• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 #include <linux/cpufreq_times.h>
78 
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 #include <asm/irq_regs.h>
82 #include <asm/mutex.h>
83 #ifdef CONFIG_PARAVIRT
84 #include <asm/paravirt.h>
85 #endif
86 
87 #include "sched.h"
88 #include "../workqueue_internal.h"
89 #include "../smpboot.h"
90 
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/sched.h>
93 #include "walt.h"
94 
95 DEFINE_MUTEX(sched_domains_mutex);
96 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
97 
98 static void update_rq_clock_task(struct rq *rq, s64 delta);
99 
update_rq_clock(struct rq * rq)100 void update_rq_clock(struct rq *rq)
101 {
102 	s64 delta;
103 
104 	lockdep_assert_held(&rq->lock);
105 
106 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
107 		return;
108 
109 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
110 	if (delta < 0)
111 		return;
112 	rq->clock += delta;
113 	update_rq_clock_task(rq, delta);
114 }
115 
116 /*
117  * Debugging: various feature bits
118  */
119 
120 #define SCHED_FEAT(name, enabled)	\
121 	(1UL << __SCHED_FEAT_##name) * enabled |
122 
123 const_debug unsigned int sysctl_sched_features =
124 #include "features.h"
125 	0;
126 
127 #undef SCHED_FEAT
128 
129 #ifdef CONFIG_SCHED_DEBUG
130 #define SCHED_FEAT(name, enabled)	\
131 	#name ,
132 
133 static const char * const sched_feat_names[] = {
134 #include "features.h"
135 };
136 
137 #undef SCHED_FEAT
138 
sched_feat_show(struct seq_file * m,void * v)139 static int sched_feat_show(struct seq_file *m, void *v)
140 {
141 	int i;
142 
143 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
144 		if (!(sysctl_sched_features & (1UL << i)))
145 			seq_puts(m, "NO_");
146 		seq_printf(m, "%s ", sched_feat_names[i]);
147 	}
148 	seq_puts(m, "\n");
149 
150 	return 0;
151 }
152 
153 #ifdef HAVE_JUMP_LABEL
154 
155 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
156 #define jump_label_key__false STATIC_KEY_INIT_FALSE
157 
158 #define SCHED_FEAT(name, enabled)	\
159 	jump_label_key__##enabled ,
160 
161 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
162 #include "features.h"
163 };
164 
165 #undef SCHED_FEAT
166 
sched_feat_disable(int i)167 static void sched_feat_disable(int i)
168 {
169 	static_key_disable(&sched_feat_keys[i]);
170 }
171 
sched_feat_enable(int i)172 static void sched_feat_enable(int i)
173 {
174 	static_key_enable(&sched_feat_keys[i]);
175 }
176 #else
sched_feat_disable(int i)177 static void sched_feat_disable(int i) { };
sched_feat_enable(int i)178 static void sched_feat_enable(int i) { };
179 #endif /* HAVE_JUMP_LABEL */
180 
sched_feat_set(char * cmp)181 static int sched_feat_set(char *cmp)
182 {
183 	int i;
184 	int neg = 0;
185 
186 	if (strncmp(cmp, "NO_", 3) == 0) {
187 		neg = 1;
188 		cmp += 3;
189 	}
190 
191 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
192 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
193 			if (neg) {
194 				sysctl_sched_features &= ~(1UL << i);
195 				sched_feat_disable(i);
196 			} else {
197 				sysctl_sched_features |= (1UL << i);
198 				sched_feat_enable(i);
199 			}
200 			break;
201 		}
202 	}
203 
204 	return i;
205 }
206 
207 static ssize_t
sched_feat_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)208 sched_feat_write(struct file *filp, const char __user *ubuf,
209 		size_t cnt, loff_t *ppos)
210 {
211 	char buf[64];
212 	char *cmp;
213 	int i;
214 	struct inode *inode;
215 
216 	if (cnt > 63)
217 		cnt = 63;
218 
219 	if (copy_from_user(&buf, ubuf, cnt))
220 		return -EFAULT;
221 
222 	buf[cnt] = 0;
223 	cmp = strstrip(buf);
224 
225 	/* Ensure the static_key remains in a consistent state */
226 	inode = file_inode(filp);
227 	mutex_lock(&inode->i_mutex);
228 	i = sched_feat_set(cmp);
229 	mutex_unlock(&inode->i_mutex);
230 	if (i == __SCHED_FEAT_NR)
231 		return -EINVAL;
232 
233 	*ppos += cnt;
234 
235 	return cnt;
236 }
237 
sched_feat_open(struct inode * inode,struct file * filp)238 static int sched_feat_open(struct inode *inode, struct file *filp)
239 {
240 	return single_open(filp, sched_feat_show, NULL);
241 }
242 
243 static const struct file_operations sched_feat_fops = {
244 	.open		= sched_feat_open,
245 	.write		= sched_feat_write,
246 	.read		= seq_read,
247 	.llseek		= seq_lseek,
248 	.release	= single_release,
249 };
250 
sched_init_debug(void)251 static __init int sched_init_debug(void)
252 {
253 	debugfs_create_file("sched_features", 0644, NULL, NULL,
254 			&sched_feat_fops);
255 
256 	return 0;
257 }
258 late_initcall(sched_init_debug);
259 #endif /* CONFIG_SCHED_DEBUG */
260 
261 /*
262  * Number of tasks to iterate in a single balance run.
263  * Limited because this is done with IRQs disabled.
264  */
265 const_debug unsigned int sysctl_sched_nr_migrate = 32;
266 
267 /*
268  * period over which we average the RT time consumption, measured
269  * in ms.
270  *
271  * default: 1s
272  */
273 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
274 
275 /*
276  * period over which we measure -rt task cpu usage in us.
277  * default: 1s
278  */
279 unsigned int sysctl_sched_rt_period = 1000000;
280 
281 __read_mostly int scheduler_running;
282 
283 /*
284  * part of the period that we allow rt tasks to run in us.
285  * default: 0.95s
286  */
287 int sysctl_sched_rt_runtime = 950000;
288 
289 /* cpus with isolated domains */
290 cpumask_var_t cpu_isolated_map;
291 
292 struct rq *
lock_rq_of(struct task_struct * p,unsigned long * flags)293 lock_rq_of(struct task_struct *p, unsigned long *flags)
294 {
295 	return task_rq_lock(p, flags);
296 }
297 
298 void
unlock_rq_of(struct rq * rq,struct task_struct * p,unsigned long * flags)299 unlock_rq_of(struct rq *rq, struct task_struct *p, unsigned long *flags)
300 {
301 	task_rq_unlock(rq, p, flags);
302 }
303 
304 /*
305  * this_rq_lock - lock this runqueue and disable interrupts.
306  */
this_rq_lock(void)307 static struct rq *this_rq_lock(void)
308 	__acquires(rq->lock)
309 {
310 	struct rq *rq;
311 
312 	local_irq_disable();
313 	rq = this_rq();
314 	raw_spin_lock(&rq->lock);
315 
316 	return rq;
317 }
318 
319 #ifdef CONFIG_SCHED_HRTICK
320 /*
321  * Use HR-timers to deliver accurate preemption points.
322  */
323 
hrtick_clear(struct rq * rq)324 static void hrtick_clear(struct rq *rq)
325 {
326 	if (hrtimer_active(&rq->hrtick_timer))
327 		hrtimer_cancel(&rq->hrtick_timer);
328 }
329 
330 /*
331  * High-resolution timer tick.
332  * Runs from hardirq context with interrupts disabled.
333  */
hrtick(struct hrtimer * timer)334 static enum hrtimer_restart hrtick(struct hrtimer *timer)
335 {
336 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
337 
338 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
339 
340 	raw_spin_lock(&rq->lock);
341 	update_rq_clock(rq);
342 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
343 	raw_spin_unlock(&rq->lock);
344 
345 	return HRTIMER_NORESTART;
346 }
347 
348 #ifdef CONFIG_SMP
349 
__hrtick_restart(struct rq * rq)350 static void __hrtick_restart(struct rq *rq)
351 {
352 	struct hrtimer *timer = &rq->hrtick_timer;
353 
354 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
355 }
356 
357 /*
358  * called from hardirq (IPI) context
359  */
__hrtick_start(void * arg)360 static void __hrtick_start(void *arg)
361 {
362 	struct rq *rq = arg;
363 
364 	raw_spin_lock(&rq->lock);
365 	__hrtick_restart(rq);
366 	rq->hrtick_csd_pending = 0;
367 	raw_spin_unlock(&rq->lock);
368 }
369 
370 /*
371  * Called to set the hrtick timer state.
372  *
373  * called with rq->lock held and irqs disabled
374  */
hrtick_start(struct rq * rq,u64 delay)375 void hrtick_start(struct rq *rq, u64 delay)
376 {
377 	struct hrtimer *timer = &rq->hrtick_timer;
378 	ktime_t time;
379 	s64 delta;
380 
381 	/*
382 	 * Don't schedule slices shorter than 10000ns, that just
383 	 * doesn't make sense and can cause timer DoS.
384 	 */
385 	delta = max_t(s64, delay, 10000LL);
386 	time = ktime_add_ns(timer->base->get_time(), delta);
387 
388 	hrtimer_set_expires(timer, time);
389 
390 	if (rq == this_rq()) {
391 		__hrtick_restart(rq);
392 	} else if (!rq->hrtick_csd_pending) {
393 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
394 		rq->hrtick_csd_pending = 1;
395 	}
396 }
397 
398 static int
hotplug_hrtick(struct notifier_block * nfb,unsigned long action,void * hcpu)399 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
400 {
401 	int cpu = (int)(long)hcpu;
402 
403 	switch (action) {
404 	case CPU_UP_CANCELED:
405 	case CPU_UP_CANCELED_FROZEN:
406 	case CPU_DOWN_PREPARE:
407 	case CPU_DOWN_PREPARE_FROZEN:
408 	case CPU_DEAD:
409 	case CPU_DEAD_FROZEN:
410 		hrtick_clear(cpu_rq(cpu));
411 		return NOTIFY_OK;
412 	}
413 
414 	return NOTIFY_DONE;
415 }
416 
init_hrtick(void)417 static __init void init_hrtick(void)
418 {
419 	hotcpu_notifier(hotplug_hrtick, 0);
420 }
421 #else
422 /*
423  * Called to set the hrtick timer state.
424  *
425  * called with rq->lock held and irqs disabled
426  */
hrtick_start(struct rq * rq,u64 delay)427 void hrtick_start(struct rq *rq, u64 delay)
428 {
429 	/*
430 	 * Don't schedule slices shorter than 10000ns, that just
431 	 * doesn't make sense. Rely on vruntime for fairness.
432 	 */
433 	delay = max_t(u64, delay, 10000LL);
434 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
435 		      HRTIMER_MODE_REL_PINNED);
436 }
437 
init_hrtick(void)438 static inline void init_hrtick(void)
439 {
440 }
441 #endif /* CONFIG_SMP */
442 
init_rq_hrtick(struct rq * rq)443 static void init_rq_hrtick(struct rq *rq)
444 {
445 #ifdef CONFIG_SMP
446 	rq->hrtick_csd_pending = 0;
447 
448 	rq->hrtick_csd.flags = 0;
449 	rq->hrtick_csd.func = __hrtick_start;
450 	rq->hrtick_csd.info = rq;
451 #endif
452 
453 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
454 	rq->hrtick_timer.function = hrtick;
455 }
456 #else	/* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)457 static inline void hrtick_clear(struct rq *rq)
458 {
459 }
460 
init_rq_hrtick(struct rq * rq)461 static inline void init_rq_hrtick(struct rq *rq)
462 {
463 }
464 
init_hrtick(void)465 static inline void init_hrtick(void)
466 {
467 }
468 #endif	/* CONFIG_SCHED_HRTICK */
469 
470 /*
471  * cmpxchg based fetch_or, macro so it works for different integer types
472  */
473 #define fetch_or(ptr, val)						\
474 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
475  	for (;;) {							\
476  		__old = cmpxchg((ptr), __val, __val | (val));		\
477  		if (__old == __val)					\
478  			break;						\
479  		__val = __old;						\
480  	}								\
481  	__old;								\
482 })
483 
484 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
485 /*
486  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
487  * this avoids any races wrt polling state changes and thereby avoids
488  * spurious IPIs.
489  */
set_nr_and_not_polling(struct task_struct * p)490 static bool set_nr_and_not_polling(struct task_struct *p)
491 {
492 	struct thread_info *ti = task_thread_info(p);
493 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
494 }
495 
496 /*
497  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
498  *
499  * If this returns true, then the idle task promises to call
500  * sched_ttwu_pending() and reschedule soon.
501  */
set_nr_if_polling(struct task_struct * p)502 static bool set_nr_if_polling(struct task_struct *p)
503 {
504 	struct thread_info *ti = task_thread_info(p);
505 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
506 
507 	for (;;) {
508 		if (!(val & _TIF_POLLING_NRFLAG))
509 			return false;
510 		if (val & _TIF_NEED_RESCHED)
511 			return true;
512 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
513 		if (old == val)
514 			break;
515 		val = old;
516 	}
517 	return true;
518 }
519 
520 #else
set_nr_and_not_polling(struct task_struct * p)521 static bool set_nr_and_not_polling(struct task_struct *p)
522 {
523 	set_tsk_need_resched(p);
524 	return true;
525 }
526 
527 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)528 static bool set_nr_if_polling(struct task_struct *p)
529 {
530 	return false;
531 }
532 #endif
533 #endif
534 
wake_q_add(struct wake_q_head * head,struct task_struct * task)535 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
536 {
537 	struct wake_q_node *node = &task->wake_q;
538 
539 	/*
540 	 * Atomically grab the task, if ->wake_q is !nil already it means
541 	 * its already queued (either by us or someone else) and will get the
542 	 * wakeup due to that.
543 	 *
544 	 * This cmpxchg() implies a full barrier, which pairs with the write
545 	 * barrier implied by the wakeup in wake_up_list().
546 	 */
547 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
548 		return;
549 
550 	head->count++;
551 
552 	get_task_struct(task);
553 
554 	/*
555 	 * The head is context local, there can be no concurrency.
556 	 */
557 	*head->lastp = node;
558 	head->lastp = &node->next;
559 }
560 
561 static int
562 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags,
563 	       int sibling_count_hint);
564 
wake_up_q(struct wake_q_head * head)565 void wake_up_q(struct wake_q_head *head)
566 {
567 	struct wake_q_node *node = head->first;
568 
569 	while (node != WAKE_Q_TAIL) {
570 		struct task_struct *task;
571 
572 		task = container_of(node, struct task_struct, wake_q);
573 		BUG_ON(!task);
574 		/* task can safely be re-inserted now */
575 		node = node->next;
576 		task->wake_q.next = NULL;
577 
578 		/*
579 		 * try_to_wake_up() implies a wmb() to pair with the queueing
580 		 * in wake_q_add() so as not to miss wakeups.
581 		 */
582 		try_to_wake_up(task, TASK_NORMAL, 0, head->count);
583 		put_task_struct(task);
584 	}
585 }
586 
587 /*
588  * resched_curr - mark rq's current task 'to be rescheduled now'.
589  *
590  * On UP this means the setting of the need_resched flag, on SMP it
591  * might also involve a cross-CPU call to trigger the scheduler on
592  * the target CPU.
593  */
resched_curr(struct rq * rq)594 void resched_curr(struct rq *rq)
595 {
596 	struct task_struct *curr = rq->curr;
597 	int cpu;
598 
599 	lockdep_assert_held(&rq->lock);
600 
601 	if (test_tsk_need_resched(curr))
602 		return;
603 
604 	cpu = cpu_of(rq);
605 
606 	if (cpu == smp_processor_id()) {
607 		set_tsk_need_resched(curr);
608 		set_preempt_need_resched();
609 		return;
610 	}
611 
612 	if (set_nr_and_not_polling(curr))
613 		smp_send_reschedule(cpu);
614 	else
615 		trace_sched_wake_idle_without_ipi(cpu);
616 }
617 
resched_cpu(int cpu)618 void resched_cpu(int cpu)
619 {
620 	struct rq *rq = cpu_rq(cpu);
621 	unsigned long flags;
622 
623 	raw_spin_lock_irqsave(&rq->lock, flags);
624 	if (cpu_online(cpu) || cpu == smp_processor_id())
625 		resched_curr(rq);
626 	raw_spin_unlock_irqrestore(&rq->lock, flags);
627 }
628 
629 #ifdef CONFIG_SMP
630 #ifdef CONFIG_NO_HZ_COMMON
631 /*
632  * In the semi idle case, use the nearest busy cpu for migrating timers
633  * from an idle cpu.  This is good for power-savings.
634  *
635  * We don't do similar optimization for completely idle system, as
636  * selecting an idle cpu will add more delays to the timers than intended
637  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
638  */
get_nohz_timer_target(void)639 int get_nohz_timer_target(void)
640 {
641 	int i, cpu = smp_processor_id();
642 	struct sched_domain *sd;
643 
644 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
645 		return cpu;
646 
647 	rcu_read_lock();
648 	for_each_domain(cpu, sd) {
649 		for_each_cpu(i, sched_domain_span(sd)) {
650 			if (cpu == i)
651 				continue;
652 
653 			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
654 				cpu = i;
655 				goto unlock;
656 			}
657 		}
658 	}
659 
660 	if (!is_housekeeping_cpu(cpu))
661 		cpu = housekeeping_any_cpu();
662 unlock:
663 	rcu_read_unlock();
664 	return cpu;
665 }
666 /*
667  * When add_timer_on() enqueues a timer into the timer wheel of an
668  * idle CPU then this timer might expire before the next timer event
669  * which is scheduled to wake up that CPU. In case of a completely
670  * idle system the next event might even be infinite time into the
671  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
672  * leaves the inner idle loop so the newly added timer is taken into
673  * account when the CPU goes back to idle and evaluates the timer
674  * wheel for the next timer event.
675  */
wake_up_idle_cpu(int cpu)676 static void wake_up_idle_cpu(int cpu)
677 {
678 	struct rq *rq = cpu_rq(cpu);
679 
680 	if (cpu == smp_processor_id())
681 		return;
682 
683 	if (set_nr_and_not_polling(rq->idle))
684 		smp_send_reschedule(cpu);
685 	else
686 		trace_sched_wake_idle_without_ipi(cpu);
687 }
688 
wake_up_full_nohz_cpu(int cpu)689 static bool wake_up_full_nohz_cpu(int cpu)
690 {
691 	/*
692 	 * We just need the target to call irq_exit() and re-evaluate
693 	 * the next tick. The nohz full kick at least implies that.
694 	 * If needed we can still optimize that later with an
695 	 * empty IRQ.
696 	 */
697 	if (tick_nohz_full_cpu(cpu)) {
698 		if (cpu != smp_processor_id() ||
699 		    tick_nohz_tick_stopped())
700 			tick_nohz_full_kick_cpu(cpu);
701 		return true;
702 	}
703 
704 	return false;
705 }
706 
wake_up_nohz_cpu(int cpu)707 void wake_up_nohz_cpu(int cpu)
708 {
709 	if (!wake_up_full_nohz_cpu(cpu))
710 		wake_up_idle_cpu(cpu);
711 }
712 
got_nohz_idle_kick(void)713 static inline bool got_nohz_idle_kick(void)
714 {
715 	int cpu = smp_processor_id();
716 
717 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
718 		return false;
719 
720 	if (idle_cpu(cpu) && !need_resched())
721 		return true;
722 
723 	/*
724 	 * We can't run Idle Load Balance on this CPU for this time so we
725 	 * cancel it and clear NOHZ_BALANCE_KICK
726 	 */
727 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
728 	return false;
729 }
730 
731 #else /* CONFIG_NO_HZ_COMMON */
732 
got_nohz_idle_kick(void)733 static inline bool got_nohz_idle_kick(void)
734 {
735 	return false;
736 }
737 
738 #endif /* CONFIG_NO_HZ_COMMON */
739 
740 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(void)741 bool sched_can_stop_tick(void)
742 {
743 	/*
744 	 * FIFO realtime policy runs the highest priority task. Other runnable
745 	 * tasks are of a lower priority. The scheduler tick does nothing.
746 	 */
747 	if (current->policy == SCHED_FIFO)
748 		return true;
749 
750 	/*
751 	 * Round-robin realtime tasks time slice with other tasks at the same
752 	 * realtime priority. Is this task the only one at this priority?
753 	 */
754 	if (current->policy == SCHED_RR) {
755 		struct sched_rt_entity *rt_se = &current->rt;
756 
757 		return rt_se->run_list.prev == rt_se->run_list.next;
758 	}
759 
760 	/*
761 	 * More than one running task need preemption.
762 	 * nr_running update is assumed to be visible
763 	 * after IPI is sent from wakers.
764 	 */
765 	if (this_rq()->nr_running > 1)
766 		return false;
767 
768 	return true;
769 }
770 #endif /* CONFIG_NO_HZ_FULL */
771 
sched_avg_update(struct rq * rq)772 void sched_avg_update(struct rq *rq)
773 {
774 	s64 period = sched_avg_period();
775 
776 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
777 		/*
778 		 * Inline assembly required to prevent the compiler
779 		 * optimising this loop into a divmod call.
780 		 * See __iter_div_u64_rem() for another example of this.
781 		 */
782 		asm("" : "+rm" (rq->age_stamp));
783 		rq->age_stamp += period;
784 		rq->rt_avg /= 2;
785 	}
786 }
787 
788 #endif /* CONFIG_SMP */
789 
790 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
791 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
792 /*
793  * Iterate task_group tree rooted at *from, calling @down when first entering a
794  * node and @up when leaving it for the final time.
795  *
796  * Caller must hold rcu_lock or sufficient equivalent.
797  */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)798 int walk_tg_tree_from(struct task_group *from,
799 			     tg_visitor down, tg_visitor up, void *data)
800 {
801 	struct task_group *parent, *child;
802 	int ret;
803 
804 	parent = from;
805 
806 down:
807 	ret = (*down)(parent, data);
808 	if (ret)
809 		goto out;
810 	list_for_each_entry_rcu(child, &parent->children, siblings) {
811 		parent = child;
812 		goto down;
813 
814 up:
815 		continue;
816 	}
817 	ret = (*up)(parent, data);
818 	if (ret || parent == from)
819 		goto out;
820 
821 	child = parent;
822 	parent = parent->parent;
823 	if (parent)
824 		goto up;
825 out:
826 	return ret;
827 }
828 
tg_nop(struct task_group * tg,void * data)829 int tg_nop(struct task_group *tg, void *data)
830 {
831 	return 0;
832 }
833 #endif
834 
set_load_weight(struct task_struct * p)835 static void set_load_weight(struct task_struct *p)
836 {
837 	int prio = p->static_prio - MAX_RT_PRIO;
838 	struct load_weight *load = &p->se.load;
839 
840 	/*
841 	 * SCHED_IDLE tasks get minimal weight:
842 	 */
843 	if (idle_policy(p->policy)) {
844 		load->weight = scale_load(WEIGHT_IDLEPRIO);
845 		load->inv_weight = WMULT_IDLEPRIO;
846 		return;
847 	}
848 
849 	load->weight = scale_load(prio_to_weight[prio]);
850 	load->inv_weight = prio_to_wmult[prio];
851 }
852 
enqueue_task(struct rq * rq,struct task_struct * p,int flags)853 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
854 {
855 	update_rq_clock(rq);
856 	if (!(flags & ENQUEUE_RESTORE))
857 		sched_info_queued(rq, p);
858 	p->sched_class->enqueue_task(rq, p, flags);
859 }
860 
dequeue_task(struct rq * rq,struct task_struct * p,int flags)861 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
862 {
863 	update_rq_clock(rq);
864 	if (!(flags & DEQUEUE_SAVE))
865 		sched_info_dequeued(rq, p);
866 	p->sched_class->dequeue_task(rq, p, flags);
867 }
868 
activate_task(struct rq * rq,struct task_struct * p,int flags)869 void activate_task(struct rq *rq, struct task_struct *p, int flags)
870 {
871 	if (task_contributes_to_load(p))
872 		rq->nr_uninterruptible--;
873 
874 	enqueue_task(rq, p, flags);
875 }
876 
deactivate_task(struct rq * rq,struct task_struct * p,int flags)877 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
878 {
879 	if (task_contributes_to_load(p))
880 		rq->nr_uninterruptible++;
881 
882 	dequeue_task(rq, p, flags);
883 }
884 
update_rq_clock_task(struct rq * rq,s64 delta)885 static void update_rq_clock_task(struct rq *rq, s64 delta)
886 {
887 /*
888  * In theory, the compile should just see 0 here, and optimize out the call
889  * to sched_rt_avg_update. But I don't trust it...
890  */
891 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
892 	s64 steal = 0, irq_delta = 0;
893 #endif
894 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
895 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
896 
897 	/*
898 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
899 	 * this case when a previous update_rq_clock() happened inside a
900 	 * {soft,}irq region.
901 	 *
902 	 * When this happens, we stop ->clock_task and only update the
903 	 * prev_irq_time stamp to account for the part that fit, so that a next
904 	 * update will consume the rest. This ensures ->clock_task is
905 	 * monotonic.
906 	 *
907 	 * It does however cause some slight miss-attribution of {soft,}irq
908 	 * time, a more accurate solution would be to update the irq_time using
909 	 * the current rq->clock timestamp, except that would require using
910 	 * atomic ops.
911 	 */
912 	if (irq_delta > delta)
913 		irq_delta = delta;
914 
915 	rq->prev_irq_time += irq_delta;
916 	delta -= irq_delta;
917 #endif
918 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
919 	if (static_key_false((&paravirt_steal_rq_enabled))) {
920 		steal = paravirt_steal_clock(cpu_of(rq));
921 		steal -= rq->prev_steal_time_rq;
922 
923 		if (unlikely(steal > delta))
924 			steal = delta;
925 
926 		rq->prev_steal_time_rq += steal;
927 		delta -= steal;
928 	}
929 #endif
930 
931 	rq->clock_task += delta;
932 
933 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
934 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
935 		sched_rt_avg_update(rq, irq_delta + steal);
936 #endif
937 }
938 
sched_set_stop_task(int cpu,struct task_struct * stop)939 void sched_set_stop_task(int cpu, struct task_struct *stop)
940 {
941 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
942 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
943 
944 	if (stop) {
945 		/*
946 		 * Make it appear like a SCHED_FIFO task, its something
947 		 * userspace knows about and won't get confused about.
948 		 *
949 		 * Also, it will make PI more or less work without too
950 		 * much confusion -- but then, stop work should not
951 		 * rely on PI working anyway.
952 		 */
953 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
954 
955 		stop->sched_class = &stop_sched_class;
956 	}
957 
958 	cpu_rq(cpu)->stop = stop;
959 
960 	if (old_stop) {
961 		/*
962 		 * Reset it back to a normal scheduling class so that
963 		 * it can die in pieces.
964 		 */
965 		old_stop->sched_class = &rt_sched_class;
966 	}
967 }
968 
969 /*
970  * __normal_prio - return the priority that is based on the static prio
971  */
__normal_prio(struct task_struct * p)972 static inline int __normal_prio(struct task_struct *p)
973 {
974 	return p->static_prio;
975 }
976 
977 /*
978  * Calculate the expected normal priority: i.e. priority
979  * without taking RT-inheritance into account. Might be
980  * boosted by interactivity modifiers. Changes upon fork,
981  * setprio syscalls, and whenever the interactivity
982  * estimator recalculates.
