1 /******************************************************************************
2 *
3 * Module Name: hwxface - Public ACPICA hardware interfaces
4 *
5 *****************************************************************************/
6
7 /*
8 * Copyright (C) 2000 - 2015, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */
43
44 #define EXPORT_ACPI_INTERFACES
45
46 #include <acpi/acpi.h>
47 #include "accommon.h"
48 #include "acnamesp.h"
49
50 #define _COMPONENT ACPI_HARDWARE
51 ACPI_MODULE_NAME("hwxface")
52
53 /******************************************************************************
54 *
55 * FUNCTION: acpi_reset
56 *
57 * PARAMETERS: None
58 *
59 * RETURN: Status
60 *
61 * DESCRIPTION: Set reset register in memory or IO space. Note: Does not
62 * support reset register in PCI config space, this must be
63 * handled separately.
64 *
65 ******************************************************************************/
acpi_reset(void)66 acpi_status acpi_reset(void)
67 {
68 struct acpi_generic_address *reset_reg;
69 acpi_status status;
70
71 ACPI_FUNCTION_TRACE(acpi_reset);
72
73 reset_reg = &acpi_gbl_FADT.reset_register;
74
75 /* Check if the reset register is supported */
76
77 if (!(acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) ||
78 !reset_reg->address) {
79 return_ACPI_STATUS(AE_NOT_EXIST);
80 }
81
82 if (reset_reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
83 /*
84 * For I/O space, write directly to the OSL. This bypasses the port
85 * validation mechanism, which may block a valid write to the reset
86 * register.
87 *
88 * NOTE:
89 * The ACPI spec requires the reset register width to be 8, so we
90 * hardcode it here and ignore the FADT value. This maintains
91 * compatibility with other ACPI implementations that have allowed
92 * BIOS code with bad register width values to go unnoticed.
93 */
94 status =
95 acpi_os_write_port((acpi_io_address) reset_reg->address,
96 acpi_gbl_FADT.reset_value,
97 ACPI_RESET_REGISTER_WIDTH);
98 } else {
99 /* Write the reset value to the reset register */
100
101 status = acpi_hw_write(acpi_gbl_FADT.reset_value, reset_reg);
102 }
103
104 return_ACPI_STATUS(status);
105 }
106
ACPI_EXPORT_SYMBOL(acpi_reset)107 ACPI_EXPORT_SYMBOL(acpi_reset)
108
109 /******************************************************************************
110 *
111 * FUNCTION: acpi_read
112 *
113 * PARAMETERS: value - Where the value is returned
114 * reg - GAS register structure
115 *
116 * RETURN: Status
117 *
118 * DESCRIPTION: Read from either memory or IO space.
119 *
120 * LIMITATIONS: <These limitations also apply to acpi_write>
121 * bit_width must be exactly 8, 16, 32, or 64.
122 * space_ID must be system_memory or system_IO.
123 * bit_offset and access_width are currently ignored, as there has
124 * not been a need to implement these.
