• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
93 
94 #include <asm/uaccess.h>
95 #include <asm/unistd.h>
96 
97 #include <net/compat.h>
98 #include <net/wext.h>
99 #include <net/cls_cgroup.h>
100 
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
103 
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <linux/atalk.h>
109 #include <net/busy_poll.h>
110 #include <linux/errqueue.h>
111 
112 #ifdef CONFIG_NET_RX_BUSY_POLL
113 unsigned int sysctl_net_busy_read __read_mostly;
114 unsigned int sysctl_net_busy_poll __read_mostly;
115 #endif
116 
117 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
118 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
119 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 
121 static int sock_close(struct inode *inode, struct file *file);
122 static unsigned int sock_poll(struct file *file,
123 			      struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 			      unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_sendpage(struct file *file, struct page *page,
131 			     int offset, size_t size, loff_t *ppos, int more);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 				struct pipe_inode_info *pipe, size_t len,
134 				unsigned int flags);
135 
136 /*
137  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138  *	in the operation structures but are done directly via the socketcall() multiplexor.
139  */
140 
141 static const struct file_operations socket_file_ops = {
142 	.owner =	THIS_MODULE,
143 	.llseek =	no_llseek,
144 	.read_iter =	sock_read_iter,
145 	.write_iter =	sock_write_iter,
146 	.poll =		sock_poll,
147 	.unlocked_ioctl = sock_ioctl,
148 #ifdef CONFIG_COMPAT
149 	.compat_ioctl = compat_sock_ioctl,
150 #endif
151 	.mmap =		sock_mmap,
152 	.release =	sock_close,
153 	.fasync =	sock_fasync,
154 	.sendpage =	sock_sendpage,
155 	.splice_write = generic_splice_sendpage,
156 	.splice_read =	sock_splice_read,
157 };
158 
159 /*
160  *	The protocol list. Each protocol is registered in here.
161  */
162 
163 static DEFINE_SPINLOCK(net_family_lock);
164 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
165 
166 /*
167  *	Statistics counters of the socket lists
168  */
169 
170 static DEFINE_PER_CPU(int, sockets_in_use);
171 
172 /*
173  * Support routines.
174  * Move socket addresses back and forth across the kernel/user
175  * divide and look after the messy bits.
176  */
177 
178 /**
179  *	move_addr_to_kernel	-	copy a socket address into kernel space
180  *	@uaddr: Address in user space
181  *	@kaddr: Address in kernel space
182  *	@ulen: Length in user space
183  *
184  *	The address is copied into kernel space. If the provided address is
185  *	too long an error code of -EINVAL is returned. If the copy gives
186  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
187  */
188 
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)189 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
190 {
191 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
192 		return -EINVAL;
193 	if (ulen == 0)
194 		return 0;
195 	if (copy_from_user(kaddr, uaddr, ulen))
196 		return -EFAULT;
197 	return audit_sockaddr(ulen, kaddr);
198 }
199 
200 /**
201  *	move_addr_to_user	-	copy an address to user space
202  *	@kaddr: kernel space address
203  *	@klen: length of address in kernel
204  *	@uaddr: user space address
205  *	@ulen: pointer to user length field
206  *
207  *	The value pointed to by ulen on entry is the buffer length available.
208  *	This is overwritten with the buffer space used. -EINVAL is returned
209  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
210  *	is returned if either the buffer or the length field are not
211  *	accessible.
212  *	After copying the data up to the limit the user specifies, the true
213  *	length of the data is written over the length limit the user
214  *	specified. Zero is returned for a success.
215  */
216 
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)217 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
218 			     void __user *uaddr, int __user *ulen)
219 {
220 	int err;
221 	int len;
222 
223 	BUG_ON(klen > sizeof(struct sockaddr_storage));
224 	err = get_user(len, ulen);
225 	if (err)
226 		return err;
227 	if (len > klen)
228 		len = klen;
229 	if (len < 0)
230 		return -EINVAL;
231 	if (len) {
232 		if (audit_sockaddr(klen, kaddr))
233 			return -ENOMEM;
234 		if (copy_to_user(uaddr, kaddr, len))
235 			return -EFAULT;
236 	}
237 	/*
238 	 *      "fromlen shall refer to the value before truncation.."
239 	 *                      1003.1g
240 	 */
241 	return __put_user(klen, ulen);
242 }
243 
244 static struct kmem_cache *sock_inode_cachep __read_mostly;
245 
sock_alloc_inode(struct super_block * sb)246 static struct inode *sock_alloc_inode(struct super_block *sb)
247 {
248 	struct socket_alloc *ei;
249 	struct socket_wq *wq;
250 
251 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
252 	if (!ei)
253 		return NULL;
254 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
255 	if (!wq) {
256 		kmem_cache_free(sock_inode_cachep, ei);
257 		return NULL;
258 	}
259 	init_waitqueue_head(&wq->wait);
260 	wq->fasync_list = NULL;
261 	wq->flags = 0;
262 	RCU_INIT_POINTER(ei->socket.wq, wq);
263 
264 	ei->socket.state = SS_UNCONNECTED;
265 	ei->socket.flags = 0;
266 	ei->socket.ops = NULL;
267 	ei->socket.sk = NULL;
268 	ei->socket.file = NULL;
269 
270 	return &ei->vfs_inode;
271 }
272 
sock_destroy_inode(struct inode * inode)273 static void sock_destroy_inode(struct inode *inode)
274 {
275 	struct socket_alloc *ei;
276 	struct socket_wq *wq;
277 
278 	ei = container_of(inode, struct socket_alloc, vfs_inode);
279 	wq = rcu_dereference_protected(ei->socket.wq, 1);
280 	kfree_rcu(wq, rcu);
281 	kmem_cache_free(sock_inode_cachep, ei);
282 }
283 
init_once(void * foo)284 static void init_once(void *foo)
285 {
286 	struct socket_alloc *ei = (struct socket_alloc *)foo;
287 
288 	inode_init_once(&ei->vfs_inode);
289 }
290 
init_inodecache(void)291 static int init_inodecache(void)
292 {
293 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 					      sizeof(struct socket_alloc),
295 					      0,
296 					      (SLAB_HWCACHE_ALIGN |
297 					       SLAB_RECLAIM_ACCOUNT |
298 					       SLAB_MEM_SPREAD),
299 					      init_once);
300 	if (sock_inode_cachep == NULL)
301 		return -ENOMEM;
302 	return 0;
303 }
304 
305 static const struct super_operations sockfs_ops = {
306 	.alloc_inode	= sock_alloc_inode,
307 	.destroy_inode	= sock_destroy_inode,
308 	.statfs		= simple_statfs,
309 };
310 
311 /*
312  * sockfs_dname() is called from d_path().
313  */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315 {
316 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
317 				d_inode(dentry)->i_ino);
318 }
319 
320 static const struct dentry_operations sockfs_dentry_operations = {
321 	.d_dname  = sockfs_dname,
322 };
323 
sockfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)324 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
325 			 int flags, const char *dev_name, void *data)
326 {
327 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
328 		&sockfs_dentry_operations, SOCKFS_MAGIC);
329 }
330 
331 static struct vfsmount *sock_mnt __read_mostly;
332 
333 static struct file_system_type sock_fs_type = {
334 	.name =		"sockfs",
335 	.mount =	sockfs_mount,
336 	.kill_sb =	kill_anon_super,
337 };
338 
339 /*
340  *	Obtains the first available file descriptor and sets it up for use.
341  *
342  *	These functions create file structures and maps them to fd space
343  *	of the current process. On success it returns file descriptor
344  *	and file struct implicitly stored in sock->file.
345  *	Note that another thread may close file descriptor before we return
346  *	from this function. We use the fact that now we do not refer
347  *	to socket after mapping. If one day we will need it, this
348  *	function will increment ref. count on file by 1.
349  *
350  *	In any case returned fd MAY BE not valid!
351  *	This race condition is unavoidable
352  *	with shared fd spaces, we cannot solve it inside kernel,
353  *	but we take care of internal coherence yet.
354  */
355 
sock_alloc_file(struct socket * sock,int flags,const char * dname)356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
357 {
358 	struct qstr name = { .name = "" };
359 	struct path path;
360 	struct file *file;
361 
362 	if (dname) {
363 		name.name = dname;
364 		name.len = strlen(name.name);
365 	} else if (sock->sk) {
366 		name.name = sock->sk->sk_prot_creator->name;
367 		name.len = strlen(name.name);
368 	}
369 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 	if (unlikely(!path.dentry))
371 		return ERR_PTR(-ENOMEM);
372 	path.mnt = mntget(sock_mnt);
373 
374 	d_instantiate(path.dentry, SOCK_INODE(sock));
375 
376 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 		  &socket_file_ops);
378 	if (IS_ERR(file)) {
379 		/* drop dentry, keep inode */
380 		ihold(d_inode(path.dentry));
381 		path_put(&path);
382 		return file;
383 	}
384 
385 	sock->file = file;
386 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
387 	file->private_data = sock;
388 	return file;
389 }
390 EXPORT_SYMBOL(sock_alloc_file);
391 
sock_map_fd(struct socket * sock,int flags)392 static int sock_map_fd(struct socket *sock, int flags)
393 {
394 	struct file *newfile;
395 	int fd = get_unused_fd_flags(flags);
396 	if (unlikely(fd < 0))
397 		return fd;
398 
399 	newfile = sock_alloc_file(sock, flags, NULL);
400 	if (likely(!IS_ERR(newfile))) {
401 		fd_install(fd, newfile);
402 		return fd;
403 	}
404 
405 	put_unused_fd(fd);
406 	return PTR_ERR(newfile);
407 }
408 
sock_from_file(struct file * file,int * err)409 struct socket *sock_from_file(struct file *file, int *err)
410 {
411 	if (file->f_op == &socket_file_ops)
412 		return file->private_data;	/* set in sock_map_fd */
413 
414 	*err = -ENOTSOCK;
415 	return NULL;
416 }
417 EXPORT_SYMBOL(sock_from_file);
418 
419 /**
420  *	sockfd_lookup - Go from a file number to its socket slot
421  *	@fd: file handle
422  *	@err: pointer to an error code return
423  *
424  *	The file handle passed in is locked and the socket it is bound
425  *	too is returned. If an error occurs the err pointer is overwritten
426  *	with a negative errno code and NULL is returned. The function checks
427  *	for both invalid handles and passing a handle which is not a socket.
428  *
429  *	On a success the socket object pointer is returned.
430  */
431 
sockfd_lookup(int fd,int * err)432 struct socket *sockfd_lookup(int fd, int *err)
433 {
434 	struct file *file;
435 	struct socket *sock;
436 
437 	file = fget(fd);
438 	if (!file) {
439 		*err = -EBADF;
440 		return NULL;
441 	}
442 
443 	sock = sock_from_file(file, err);
444 	if (!sock)
445 		fput(file);
446 	return sock;
447 }
448 EXPORT_SYMBOL(sockfd_lookup);
449 
sockfd_lookup_light(int fd,int * err,int * fput_needed)450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
451 {
452 	struct fd f = fdget(fd);
453 	struct socket *sock;
454 
455 	*err = -EBADF;
456 	if (f.file) {
457 		sock = sock_from_file(f.file, err);
458 		if (likely(sock)) {
459 			*fput_needed = f.flags & FDPUT_FPUT;
460 			return sock;
461 		}
462 		fdput(f);
463 	}
464 	return NULL;
465 }
466 
467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
sockfs_getxattr(struct dentry * dentry,const char * name,void * value,size_t size)470 static ssize_t sockfs_getxattr(struct dentry *dentry,
471 			       const char *name, void *value, size_t size)
472 {
473 	if (!strcmp(name, XATTR_NAME_SOCKPROTONAME)) {
474 		if (value) {
475 			if (dentry->d_name.len + 1 > size)
476 				return -ERANGE;
477 			memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
478 		}
479 		return dentry->d_name.len + 1;
480 	}
481 	return -EOPNOTSUPP;
482 }
483 
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)484 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
485 				size_t size)
486 {
487 	ssize_t len;
488 	ssize_t used = 0;
489 
490 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
491 	if (len < 0)
492 		return len;
493 	used += len;
494 	if (buffer) {
495 		if (size < used)
496 			return -ERANGE;
497 		buffer += len;
498 	}
499 
500 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
501 	used += len;
502 	if (buffer) {
503 		if (size < used)
504 			return -ERANGE;
505 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
506 		buffer += len;
507 	}
508 
509 	return used;
510 }
511 
sockfs_setattr(struct dentry * dentry,struct iattr * iattr)512 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
513 {
514 	int err = simple_setattr(dentry, iattr);
515 
516 	if (!err && (iattr->ia_valid & ATTR_UID)) {
517 		struct socket *sock = SOCKET_I(d_inode(dentry));
518 
519 		if (sock->sk)
520 			sock->sk->sk_uid = iattr->ia_uid;
521 		else
522 			err = -ENOENT;
523 	}
524 
525 	return err;
526 }
527 
528 static const struct inode_operations sockfs_inode_ops = {
529 	.getxattr = sockfs_getxattr,
530 	.listxattr = sockfs_listxattr,
531 	.setattr = sockfs_setattr,
532 };
533 
534 /**
535  *	sock_alloc	-	allocate a socket
536  *
537  *	Allocate a new inode and socket object. The two are bound together
538  *	and initialised. The socket is then returned. If we are out of inodes
539  *	NULL is returned.