983  */
normal_prio(struct task_struct * p)984 static inline int normal_prio(struct task_struct *p)
985 {
986 	int prio;
987 
988 	if (task_has_dl_policy(p))
989 		prio = MAX_DL_PRIO-1;
990 	else if (task_has_rt_policy(p))
991 		prio = MAX_RT_PRIO-1 - p->rt_priority;
992 	else
993 		prio = __normal_prio(p);
994 	return prio;
995 }
996 
997 /*
998  * Calculate the current priority, i.e. the priority
999  * taken into account by the scheduler. This value might
1000  * be boosted by RT tasks, or might be boosted by
1001  * interactivity modifiers. Will be RT if the task got
1002  * RT-boosted. If not then it returns p->normal_prio.
1003  */
effective_prio(struct task_struct * p)1004 static int effective_prio(struct task_struct *p)
1005 {
1006 	p->normal_prio = normal_prio(p);
1007 	/*
1008 	 * If we are RT tasks or we were boosted to RT priority,
1009 	 * keep the priority unchanged. Otherwise, update priority
1010 	 * to the normal priority:
1011 	 */
1012 	if (!rt_prio(p->prio))
1013 		return p->normal_prio;
1014 	return p->prio;
1015 }
1016 
1017 /**
1018  * task_curr - is this task currently executing on a CPU?
1019  * @p: the task in question.
1020  *
1021  * Return: 1 if the task is currently executing. 0 otherwise.
1022  */
task_curr(const struct task_struct * p)1023 inline int task_curr(const struct task_struct *p)
1024 {
1025 	return cpu_curr(task_cpu(p)) == p;
1026 }
1027 
1028 /*
1029  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1030  * use the balance_callback list if you want balancing.
1031  *
1032  * this means any call to check_class_changed() must be followed by a call to
1033  * balance_callback().
1034  */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)1035 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1036 				       const struct sched_class *prev_class,
1037 				       int oldprio)
1038 {
1039 	if (prev_class != p->sched_class) {
1040 		if (prev_class->switched_from)
1041 			prev_class->switched_from(rq, p);
1042 
1043 		p->sched_class->switched_to(rq, p);
1044 	} else if (oldprio != p->prio || dl_task(p))
1045 		p->sched_class->prio_changed(rq, p, oldprio);
1046 }
1047 
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)1048 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1049 {
1050 	const struct sched_class *class;
1051 
1052 	if (p->sched_class == rq->curr->sched_class) {
1053 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1054 	} else {
1055 		for_each_class(class) {
1056 			if (class == rq->curr->sched_class)
1057 				break;
1058 			if (class == p->sched_class) {
1059 				resched_curr(rq);
1060 				break;
1061 			}
1062 		}
1063 	}
1064 
1065 	/*
1066 	 * A queue event has occurred, and we're going to schedule.  In
1067 	 * this case, we can save a useless back to back clock update.
1068 	 */
1069 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1070 		rq_clock_skip_update(rq, true);
1071 }
1072 
1073 #ifdef CONFIG_SMP
1074 /*
1075  * This is how migration works:
1076  *
1077  * 1) we invoke migration_cpu_stop() on the target CPU using
1078  *    stop_one_cpu().
1079  * 2) stopper starts to run (implicitly forcing the migrated thread
1080  *    off the CPU)
1081  * 3) it checks whether the migrated task is still in the wrong runqueue.
1082  * 4) if it's in the wrong runqueue then the migration thread removes
1083  *    it and puts it into the right queue.
1084  * 5) stopper completes and stop_one_cpu() returns and the migration
1085  *    is done.
1086  */
1087 
1088 /*
1089  * move_queued_task - move a queued task to new rq.
1090  *
1091  * Returns (locked) new rq. Old rq's lock is released.
1092  */
move_queued_task(struct rq * rq,struct task_struct * p,int new_cpu)1093 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1094 {
1095 	lockdep_assert_held(&rq->lock);
1096 
1097 	dequeue_task(rq, p, 0);
1098 	p->on_rq = TASK_ON_RQ_MIGRATING;
1099 	double_lock_balance(rq, cpu_rq(new_cpu));
1100 	set_task_cpu(p, new_cpu);
1101 	double_unlock_balance(rq, cpu_rq(new_cpu));
1102 	raw_spin_unlock(&rq->lock);
1103 
1104 	rq = cpu_rq(new_cpu);
1105 
1106 	raw_spin_lock(&rq->lock);
1107 	BUG_ON(task_cpu(p) != new_cpu);
1108 	p->on_rq = TASK_ON_RQ_QUEUED;
1109 	enqueue_task(rq, p, 0);
1110 	check_preempt_curr(rq, p, 0);
1111 
1112 	return rq;
1113 }
1114 
1115 struct migration_arg {
1116 	struct task_struct *task;
1117 	int dest_cpu;
1118 };
1119 
1120 /*
1121  * Move (not current) task off this cpu, onto dest cpu. We're doing
1122  * this because either it can't run here any more (set_cpus_allowed()
1123  * away from this CPU, or CPU going down), or because we're
1124  * attempting to rebalance this task on exec (sched_exec).
1125  *
1126  * So we race with normal scheduler movements, but that's OK, as long
1127  * as the task is no longer on this CPU.
1128  */
__migrate_task(struct rq * rq,struct task_struct * p,int dest_cpu)1129 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1130 {
1131 	if (unlikely(!cpu_active(dest_cpu)))
1132 		return rq;
1133 
1134 	/* Affinity changed (again). */
1135 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1136 		return rq;
1137 
1138 	rq = move_queued_task(rq, p, dest_cpu);
1139 
1140 	return rq;
1141 }
1142 
1143 /*
1144  * migration_cpu_stop - this will be executed by a highprio stopper thread
1145  * and performs thread migration by bumping thread off CPU then
1146  * 'pushing' onto another runqueue.
1147  */
migration_cpu_stop(void * data)1148 static int migration_cpu_stop(void *data)
1149 {
1150 	struct migration_arg *arg = data;
1151 	struct task_struct *p = arg->task;
1152 	struct rq *rq = this_rq();
1153 
1154 	/*
1155 	 * The original target cpu might have gone down and we might
1156 	 * be on another cpu but it doesn't matter.
1157 	 */
1158 	local_irq_disable();
1159 	/*
1160 	 * We need to explicitly wake pending tasks before running
1161 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1162 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1163 	 */
1164 	sched_ttwu_pending();
1165 
1166 	raw_spin_lock(&p->pi_lock);
1167 	raw_spin_lock(&rq->lock);
1168 	/*
1169 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1170 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1171 	 * we're holding p->pi_lock.
1172 	 */
1173 	if (task_rq(p) == rq && task_on_rq_queued(p))
1174 		rq = __migrate_task(rq, p, arg->dest_cpu);
1175 	raw_spin_unlock(&rq->lock);
1176 	raw_spin_unlock(&p->pi_lock);
1177 
1178 	local_irq_enable();
1179 	return 0;
1180 }
1181 
1182 /*
1183  * sched_class::set_cpus_allowed must do the below, but is not required to
1184  * actually call this function.
1185  */
set_cpus_allowed_common(struct task_struct * p,const struct cpumask * new_mask)1186 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1187 {
1188 	cpumask_copy(&p->cpus_allowed, new_mask);
1189 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1190 }
1191 
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1192 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1193 {
1194 	struct rq *rq = task_rq(p);
1195 	bool queued, running;
1196 
1197 	lockdep_assert_held(&p->pi_lock);
1198 
1199 	queued = task_on_rq_queued(p);
1200 	running = task_current(rq, p);
1201 
1202 	if (queued) {
1203 		/*
1204 		 * Because __kthread_bind() calls this on blocked tasks without
1205 		 * holding rq->lock.
1206 		 */
1207 		lockdep_assert_held(&rq->lock);
1208 		dequeue_task(rq, p, DEQUEUE_SAVE);
1209 	}
1210 	if (running)
1211 		put_prev_task(rq, p);
1212 
1213 	p->sched_class->set_cpus_allowed(p, new_mask);
1214 
1215 	if (running)
1216 		p->sched_class->set_curr_task(rq);
1217 	if (queued)
1218 		enqueue_task(rq, p, ENQUEUE_RESTORE);
1219 }
1220 
1221 /*
1222  * Change a given task's CPU affinity. Migrate the thread to a
1223  * proper CPU and schedule it away if the CPU it's executing on
1224  * is removed from the allowed bitmask.
1225  *
1226  * NOTE: the caller must have a valid reference to the task, the
1227  * task must not exit() & deallocate itself prematurely. The
1228  * call is not atomic; no spinlocks may be held.
1229  */
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)1230 static int __set_cpus_allowed_ptr(struct task_struct *p,
1231 				  const struct cpumask *new_mask, bool check)
1232 {
1233 	unsigned long flags;
1234 	struct rq *rq;
1235 	unsigned int dest_cpu;
1236 	int ret = 0;
1237 
1238 	rq = task_rq_lock(p, &flags);
1239 
1240 	/*
1241 	 * Must re-check here, to close a race against __kthread_bind(),
1242 	 * sched_setaffinity() is not guaranteed to observe the flag.
1243 	 */
1244 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1245 		ret = -EINVAL;
1246 		goto out;
1247 	}
1248 
1249 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1250 		goto out;
1251 
1252 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1253 		ret = -EINVAL;
1254 		goto out;
1255 	}
1256 
1257 	do_set_cpus_allowed(p, new_mask);
1258 
1259 	/* Can the task run on the task's current CPU? If so, we're done */
1260 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1261 		goto out;
1262 
1263 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1264 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1265 		struct migration_arg arg = { p, dest_cpu };
1266 		/* Need help from migration thread: drop lock and wait. */
1267 		task_rq_unlock(rq, p, &flags);
1268 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1269 		tlb_migrate_finish(p->mm);
1270 		return 0;
1271 	} else if (task_on_rq_queued(p)) {
1272 		/*
1273 		 * OK, since we're going to drop the lock immediately
1274 		 * afterwards anyway.
1275 		 */
1276 		lockdep_unpin_lock(&rq->lock);
1277 		rq = move_queued_task(rq, p, dest_cpu);
1278 		lockdep_pin_lock(&rq->lock);
1279 	}
1280 out:
1281 	task_rq_unlock(rq, p, &flags);
1282 
1283 	return ret;
1284 }
1285 
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1286 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1287 {
1288 	return __set_cpus_allowed_ptr(p, new_mask, false);
1289 }
1290 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1291 
set_task_cpu(struct task_struct * p,unsigned int new_cpu)1292 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1293 {
1294 #ifdef CONFIG_SCHED_DEBUG
1295 	/*
1296 	 * We should never call set_task_cpu() on a blocked task,
1297 	 * ttwu() will sort out the placement.
1298 	 */
1299 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1300 			!p->on_rq);
1301 
1302 #ifdef CONFIG_LOCKDEP
1303 	/*
1304 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1305 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1306 	 *
1307 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1308 	 * see task_group().
1309 	 *
1310 	 * Furthermore, all task_rq users should acquire both locks, see
1311 	 * task_rq_lock().
1312 	 */
1313 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1314 				      lockdep_is_held(&task_rq(p)->lock)));
1315 #endif
1316 #endif
1317 
1318 	trace_sched_migrate_task(p, new_cpu);
1319 
1320 	if (task_cpu(p) != new_cpu) {
1321 		if (p->sched_class->migrate_task_rq)
1322 			p->sched_class->migrate_task_rq(p);
1323 		p->se.nr_migrations++;
1324 		perf_event_task_migrate(p);
1325 
1326 		walt_fixup_busy_time(p, new_cpu);
1327 	}
1328 
1329 	__set_task_cpu(p, new_cpu);
1330 }
1331 
__migrate_swap_task(struct task_struct * p,int cpu)1332 static void __migrate_swap_task(struct task_struct *p, int cpu)
1333 {
1334 	if (task_on_rq_queued(p)) {
1335 		struct rq *src_rq, *dst_rq;
1336 
1337 		src_rq = task_rq(p);
1338 		dst_rq = cpu_rq(cpu);
1339 
1340 		deactivate_task(src_rq, p, 0);
1341 		p->on_rq = TASK_ON_RQ_MIGRATING;
1342 		set_task_cpu(p, cpu);
1343 		p->on_rq = TASK_ON_RQ_QUEUED;
1344 		activate_task(dst_rq, p, 0);
1345 		check_preempt_curr(dst_rq, p, 0);
1346 	} else {
1347 		/*
1348 		 * Task isn't running anymore; make it appear like we migrated
1349 		 * it before it went to sleep. This means on wakeup we make the
1350 		 * previous cpu our targer instead of where it really is.
1351 		 */
1352 		p->wake_cpu = cpu;
1353 	}
1354 }
1355 
1356 struct migration_swap_arg {
1357 	struct task_struct *src_task, *dst_task;
1358 	int src_cpu, dst_cpu;
1359 };
1360 
migrate_swap_stop(void * data)1361 static int migrate_swap_stop(void *data)
1362 {
1363 	struct migration_swap_arg *arg = data;
1364 	struct rq *src_rq, *dst_rq;
1365 	int ret = -EAGAIN;
1366 
1367 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1368 		return -EAGAIN;
1369 
1370 	src_rq = cpu_rq(arg->src_cpu);
1371 	dst_rq = cpu_rq(arg->dst_cpu);
1372 
1373 	double_raw_lock(&arg->src_task->pi_lock,
1374 			&arg->dst_task->pi_lock);
1375 	double_rq_lock(src_rq, dst_rq);
1376 
1377 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1378 		goto unlock;
1379 
1380 	if (task_cpu(arg->src_task) != arg->src_cpu)
1381 		goto unlock;
1382 
1383 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1384 		goto unlock;
1385 
1386 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1387 		goto unlock;
1388 
1389 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1390 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1391 
1392 	ret = 0;
1393 
1394 unlock:
1395 	double_rq_unlock(src_rq, dst_rq);
1396 	raw_spin_unlock(&arg->dst_task->pi_lock);
1397 	raw_spin_unlock(&arg->src_task->pi_lock);
1398 
1399 	return ret;
1400 }
1401 
1402 /*
1403  * Cross migrate two tasks
1404  */
migrate_swap(struct task_struct * cur,struct task_struct * p)1405 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1406 {
1407 	struct migration_swap_arg arg;
1408 	int ret = -EINVAL;
1409 
1410 	arg = (struct migration_swap_arg){
1411 		.src_task = cur,
1412 		.src_cpu = task_cpu(cur),
1413 		.dst_task = p,
1414 		.dst_cpu = task_cpu(p),
1415 	};
1416 
1417 	if (arg.src_cpu == arg.dst_cpu)
1418 		goto out;
1419 
1420 	/*
1421 	 * These three tests are all lockless; this is OK since all of them
1422 	 * will be re-checked with proper locks held further down the line.
1423 	 */
1424 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1425 		goto out;
1426 
1427 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1428 		goto out;
1429 
1430 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1431 		goto out;
1432 
1433 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1434 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1435 
1436 out:
1437 	return ret;
1438 }
1439 
1440 /*
1441  * wait_task_inactive - wait for a thread to unschedule.
1442  *
1443  * If @match_state is nonzero, it's the @p->state value just checked and
1444  * not expected to change.  If it changes, i.e. @p might have woken up,
1445  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1446  * we return a positive number (its total switch count).  If a second call
1447  * a short while later returns the same number, the caller can be sure that
1448  * @p has remained unscheduled the whole time.
1449  *
1450  * The caller must ensure that the task *will* unschedule sometime soon,
1451  * else this function might spin for a *long* time. This function can't
1452  * be called with interrupts off, or it may introduce deadlock with
1453  * smp_call_function() if an IPI is sent by the same process we are
1454  * waiting to become inactive.
1455  */
wait_task_inactive(struct task_struct * p,long match_state)1456 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1457 {
1458 	unsigned long flags;
1459 	int running, queued;
1460 	unsigned long ncsw;
1461 	struct rq *rq;
1462 
1463 	for (;;) {
1464 		/*
1465 		 * We do the initial early heuristics without holding
1466 		 * any task-queue locks at all. We'll only try to get
1467 		 * the runqueue lock when things look like they will
1468 		 * work out!
1469 		 */
1470 		rq = task_rq(p);
1471 
1472 		/*
1473 		 * If the task is actively running on another CPU
1474 		 * still, just relax and busy-wait without holding
1475 		 * any locks.
1476 		 *
1477 		 * NOTE! Since we don't hold any locks, it's not
1478 		 * even sure that "rq" stays as the right runqueue!
1479 		 * But we don't care, since "task_running()" will
1480 		 * return false if the runqueue has changed and p
1481 		 * is actually now running somewhere else!
1482 		 */
1483 		while (task_running(rq, p)) {
1484 			if (match_state && unlikely(p->state != match_state))
1485 				return 0;
1486 			cpu_relax();
1487 		}
1488 
1489 		/*
1490 		 * Ok, time to look more closely! We need the rq
1491 		 * lock now, to be *sure*. If we're wrong, we'll
1492 		 * just go back and repeat.
1493 		 */
1494 		rq = task_rq_lock(p, &flags);
1495 		trace_sched_wait_task(p);
1496 		running = task_running(rq, p);
1497 		queued = task_on_rq_queued(p);
1498 		ncsw = 0;
1499 		if (!match_state || p->state == match_state)
1500 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1501 		task_rq_unlock(rq, p, &flags);
1502 
1503 		/*
1504 		 * If it changed from the expected state, bail out now.
1505 		 */
1506 		if (unlikely(!ncsw))
1507 			break;
1508 
1509 		/*
1510 		 * Was it really running after all now that we
1511 		 * checked with the proper locks actually held?
1512 		 *
1513 		 * Oops. Go back and try again..
1514 		 */
1515 		if (unlikely(running)) {
1516 			cpu_relax();
1517 			continue;
1518 		}
1519 
1520 		/*
1521 		 * It's not enough that it's not actively running,
1522 		 * it must be off the runqueue _entirely_, and not
1523 		 * preempted!
1524 		 *
1525 		 * So if it was still runnable (but just not actively
1526 		 * running right now), it's preempted, and we should
1527 		 * yield - it could be a while.
1528 		 */
1529 		if (unlikely(queued)) {
1530 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1531 
1532 			set_current_state(TASK_UNINTERRUPTIBLE);
1533 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1534 			continue;
1535 		}
1536 
1537 		/*
1538 		 * Ahh, all good. It wasn't running, and it wasn't
1539 		 * runnable, which means that it will never become
1540 		 * running in the future either. We're all done!
1541 		 */
1542 		break;
1543 	}
1544 
1545 	return ncsw;
1546 }
1547 
1548 /***
1549  * kick_process - kick a running thread to enter/exit the kernel
1550  * @p: the to-be-kicked thread
1551  *
1552  * Cause a process which is running on another CPU to enter
1553  * kernel-mode, without any delay. (to get signals handled.)
1554  *
1555  * NOTE: this function doesn't have to take the runqueue lock,
1556  * because all it wants to ensure is that the remote task enters
1557  * the kernel. If the IPI races and the task has been migrated
1558  * to another CPU then no harm is done and the purpose has been
1559  * achieved as well.
1560  */
kick_process(struct task_struct * p)1561 void kick_process(struct task_struct *p)
1562 {
1563 	int cpu;
1564 
1565 	preempt_disable();
1566 	cpu = task_cpu(p);
1567 	if ((cpu != smp_processor_id()) && task_curr(p))
1568 		smp_send_reschedule(cpu);
1569 	preempt_enable();
1570 }
1571 EXPORT_SYMBOL_GPL(kick_process);
1572 
1573 /*
1574  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1575  */
select_fallback_rq(int cpu,struct task_struct * p)1576 static int select_fallback_rq(int cpu, struct task_struct *p)
1577 {
1578 	int nid = cpu_to_node(cpu);
1579 	const struct cpumask *nodemask = NULL;
1580 	enum { cpuset, possible, fail } state = cpuset;
1581 	int dest_cpu;
1582 
1583 	/*
1584 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1585 	 * will return -1. There is no cpu on the node, and we should
1586 	 * select the cpu on the other node.
1587 	 */
1588 	if (nid != -1) {
1589 		nodemask = cpumask_of_node(nid);
1590 
1591 		/* Look for allowed, online CPU in same node. */
1592 		for_each_cpu(dest_cpu, nodemask) {
1593 			if (!cpu_online(dest_cpu))
1594 				continue;
1595 			if (!cpu_active(dest_cpu))
1596 				continue;
1597 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1598 				return dest_cpu;
1599 		}
1600 	}
1601 
1602 	for (;;) {
1603 		/* Any allowed, online CPU? */
1604 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1605 			if (!cpu_online(dest_cpu))
1606 				continue;
1607 			if (!cpu_active(dest_cpu))
1608 				continue;
1609 			goto out;
1610 		}
1611 
1612 		/* No more Mr. Nice Guy. */
1613 		switch (state) {
1614 		case cpuset:
1615 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1616 				cpuset_cpus_allowed_fallback(p);
1617 				state = possible;
1618 				break;
1619 			}
1620 			/* fall-through */
1621 		case possible:
1622 			do_set_cpus_allowed(p, cpu_possible_mask);
1623 			state = fail;
1624 			break;
1625 
1626 		case fail:
1627 			BUG();
1628 			break;
1629 		}
1630 	}
1631 
1632 out:
1633 	if (state != cpuset) {
1634 		/*
1635 		 * Don't tell them about moving exiting tasks or
1636 		 * kernel threads (both mm NULL), since they never
1637 		 * leave kernel.
1638 		 */
1639 		if (p->mm && printk_ratelimit()) {
1640 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1641 					task_pid_nr(p), p->comm, cpu);
1642 		}
1643 	}
1644 
1645 	return dest_cpu;
1646 }
1647 
1648 /*
1649  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1650  */
1651 static inline
select_task_rq(struct task_struct * p,int cpu,int sd_flags,int wake_flags,int sibling_count_hint)1652 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags,
1653 		   int sibling_count_hint)
1654 {
1655 	lockdep_assert_held(&p->pi_lock);
1656 
1657 	if (p->nr_cpus_allowed > 1)
1658 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags,
1659 						     sibling_count_hint);
1660 
1661 	/*
1662 	 * In order not to call set_task_cpu() on a blocking task we need
1663 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1664 	 * cpu.
1665 	 *
1666 	 * Since this is common to all placement strategies, this lives here.
1667 	 *
1668 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1669 	 *   not worry about this generic constraint ]
1670 	 */
1671 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1672 		     !cpu_online(cpu)))
1673 		cpu = select_fallback_rq(task_cpu(p), p);
1674 
1675 	return cpu;
1676 }
1677 
update_avg(u64 * avg,u64 sample)1678 static void update_avg(u64 *avg, u64 sample)
1679 {
1680 	s64 diff = sample - *avg;
1681 	*avg += diff >> 3;
1682 }
1683 
1684 #else
1685 
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)1686 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1687 					 const struct cpumask *new_mask, bool check)
1688 {
1689 	return set_cpus_allowed_ptr(p, new_mask);
1690 }
1691 
1692 #endif /* CONFIG_SMP */
1693 
1694 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)1695 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1696 {
1697 #ifdef CONFIG_SCHEDSTATS
1698 	struct rq *rq = this_rq();
1699 
1700 #ifdef CONFIG_SMP
1701 	int this_cpu = smp_processor_id();
1702 
1703 	if (cpu == this_cpu) {
1704 		schedstat_inc(rq, ttwu_local);
1705 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1706 	} else {
1707 		struct sched_domain *sd;
1708 
1709 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1710 		rcu_read_lock();
1711 		for_each_domain(this_cpu, sd) {
1712 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1713 				schedstat_inc(sd, ttwu_wake_remote);
1714 				break;
1715 			}
1716 		}
1717 		rcu_read_unlock();
1718 	}
1719 
1720 	if (wake_flags & WF_MIGRATED)
1721 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1722 
1723 #endif /* CONFIG_SMP */
1724 
1725 	schedstat_inc(rq, ttwu_count);
1726 	schedstat_inc(p, se.statistics.nr_wakeups);
1727 
1728 	if (wake_flags & WF_SYNC)
1729 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1730 
1731 #endif /* CONFIG_SCHEDSTATS */
1732 }
1733 
ttwu_activate(struct rq * rq,struct task_struct * p,int en_flags)1734 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1735 {
1736 	activate_task(rq, p, en_flags);
1737 	p->on_rq = TASK_ON_RQ_QUEUED;
1738 
1739 	/* if a worker is waking up, notify workqueue */
1740 	if (p->flags & PF_WQ_WORKER)
1741 		wq_worker_waking_up(p, cpu_of(rq));
1742 }
1743 
1744 /*
1745  * Mark the task runnable and perform wakeup-preemption.
1746  */
1747 static void
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)1748 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1749 {
1750 	check_preempt_curr(rq, p, wake_flags);
1751 	p->state = TASK_RUNNING;
1752 	trace_sched_wakeup(p);
1753 
1754 #ifdef CONFIG_SMP
1755 	if (p->sched_class->task_woken) {
1756 		/*
1757 		 * Our task @p is fully woken up and running; so its safe to
1758 		 * drop the rq->lock, hereafter rq is only used for statistics.
1759 		 */
1760 		lockdep_unpin_lock(&rq->lock);
1761 		p->sched_class->task_woken(rq, p);
1762 		lockdep_pin_lock(&rq->lock);
1763 	}
1764 
1765 	if (rq->idle_stamp) {
1766 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1767 		u64 max = 2*rq->max_idle_balance_cost;
1768 
1769 		update_avg(&rq->avg_idle, delta);
1770 
1771 		if (rq->avg_idle > max)
1772 			rq->avg_idle = max;
1773 
1774 		rq->idle_stamp = 0;
1775 	}
1776 #endif
1777 }
1778 
1779 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags)1780 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1781 {
1782 	lockdep_assert_held(&rq->lock);
1783 
1784 #ifdef CONFIG_SMP
1785 	if (p->sched_contributes_to_load)
1786 		rq->nr_uninterruptible--;
1787 #endif
1788 
1789 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1790 	ttwu_do_wakeup(rq, p, wake_flags);
1791 }
1792 
1793 /*
1794  * Called in case the task @p isn't fully descheduled from its runqueue,
1795  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1796  * since all we need to do is flip p->state to TASK_RUNNING, since
1797  * the task is still ->on_rq.
1798  */
ttwu_remote(struct task_struct * p,int wake_flags)1799 static int ttwu_remote(struct task_struct *p, int wake_flags)
1800 {
1801 	struct rq *rq;
1802 	int ret = 0;
1803 
1804 	rq = __task_rq_lock(p);
1805 	if (task_on_rq_queued(p)) {
1806 		/* check_preempt_curr() may use rq clock */
1807 		update_rq_clock(rq);
1808 		ttwu_do_wakeup(rq, p, wake_flags);
1809 		ret = 1;
1810 	}
1811 	__task_rq_unlock(rq);
1812 
1813 	return ret;
1814 }
1815 
1816 #ifdef CONFIG_SMP
sched_ttwu_pending(void)1817 void sched_ttwu_pending(void)
1818 {
1819 	struct rq *rq = this_rq();
1820 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1821 	struct task_struct *p;
1822 	unsigned long flags;
1823 
1824 	if (!llist)
1825 		return;
1826 
1827 	raw_spin_lock_irqsave(&rq->lock, flags);
1828 	lockdep_pin_lock(&rq->lock);
1829 
1830 	while (llist) {
1831 		p = llist_entry(llist, struct task_struct, wake_entry);
1832 		llist = llist_next(llist);
1833 		ttwu_do_activate(rq, p, 0);
1834 	}
1835 
1836 	lockdep_unpin_lock(&rq->lock);
1837 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1838 }
1839 
scheduler_ipi(void)1840 void scheduler_ipi(void)
1841 {
1842 	/*
1843 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1844 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1845 	 * this IPI.
