1478 active++;
1479 break;
1480 }
1481 }
1482 spin_unlock_irqrestore(&dev->list_lock, flagv);
1483 if (active)
1484 break;
1485
1486 }
1487 /*
1488 * We can exit If all the commands are complete
1489 */
1490 if (active == 0)
1491 break;
1492 ssleep(1);
1493 }
1494
1495 /* Quiesce build, flush cache, write through mode */
1496 if (forced < 2)
1497 aac_send_shutdown(aac);
1498 spin_lock_irqsave(host->host_lock, flagv);
1499 retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1500 spin_unlock_irqrestore(host->host_lock, flagv);
1501
1502 if ((forced < 2) && (retval == -ENODEV)) {
1503 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1504 struct fib * fibctx = aac_fib_alloc(aac);
1505 if (fibctx) {
1506 struct aac_pause *cmd;
1507 int status;
1508
1509 aac_fib_init(fibctx);
1510
1511 cmd = (struct aac_pause *) fib_data(fibctx);
1512
1513 cmd->command = cpu_to_le32(VM_ContainerConfig);
1514 cmd->type = cpu_to_le32(CT_PAUSE_IO);
1515 cmd->timeout = cpu_to_le32(1);
1516 cmd->min = cpu_to_le32(1);
1517 cmd->noRescan = cpu_to_le32(1);
1518 cmd->count = cpu_to_le32(0);
1519
1520 status = aac_fib_send(ContainerCommand,
1521 fibctx,
1522 sizeof(struct aac_pause),
1523 FsaNormal,
1524 -2 /* Timeout silently */, 1,
1525 NULL, NULL);
1526
1527 if (status >= 0)
1528 aac_fib_complete(fibctx);
1529 /* FIB should be freed only after getting
1530 * the response from the F/W */
1531 if (status != -ERESTARTSYS)
1532 aac_fib_free(fibctx);
1533 }
1534 }
1535
1536 return retval;
1537 }
1538
aac_check_health(struct aac_dev * aac)1539 int aac_check_health(struct aac_dev * aac)
1540 {
1541 int BlinkLED;
1542 unsigned long time_now, flagv = 0;
1543 struct list_head * entry;
1544 struct Scsi_Host * host;
1545
1546 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1547 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1548 return 0;
1549
1550 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1551 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1552 return 0; /* OK */
1553 }
1554
1555 aac->in_reset = 1;
1556
1557 /* Fake up an AIF:
1558 * aac_aifcmd.command = AifCmdEventNotify = 1
1559 * aac_aifcmd.seqnum = 0xFFFFFFFF
1560 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1561 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1562 * aac.aifcmd.data[2] = AifHighPriority = 3
1563 * aac.aifcmd.data[3] = BlinkLED
1564 */
1565
1566 time_now = jiffies/HZ;
1567 entry = aac->fib_list.next;
1568
1569 /*
1570 * For each Context that is on the
1571 * fibctxList, make a copy of the
1572 * fib, and then set the event to wake up the
1573 * thread that is waiting for it.
1574 */
1575 while (entry != &aac->fib_list) {
1576 /*
1577 * Extract the fibctx
1578 */
1579 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1580 struct hw_fib * hw_fib;
1581 struct fib * fib;
1582 /*
1583 * Check if the queue is getting
1584 * backlogged
1585 */
1586 if (fibctx->count > 20) {
1587 /*
1588 * It's *not* jiffies folks,
1589 * but jiffies / HZ, so do not
1590 * panic ...
1591 */
1592 u32 time_last = fibctx->jiffies;
1593 /*
1594 * Has it been > 2 minutes
1595 * since the last read off
1596 * the queue?
1597 */
1598 if ((time_now - time_last) > aif_timeout) {
1599 entry = entry->next;
1600 aac_close_fib_context(aac, fibctx);
1601 continue;
1602 }
1603 }
1604 /*
1605 * Warning: no sleep allowed while
1606 * holding spinlock
1607 */
1608 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1609 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1610 if (fib && hw_fib) {
1611 struct aac_aifcmd * aif;
1612
1613 fib->hw_fib_va = hw_fib;
1614 fib->dev = aac;
1615 aac_fib_init(fib);
1616 fib->type = FSAFS_NTC_FIB_CONTEXT;
1617 fib->size = sizeof (struct fib);
1618 fib->data = hw_fib->data;
1619 aif = (struct aac_aifcmd *)hw_fib->data;
1620 aif->command = cpu_to_le32(AifCmdEventNotify);
1621 aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1622 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1623 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1624 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1625 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1626
1627 /*
1628 * Put the FIB onto the
1629 * fibctx's fibs
1630 */
1631 list_add_tail(&fib->fiblink, &fibctx->fib_list);
1632 fibctx->count++;
1633 /*
1634 * Set the event to wake up the
1635 * thread that will waiting.