540  */
541 
sock_alloc(void)542 static struct socket *sock_alloc(void)
543 {
544 	struct inode *inode;
545 	struct socket *sock;
546 
547 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
548 	if (!inode)
549 		return NULL;
550 
551 	sock = SOCKET_I(inode);
552 
553 	kmemcheck_annotate_bitfield(sock, type);
554 	inode->i_ino = get_next_ino();
555 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
556 	inode->i_uid = current_fsuid();
557 	inode->i_gid = current_fsgid();
558 	inode->i_op = &sockfs_inode_ops;
559 
560 	this_cpu_add(sockets_in_use, 1);
561 	return sock;
562 }
563 
564 /**
565  *	sock_release	-	close a socket
566  *	@sock: socket to close
567  *
568  *	The socket is released from the protocol stack if it has a release
569  *	callback, and the inode is then released if the socket is bound to
570  *	an inode not a file.
571  */
572 
__sock_release(struct socket * sock,struct inode * inode)573 static void __sock_release(struct socket *sock, struct inode *inode)
574 {
575 	if (sock->ops) {
576 		struct module *owner = sock->ops->owner;
577 
578 		if (inode)
579 			inode_lock(inode);
580 		sock->ops->release(sock);
581 		sock->sk = NULL;
582 		if (inode)
583 			inode_unlock(inode);
584 		sock->ops = NULL;
585 		module_put(owner);
586 	}
587 
588 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
589 		pr_err("%s: fasync list not empty!\n", __func__);
590 
591 	this_cpu_sub(sockets_in_use, 1);
592 	if (!sock->file) {
593 		iput(SOCK_INODE(sock));
594 		return;
595 	}
596 	sock->file = NULL;
597 }
598 
sock_release(struct socket * sock)599 void sock_release(struct socket *sock)
600 {
601 	__sock_release(sock, NULL);
602 }
603 EXPORT_SYMBOL(sock_release);
604 
__sock_tx_timestamp(const struct sock * sk,__u8 * tx_flags)605 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
606 {
607 	u8 flags = *tx_flags;
608 
609 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
610 		flags |= SKBTX_HW_TSTAMP;
611 
612 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
613 		flags |= SKBTX_SW_TSTAMP;
614 
615 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
616 		flags |= SKBTX_SCHED_TSTAMP;
617 
618 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
619 		flags |= SKBTX_ACK_TSTAMP;
620 
621 	*tx_flags = flags;
622 }
623 EXPORT_SYMBOL(__sock_tx_timestamp);
624 
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)625 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
626 {
627 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
628 	BUG_ON(ret == -EIOCBQUEUED);
629 	return ret;
630 }
631 
sock_sendmsg(struct socket * sock,struct msghdr * msg)632 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
633 {
634 	int err = security_socket_sendmsg(sock, msg,
635 					  msg_data_left(msg));
636 
637 	return err ?: sock_sendmsg_nosec(sock, msg);
638 }
639 EXPORT_SYMBOL(sock_sendmsg);
640 
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)641 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
642 		   struct kvec *vec, size_t num, size_t size)
643 {
644 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
645 	return sock_sendmsg(sock, msg);
646 }
647 EXPORT_SYMBOL(kernel_sendmsg);
648 
649 /*
650  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
651  */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)652 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
653 	struct sk_buff *skb)
654 {
655 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
656 	struct scm_timestamping tss;
657 	int empty = 1;
658 	struct skb_shared_hwtstamps *shhwtstamps =
659 		skb_hwtstamps(skb);
660 
661 	/* Race occurred between timestamp enabling and packet
662 	   receiving.  Fill in the current time for now. */
663 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
664 		__net_timestamp(skb);
665 
666 	if (need_software_tstamp) {
667 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
668 			struct timeval tv;
669 			skb_get_timestamp(skb, &tv);
670 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
671 				 sizeof(tv), &tv);
672 		} else {
673 			struct timespec ts;
674 			skb_get_timestampns(skb, &ts);
675 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
676 				 sizeof(ts), &ts);
677 		}
678 	}
679 
680 	memset(&tss, 0, sizeof(tss));
681 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
682 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
683 		empty = 0;
684 	if (shhwtstamps &&
685 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
686 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
687 		empty = 0;
688 	if (!empty)
689 		put_cmsg(msg, SOL_SOCKET,
690 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
691 }
692 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
693 
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)694 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
695 	struct sk_buff *skb)
696 {
697 	int ack;
698 
699 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
700 		return;
701 	if (!skb->wifi_acked_valid)
702 		return;
703 
704 	ack = skb->wifi_acked;
705 
706 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
707 }
708 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
709 
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)710 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
711 				   struct sk_buff *skb)
712 {
713 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
714 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
715 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
716 }
717 
__sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)718 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
719 	struct sk_buff *skb)
720 {
721 	sock_recv_timestamp(msg, sk, skb);
722 	sock_recv_drops(msg, sk, skb);
723 }
724 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
725 
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,size_t size,int flags)726 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
727 				     size_t size, int flags)
728 {
729 	return sock->ops->recvmsg(sock, msg, size, flags);
730 }
731 
sock_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)732 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
733 		 int flags)
734 {
735 	int err = security_socket_recvmsg(sock, msg, size, flags);
736 
737 	return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
738 }
739 EXPORT_SYMBOL(sock_recvmsg);
740 
741 /**
742  * kernel_recvmsg - Receive a message from a socket (kernel space)
743  * @sock:       The socket to receive the message from
744  * @msg:        Received message
745  * @vec:        Input s/g array for message data
746  * @num:        Size of input s/g array
747  * @size:       Number of bytes to read
748  * @flags:      Message flags (MSG_DONTWAIT, etc...)
749  *
750  * On return the msg structure contains the scatter/gather array passed in the
751  * vec argument. The array is modified so that it consists of the unfilled
752  * portion of the original array.
753  *
754  * The returned value is the total number of bytes received, or an error.
755  */
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)756 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
757 		   struct kvec *vec, size_t num, size_t size, int flags)
758 {
759 	mm_segment_t oldfs = get_fs();
760 	int result;
761 
762 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
763 	set_fs(KERNEL_DS);
764 	result = sock_recvmsg(sock, msg, size, flags);
765 	set_fs(oldfs);
766 	return result;
767 }
768 EXPORT_SYMBOL(kernel_recvmsg);
769 
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)770 static ssize_t sock_sendpage(struct file *file, struct page *page,
771 			     int offset, size_t size, loff_t *ppos, int more)
772 {
773 	struct socket *sock;
774 	int flags;
775 
776 	sock = file->private_data;
777 
778 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
779 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
780 	flags |= more;
781 
782 	return kernel_sendpage(sock, page, offset, size, flags);
783 }
784 
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)785 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
786 				struct pipe_inode_info *pipe, size_t len,
787 				unsigned int flags)
788 {
789 	struct socket *sock = file->private_data;
790 
791 	if (unlikely(!sock->ops->splice_read))
792 		return -EINVAL;
793 
794 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
795 }
796 
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)797 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
798 {
799 	struct file *file = iocb->ki_filp;
800 	struct socket *sock = file->private_data;
801 	struct msghdr msg = {.msg_iter = *to,
802 			     .msg_iocb = iocb};
803 	ssize_t res;
804 
805 	if (file->f_flags & O_NONBLOCK)
806 		msg.msg_flags = MSG_DONTWAIT;
807 
808 	if (iocb->ki_pos != 0)
809 		return -ESPIPE;
810 
811 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
812 		return 0;
813 
814 	res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
815 	*to = msg.msg_iter;
816 	return res;
817 }
818 
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)819 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
820 {
821 	struct file *file = iocb->ki_filp;
822 	struct socket *sock = file->private_data;
823 	struct msghdr msg = {.msg_iter = *from,
824 			     .msg_iocb = iocb};
825 	ssize_t res;
826 
827 	if (iocb->ki_pos != 0)
828 		return -ESPIPE;
829 
830 	if (file->f_flags & O_NONBLOCK)
831 		msg.msg_flags = MSG_DONTWAIT;
832 
833 	if (sock->type == SOCK_SEQPACKET)
834 		msg.msg_flags |= MSG_EOR;
835 
836 	res = sock_sendmsg(sock, &msg);
837 	*from = msg.msg_iter;
838 	return res;
839 }
840 
841 /*
842  * Atomic setting of ioctl hooks to avoid race
843  * with module unload.
844  */
845 
846 static DEFINE_MUTEX(br_ioctl_mutex);
847 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
848 
brioctl_set(int (* hook)(struct net *,unsigned int,void __user *))849 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
850 {
851 	mutex_lock(&br_ioctl_mutex);
852 	br_ioctl_hook = hook;
853 	mutex_unlock(&br_ioctl_mutex);
854 }
855 EXPORT_SYMBOL(brioctl_set);
856 
857 static DEFINE_MUTEX(vlan_ioctl_mutex);
858 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
859 
vlan_ioctl_set(int (* hook)(struct net *,void __user *))860 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
861 {
862 	mutex_lock(&vlan_ioctl_mutex);
863 	vlan_ioctl_hook = hook;
864 	mutex_unlock(&vlan_ioctl_mutex);
865 }
866 EXPORT_SYMBOL(vlan_ioctl_set);
867 
868 static DEFINE_MUTEX(dlci_ioctl_mutex);
869 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
870 
dlci_ioctl_set(int (* hook)(unsigned int,void __user *))871 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
872 {
873 	mutex_lock(&dlci_ioctl_mutex);
874 	dlci_ioctl_hook = hook;
875 	mutex_unlock(&dlci_ioctl_mutex);
876 }
877 EXPORT_SYMBOL(dlci_ioctl_set);
878 
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)879 static long sock_do_ioctl(struct net *net, struct socket *sock,
880 				 unsigned int cmd, unsigned long arg)
881 {
882 	int err;
883 	void __user *argp = (void __user *)arg;
884 
885 	err = sock->ops->ioctl(sock, cmd, arg);
886 
887 	/*
888 	 * If this ioctl is unknown try to hand it down
889 	 * to the NIC driver.
890 	 */
891 	if (err == -ENOIOCTLCMD)
892 		err = dev_ioctl(net, cmd, argp);
893 
894 	return err;
895 }
896 
897 /*
898  *	With an ioctl, arg may well be a user mode pointer, but we don't know
899  *	what to do with it - that's up to the protocol still.