1846 	 */
1847 	preempt_fold_need_resched();
1848 
1849 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1850 		return;
1851 
1852 	/*
1853 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1854 	 * traditionally all their work was done from the interrupt return
1855 	 * path. Now that we actually do some work, we need to make sure
1856 	 * we do call them.
1857 	 *
1858 	 * Some archs already do call them, luckily irq_enter/exit nest
1859 	 * properly.
1860 	 *
1861 	 * Arguably we should visit all archs and update all handlers,
1862 	 * however a fair share of IPIs are still resched only so this would
1863 	 * somewhat pessimize the simple resched case.
1864 	 */
1865 	irq_enter();
1866 	sched_ttwu_pending();
1867 
1868 	/*
1869 	 * Check if someone kicked us for doing the nohz idle load balance.
1870 	 */
1871 	if (unlikely(got_nohz_idle_kick())) {
1872 		this_rq()->idle_balance = 1;
1873 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1874 	}
1875 	irq_exit();
1876 }
1877 
ttwu_queue_remote(struct task_struct * p,int cpu)1878 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1879 {
1880 	struct rq *rq = cpu_rq(cpu);
1881 
1882 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1883 		if (!set_nr_if_polling(rq->idle))
1884 			smp_send_reschedule(cpu);
1885 		else
1886 			trace_sched_wake_idle_without_ipi(cpu);
1887 	}
1888 }
1889 
wake_up_if_idle(int cpu)1890 void wake_up_if_idle(int cpu)
1891 {
1892 	struct rq *rq = cpu_rq(cpu);
1893 	unsigned long flags;
1894 
1895 	rcu_read_lock();
1896 
1897 	if (!is_idle_task(rcu_dereference(rq->curr)))
1898 		goto out;
1899 
1900 	if (set_nr_if_polling(rq->idle)) {
1901 		trace_sched_wake_idle_without_ipi(cpu);
1902 	} else {
1903 		raw_spin_lock_irqsave(&rq->lock, flags);
1904 		if (is_idle_task(rq->curr))
1905 			smp_send_reschedule(cpu);
1906 		/* Else cpu is not in idle, do nothing here */
1907 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1908 	}
1909 
1910 out:
1911 	rcu_read_unlock();
1912 }
1913 
cpus_share_cache(int this_cpu,int that_cpu)1914 bool cpus_share_cache(int this_cpu, int that_cpu)
1915 {
1916 	if (this_cpu == that_cpu)
1917 		return true;
1918 
1919 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1920 }
1921 #endif /* CONFIG_SMP */
1922 
ttwu_queue(struct task_struct * p,int cpu)1923 static void ttwu_queue(struct task_struct *p, int cpu)
1924 {
1925 	struct rq *rq = cpu_rq(cpu);
1926 
1927 #if defined(CONFIG_SMP)
1928 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1929 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1930 		ttwu_queue_remote(p, cpu);
1931 		return;
1932 	}
1933 #endif
1934 
1935 	raw_spin_lock(&rq->lock);
1936 	lockdep_pin_lock(&rq->lock);
1937 	ttwu_do_activate(rq, p, 0);
1938 	lockdep_unpin_lock(&rq->lock);
1939 	raw_spin_unlock(&rq->lock);
1940 }
1941 
1942 /**
1943  * try_to_wake_up - wake up a thread
1944  * @p: the thread to be awakened
1945  * @state: the mask of task states that can be woken
1946  * @wake_flags: wake modifier flags (WF_*)
1947  * @sibling_count_hint: A hint at the number of threads that are being woken up
1948  *                      in this event.
1949  *
1950  * Put it on the run-queue if it's not already there. The "current"
1951  * thread is always on the run-queue (except when the actual
1952  * re-schedule is in progress), and as such you're allowed to do
1953  * the simpler "current->state = TASK_RUNNING" to mark yourself
1954  * runnable without the overhead of this.
1955  *
1956  * Return: %true if @p was woken up, %false if it was already running.
1957  * or @state didn't match @p's state.
1958  */
1959 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags,int sibling_count_hint)1960 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags,
1961 	       int sibling_count_hint)
1962 {
1963 	unsigned long flags;
1964 	int cpu, success = 0;
1965 #ifdef CONFIG_SMP
1966 	struct rq *rq;
1967 	u64 wallclock;
1968 #endif
1969 
1970 	/*
1971 	 * If we are going to wake up a thread waiting for CONDITION we
1972 	 * need to ensure that CONDITION=1 done by the caller can not be
1973 	 * reordered with p->state check below. This pairs with mb() in
1974 	 * set_current_state() the waiting thread does.
1975 	 */
1976 	smp_mb__before_spinlock();
1977 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1978 	if (!(p->state & state))
1979 		goto out;
1980 
1981 	trace_sched_waking(p);
1982 
1983 	success = 1; /* we're going to change ->state */
1984 	cpu = task_cpu(p);
1985 
1986 	/*
1987 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1988 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1989 	 * in smp_cond_load_acquire() below.
1990 	 *
1991 	 * sched_ttwu_pending()                 try_to_wake_up()
1992 	 *   [S] p->on_rq = 1;                  [L] P->state
1993 	 *       UNLOCK rq->lock  -----.
1994 	 *                              \
1995 	 *				 +---   RMB
1996 	 * schedule()                   /
1997 	 *       LOCK rq->lock    -----'
1998 	 *       UNLOCK rq->lock
1999 	 *
2000 	 * [task p]
2001 	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
2002 	 *
2003 	 * Pairs with the UNLOCK+LOCK on rq->lock from the
2004 	 * last wakeup of our task and the schedule that got our task
2005 	 * current.
2006 	 */
2007 	smp_rmb();
2008 	if (p->on_rq && ttwu_remote(p, wake_flags))
2009 		goto stat;
2010 
2011 #ifdef CONFIG_SMP
2012 	/*
2013 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2014 	 * possible to, falsely, observe p->on_cpu == 0.
2015 	 *
2016 	 * One must be running (->on_cpu == 1) in order to remove oneself
2017 	 * from the runqueue.
2018 	 *
2019 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2020 	 *      UNLOCK rq->lock
2021 	 *			RMB
2022 	 *      LOCK   rq->lock
2023 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2024 	 *
2025 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2026 	 * from the consecutive calls to schedule(); the first switching to our
2027 	 * task, the second putting it to sleep.
2028 	 */
2029 	smp_rmb();
2030 
2031 	/*
2032 	 * If the owning (remote) cpu is still in the middle of schedule() with
2033 	 * this task as prev, wait until its done referencing the task.
2034 	 */
2035 	while (p->on_cpu)
2036 		cpu_relax();
2037 	/*
2038 	 * Combined with the control dependency above, we have an effective
2039 	 * smp_load_acquire() without the need for full barriers.
2040 	 *
2041 	 * Pairs with the smp_store_release() in finish_lock_switch().
2042 	 *
2043 	 * This ensures that tasks getting woken will be fully ordered against
2044 	 * their previous state and preserve Program Order.
2045 	 */
2046 	smp_rmb();
2047 
2048 	rq = cpu_rq(task_cpu(p));
2049 
2050 	raw_spin_lock(&rq->lock);
2051 	wallclock = walt_ktime_clock();
2052 	walt_update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
2053 	walt_update_task_ravg(p, rq, TASK_WAKE, wallclock, 0);
2054 	raw_spin_unlock(&rq->lock);
2055 
2056 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2057 	p->state = TASK_WAKING;
2058 
2059 	if (p->sched_class->task_waking)
2060 		p->sched_class->task_waking(p);
2061 
2062 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags,
2063 			     sibling_count_hint);
2064 	if (task_cpu(p) != cpu) {
2065 		wake_flags |= WF_MIGRATED;
2066 		set_task_cpu(p, cpu);
2067 	}
2068 
2069 #endif /* CONFIG_SMP */
2070 
2071 	ttwu_queue(p, cpu);
2072 stat:
2073 	ttwu_stat(p, cpu, wake_flags);
2074 out:
2075 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2076 
2077 	return success;
2078 }
2079 
2080 /**
2081  * try_to_wake_up_local - try to wake up a local task with rq lock held
2082  * @p: the thread to be awakened
2083  *
2084  * Put @p on the run-queue if it's not already there. The caller must
2085  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2086  * the current task.
2087  */
try_to_wake_up_local(struct task_struct * p)2088 static void try_to_wake_up_local(struct task_struct *p)
2089 {
2090 	struct rq *rq = task_rq(p);
2091 
2092 	if (WARN_ON_ONCE(rq != this_rq()) ||
2093 	    WARN_ON_ONCE(p == current))
2094 		return;
2095 
2096 	lockdep_assert_held(&rq->lock);
2097 
2098 	if (!raw_spin_trylock(&p->pi_lock)) {
2099 		/*
2100 		 * This is OK, because current is on_cpu, which avoids it being
2101 		 * picked for load-balance and preemption/IRQs are still
2102 		 * disabled avoiding further scheduler activity on it and we've
2103 		 * not yet picked a replacement task.
2104 		 */
2105 		lockdep_unpin_lock(&rq->lock);
2106 		raw_spin_unlock(&rq->lock);
2107 		raw_spin_lock(&p->pi_lock);
2108 		raw_spin_lock(&rq->lock);
2109 		lockdep_pin_lock(&rq->lock);
2110 	}
2111 
2112 	if (!(p->state & TASK_NORMAL))
2113 		goto out;
2114 
2115 	trace_sched_waking(p);
2116 
2117 	if (!task_on_rq_queued(p)) {
2118 		u64 wallclock = walt_ktime_clock();
2119 
2120 		walt_update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
2121 		walt_update_task_ravg(p, rq, TASK_WAKE, wallclock, 0);
2122 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2123 	}
2124 
2125 	ttwu_do_wakeup(rq, p, 0);
2126 	ttwu_stat(p, smp_processor_id(), 0);
2127 out:
2128 	raw_spin_unlock(&p->pi_lock);
2129 }
2130 
2131 /**
2132  * wake_up_process - Wake up a specific process
2133  * @p: The process to be woken up.
2134  *
2135  * Attempt to wake up the nominated process and move it to the set of runnable
2136  * processes.
2137  *
2138  * Return: 1 if the process was woken up, 0 if it was already running.
2139  *
2140  * It may be assumed that this function implies a write memory barrier before
2141  * changing the task state if and only if any tasks are woken up.
2142  */
wake_up_process(struct task_struct * p)2143 int wake_up_process(struct task_struct *p)
2144 {
2145 	return try_to_wake_up(p, TASK_NORMAL, 0, 1);
2146 }
2147 EXPORT_SYMBOL(wake_up_process);
2148 
wake_up_state(struct task_struct * p,unsigned int state)2149 int wake_up_state(struct task_struct *p, unsigned int state)
2150 {
2151 	return try_to_wake_up(p, state, 0, 1);
2152 }
2153 
2154 /*
2155  * This function clears the sched_dl_entity static params.
2156  */
__dl_clear_params(struct task_struct * p)2157 void __dl_clear_params(struct task_struct *p)
2158 {
2159 	struct sched_dl_entity *dl_se = &p->dl;
2160 
2161 	dl_se->dl_runtime = 0;
2162 	dl_se->dl_deadline = 0;
2163 	dl_se->dl_period = 0;
2164 	dl_se->flags = 0;
2165 	dl_se->dl_bw = 0;
2166 	dl_se->dl_density = 0;
2167 
2168 	dl_se->dl_throttled = 0;
2169 	dl_se->dl_new = 1;
2170 	dl_se->dl_yielded = 0;
2171 }
2172 
2173 /*
2174  * Perform scheduler related setup for a newly forked process p.
2175  * p is forked by current.
2176  *
2177  * __sched_fork() is basic setup used by init_idle() too:
2178  */
__sched_fork(unsigned long clone_flags,struct task_struct * p)2179 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2180 {
2181 	p->on_rq			= 0;
2182 
2183 	p->se.on_rq			= 0;
2184 	p->se.exec_start		= 0;
2185 	p->se.sum_exec_runtime		= 0;
2186 	p->se.prev_sum_exec_runtime	= 0;
2187 	p->se.nr_migrations		= 0;
2188 	p->se.vruntime			= 0;
2189 #ifdef CONFIG_SCHED_WALT
2190 	p->last_sleep_ts		= 0;
2191 #endif
2192 
2193 	INIT_LIST_HEAD(&p->se.group_node);
2194 	walt_init_new_task_load(p);
2195 
2196 #ifdef CONFIG_FAIR_GROUP_SCHED
2197 	p->se.cfs_rq			= NULL;
2198 #endif
2199 
2200 #ifdef CONFIG_SCHEDSTATS
2201 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2202 #endif
2203 
2204 	RB_CLEAR_NODE(&p->dl.rb_node);
2205 	init_dl_task_timer(&p->dl);
2206 	__dl_clear_params(p);
2207 
2208 	init_rt_schedtune_timer(&p->rt);
2209 	INIT_LIST_HEAD(&p->rt.run_list);
2210 
2211 #ifdef CONFIG_PREEMPT_NOTIFIERS
2212 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2213 #endif
2214 
2215 #ifdef CONFIG_NUMA_BALANCING
2216 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2217 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2218 		p->mm->numa_scan_seq = 0;
2219 	}
2220 
2221 	if (clone_flags & CLONE_VM)
2222 		p->numa_preferred_nid = current->numa_preferred_nid;
2223 	else
2224 		p->numa_preferred_nid = -1;
2225 
2226 	p->node_stamp = 0ULL;
2227 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2228 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2229 	p->numa_work.next = &p->numa_work;
2230 	p->numa_faults = NULL;
2231 	p->last_task_numa_placement = 0;
2232 	p->last_sum_exec_runtime = 0;
2233 
2234 	p->numa_group = NULL;
2235 #endif /* CONFIG_NUMA_BALANCING */
2236 }
2237 
2238 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2239 
2240 #ifdef CONFIG_NUMA_BALANCING
2241 
set_numabalancing_state(bool enabled)2242 void set_numabalancing_state(bool enabled)
2243 {
2244 	if (enabled)
2245 		static_branch_enable(&sched_numa_balancing);
2246 	else
2247 		static_branch_disable(&sched_numa_balancing);
2248 }
2249 
2250 #ifdef CONFIG_PROC_SYSCTL
sysctl_numa_balancing(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2251 int sysctl_numa_balancing(struct ctl_table *table, int write,
2252 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2253 {
2254 	struct ctl_table t;
2255 	int err;
2256 	int state = static_branch_likely(&sched_numa_balancing);
2257 
2258 	if (write && !capable(CAP_SYS_ADMIN))
2259 		return -EPERM;
2260 
2261 	t = *table;
2262 	t.data = &state;
2263 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2264 	if (err < 0)
2265 		return err;
2266 	if (write)
2267 		set_numabalancing_state(state);
2268 	return err;
2269 }
2270 #endif
2271 #endif
2272 
2273 /*
2274  * fork()/clone()-time setup:
2275  */
sched_fork(unsigned long clone_flags,struct task_struct * p)2276 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2277 {
2278 	unsigned long flags;
2279 	int cpu = get_cpu();
2280 
2281 	__sched_fork(clone_flags, p);
2282 	/*
2283 	 * We mark the process as NEW here. This guarantees that
2284 	 * nobody will actually run it, and a signal or other external
2285 	 * event cannot wake it up and insert it on the runqueue either.
2286 	 */
2287 	p->state = TASK_NEW;
2288 
2289 	/*
2290 	 * Make sure we do not leak PI boosting priority to the child.
2291 	 */
2292 	p->prio = current->normal_prio;
2293 
2294 	/*
2295 	 * Revert to default priority/policy on fork if requested.
2296 	 */
2297 	if (unlikely(p->sched_reset_on_fork)) {
2298 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2299 			p->policy = SCHED_NORMAL;
2300 			p->static_prio = NICE_TO_PRIO(0);
2301 			p->rt_priority = 0;
2302 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2303 			p->static_prio = NICE_TO_PRIO(0);
2304 
2305 		p->prio = p->normal_prio = __normal_prio(p);
2306 		set_load_weight(p);
2307 
2308 		/*
2309 		 * We don't need the reset flag anymore after the fork. It has
2310 		 * fulfilled its duty:
2311 		 */
2312 		p->sched_reset_on_fork = 0;
2313 	}
2314 
2315 	if (dl_prio(p->prio)) {
2316 		put_cpu();
2317 		return -EAGAIN;
2318 	} else if (rt_prio(p->prio)) {
2319 		p->sched_class = &rt_sched_class;
2320 	} else {
2321 		p->sched_class = &fair_sched_class;
2322 	}
2323 
2324 	init_entity_runnable_average(&p->se);
2325 
2326 	/*
2327 	 * The child is not yet in the pid-hash so no cgroup attach races,
2328 	 * and the cgroup is pinned to this child due to cgroup_fork()
2329 	 * is ran before sched_fork().
2330 	 *
2331 	 * Silence PROVE_RCU.
2332 	 */
2333 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2334 	/*
2335 	 * We're setting the cpu for the first time, we don't migrate,
2336 	 * so use __set_task_cpu().
2337 	 */
2338 	__set_task_cpu(p, cpu);
2339 	if (p->sched_class->task_fork)
2340 		p->sched_class->task_fork(p);
2341 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2342 
2343 #ifdef CONFIG_SCHED_INFO
2344 	if (likely(sched_info_on()))
2345 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2346 #endif
2347 #if defined(CONFIG_SMP)
2348 	p->on_cpu = 0;
2349 #endif
2350 	init_task_preempt_count(p);
2351 #ifdef CONFIG_SMP
2352 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2353 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2354 #endif
2355 
2356 	put_cpu();
2357 	return 0;
2358 }
2359 
to_ratio(u64 period,u64 runtime)2360 unsigned long to_ratio(u64 period, u64 runtime)
2361 {
2362 	if (runtime == RUNTIME_INF)
2363 		return 1ULL << 20;
2364 
2365 	/*
2366 	 * Doing this here saves a lot of checks in all
2367 	 * the calling paths, and returning zero seems
2368 	 * safe for them anyway.
2369 	 */
2370 	if (period == 0)
2371 		return 0;
2372 
2373 	return div64_u64(runtime << 20, period);
2374 }
2375 
2376 #ifdef CONFIG_SMP
dl_bw_of(int i)2377 inline struct dl_bw *dl_bw_of(int i)
2378 {
2379 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2380 			 "sched RCU must be held");
2381 	return &cpu_rq(i)->rd->dl_bw;
2382 }
2383 
dl_bw_cpus(int i)2384 static inline int dl_bw_cpus(int i)
2385 {
2386 	struct root_domain *rd = cpu_rq(i)->rd;
2387 	int cpus = 0;
2388 
2389 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2390 			 "sched RCU must be held");
2391 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2392 		cpus++;
2393 
2394 	return cpus;
2395 }
2396 #else
dl_bw_of(int i)2397 inline struct dl_bw *dl_bw_of(int i)
2398 {
2399 	return &cpu_rq(i)->dl.dl_bw;
2400 }
2401 
dl_bw_cpus(int i)2402 static inline int dl_bw_cpus(int i)
2403 {
2404 	return 1;
2405 }
2406 #endif
2407 
2408 /*
2409  * We must be sure that accepting a new task (or allowing changing the
2410  * parameters of an existing one) is consistent with the bandwidth
2411  * constraints. If yes, this function also accordingly updates the currently
2412  * allocated bandwidth to reflect the new situation.
2413  *
2414  * This function is called while holding p's rq->lock.
2415  *
2416  * XXX we should delay bw change until the task's 0-lag point, see
2417  * __setparam_dl().
2418  */
dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)2419 static int dl_overflow(struct task_struct *p, int policy,
2420 		       const struct sched_attr *attr)
2421 {
2422 
2423 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2424 	u64 period = attr->sched_period ?: attr->sched_deadline;
2425 	u64 runtime = attr->sched_runtime;
2426 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2427 	int cpus, err = -1;
2428 
2429 	if (new_bw == p->dl.dl_bw)
2430 		return 0;
2431 
2432 	/*
2433 	 * Either if a task, enters, leave, or stays -deadline but changes
2434 	 * its parameters, we may need to update accordingly the total
2435 	 * allocated bandwidth of the container.
2436 	 */
2437 	raw_spin_lock(&dl_b->lock);
2438 	cpus = dl_bw_cpus(task_cpu(p));
2439 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2440 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2441 		__dl_add(dl_b, new_bw);
2442 		err = 0;
2443 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2444 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2445 		__dl_clear(dl_b, p->dl.dl_bw);
2446 		__dl_add(dl_b, new_bw);
2447 		err = 0;
2448 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2449 		__dl_clear(dl_b, p->dl.dl_bw);
2450 		err = 0;
2451 	}
2452 	raw_spin_unlock(&dl_b->lock);
2453 
2454 	return err;
2455 }
2456 
2457 extern void init_dl_bw(struct dl_bw *dl_b);
2458 
2459 /*
2460  * wake_up_new_task - wake up a newly created task for the first time.
2461  *
2462  * This function will do some initial scheduler statistics housekeeping
2463  * that must be done for every newly created context, then puts the task
2464  * on the runqueue and wakes it.
2465  */
wake_up_new_task(struct task_struct * p)2466 void wake_up_new_task(struct task_struct *p)
2467 {
2468 	unsigned long flags;
2469 	struct rq *rq;
2470 
2471 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2472 	p->state = TASK_RUNNING;
2473 
2474 	walt_init_new_task_load(p);
2475 
2476 	/* Initialize new task's runnable average */
2477 	init_entity_runnable_average(&p->se);
2478 #ifdef CONFIG_SMP
2479 	/*
2480 	 * Fork balancing, do it here and not earlier because:
2481 	 *  - cpus_allowed can change in the fork path
2482 	 *  - any previously selected cpu might disappear through hotplug
2483 	 *
2484 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2485 	 * as we're not fully set-up yet.
2486 	 */
2487 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0, 1));
2488 #endif
2489 	rq = __task_rq_lock(p);
2490 	update_rq_clock(rq);
2491 	post_init_entity_util_avg(&p->se);
2492 
2493 	walt_mark_task_starting(p);
2494 	activate_task(rq, p, ENQUEUE_WAKEUP_NEW);
2495 	p->on_rq = TASK_ON_RQ_QUEUED;
2496 	trace_sched_wakeup_new(p);
2497 	check_preempt_curr(rq, p, WF_FORK);
2498 #ifdef CONFIG_SMP
2499 	if (p->sched_class->task_woken) {
2500 		/*
2501 		 * Nothing relies on rq->lock after this, so its fine to
2502 		 * drop it.
2503 		 */
2504 		lockdep_unpin_lock(&rq->lock);
2505 		p->sched_class->task_woken(rq, p);
2506 		lockdep_pin_lock(&rq->lock);
2507 	}
2508 #endif
2509 	task_rq_unlock(rq, p, &flags);
2510 }
2511 
2512 #ifdef CONFIG_PREEMPT_NOTIFIERS
2513 
2514 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2515 
preempt_notifier_inc(void)2516 void preempt_notifier_inc(void)
2517 {
2518 	static_key_slow_inc(&preempt_notifier_key);
2519 }
2520 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2521 
preempt_notifier_dec(void)2522 void preempt_notifier_dec(void)
2523 {
2524 	static_key_slow_dec(&preempt_notifier_key);
2525 }
2526 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2527 
2528 /**
2529  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2530  * @notifier: notifier struct to register
2531  */
preempt_notifier_register(struct preempt_notifier * notifier)2532 void preempt_notifier_register(struct preempt_notifier *notifier)
2533 {
2534 	if (!static_key_false(&preempt_notifier_key))
2535 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2536 
2537 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2538 }
2539 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2540 
2541 /**
2542  * preempt_notifier_unregister - no longer interested in preemption notifications
2543  * @notifier: notifier struct to unregister
2544  *
2545  * This is *not* safe to call from within a preemption notifier.
2546  */
preempt_notifier_unregister(struct preempt_notifier * notifier)2547 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2548 {
2549 	hlist_del(&notifier->link);
2550 }
2551 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2552 
__fire_sched_in_preempt_notifiers(struct task_struct * curr)2553 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2554 {
2555 	struct preempt_notifier *notifier;
2556 
2557 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2558 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2559 }
2560 
fire_sched_in_preempt_notifiers(struct task_struct * curr)2561 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2562 {
2563 	if (static_key_false(&preempt_notifier_key))
2564 		__fire_sched_in_preempt_notifiers(curr);
2565 }
2566 
2567 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2568 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2569 				   struct task_struct *next)
2570 {
2571 	struct preempt_notifier *notifier;
2572 
2573 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2574 		notifier->ops->sched_out(notifier, next);
2575 }
2576 
2577 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2578 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2579 				 struct task_struct *next)
2580 {
2581 	if (static_key_false(&preempt_notifier_key))
2582 		__fire_sched_out_preempt_notifiers(curr, next);
2583 }
2584 
2585 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2586 
fire_sched_in_preempt_notifiers(struct task_struct * curr)2587 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2588 {
2589 }
2590 
2591 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2592 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2593 				 struct task_struct *next)
2594 {
2595 }
2596 
2597 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2598 
2599 /**
2600  * prepare_task_switch - prepare to switch tasks
2601  * @rq: the runqueue preparing to switch
2602  * @prev: the current task that is being switched out
2603  * @next: the task we are going to switch to.
2604  *
2605  * This is called with the rq lock held and interrupts off. It must
2606  * be paired with a subsequent finish_task_switch after the context
2607  * switch.
2608  *
2609  * prepare_task_switch sets up locking and calls architecture specific
2610  * hooks.
2611  */
2612 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)2613 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2614 		    struct task_struct *next)
2615 {
2616 	sched_info_switch(rq, prev, next);
2617 	perf_event_task_sched_out(prev, next);
2618 	fire_sched_out_preempt_notifiers(prev, next);
2619 	prepare_lock_switch(rq, next);
2620 	prepare_arch_switch(next);
2621 }
2622 
2623 /**
2624  * finish_task_switch - clean up after a task-switch
2625  * @prev: the thread we just switched away from.
2626  *
2627  * finish_task_switch must be called after the context switch, paired
2628  * with a prepare_task_switch call before the context switch.
2629  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2630  * and do any other architecture-specific cleanup actions.
2631  *
2632  * Note that we may have delayed dropping an mm in context_switch(). If
2633  * so, we finish that here outside of the runqueue lock. (Doing it
2634  * with the lock held can cause deadlocks; see schedule() for
2635  * details.)
2636  *
2637  * The context switch have flipped the stack from under us and restored the
2638  * local variables which were saved when this task called schedule() in the
2639  * past. prev == current is still correct but we need to recalculate this_rq
2640  * because prev may have moved to another CPU.