1636 */
1637 up(&fibctx->wait_sem);
1638 } else {
1639 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1640 kfree(fib);
1641 kfree(hw_fib);
1642 }
1643 entry = entry->next;
1644 }
1645
1646 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1647
1648 if (BlinkLED < 0) {
1649 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1650 goto out;
1651 }
1652
1653 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1654
1655 if (!aac_check_reset || ((aac_check_reset == 1) &&
1656 (aac->supplement_adapter_info.SupportedOptions2 &
1657 AAC_OPTION_IGNORE_RESET)))
1658 goto out;
1659 host = aac->scsi_host_ptr;
1660 if (aac->thread->pid != current->pid)
1661 spin_lock_irqsave(host->host_lock, flagv);
1662 BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1663 if (aac->thread->pid != current->pid)
1664 spin_unlock_irqrestore(host->host_lock, flagv);
1665 return BlinkLED;
1666
1667 out:
1668 aac->in_reset = 0;
1669 return BlinkLED;
1670 }
1671
1672
1673 /**
1674 * aac_command_thread - command processing thread
1675 * @dev: Adapter to monitor
1676 *
1677 * Waits on the commandready event in it's queue. When the event gets set
1678 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1679 * until the queue is empty. When the queue is empty it will wait for
1680 * more FIBs.
1681 */
1682
aac_command_thread(void * data)1683 int aac_command_thread(void *data)
1684 {
1685 struct aac_dev *dev = data;
1686 struct hw_fib *hw_fib, *hw_newfib;
1687 struct fib *fib, *newfib;
1688 struct aac_fib_context *fibctx;
1689 unsigned long flags;
1690 DECLARE_WAITQUEUE(wait, current);
1691 unsigned long next_jiffies = jiffies + HZ;
1692 unsigned long next_check_jiffies = next_jiffies;
1693 long difference = HZ;
1694
1695 /*
1696 * We can only have one thread per adapter for AIF's.
1697 */
1698 if (dev->aif_thread)
1699 return -EINVAL;
1700
1701 /*
1702 * Let the DPC know it has a place to send the AIF's to.
1703 */
1704 dev->aif_thread = 1;
1705 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1706 set_current_state(TASK_INTERRUPTIBLE);
1707 dprintk ((KERN_INFO "aac_command_thread start\n"));
1708 while (1) {
1709 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1710 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1711 struct list_head *entry;
1712 struct aac_aifcmd * aifcmd;
1713
1714 set_current_state(TASK_RUNNING);
1715
1716 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1717 list_del(entry);
1718
1719 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1720 fib = list_entry(entry, struct fib, fiblink);
1721 /*
1722 * We will process the FIB here or pass it to a
1723 * worker thread that is TBD. We Really can't
1724 * do anything at this point since we don't have
1725 * anything defined for this thread to do.
1726 */
1727 hw_fib = fib->hw_fib_va;
1728 memset(fib, 0, sizeof(struct fib));
1729 fib->type = FSAFS_NTC_FIB_CONTEXT;
1730 fib->size = sizeof(struct fib);
1731 fib->hw_fib_va = hw_fib;
1732 fib->data = hw_fib->data;
1733 fib->dev = dev;
1734 /*
1735 * We only handle AifRequest fibs from the adapter.
1736 */
1737 aifcmd = (struct aac_aifcmd *) hw_fib->data;
1738 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1739 /* Handle Driver Notify Events */
1740 aac_handle_aif(dev, fib);
1741 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1742 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1743 } else {
1744 /* The u32 here is important and intended. We are using
1745 32bit wrapping time to fit the adapter field */
1746
1747 u32 time_now, time_last;
1748 unsigned long flagv;
1749 unsigned num;
1750 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1751 struct fib ** fib_pool, ** fib_p;
1752
1753 /* Sniff events */
1754 if ((aifcmd->command ==
1755 cpu_to_le32(AifCmdEventNotify)) ||
1756 (aifcmd->command ==
1757 cpu_to_le32(AifCmdJobProgress))) {
1758 aac_handle_aif(dev, fib);
1759 }
1760
1761 time_now = jiffies/HZ;
1762
1763 /*
1764 * Warning: no sleep allowed while
1765 * holding spinlock. We take the estimate
1766 * and pre-allocate a set of fibs outside the
1767 * lock.