900  */
901 
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)902 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
903 {
904 	struct socket *sock;
905 	struct sock *sk;
906 	void __user *argp = (void __user *)arg;
907 	int pid, err;
908 	struct net *net;
909 
910 	sock = file->private_data;
911 	sk = sock->sk;
912 	net = sock_net(sk);
913 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
914 		err = dev_ioctl(net, cmd, argp);
915 	} else
916 #ifdef CONFIG_WEXT_CORE
917 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
918 		err = dev_ioctl(net, cmd, argp);
919 	} else
920 #endif
921 		switch (cmd) {
922 		case FIOSETOWN:
923 		case SIOCSPGRP:
924 			err = -EFAULT;
925 			if (get_user(pid, (int __user *)argp))
926 				break;
927 			f_setown(sock->file, pid, 1);
928 			err = 0;
929 			break;
930 		case FIOGETOWN:
931 		case SIOCGPGRP:
932 			err = put_user(f_getown(sock->file),
933 				       (int __user *)argp);
934 			break;
935 		case SIOCGIFBR:
936 		case SIOCSIFBR:
937 		case SIOCBRADDBR:
938 		case SIOCBRDELBR:
939 			err = -ENOPKG;
940 			if (!br_ioctl_hook)
941 				request_module("bridge");
942 
943 			mutex_lock(&br_ioctl_mutex);
944 			if (br_ioctl_hook)
945 				err = br_ioctl_hook(net, cmd, argp);
946 			mutex_unlock(&br_ioctl_mutex);
947 			break;
948 		case SIOCGIFVLAN:
949 		case SIOCSIFVLAN:
950 			err = -ENOPKG;
951 			if (!vlan_ioctl_hook)
952 				request_module("8021q");
953 
954 			mutex_lock(&vlan_ioctl_mutex);
955 			if (vlan_ioctl_hook)
956 				err = vlan_ioctl_hook(net, argp);
957 			mutex_unlock(&vlan_ioctl_mutex);
958 			break;
959 		case SIOCADDDLCI:
960 		case SIOCDELDLCI:
961 			err = -ENOPKG;
962 			if (!dlci_ioctl_hook)
963 				request_module("dlci");
964 
965 			mutex_lock(&dlci_ioctl_mutex);
966 			if (dlci_ioctl_hook)
967 				err = dlci_ioctl_hook(cmd, argp);
968 			mutex_unlock(&dlci_ioctl_mutex);
969 			break;
970 		default:
971 			err = sock_do_ioctl(net, sock, cmd, arg);
972 			break;
973 		}
974 	return err;
975 }
976 
sock_create_lite(int family,int type,int protocol,struct socket ** res)977 int sock_create_lite(int family, int type, int protocol, struct socket **res)
978 {
979 	int err;
980 	struct socket *sock = NULL;
981 
982 	err = security_socket_create(family, type, protocol, 1);
983 	if (err)
984 		goto out;
985 
986 	sock = sock_alloc();
987 	if (!sock) {
988 		err = -ENOMEM;
989 		goto out;
990 	}
991 
992 	sock->type = type;
993 	err = security_socket_post_create(sock, family, type, protocol, 1);
994 	if (err)
995 		goto out_release;
996 
997 out:
998 	*res = sock;
999 	return err;
1000 out_release:
1001 	sock_release(sock);
1002 	sock = NULL;
1003 	goto out;
1004 }
1005 EXPORT_SYMBOL(sock_create_lite);
1006 
1007 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1008 static unsigned int sock_poll(struct file *file, poll_table *wait)
1009 {
1010 	unsigned int busy_flag = 0;
1011 	struct socket *sock;
1012 
1013 	/*
1014 	 *      We can't return errors to poll, so it's either yes or no.
1015 	 */
1016 	sock = file->private_data;
1017 
1018 	if (sk_can_busy_loop(sock->sk)) {
1019 		/* this socket can poll_ll so tell the system call */
1020 		busy_flag = POLL_BUSY_LOOP;
1021 
1022 		/* once, only if requested by syscall */
1023 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1024 			sk_busy_loop(sock->sk, 1);
1025 	}
1026 
1027 	return busy_flag | sock->ops->poll(file, sock, wait);
1028 }
1029 
sock_mmap(struct file * file,struct vm_area_struct * vma)1030 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1031 {
1032 	struct socket *sock = file->private_data;
1033 
1034 	return sock->ops->mmap(file, sock, vma);
1035 }
1036 
sock_close(struct inode * inode,struct file * filp)1037 static int sock_close(struct inode *inode, struct file *filp)
1038 {
1039 	__sock_release(SOCKET_I(inode), inode);
1040 	return 0;
1041 }
1042 
1043 /*
1044  *	Update the socket async list
1045  *
1046  *	Fasync_list locking strategy.
1047  *
1048  *	1. fasync_list is modified only under process context socket lock
1049  *	   i.e. under semaphore.
1050  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1051  *	   or under socket lock
1052  */
1053 
sock_fasync(int fd,struct file * filp,int on)1054 static int sock_fasync(int fd, struct file *filp, int on)
1055 {
1056 	struct socket *sock = filp->private_data;
1057 	struct sock *sk = sock->sk;
1058 	struct socket_wq *wq;
1059 
1060 	if (sk == NULL)
1061 		return -EINVAL;
1062 
1063 	lock_sock(sk);
1064 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1065 	fasync_helper(fd, filp, on, &wq->fasync_list);
1066 
1067 	if (!wq->fasync_list)
1068 		sock_reset_flag(sk, SOCK_FASYNC);
1069 	else
1070 		sock_set_flag(sk, SOCK_FASYNC);
1071 
1072 	release_sock(sk);
1073 	return 0;
1074 }
1075 
1076 /* This function may be called only under rcu_lock */
1077 
sock_wake_async(struct socket_wq * wq,int how,int band)1078 int sock_wake_async(struct socket_wq *wq, int how, int band)
1079 {
1080 	if (!wq || !wq->fasync_list)
1081 		return -1;
1082 
1083 	switch (how) {
1084 	case SOCK_WAKE_WAITD:
1085 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1086 			break;
1087 		goto call_kill;
1088 	case SOCK_WAKE_SPACE:
1089 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1090 			break;
1091 		/* fall through */
1092 	case SOCK_WAKE_IO:
1093 call_kill:
1094 		kill_fasync(&wq->fasync_list, SIGIO, band);
1095 		break;
1096 	case SOCK_WAKE_URG:
1097 		kill_fasync(&wq->fasync_list, SIGURG, band);
1098 	}
1099 
1100 	return 0;
1101 }
1102 EXPORT_SYMBOL(sock_wake_async);
1103 
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1104 int __sock_create(struct net *net, int family, int type, int protocol,
1105 			 struct socket **res, int kern)
1106 {
1107 	int err;
1108 	struct socket *sock;
1109 	const struct net_proto_family *pf;
1110 
1111 	/*
1112 	 *      Check protocol is in range
1113 	 */
1114 	if (family < 0 || family >= NPROTO)
1115 		return -EAFNOSUPPORT;
1116 	if (type < 0 || type >= SOCK_MAX)
1117 		return -EINVAL;
1118 
1119 	/* Compatibility.
1120 
1121 	   This uglymoron is moved from INET layer to here to avoid
1122 	   deadlock in module load.
1123 	 */
1124 	if (family == PF_INET && type == SOCK_PACKET) {
1125 		static int warned;
1126 		if (!warned) {
1127 			warned = 1;
1128 			pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1129 				current->comm);
1130 		}
1131 		family = PF_PACKET;
1132 	}
1133 
1134 	err = security_socket_create(family, type, protocol, kern);
1135 	if (err)
1136 		return err;
1137 
1138 	/*
1139 	 *	Allocate the socket and allow the family to set things up. if
1140 	 *	the protocol is 0, the family is instructed to select an appropriate
1141 	 *	default.
1142 	 */
1143 	sock = sock_alloc();
1144 	if (!sock) {
1145 		net_warn_ratelimited("socket: no more sockets\n");
1146 		return -ENFILE;	/* Not exactly a match, but its the
1147 				   closest posix thing */
1148 	}
1149 
1150 	sock->type = type;
1151 
1152 #ifdef CONFIG_MODULES
1153 	/* Attempt to load a protocol module if the find failed.
1154 	 *
1155 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1156 	 * requested real, full-featured networking support upon configuration.
1157 	 * Otherwise module support will break!
1158 	 */
1159 	if (rcu_access_pointer(net_families[family]) == NULL)
1160 		request_module("net-pf-%d", family);
1161 #endif
1162 
1163 	rcu_read_lock();
1164 	pf = rcu_dereference(net_families[family]);
1165 	err = -EAFNOSUPPORT;
1166 	if (!pf)
1167 		goto out_release;
1168 
1169 	/*
1170 	 * We will call the ->create function, that possibly is in a loadable
1171 	 * module, so we have to bump that loadable module refcnt first.
1172 	 */
1173 	if (!try_module_get(pf->owner))
1174 		goto out_release;
1175 
1176 	/* Now protected by module ref count */
1177 	rcu_read_unlock();
1178 
1179 	err = pf->create(net, sock, protocol, kern);
1180 	if (err < 0)
1181 		goto out_module_put;
1182 
1183 	/*
1184 	 * Now to bump the refcnt of the [loadable] module that owns this
1185 	 * socket at sock_release time we decrement its refcnt.
1186 	 */
1187 	if (!try_module_get(sock->ops->owner))
1188 		goto out_module_busy;
1189 
1190 	/*
1191 	 * Now that we're done with the ->create function, the [loadable]
1192 	 * module can have its refcnt decremented
1193 	 */
1194 	module_put(pf->owner);
1195 	err = security_socket_post_create(sock, family, type, protocol, kern);
1196 	if (err)
1197 		goto out_sock_release;
1198 	*res = sock;
1199 
1200 	return 0;
1201 
1202 out_module_busy:
1203 	err = -EAFNOSUPPORT;
1204 out_module_put:
1205 	sock->ops = NULL;
1206 	module_put(pf->owner);
1207 out_sock_release:
1208 	sock_release(sock);
1209 	return err;
1210 
1211 out_release:
1212 	rcu_read_unlock();
1213 	goto out_sock_release;
1214 }
1215 EXPORT_SYMBOL(__sock_create);
1216 
sock_create(int family,int type,int protocol,struct socket ** res)1217 int sock_create(int family, int type, int protocol, struct socket **res)
1218 {
1219 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1220 }
1221 EXPORT_SYMBOL(sock_create);
1222 
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1223 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1224 {
1225 	return __sock_create(net, family, type, protocol, res, 1);
1226 }
1227 EXPORT_SYMBOL(sock_create_kern);
1228 
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1229 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1230 {
1231 	int retval;
1232 	struct socket *sock;
1233 	int flags;
1234 
1235 	/* Check the SOCK_* constants for consistency.  */
1236 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1237 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1238 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1239 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1240 
1241 	flags = type & ~SOCK_TYPE_MASK;
1242 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1243 		return -EINVAL;
1244 	type &= SOCK_TYPE_MASK;
1245 
1246 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1247 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1248 
1249 	retval = sock_create(family, type, protocol, &sock);
1250 	if (retval < 0)
1251 		goto out;
1252 
1253 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1254 	if (retval < 0)
1255 		goto out_release;
1256 
1257 out:
1258 	/* It may be already another descriptor 8) Not kernel problem. */
1259 	return retval;
1260 
1261 out_release:
1262 	sock_release(sock);
1263 	return retval;
1264 }
1265 
1266 /*
1267  *	Create a pair of connected sockets.
1268  */
1269 
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1270 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1271 		int __user *, usockvec)
1272 {
1273 	struct socket *sock1, *sock2;
1274 	int fd1, fd2, err;
1275 	struct file *newfile1, *newfile2;
1276 	int flags;
1277 
1278 	flags = type & ~SOCK_TYPE_MASK;
1279 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1280 		return -EINVAL;
1281 	type &= SOCK_TYPE_MASK;
1282 
1283 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1284 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1285 
1286 	/*
1287 	 * Obtain the first socket and check if the underlying protocol
1288 	 * supports the socketpair call.
1289 	 */
1290 
1291 	err = sock_create(family, type, protocol, &sock1);
1292 	if (err < 0)
1293 		goto out;
1294 
1295 	err = sock_create(family, type, protocol, &sock2);
1296 	if (err < 0)
1297 		goto out_release_1;
1298 
1299 	err = sock1->ops->socketpair(sock1, sock2);
1300 	if (err < 0)
1301 		goto out_release_both;
1302 
1303 	fd1 = get_unused_fd_flags(flags);
1304 	if (unlikely(fd1 < 0)) {
1305 		err = fd1;
1306 		goto out_release_both;
1307 	}
1308 
1309 	fd2 = get_unused_fd_flags(flags);
1310 	if (unlikely(fd2 < 0)) {
1311 		err = fd2;
1312 		goto out_put_unused_1;
1313 	}
1314 
1315 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1316 	if (IS_ERR(newfile1)) {
1317 		err = PTR_ERR(newfile1);
1318 		goto out_put_unused_both;
1319 	}
1320 
1321 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1322 	if (IS_ERR(newfile2)) {
1323 		err = PTR_ERR(newfile2);
1324 		goto out_fput_1;
1325 	}
1326 
1327 	err = put_user(fd1, &usockvec[0]);
1328 	if (err)
1329 		goto out_fput_both;
1330 
1331 	err = put_user(fd2, &usockvec[1]);
1332 	if (err)
1333 		goto out_fput_both;
1334 
1335 	audit_fd_pair(fd1, fd2);
1336 
1337 	fd_install(fd1, newfile1);
1338 	fd_install(fd2, newfile2);
1339 	/* fd1 and fd2 may be already another descriptors.