2641  */
finish_task_switch(struct task_struct * prev)2642 static struct rq *finish_task_switch(struct task_struct *prev)
2643 	__releases(rq->lock)
2644 {
2645 	struct rq *rq = this_rq();
2646 	struct mm_struct *mm = rq->prev_mm;
2647 	long prev_state;
2648 
2649 	/*
2650 	 * The previous task will have left us with a preempt_count of 2
2651 	 * because it left us after:
2652 	 *
2653 	 *	schedule()
2654 	 *	  preempt_disable();			// 1
2655 	 *	  __schedule()
2656 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2657 	 *
2658 	 * Also, see FORK_PREEMPT_COUNT.
2659 	 */
2660 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2661 		      "corrupted preempt_count: %s/%d/0x%x\n",
2662 		      current->comm, current->pid, preempt_count()))
2663 		preempt_count_set(FORK_PREEMPT_COUNT);
2664 
2665 	rq->prev_mm = NULL;
2666 
2667 	/*
2668 	 * A task struct has one reference for the use as "current".
2669 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2670 	 * schedule one last time. The schedule call will never return, and
2671 	 * the scheduled task must drop that reference.
2672 	 *
2673 	 * We must observe prev->state before clearing prev->on_cpu (in
2674 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2675 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2676 	 * transition, resulting in a double drop.
2677 	 */
2678 	prev_state = prev->state;
2679 	vtime_task_switch(prev);
2680 	perf_event_task_sched_in(prev, current);
2681 	finish_lock_switch(rq, prev);
2682 	finish_arch_post_lock_switch();
2683 
2684 	fire_sched_in_preempt_notifiers(current);
2685 	if (mm)
2686 		mmdrop(mm);
2687 	if (unlikely(prev_state == TASK_DEAD)) {
2688 		if (prev->sched_class->task_dead)
2689 			prev->sched_class->task_dead(prev);
2690 
2691 		/*
2692 		 * Remove function-return probe instances associated with this
2693 		 * task and put them back on the free list.
2694 		 */
2695 		kprobe_flush_task(prev);
2696 		put_task_struct(prev);
2697 	}
2698 
2699 	tick_nohz_task_switch();
2700 	return rq;
2701 }
2702 
2703 #ifdef CONFIG_SMP
2704 
2705 /* rq->lock is NOT held, but preemption is disabled */
__balance_callback(struct rq * rq)2706 static void __balance_callback(struct rq *rq)
2707 {
2708 	struct callback_head *head, *next;
2709 	void (*func)(struct rq *rq);
2710 	unsigned long flags;
2711 
2712 	raw_spin_lock_irqsave(&rq->lock, flags);
2713 	head = rq->balance_callback;
2714 	rq->balance_callback = NULL;
2715 	while (head) {
2716 		func = (void (*)(struct rq *))head->func;
2717 		next = head->next;
2718 		head->next = NULL;
2719 		head = next;
2720 
2721 		func(rq);
2722 	}
2723 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2724 }
2725 
balance_callback(struct rq * rq)2726 static inline void balance_callback(struct rq *rq)
2727 {
2728 	if (unlikely(rq->balance_callback))
2729 		__balance_callback(rq);
2730 }
2731 
2732 #else
2733 
balance_callback(struct rq * rq)2734 static inline void balance_callback(struct rq *rq)
2735 {
2736 }
2737 
2738 #endif
2739 
2740 /**
2741  * schedule_tail - first thing a freshly forked thread must call.
2742  * @prev: the thread we just switched away from.
2743  */
schedule_tail(struct task_struct * prev)2744 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2745 	__releases(rq->lock)
2746 {
2747 	struct rq *rq;
2748 
2749 	/*
2750 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2751 	 * finish_task_switch() for details.
2752 	 *
2753 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2754 	 * and the preempt_enable() will end up enabling preemption (on
2755 	 * PREEMPT_COUNT kernels).
2756 	 */
2757 
2758 	rq = finish_task_switch(prev);
2759 	balance_callback(rq);
2760 	preempt_enable();
2761 
2762 	if (current->set_child_tid)
2763 		put_user(task_pid_vnr(current), current->set_child_tid);
2764 }
2765 
2766 /*
2767  * context_switch - switch to the new MM and the new thread's register state.
2768  */
2769 static inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)2770 context_switch(struct rq *rq, struct task_struct *prev,
2771 	       struct task_struct *next)
2772 {
2773 	struct mm_struct *mm, *oldmm;
2774 
2775 	prepare_task_switch(rq, prev, next);
2776 
2777 	mm = next->mm;
2778 	oldmm = prev->active_mm;
2779 	/*
2780 	 * For paravirt, this is coupled with an exit in switch_to to
2781 	 * combine the page table reload and the switch backend into
2782 	 * one hypercall.
2783 	 */
2784 	arch_start_context_switch(prev);
2785 
2786 	if (!mm) {
2787 		next->active_mm = oldmm;
2788 		atomic_inc(&oldmm->mm_count);
2789 		enter_lazy_tlb(oldmm, next);
2790 	} else
2791 		switch_mm_irqs_off(oldmm, mm, next);
2792 
2793 	if (!prev->mm) {
2794 		prev->active_mm = NULL;
2795 		rq->prev_mm = oldmm;
2796 	}
2797 	/*
2798 	 * Since the runqueue lock will be released by the next
2799 	 * task (which is an invalid locking op but in the case
2800 	 * of the scheduler it's an obvious special-case), so we
2801 	 * do an early lockdep release here:
2802 	 */
2803 	lockdep_unpin_lock(&rq->lock);
2804 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2805 
2806 	/* Here we just switch the register state and the stack. */
2807 	switch_to(prev, next, prev);
2808 	barrier();
2809 
2810 	return finish_task_switch(prev);
2811 }
2812 
2813 /*
2814  * nr_running and nr_context_switches:
2815  *
2816  * externally visible scheduler statistics: current number of runnable
2817  * threads, total number of context switches performed since bootup.
2818  */
nr_running(void)2819 unsigned long nr_running(void)
2820 {
2821 	unsigned long i, sum = 0;
2822 
2823 	for_each_online_cpu(i)
2824 		sum += cpu_rq(i)->nr_running;
2825 
2826 	return sum;
2827 }
2828 
2829 /*
2830  * Check if only the current task is running on the cpu.
2831  *
2832  * Caution: this function does not check that the caller has disabled
2833  * preemption, thus the result might have a time-of-check-to-time-of-use
2834  * race.  The caller is responsible to use it correctly, for example:
2835  *
2836  * - from a non-preemptable section (of course)
2837  *
2838  * - from a thread that is bound to a single CPU
2839  *
2840  * - in a loop with very short iterations (e.g. a polling loop)
2841  */
single_task_running(void)2842 bool single_task_running(void)
2843 {
2844 	return raw_rq()->nr_running == 1;
2845 }
2846 EXPORT_SYMBOL(single_task_running);
2847 
nr_context_switches(void)2848 unsigned long long nr_context_switches(void)
2849 {
2850 	int i;
2851 	unsigned long long sum = 0;
2852 
2853 	for_each_possible_cpu(i)
2854 		sum += cpu_rq(i)->nr_switches;
2855 
2856 	return sum;
2857 }
2858 
nr_iowait(void)2859 unsigned long nr_iowait(void)
2860 {
2861 	unsigned long i, sum = 0;
2862 
2863 	for_each_possible_cpu(i)
2864 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2865 
2866 	return sum;
2867 }
2868 
nr_iowait_cpu(int cpu)2869 unsigned long nr_iowait_cpu(int cpu)
2870 {
2871 	struct rq *this = cpu_rq(cpu);
2872 	return atomic_read(&this->nr_iowait);
2873 }
2874 
2875 #ifdef CONFIG_CPU_QUIET
nr_running_integral(unsigned int cpu)2876 u64 nr_running_integral(unsigned int cpu)
2877 {
2878 	unsigned int seqcnt;
2879 	u64 integral;
2880 	struct rq *q;
2881 
2882 	if (cpu >= nr_cpu_ids)
2883 		return 0;
2884 
2885 	q = cpu_rq(cpu);
2886 
2887 	/*
2888 	 * Update average to avoid reading stalled value if there were
2889 	 * no run-queue changes for a long time. On the other hand if
2890 	 * the changes are happening right now, just read current value
2891 	 * directly.
2892 	 */
2893 
2894 	seqcnt = read_seqcount_begin(&q->ave_seqcnt);
2895 	integral = do_nr_running_integral(q);
2896 	if (read_seqcount_retry(&q->ave_seqcnt, seqcnt)) {
2897 		read_seqcount_begin(&q->ave_seqcnt);
2898 		integral = q->nr_running_integral;
2899 	}
2900 
2901 	return integral;
2902 }
2903 #endif
2904 
get_iowait_load(unsigned long * nr_waiters,unsigned long * load)2905 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2906 {
2907 	struct rq *rq = this_rq();
2908 	*nr_waiters = atomic_read(&rq->nr_iowait);
2909 	*load = rq->load.weight;
2910 }
2911 
2912 #ifdef CONFIG_SMP
2913 
2914 /*
2915  * sched_exec - execve() is a valuable balancing opportunity, because at
2916  * this point the task has the smallest effective memory and cache footprint.
2917  */
sched_exec(void)2918 void sched_exec(void)
2919 {
2920 	struct task_struct *p = current;
2921 	unsigned long flags;
2922 	int dest_cpu;
2923 
2924 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2925 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0, 1);
2926 	if (dest_cpu == smp_processor_id())
2927 		goto unlock;
2928 
2929 	if (likely(cpu_active(dest_cpu))) {
2930 		struct migration_arg arg = { p, dest_cpu };
2931 
2932 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2933 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2934 		return;
2935 	}
2936 unlock:
2937 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2938 }
2939 
2940 #endif
2941 
2942 DEFINE_PER_CPU(struct kernel_stat, kstat);
2943 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2944 
2945 EXPORT_PER_CPU_SYMBOL(kstat);
2946 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2947 
2948 /*
2949  * Return accounted runtime for the task.
2950  * In case the task is currently running, return the runtime plus current's
2951  * pending runtime that have not been accounted yet.
2952  */
task_sched_runtime(struct task_struct * p)2953 unsigned long long task_sched_runtime(struct task_struct *p)
2954 {
2955 	unsigned long flags;
2956 	struct rq *rq;
2957 	u64 ns;
2958 
2959 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2960 	/*
2961 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2962 	 * So we have a optimization chance when the task's delta_exec is 0.
2963 	 * Reading ->on_cpu is racy, but this is ok.
2964 	 *
2965 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2966 	 * If we race with it entering cpu, unaccounted time is 0. This is
2967 	 * indistinguishable from the read occurring a few cycles earlier.
2968 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2969 	 * been accounted, so we're correct here as well.
2970 	 */
2971 	if (!p->on_cpu || !task_on_rq_queued(p))
2972 		return p->se.sum_exec_runtime;
2973 #endif
2974 
2975 	rq = task_rq_lock(p, &flags);
2976 	/*
2977 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2978 	 * project cycles that may never be accounted to this
2979 	 * thread, breaking clock_gettime().
2980 	 */
2981 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2982 		update_rq_clock(rq);
2983 		p->sched_class->update_curr(rq);
2984 	}
2985 	ns = p->se.sum_exec_runtime;
2986 	task_rq_unlock(rq, p, &flags);
2987 
2988 	return ns;
2989 }
2990 
2991 /*
2992  * This function gets called by the timer code, with HZ frequency.
2993  * We call it with interrupts disabled.
2994  */
scheduler_tick(void)2995 void scheduler_tick(void)
2996 {
2997 	int cpu = smp_processor_id();
2998 	struct rq *rq = cpu_rq(cpu);
2999 	struct task_struct *curr = rq->curr;
3000 
3001 	sched_clock_tick();
3002 
3003 	raw_spin_lock(&rq->lock);
3004 	walt_set_window_start(rq);
3005 	walt_update_task_ravg(rq->curr, rq, TASK_UPDATE,
3006 			walt_ktime_clock(), 0);
3007 	update_rq_clock(rq);
3008 	curr->sched_class->task_tick(rq, curr, 0);
3009 	update_cpu_load_active(rq);
3010 	calc_global_load_tick(rq);
3011 	raw_spin_unlock(&rq->lock);
3012 
3013 	perf_event_task_tick();
3014 
3015 #ifdef CONFIG_SMP
3016 	rq->idle_balance = idle_cpu(cpu);
3017 	trigger_load_balance(rq);
3018 #endif
3019 	rq_last_tick_reset(rq);
3020 
3021 	if (curr->sched_class == &fair_sched_class)
3022 		check_for_migration(rq, curr);
3023 }
3024 
3025 #ifdef CONFIG_NO_HZ_FULL
3026 /**
3027  * scheduler_tick_max_deferment
3028  *
3029  * Keep at least one tick per second when a single
3030  * active task is running because the scheduler doesn't
3031  * yet completely support full dynticks environment.
3032  *
3033  * This makes sure that uptime, CFS vruntime, load
3034  * balancing, etc... continue to move forward, even
3035  * with a very low granularity.
3036  *
3037  * Return: Maximum deferment in nanoseconds.
3038  */
scheduler_tick_max_deferment(void)3039 u64 scheduler_tick_max_deferment(void)
3040 {
3041 	struct rq *rq = this_rq();
3042 	unsigned long next, now = READ_ONCE(jiffies);
3043 
3044 	next = rq->last_sched_tick + HZ;
3045 
3046 	if (time_before_eq(next, now))
3047 		return 0;
3048 
3049 	return jiffies_to_nsecs(next - now);
3050 }
3051 #endif
3052 
get_parent_ip(unsigned long addr)3053 notrace unsigned long get_parent_ip(unsigned long addr)
3054 {
3055 	if (in_lock_functions(addr)) {
3056 		addr = CALLER_ADDR2;
3057 		if (in_lock_functions(addr))
3058 			addr = CALLER_ADDR3;
3059 	}
3060 	return addr;
3061 }
3062 
3063 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3064 				defined(CONFIG_PREEMPT_TRACER))
3065 
preempt_count_add(int val)3066 void preempt_count_add(int val)
3067 {
3068 #ifdef CONFIG_DEBUG_PREEMPT
3069 	/*
3070 	 * Underflow?
3071 	 */
3072 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3073 		return;
3074 #endif
3075 	__preempt_count_add(val);
3076 #ifdef CONFIG_DEBUG_PREEMPT
3077 	/*
3078 	 * Spinlock count overflowing soon?
3079 	 */
3080 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3081 				PREEMPT_MASK - 10);
3082 #endif
3083 	if (preempt_count() == val) {
3084 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
3085 #ifdef CONFIG_DEBUG_PREEMPT
3086 		current->preempt_disable_ip = ip;
3087 #endif
3088 		trace_preempt_off(CALLER_ADDR0, ip);
3089 	}
3090 }
3091 EXPORT_SYMBOL(preempt_count_add);
3092 NOKPROBE_SYMBOL(preempt_count_add);
3093 
preempt_count_sub(int val)3094 void preempt_count_sub(int val)
3095 {
3096 #ifdef CONFIG_DEBUG_PREEMPT
3097 	/*
3098 	 * Underflow?
3099 	 */
3100 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3101 		return;
3102 	/*
3103 	 * Is the spinlock portion underflowing?
3104 	 */
3105 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3106 			!(preempt_count() & PREEMPT_MASK)))
3107 		return;
3108 #endif
3109 
3110 	if (preempt_count() == val)
3111 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3112 	__preempt_count_sub(val);
3113 }
3114 EXPORT_SYMBOL(preempt_count_sub);
3115 NOKPROBE_SYMBOL(preempt_count_sub);
3116 
3117 #endif
3118 
3119 /*
3120  * Print scheduling while atomic bug:
3121  */
__schedule_bug(struct task_struct * prev)3122 static noinline void __schedule_bug(struct task_struct *prev)
3123 {
3124 	if (oops_in_progress)
3125 		return;
3126 
3127 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3128 		prev->comm, prev->pid, preempt_count());
3129 
3130 	debug_show_held_locks(prev);
3131 	print_modules();
3132 	if (irqs_disabled())
3133 		print_irqtrace_events(prev);
3134 #ifdef CONFIG_DEBUG_PREEMPT
3135 	if (in_atomic_preempt_off()) {
3136 		pr_err("Preemption disabled at:");
3137 		print_ip_sym(current->preempt_disable_ip);
3138 		pr_cont("\n");
3139 	}
3140 #endif
3141 	dump_stack();
3142 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3143 }
3144 
3145 /*
3146  * Various schedule()-time debugging checks and statistics:
3147  */
schedule_debug(struct task_struct * prev)3148 static inline void schedule_debug(struct task_struct *prev)
3149 {
3150 #ifdef CONFIG_SCHED_STACK_END_CHECK
3151 	if (task_stack_end_corrupted(prev))
3152 		panic("corrupted stack end detected inside scheduler\n");
3153 #endif
3154 
3155 	if (unlikely(in_atomic_preempt_off())) {
3156 		__schedule_bug(prev);
3157 		preempt_count_set(PREEMPT_DISABLED);
3158 	}
3159 	rcu_sleep_check();
3160 
3161 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3162 
3163 	schedstat_inc(this_rq(), sched_count);
3164 }
3165 
3166 /*
3167  * Pick up the highest-prio task:
3168  */
3169 static inline struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev)3170 pick_next_task(struct rq *rq, struct task_struct *prev)
3171 {
3172 	const struct sched_class *class = &fair_sched_class;
3173 	struct task_struct *p;
3174 
3175 	/*
3176 	 * Optimization: we know that if all tasks are in
3177 	 * the fair class we can call that function directly:
3178 	 */
3179 	if (likely(prev->sched_class == class &&
3180 		   rq->nr_running == rq->cfs.h_nr_running)) {
3181 		p = fair_sched_class.pick_next_task(rq, prev);
3182 		if (unlikely(p == RETRY_TASK))
3183 			goto again;
3184 
3185 		/* assumes fair_sched_class->next == idle_sched_class */
3186 		if (unlikely(!p))
3187 			p = idle_sched_class.pick_next_task(rq, prev);
3188 
3189 		return p;
3190 	}
3191 
3192 again:
3193 	for_each_class(class) {
3194 		p = class->pick_next_task(rq, prev);
3195 		if (p) {
3196 			if (unlikely(p == RETRY_TASK))
3197 				goto again;
3198 			return p;
3199 		}
3200 	}
3201 
3202 	BUG(); /* the idle class will always have a runnable task */
3203 }
3204 
3205 /*
3206  * __schedule() is the main scheduler function.
3207  *
3208  * The main means of driving the scheduler and thus entering this function are:
3209  *
3210  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3211  *
3212  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3213  *      paths. For example, see arch/x86/entry_64.S.
3214  *
3215  *      To drive preemption between tasks, the scheduler sets the flag in timer
3216  *      interrupt handler scheduler_tick().
3217  *
3218  *   3. Wakeups don't really cause entry into schedule(). They add a
3219  *      task to the run-queue and that's it.
3220  *
3221  *      Now, if the new task added to the run-queue preempts the current
3222  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3223  *      called on the nearest possible occasion:
3224  *
3225  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3226  *
3227  *         - in syscall or exception context, at the next outmost
3228  *           preempt_enable(). (this might be as soon as the wake_up()'s
3229  *           spin_unlock()!)
3230  *
3231  *         - in IRQ context, return from interrupt-handler to
3232  *           preemptible context
3233  *
3234  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3235  *         then at the next:
3236  *
3237  *          - cond_resched() call
3238  *          - explicit schedule() call
3239  *          - return from syscall or exception to user-space
3240  *          - return from interrupt-handler to user-space
3241  *
3242  * WARNING: must be called with preemption disabled!
3243  */
__schedule(bool preempt)3244 static void __sched notrace __schedule(bool preempt)
3245 {
3246 	struct task_struct *prev, *next;
3247 	unsigned long *switch_count;
3248 	struct rq *rq;
3249 	int cpu;
3250 	u64 wallclock;
3251 
3252 	cpu = smp_processor_id();
3253 	rq = cpu_rq(cpu);
3254 	rcu_note_context_switch();
3255 	prev = rq->curr;
3256 
3257 	/*
3258 	 * do_exit() calls schedule() with preemption disabled as an exception;
3259 	 * however we must fix that up, otherwise the next task will see an
3260 	 * inconsistent (higher) preempt count.
3261 	 *
3262 	 * It also avoids the below schedule_debug() test from complaining
3263 	 * about this.
3264 	 */
3265 	if (unlikely(prev->state == TASK_DEAD))
3266 		preempt_enable_no_resched_notrace();
3267 
3268 	schedule_debug(prev);
3269 
3270 	if (sched_feat(HRTICK))
3271 		hrtick_clear(rq);
3272 
3273 	/*
3274 	 * Make sure that signal_pending_state()->signal_pending() below
3275 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3276 	 * done by the caller to avoid the race with signal_wake_up().
3277 	 */
3278 	smp_mb__before_spinlock();
3279 	raw_spin_lock_irq(&rq->lock);
3280 	lockdep_pin_lock(&rq->lock);
3281 
3282 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3283 
3284 	switch_count = &prev->nivcsw;
3285 	if (!preempt && prev->state) {
3286 		if (unlikely(signal_pending_state(prev->state, prev))) {
3287 			prev->state = TASK_RUNNING;
3288 		} else {
3289 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3290 			prev->on_rq = 0;
3291 
3292 			/*
3293 			 * If a worker went to sleep, notify and ask workqueue
3294 			 * whether it wants to wake up a task to maintain
3295 			 * concurrency.
3296 			 */
3297 			if (prev->flags & PF_WQ_WORKER) {
3298 				struct task_struct *to_wakeup;
3299 
3300 				to_wakeup = wq_worker_sleeping(prev, cpu);
3301 				if (to_wakeup)
3302 					try_to_wake_up_local(to_wakeup);
3303 			}
3304 		}
3305 		switch_count = &prev->nvcsw;
3306 	}
3307 
3308 	if (task_on_rq_queued(prev))
3309 		update_rq_clock(rq);
3310 
3311 	next = pick_next_task(rq, prev);
3312 	wallclock = walt_ktime_clock();
3313 	walt_update_task_ravg(prev, rq, PUT_PREV_TASK, wallclock, 0);
3314 	walt_update_task_ravg(next, rq, PICK_NEXT_TASK, wallclock, 0);
3315 	clear_tsk_need_resched(prev);
3316 	clear_preempt_need_resched();
3317 	rq->clock_skip_update = 0;
3318 
3319 	if (likely(prev != next)) {
3320 #ifdef CONFIG_SCHED_WALT
3321 		if (!prev->on_rq)
3322 			prev->last_sleep_ts = wallclock;
3323 #endif
3324 		rq->nr_switches++;
3325 		rq->curr = next;
3326 		++*switch_count;
3327 
3328 		trace_sched_switch(preempt, prev, next);
3329 		rq = context_switch(rq, prev, next); /* unlocks the rq */
3330 		cpu = cpu_of(rq);
3331 	} else {
3332 		lockdep_unpin_lock(&rq->lock);
3333 		raw_spin_unlock_irq(&rq->lock);
3334 	}
3335 
3336 	balance_callback(rq);
3337 }
3338 
sched_submit_work(struct task_struct * tsk)3339 static inline void sched_submit_work(struct task_struct *tsk)
3340 {
3341 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3342 		return;
3343 	/*
3344 	 * If we are going to sleep and we have plugged IO queued,
3345 	 * make sure to submit it to avoid deadlocks.
3346 	 */
3347 	if (blk_needs_flush_plug(tsk))
3348 		blk_schedule_flush_plug(tsk);
3349 }
3350 
schedule(void)3351 asmlinkage __visible void __sched schedule(void)
3352 {
3353 	struct task_struct *tsk = current;
3354 
3355 	sched_submit_work(tsk);
3356 	do {
3357 		preempt_disable();
3358 		__schedule(false);
3359 		sched_preempt_enable_no_resched();
3360 	} while (need_resched());
3361 }
3362 EXPORT_SYMBOL(schedule);
3363 
3364 #ifdef CONFIG_CONTEXT_TRACKING
schedule_user(void)3365 asmlinkage __visible void __sched schedule_user(void)
3366 {
3367 	/*
3368 	 * If we come here after a random call to set_need_resched(),
3369 	 * or we have been woken up remotely but the IPI has not yet arrived,
3370 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3371 	 * we find a better solution.
3372 	 *
3373 	 * NB: There are buggy callers of this function.  Ideally we
3374 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3375 	 * too frequently to make sense yet.
3376 	 */
3377 	enum ctx_state prev_state = exception_enter();
3378 	schedule();
3379 	exception_exit(prev_state);
3380 }
3381 #endif
3382 
3383 /**
3384  * schedule_preempt_disabled - called with preemption disabled
3385  *
3386  * Returns with preemption disabled. Note: preempt_count must be 1
3387  */
schedule_preempt_disabled(void)3388 void __sched schedule_preempt_disabled(void)
3389 {
3390 	sched_preempt_enable_no_resched();
3391 	schedule();
3392 	preempt_disable();
3393 }
3394 
preempt_schedule_common(void)3395 static void __sched notrace preempt_schedule_common(void)
3396 {
3397 	do {
3398 		preempt_disable_notrace();
3399 		__schedule(true);
3400 		preempt_enable_no_resched_notrace();
3401 
3402 		/*
3403 		 * Check again in case we missed a preemption opportunity
3404 		 * between schedule and now.
3405 		 */
3406 	} while (need_resched());
3407 }
3408 
3409 #ifdef CONFIG_PREEMPT
3410 /*
3411  * this is the entry point to schedule() from in-kernel preemption
3412  * off of preempt_enable. Kernel preemptions off return from interrupt
3413  * occur there and call schedule directly.
3414  */
preempt_schedule(void)3415 asmlinkage __visible void __sched notrace preempt_schedule(void)
3416 {
3417 	/*
3418 	 * If there is a non-zero preempt_count or interrupts are disabled,
3419 	 * we do not want to preempt the current task. Just return..
3420 	 */
3421 	if (likely(!preemptible()))
3422 		return;
3423 
3424 	preempt_schedule_common();
3425 }
3426 NOKPROBE_SYMBOL(preempt_schedule);
3427 EXPORT_SYMBOL(preempt_schedule);
3428 
3429 /**
3430  * preempt_schedule_notrace - preempt_schedule called by tracing
3431  *
3432  * The tracing infrastructure uses preempt_enable_notrace to prevent
3433  * recursion and tracing preempt enabling caused by the tracing
3434  * infrastructure itself. But as tracing can happen in areas coming
3435  * from userspace or just about to enter userspace, a preempt enable
3436  * can occur before user_exit() is called. This will cause the scheduler
3437  * to be called when the system is still in usermode.
3438  *
3439  * To prevent this, the preempt_enable_notrace will use this function
3440  * instead of preempt_schedule() to exit user context if needed before
3441  * calling the scheduler.
3442  */
preempt_schedule_notrace(void)3443 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3444 {
3445 	enum ctx_state prev_ctx;
3446 
3447 	if (likely(!preemptible()))
3448 		return;
3449 
3450 	do {
3451 		preempt_disable_notrace();
3452 		/*
3453 		 * Needs preempt disabled in case user_exit() is traced
3454 		 * and the tracer calls preempt_enable_notrace() causing
3455 		 * an infinite recursion.
3456 		 */
3457 		prev_ctx = exception_enter();
3458 		__schedule(true);
3459 		exception_exit(prev_ctx);
3460 
3461 		preempt_enable_no_resched_notrace();
3462 	} while (need_resched());
3463 }
3464 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3465 
3466 #endif /* CONFIG_PREEMPT */
3467 
3468 /*
3469  * this is the entry point to schedule() from kernel preemption
3470  * off of irq context.