1768 */
1769 num = le32_to_cpu(dev->init->AdapterFibsSize)
1770 / sizeof(struct hw_fib); /* some extra */
1771 spin_lock_irqsave(&dev->fib_lock, flagv);
1772 entry = dev->fib_list.next;
1773 while (entry != &dev->fib_list) {
1774 entry = entry->next;
1775 ++num;
1776 }
1777 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1778 hw_fib_pool = NULL;
1779 fib_pool = NULL;
1780 if (num
1781 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1782 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1783 hw_fib_p = hw_fib_pool;
1784 fib_p = fib_pool;
1785 while (hw_fib_p < &hw_fib_pool[num]) {
1786 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1787 --hw_fib_p;
1788 break;
1789 }
1790 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1791 kfree(*(--hw_fib_p));
1792 break;
1793 }
1794 }
1795 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1796 kfree(fib_pool);
1797 fib_pool = NULL;
1798 kfree(hw_fib_pool);
1799 hw_fib_pool = NULL;
1800 }
1801 } else {
1802 kfree(hw_fib_pool);
1803 hw_fib_pool = NULL;
1804 }
1805 spin_lock_irqsave(&dev->fib_lock, flagv);
1806 entry = dev->fib_list.next;
1807 /*
1808 * For each Context that is on the
1809 * fibctxList, make a copy of the
1810 * fib, and then set the event to wake up the
1811 * thread that is waiting for it.
1812 */
1813 hw_fib_p = hw_fib_pool;
1814 fib_p = fib_pool;
1815 while (entry != &dev->fib_list) {
1816 /*
1817 * Extract the fibctx
1818 */
1819 fibctx = list_entry(entry, struct aac_fib_context, next);
1820 /*
1821 * Check if the queue is getting
1822 * backlogged
1823 */
1824 if (fibctx->count > 20)
1825 {
1826 /*
1827 * It's *not* jiffies folks,
1828 * but jiffies / HZ so do not
1829 * panic ...
1830 */
1831 time_last = fibctx->jiffies;
1832 /*
1833 * Has it been > 2 minutes
1834 * since the last read off
1835 * the queue?
1836 */
1837 if ((time_now - time_last) > aif_timeout) {
1838 entry = entry->next;
1839 aac_close_fib_context(dev, fibctx);
1840 continue;
1841 }
1842 }
1843 /*
1844 * Warning: no sleep allowed while
1845 * holding spinlock
1846 */
1847 if (hw_fib_p < &hw_fib_pool[num]) {
1848 hw_newfib = *hw_fib_p;
1849 *(hw_fib_p++) = NULL;
1850 newfib = *fib_p;
1851 *(fib_p++) = NULL;
1852 /*
1853 * Make the copy of the FIB
1854 */
1855 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1856 memcpy(newfib, fib, sizeof(struct fib));
1857 newfib->hw_fib_va = hw_newfib;
1858 /*
1859 * Put the FIB onto the
1860 * fibctx's fibs
1861 */
1862 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1863 fibctx->count++;
1864 /*
1865 * Set the event to wake up the
1866 * thread that is waiting.
1867 */
1868 up(&fibctx->wait_sem);
1869 } else {
1870 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1871 }
1872 entry = entry->next;
1873 }
1874 /*
1875 * Set the status of this FIB
1876 */
1877 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1878 aac_fib_adapter_complete(fib, sizeof(u32));
1879 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1880 /* Free up the remaining resources */
1881 hw_fib_p = hw_fib_pool;
1882 fib_p = fib_pool;
1883 while (hw_fib_p < &hw_fib_pool[num]) {
1884 kfree(*hw_fib_p);
1885 kfree(*fib_p);
1886 ++fib_p;
1887 ++hw_fib_p;
1888 }
1889 kfree(hw_fib_pool);
1890 kfree(fib_pool);
1891 }
1892 kfree(fib);
1893 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1894 }
1895 /*
1896 * There are no more AIF's
1897 */
1898 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1899
1900 /*
1901 * Background activity
1902 */
1903 if ((time_before(next_check_jiffies,next_jiffies))
1904 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1905 next_check_jiffies = next_jiffies;
1906 if (aac_check_health(dev) == 0) {
1907 difference = ((long)(unsigned)check_interval)
1908 * HZ;
1909 next_check_jiffies = jiffies + difference;
1910 } else if (!dev->queues)
1911 break;
1912 }
1913 if (!time_before(next_check_jiffies,next_jiffies)
1914 && ((difference = next_jiffies - jiffies) <= 0)) {
1915 struct timeval now;
1916 int ret;
1917
1918 /* Don't even try to talk to adapter if its sick */
1919 ret = aac_check_health(dev);