1340 	 * Not kernel problem.
1341 	 */
1342 
1343 	return 0;
1344 
1345 out_fput_both:
1346 	fput(newfile2);
1347 	fput(newfile1);
1348 	put_unused_fd(fd2);
1349 	put_unused_fd(fd1);
1350 	goto out;
1351 
1352 out_fput_1:
1353 	fput(newfile1);
1354 	put_unused_fd(fd2);
1355 	put_unused_fd(fd1);
1356 	sock_release(sock2);
1357 	goto out;
1358 
1359 out_put_unused_both:
1360 	put_unused_fd(fd2);
1361 out_put_unused_1:
1362 	put_unused_fd(fd1);
1363 out_release_both:
1364 	sock_release(sock2);
1365 out_release_1:
1366 	sock_release(sock1);
1367 out:
1368 	return err;
1369 }
1370 
1371 /*
1372  *	Bind a name to a socket. Nothing much to do here since it's
1373  *	the protocol's responsibility to handle the local address.
1374  *
1375  *	We move the socket address to kernel space before we call
1376  *	the protocol layer (having also checked the address is ok).
1377  */
1378 
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1379 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1380 {
1381 	struct socket *sock;
1382 	struct sockaddr_storage address;
1383 	int err, fput_needed;
1384 
1385 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1386 	if (sock) {
1387 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1388 		if (err >= 0) {
1389 			err = security_socket_bind(sock,
1390 						   (struct sockaddr *)&address,
1391 						   addrlen);
1392 			if (!err)
1393 				err = sock->ops->bind(sock,
1394 						      (struct sockaddr *)
1395 						      &address, addrlen);
1396 		}
1397 		fput_light(sock->file, fput_needed);
1398 	}
1399 	return err;
1400 }
1401 
1402 /*
1403  *	Perform a listen. Basically, we allow the protocol to do anything
1404  *	necessary for a listen, and if that works, we mark the socket as
1405  *	ready for listening.
1406  */
1407 
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1408 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1409 {
1410 	struct socket *sock;
1411 	int err, fput_needed;
1412 	int somaxconn;
1413 
1414 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1415 	if (sock) {
1416 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1417 		if ((unsigned int)backlog > somaxconn)
1418 			backlog = somaxconn;
1419 
1420 		err = security_socket_listen(sock, backlog);
1421 		if (!err)
1422 			err = sock->ops->listen(sock, backlog);
1423 
1424 		fput_light(sock->file, fput_needed);
1425 	}
1426 	return err;
1427 }
1428 
1429 /*
1430  *	For accept, we attempt to create a new socket, set up the link
1431  *	with the client, wake up the client, then return the new
1432  *	connected fd. We collect the address of the connector in kernel
1433  *	space and move it to user at the very end. This is unclean because
1434  *	we open the socket then return an error.
1435  *
1436  *	1003.1g adds the ability to recvmsg() to query connection pending
1437  *	status to recvmsg. We need to add that support in a way thats
1438  *	clean when we restucture accept also.
1439  */
1440 
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1441 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1442 		int __user *, upeer_addrlen, int, flags)
1443 {
1444 	struct socket *sock, *newsock;
1445 	struct file *newfile;
1446 	int err, len, newfd, fput_needed;
1447 	struct sockaddr_storage address;
1448 
1449 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1450 		return -EINVAL;
1451 
1452 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1453 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1454 
1455 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1456 	if (!sock)
1457 		goto out;
1458 
1459 	err = -ENFILE;
1460 	newsock = sock_alloc();
1461 	if (!newsock)
1462 		goto out_put;
1463 
1464 	newsock->type = sock->type;
1465 	newsock->ops = sock->ops;
1466 
1467 	/*
1468 	 * We don't need try_module_get here, as the listening socket (sock)
1469 	 * has the protocol module (sock->ops->owner) held.
1470 	 */
1471 	__module_get(newsock->ops->owner);
1472 
1473 	newfd = get_unused_fd_flags(flags);
1474 	if (unlikely(newfd < 0)) {
1475 		err = newfd;
1476 		sock_release(newsock);
1477 		goto out_put;
1478 	}
1479 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1480 	if (IS_ERR(newfile)) {
1481 		err = PTR_ERR(newfile);
1482 		put_unused_fd(newfd);
1483 		sock_release(newsock);
1484 		goto out_put;
1485 	}
1486 
1487 	err = security_socket_accept(sock, newsock);
1488 	if (err)
1489 		goto out_fd;
1490 
1491 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1492 	if (err < 0)
1493 		goto out_fd;
1494 
1495 	if (upeer_sockaddr) {
1496 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1497 					  &len, 2) < 0) {
1498 			err = -ECONNABORTED;
1499 			goto out_fd;
1500 		}
1501 		err = move_addr_to_user(&address,
1502 					len, upeer_sockaddr, upeer_addrlen);
1503 		if (err < 0)
1504 			goto out_fd;
1505 	}
1506 
1507 	/* File flags are not inherited via accept() unlike another OSes. */
1508 
1509 	fd_install(newfd, newfile);
1510 	err = newfd;
1511 
1512 out_put:
1513 	fput_light(sock->file, fput_needed);
1514 out:
1515 	return err;
1516 out_fd:
1517 	fput(newfile);
1518 	put_unused_fd(newfd);
1519 	goto out_put;
1520 }
1521 
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)1522 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1523 		int __user *, upeer_addrlen)
1524 {
1525 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1526 }
1527 
1528 /*
1529  *	Attempt to connect to a socket with the server address.  The address
1530  *	is in user space so we verify it is OK and move it to kernel space.
1531  *
1532  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1533  *	break bindings
1534  *
1535  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1536  *	other SEQPACKET protocols that take time to connect() as it doesn't
1537  *	include the -EINPROGRESS status for such sockets.
1538  */
1539 
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)1540 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1541 		int, addrlen)
1542 {
1543 	struct socket *sock;
1544 	struct sockaddr_storage address;
1545 	int err, fput_needed;
1546 
1547 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1548 	if (!sock)
1549 		goto out;
1550 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1551 	if (err < 0)
1552 		goto out_put;
1553 
1554 	err =
1555 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1556 	if (err)
1557 		goto out_put;
1558 
1559 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1560 				 sock->file->f_flags);
1561 out_put:
1562 	fput_light(sock->file, fput_needed);
1563 out:
1564 	return err;
1565 }
1566 
1567 /*
1568  *	Get the local address ('name') of a socket object. Move the obtained
1569  *	name to user space.
1570  */
1571 
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1572 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1573 		int __user *, usockaddr_len)
1574 {
1575 	struct socket *sock;
1576 	struct sockaddr_storage address;
1577 	int len, err, fput_needed;
1578 
1579 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1580 	if (!sock)
1581 		goto out;
1582 
1583 	err = security_socket_getsockname(sock);
1584 	if (err)
1585 		goto out_put;
1586 
1587 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1588 	if (err)
1589 		goto out_put;
1590 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1591 
1592 out_put:
1593 	fput_light(sock->file, fput_needed);
1594 out:
1595 	return err;
1596 }
1597 
1598 /*
1599  *	Get the remote address ('name') of a socket object. Move the obtained
1600  *	name to user space.
1601  */
1602 
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1603 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1604 		int __user *, usockaddr_len)
1605 {
1606 	struct socket *sock;
1607 	struct sockaddr_storage address;
1608 	int len, err, fput_needed;
1609 
1610 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1611 	if (sock != NULL) {
1612 		err = security_socket_getpeername(sock);
1613 		if (err) {
1614 			fput_light(sock->file, fput_needed);
1615 			return err;
1616 		}
1617 
1618 		err =
1619 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1620 				       1);
1621 		if (!err)
1622 			err = move_addr_to_user(&address, len, usockaddr,
1623 						usockaddr_len);
1624 		fput_light(sock->file, fput_needed);
1625 	}
1626 	return err;
1627 }
1628 
1629 /*
1630  *	Send a datagram to a given address. We move the address into kernel
1631  *	space and check the user space data area is readable before invoking
1632  *	the protocol.
1633  */
1634 
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)1635 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1636 		unsigned int, flags, struct sockaddr __user *, addr,
1637 		int, addr_len)
1638 {
1639 	struct socket *sock;
1640 	struct sockaddr_storage address;
1641 	int err;
1642 	struct msghdr msg;
1643 	struct iovec iov;
1644 	int fput_needed;
1645 
1646 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1647 	if (unlikely(err))
1648 		return err;
1649 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1650 	if (!sock)
1651 		goto out;
1652 
1653 	msg.msg_name = NULL;
1654 	msg.msg_control = NULL;
1655 	msg.msg_controllen = 0;
1656 	msg.msg_namelen = 0;
1657 	if (addr) {
1658 		err = move_addr_to_kernel(addr, addr_len, &address);
1659 		if (err < 0)
1660 			goto out_put;
1661 		msg.msg_name = (struct sockaddr *)&address;
1662 		msg.msg_namelen = addr_len;
1663 	}
1664 	if (sock->file->f_flags & O_NONBLOCK)
1665 		flags |= MSG_DONTWAIT;
1666 	msg.msg_flags = flags;
1667 	err = sock_sendmsg(sock, &msg);
1668 
1669 out_put:
1670 	fput_light(sock->file, fput_needed);
1671 out:
1672 	return err;
1673 }
1674 
1675 /*
1676  *	Send a datagram down a socket.
1677  */
1678 
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)1679 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1680 		unsigned int, flags)
1681 {
1682 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1683 }
1684 
1685 /*
1686  *	Receive a frame from the socket and optionally record the address of the
1687  *	sender. We verify the buffers are writable and if needed move the
1688  *	sender address from kernel to user space.
1689  */
1690 
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)1691 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1692 		unsigned int, flags, struct sockaddr __user *, addr,
1693 		int __user *, addr_len)
1694 {
1695 	struct socket *sock;
1696 	struct iovec iov;
1697 	struct msghdr msg;
1698 	struct sockaddr_storage address;
1699 	int err, err2;
1700 	int fput_needed;
1701 
1702 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1703 	if (unlikely(err))
1704 		return err;
1705 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1706 	if (!sock)
1707 		goto out;
1708 
1709 	msg.msg_control = NULL;
1710 	msg.msg_controllen = 0;
1711 	/* Save some cycles and don't copy the address if not needed */
1712 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1713 	/* We assume all kernel code knows the size of sockaddr_storage */
1714 	msg.msg_namelen = 0;
1715 	msg.msg_iocb = NULL;
1716 	msg.msg_flags = 0;
1717 	if (sock->file->f_flags & O_NONBLOCK)
1718 		flags |= MSG_DONTWAIT;
1719 	err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
1720 
1721 	if (err >= 0 && addr != NULL) {
1722 		err2 = move_addr_to_user(&address,
1723 					 msg.msg_namelen, addr, addr_len);
1724 		if (err2 < 0)
1725 			err = err2;
1726 	}
1727 
1728 	fput_light(sock->file, fput_needed);
1729 out:
1730 	return err;
1731 }
1732 
1733 /*
1734  *	Receive a datagram from a socket.
1735  */
1736 
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)1737 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1738 		unsigned int, flags)
1739 {
1740 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1741 }
1742 
1743 /*
1744  *	Set a socket option. Because we don't know the option lengths we have
1745  *	to pass the user mode parameter for the protocols to sort out.
1746  */
1747 
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)1748 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1749 		char __user *, optval, int, optlen)
1750 {
1751 	int err, fput_needed;
1752 	struct socket *sock;
1753 
1754 	if (optlen < 0)
1755 		return -EINVAL;
1756 
1757 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1758 	if (sock != NULL) {
1759 		err = security_socket_setsockopt(sock, level, optname);
1760 		if (err)
1761 			goto out_put;
1762 
1763 		if (level == SOL_SOCKET)
1764 			err =
1765 			    sock_setsockopt(sock, level, optname, optval,
1766 					    optlen);
1767 		else
1768 			err =
1769 			    sock->ops->setsockopt(sock, level, optname, optval,
1770 						  optlen);
1771 out_put:
1772 		fput_light(sock->file, fput_needed);
1773 	}
1774 	return err;
1775 }
1776 
1777 /*
1778  *	Get a socket option. Because we don't know the option lengths we have
1779  *	to pass a user mode parameter for the protocols to sort out.