3471  * Note, that this is called and return with irqs disabled. This will
3472  * protect us against recursive calling from irq.
3473  */
preempt_schedule_irq(void)3474 asmlinkage __visible void __sched preempt_schedule_irq(void)
3475 {
3476 	enum ctx_state prev_state;
3477 
3478 	/* Catch callers which need to be fixed */
3479 	BUG_ON(preempt_count() || !irqs_disabled());
3480 
3481 	prev_state = exception_enter();
3482 
3483 	do {
3484 		preempt_disable();
3485 		local_irq_enable();
3486 		__schedule(true);
3487 		local_irq_disable();
3488 		sched_preempt_enable_no_resched();
3489 	} while (need_resched());
3490 
3491 	exception_exit(prev_state);
3492 }
3493 
default_wake_function(wait_queue_t * curr,unsigned mode,int wake_flags,void * key)3494 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3495 			  void *key)
3496 {
3497 	return try_to_wake_up(curr->private, mode, wake_flags, 1);
3498 }
3499 EXPORT_SYMBOL(default_wake_function);
3500 
3501 #ifdef CONFIG_RT_MUTEXES
3502 
3503 /*
3504  * rt_mutex_setprio - set the current priority of a task
3505  * @p: task
3506  * @prio: prio value (kernel-internal form)
3507  *
3508  * This function changes the 'effective' priority of a task. It does
3509  * not touch ->normal_prio like __setscheduler().
3510  *
3511  * Used by the rt_mutex code to implement priority inheritance
3512  * logic. Call site only calls if the priority of the task changed.
3513  */
rt_mutex_setprio(struct task_struct * p,int prio)3514 void rt_mutex_setprio(struct task_struct *p, int prio)
3515 {
3516 	int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE;
3517 	struct rq *rq;
3518 	const struct sched_class *prev_class;
3519 
3520 	BUG_ON(prio > MAX_PRIO);
3521 
3522 	rq = __task_rq_lock(p);
3523 	update_rq_clock(rq);
3524 
3525 	/*
3526 	 * Idle task boosting is a nono in general. There is one
3527 	 * exception, when PREEMPT_RT and NOHZ is active:
3528 	 *
3529 	 * The idle task calls get_next_timer_interrupt() and holds
3530 	 * the timer wheel base->lock on the CPU and another CPU wants
3531 	 * to access the timer (probably to cancel it). We can safely
3532 	 * ignore the boosting request, as the idle CPU runs this code
3533 	 * with interrupts disabled and will complete the lock
3534 	 * protected section without being interrupted. So there is no
3535 	 * real need to boost.
3536 	 */
3537 	if (unlikely(p == rq->idle)) {
3538 		WARN_ON(p != rq->curr);
3539 		WARN_ON(p->pi_blocked_on);
3540 		goto out_unlock;
3541 	}
3542 
3543 	trace_sched_pi_setprio(p, prio);
3544 	oldprio = p->prio;
3545 	prev_class = p->sched_class;
3546 	queued = task_on_rq_queued(p);
3547 	running = task_current(rq, p);
3548 	if (queued)
3549 		dequeue_task(rq, p, DEQUEUE_SAVE);
3550 	if (running)
3551 		put_prev_task(rq, p);
3552 
3553 	/*
3554 	 * Boosting condition are:
3555 	 * 1. -rt task is running and holds mutex A
3556 	 *      --> -dl task blocks on mutex A
3557 	 *
3558 	 * 2. -dl task is running and holds mutex A
3559 	 *      --> -dl task blocks on mutex A and could preempt the
3560 	 *          running task
3561 	 */
3562 	if (dl_prio(prio)) {
3563 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3564 		if (!dl_prio(p->normal_prio) ||
3565 		    (pi_task && dl_prio(pi_task->prio) &&
3566 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
3567 			p->dl.dl_boosted = 1;
3568 			enqueue_flag |= ENQUEUE_REPLENISH;
3569 		} else
3570 			p->dl.dl_boosted = 0;
3571 		p->sched_class = &dl_sched_class;
3572 	} else if (rt_prio(prio)) {
3573 		if (dl_prio(oldprio))
3574 			p->dl.dl_boosted = 0;
3575 		if (oldprio < prio)
3576 			enqueue_flag |= ENQUEUE_HEAD;
3577 		p->sched_class = &rt_sched_class;
3578 	} else {
3579 		if (dl_prio(oldprio))
3580 			p->dl.dl_boosted = 0;
3581 		if (rt_prio(oldprio))
3582 			p->rt.timeout = 0;
3583 		p->sched_class = &fair_sched_class;
3584 	}
3585 
3586 	p->prio = prio;
3587 
3588 	if (running)
3589 		p->sched_class->set_curr_task(rq);
3590 	if (queued)
3591 		enqueue_task(rq, p, enqueue_flag);
3592 
3593 	check_class_changed(rq, p, prev_class, oldprio);
3594 out_unlock:
3595 	preempt_disable(); /* avoid rq from going away on us */
3596 	__task_rq_unlock(rq);
3597 
3598 	balance_callback(rq);
3599 	preempt_enable();
3600 }
3601 #endif
3602 
set_user_nice(struct task_struct * p,long nice)3603 void set_user_nice(struct task_struct *p, long nice)
3604 {
3605 	int old_prio, delta, queued;
3606 	unsigned long flags;
3607 	struct rq *rq;
3608 
3609 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3610 		return;
3611 	/*
3612 	 * We have to be careful, if called from sys_setpriority(),
3613 	 * the task might be in the middle of scheduling on another CPU.
3614 	 */
3615 	rq = task_rq_lock(p, &flags);
3616 	update_rq_clock(rq);
3617 
3618 	/*
3619 	 * The RT priorities are set via sched_setscheduler(), but we still
3620 	 * allow the 'normal' nice value to be set - but as expected
3621 	 * it wont have any effect on scheduling until the task is
3622 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3623 	 */
3624 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3625 		p->static_prio = NICE_TO_PRIO(nice);
3626 		goto out_unlock;
3627 	}
3628 	queued = task_on_rq_queued(p);
3629 	if (queued)
3630 		dequeue_task(rq, p, DEQUEUE_SAVE);
3631 
3632 	p->static_prio = NICE_TO_PRIO(nice);
3633 	set_load_weight(p);
3634 	old_prio = p->prio;
3635 	p->prio = effective_prio(p);
3636 	delta = p->prio - old_prio;
3637 
3638 	if (queued) {
3639 		enqueue_task(rq, p, ENQUEUE_RESTORE);
3640 		/*
3641 		 * If the task increased its priority or is running and
3642 		 * lowered its priority, then reschedule its CPU:
3643 		 */
3644 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3645 			resched_curr(rq);
3646 	}
3647 out_unlock:
3648 	task_rq_unlock(rq, p, &flags);
3649 }
3650 EXPORT_SYMBOL(set_user_nice);
3651 
3652 /*
3653  * can_nice - check if a task can reduce its nice value
3654  * @p: task
3655  * @nice: nice value
3656  */
can_nice(const struct task_struct * p,const int nice)3657 int can_nice(const struct task_struct *p, const int nice)
3658 {
3659 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3660 	int nice_rlim = nice_to_rlimit(nice);
3661 
3662 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3663 		capable(CAP_SYS_NICE));
3664 }
3665 
3666 #ifdef __ARCH_WANT_SYS_NICE
3667 
3668 /*
3669  * sys_nice - change the priority of the current process.
3670  * @increment: priority increment
3671  *
3672  * sys_setpriority is a more generic, but much slower function that
3673  * does similar things.
3674  */
SYSCALL_DEFINE1(nice,int,increment)3675 SYSCALL_DEFINE1(nice, int, increment)
3676 {
3677 	long nice, retval;
3678 
3679 	/*
3680 	 * Setpriority might change our priority at the same moment.
3681 	 * We don't have to worry. Conceptually one call occurs first
3682 	 * and we have a single winner.
3683 	 */
3684 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3685 	nice = task_nice(current) + increment;
3686 
3687 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3688 	if (increment < 0 && !can_nice(current, nice))
3689 		return -EPERM;
3690 
3691 	retval = security_task_setnice(current, nice);
3692 	if (retval)
3693 		return retval;
3694 
3695 	set_user_nice(current, nice);
3696 	return 0;
3697 }
3698 
3699 #endif
3700 
3701 /**
3702  * task_prio - return the priority value of a given task.
3703  * @p: the task in question.
3704  *
3705  * Return: The priority value as seen by users in /proc.
3706  * RT tasks are offset by -200. Normal tasks are centered
3707  * around 0, value goes from -16 to +15.
3708  */
task_prio(const struct task_struct * p)3709 int task_prio(const struct task_struct *p)
3710 {
3711 	return p->prio - MAX_RT_PRIO;
3712 }
3713 
3714 /**
3715  * idle_cpu - is a given cpu idle currently?
3716  * @cpu: the processor in question.
3717  *
3718  * Return: 1 if the CPU is currently idle. 0 otherwise.
3719  */
idle_cpu(int cpu)3720 int idle_cpu(int cpu)
3721 {
3722 	struct rq *rq = cpu_rq(cpu);
3723 
3724 	if (rq->curr != rq->idle)
3725 		return 0;
3726 
3727 	if (rq->nr_running)
3728 		return 0;
3729 
3730 #ifdef CONFIG_SMP
3731 	if (!llist_empty(&rq->wake_list))
3732 		return 0;
3733 #endif
3734 
3735 	return 1;
3736 }
3737 
3738 /**
3739  * idle_task - return the idle task for a given cpu.
3740  * @cpu: the processor in question.
3741  *
3742  * Return: The idle task for the cpu @cpu.
3743  */
idle_task(int cpu)3744 struct task_struct *idle_task(int cpu)
3745 {
3746 	return cpu_rq(cpu)->idle;
3747 }
3748 
3749 /**
3750  * find_process_by_pid - find a process with a matching PID value.
3751  * @pid: the pid in question.
3752  *
3753  * The task of @pid, if found. %NULL otherwise.
3754  */
find_process_by_pid(pid_t pid)3755 static struct task_struct *find_process_by_pid(pid_t pid)
3756 {
3757 	return pid ? find_task_by_vpid(pid) : current;
3758 }
3759 
3760 /*
3761  * This function initializes the sched_dl_entity of a newly becoming
3762  * SCHED_DEADLINE task.
3763  *
3764  * Only the static values are considered here, the actual runtime and the
3765  * absolute deadline will be properly calculated when the task is enqueued
3766  * for the first time with its new policy.
3767  */
3768 static void
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)3769 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3770 {
3771 	struct sched_dl_entity *dl_se = &p->dl;
3772 
3773 	dl_se->dl_runtime = attr->sched_runtime;
3774 	dl_se->dl_deadline = attr->sched_deadline;
3775 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3776 	dl_se->flags = attr->sched_flags;
3777 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3778 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3779 
3780 	/*
3781 	 * Changing the parameters of a task is 'tricky' and we're not doing
3782 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3783 	 *
3784 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3785 	 * point. This would include retaining the task_struct until that time
3786 	 * and change dl_overflow() to not immediately decrement the current
3787 	 * amount.
3788 	 *
3789 	 * Instead we retain the current runtime/deadline and let the new
3790 	 * parameters take effect after the current reservation period lapses.
3791 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3792 	 * before the current scheduling deadline.
3793 	 *
3794 	 * We can still have temporary overloads because we do not delay the
3795 	 * change in bandwidth until that time; so admission control is
3796 	 * not on the safe side. It does however guarantee tasks will never
3797 	 * consume more than promised.
3798 	 */
3799 }
3800 
3801 /*
3802  * sched_setparam() passes in -1 for its policy, to let the functions
3803  * it calls know not to change it.
3804  */
3805 #define SETPARAM_POLICY	-1
3806 
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)3807 static void __setscheduler_params(struct task_struct *p,
3808 		const struct sched_attr *attr)
3809 {
3810 	int policy = attr->sched_policy;
3811 
3812 	if (policy == SETPARAM_POLICY)
3813 		policy = p->policy;
3814 
3815 	p->policy = policy;
3816 
3817 	if (dl_policy(policy))
3818 		__setparam_dl(p, attr);
3819 	else if (fair_policy(policy))
3820 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3821 
3822 	/*
3823 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3824 	 * !rt_policy. Always setting this ensures that things like
3825 	 * getparam()/getattr() don't report silly values for !rt tasks.
3826 	 */
3827 	p->rt_priority = attr->sched_priority;
3828 	p->normal_prio = normal_prio(p);
3829 	set_load_weight(p);
3830 }
3831 
3832 /* Actually do priority change: must hold pi & rq lock. */
__setscheduler(struct rq * rq,struct task_struct * p,const struct sched_attr * attr,bool keep_boost)3833 static void __setscheduler(struct rq *rq, struct task_struct *p,
3834 			   const struct sched_attr *attr, bool keep_boost)
3835 {
3836 	__setscheduler_params(p, attr);
3837 
3838 	/*
3839 	 * Keep a potential priority boosting if called from
3840 	 * sched_setscheduler().
3841 	 */
3842 	if (keep_boost)
3843 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3844 	else
3845 		p->prio = normal_prio(p);
3846 
3847 	if (dl_prio(p->prio))
3848 		p->sched_class = &dl_sched_class;
3849 	else if (rt_prio(p->prio))
3850 		p->sched_class = &rt_sched_class;
3851 	else
3852 		p->sched_class = &fair_sched_class;
3853 }
3854 
3855 static void
__getparam_dl(struct task_struct * p,struct sched_attr * attr)3856 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3857 {
3858 	struct sched_dl_entity *dl_se = &p->dl;
3859 
3860 	attr->sched_priority = p->rt_priority;
3861 	attr->sched_runtime = dl_se->dl_runtime;
3862 	attr->sched_deadline = dl_se->dl_deadline;
3863 	attr->sched_period = dl_se->dl_period;
3864 	attr->sched_flags = dl_se->flags;
3865 }
3866 
3867 /*
3868  * This function validates the new parameters of a -deadline task.
3869  * We ask for the deadline not being zero, and greater or equal
3870  * than the runtime, as well as the period of being zero or
3871  * greater than deadline. Furthermore, we have to be sure that
3872  * user parameters are above the internal resolution of 1us (we
3873  * check sched_runtime only since it is always the smaller one) and
3874  * below 2^63 ns (we have to check both sched_deadline and
3875  * sched_period, as the latter can be zero).
3876  */
3877 static bool
__checkparam_dl(const struct sched_attr * attr)3878 __checkparam_dl(const struct sched_attr *attr)
3879 {
3880 	/* deadline != 0 */
3881 	if (attr->sched_deadline == 0)
3882 		return false;
3883 
3884 	/*
3885 	 * Since we truncate DL_SCALE bits, make sure we're at least
3886 	 * that big.
3887 	 */
3888 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3889 		return false;
3890 
3891 	/*
3892 	 * Since we use the MSB for wrap-around and sign issues, make
3893 	 * sure it's not set (mind that period can be equal to zero).
3894 	 */
3895 	if (attr->sched_deadline & (1ULL << 63) ||
3896 	    attr->sched_period & (1ULL << 63))
3897 		return false;
3898 
3899 	/* runtime <= deadline <= period (if period != 0) */
3900 	if ((attr->sched_period != 0 &&
3901 	     attr->sched_period < attr->sched_deadline) ||
3902 	    attr->sched_deadline < attr->sched_runtime)
3903 		return false;
3904 
3905 	return true;
3906 }
3907 
3908 /*
3909  * check the target process has a UID that matches the current process's
3910  */
check_same_owner(struct task_struct * p)3911 static bool check_same_owner(struct task_struct *p)
3912 {
3913 	const struct cred *cred = current_cred(), *pcred;
3914 	bool match;
3915 
3916 	rcu_read_lock();
3917 	pcred = __task_cred(p);
3918 	match = (uid_eq(cred->euid, pcred->euid) ||
3919 		 uid_eq(cred->euid, pcred->uid));
3920 	rcu_read_unlock();
3921 	return match;
3922 }
3923 
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)3924 static bool dl_param_changed(struct task_struct *p,
3925 		const struct sched_attr *attr)
3926 {
3927 	struct sched_dl_entity *dl_se = &p->dl;
3928 
3929 	if (dl_se->dl_runtime != attr->sched_runtime ||
3930 		dl_se->dl_deadline != attr->sched_deadline ||
3931 		dl_se->dl_period != attr->sched_period ||
3932 		dl_se->flags != attr->sched_flags)
3933 		return true;
3934 
3935 	return false;
3936 }
3937 
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)3938 static int __sched_setscheduler(struct task_struct *p,
3939 				const struct sched_attr *attr,
3940 				bool user, bool pi)
3941 {
3942 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3943 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3944 	int retval, oldprio, oldpolicy = -1, queued, running;
3945 	int new_effective_prio, policy = attr->sched_policy;
3946 	unsigned long flags;
3947 	const struct sched_class *prev_class;
3948 	struct rq *rq;
3949 	int reset_on_fork;
3950 
3951 	/* The pi code expects interrupts enabled */
3952 	BUG_ON(pi && in_interrupt());
3953 recheck:
3954 	/* double check policy once rq lock held */
3955 	if (policy < 0) {
3956 		reset_on_fork = p->sched_reset_on_fork;
3957 		policy = oldpolicy = p->policy;
3958 	} else {
3959 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3960 
3961 		if (!valid_policy(policy))
3962 			return -EINVAL;
3963 	}
3964 
3965 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3966 		return -EINVAL;
3967 
3968 	/*
3969 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3970 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3971 	 * SCHED_BATCH and SCHED_IDLE is 0.
3972 	 */
3973 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3974 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3975 		return -EINVAL;
3976 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3977 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3978 		return -EINVAL;
3979 
3980 	/*
3981 	 * Allow unprivileged RT tasks to decrease priority:
3982 	 */
3983 	if (user && !capable(CAP_SYS_NICE)) {
3984 		if (fair_policy(policy)) {
3985 			if (attr->sched_nice < task_nice(p) &&
3986 			    !can_nice(p, attr->sched_nice))
3987 				return -EPERM;
3988 		}
3989 
3990 		if (rt_policy(policy)) {
3991 			unsigned long rlim_rtprio =
3992 					task_rlimit(p, RLIMIT_RTPRIO);
3993 
3994 			/* can't set/change the rt policy */
3995 			if (policy != p->policy && !rlim_rtprio)
3996 				return -EPERM;
3997 
3998 			/* can't increase priority */
3999 			if (attr->sched_priority > p->rt_priority &&
4000 			    attr->sched_priority > rlim_rtprio)
4001 				return -EPERM;
4002 		}
4003 
4004 		 /*
4005 		  * Can't set/change SCHED_DEADLINE policy at all for now
4006 		  * (safest behavior); in the future we would like to allow
4007 		  * unprivileged DL tasks to increase their relative deadline
4008 		  * or reduce their runtime (both ways reducing utilization)
4009 		  */
4010 		if (dl_policy(policy))
4011 			return -EPERM;
4012 
4013 		/*
4014 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4015 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4016 		 */
4017 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4018 			if (!can_nice(p, task_nice(p)))
4019 				return -EPERM;
4020 		}
4021 
4022 		/* can't change other user's priorities */
4023 		if (!check_same_owner(p))
4024 			return -EPERM;
4025 
4026 		/* Normal users shall not reset the sched_reset_on_fork flag */
4027 		if (p->sched_reset_on_fork && !reset_on_fork)
4028 			return -EPERM;
4029 	}
4030 
4031 	if (user) {
4032 		retval = security_task_setscheduler(p);
4033 		if (retval)
4034 			return retval;
4035 	}
4036 
4037 	/*
4038 	 * make sure no PI-waiters arrive (or leave) while we are
4039 	 * changing the priority of the task:
4040 	 *
4041 	 * To be able to change p->policy safely, the appropriate
4042 	 * runqueue lock must be held.
4043 	 */
4044 	rq = task_rq_lock(p, &flags);
4045 	update_rq_clock(rq);
4046 
4047 	/*
4048 	 * Changing the policy of the stop threads its a very bad idea
4049 	 */
4050 	if (p == rq->stop) {
4051 		task_rq_unlock(rq, p, &flags);
4052 		return -EINVAL;
4053 	}
4054 
4055 	/*
4056 	 * If not changing anything there's no need to proceed further,
4057 	 * but store a possible modification of reset_on_fork.
4058 	 */
4059 	if (unlikely(policy == p->policy)) {
4060 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4061 			goto change;
4062 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4063 			goto change;
4064 		if (dl_policy(policy) && dl_param_changed(p, attr))
4065 			goto change;
4066 
4067 		p->sched_reset_on_fork = reset_on_fork;
4068 		task_rq_unlock(rq, p, &flags);
4069 		return 0;
4070 	}
4071 change:
4072 
4073 	if (user) {
4074 #ifdef CONFIG_RT_GROUP_SCHED
4075 		/*
4076 		 * Do not allow realtime tasks into groups that have no runtime
4077 		 * assigned.
4078 		 */
4079 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4080 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4081 				!task_group_is_autogroup(task_group(p))) {
4082 			task_rq_unlock(rq, p, &flags);
4083 			return -EPERM;
4084 		}
4085 #endif
4086 #ifdef CONFIG_SMP
4087 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
4088 			cpumask_t *span = rq->rd->span;
4089 
4090 			/*
4091 			 * Don't allow tasks with an affinity mask smaller than
4092 			 * the entire root_domain to become SCHED_DEADLINE. We
4093 			 * will also fail if there's no bandwidth available.
4094 			 */
4095 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4096 			    rq->rd->dl_bw.bw == 0) {
4097 				task_rq_unlock(rq, p, &flags);
4098 				return -EPERM;
4099 			}
4100 		}
4101 #endif
4102 	}
4103 
4104 	/* recheck policy now with rq lock held */
4105 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4106 		policy = oldpolicy = -1;
4107 		task_rq_unlock(rq, p, &flags);
4108 		goto recheck;
4109 	}
4110 
4111 	/*
4112 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4113 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4114 	 * is available.
4115 	 */
4116 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4117 		task_rq_unlock(rq, p, &flags);
4118 		return -EBUSY;
4119 	}
4120 
4121 	p->sched_reset_on_fork = reset_on_fork;
4122 	oldprio = p->prio;
4123 
4124 	if (pi) {
4125 		/*
4126 		 * Take priority boosted tasks into account. If the new
4127 		 * effective priority is unchanged, we just store the new
4128 		 * normal parameters and do not touch the scheduler class and
4129 		 * the runqueue. This will be done when the task deboost
4130 		 * itself.
4131 		 */
4132 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4133 		if (new_effective_prio == oldprio) {
4134 			__setscheduler_params(p, attr);
4135 			task_rq_unlock(rq, p, &flags);
4136 			return 0;
4137 		}
4138 	}
4139 
4140 	queued = task_on_rq_queued(p);
4141 	running = task_current(rq, p);
4142 	if (queued)
4143 		dequeue_task(rq, p, DEQUEUE_SAVE);
4144 	if (running)
4145 		put_prev_task(rq, p);
4146 
4147 	prev_class = p->sched_class;
4148 	__setscheduler(rq, p, attr, pi);
4149 
4150 	if (running)
4151 		p->sched_class->set_curr_task(rq);
4152 	if (queued) {
4153 		int enqueue_flags = ENQUEUE_RESTORE;
4154 		/*
4155 		 * We enqueue to tail when the priority of a task is
4156 		 * increased (user space view).
4157 		 */
4158 		if (oldprio <= p->prio)
4159 			enqueue_flags |= ENQUEUE_HEAD;
4160 
4161 		enqueue_task(rq, p, enqueue_flags);
4162 	}
4163 
4164 	check_class_changed(rq, p, prev_class, oldprio);
4165 	preempt_disable(); /* avoid rq from going away on us */
4166 	task_rq_unlock(rq, p, &flags);
4167 
4168 	if (pi)
4169 		rt_mutex_adjust_pi(p);
4170 
4171 	/*
4172 	 * Run balance callbacks after we've adjusted the PI chain.
4173 	 */
4174 	balance_callback(rq);
4175 	preempt_enable();
4176 
4177 	return 0;
4178 }
4179 
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)4180 static int _sched_setscheduler(struct task_struct *p, int policy,
4181 			       const struct sched_param *param, bool check)
4182 {
4183 	struct sched_attr attr = {
4184 		.sched_policy   = policy,
4185 		.sched_priority = param->sched_priority,
4186 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4187 	};
4188 
4189 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4190 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4191 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4192 		policy &= ~SCHED_RESET_ON_FORK;
4193 		attr.sched_policy = policy;
4194 	}
4195 
4196 	return __sched_setscheduler(p, &attr, check, true);
4197 }
4198 /**
4199  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4200  * @p: the task in question.
4201  * @policy: new policy.
4202  * @param: structure containing the new RT priority.
4203  *
4204  * Return: 0 on success. An error code otherwise.
4205  *
4206  * NOTE that the task may be already dead.
4207  */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)4208 int sched_setscheduler(struct task_struct *p, int policy,
4209 		       const struct sched_param *param)
4210 {
4211 	return _sched_setscheduler(p, policy, param, true);
4212 }
4213 EXPORT_SYMBOL_GPL(sched_setscheduler);
4214 
sched_setattr(struct task_struct * p,const struct sched_attr * attr)4215 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4216 {
4217 	return __sched_setscheduler(p, attr, true, true);
4218 }
4219 EXPORT_SYMBOL_GPL(sched_setattr);
4220 
4221 /**
4222  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4223  * @p: the task in question.
4224  * @policy: new policy.
4225  * @param: structure containing the new RT priority.
4226  *
4227  * Just like sched_setscheduler, only don't bother checking if the
4228  * current context has permission.  For example, this is needed in
4229  * stop_machine(): we create temporary high priority worker threads,
4230  * but our caller might not have that capability.
4231  *
4232  * Return: 0 on success. An error code otherwise.
4233  */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)4234 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4235 			       const struct sched_param *param)
4236 {
4237 	return _sched_setscheduler(p, policy, param, false);
4238 }
4239 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4240 
4241 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)4242 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4243 {
4244 	struct sched_param lparam;
4245 	struct task_struct *p;
4246 	int retval;
4247 
4248 	if (!param || pid < 0)
4249 		return -EINVAL;
4250 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4251 		return -EFAULT;
4252 
4253 	rcu_read_lock();
4254 	retval = -ESRCH;
4255 	p = find_process_by_pid(pid);
4256 	if (p != NULL)
4257 		retval = sched_setscheduler(p, policy, &lparam);
4258 	rcu_read_unlock();
4259 
4260 	return retval;
4261 }
4262 
4263 /*
4264  * Mimics kernel/events/core.c perf_copy_attr().
4265  */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)4266 static int sched_copy_attr(struct sched_attr __user *uattr,
4267 			   struct sched_attr *attr)
4268 {
4269 	u32 size;
4270 	int ret;
4271 
4272 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4273 		return -EFAULT;
4274 
4275 	/*
4276 	 * zero the full structure, so that a short copy will be nice.