125 *
126 ******************************************************************************/
127 acpi_status acpi_read(u64 *return_value, struct acpi_generic_address *reg)
128 {
129 u32 value_lo;
130 u32 value_hi;
131 u32 width;
132 u64 address;
133 acpi_status status;
134
135 ACPI_FUNCTION_NAME(acpi_read);
136
137 if (!return_value) {
138 return (AE_BAD_PARAMETER);
139 }
140
141 /* Validate contents of the GAS register. Allow 64-bit transfers */
142
143 status = acpi_hw_validate_register(reg, 64, &address);
144 if (ACPI_FAILURE(status)) {
145 return (status);
146 }
147
148 /*
149 * Two address spaces supported: Memory or I/O. PCI_Config is
150 * not supported here because the GAS structure is insufficient
151 */
152 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
153 status = acpi_os_read_memory((acpi_physical_address)
154 address, return_value,
155 reg->bit_width);
156 if (ACPI_FAILURE(status)) {
157 return (status);
158 }
159 } else { /* ACPI_ADR_SPACE_SYSTEM_IO, validated earlier */
160
161 value_lo = 0;
162 value_hi = 0;
163
164 width = reg->bit_width;
165 if (width == 64) {
166 width = 32; /* Break into two 32-bit transfers */
167 }
168
169 status = acpi_hw_read_port((acpi_io_address)
170 address, &value_lo, width);
171 if (ACPI_FAILURE(status)) {
172 return (status);
173 }
174
175 if (reg->bit_width == 64) {
176
177 /* Read the top 32 bits */
178
179 status = acpi_hw_read_port((acpi_io_address)
180 (address + 4), &value_hi,
181 32);
182 if (ACPI_FAILURE(status)) {
183 return (status);
184 }
185 }
186
187 /* Set the return value only if status is AE_OK */
188
189 *return_value = (value_lo | ((u64)value_hi << 32));
190 }
191
192 ACPI_DEBUG_PRINT((ACPI_DB_IO,
193 "Read: %8.8X%8.8X width %2d from %8.8X%8.8X (%s)\n",
194 ACPI_FORMAT_UINT64(*return_value), reg->bit_width,
195 ACPI_FORMAT_UINT64(address),
196 acpi_ut_get_region_name(reg->space_id)));
197
198 return (AE_OK);
199 }
200
ACPI_EXPORT_SYMBOL(acpi_read)201 ACPI_EXPORT_SYMBOL(acpi_read)
202
203 /******************************************************************************
204 *
205 * FUNCTION: acpi_write
206 *
207 * PARAMETERS: value - Value to be written
208 * reg - GAS register structure
209 *
210 * RETURN: Status
211 *
212 * DESCRIPTION: Write to either memory or IO space.
213 *
214 ******************************************************************************/
215 acpi_status acpi_write(u64 value, struct acpi_generic_address *reg)
216 {
217 u32 width;
218 u64 address;
219 acpi_status status;
220
221 ACPI_FUNCTION_NAME(acpi_write);
222
223 /* Validate contents of the GAS register. Allow 64-bit transfers */
224
225 status = acpi_hw_validate_register(reg, 64, &address);
226 if (ACPI_FAILURE(status)) {
227 return (status);
228 }
229
230 /*
231 * Two address spaces supported: Memory or IO. PCI_Config is
232 * not supported here because the GAS structure is insufficient
233 */
234 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
235 status = acpi_os_write_memory((acpi_physical_address)
236 address, value, reg->bit_width);
237 if (ACPI_FAILURE(status)) {
238 return (status);
239 }
240 } else { /* ACPI_ADR_SPACE_SYSTEM_IO, validated earlier */
241
242 width = reg->bit_width;
243 if (width == 64) {
244 width = 32; /* Break into two 32-bit transfers */
245 }
246
247 status = acpi_hw_write_port((acpi_io_address)
248 address, ACPI_LODWORD(value),
249 width);
250 if (ACPI_FAILURE(status)) {
251 return (status);
252 }
253
254 if (reg->bit_width == 64) {
255 status = acpi_hw_write_port((acpi_io_address)
256 (address + 4),
257 ACPI_HIDWORD(value), 32);
258 if (ACPI_FAILURE(status)) {
259 return (status);
260 }
261 }
262 }
263
264 ACPI_DEBUG_PRINT((ACPI_DB_IO,
265 "Wrote: %8.8X%8.8X width %2d to %8.8X%8.8X (%s)\n",
266 ACPI_FORMAT_UINT64(value), reg->bit_width,
267 ACPI_FORMAT_UINT64(address),
268 acpi_ut_get_region_name(reg->space_id)));
269
270 return (status);
271 }
272
ACPI_EXPORT_SYMBOL(acpi_write)273 ACPI_EXPORT_SYMBOL(acpi_write)
274
275 #if (!ACPI_REDUCED_HARDWARE)
276 /*******************************************************************************
277 *
278 * FUNCTION: acpi_read_bit_register
279 *
280 * PARAMETERS: register_id - ID of ACPI Bit Register to access
281 * return_value - Value that was read from the register,
282 * normalized to bit position zero.