1780  */
1781 
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)1782 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1783 		char __user *, optval, int __user *, optlen)
1784 {
1785 	int err, fput_needed;
1786 	struct socket *sock;
1787 
1788 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1789 	if (sock != NULL) {
1790 		err = security_socket_getsockopt(sock, level, optname);
1791 		if (err)
1792 			goto out_put;
1793 
1794 		if (level == SOL_SOCKET)
1795 			err =
1796 			    sock_getsockopt(sock, level, optname, optval,
1797 					    optlen);
1798 		else
1799 			err =
1800 			    sock->ops->getsockopt(sock, level, optname, optval,
1801 						  optlen);
1802 out_put:
1803 		fput_light(sock->file, fput_needed);
1804 	}
1805 	return err;
1806 }
1807 
1808 /*
1809  *	Shutdown a socket.
1810  */
1811 
SYSCALL_DEFINE2(shutdown,int,fd,int,how)1812 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1813 {
1814 	int err, fput_needed;
1815 	struct socket *sock;
1816 
1817 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1818 	if (sock != NULL) {
1819 		err = security_socket_shutdown(sock, how);
1820 		if (!err)
1821 			err = sock->ops->shutdown(sock, how);
1822 		fput_light(sock->file, fput_needed);
1823 	}
1824 	return err;
1825 }
1826 
1827 /* A couple of helpful macros for getting the address of the 32/64 bit
1828  * fields which are the same type (int / unsigned) on our platforms.
1829  */
1830 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1831 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1832 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1833 
1834 struct used_address {
1835 	struct sockaddr_storage name;
1836 	unsigned int name_len;
1837 };
1838 
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)1839 static int copy_msghdr_from_user(struct msghdr *kmsg,
1840 				 struct user_msghdr __user *umsg,
1841 				 struct sockaddr __user **save_addr,
1842 				 struct iovec **iov)
1843 {
1844 	struct sockaddr __user *uaddr;
1845 	struct iovec __user *uiov;
1846 	size_t nr_segs;
1847 	ssize_t err;
1848 
1849 	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1850 	    __get_user(uaddr, &umsg->msg_name) ||
1851 	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1852 	    __get_user(uiov, &umsg->msg_iov) ||
1853 	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1854 	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1855 	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1856 	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1857 		return -EFAULT;
1858 
1859 	if (!uaddr)
1860 		kmsg->msg_namelen = 0;
1861 
1862 	if (kmsg->msg_namelen < 0)
1863 		return -EINVAL;
1864 
1865 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1866 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1867 
1868 	if (save_addr)
1869 		*save_addr = uaddr;
1870 
1871 	if (uaddr && kmsg->msg_namelen) {
1872 		if (!save_addr) {
1873 			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1874 						  kmsg->msg_name);
1875 			if (err < 0)
1876 				return err;
1877 		}
1878 	} else {
1879 		kmsg->msg_name = NULL;
1880 		kmsg->msg_namelen = 0;
1881 	}
1882 
1883 	if (nr_segs > UIO_MAXIOV)
1884 		return -EMSGSIZE;
1885 
1886 	kmsg->msg_iocb = NULL;
1887 
1888 	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1889 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1890 }
1891 
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address)1892 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1893 			 struct msghdr *msg_sys, unsigned int flags,
1894 			 struct used_address *used_address)
1895 {
1896 	struct compat_msghdr __user *msg_compat =
1897 	    (struct compat_msghdr __user *)msg;
1898 	struct sockaddr_storage address;
1899 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1900 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1901 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1902 	/* 20 is size of ipv6_pktinfo */
1903 	unsigned char *ctl_buf = ctl;
1904 	int ctl_len;
1905 	ssize_t err;
1906 
1907 	msg_sys->msg_name = &address;
1908 
1909 	if (MSG_CMSG_COMPAT & flags)
1910 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1911 	else
1912 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1913 	if (err < 0)
1914 		return err;
1915 
1916 	err = -ENOBUFS;
1917 
1918 	if (msg_sys->msg_controllen > INT_MAX)
1919 		goto out_freeiov;
1920 	ctl_len = msg_sys->msg_controllen;
1921 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1922 		err =
1923 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1924 						     sizeof(ctl));
1925 		if (err)
1926 			goto out_freeiov;
1927 		ctl_buf = msg_sys->msg_control;
1928 		ctl_len = msg_sys->msg_controllen;
1929 	} else if (ctl_len) {
1930 		if (ctl_len > sizeof(ctl)) {
1931 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1932 			if (ctl_buf == NULL)
1933 				goto out_freeiov;
1934 		}
1935 		err = -EFAULT;
1936 		/*
1937 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1938 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1939 		 * checking falls down on this.
1940 		 */
1941 		if (copy_from_user(ctl_buf,
1942 				   (void __user __force *)msg_sys->msg_control,
1943 				   ctl_len))
1944 			goto out_freectl;
1945 		msg_sys->msg_control = ctl_buf;
1946 	}
1947 	msg_sys->msg_flags = flags;
1948 
1949 	if (sock->file->f_flags & O_NONBLOCK)
1950 		msg_sys->msg_flags |= MSG_DONTWAIT;
1951 	/*
1952 	 * If this is sendmmsg() and current destination address is same as
1953 	 * previously succeeded address, omit asking LSM's decision.
1954 	 * used_address->name_len is initialized to UINT_MAX so that the first
1955 	 * destination address never matches.
1956 	 */
1957 	if (used_address && msg_sys->msg_name &&
1958 	    used_address->name_len == msg_sys->msg_namelen &&
1959 	    !memcmp(&used_address->name, msg_sys->msg_name,
1960 		    used_address->name_len)) {
1961 		err = sock_sendmsg_nosec(sock, msg_sys);
1962 		goto out_freectl;
1963 	}
1964 	err = sock_sendmsg(sock, msg_sys);
1965 	/*
1966 	 * If this is sendmmsg() and sending to current destination address was
1967 	 * successful, remember it.
1968 	 */
1969 	if (used_address && err >= 0) {
1970 		used_address->name_len = msg_sys->msg_namelen;
1971 		if (msg_sys->msg_name)
1972 			memcpy(&used_address->name, msg_sys->msg_name,
1973 			       used_address->name_len);
1974 	}
1975 
1976 out_freectl:
1977 	if (ctl_buf != ctl)
1978 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1979 out_freeiov:
1980 	kfree(iov);
1981 	return err;
1982 }
1983 
1984 /*
1985  *	BSD sendmsg interface
1986  */
1987 
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned flags)1988 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1989 {
1990 	int fput_needed, err;
1991 	struct msghdr msg_sys;
1992 	struct socket *sock;
1993 
1994 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1995 	if (!sock)
1996 		goto out;
1997 
1998 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
1999 
2000 	fput_light(sock->file, fput_needed);
2001 out:
2002 	return err;
2003 }
2004 
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2005 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2006 {
2007 	if (flags & MSG_CMSG_COMPAT)
2008 		return -EINVAL;
2009 	return __sys_sendmsg(fd, msg, flags);
2010 }
2011 
2012 /*
2013  *	Linux sendmmsg interface
2014  */
2015 
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags)2016 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2017 		   unsigned int flags)
2018 {
2019 	int fput_needed, err, datagrams;
2020 	struct socket *sock;
2021 	struct mmsghdr __user *entry;
2022 	struct compat_mmsghdr __user *compat_entry;
2023 	struct msghdr msg_sys;
2024 	struct used_address used_address;
2025 
2026 	if (vlen > UIO_MAXIOV)
2027 		vlen = UIO_MAXIOV;
2028 
2029 	datagrams = 0;
2030 
2031 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2032 	if (!sock)
2033 		return err;
2034 
2035 	used_address.name_len = UINT_MAX;
2036 	entry = mmsg;
2037 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2038 	err = 0;
2039 
2040 	while (datagrams < vlen) {
2041 		if (MSG_CMSG_COMPAT & flags) {
2042 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2043 					     &msg_sys, flags, &used_address);
2044 			if (err < 0)
2045 				break;
2046 			err = __put_user(err, &compat_entry->msg_len);
2047 			++compat_entry;
2048 		} else {
2049 			err = ___sys_sendmsg(sock,
2050 					     (struct user_msghdr __user *)entry,
2051 					     &msg_sys, flags, &used_address);
2052 			if (err < 0)
2053 				break;
2054 			err = put_user(err, &entry->msg_len);
2055 			++entry;
2056 		}
2057 
2058 		if (err)
2059 			break;
2060 		++datagrams;
2061 		if (msg_data_left(&msg_sys))
2062 			break;
2063 	}
2064 
2065 	fput_light(sock->file, fput_needed);
2066 
2067 	/* We only return an error if no datagrams were able to be sent */
2068 	if (datagrams != 0)
2069 		return datagrams;
2070 
2071 	return err;
2072 }
2073 
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2074 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2075 		unsigned int, vlen, unsigned int, flags)
2076 {
2077 	if (flags & MSG_CMSG_COMPAT)
2078 		return -EINVAL;
2079 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2080 }
2081 
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2082 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2083 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2084 {
2085 	struct compat_msghdr __user *msg_compat =
2086 	    (struct compat_msghdr __user *)msg;
2087 	struct iovec iovstack[UIO_FASTIOV];
2088 	struct iovec *iov = iovstack;
2089 	unsigned long cmsg_ptr;
2090 	int total_len, len;
2091 	ssize_t err;
2092 
2093 	/* kernel mode address */
2094 	struct sockaddr_storage addr;
2095 
2096 	/* user mode address pointers */
2097 	struct sockaddr __user *uaddr;
2098 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2099 
2100 	msg_sys->msg_name = &addr;
2101 
2102 	if (MSG_CMSG_COMPAT & flags)
2103 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2104 	else
2105 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2106 	if (err < 0)
2107 		return err;
2108 	total_len = iov_iter_count(&msg_sys->msg_iter);
2109 
2110 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2111 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2112 
2113 	/* We assume all kernel code knows the size of sockaddr_storage */
2114 	msg_sys->msg_namelen = 0;
2115 
2116 	if (sock->file->f_flags & O_NONBLOCK)
2117 		flags |= MSG_DONTWAIT;
2118 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2119 							  total_len, flags);
2120 	if (err < 0)
2121 		goto out_freeiov;
2122 	len = err;
2123 
2124 	if (uaddr != NULL) {
2125 		err = move_addr_to_user(&addr,
2126 					msg_sys->msg_namelen, uaddr,
2127 					uaddr_len);
2128 		if (err < 0)
2129 			goto out_freeiov;
2130 	}
2131 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2132 			 COMPAT_FLAGS(msg));
2133 	if (err)
2134 		goto out_freeiov;
2135 	if (MSG_CMSG_COMPAT & flags)
2136 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2137 				 &msg_compat->msg_controllen);
2138 	else
2139 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2140 				 &msg->msg_controllen);
2141 	if (err)
2142 		goto out_freeiov;
2143 	err = len;
2144 
2145 out_freeiov:
2146 	kfree(iov);
2147 	return err;
2148 }
2149 
2150 /*
2151  *	BSD recvmsg interface
2152  */
2153 
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned flags)2154 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2155 {
2156 	int fput_needed, err;
2157 	struct msghdr msg_sys;
2158 	struct socket *sock;
2159 
2160 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2161 	if (!sock)
2162 		goto out;
2163 
2164 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2165 
2166 	fput_light(sock->file, fput_needed);
2167 out:
2168 	return err;
2169 }
2170 
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2171 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2172 		unsigned int, flags)
2173 {
2174 	if (flags & MSG_CMSG_COMPAT)
2175 		return -EINVAL;
2176 	return __sys_recvmsg(fd, msg, flags);
2177 }
2178 
2179 /*
2180  *     Linux recvmmsg interface
2181  */
2182 
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec * timeout)2183 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2184 		   unsigned int flags, struct timespec *timeout)
2185 {
2186 	int fput_needed, err, datagrams;
2187 	struct socket *sock;
2188 	struct mmsghdr __user *entry;
2189 	struct compat_mmsghdr __user *compat_entry;
2190 	struct msghdr msg_sys;
2191 	struct timespec end_time;
2192 
2193 	if (timeout &&
2194 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2195 				    timeout->tv_nsec))
2196 		return -EINVAL;
2197 
2198 	datagrams = 0;
2199 
2200 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2201 	if (!sock)
2202 		return err;
2203 
2204 	err = sock_error(sock->sk);
2205 	if (err) {
2206 		datagrams = err;
2207 		goto out_put;
2208 	}
2209 
2210 	entry = mmsg;
2211 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2212 
2213 	while (datagrams < vlen) {
2214 		/*
2215 		 * No need to ask LSM for more than the first datagram.