4277 	 */
4278 	memset(attr, 0, sizeof(*attr));
4279 
4280 	ret = get_user(size, &uattr->size);
4281 	if (ret)
4282 		return ret;
4283 
4284 	if (size > PAGE_SIZE)	/* silly large */
4285 		goto err_size;
4286 
4287 	if (!size)		/* abi compat */
4288 		size = SCHED_ATTR_SIZE_VER0;
4289 
4290 	if (size < SCHED_ATTR_SIZE_VER0)
4291 		goto err_size;
4292 
4293 	/*
4294 	 * If we're handed a bigger struct than we know of,
4295 	 * ensure all the unknown bits are 0 - i.e. new
4296 	 * user-space does not rely on any kernel feature
4297 	 * extensions we dont know about yet.
4298 	 */
4299 	if (size > sizeof(*attr)) {
4300 		unsigned char __user *addr;
4301 		unsigned char __user *end;
4302 		unsigned char val;
4303 
4304 		addr = (void __user *)uattr + sizeof(*attr);
4305 		end  = (void __user *)uattr + size;
4306 
4307 		for (; addr < end; addr++) {
4308 			ret = get_user(val, addr);
4309 			if (ret)
4310 				return ret;
4311 			if (val)
4312 				goto err_size;
4313 		}
4314 		size = sizeof(*attr);
4315 	}
4316 
4317 	ret = copy_from_user(attr, uattr, size);
4318 	if (ret)
4319 		return -EFAULT;
4320 
4321 	/*
4322 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4323 	 * to be strict and return an error on out-of-bounds values?
4324 	 */
4325 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4326 
4327 	return 0;
4328 
4329 err_size:
4330 	put_user(sizeof(*attr), &uattr->size);
4331 	return -E2BIG;
4332 }
4333 
4334 /**
4335  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4336  * @pid: the pid in question.
4337  * @policy: new policy.
4338  * @param: structure containing the new RT priority.
4339  *
4340  * Return: 0 on success. An error code otherwise.
4341  */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)4342 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4343 		struct sched_param __user *, param)
4344 {
4345 	/* negative values for policy are not valid */
4346 	if (policy < 0)
4347 		return -EINVAL;
4348 
4349 	return do_sched_setscheduler(pid, policy, param);
4350 }
4351 
4352 /**
4353  * sys_sched_setparam - set/change the RT priority of a thread
4354  * @pid: the pid in question.
4355  * @param: structure containing the new RT priority.
4356  *
4357  * Return: 0 on success. An error code otherwise.
4358  */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)4359 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4360 {
4361 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4362 }
4363 
4364 /**
4365  * sys_sched_setattr - same as above, but with extended sched_attr
4366  * @pid: the pid in question.
4367  * @uattr: structure containing the extended parameters.
4368  * @flags: for future extension.
4369  */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)4370 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4371 			       unsigned int, flags)
4372 {
4373 	struct sched_attr attr;
4374 	struct task_struct *p;
4375 	int retval;
4376 
4377 	if (!uattr || pid < 0 || flags)
4378 		return -EINVAL;
4379 
4380 	retval = sched_copy_attr(uattr, &attr);
4381 	if (retval)
4382 		return retval;
4383 
4384 	if ((int)attr.sched_policy < 0)
4385 		return -EINVAL;
4386 
4387 	rcu_read_lock();
4388 	retval = -ESRCH;
4389 	p = find_process_by_pid(pid);
4390 	if (p != NULL)
4391 		retval = sched_setattr(p, &attr);
4392 	rcu_read_unlock();
4393 
4394 	return retval;
4395 }
4396 
4397 /**
4398  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4399  * @pid: the pid in question.
4400  *
4401  * Return: On success, the policy of the thread. Otherwise, a negative error
4402  * code.
4403  */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)4404 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4405 {
4406 	struct task_struct *p;
4407 	int retval;
4408 
4409 	if (pid < 0)
4410 		return -EINVAL;
4411 
4412 	retval = -ESRCH;
4413 	rcu_read_lock();
4414 	p = find_process_by_pid(pid);
4415 	if (p) {
4416 		retval = security_task_getscheduler(p);
4417 		if (!retval)
4418 			retval = p->policy
4419 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4420 	}
4421 	rcu_read_unlock();
4422 	return retval;
4423 }
4424 
4425 /**
4426  * sys_sched_getparam - get the RT priority of a thread
4427  * @pid: the pid in question.
4428  * @param: structure containing the RT priority.
4429  *
4430  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4431  * code.
4432  */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)4433 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4434 {
4435 	struct sched_param lp = { .sched_priority = 0 };
4436 	struct task_struct *p;
4437 	int retval;
4438 
4439 	if (!param || pid < 0)
4440 		return -EINVAL;
4441 
4442 	rcu_read_lock();
4443 	p = find_process_by_pid(pid);
4444 	retval = -ESRCH;
4445 	if (!p)
4446 		goto out_unlock;
4447 
4448 	retval = security_task_getscheduler(p);
4449 	if (retval)
4450 		goto out_unlock;
4451 
4452 	if (task_has_rt_policy(p))
4453 		lp.sched_priority = p->rt_priority;
4454 	rcu_read_unlock();
4455 
4456 	/*
4457 	 * This one might sleep, we cannot do it with a spinlock held ...
4458 	 */
4459 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4460 
4461 	return retval;
4462 
4463 out_unlock:
4464 	rcu_read_unlock();
4465 	return retval;
4466 }
4467 
sched_read_attr(struct sched_attr __user * uattr,struct sched_attr * attr,unsigned int usize)4468 static int sched_read_attr(struct sched_attr __user *uattr,
4469 			   struct sched_attr *attr,
4470 			   unsigned int usize)
4471 {
4472 	int ret;
4473 
4474 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4475 		return -EFAULT;
4476 
4477 	/*
4478 	 * If we're handed a smaller struct than we know of,
4479 	 * ensure all the unknown bits are 0 - i.e. old
4480 	 * user-space does not get uncomplete information.
4481 	 */
4482 	if (usize < sizeof(*attr)) {
4483 		unsigned char *addr;
4484 		unsigned char *end;
4485 
4486 		addr = (void *)attr + usize;
4487 		end  = (void *)attr + sizeof(*attr);
4488 
4489 		for (; addr < end; addr++) {
4490 			if (*addr)
4491 				return -EFBIG;
4492 		}
4493 
4494 		attr->size = usize;
4495 	}
4496 
4497 	ret = copy_to_user(uattr, attr, attr->size);
4498 	if (ret)
4499 		return -EFAULT;
4500 
4501 	return 0;
4502 }
4503 
4504 /**
4505  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4506  * @pid: the pid in question.
4507  * @uattr: structure containing the extended parameters.
4508  * @size: sizeof(attr) for fwd/bwd comp.
4509  * @flags: for future extension.
4510  */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,size,unsigned int,flags)4511 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4512 		unsigned int, size, unsigned int, flags)
4513 {
4514 	struct sched_attr attr = {
4515 		.size = sizeof(struct sched_attr),
4516 	};
4517 	struct task_struct *p;
4518 	int retval;
4519 
4520 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4521 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4522 		return -EINVAL;
4523 
4524 	rcu_read_lock();
4525 	p = find_process_by_pid(pid);
4526 	retval = -ESRCH;
4527 	if (!p)
4528 		goto out_unlock;
4529 
4530 	retval = security_task_getscheduler(p);
4531 	if (retval)
4532 		goto out_unlock;
4533 
4534 	attr.sched_policy = p->policy;
4535 	if (p->sched_reset_on_fork)
4536 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4537 	if (task_has_dl_policy(p))
4538 		__getparam_dl(p, &attr);
4539 	else if (task_has_rt_policy(p))
4540 		attr.sched_priority = p->rt_priority;
4541 	else
4542 		attr.sched_nice = task_nice(p);
4543 
4544 	rcu_read_unlock();
4545 
4546 	retval = sched_read_attr(uattr, &attr, size);
4547 	return retval;
4548 
4549 out_unlock:
4550 	rcu_read_unlock();
4551 	return retval;
4552 }
4553 
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)4554 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4555 {
4556 	cpumask_var_t cpus_allowed, new_mask;
4557 	struct task_struct *p;
4558 	int retval;
4559 
4560 	rcu_read_lock();
4561 
4562 	p = find_process_by_pid(pid);
4563 	if (!p) {
4564 		rcu_read_unlock();
4565 		return -ESRCH;
4566 	}
4567 
4568 	/* Prevent p going away */
4569 	get_task_struct(p);
4570 	rcu_read_unlock();
4571 
4572 	if (p->flags & PF_NO_SETAFFINITY) {
4573 		retval = -EINVAL;
4574 		goto out_put_task;
4575 	}
4576 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4577 		retval = -ENOMEM;
4578 		goto out_put_task;
4579 	}
4580 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4581 		retval = -ENOMEM;
4582 		goto out_free_cpus_allowed;
4583 	}
4584 	retval = -EPERM;
4585 	if (!check_same_owner(p)) {
4586 		rcu_read_lock();
4587 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4588 			rcu_read_unlock();
4589 			goto out_free_new_mask;
4590 		}
4591 		rcu_read_unlock();
4592 	}
4593 
4594 	retval = security_task_setscheduler(p);
4595 	if (retval)
4596 		goto out_free_new_mask;
4597 
4598 
4599 	cpuset_cpus_allowed(p, cpus_allowed);
4600 	cpumask_and(new_mask, in_mask, cpus_allowed);
4601 
4602 	/*
4603 	 * Since bandwidth control happens on root_domain basis,
4604 	 * if admission test is enabled, we only admit -deadline
4605 	 * tasks allowed to run on all the CPUs in the task's
4606 	 * root_domain.
4607 	 */
4608 #ifdef CONFIG_SMP
4609 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4610 		rcu_read_lock();
4611 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4612 			retval = -EBUSY;
4613 			rcu_read_unlock();
4614 			goto out_free_new_mask;
4615 		}
4616 		rcu_read_unlock();
4617 	}
4618 #endif
4619 again:
4620 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4621 
4622 	if (!retval) {
4623 		cpuset_cpus_allowed(p, cpus_allowed);
4624 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4625 			/*
4626 			 * We must have raced with a concurrent cpuset
4627 			 * update. Just reset the cpus_allowed to the
4628 			 * cpuset's cpus_allowed
4629 			 */
4630 			cpumask_copy(new_mask, cpus_allowed);
4631 			goto again;
4632 		}
4633 	}
4634 out_free_new_mask:
4635 	free_cpumask_var(new_mask);
4636 out_free_cpus_allowed:
4637 	free_cpumask_var(cpus_allowed);
4638 out_put_task:
4639 	put_task_struct(p);
4640 	return retval;
4641 }
4642 
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)4643 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4644 			     struct cpumask *new_mask)
4645 {
4646 	if (len < cpumask_size())
4647 		cpumask_clear(new_mask);
4648 	else if (len > cpumask_size())
4649 		len = cpumask_size();
4650 
4651 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4652 }
4653 
4654 /**
4655  * sys_sched_setaffinity - set the cpu affinity of a process
4656  * @pid: pid of the process
4657  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4658  * @user_mask_ptr: user-space pointer to the new cpu mask
4659  *
4660  * Return: 0 on success. An error code otherwise.
4661  */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)4662 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4663 		unsigned long __user *, user_mask_ptr)
4664 {
4665 	cpumask_var_t new_mask;
4666 	int retval;
4667 
4668 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4669 		return -ENOMEM;
4670 
4671 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4672 	if (retval == 0)
4673 		retval = sched_setaffinity(pid, new_mask);
4674 	free_cpumask_var(new_mask);
4675 	return retval;
4676 }
4677 
sched_getaffinity(pid_t pid,struct cpumask * mask)4678 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4679 {
4680 	struct task_struct *p;
4681 	unsigned long flags;
4682 	int retval;
4683 
4684 	rcu_read_lock();
4685 
4686 	retval = -ESRCH;
4687 	p = find_process_by_pid(pid);
4688 	if (!p)
4689 		goto out_unlock;
4690 
4691 	retval = security_task_getscheduler(p);
4692 	if (retval)
4693 		goto out_unlock;
4694 
4695 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4696 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4697 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4698 
4699 out_unlock:
4700 	rcu_read_unlock();
4701 
4702 	return retval;
4703 }
4704 
4705 /**
4706  * sys_sched_getaffinity - get the cpu affinity of a process
4707  * @pid: pid of the process
4708  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4709  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4710  *
4711  * Return: 0 on success. An error code otherwise.
4712  */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)4713 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4714 		unsigned long __user *, user_mask_ptr)
4715 {
4716 	int ret;
4717 	cpumask_var_t mask;
4718 
4719 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4720 		return -EINVAL;
4721 	if (len & (sizeof(unsigned long)-1))
4722 		return -EINVAL;
4723 
4724 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4725 		return -ENOMEM;
4726 
4727 	ret = sched_getaffinity(pid, mask);
4728 	if (ret == 0) {
4729 		size_t retlen = min_t(size_t, len, cpumask_size());
4730 
4731 		if (copy_to_user(user_mask_ptr, mask, retlen))
4732 			ret = -EFAULT;
4733 		else
4734 			ret = retlen;
4735 	}
4736 	free_cpumask_var(mask);
4737 
4738 	return ret;
4739 }
4740 
4741 /**
4742  * sys_sched_yield - yield the current processor to other threads.
4743  *
4744  * This function yields the current CPU to other tasks. If there are no
4745  * other threads running on this CPU then this function will return.
4746  *
4747  * Return: 0.
4748  */
SYSCALL_DEFINE0(sched_yield)4749 SYSCALL_DEFINE0(sched_yield)
4750 {
4751 	struct rq *rq = this_rq_lock();
4752 
4753 	schedstat_inc(rq, yld_count);
4754 	current->sched_class->yield_task(rq);
4755 
4756 	/*
4757 	 * Since we are going to call schedule() anyway, there's
4758 	 * no need to preempt or enable interrupts:
4759 	 */
4760 	__release(rq->lock);
4761 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4762 	do_raw_spin_unlock(&rq->lock);
4763 	sched_preempt_enable_no_resched();
4764 
4765 	schedule();
4766 
4767 	return 0;
4768 }
4769 
_cond_resched(void)4770 int __sched _cond_resched(void)
4771 {
4772 	if (should_resched(0)) {
4773 		preempt_schedule_common();
4774 		return 1;
4775 	}
4776 	return 0;
4777 }
4778 EXPORT_SYMBOL(_cond_resched);
4779 
4780 /*
4781  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4782  * call schedule, and on return reacquire the lock.
4783  *
4784  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4785  * operations here to prevent schedule() from being called twice (once via
4786  * spin_unlock(), once by hand).
4787  */
__cond_resched_lock(spinlock_t * lock)4788 int __cond_resched_lock(spinlock_t *lock)
4789 {
4790 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4791 	int ret = 0;
4792 
4793 	lockdep_assert_held(lock);
4794 
4795 	if (spin_needbreak(lock) || resched) {
4796 		spin_unlock(lock);
4797 		if (resched)
4798 			preempt_schedule_common();
4799 		else
4800 			cpu_relax();
4801 		ret = 1;
4802 		spin_lock(lock);
4803 	}
4804 	return ret;
4805 }
4806 EXPORT_SYMBOL(__cond_resched_lock);
4807 
__cond_resched_softirq(void)4808 int __sched __cond_resched_softirq(void)
4809 {
4810 	BUG_ON(!in_softirq());
4811 
4812 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4813 		local_bh_enable();
4814 		preempt_schedule_common();
4815 		local_bh_disable();
4816 		return 1;
4817 	}
4818 	return 0;
4819 }
4820 EXPORT_SYMBOL(__cond_resched_softirq);
4821 
4822 /**
4823  * yield - yield the current processor to other threads.
4824  *
4825  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4826  *
4827  * The scheduler is at all times free to pick the calling task as the most
4828  * eligible task to run, if removing the yield() call from your code breaks
4829  * it, its already broken.
4830  *
4831  * Typical broken usage is:
4832  *
4833  * while (!event)
4834  * 	yield();
4835  *
4836  * where one assumes that yield() will let 'the other' process run that will
4837  * make event true. If the current task is a SCHED_FIFO task that will never
4838  * happen. Never use yield() as a progress guarantee!!
4839  *
4840  * If you want to use yield() to wait for something, use wait_event().
4841  * If you want to use yield() to be 'nice' for others, use cond_resched().
4842  * If you still want to use yield(), do not!
4843  */
yield(void)4844 void __sched yield(void)
4845 {
4846 	set_current_state(TASK_RUNNING);
4847 	sys_sched_yield();
4848 }
4849 EXPORT_SYMBOL(yield);
4850 
4851 /**
4852  * yield_to - yield the current processor to another thread in
4853  * your thread group, or accelerate that thread toward the
4854  * processor it's on.
4855  * @p: target task
4856  * @preempt: whether task preemption is allowed or not
4857  *
4858  * It's the caller's job to ensure that the target task struct
4859  * can't go away on us before we can do any checks.
4860  *
4861  * Return:
4862  *	true (>0) if we indeed boosted the target task.
4863  *	false (0) if we failed to boost the target.
4864  *	-ESRCH if there's no task to yield to.
4865  */
yield_to(struct task_struct * p,bool preempt)4866 int __sched yield_to(struct task_struct *p, bool preempt)
4867 {
4868 	struct task_struct *curr = current;
4869 	struct rq *rq, *p_rq;
4870 	unsigned long flags;
4871 	int yielded = 0;
4872 
4873 	local_irq_save(flags);
4874 	rq = this_rq();
4875 
4876 again:
4877 	p_rq = task_rq(p);
4878 	/*
4879 	 * If we're the only runnable task on the rq and target rq also
4880 	 * has only one task, there's absolutely no point in yielding.
4881 	 */
4882 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4883 		yielded = -ESRCH;
4884 		goto out_irq;
4885 	}
4886 
4887 	double_rq_lock(rq, p_rq);
4888 	if (task_rq(p) != p_rq) {
4889 		double_rq_unlock(rq, p_rq);
4890 		goto again;
4891 	}
4892 
4893 	if (!curr->sched_class->yield_to_task)
4894 		goto out_unlock;
4895 
4896 	if (curr->sched_class != p->sched_class)
4897 		goto out_unlock;
4898 
4899 	if (task_running(p_rq, p) || p->state)
4900 		goto out_unlock;
4901 
4902 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4903 	if (yielded) {
4904 		schedstat_inc(rq, yld_count);
4905 		/*
4906 		 * Make p's CPU reschedule; pick_next_entity takes care of
4907 		 * fairness.
4908 		 */
4909 		if (preempt && rq != p_rq)
4910 			resched_curr(p_rq);
4911 	}
4912 
4913 out_unlock:
4914 	double_rq_unlock(rq, p_rq);
4915 out_irq:
4916 	local_irq_restore(flags);
4917 
4918 	if (yielded > 0)
4919 		schedule();
4920 
4921 	return yielded;
4922 }
4923 EXPORT_SYMBOL_GPL(yield_to);
4924 
4925 /*
4926  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4927  * that process accounting knows that this is a task in IO wait state.
4928  */
io_schedule_timeout(long timeout)4929 long __sched io_schedule_timeout(long timeout)
4930 {
4931 	int old_iowait = current->in_iowait;
4932 	struct rq *rq;
4933 	long ret;
4934 
4935 	current->in_iowait = 1;
4936 	blk_schedule_flush_plug(current);
4937 
4938 	delayacct_blkio_start();
4939 	rq = raw_rq();
4940 	atomic_inc(&rq->nr_iowait);
4941 	ret = schedule_timeout(timeout);
4942 	current->in_iowait = old_iowait;
4943 	atomic_dec(&rq->nr_iowait);
4944 	delayacct_blkio_end();
4945 
4946 	return ret;
4947 }
4948 EXPORT_SYMBOL(io_schedule_timeout);
4949 
4950 /**
4951  * sys_sched_get_priority_max - return maximum RT priority.
4952  * @policy: scheduling class.
4953  *
4954  * Return: On success, this syscall returns the maximum
4955  * rt_priority that can be used by a given scheduling class.
4956  * On failure, a negative error code is returned.
4957  */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)4958 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4959 {
4960 	int ret = -EINVAL;
4961 
4962 	switch (policy) {
4963 	case SCHED_FIFO:
4964 	case SCHED_RR:
4965 		ret = MAX_USER_RT_PRIO-1;
4966 		break;
4967 	case SCHED_DEADLINE:
4968 	case SCHED_NORMAL:
4969 	case SCHED_BATCH:
4970 	case SCHED_IDLE:
4971 		ret = 0;
4972 		break;
4973 	}
4974 	return ret;
4975 }
4976 
4977 /**
4978  * sys_sched_get_priority_min - return minimum RT priority.
4979  * @policy: scheduling class.
4980  *
4981  * Return: On success, this syscall returns the minimum
4982  * rt_priority that can be used by a given scheduling class.
4983  * On failure, a negative error code is returned.
4984  */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)4985 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4986 {
4987 	int ret = -EINVAL;
4988 
4989 	switch (policy) {
4990 	case SCHED_FIFO:
4991 	case SCHED_RR:
4992 		ret = 1;
4993 		break;
4994 	case SCHED_DEADLINE:
4995 	case SCHED_NORMAL:
4996 	case SCHED_BATCH:
4997 	case SCHED_IDLE:
4998 		ret = 0;
4999 	}
5000 	return ret;
5001 }
5002 
5003 /**
5004  * sys_sched_rr_get_interval - return the default timeslice of a process.
5005  * @pid: pid of the process.
5006  * @interval: userspace pointer to the timeslice value.
5007  *
5008  * this syscall writes the default timeslice value of a given process
5009  * into the user-space timespec buffer. A value of '0' means infinity.
5010  *
5011  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5012  * an error code.
5013  */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct timespec __user *,interval)5014 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5015 		struct timespec __user *, interval)
5016 {
5017 	struct task_struct *p;
5018 	unsigned int time_slice;
5019 	unsigned long flags;
5020 	struct rq *rq;
5021 	int retval;
5022 	struct timespec t;
5023 
5024 	if (pid < 0)
5025 		return -EINVAL;
5026 
5027 	retval = -ESRCH;
5028 	rcu_read_lock();
5029 	p = find_process_by_pid(pid);
5030 	if (!p)
5031 		goto out_unlock;
5032 
5033 	retval = security_task_getscheduler(p);
5034 	if (retval)
5035 		goto out_unlock;
5036 
5037 	rq = task_rq_lock(p, &flags);
5038 	time_slice = 0;
5039 	if (p->sched_class->get_rr_interval)
5040 		time_slice = p->sched_class->get_rr_interval(rq, p);
5041 	task_rq_unlock(rq, p, &flags);
5042 
5043 	rcu_read_unlock();
5044 	jiffies_to_timespec(time_slice, &t);
5045 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5046 	return retval;
5047 
5048 out_unlock:
5049 	rcu_read_unlock();
5050 	return retval;
5051 }
5052 
5053 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5054 
sched_show_task(struct task_struct * p)5055 void sched_show_task(struct task_struct *p)
5056 {
5057 	unsigned long free = 0;
5058 	int ppid;
5059 	unsigned long state = p->state;
5060 
5061 	if (state)
5062 		state = __ffs(state) + 1;
5063 	printk(KERN_INFO "%-15.15s %c", p->comm,
5064 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5065 #if BITS_PER_LONG == 32
5066 	if (state == TASK_RUNNING)
5067 		printk(KERN_CONT " running  ");
5068 	else
5069 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5070 #else
5071 	if (state == TASK_RUNNING)
5072 		printk(KERN_CONT "  running task    ");
5073 	else
5074 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5075 #endif
5076 #ifdef CONFIG_DEBUG_STACK_USAGE
5077 	free = stack_not_used(p);
5078 #endif
5079 	ppid = 0;
5080 	rcu_read_lock();
5081 	if (pid_alive(p))
5082 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5083 	rcu_read_unlock();
5084 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5085 		task_pid_nr(p), ppid,
5086 		(unsigned long)task_thread_info(p)->flags);
5087 
5088 	print_worker_info(KERN_INFO, p);
5089 	show_stack(p, NULL);
5090 }
5091 
show_state_filter(unsigned long state_filter)5092 void show_state_filter(unsigned long state_filter)
5093 {
5094 	struct task_struct *g, *p;
5095 
5096 #if BITS_PER_LONG == 32
5097 	printk(KERN_INFO
5098 		"  task                PC stack   pid father\n");
5099 #else
5100 	printk(KERN_INFO
5101 		"  task                        PC stack   pid father\n");
5102 #endif
5103 	rcu_read_lock();
5104 	for_each_process_thread(g, p) {
5105 		/*
5106 		 * reset the NMI-timeout, listing all files on a slow
5107 		 * console might take a lot of time:
5108 		 * Also, reset softlockup watchdogs on all CPUs, because
5109 		 * another CPU might be blocked waiting for us to process
5110 		 * an IPI.
5111 		 */
5112 		touch_nmi_watchdog();
5113 		touch_all_softlockup_watchdogs();
5114 		if (!state_filter || (p->state & state_filter))
5115 			sched_show_task(p);
5116 	}
5117 
5118 #ifdef CONFIG_SCHED_DEBUG
5119 	sysrq_sched_debug_show();
5120 #endif
5121 	rcu_read_unlock();
5122 	/*
5123 	 * Only show locks if all tasks are dumped:
5124 	 */
5125 	if (!state_filter)
5126 		debug_show_all_locks();
5127 }
5128 
init_idle_bootup_task(struct task_struct * idle)5129 void init_idle_bootup_task(struct task_struct *idle)
5130 {
5131 	idle->sched_class = &idle_sched_class;
5132 }
5133 
5134 /**
5135  * init_idle - set up an idle thread for a given CPU
5136  * @idle: task in question
5137  * @cpu: cpu the idle task belongs to
5138  *
5139  * NOTE: this function does not set the idle thread's NEED_RESCHED
5140  * flag, to make booting more robust.
5141  */
init_idle(struct task_struct * idle,int cpu)5142 void init_idle(struct task_struct *idle, int cpu)
5143 {
5144 	struct rq *rq = cpu_rq(cpu);
5145 	unsigned long flags;
5146 
5147 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5148 	raw_spin_lock(&rq->lock);
5149 
5150 	__sched_fork(0, idle);
5151 
5152 	idle->state = TASK_RUNNING;
5153 	idle->se.exec_start = sched_clock();
5154 
5155 #ifdef CONFIG_SMP
5156 	/*
5157 	 * Its possible that init_idle() gets called multiple times on a task,
5158 	 * in that case do_set_cpus_allowed() will not do the right thing.
5159 	 *
5160 	 * And since this is boot we can forgo the serialization.
5161 	 */
5162 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5163 #endif
5164 	/*
5165 	 * We're having a chicken and egg problem, even though we are
5166 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5167 	 * lockdep check in task_group() will fail.
5168 	 *
5169 	 * Similar case to sched_fork(). / Alternatively we could
5170 	 * use task_rq_lock() here and obtain the other rq->lock.