283 *
284 * RETURN: Status and the value read from the specified Register. Value
285 * returned is normalized to bit0 (is shifted all the way right)
286 *
287 * DESCRIPTION: ACPI bit_register read function. Does not acquire the HW lock.
288 *
289 * SUPPORTS: Bit fields in PM1 Status, PM1 Enable, PM1 Control, and
290 * PM2 Control.
291 *
292 * Note: The hardware lock is not required when reading the ACPI bit registers
293 * since almost all of them are single bit and it does not matter that
294 * the parent hardware register can be split across two physical
295 * registers. The only multi-bit field is SLP_TYP in the PM1 control
296 * register, but this field does not cross an 8-bit boundary (nor does
297 * it make much sense to actually read this field.)
298 *
299 ******************************************************************************/
300 acpi_status acpi_read_bit_register(u32 register_id, u32 *return_value)
301 {
302 struct acpi_bit_register_info *bit_reg_info;
303 u32 register_value;
304 u32 value;
305 acpi_status status;
306
307 ACPI_FUNCTION_TRACE_U32(acpi_read_bit_register, register_id);
308
309 /* Get the info structure corresponding to the requested ACPI Register */
310
311 bit_reg_info = acpi_hw_get_bit_register_info(register_id);
312 if (!bit_reg_info) {
313 return_ACPI_STATUS(AE_BAD_PARAMETER);
314 }
315
316 /* Read the entire parent register */
317
318 status = acpi_hw_register_read(bit_reg_info->parent_register,
319 ®ister_value);
320 if (ACPI_FAILURE(status)) {
321 return_ACPI_STATUS(status);
322 }
323
324 /* Normalize the value that was read, mask off other bits */
325
326 value = ((register_value & bit_reg_info->access_bit_mask)
327 >> bit_reg_info->bit_position);
328
329 ACPI_DEBUG_PRINT((ACPI_DB_IO,
330 "BitReg %X, ParentReg %X, Actual %8.8X, ReturnValue %8.8X\n",
331 register_id, bit_reg_info->parent_register,
332 register_value, value));
333
334 *return_value = value;
335 return_ACPI_STATUS(AE_OK);
336 }
337
ACPI_EXPORT_SYMBOL(acpi_read_bit_register)338 ACPI_EXPORT_SYMBOL(acpi_read_bit_register)
339
340 /*******************************************************************************
341 *
342 * FUNCTION: acpi_write_bit_register
343 *
344 * PARAMETERS: register_id - ID of ACPI Bit Register to access
345 * value - Value to write to the register, in bit
346 * position zero. The bit is automatically
347 * shifted to the correct position.
348 *
349 * RETURN: Status
350 *
351 * DESCRIPTION: ACPI Bit Register write function. Acquires the hardware lock
352 * since most operations require a read/modify/write sequence.
353 *
354 * SUPPORTS: Bit fields in PM1 Status, PM1 Enable, PM1 Control, and
355 * PM2 Control.
356 *
357 * Note that at this level, the fact that there may be actually two
358 * hardware registers (A and B - and B may not exist) is abstracted.