2216 		 */
2217 		if (MSG_CMSG_COMPAT & flags) {
2218 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2219 					     &msg_sys, flags & ~MSG_WAITFORONE,
2220 					     datagrams);
2221 			if (err < 0)
2222 				break;
2223 			err = __put_user(err, &compat_entry->msg_len);
2224 			++compat_entry;
2225 		} else {
2226 			err = ___sys_recvmsg(sock,
2227 					     (struct user_msghdr __user *)entry,
2228 					     &msg_sys, flags & ~MSG_WAITFORONE,
2229 					     datagrams);
2230 			if (err < 0)
2231 				break;
2232 			err = put_user(err, &entry->msg_len);
2233 			++entry;
2234 		}
2235 
2236 		if (err)
2237 			break;
2238 		++datagrams;
2239 
2240 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2241 		if (flags & MSG_WAITFORONE)
2242 			flags |= MSG_DONTWAIT;
2243 
2244 		if (timeout) {
2245 			ktime_get_ts(timeout);
2246 			*timeout = timespec_sub(end_time, *timeout);
2247 			if (timeout->tv_sec < 0) {
2248 				timeout->tv_sec = timeout->tv_nsec = 0;
2249 				break;
2250 			}
2251 
2252 			/* Timeout, return less than vlen datagrams */
2253 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2254 				break;
2255 		}
2256 
2257 		/* Out of band data, return right away */
2258 		if (msg_sys.msg_flags & MSG_OOB)
2259 			break;
2260 	}
2261 
2262 	if (err == 0)
2263 		goto out_put;
2264 
2265 	if (datagrams == 0) {
2266 		datagrams = err;
2267 		goto out_put;
2268 	}
2269 
2270 	/*
2271 	 * We may return less entries than requested (vlen) if the
2272 	 * sock is non block and there aren't enough datagrams...
2273 	 */
2274 	if (err != -EAGAIN) {
2275 		/*
2276 		 * ... or  if recvmsg returns an error after we
2277 		 * received some datagrams, where we record the
2278 		 * error to return on the next call or if the
2279 		 * app asks about it using getsockopt(SO_ERROR).
2280 		 */
2281 		sock->sk->sk_err = -err;
2282 	}
2283 out_put:
2284 	fput_light(sock->file, fput_needed);
2285 
2286 	return datagrams;
2287 }
2288 
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct timespec __user *,timeout)2289 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2290 		unsigned int, vlen, unsigned int, flags,
2291 		struct timespec __user *, timeout)
2292 {
2293 	int datagrams;
2294 	struct timespec timeout_sys;
2295 
2296 	if (flags & MSG_CMSG_COMPAT)
2297 		return -EINVAL;
2298 
2299 	if (!timeout)
2300 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2301 
2302 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2303 		return -EFAULT;
2304 
2305 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2306 
2307 	if (datagrams > 0 &&
2308 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2309 		datagrams = -EFAULT;
2310 
2311 	return datagrams;
2312 }
2313 
2314 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2315 /* Argument list sizes for sys_socketcall */
2316 #define AL(x) ((x) * sizeof(unsigned long))
2317 static const unsigned char nargs[21] = {
2318 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2319 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2320 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2321 	AL(4), AL(5), AL(4)
2322 };
2323 
2324 #undef AL
2325 
2326 /*
2327  *	System call vectors.
2328  *
2329  *	Argument checking cleaned up. Saved 20% in size.
2330  *  This function doesn't need to set the kernel lock because
2331  *  it is set by the callees.
2332  */
2333 
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)2334 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2335 {
2336 	unsigned long a[AUDITSC_ARGS];
2337 	unsigned long a0, a1;
2338 	int err;
2339 	unsigned int len;
2340 
2341 	if (call < 1 || call > SYS_SENDMMSG)
2342 		return -EINVAL;
2343 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2344 
2345 	len = nargs[call];
2346 	if (len > sizeof(a))
2347 		return -EINVAL;
2348 
2349 	/* copy_from_user should be SMP safe. */
2350 	if (copy_from_user(a, args, len))
2351 		return -EFAULT;
2352 
2353 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2354 	if (err)
2355 		return err;
2356 
2357 	a0 = a[0];
2358 	a1 = a[1];
2359 
2360 	switch (call) {
2361 	case SYS_SOCKET:
2362 		err = sys_socket(a0, a1, a[2]);
2363 		break;
2364 	case SYS_BIND:
2365 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2366 		break;
2367 	case SYS_CONNECT:
2368 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2369 		break;
2370 	case SYS_LISTEN:
2371 		err = sys_listen(a0, a1);
2372 		break;
2373 	case SYS_ACCEPT:
2374 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2375 				  (int __user *)a[2], 0);
2376 		break;
2377 	case SYS_GETSOCKNAME:
2378 		err =
2379 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2380 				    (int __user *)a[2]);
2381 		break;
2382 	case SYS_GETPEERNAME:
2383 		err =
2384 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2385 				    (int __user *)a[2]);
2386 		break;
2387 	case SYS_SOCKETPAIR:
2388 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2389 		break;
2390 	case SYS_SEND:
2391 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2392 		break;
2393 	case SYS_SENDTO:
2394 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2395 				 (struct sockaddr __user *)a[4], a[5]);
2396 		break;
2397 	case SYS_RECV:
2398 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2399 		break;
2400 	case SYS_RECVFROM:
2401 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2402 				   (struct sockaddr __user *)a[4],
2403 				   (int __user *)a[5]);
2404 		break;
2405 	case SYS_SHUTDOWN:
2406 		err = sys_shutdown(a0, a1);
2407 		break;
2408 	case SYS_SETSOCKOPT:
2409 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2410 		break;
2411 	case SYS_GETSOCKOPT:
2412 		err =
2413 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2414 				   (int __user *)a[4]);
2415 		break;
2416 	case SYS_SENDMSG:
2417 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2418 		break;
2419 	case SYS_SENDMMSG:
2420 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2421 		break;
2422 	case SYS_RECVMSG:
2423 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2424 		break;
2425 	case SYS_RECVMMSG:
2426 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2427 				   (struct timespec __user *)a[4]);
2428 		break;
2429 	case SYS_ACCEPT4:
2430 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2431 				  (int __user *)a[2], a[3]);
2432 		break;
2433 	default:
2434 		err = -EINVAL;
2435 		break;
2436 	}
2437 	return err;
2438 }
2439 
2440 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2441 
2442 /**
2443  *	sock_register - add a socket protocol handler
2444  *	@ops: description of protocol
2445  *
2446  *	This function is called by a protocol handler that wants to
2447  *	advertise its address family, and have it linked into the
2448  *	socket interface. The value ops->family corresponds to the
2449  *	socket system call protocol family.
2450  */
sock_register(const struct net_proto_family * ops)2451 int sock_register(const struct net_proto_family *ops)
2452 {
2453 	int err;
2454 
2455 	if (ops->family >= NPROTO) {
2456 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2457 		return -ENOBUFS;
2458 	}
2459 
2460 	spin_lock(&net_family_lock);
2461 	if (rcu_dereference_protected(net_families[ops->family],
2462 				      lockdep_is_held(&net_family_lock)))
2463 		err = -EEXIST;
2464 	else {
2465 		rcu_assign_pointer(net_families[ops->family], ops);
2466 		err = 0;
2467 	}
2468 	spin_unlock(&net_family_lock);
2469 
2470 	pr_info("NET: Registered protocol family %d\n", ops->family);
2471 	return err;
2472 }
2473 EXPORT_SYMBOL(sock_register);
2474 
2475 /**
2476  *	sock_unregister - remove a protocol handler
2477  *	@family: protocol family to remove
2478  *
2479  *	This function is called by a protocol handler that wants to
2480  *	remove its address family, and have it unlinked from the
2481  *	new socket creation.
2482  *
2483  *	If protocol handler is a module, then it can use module reference
2484  *	counts to protect against new references. If protocol handler is not
2485  *	a module then it needs to provide its own protection in
2486  *	the ops->create routine.
2487  */
sock_unregister(int family)2488 void sock_unregister(int family)
2489 {
2490 	BUG_ON(family < 0 || family >= NPROTO);
2491 
2492 	spin_lock(&net_family_lock);
2493 	RCU_INIT_POINTER(net_families[family], NULL);
2494 	spin_unlock(&net_family_lock);
2495 
2496 	synchronize_rcu();
2497 
2498 	pr_info("NET: Unregistered protocol family %d\n", family);
2499 }
2500 EXPORT_SYMBOL(sock_unregister);
2501 
sock_init(void)2502 static int __init sock_init(void)
2503 {
2504 	int err;
2505 	/*
2506 	 *      Initialize the network sysctl infrastructure.
2507 	 */
2508 	err = net_sysctl_init();
2509 	if (err)
2510 		goto out;
2511 
2512 	/*
2513 	 *      Initialize skbuff SLAB cache
2514 	 */
2515 	skb_init();
2516 
2517 	/*
2518 	 *      Initialize the protocols module.
2519 	 */
2520 
2521 	init_inodecache();
2522 
2523 	err = register_filesystem(&sock_fs_type);
2524 	if (err)
2525 		goto out_fs;
2526 	sock_mnt = kern_mount(&sock_fs_type);
2527 	if (IS_ERR(sock_mnt)) {
2528 		err = PTR_ERR(sock_mnt);
2529 		goto out_mount;
2530 	}
2531 
2532 	/* The real protocol initialization is performed in later initcalls.
2533 	 */
2534 
2535 #ifdef CONFIG_NETFILTER
2536 	err = netfilter_init();
2537 	if (err)
2538 		goto out;
2539 #endif
2540 
2541 	ptp_classifier_init();
2542 
2543 out:
2544 	return err;
2545 
2546 out_mount:
2547 	unregister_filesystem(&sock_fs_type);
2548 out_fs:
2549 	goto out;
2550 }
2551 
2552 core_initcall(sock_init);	/* early initcall */
2553 
jit_init(void)2554 static int __init jit_init(void)
2555 {
2556 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
2557 	bpf_jit_enable = 1;
2558 #endif
2559 	return 0;
2560 }
2561 pure_initcall(jit_init);
2562 
2563 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)2564 void socket_seq_show(struct seq_file *seq)
2565 {
2566 	int cpu;
2567 	int counter = 0;
2568 
2569 	for_each_possible_cpu(cpu)
2570 	    counter += per_cpu(sockets_in_use, cpu);
2571 
2572 	/* It can be negative, by the way. 8) */
2573 	if (counter < 0)
2574 		counter = 0;
2575 
2576 	seq_printf(seq, "sockets: used %d\n", counter);
2577 }
2578 #endif				/* CONFIG_PROC_FS */
2579 
2580 #ifdef CONFIG_COMPAT
do_siocgstamp(struct net * net,struct socket * sock,unsigned int cmd,void __user * up)2581 static int do_siocgstamp(struct net *net, struct socket *sock,
2582 			 unsigned int cmd, void __user *up)
2583 {
2584 	mm_segment_t old_fs = get_fs();
2585 	struct timeval ktv;
2586 	int err;
2587 
2588 	set_fs(KERNEL_DS);
2589 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2590 	set_fs(old_fs);
2591 	if (!err)
2592 		err = compat_put_timeval(&ktv, up);
2593 
2594 	return err;
2595 }
2596 
do_siocgstampns(struct net * net,struct socket * sock,unsigned int cmd,void __user * up)2597 static int do_siocgstampns(struct net *net, struct socket *sock,
2598 			   unsigned int cmd, void __user *up)
2599 {
2600 	mm_segment_t old_fs = get_fs();
2601 	struct timespec kts;
2602 	int err;
2603 
2604 	set_fs(KERNEL_DS);
2605 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2606 	set_fs(old_fs);
2607 	if (!err)
2608 		err = compat_put_timespec(&kts, up);
2609 
2610 	return err;
2611 }
2612 
dev_ifname32(struct net * net,struct compat_ifreq __user * uifr32)2613 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2614 {
2615 	struct ifreq __user *uifr;
2616 	int err;
2617 
2618 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2619 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2620 		return -EFAULT;
2621 
2622 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2623 	if (err)
2624 		return err;
2625 
2626 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2627 		return -EFAULT;
2628 
2629 	return 0;
2630 }
2631 
dev_ifconf(struct net * net,struct compat_ifconf __user * uifc32)2632 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2633 {
2634 	struct compat_ifconf ifc32;
2635 	struct ifconf ifc;
2636 	struct ifconf __user *uifc;
2637 	struct compat_ifreq __user *ifr32;
2638 	struct ifreq __user *ifr;
2639 	unsigned int i, j;
2640 	int err;
2641 
2642 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2643 		return -EFAULT;
2644 
2645 	memset(&ifc, 0, sizeof(ifc));
2646 	if (ifc32.ifcbuf == 0) {
2647 		ifc32.ifc_len = 0;
2648 		ifc.ifc_len = 0;
2649 		ifc.ifc_req = NULL;
2650 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2651 	} else {
2652 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2653 			sizeof(struct ifreq);
2654 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2655 		ifc.ifc_len = len;
2656 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2657 		ifr32 = compat_ptr(ifc32.ifcbuf);
2658 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2659 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2660 				return -EFAULT;
2661 			ifr++;
2662 			ifr32++;
2663 		}
2664 	}
2665 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2666 		return -EFAULT;
2667 
2668 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2669 	if (err)
2670 		return err;
2671 
2672 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2673 		return -EFAULT;
2674 
2675 	ifr = ifc.ifc_req;
2676 	ifr32 = compat_ptr(ifc32.ifcbuf);
2677 	for (i = 0, j = 0;
2678 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2679 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2680 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2681 			return -EFAULT;
2682 		ifr32++;
2683 		ifr++;
2684 	}
2685 
2686 	if (ifc32.ifcbuf == 0) {
2687 		/* Translate from 64-bit structure multiple to
2688 		 * a 32-bit one.