5171 	 *
5172 	 * Silence PROVE_RCU
5173 	 */
5174 	rcu_read_lock();
5175 	__set_task_cpu(idle, cpu);
5176 	rcu_read_unlock();
5177 
5178 	rq->curr = rq->idle = idle;
5179 	idle->on_rq = TASK_ON_RQ_QUEUED;
5180 #ifdef CONFIG_SMP
5181 	idle->on_cpu = 1;
5182 #endif
5183 	raw_spin_unlock(&rq->lock);
5184 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5185 
5186 	/* Set the preempt count _outside_ the spinlocks! */
5187 	init_idle_preempt_count(idle, cpu);
5188 
5189 	/*
5190 	 * The idle tasks have their own, simple scheduling class:
5191 	 */
5192 	idle->sched_class = &idle_sched_class;
5193 	ftrace_graph_init_idle_task(idle, cpu);
5194 	vtime_init_idle(idle, cpu);
5195 #ifdef CONFIG_SMP
5196 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5197 #endif
5198 }
5199 
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)5200 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5201 			      const struct cpumask *trial)
5202 {
5203 	int ret = 1, trial_cpus;
5204 	struct dl_bw *cur_dl_b;
5205 	unsigned long flags;
5206 
5207 	if (!cpumask_weight(cur))
5208 		return ret;
5209 
5210 	rcu_read_lock_sched();
5211 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5212 	trial_cpus = cpumask_weight(trial);
5213 
5214 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5215 	if (cur_dl_b->bw != -1 &&
5216 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5217 		ret = 0;
5218 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5219 	rcu_read_unlock_sched();
5220 
5221 	return ret;
5222 }
5223 
task_can_attach(struct task_struct * p,const struct cpumask * cs_cpus_allowed)5224 int task_can_attach(struct task_struct *p,
5225 		    const struct cpumask *cs_cpus_allowed)
5226 {
5227 	int ret = 0;
5228 
5229 	/*
5230 	 * Kthreads which disallow setaffinity shouldn't be moved
5231 	 * to a new cpuset; we don't want to change their cpu
5232 	 * affinity and isolating such threads by their set of
5233 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5234 	 * applicable for such threads.  This prevents checking for
5235 	 * success of set_cpus_allowed_ptr() on all attached tasks
5236 	 * before cpus_allowed may be changed.
5237 	 */
5238 	if (p->flags & PF_NO_SETAFFINITY) {
5239 		ret = -EINVAL;
5240 		goto out;
5241 	}
5242 
5243 #ifdef CONFIG_SMP
5244 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5245 					      cs_cpus_allowed)) {
5246 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5247 							cs_cpus_allowed);
5248 		struct dl_bw *dl_b;
5249 		bool overflow;
5250 		int cpus;
5251 		unsigned long flags;
5252 
5253 		rcu_read_lock_sched();
5254 		dl_b = dl_bw_of(dest_cpu);
5255 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5256 		cpus = dl_bw_cpus(dest_cpu);
5257 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5258 		if (overflow)
5259 			ret = -EBUSY;
5260 		else {
5261 			/*
5262 			 * We reserve space for this task in the destination
5263 			 * root_domain, as we can't fail after this point.
5264 			 * We will free resources in the source root_domain
5265 			 * later on (see set_cpus_allowed_dl()).
5266 			 */
5267 			__dl_add(dl_b, p->dl.dl_bw);
5268 		}
5269 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5270 		rcu_read_unlock_sched();
5271 
5272 	}
5273 #endif
5274 out:
5275 	return ret;
5276 }
5277 
5278 #ifdef CONFIG_SMP
5279 
5280 #ifdef CONFIG_NUMA_BALANCING
5281 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)5282 int migrate_task_to(struct task_struct *p, int target_cpu)
5283 {
5284 	struct migration_arg arg = { p, target_cpu };
5285 	int curr_cpu = task_cpu(p);
5286 
5287 	if (curr_cpu == target_cpu)
5288 		return 0;
5289 
5290 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5291 		return -EINVAL;
5292 
5293 	/* TODO: This is not properly updating schedstats */
5294 
5295 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5296 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5297 }
5298 
5299 /*
5300  * Requeue a task on a given node and accurately track the number of NUMA
5301  * tasks on the runqueues
5302  */
sched_setnuma(struct task_struct * p,int nid)5303 void sched_setnuma(struct task_struct *p, int nid)
5304 {
5305 	struct rq *rq;
5306 	unsigned long flags;
5307 	bool queued, running;
5308 
5309 	rq = task_rq_lock(p, &flags);
5310 	queued = task_on_rq_queued(p);
5311 	running = task_current(rq, p);
5312 
5313 	if (queued)
5314 		dequeue_task(rq, p, DEQUEUE_SAVE);
5315 	if (running)
5316 		put_prev_task(rq, p);
5317 
5318 	p->numa_preferred_nid = nid;
5319 
5320 	if (running)
5321 		p->sched_class->set_curr_task(rq);
5322 	if (queued)
5323 		enqueue_task(rq, p, ENQUEUE_RESTORE);
5324 	task_rq_unlock(rq, p, &flags);
5325 }
5326 #endif /* CONFIG_NUMA_BALANCING */
5327 
5328 #ifdef CONFIG_HOTPLUG_CPU
5329 /*
5330  * Ensures that the idle task is using init_mm right before its cpu goes
5331  * offline.
5332  */
idle_task_exit(void)5333 void idle_task_exit(void)
5334 {
5335 	struct mm_struct *mm = current->active_mm;
5336 
5337 	BUG_ON(cpu_online(smp_processor_id()));
5338 
5339 	if (mm != &init_mm) {
5340 		switch_mm(mm, &init_mm, current);
5341 		finish_arch_post_lock_switch();
5342 	}
5343 	mmdrop(mm);
5344 }
5345 
5346 /*
5347  * Since this CPU is going 'away' for a while, fold any nr_active delta
5348  * we might have. Assumes we're called after migrate_tasks() so that the
5349  * nr_active count is stable.
5350  *
5351  * Also see the comment "Global load-average calculations".
5352  */
calc_load_migrate(struct rq * rq)5353 static void calc_load_migrate(struct rq *rq)
5354 {
5355 	long delta = calc_load_fold_active(rq);
5356 	if (delta)
5357 		atomic_long_add(delta, &calc_load_tasks);
5358 }
5359 
put_prev_task_fake(struct rq * rq,struct task_struct * prev)5360 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5361 {
5362 }
5363 
5364 static const struct sched_class fake_sched_class = {
5365 	.put_prev_task = put_prev_task_fake,
5366 };
5367 
5368 static struct task_struct fake_task = {
5369 	/*
5370 	 * Avoid pull_{rt,dl}_task()
5371 	 */
5372 	.prio = MAX_PRIO + 1,
5373 	.sched_class = &fake_sched_class,
5374 };
5375 
5376 /*
5377  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5378  * try_to_wake_up()->select_task_rq().
5379  *
5380  * Called with rq->lock held even though we'er in stop_machine() and
5381  * there's no concurrency possible, we hold the required locks anyway
5382  * because of lock validation efforts.
5383  */
migrate_tasks(struct rq * dead_rq)5384 static void migrate_tasks(struct rq *dead_rq)
5385 {
5386 	struct rq *rq = dead_rq;
5387 	struct task_struct *next, *stop = rq->stop;
5388 	int dest_cpu;
5389 
5390 	/*
5391 	 * Fudge the rq selection such that the below task selection loop
5392 	 * doesn't get stuck on the currently eligible stop task.
5393 	 *
5394 	 * We're currently inside stop_machine() and the rq is either stuck
5395 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5396 	 * either way we should never end up calling schedule() until we're
5397 	 * done here.
5398 	 */
5399 	rq->stop = NULL;
5400 
5401 	/*
5402 	 * put_prev_task() and pick_next_task() sched
5403 	 * class method both need to have an up-to-date
5404 	 * value of rq->clock[_task]
5405 	 */
5406 	update_rq_clock(rq);
5407 
5408 	for (;;) {
5409 		/*
5410 		 * There's this thread running, bail when that's the only
5411 		 * remaining thread.
5412 		 */
5413 		if (rq->nr_running == 1)
5414 			break;
5415 
5416 		/*
5417 		 * pick_next_task assumes pinned rq->lock.
5418 		 */
5419 		lockdep_pin_lock(&rq->lock);
5420 		next = pick_next_task(rq, &fake_task);
5421 		BUG_ON(!next);
5422 		next->sched_class->put_prev_task(rq, next);
5423 
5424 		/*
5425 		 * Rules for changing task_struct::cpus_allowed are holding
5426 		 * both pi_lock and rq->lock, such that holding either
5427 		 * stabilizes the mask.
5428 		 *
5429 		 * Drop rq->lock is not quite as disastrous as it usually is
5430 		 * because !cpu_active at this point, which means load-balance
5431 		 * will not interfere. Also, stop-machine.
5432 		 */
5433 		lockdep_unpin_lock(&rq->lock);
5434 		raw_spin_unlock(&rq->lock);
5435 		raw_spin_lock(&next->pi_lock);
5436 		raw_spin_lock(&rq->lock);
5437 
5438 		/*
5439 		 * Since we're inside stop-machine, _nothing_ should have
5440 		 * changed the task, WARN if weird stuff happened, because in
5441 		 * that case the above rq->lock drop is a fail too.
5442 		 */
5443 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5444 			raw_spin_unlock(&next->pi_lock);
5445 			continue;
5446 		}
5447 
5448 		/* Find suitable destination for @next, with force if needed. */
5449 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5450 
5451 		rq = __migrate_task(rq, next, dest_cpu);
5452 		if (rq != dead_rq) {
5453 			raw_spin_unlock(&rq->lock);
5454 			rq = dead_rq;
5455 			raw_spin_lock(&rq->lock);
5456 		}
5457 		raw_spin_unlock(&next->pi_lock);
5458 	}
5459 
5460 	rq->stop = stop;
5461 }
5462 #endif /* CONFIG_HOTPLUG_CPU */
5463 
5464 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5465 
5466 static struct ctl_table sd_ctl_dir[] = {
5467 	{
5468 		.procname	= "sched_domain",
5469 		.mode		= 0555,
5470 	},
5471 	{}
5472 };
5473 
5474 static struct ctl_table sd_ctl_root[] = {
5475 	{
5476 		.procname	= "kernel",
5477 		.mode		= 0555,
5478 		.child		= sd_ctl_dir,
5479 	},
5480 	{}
5481 };
5482 
sd_alloc_ctl_entry(int n)5483 static struct ctl_table *sd_alloc_ctl_entry(int n)
5484 {
5485 	struct ctl_table *entry =
5486 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5487 
5488 	return entry;
5489 }
5490 
sd_free_ctl_entry(struct ctl_table ** tablep)5491 static void sd_free_ctl_entry(struct ctl_table **tablep)
5492 {
5493 	struct ctl_table *entry;
5494 
5495 	/*
5496 	 * In the intermediate directories, both the child directory and
5497 	 * procname are dynamically allocated and could fail but the mode
5498 	 * will always be set. In the lowest directory the names are
5499 	 * static strings and all have proc handlers.
5500 	 */
5501 	for (entry = *tablep; entry->mode; entry++) {
5502 		if (entry->child)
5503 			sd_free_ctl_entry(&entry->child);
5504 		if (entry->proc_handler == NULL)
5505 			kfree(entry->procname);
5506 	}
5507 
5508 	kfree(*tablep);
5509 	*tablep = NULL;
5510 }
5511 
5512 static int min_load_idx = 0;
5513 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5514 
5515 static void
set_table_entry(struct ctl_table * entry,const char * procname,void * data,int maxlen,umode_t mode,proc_handler * proc_handler,bool load_idx)5516 set_table_entry(struct ctl_table *entry,
5517 		const char *procname, void *data, int maxlen,
5518 		umode_t mode, proc_handler *proc_handler,
5519 		bool load_idx)
5520 {
5521 	entry->procname = procname;
5522 	entry->data = data;
5523 	entry->maxlen = maxlen;
5524 	entry->mode = mode;
5525 	entry->proc_handler = proc_handler;
5526 
5527 	if (load_idx) {
5528 		entry->extra1 = &min_load_idx;
5529 		entry->extra2 = &max_load_idx;
5530 	}
5531 }
5532 
5533 static struct ctl_table *
sd_alloc_ctl_energy_table(struct sched_group_energy * sge)5534 sd_alloc_ctl_energy_table(struct sched_group_energy *sge)
5535 {
5536 	struct ctl_table *table = sd_alloc_ctl_entry(5);
5537 
5538 	if (table == NULL)
5539 		return NULL;
5540 
5541 	set_table_entry(&table[0], "nr_idle_states", &sge->nr_idle_states,
5542 			sizeof(int), 0644, proc_dointvec_minmax, false);
5543 	set_table_entry(&table[1], "idle_states", &sge->idle_states[0].power,
5544 			sge->nr_idle_states*sizeof(struct idle_state), 0644,
5545 			proc_doulongvec_minmax, false);
5546 	set_table_entry(&table[2], "nr_cap_states", &sge->nr_cap_states,
5547 			sizeof(int), 0644, proc_dointvec_minmax, false);
5548 	set_table_entry(&table[3], "cap_states", &sge->cap_states[0].cap,
5549 			sge->nr_cap_states*sizeof(struct capacity_state), 0644,
5550 			proc_doulongvec_minmax, false);
5551 
5552 	return table;
5553 }
5554 
5555 static struct ctl_table *
sd_alloc_ctl_group_table(struct sched_group * sg)5556 sd_alloc_ctl_group_table(struct sched_group *sg)
5557 {
5558 	struct ctl_table *table = sd_alloc_ctl_entry(2);
5559 
5560 	if (table == NULL)
5561 		return NULL;
5562 
5563 	table->procname = kstrdup("energy", GFP_KERNEL);
5564 	table->mode = 0555;
5565 	table->child = sd_alloc_ctl_energy_table((struct sched_group_energy *)sg->sge);
5566 
5567 	return table;
5568 }
5569 
5570 static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain * sd)5571 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5572 {
5573 	struct ctl_table *table;
5574 	unsigned int nr_entries = 14;
5575 
5576 	int i = 0;
5577 	struct sched_group *sg = sd->groups;
5578 
5579 	if (sg->sge) {
5580 		int nr_sgs = 0;
5581 
5582 		do {} while (nr_sgs++, sg = sg->next, sg != sd->groups);
5583 
5584 		nr_entries += nr_sgs;
5585 	}
5586 
5587 	table = sd_alloc_ctl_entry(nr_entries);
5588 
5589 	if (table == NULL)
5590 		return NULL;
5591 
5592 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5593 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5594 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5595 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5596 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5597 		sizeof(int), 0644, proc_dointvec_minmax, true);
5598 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5599 		sizeof(int), 0644, proc_dointvec_minmax, true);
5600 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5601 		sizeof(int), 0644, proc_dointvec_minmax, true);
5602 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5603 		sizeof(int), 0644, proc_dointvec_minmax, true);
5604 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5605 		sizeof(int), 0644, proc_dointvec_minmax, true);
5606 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5607 		sizeof(int), 0644, proc_dointvec_minmax, false);
5608 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5609 		sizeof(int), 0644, proc_dointvec_minmax, false);
5610 	set_table_entry(&table[9], "cache_nice_tries",
5611 		&sd->cache_nice_tries,
5612 		sizeof(int), 0644, proc_dointvec_minmax, false);
5613 	set_table_entry(&table[10], "flags", &sd->flags,
5614 		sizeof(int), 0644, proc_dointvec_minmax, false);
5615 	set_table_entry(&table[11], "max_newidle_lb_cost",
5616 		&sd->max_newidle_lb_cost,
5617 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5618 	set_table_entry(&table[12], "name", sd->name,
5619 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5620 	sg = sd->groups;
5621 	if (sg->sge) {
5622 		char buf[32];
5623 		struct ctl_table *entry = &table[13];
5624 
5625 		do {
5626 			snprintf(buf, 32, "group%d", i);
5627 			entry->procname = kstrdup(buf, GFP_KERNEL);
5628 			entry->mode = 0555;
5629 			entry->child = sd_alloc_ctl_group_table(sg);
5630 		} while (entry++, i++, sg = sg->next, sg != sd->groups);
5631 	}
5632 	/* &table[nr_entries-1] is terminator */
5633 
5634 	return table;
5635 }
5636 
sd_alloc_ctl_cpu_table(int cpu)5637 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5638 {
5639 	struct ctl_table *entry, *table;
5640 	struct sched_domain *sd;
5641 	int domain_num = 0, i;
5642 	char buf[32];
5643 
5644 	for_each_domain(cpu, sd)
5645 		domain_num++;
5646 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5647 	if (table == NULL)
5648 		return NULL;
5649 
5650 	i = 0;
5651 	for_each_domain(cpu, sd) {
5652 		snprintf(buf, 32, "domain%d", i);
5653 		entry->procname = kstrdup(buf, GFP_KERNEL);
5654 		entry->mode = 0555;
5655 		entry->child = sd_alloc_ctl_domain_table(sd);
5656 		entry++;
5657 		i++;
5658 	}
5659 	return table;
5660 }
5661 
5662 static struct ctl_table_header *sd_sysctl_header;
register_sched_domain_sysctl(void)5663 static void register_sched_domain_sysctl(void)
5664 {
5665 	int i, cpu_num = num_possible_cpus();
5666 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5667 	char buf[32];
5668 
5669 	WARN_ON(sd_ctl_dir[0].child);
5670 	sd_ctl_dir[0].child = entry;
5671 
5672 	if (entry == NULL)
5673 		return;
5674 
5675 	for_each_possible_cpu(i) {
5676 		snprintf(buf, 32, "cpu%d", i);
5677 		entry->procname = kstrdup(buf, GFP_KERNEL);
5678 		entry->mode = 0555;
5679 		entry->child = sd_alloc_ctl_cpu_table(i);
5680 		entry++;
5681 	}
5682 
5683 	WARN_ON(sd_sysctl_header);
5684 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5685 }
5686 
5687 /* may be called multiple times per register */
unregister_sched_domain_sysctl(void)5688 static void unregister_sched_domain_sysctl(void)
5689 {
5690 	unregister_sysctl_table(sd_sysctl_header);
5691 	sd_sysctl_header = NULL;
5692 	if (sd_ctl_dir[0].child)
5693 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5694 }
5695 #else
register_sched_domain_sysctl(void)5696 static void register_sched_domain_sysctl(void)
5697 {
5698 }
unregister_sched_domain_sysctl(void)5699 static void unregister_sched_domain_sysctl(void)
5700 {
5701 }
5702 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5703 
set_rq_online(struct rq * rq)5704 static void set_rq_online(struct rq *rq)
5705 {
5706 	if (!rq->online) {
5707 		const struct sched_class *class;
5708 
5709 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5710 		rq->online = 1;
5711 
5712 		for_each_class(class) {
5713 			if (class->rq_online)
5714 				class->rq_online(rq);
5715 		}
5716 	}
5717 }
5718 
set_rq_offline(struct rq * rq)5719 static void set_rq_offline(struct rq *rq)
5720 {
5721 	if (rq->online) {
5722 		const struct sched_class *class;
5723 
5724 		for_each_class(class) {
5725 			if (class->rq_offline)
5726 				class->rq_offline(rq);
5727 		}
5728 
5729 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5730 		rq->online = 0;
5731 	}
5732 }
5733 
5734 /*
5735  * migration_call - callback that gets triggered when a CPU is added.
5736  * Here we can start up the necessary migration thread for the new CPU.
5737  */
5738 static int
migration_call(struct notifier_block * nfb,unsigned long action,void * hcpu)5739 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5740 {
5741 	int cpu = (long)hcpu;
5742 	unsigned long flags;
5743 	struct rq *rq = cpu_rq(cpu);
5744 
5745 	switch (action & ~CPU_TASKS_FROZEN) {
5746 
5747 	case CPU_UP_PREPARE:
5748 		raw_spin_lock_irqsave(&rq->lock, flags);
5749 		walt_set_window_start(rq);
5750 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5751 		rq->calc_load_update = calc_load_update;
5752 		break;
5753 
5754 	case CPU_ONLINE:
5755 		/* Update our root-domain */
5756 		raw_spin_lock_irqsave(&rq->lock, flags);
5757 		if (rq->rd) {
5758 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5759 
5760 			set_rq_online(rq);
5761 		}
5762 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5763 		break;
5764 
5765 #ifdef CONFIG_HOTPLUG_CPU
5766 	case CPU_DYING:
5767 		sched_ttwu_pending();
5768 		/* Update our root-domain */
5769 		raw_spin_lock_irqsave(&rq->lock, flags);
5770 		walt_migrate_sync_cpu(cpu);
5771 		if (rq->rd) {
5772 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5773 			set_rq_offline(rq);
5774 		}
5775 		migrate_tasks(rq);
5776 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5777 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5778 		break;
5779 
5780 	case CPU_DEAD:
5781 		calc_load_migrate(rq);
5782 		break;
5783 #endif
5784 	}
5785 
5786 	update_max_interval();
5787 
5788 	return NOTIFY_OK;
5789 }
5790 
5791 /*
5792  * Register at high priority so that task migration (migrate_all_tasks)
5793  * happens before everything else.  This has to be lower priority than
5794  * the notifier in the perf_event subsystem, though.
5795  */
5796 static struct notifier_block migration_notifier = {
5797 	.notifier_call = migration_call,
5798 	.priority = CPU_PRI_MIGRATION,
5799 };
5800 
set_cpu_rq_start_time(void)5801 static void set_cpu_rq_start_time(void)
5802 {
5803 	int cpu = smp_processor_id();
5804 	struct rq *rq = cpu_rq(cpu);
5805 	rq->age_stamp = sched_clock_cpu(cpu);
5806 }
5807 
5808 #ifdef CONFIG_SCHED_SMT
5809 atomic_t sched_smt_present = ATOMIC_INIT(0);
5810 #endif
5811 
sched_cpu_active(struct notifier_block * nfb,unsigned long action,void * hcpu)5812 static int sched_cpu_active(struct notifier_block *nfb,
5813 				      unsigned long action, void *hcpu)
5814 {
5815 	int cpu = (long)hcpu;
5816 
5817 	switch (action & ~CPU_TASKS_FROZEN) {
5818 	case CPU_STARTING:
5819 		set_cpu_rq_start_time();
5820 		return NOTIFY_OK;
5821 
5822 	case CPU_ONLINE:
5823 		/*
5824 		 * At this point a starting CPU has marked itself as online via
5825 		 * set_cpu_online(). But it might not yet have marked itself
5826 		 * as active, which is essential from here on.
5827 		 */
5828 #ifdef CONFIG_SCHED_SMT
5829 		/*
5830 		 * When going up, increment the number of cores with SMT present.
5831 		 */
5832 		if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
5833 			atomic_inc(&sched_smt_present);
5834 #endif
5835 		set_cpu_active(cpu, true);
5836 		stop_machine_unpark(cpu);
5837 		return NOTIFY_OK;
5838 
5839 	case CPU_DOWN_FAILED:
5840 #ifdef CONFIG_SCHED_SMT
5841 		/* Same as for CPU_ONLINE */
5842 		if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
5843 			atomic_inc(&sched_smt_present);
5844 #endif
5845 		set_cpu_active(cpu, true);
5846 		return NOTIFY_OK;
5847 
5848 	default:
5849 		return NOTIFY_DONE;
5850 	}
5851 }
5852 
sched_cpu_inactive(struct notifier_block * nfb,unsigned long action,void * hcpu)5853 static int sched_cpu_inactive(struct notifier_block *nfb,
5854 					unsigned long action, void *hcpu)
5855 {
5856 	switch (action & ~CPU_TASKS_FROZEN) {
5857 	case CPU_DOWN_PREPARE:
5858 		set_cpu_active((long)hcpu, false);
5859 #ifdef CONFIG_SCHED_SMT
5860 		/*
5861 		 * When going down, decrement the number of cores with SMT present.