359 *
360 ******************************************************************************/
361 acpi_status acpi_write_bit_register(u32 register_id, u32 value)
362 {
363 struct acpi_bit_register_info *bit_reg_info;
364 acpi_cpu_flags lock_flags;
365 u32 register_value;
366 acpi_status status = AE_OK;
367
368 ACPI_FUNCTION_TRACE_U32(acpi_write_bit_register, register_id);
369
370 /* Get the info structure corresponding to the requested ACPI Register */
371
372 bit_reg_info = acpi_hw_get_bit_register_info(register_id);
373 if (!bit_reg_info) {
374 return_ACPI_STATUS(AE_BAD_PARAMETER);
375 }
376
377 lock_flags = acpi_os_acquire_lock(acpi_gbl_hardware_lock);
378
379 /*
380 * At this point, we know that the parent register is one of the
381 * following: PM1 Status, PM1 Enable, PM1 Control, or PM2 Control
382 */
383 if (bit_reg_info->parent_register != ACPI_REGISTER_PM1_STATUS) {
384 /*
385 * 1) Case for PM1 Enable, PM1 Control, and PM2 Control
386 *
387 * Perform a register read to preserve the bits that we are not
388 * interested in
389 */
390 status = acpi_hw_register_read(bit_reg_info->parent_register,
391 ®ister_value);
392 if (ACPI_FAILURE(status)) {
393 goto unlock_and_exit;
394 }
395
396 /*
397 * Insert the input bit into the value that was just read
398 * and write the register
399 */
400 ACPI_REGISTER_INSERT_VALUE(register_value,
401 bit_reg_info->bit_position,
402 bit_reg_info->access_bit_mask,
403 value);
404
405 status = acpi_hw_register_write(bit_reg_info->parent_register,
406 register_value);
407 } else {
408 /*
409 * 2) Case for PM1 Status
410 *
411 * The Status register is different from the rest. Clear an event
412 * by writing 1, writing 0 has no effect. So, the only relevant
413 * information is the single bit we're interested in, all others
414 * should be written as 0 so they will be left unchanged.
415 */
416 register_value = ACPI_REGISTER_PREPARE_BITS(value,
417 bit_reg_info->
418 bit_position,
419 bit_reg_info->
420 access_bit_mask);
421
422 /* No need to write the register if value is all zeros */
423
424 if (register_value) {
425 status =
426 acpi_hw_register_write(ACPI_REGISTER_PM1_STATUS,
427 register_value);
428 }
429 }
430
431 ACPI_DEBUG_PRINT((ACPI_DB_IO,
432 "BitReg %X, ParentReg %X, Value %8.8X, Actual %8.8X\n",
433 register_id, bit_reg_info->parent_register, value,
434 register_value));
435
436 unlock_and_exit:
437
438 acpi_os_release_lock(acpi_gbl_hardware_lock, lock_flags);
439 return_ACPI_STATUS(status);
440 }
441
ACPI_EXPORT_SYMBOL(acpi_write_bit_register)442 ACPI_EXPORT_SYMBOL(acpi_write_bit_register)
443 #endif /* !ACPI_REDUCED_HARDWARE */
444 /*******************************************************************************
445 *
446 * FUNCTION: acpi_get_sleep_type_data
447 *
448 * PARAMETERS: sleep_state - Numeric sleep state
449 * *sleep_type_a - Where SLP_TYPa is returned
450 * *sleep_type_b - Where SLP_TYPb is returned
451 *
452 * RETURN: Status
453 *
454 * DESCRIPTION: Obtain the SLP_TYPa and SLP_TYPb values for the requested
455 * sleep state via the appropriate \_Sx object.
456 *
457 * The sleep state package returned from the corresponding \_Sx_ object
458 * must contain at least one integer.
459 *
460 * March 2005:
461 * Added support for a package that contains two integers. This
462 * goes against the ACPI specification which defines this object as a
463 * package with one encoded DWORD integer. However, existing practice
464 * by many BIOS vendors is to return a package with 2 or more integer
465 * elements, at least one per sleep type (A/B).
466 *
467 * January 2013:
468 * Therefore, we must be prepared to accept a package with either a
469 * single integer or multiple integers.