2689 		 */
2690 		i = ifc.ifc_len;
2691 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2692 		ifc32.ifc_len = i;
2693 	} else {
2694 		ifc32.ifc_len = i;
2695 	}
2696 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2697 		return -EFAULT;
2698 
2699 	return 0;
2700 }
2701 
ethtool_ioctl(struct net * net,struct compat_ifreq __user * ifr32)2702 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2703 {
2704 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2705 	bool convert_in = false, convert_out = false;
2706 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2707 	struct ethtool_rxnfc __user *rxnfc;
2708 	struct ifreq __user *ifr;
2709 	u32 rule_cnt = 0, actual_rule_cnt;
2710 	u32 ethcmd;
2711 	u32 data;
2712 	int ret;
2713 
2714 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2715 		return -EFAULT;
2716 
2717 	compat_rxnfc = compat_ptr(data);
2718 
2719 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2720 		return -EFAULT;
2721 
2722 	/* Most ethtool structures are defined without padding.
2723 	 * Unfortunately struct ethtool_rxnfc is an exception.
2724 	 */
2725 	switch (ethcmd) {
2726 	default:
2727 		break;
2728 	case ETHTOOL_GRXCLSRLALL:
2729 		/* Buffer size is variable */
2730 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2731 			return -EFAULT;
2732 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2733 			return -ENOMEM;
2734 		buf_size += rule_cnt * sizeof(u32);
2735 		/* fall through */
2736 	case ETHTOOL_GRXRINGS:
2737 	case ETHTOOL_GRXCLSRLCNT:
2738 	case ETHTOOL_GRXCLSRULE:
2739 	case ETHTOOL_SRXCLSRLINS:
2740 		convert_out = true;
2741 		/* fall through */
2742 	case ETHTOOL_SRXCLSRLDEL:
2743 		buf_size += sizeof(struct ethtool_rxnfc);
2744 		convert_in = true;
2745 		break;
2746 	}
2747 
2748 	ifr = compat_alloc_user_space(buf_size);
2749 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2750 
2751 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2752 		return -EFAULT;
2753 
2754 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2755 		     &ifr->ifr_ifru.ifru_data))
2756 		return -EFAULT;
2757 
2758 	if (convert_in) {
2759 		/* We expect there to be holes between fs.m_ext and
2760 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2761 		 */
2762 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2763 			     sizeof(compat_rxnfc->fs.m_ext) !=
2764 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2765 			     sizeof(rxnfc->fs.m_ext));
2766 		BUILD_BUG_ON(
2767 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2768 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2769 			offsetof(struct ethtool_rxnfc, fs.location) -
2770 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2771 
2772 		if (copy_in_user(rxnfc, compat_rxnfc,
2773 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2774 				 (void __user *)rxnfc) ||
2775 		    copy_in_user(&rxnfc->fs.ring_cookie,
2776 				 &compat_rxnfc->fs.ring_cookie,
2777 				 (void __user *)(&rxnfc->fs.location + 1) -
2778 				 (void __user *)&rxnfc->fs.ring_cookie))
2779 			return -EFAULT;
2780 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2781 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
2782 				return -EFAULT;
2783 		} else if (copy_in_user(&rxnfc->rule_cnt,
2784 					&compat_rxnfc->rule_cnt,
2785 					sizeof(rxnfc->rule_cnt)))
2786 			return -EFAULT;
2787 	}
2788 
2789 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2790 	if (ret)
2791 		return ret;
2792 
2793 	if (convert_out) {
2794 		if (copy_in_user(compat_rxnfc, rxnfc,
2795 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2796 				 (const void __user *)rxnfc) ||
2797 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2798 				 &rxnfc->fs.ring_cookie,
2799 				 (const void __user *)(&rxnfc->fs.location + 1) -
2800 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2801 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2802 				 sizeof(rxnfc->rule_cnt)))
2803 			return -EFAULT;
2804 
2805 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2806 			/* As an optimisation, we only copy the actual
2807 			 * number of rules that the underlying
2808 			 * function returned.  Since Mallory might
2809 			 * change the rule count in user memory, we
2810 			 * check that it is less than the rule count
2811 			 * originally given (as the user buffer size),
2812 			 * which has been range-checked.
2813 			 */
2814 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2815 				return -EFAULT;
2816 			if (actual_rule_cnt < rule_cnt)
2817 				rule_cnt = actual_rule_cnt;
2818 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2819 					 &rxnfc->rule_locs[0],
2820 					 rule_cnt * sizeof(u32)))
2821 				return -EFAULT;
2822 		}
2823 	}
2824 
2825 	return 0;
2826 }
2827 
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)2828 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2829 {
2830 	void __user *uptr;
2831 	compat_uptr_t uptr32;
2832 	struct ifreq __user *uifr;
2833 
2834 	uifr = compat_alloc_user_space(sizeof(*uifr));
2835 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2836 		return -EFAULT;
2837 
2838 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2839 		return -EFAULT;
2840 
2841 	uptr = compat_ptr(uptr32);
2842 
2843 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2844 		return -EFAULT;
2845 
2846 	return dev_ioctl(net, SIOCWANDEV, uifr);
2847 }
2848 
bond_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * ifr32)2849 static int bond_ioctl(struct net *net, unsigned int cmd,
2850 			 struct compat_ifreq __user *ifr32)
2851 {
2852 	struct ifreq kifr;
2853 	mm_segment_t old_fs;
2854 	int err;
2855 
2856 	switch (cmd) {
2857 	case SIOCBONDENSLAVE:
2858 	case SIOCBONDRELEASE:
2859 	case SIOCBONDSETHWADDR:
2860 	case SIOCBONDCHANGEACTIVE:
2861 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2862 			return -EFAULT;
2863 
2864 		old_fs = get_fs();
2865 		set_fs(KERNEL_DS);
2866 		err = dev_ioctl(net, cmd,
2867 				(struct ifreq __user __force *) &kifr);
2868 		set_fs(old_fs);
2869 
2870 		return err;
2871 	default:
2872 		return -ENOIOCTLCMD;
2873 	}
2874 }
2875 
2876 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)2877 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2878 				 struct compat_ifreq __user *u_ifreq32)
2879 {
2880 	struct ifreq __user *u_ifreq64;
2881 	char tmp_buf[IFNAMSIZ];
2882 	void __user *data64;
2883 	u32 data32;
2884 
2885 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2886 			   IFNAMSIZ))
2887 		return -EFAULT;
2888 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2889 		return -EFAULT;
2890 	data64 = compat_ptr(data32);
2891 
2892 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2893 
2894 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2895 			 IFNAMSIZ))
2896 		return -EFAULT;
2897 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2898 		return -EFAULT;
2899 
2900 	return dev_ioctl(net, cmd, u_ifreq64);
2901 }
2902 
dev_ifsioc(struct net * net,struct socket * sock,unsigned int cmd,struct compat_ifreq __user * uifr32)2903 static int dev_ifsioc(struct net *net, struct socket *sock,
2904 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2905 {
2906 	struct ifreq __user *uifr;
2907 	int err;
2908 
2909 	uifr = compat_alloc_user_space(sizeof(*uifr));
2910 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2911 		return -EFAULT;
2912 
2913 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2914 
2915 	if (!err) {
2916 		switch (cmd) {
2917 		case SIOCGIFFLAGS:
2918 		case SIOCGIFMETRIC:
2919 		case SIOCGIFMTU:
2920 		case SIOCGIFMEM:
2921 		case SIOCGIFHWADDR:
2922 		case SIOCGIFINDEX:
2923 		case SIOCGIFADDR:
2924 		case SIOCGIFBRDADDR:
2925 		case SIOCGIFDSTADDR:
2926 		case SIOCGIFNETMASK:
2927 		case SIOCGIFPFLAGS:
2928 		case SIOCGIFTXQLEN:
2929 		case SIOCGMIIPHY:
2930 		case SIOCGMIIREG:
2931 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2932 				err = -EFAULT;
2933 			break;
2934 		}
2935 	}
2936 	return err;
2937 }
2938 
compat_sioc_ifmap(struct net * net,unsigned int cmd,struct compat_ifreq __user * uifr32)2939 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2940 			struct compat_ifreq __user *uifr32)
2941 {
2942 	struct ifreq ifr;
2943 	struct compat_ifmap __user *uifmap32;
2944 	mm_segment_t old_fs;
2945 	int err;
2946 
2947 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2948 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2949 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2950 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2951 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2952 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2953 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2954 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2955 	if (err)
2956 		return -EFAULT;
2957 
2958 	old_fs = get_fs();
2959 	set_fs(KERNEL_DS);
2960 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2961 	set_fs(old_fs);
2962 
2963 	if (cmd == SIOCGIFMAP && !err) {
2964 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2965 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2966 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2967 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2968 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2969 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2970 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2971 		if (err)
2972 			err = -EFAULT;
2973 	}
2974 	return err;
2975 }
2976 
2977 struct rtentry32 {
2978 	u32		rt_pad1;
2979 	struct sockaddr rt_dst;         /* target address               */
2980 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2981 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2982 	unsigned short	rt_flags;
2983 	short		rt_pad2;
2984 	u32		rt_pad3;
2985 	unsigned char	rt_tos;
2986 	unsigned char	rt_class;
2987 	short		rt_pad4;
2988 	short		rt_metric;      /* +1 for binary compatibility! */
2989 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2990 	u32		rt_mtu;         /* per route MTU/Window         */
2991 	u32		rt_window;      /* Window clamping              */
2992 	unsigned short  rt_irtt;        /* Initial RTT                  */
2993 };
2994 
2995 struct in6_rtmsg32 {
2996 	struct in6_addr		rtmsg_dst;
2997 	struct in6_addr		rtmsg_src;
2998 	struct in6_addr		rtmsg_gateway;
2999 	u32			rtmsg_type;
3000 	u16			rtmsg_dst_len;
3001 	u16			rtmsg_src_len;
3002 	u32			rtmsg_metric;
3003 	u32			rtmsg_info;
3004 	u32			rtmsg_flags;
3005 	s32			rtmsg_ifindex;
3006 };
3007 
routing_ioctl(struct net * net,struct socket * sock,unsigned int cmd,void __user * argp)3008 static int routing_ioctl(struct net *net, struct socket *sock,
3009 			 unsigned int cmd, void __user *argp)
3010 {
3011 	int ret;
3012 	void *r = NULL;
3013 	struct in6_rtmsg r6;
3014 	struct rtentry r4;
3015 	char devname[16];
3016 	u32 rtdev;
3017 	mm_segment_t old_fs = get_fs();
3018 
3019 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3020 		struct in6_rtmsg32 __user *ur6 = argp;
3021 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3022 			3 * sizeof(struct in6_addr));