1920 if (!ret && !dev->queues)
1921 break;
1922 next_check_jiffies = jiffies
1923 + ((long)(unsigned)check_interval)
1924 * HZ;
1925 do_gettimeofday(&now);
1926
1927 /* Synchronize our watches */
1928 if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1929 && (now.tv_usec > (1000000 / HZ)))
1930 difference = (((1000000 - now.tv_usec) * HZ)
1931 + 500000) / 1000000;
1932 else if (ret == 0) {
1933 struct fib *fibptr;
1934
1935 if ((fibptr = aac_fib_alloc(dev))) {
1936 int status;
1937 __le32 *info;
1938
1939 aac_fib_init(fibptr);
1940
1941 info = (__le32 *) fib_data(fibptr);
1942 if (now.tv_usec > 500000)
1943 ++now.tv_sec;
1944
1945 *info = cpu_to_le32(now.tv_sec);
1946
1947 status = aac_fib_send(SendHostTime,
1948 fibptr,
1949 sizeof(*info),
1950 FsaNormal,
1951 1, 1,
1952 NULL,
1953 NULL);
1954 /* Do not set XferState to zero unless
1955 * receives a response from F/W */
1956 if (status >= 0)
1957 aac_fib_complete(fibptr);
1958 /* FIB should be freed only after
1959 * getting the response from the F/W */
1960 if (status != -ERESTARTSYS)
1961 aac_fib_free(fibptr);
1962 }
1963 difference = (long)(unsigned)update_interval*HZ;
1964 } else {
1965 /* retry shortly */
1966 difference = 10 * HZ;
1967 }
1968 next_jiffies = jiffies + difference;
1969 if (time_before(next_check_jiffies,next_jiffies))
1970 difference = next_check_jiffies - jiffies;
1971 }
1972 if (difference <= 0)
1973 difference = 1;
1974 set_current_state(TASK_INTERRUPTIBLE);
1975
1976 if (kthread_should_stop())
1977 break;
1978
1979 schedule_timeout(difference);
1980
1981 if (kthread_should_stop())
1982 break;
1983 }
1984 if (dev->queues)
1985 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1986 dev->aif_thread = 0;
1987 return 0;
1988 }
1989
aac_acquire_irq(struct aac_dev * dev)1990 int aac_acquire_irq(struct aac_dev *dev)
1991 {
1992 int i;
1993 int j;
1994 int ret = 0;
1995 int cpu;
1996
1997 cpu = cpumask_first(cpu_online_mask);
1998 if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
1999 for (i = 0; i < dev->max_msix; i++) {
2000 dev->aac_msix[i].vector_no = i;
2001 dev->aac_msix[i].dev = dev;
2002 if (request_irq(dev->msixentry[i].vector,
2003 dev->a_ops.adapter_intr,
2004 0, "aacraid", &(dev->aac_msix[i]))) {
2005 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2006 dev->name, dev->id, i);
2007 for (j = 0 ; j < i ; j++)
2008 free_irq(dev->msixentry[j].vector,
2009 &(dev->aac_msix[j]));
2010 pci_disable_msix(dev->pdev);
2011 ret = -1;
2012 }
2013 if (irq_set_affinity_hint(dev->msixentry[i].vector,
2014 get_cpu_mask(cpu))) {
2015 printk(KERN_ERR "%s%d: Failed to set IRQ affinity for cpu %d\n",
2016 dev->name, dev->id, cpu);
2017 }
2018 cpu = cpumask_next(cpu, cpu_online_mask);
2019 }
2020 } else {
2021 dev->aac_msix[0].vector_no = 0;
2022 dev->aac_msix[0].dev = dev;
2023
2024 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2025 IRQF_SHARED, "aacraid",
2026 &(dev->aac_msix[0])) < 0) {
2027 if (dev->msi)
2028 pci_disable_msi(dev->pdev);
2029 printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2030 dev->name, dev->id);
2031 ret = -1;
2032 }
2033 }
2034 return ret;
2035 }
2036
aac_free_irq(struct aac_dev * dev)2037 void aac_free_irq(struct aac_dev *dev)
2038 {
2039 int i;
2040 int cpu;
2041
2042 cpu = cpumask_first(cpu_online_mask);
2043 if (dev->pdev->device == PMC_DEVICE_S6 ||
2044 dev->pdev->device == PMC_DEVICE_S7 ||
2045 dev->pdev->device == PMC_DEVICE_S8 ||
2046 dev->pdev->device == PMC_DEVICE_S9) {
2047 if (dev->max_msix > 1) {
2048 for (i = 0; i < dev->max_msix; i++) {
2049 if (irq_set_affinity_hint(
2050 dev->msixentry[i].vector, NULL)) {
2051 printk(KERN_ERR "%s%d: Failed to reset IRQ affinity for cpu %d\n",
2052 dev->name, dev->id, cpu);
2053 }
2054 cpu = cpumask_next(cpu, cpu_online_mask);
2055 free_irq(dev->msixentry[i].vector,
2056 &(dev->aac_msix[i]));
2057 }
2058 } else {
2059 free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2060 }
2061 } else {
2062 free_irq(dev->pdev->irq, dev);
2063 }
2064 if (dev->msi)
2065 pci_disable_msi(dev->pdev);
2066 else if (dev->max_msix > 1)
2067 pci_disable_msix(dev->pdev);
2068 }
2069