470 *
471 * The single integer DWORD format is as follows:
472 * BYTE 0 - Value for the PM1A SLP_TYP register
473 * BYTE 1 - Value for the PM1B SLP_TYP register
474 * BYTE 2-3 - Reserved
475 *
476 * The dual integer format is as follows:
477 * Integer 0 - Value for the PM1A SLP_TYP register
478 * Integer 1 - Value for the PM1A SLP_TYP register
479 *
480 ******************************************************************************/
481 acpi_status
482 acpi_get_sleep_type_data(u8 sleep_state, u8 *sleep_type_a, u8 *sleep_type_b)
483 {
484 acpi_status status;
485 struct acpi_evaluate_info *info;
486 union acpi_operand_object **elements;
487
488 ACPI_FUNCTION_TRACE(acpi_get_sleep_type_data);
489
490 /* Validate parameters */
491
492 if ((sleep_state > ACPI_S_STATES_MAX) || !sleep_type_a || !sleep_type_b) {
493 return_ACPI_STATUS(AE_BAD_PARAMETER);
494 }
495
496 /* Allocate the evaluation information block */
497
498 info = ACPI_ALLOCATE_ZEROED(sizeof(struct acpi_evaluate_info));
499 if (!info) {
500 return_ACPI_STATUS(AE_NO_MEMORY);
501 }
502
503 /*
504 * Evaluate the \_Sx namespace object containing the register values
505 * for this state
506 */
507 info->relative_pathname = ACPI_CAST_PTR(char,
508 acpi_gbl_sleep_state_names
509 [sleep_state]);
510
511 status = acpi_ns_evaluate(info);
512 if (ACPI_FAILURE(status)) {
513 if (status == AE_NOT_FOUND) {
514
515 /* The _Sx states are optional, ignore NOT_FOUND */
516
517 goto final_cleanup;
518 }
519
520 goto warning_cleanup;
521 }
522
523 /* Must have a return object */
524
525 if (!info->return_object) {
526 ACPI_ERROR((AE_INFO, "No Sleep State object returned from [%s]",
527 info->relative_pathname));
528 status = AE_AML_NO_RETURN_VALUE;
529 goto warning_cleanup;
530 }
531
532 /* Return object must be of type Package */
533
534 if (info->return_object->common.type != ACPI_TYPE_PACKAGE) {
535 ACPI_ERROR((AE_INFO,
536 "Sleep State return object is not a Package"));
537 status = AE_AML_OPERAND_TYPE;
538 goto return_value_cleanup;
539 }
540
541 /*
542 * Any warnings about the package length or the object types have
543 * already been issued by the predefined name module -- there is no
544 * need to repeat them here.
545 */
546 elements = info->return_object->package.elements;
547 switch (info->return_object->package.count) {
548 case 0:
549
550 status = AE_AML_PACKAGE_LIMIT;
551 break;
552
553 case 1:
554
555 if (elements[0]->common.type != ACPI_TYPE_INTEGER) {
556 status = AE_AML_OPERAND_TYPE;
557 break;
558 }
559
560 /* A valid _Sx_ package with one integer */
561
562 *sleep_type_a = (u8)elements[0]->integer.value;
563 *sleep_type_b = (u8)(elements[0]->integer.value >> 8);
564 break;
565
566 case 2:
567 default:
568
569 if ((elements[0]->common.type != ACPI_TYPE_INTEGER) ||
570 (elements[1]->common.type != ACPI_TYPE_INTEGER)) {
571 status = AE_AML_OPERAND_TYPE;
572 break;
573 }
574
575 /* A valid _Sx_ package with two integers */
576
577 *sleep_type_a = (u8)elements[0]->integer.value;
578 *sleep_type_b = (u8)elements[1]->integer.value;
579 break;
580 }
581
582 return_value_cleanup:
583 acpi_ut_remove_reference(info->return_object);
584
585 warning_cleanup:
586 if (ACPI_FAILURE(status)) {
587 ACPI_EXCEPTION((AE_INFO, status,
588 "While evaluating Sleep State [%s]",
589 info->relative_pathname));
590 }
591
592 final_cleanup:
593 ACPI_FREE(info);
594 return_ACPI_STATUS(status);
595 }
596
597 ACPI_EXPORT_SYMBOL(acpi_get_sleep_type_data)
598