3023 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3024 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3025 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3026 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3027 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3028 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3029 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3030 
3031 		r = (void *) &r6;
3032 	} else { /* ipv4 */
3033 		struct rtentry32 __user *ur4 = argp;
3034 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3035 					3 * sizeof(struct sockaddr));
3036 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3037 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3038 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3039 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3040 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3041 		ret |= get_user(rtdev, &(ur4->rt_dev));
3042 		if (rtdev) {
3043 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3044 			r4.rt_dev = (char __user __force *)devname;
3045 			devname[15] = 0;
3046 		} else
3047 			r4.rt_dev = NULL;
3048 
3049 		r = (void *) &r4;
3050 	}
3051 
3052 	if (ret) {
3053 		ret = -EFAULT;
3054 		goto out;
3055 	}
3056 
3057 	set_fs(KERNEL_DS);
3058 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3059 	set_fs(old_fs);
3060 
3061 out:
3062 	return ret;
3063 }
3064 
3065 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3066  * for some operations; this forces use of the newer bridge-utils that
3067  * use compatible ioctls
3068  */
old_bridge_ioctl(compat_ulong_t __user * argp)3069 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3070 {
3071 	compat_ulong_t tmp;
3072 
3073 	if (get_user(tmp, argp))
3074 		return -EFAULT;
3075 	if (tmp == BRCTL_GET_VERSION)
3076 		return BRCTL_VERSION + 1;
3077 	return -EINVAL;
3078 }
3079 
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3080 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3081 			 unsigned int cmd, unsigned long arg)
3082 {
3083 	void __user *argp = compat_ptr(arg);
3084 	struct sock *sk = sock->sk;
3085 	struct net *net = sock_net(sk);
3086 
3087 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3088 		return compat_ifr_data_ioctl(net, cmd, argp);
3089 
3090 	switch (cmd) {
3091 	case SIOCSIFBR:
3092 	case SIOCGIFBR:
3093 		return old_bridge_ioctl(argp);
3094 	case SIOCGIFNAME:
3095 		return dev_ifname32(net, argp);
3096 	case SIOCGIFCONF:
3097 		return dev_ifconf(net, argp);
3098 	case SIOCETHTOOL:
3099 		return ethtool_ioctl(net, argp);
3100 	case SIOCWANDEV:
3101 		return compat_siocwandev(net, argp);
3102 	case SIOCGIFMAP:
3103 	case SIOCSIFMAP:
3104 		return compat_sioc_ifmap(net, cmd, argp);
3105 	case SIOCBONDENSLAVE:
3106 	case SIOCBONDRELEASE:
3107 	case SIOCBONDSETHWADDR:
3108 	case SIOCBONDCHANGEACTIVE:
3109 		return bond_ioctl(net, cmd, argp);
3110 	case SIOCADDRT:
3111 	case SIOCDELRT:
3112 		return routing_ioctl(net, sock, cmd, argp);
3113 	case SIOCGSTAMP:
3114 		return do_siocgstamp(net, sock, cmd, argp);
3115 	case SIOCGSTAMPNS:
3116 		return do_siocgstampns(net, sock, cmd, argp);
3117 	case SIOCBONDSLAVEINFOQUERY:
3118 	case SIOCBONDINFOQUERY:
3119 	case SIOCSHWTSTAMP:
3120 	case SIOCGHWTSTAMP:
3121 		return compat_ifr_data_ioctl(net, cmd, argp);
3122 
3123 	case FIOSETOWN:
3124 	case SIOCSPGRP:
3125 	case FIOGETOWN:
3126 	case SIOCGPGRP:
3127 	case SIOCBRADDBR:
3128 	case SIOCBRDELBR:
3129 	case SIOCGIFVLAN:
3130 	case SIOCSIFVLAN:
3131 	case SIOCADDDLCI:
3132 	case SIOCDELDLCI:
3133 		return sock_ioctl(file, cmd, arg);
3134 
3135 	case SIOCGIFFLAGS:
3136 	case SIOCSIFFLAGS:
3137 	case SIOCGIFMETRIC:
3138 	case SIOCSIFMETRIC:
3139 	case SIOCGIFMTU:
3140 	case SIOCSIFMTU:
3141 	case SIOCGIFMEM:
3142 	case SIOCSIFMEM:
3143 	case SIOCGIFHWADDR:
3144 	case SIOCSIFHWADDR:
3145 	case SIOCADDMULTI:
3146 	case SIOCDELMULTI:
3147 	case SIOCGIFINDEX:
3148 	case SIOCGIFADDR:
3149 	case SIOCSIFADDR:
3150 	case SIOCSIFHWBROADCAST:
3151 	case SIOCDIFADDR:
3152 	case SIOCGIFBRDADDR:
3153 	case SIOCSIFBRDADDR:
3154 	case SIOCGIFDSTADDR:
3155 	case SIOCSIFDSTADDR:
3156 	case SIOCGIFNETMASK:
3157 	case SIOCSIFNETMASK:
3158 	case SIOCSIFPFLAGS:
3159 	case SIOCGIFPFLAGS:
3160 	case SIOCGIFTXQLEN:
3161 	case SIOCSIFTXQLEN:
3162 	case SIOCBRADDIF:
3163 	case SIOCBRDELIF:
3164 	case SIOCSIFNAME:
3165 	case SIOCGMIIPHY:
3166 	case SIOCGMIIREG:
3167 	case SIOCSMIIREG:
3168 		return dev_ifsioc(net, sock, cmd, argp);
3169 
3170 	case SIOCSARP:
3171 	case SIOCGARP:
3172 	case SIOCDARP:
3173 	case SIOCOUTQNSD:
3174 	case SIOCATMARK:
3175 		return sock_do_ioctl(net, sock, cmd, arg);
3176 	}
3177 
3178 	return -ENOIOCTLCMD;
3179 }
3180 
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3181 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3182 			      unsigned long arg)
3183 {
3184 	struct socket *sock = file->private_data;
3185 	int ret = -ENOIOCTLCMD;
3186 	struct sock *sk;
3187 	struct net *net;
3188 
3189 	sk = sock->sk;
3190 	net = sock_net(sk);
3191 
3192 	if (sock->ops->compat_ioctl)
3193 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3194 
3195 	if (ret == -ENOIOCTLCMD &&
3196 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3197 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3198 
3199 	if (ret == -ENOIOCTLCMD)
3200 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3201 
3202 	return ret;
3203 }
3204 #endif
3205 
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3206 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3207 {
3208 	return sock->ops->bind(sock, addr, addrlen);
3209 }
3210 EXPORT_SYMBOL(kernel_bind);
3211 
kernel_listen(struct socket * sock,int backlog)3212 int kernel_listen(struct socket *sock, int backlog)
3213 {
3214 	return sock->ops->listen(sock, backlog);
3215 }
3216 EXPORT_SYMBOL(kernel_listen);
3217 
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3218 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3219 {
3220 	struct sock *sk = sock->sk;
3221 	int err;
3222 
3223 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3224 			       newsock);
3225 	if (err < 0)
3226 		goto done;
3227 
3228 	err = sock->ops->accept(sock, *newsock, flags);
3229 	if (err < 0) {
3230 		sock_release(*newsock);
3231 		*newsock = NULL;
3232 		goto done;
3233 	}
3234 
3235 	(*newsock)->ops = sock->ops;
3236 	__module_get((*newsock)->ops->owner);
3237 
3238 done:
3239 	return err;
3240 }
3241 EXPORT_SYMBOL(kernel_accept);
3242 
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3243 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3244 		   int flags)
3245 {
3246 	return sock->ops->connect(sock, addr, addrlen, flags);
3247 }
3248 EXPORT_SYMBOL(kernel_connect);
3249 
kernel_getsockname(struct socket * sock,struct sockaddr * addr,int * addrlen)3250 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3251 			 int *addrlen)
3252 {
3253 	return sock->ops->getname(sock, addr, addrlen, 0);
3254 }
3255 EXPORT_SYMBOL(kernel_getsockname);
3256 
kernel_getpeername(struct socket * sock,struct sockaddr * addr,int * addrlen)3257 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3258 			 int *addrlen)
3259 {
3260 	return sock->ops->getname(sock, addr, addrlen, 1);
3261 }
3262 EXPORT_SYMBOL(kernel_getpeername);
3263 
kernel_getsockopt(struct socket * sock,int level,int optname,char * optval,int * optlen)3264 int kernel_getsockopt(struct socket *sock, int level, int optname,
3265 			char *optval, int *optlen)
3266 {
3267 	mm_segment_t oldfs = get_fs();
3268 	char __user *uoptval;
3269 	int __user *uoptlen;
3270 	int err;
3271 
3272 	uoptval = (char __user __force *) optval;
3273 	uoptlen = (int __user __force *) optlen;
3274 
3275 	set_fs(KERNEL_DS);
3276 	if (level == SOL_SOCKET)
3277 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3278 	else
3279 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3280 					    uoptlen);
3281 	set_fs(oldfs);
3282 	return err;
3283 }
3284 EXPORT_SYMBOL(kernel_getsockopt);
3285 
kernel_setsockopt(struct socket * sock,int level,int optname,char * optval,unsigned int optlen)3286 int kernel_setsockopt(struct socket *sock, int level, int optname,
3287 			char *optval, unsigned int optlen)
3288 {
3289 	mm_segment_t oldfs = get_fs();
3290 	char __user *uoptval;
3291 	int err;
3292 
3293 	uoptval = (char __user __force *) optval;
3294 
3295 	set_fs(KERNEL_DS);
3296 	if (level == SOL_SOCKET)
3297 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3298 	else
3299 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3300 					    optlen);
3301 	set_fs(oldfs);
3302 	return err;
3303 }
3304 EXPORT_SYMBOL(kernel_setsockopt);
3305 
kernel_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3306 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3307 		    size_t size, int flags)
3308 {
3309 	if (sock->ops->sendpage)
3310 		return sock->ops->sendpage(sock, page, offset, size, flags);
3311 
3312 	return sock_no_sendpage(sock, page, offset, size, flags);
3313 }
3314 EXPORT_SYMBOL(kernel_sendpage);
3315 
kernel_sock_ioctl(struct socket * sock,int cmd,unsigned long arg)3316 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3317 {
3318 	mm_segment_t oldfs = get_fs();
3319 	int err;
3320 
3321 	set_fs(KERNEL_DS);
3322 	err = sock->ops->ioctl(sock, cmd, arg);
3323 	set_fs(oldfs);
3324 
3325 	return err;
3326 }
3327 EXPORT_SYMBOL(kernel_sock_ioctl);
3328 
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3329 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3330 {
3331 	return sock->ops->shutdown(sock, how);
3332 }
3333 EXPORT_SYMBOL(kernel_sock_shutdown);
3334 
3335 /* This routine returns the IP overhead imposed by a socket i.e.
3336  * the length of the underlying IP header, depending on whether
3337  * this is an IPv4 or IPv6 socket and the length from IP options turned
3338  * on at the socket. Assumes that the caller has a lock on the socket.
3339  */
kernel_sock_ip_overhead(struct sock * sk)3340 u32 kernel_sock_ip_overhead(struct sock *sk)
3341 {
3342 	struct inet_sock *inet;
3343 	struct ip_options_rcu *opt;
3344 	u32 overhead = 0;
3345 	bool owned_by_user;
3346 #if IS_ENABLED(CONFIG_IPV6)
3347 	struct ipv6_pinfo *np;
3348 	struct ipv6_txoptions *optv6 = NULL;
3349 #endif /* IS_ENABLED(CONFIG_IPV6) */
3350 
3351 	if (!sk)
3352 		return overhead;
3353 
3354 	owned_by_user = sock_owned_by_user(sk);
3355 	switch (sk->sk_family) {
3356 	case AF_INET:
3357 		inet = inet_sk(sk);
3358 		overhead += sizeof(struct iphdr);
3359 		opt = rcu_dereference_protected(inet->inet_opt,
3360 						owned_by_user);
3361 		if (opt)
3362 			overhead += opt->opt.optlen;
3363 		return overhead;
3364 #if IS_ENABLED(CONFIG_IPV6)
3365 	case AF_INET6:
3366 		np = inet6_sk(sk);
3367 		overhead += sizeof(struct ipv6hdr);
3368 		if (np)
3369 			optv6 = rcu_dereference_protected(np->opt,
3370 							  owned_by_user);
3371 		if (optv6)
3372 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3373 		return overhead;
3374 #endif /* IS_ENABLED(CONFIG_IPV6) */
3375 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3376 		return overhead;
3377 	}
3378 }
3379 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3380