5862 		 */
5863 		if (cpumask_weight(cpu_smt_mask((long)hcpu)) == 2)
5864 			atomic_dec(&sched_smt_present);
5865 #endif
5866 		return NOTIFY_OK;
5867 
5868 	default:
5869 		return NOTIFY_DONE;
5870 	}
5871 }
5872 
migration_init(void)5873 static int __init migration_init(void)
5874 {
5875 	void *cpu = (void *)(long)smp_processor_id();
5876 	int err;
5877 
5878 	/* Initialize migration for the boot CPU */
5879 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5880 	BUG_ON(err == NOTIFY_BAD);
5881 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5882 	register_cpu_notifier(&migration_notifier);
5883 
5884 	/* Register cpu active notifiers */
5885 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5886 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5887 
5888 	return 0;
5889 }
5890 early_initcall(migration_init);
5891 
5892 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5893 
5894 #ifdef CONFIG_SCHED_DEBUG
5895 
5896 static __read_mostly int sched_debug_enabled;
5897 
sched_debug_setup(char * str)5898 static int __init sched_debug_setup(char *str)
5899 {
5900 	sched_debug_enabled = 1;
5901 
5902 	return 0;
5903 }
5904 early_param("sched_debug", sched_debug_setup);
5905 
sched_debug(void)5906 static inline bool sched_debug(void)
5907 {
5908 	return sched_debug_enabled;
5909 }
5910 
sched_domain_debug_one(struct sched_domain * sd,int cpu,int level,struct cpumask * groupmask)5911 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5912 				  struct cpumask *groupmask)
5913 {
5914 	struct sched_group *group = sd->groups;
5915 
5916 	cpumask_clear(groupmask);
5917 
5918 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5919 
5920 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5921 		printk("does not load-balance\n");
5922 		return -1;
5923 	}
5924 
5925 	printk(KERN_CONT "span %*pbl level %s\n",
5926 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5927 
5928 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5929 		printk(KERN_ERR "ERROR: domain->span does not contain "
5930 				"CPU%d\n", cpu);
5931 	}
5932 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5933 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5934 				" CPU%d\n", cpu);
5935 	}
5936 
5937 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5938 	do {
5939 		if (!group) {
5940 			printk("\n");
5941 			printk(KERN_ERR "ERROR: group is NULL\n");
5942 			break;
5943 		}
5944 
5945 		if (!cpumask_weight(sched_group_cpus(group))) {
5946 			printk(KERN_CONT "\n");
5947 			printk(KERN_ERR "ERROR: empty group\n");
5948 			break;
5949 		}
5950 
5951 		if (!(sd->flags & SD_OVERLAP) &&
5952 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5953 			printk(KERN_CONT "\n");
5954 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5955 			break;
5956 		}
5957 
5958 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5959 
5960 		printk(KERN_CONT " %*pbl",
5961 		       cpumask_pr_args(sched_group_cpus(group)));
5962 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5963 			printk(KERN_CONT " (cpu_capacity = %lu)",
5964 				group->sgc->capacity);
5965 		}
5966 
5967 		group = group->next;
5968 	} while (group != sd->groups);
5969 	printk(KERN_CONT "\n");
5970 
5971 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5972 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5973 
5974 	if (sd->parent &&
5975 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5976 		printk(KERN_ERR "ERROR: parent span is not a superset "
5977 			"of domain->span\n");
5978 	return 0;
5979 }
5980 
sched_domain_debug(struct sched_domain * sd,int cpu)5981 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5982 {
5983 	int level = 0;
5984 
5985 	if (!sched_debug_enabled)
5986 		return;
5987 
5988 	if (!sd) {
5989 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5990 		return;
5991 	}
5992 
5993 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5994 
5995 	for (;;) {
5996 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5997 			break;
5998 		level++;
5999 		sd = sd->parent;
6000 		if (!sd)
6001 			break;
6002 	}
6003 }
6004 #else /* !CONFIG_SCHED_DEBUG */
6005 # define sched_domain_debug(sd, cpu) do { } while (0)
sched_debug(void)6006 static inline bool sched_debug(void)
6007 {
6008 	return false;
6009 }
6010 #endif /* CONFIG_SCHED_DEBUG */
6011 
sd_degenerate(struct sched_domain * sd)6012 static int sd_degenerate(struct sched_domain *sd)
6013 {
6014 	if (cpumask_weight(sched_domain_span(sd)) == 1) {
6015 		if (sd->groups->sge)
6016 			sd->flags &= ~SD_LOAD_BALANCE;
6017 		else
6018 			return 1;
6019 	}
6020 
6021 	/* Following flags need at least 2 groups */
6022 	if (sd->flags & (SD_LOAD_BALANCE |
6023 			 SD_BALANCE_NEWIDLE |
6024 			 SD_BALANCE_FORK |
6025 			 SD_BALANCE_EXEC |
6026 			 SD_SHARE_CPUCAPACITY |
6027 			 SD_ASYM_CPUCAPACITY |
6028 			 SD_SHARE_PKG_RESOURCES |
6029 			 SD_SHARE_POWERDOMAIN |
6030 			 SD_SHARE_CAP_STATES)) {
6031 		if (sd->groups != sd->groups->next)
6032 			return 0;
6033 	}
6034 
6035 	/* Following flags don't use groups */
6036 	if (sd->flags & (SD_WAKE_AFFINE))
6037 		return 0;
6038 
6039 	return 1;
6040 }
6041 
6042 static int
sd_parent_degenerate(struct sched_domain * sd,struct sched_domain * parent)6043 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6044 {
6045 	unsigned long cflags = sd->flags, pflags = parent->flags;
6046 
6047 	if (sd_degenerate(parent))
6048 		return 1;
6049 
6050 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6051 		return 0;
6052 
6053 	/* Flags needing groups don't count if only 1 group in parent */
6054 	if (parent->groups == parent->groups->next) {
6055 		pflags &= ~(SD_LOAD_BALANCE |
6056 				SD_BALANCE_NEWIDLE |
6057 				SD_BALANCE_FORK |
6058 				SD_BALANCE_EXEC |
6059 				SD_ASYM_CPUCAPACITY |
6060 				SD_SHARE_CPUCAPACITY |
6061 				SD_SHARE_PKG_RESOURCES |
6062 				SD_PREFER_SIBLING |
6063 				SD_SHARE_POWERDOMAIN |
6064 				SD_SHARE_CAP_STATES);
6065 		if (parent->groups->sge) {
6066 			parent->flags &= ~SD_LOAD_BALANCE;
6067 			return 0;
6068 		}
6069 		if (nr_node_ids == 1)
6070 			pflags &= ~SD_SERIALIZE;
6071 	}
6072 	if (~cflags & pflags)
6073 		return 0;
6074 
6075 	return 1;
6076 }
6077 
free_rootdomain(struct rcu_head * rcu)6078 static void free_rootdomain(struct rcu_head *rcu)
6079 {
6080 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6081 
6082 	cpupri_cleanup(&rd->cpupri);
6083 	cpudl_cleanup(&rd->cpudl);
6084 	free_cpumask_var(rd->dlo_mask);
6085 	free_cpumask_var(rd->rto_mask);
6086 	free_cpumask_var(rd->online);
6087 	free_cpumask_var(rd->span);
6088 	kfree(rd);
6089 }
6090 
rq_attach_root(struct rq * rq,struct root_domain * rd)6091 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6092 {
6093 	struct root_domain *old_rd = NULL;
6094 	unsigned long flags;
6095 
6096 	raw_spin_lock_irqsave(&rq->lock, flags);
6097 
6098 	if (rq->rd) {
6099 		old_rd = rq->rd;
6100 
6101 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6102 			set_rq_offline(rq);
6103 
6104 		cpumask_clear_cpu(rq->cpu, old_rd->span);
6105 
6106 		/*
6107 		 * If we dont want to free the old_rd yet then
6108 		 * set old_rd to NULL to skip the freeing later
6109 		 * in this function:
6110 		 */
6111 		if (!atomic_dec_and_test(&old_rd->refcount))
6112 			old_rd = NULL;
6113 	}
6114 
6115 	atomic_inc(&rd->refcount);
6116 	rq->rd = rd;
6117 
6118 	cpumask_set_cpu(rq->cpu, rd->span);
6119 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6120 		set_rq_online(rq);
6121 
6122 	raw_spin_unlock_irqrestore(&rq->lock, flags);
6123 
6124 	if (old_rd)
6125 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
6126 }
6127 
sched_get_rd(struct root_domain * rd)6128 void sched_get_rd(struct root_domain *rd)
6129 {
6130 	atomic_inc(&rd->refcount);
6131 }
6132 
sched_put_rd(struct root_domain * rd)6133 void sched_put_rd(struct root_domain *rd)
6134 {
6135 	if (!atomic_dec_and_test(&rd->refcount))
6136 		return;
6137 
6138 	call_rcu_sched(&rd->rcu, free_rootdomain);
6139 }
6140 
init_rootdomain(struct root_domain * rd)6141 static int init_rootdomain(struct root_domain *rd)
6142 {
6143 	memset(rd, 0, sizeof(*rd));
6144 
6145 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
6146 		goto out;
6147 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
6148 		goto free_span;
6149 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
6150 		goto free_online;
6151 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6152 		goto free_dlo_mask;
6153 
6154 #ifdef HAVE_RT_PUSH_IPI
6155 	rd->rto_cpu = -1;
6156 	raw_spin_lock_init(&rd->rto_lock);
6157 	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
6158 #endif
6159 
6160 	init_dl_bw(&rd->dl_bw);
6161 	if (cpudl_init(&rd->cpudl) != 0)
6162 		goto free_dlo_mask;
6163 
6164 	if (cpupri_init(&rd->cpupri) != 0)
6165 		goto free_rto_mask;
6166 
6167 	init_max_cpu_capacity(&rd->max_cpu_capacity);
6168 
6169 	rd->max_cap_orig_cpu = rd->min_cap_orig_cpu = -1;
6170 
6171 	return 0;
6172 
6173 free_rto_mask:
6174 	free_cpumask_var(rd->rto_mask);
6175 free_dlo_mask:
6176 	free_cpumask_var(rd->dlo_mask);
6177 free_online:
6178 	free_cpumask_var(rd->online);
6179 free_span:
6180 	free_cpumask_var(rd->span);
6181 out:
6182 	return -ENOMEM;
6183 }
6184 
6185 /*
6186  * By default the system creates a single root-domain with all cpus as
6187  * members (mimicking the global state we have today).
6188  */
6189 struct root_domain def_root_domain;
6190 
init_defrootdomain(void)6191 static void init_defrootdomain(void)
6192 {
6193 	init_rootdomain(&def_root_domain);
6194 
6195 	atomic_set(&def_root_domain.refcount, 1);
6196 }
6197 
alloc_rootdomain(void)6198 static struct root_domain *alloc_rootdomain(void)
6199 {
6200 	struct root_domain *rd;
6201 
6202 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6203 	if (!rd)
6204 		return NULL;
6205 
6206 	if (init_rootdomain(rd) != 0) {
6207 		kfree(rd);
6208 		return NULL;
6209 	}
6210 
6211 	return rd;
6212 }
6213 
free_sched_groups(struct sched_group * sg,int free_sgc)6214 static void free_sched_groups(struct sched_group *sg, int free_sgc)
6215 {
6216 	struct sched_group *tmp, *first;
6217 
6218 	if (!sg)
6219 		return;
6220 
6221 	first = sg;
6222 	do {
6223 		tmp = sg->next;
6224 
6225 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
6226 			kfree(sg->sgc);
6227 
6228 		kfree(sg);
6229 		sg = tmp;
6230 	} while (sg != first);
6231 }
6232 
free_sched_domain(struct rcu_head * rcu)6233 static void free_sched_domain(struct rcu_head *rcu)
6234 {
6235 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6236 
6237 	/*
6238 	 * If its an overlapping domain it has private groups, iterate and
6239 	 * nuke them all.
6240 	 */
6241 	if (sd->flags & SD_OVERLAP) {
6242 		free_sched_groups(sd->groups, 1);
6243 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
6244 		kfree(sd->groups->sgc);
6245 		kfree(sd->groups);
6246 	}
6247 	kfree(sd);
6248 }
6249 
destroy_sched_domain(struct sched_domain * sd,int cpu)6250 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6251 {
6252 	call_rcu(&sd->rcu, free_sched_domain);
6253 }
6254 
destroy_sched_domains(struct sched_domain * sd,int cpu)6255 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6256 {
6257 	for (; sd; sd = sd->parent)
6258 		destroy_sched_domain(sd, cpu);
6259 }
6260 
6261 /*
6262  * Keep a special pointer to the highest sched_domain that has
6263  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6264  * allows us to avoid some pointer chasing select_idle_sibling().
6265  *
6266  * Also keep a unique ID per domain (we use the first cpu number in
6267  * the cpumask of the domain), this allows us to quickly tell if
6268  * two cpus are in the same cache domain, see cpus_share_cache().
6269  */
6270 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6271 DEFINE_PER_CPU(int, sd_llc_size);
6272 DEFINE_PER_CPU(int, sd_llc_id);
6273 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
6274 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
6275 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
6276 DEFINE_PER_CPU(struct sched_domain *, sd_ea);
6277 DEFINE_PER_CPU(struct sched_domain *, sd_scs);
6278 
update_top_cache_domain(int cpu)6279 static void update_top_cache_domain(int cpu)
6280 {
6281 	struct sched_domain *sd;
6282 	struct sched_domain *busy_sd = NULL, *ea_sd = NULL;
6283 	int id = cpu;
6284 	int size = 1;
6285 
6286 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6287 	if (sd) {
6288 		id = cpumask_first(sched_domain_span(sd));
6289 		size = cpumask_weight(sched_domain_span(sd));
6290 		busy_sd = sd->parent; /* sd_busy */
6291 	}
6292 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
6293 
6294 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6295 	per_cpu(sd_llc_size, cpu) = size;
6296 	per_cpu(sd_llc_id, cpu) = id;
6297 
6298 	sd = lowest_flag_domain(cpu, SD_NUMA);
6299 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6300 
6301 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6302 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6303 
6304 	for_each_domain(cpu, sd) {
6305 		if (sd->groups->sge)
6306 			ea_sd = sd;
6307 		else
6308 			break;
6309 	}
6310 	rcu_assign_pointer(per_cpu(sd_ea, cpu), ea_sd);
6311 
6312 	sd = highest_flag_domain(cpu, SD_SHARE_CAP_STATES);
6313 	rcu_assign_pointer(per_cpu(sd_scs, cpu), sd);
6314 }
6315 
6316 /*
6317  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6318  * hold the hotplug lock.
6319  */
6320 static void
cpu_attach_domain(struct sched_domain * sd,struct root_domain * rd,int cpu)6321 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6322 {
6323 	struct rq *rq = cpu_rq(cpu);
6324 	struct sched_domain *tmp;
6325 
6326 	/* Remove the sched domains which do not contribute to scheduling. */
6327 	for (tmp = sd; tmp; ) {
6328 		struct sched_domain *parent = tmp->parent;
6329 		if (!parent)
6330 			break;
6331 
6332 		if (sd_parent_degenerate(tmp, parent)) {
6333 			tmp->parent = parent->parent;
6334 			if (parent->parent)
6335 				parent->parent->child = tmp;
6336 			/*
6337 			 * Transfer SD_PREFER_SIBLING down in case of a
6338 			 * degenerate parent; the spans match for this
6339 			 * so the property transfers.
6340 			 */
6341 			if (parent->flags & SD_PREFER_SIBLING)
6342 				tmp->flags |= SD_PREFER_SIBLING;
6343 			destroy_sched_domain(parent, cpu);
6344 		} else
6345 			tmp = tmp->parent;
6346 	}
6347 
6348 	if (sd && sd_degenerate(sd)) {
6349 		tmp = sd;
6350 		sd = sd->parent;
6351 		destroy_sched_domain(tmp, cpu);
6352 		if (sd)
6353 			sd->child = NULL;
6354 	}
6355 
6356 	sched_domain_debug(sd, cpu);
6357 
6358 	rq_attach_root(rq, rd);
6359 	tmp = rq->sd;
6360 	rcu_assign_pointer(rq->sd, sd);
6361 	destroy_sched_domains(tmp, cpu);
6362 
6363 	update_top_cache_domain(cpu);
6364 }
6365 
6366 /* Setup the mask of cpus configured for isolated domains */
isolated_cpu_setup(char * str)6367 static int __init isolated_cpu_setup(char *str)
6368 {
6369 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6370 	cpulist_parse(str, cpu_isolated_map);
6371 	return 1;
6372 }
6373 
6374 __setup("isolcpus=", isolated_cpu_setup);
6375 
6376 struct s_data {
6377 	struct sched_domain ** __percpu sd;
6378 	struct root_domain	*rd;
6379 };
6380 
6381 enum s_alloc {
6382 	sa_rootdomain,
6383 	sa_sd,
6384 	sa_sd_storage,
6385 	sa_none,
6386 };
6387 
6388 /*
6389  * Build an iteration mask that can exclude certain CPUs from the upwards
6390  * domain traversal.
6391  *
6392  * Only CPUs that can arrive at this group should be considered to continue
6393  * balancing.
6394  *
6395  * Asymmetric node setups can result in situations where the domain tree is of
6396  * unequal depth, make sure to skip domains that already cover the entire
6397  * range.
6398  *
6399  * In that case build_sched_domains() will have terminated the iteration early
6400  * and our sibling sd spans will be empty. Domains should always include the
6401  * cpu they're built on, so check that.
6402  *
6403  */
build_group_mask(struct sched_domain * sd,struct sched_group * sg)6404 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6405 {
6406 	const struct cpumask *sg_span = sched_group_cpus(sg);
6407 	struct sd_data *sdd = sd->private;
6408 	struct sched_domain *sibling;
6409 	int i;
6410 
6411 	for_each_cpu(i, sg_span) {
6412 		sibling = *per_cpu_ptr(sdd->sd, i);
6413 
6414 		/*
6415 		 * Can happen in the asymmetric case, where these siblings are
6416 		 * unused. The mask will not be empty because those CPUs that
6417 		 * do have the top domain _should_ span the domain.
6418 		 */
6419 		if (!sibling->child)
6420 			continue;
6421 
6422 		/* If we would not end up here, we can't continue from here */
6423 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
6424 			continue;
6425 
6426 		cpumask_set_cpu(i, sched_group_mask(sg));
6427 	}
6428 
6429 	/* We must not have empty masks here */
6430 	WARN_ON_ONCE(cpumask_empty(sched_group_mask(sg)));
6431 }
6432 
6433 /*
6434  * Return the canonical balance cpu for this group, this is the first cpu
6435  * of this group that's also in the iteration mask.
6436  */
group_balance_cpu(struct sched_group * sg)6437 int group_balance_cpu(struct sched_group *sg)
6438 {
6439 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6440 }
6441 
6442 static int
build_overlap_sched_groups(struct sched_domain * sd,int cpu)6443 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6444 {
6445 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6446 	const struct cpumask *span = sched_domain_span(sd);
6447 	struct cpumask *covered = sched_domains_tmpmask;
6448 	struct sd_data *sdd = sd->private;
6449 	struct sched_domain *sibling;
6450 	int i;
6451 
6452 	cpumask_clear(covered);
6453 
6454 	for_each_cpu(i, span) {
6455 		struct cpumask *sg_span;
6456 
6457 		if (cpumask_test_cpu(i, covered))
6458 			continue;
6459 
6460 		sibling = *per_cpu_ptr(sdd->sd, i);
6461 
6462 		/* See the comment near build_group_mask(). */
6463 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6464 			continue;
6465 
6466 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6467 				GFP_KERNEL, cpu_to_node(cpu));
6468 
6469 		if (!sg)
6470 			goto fail;
6471 
6472 		sg_span = sched_group_cpus(sg);
6473 		if (sibling->child)
6474 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6475 		else
6476 			cpumask_set_cpu(i, sg_span);
6477 
6478 		cpumask_or(covered, covered, sg_span);
6479 
6480 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6481 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6482 			build_group_mask(sd, sg);
6483 
6484 		/*
6485 		 * Initialize sgc->capacity such that even if we mess up the
6486 		 * domains and no possible iteration will get us here, we won't
6487 		 * die on a /0 trap.
6488 		 */
6489 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6490 		sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
6491 		sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
6492 
6493 		/*
6494 		 * Make sure the first group of this domain contains the
6495 		 * canonical balance cpu. Otherwise the sched_domain iteration
6496 		 * breaks. See update_sg_lb_stats().
6497 		 */
6498 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6499 		    group_balance_cpu(sg) == cpu)
6500 			groups = sg;
6501 
6502 		if (!first)
6503 			first = sg;
6504 		if (last)
6505 			last->next = sg;
6506 		last = sg;
6507 		last->next = first;
6508 	}
6509 	sd->groups = groups;
6510 
6511 	return 0;
6512 
6513 fail:
6514 	free_sched_groups(first, 0);
6515 
6516 	return -ENOMEM;
6517 }
6518 
get_group(int cpu,struct sd_data * sdd,struct sched_group ** sg)6519 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6520 {
6521 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6522 	struct sched_domain *child = sd->child;
6523 
6524 	if (child)
6525 		cpu = cpumask_first(sched_domain_span(child));
6526 
6527 	if (sg) {
6528 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6529 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6530 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6531 	}
6532 
6533 	return cpu;
6534 }
6535 
6536 /*
6537  * build_sched_groups will build a circular linked list of the groups
6538  * covered by the given span, and will set each group's ->cpumask correctly,
6539  * and ->cpu_capacity to 0.
6540  *
6541  * Assumes the sched_domain tree is fully constructed
6542  */
6543 static int
build_sched_groups(struct sched_domain * sd,int cpu)6544 build_sched_groups(struct sched_domain *sd, int cpu)
6545 {
6546 	struct sched_group *first = NULL, *last = NULL;
6547 	struct sd_data *sdd = sd->private;
6548 	const struct cpumask *span = sched_domain_span(sd);
6549 	struct cpumask *covered;
6550 	int i;
6551 
6552 	get_group(cpu, sdd, &sd->groups);
6553 	atomic_inc(&sd->groups->ref);
6554 
6555 	if (cpu != cpumask_first(span))
6556 		return 0;
6557 
6558 	lockdep_assert_held(&sched_domains_mutex);
6559 	covered = sched_domains_tmpmask;
6560 
6561 	cpumask_clear(covered);
6562 
6563 	for_each_cpu(i, span) {
6564 		struct sched_group *sg;
6565 		int group, j;
6566 
6567 		if (cpumask_test_cpu(i, covered))
6568 			continue;
6569 
6570 		group = get_group(i, sdd, &sg);
6571 		cpumask_setall(sched_group_mask(sg));
6572 
6573 		for_each_cpu(j, span) {
6574 			if (get_group(j, sdd, NULL) != group)
6575 				continue;
6576 
6577 			cpumask_set_cpu(j, covered);
6578 			cpumask_set_cpu(j, sched_group_cpus(sg));
6579 		}
6580 
6581 		if (!first)
6582 			first = sg;
6583 		if (last)
6584 			last->next = sg;
6585 		last = sg;
6586 	}
6587 	last->next = first;
6588 
6589 	return 0;
6590 }
6591 
6592 /*
6593  * Initialize sched groups cpu_capacity.
6594  *
6595  * cpu_capacity indicates the capacity of sched group, which is used while
6596  * distributing the load between different sched groups in a sched domain.
6597  * Typically cpu_capacity for all the groups in a sched domain will be same
6598  * unless there are asymmetries in the topology. If there are asymmetries,
6599  * group having more cpu_capacity will pickup more load compared to the
6600  * group having less cpu_capacity.
6601  */
init_sched_groups_capacity(int cpu,struct sched_domain * sd)6602 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6603 {
6604 	struct sched_group *sg = sd->groups;
6605 
6606 	WARN_ON(!sg);
6607 
6608 	do {
6609 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6610 		sg = sg->next;
6611 	} while (sg != sd->groups);
6612 
6613 	if (cpu != group_balance_cpu(sg))
6614 		return;
6615 
6616 	update_group_capacity(sd, cpu);
6617 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6618 }
6619 
6620 /*
6621  * Check that the per-cpu provided sd energy data is consistent for all cpus
6622  * within the mask.
6623  */
check_sched_energy_data(int cpu,sched_domain_energy_f fn,const struct cpumask * cpumask)6624 static inline void check_sched_energy_data(int cpu, sched_domain_energy_f fn,
6625 					   const struct cpumask *cpumask)
6626 {
6627 	const struct sched_group_energy * const sge = fn(cpu);
6628 	struct cpumask mask;
6629 	int i;
6630 
6631 	if (cpumask_weight(cpumask) <= 1)
6632 		return;
6633 
6634 	cpumask_xor(&mask, cpumask, get_cpu_mask(cpu));
6635 
6636 	for_each_cpu(i, &mask) {
6637 		const struct sched_group_energy * const e = fn(i);
6638 		int y;
6639 
6640 		BUG_ON(e->nr_idle_states != sge->nr_idle_states);
6641 
6642 		for (y = 0; y < (e->nr_idle_states); y++) {
6643 			BUG_ON(e->idle_states[y].power !=
6644 					sge->idle_states[y].power);
6645 		}
6646 
6647 		BUG_ON(e->nr_cap_states != sge->nr_cap_states);
6648 
6649 		for (y = 0; y < (e->nr_cap_states); y++) {
6650 			BUG_ON(e->cap_states[y].cap != sge->cap_states[y].cap);
6651 			BUG_ON(e->cap_states[y].power !=
6652 					sge->cap_states[y].power);
6653 		}
6654 	}
6655 }
6656 
init_sched_energy(int cpu,struct sched_domain * sd,sched_domain_energy_f fn)6657 static void init_sched_energy(int cpu, struct sched_domain *sd,
6658 			      sched_domain_energy_f fn)
6659 {
6660 	if (!(fn && fn(cpu)))
6661 		return;
6662 
6663 	if (cpu != group_balance_cpu(sd->groups))
6664 		return;
6665 
6666 	if (sd->child && !sd->child->groups->sge) {
6667 		pr_err("BUG: EAS setup broken for CPU%d\n", cpu);
6668 #ifdef CONFIG_SCHED_DEBUG
6669 		pr_err("     energy data on %s but not on %s domain\n",
6670 			sd->name, sd->child->name);
6671 #endif
6672 		return;
6673 	}
6674 
6675 	check_sched_energy_data(cpu, fn, sched_group_cpus(sd->groups));
6676 
6677 	sd->groups->sge = fn(cpu);
6678 }
6679 
6680 /*
6681  * Initializers for schedule domains
6682  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6683  */
6684 
6685 static int default_relax_domain_level = -1;
6686 int sched_domain_level_max;
6687 
setup_relax_domain_level(char * str)6688 static int __init setup_relax_domain_level(char *str)
6689 {
6690 	if (kstrtoint(str, 0, &default_relax_domain_level))
6691 		pr_warn("Unable to set relax_domain_level\n");
6692 
6693 	return 1;
6694 }
6695 __setup("relax_domain_level=", setup_relax_domain_level);
6696 
set_domain_attribute(struct sched_domain * sd,struct sched_domain_attr * attr)6697 static void set_domain_attribute(struct sched_domain *sd,
6698 				 struct sched_domain_attr *attr)
6699 {
6700 	int request;
6701 
6702 	if (!attr || attr->relax_domain_level < 0) {
6703 		if (default_relax_domain_level < 0)
6704 			return;
6705 		else
6706 			request = default_relax_domain_level;
6707 	} else
6708 		request = attr->relax_domain_level;
6709 	if (request < sd->level) {
6710 		/* turn off idle balance on this domain */
6711 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6712 	} else {
6713 		/* turn on idle balance on this domain */
6714 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6715 	}
6716 }
6717 
6718 static void __sdt_free(const struct cpumask *cpu_map);
6719 static int __sdt_alloc(const struct cpumask *cpu_map);
6720 
__free_domain_allocs(struct s_data * d,enum s_alloc what,const struct cpumask * cpu_map)6721 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6722 				 const struct cpumask *cpu_map)
6723 {
6724 	switch (what) {
6725 	case sa_rootdomain:
6726 		if (!atomic_read(&d->rd->refcount))
6727 			free_rootdomain(&d->rd->rcu); /* fall through */
6728 	case sa_sd:
6729 		free_percpu(d->sd); /* fall through */
6730 	case sa_sd_storage:
6731 		__sdt_free(cpu_map); /* fall through */
6732 	case sa_none:
6733 		break;
6734 	}
6735 }
6736 
__visit_domain_allocation_hell(struct s_data * d,const struct cpumask * cpu_map)6737 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6738 						   const struct cpumask *cpu_map)
6739 {
6740 	memset(d, 0, sizeof(*d));
6741 
6742 	if (__sdt_alloc(cpu_map))
6743 		return sa_sd_storage;
6744 	d->sd = alloc_percpu(struct sched_domain *);
6745 	if (!d->sd)
6746 		return sa_sd_storage;
6747 	d->rd = alloc_rootdomain();
6748 	if (!d->rd)
6749 		return sa_sd;
6750 	return sa_rootdomain;
6751 }
6752 
6753 /*
6754  * NULL the sd_data elements we've used to build the sched_domain and
6755  * sched_group structure so that the subsequent __free_domain_allocs()
6756  * will not free the data we're using.
6757  */
claim_allocations(int cpu,struct sched_domain * sd)6758 static void claim_allocations(int cpu, struct sched_domain *sd)
6759 {
6760 	struct sd_data *sdd = sd->private;
6761 
6762 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6763 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6764 
6765 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6766 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6767 
6768 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6769 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6770 }
6771 
6772 #ifdef CONFIG_NUMA
6773 static int sched_domains_numa_levels;
6774 enum numa_topology_type sched_numa_topology_type;
6775 static int *sched_domains_numa_distance;
6776 int sched_max_numa_distance;
6777 static struct cpumask ***sched_domains_numa_masks;
6778 static int sched_domains_curr_level;
6779 #endif
6780 
6781 /*
6782  * SD_flags allowed in topology descriptions.
6783  *
6784  * These flags are purely descriptive of the topology and do not prescribe
6785  * behaviour. Behaviour is artificial and mapped in the below sd_init()
6786  * function:
6787  *
6788  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
6789  *   SD_SHARE_PKG_RESOURCES - describes shared caches
6790  *   SD_NUMA                - describes NUMA topologies
6791  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
6792  *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
6793  *   SD_SHARE_CAP_STATES    - describes shared capacity states
6794  *
6795  * Odd one out, which beside describing the topology has a quirk also
6796  * prescribes the desired behaviour that goes along with it:
6797  *
6798  * Odd one out:
6799  * SD_ASYM_PACKING        - describes SMT quirks
6800  */
6801 #define TOPOLOGY_SD_FLAGS		\
6802 	(SD_SHARE_CPUCAPACITY |		\
6803 	 SD_SHARE_PKG_RESOURCES |	\
6804 	 SD_NUMA |			\
6805 	 SD_ASYM_PACKING |		\
6806 	 SD_ASYM_CPUCAPACITY |		\
6807 	 SD_SHARE_POWERDOMAIN |		\
6808 	 SD_SHARE_CAP_STATES)
6809 
6810 static struct sched_domain *
sd_init(struct sched_domain_topology_level * tl,struct sched_domain * child,int cpu)6811 sd_init(struct sched_domain_topology_level *tl,
6812 	struct sched_domain *child, int cpu)
6813 {
6814 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6815 	int sd_weight, sd_flags = 0;
6816 
6817 #ifdef CONFIG_NUMA
6818 	/*
6819 	 * Ugly hack to pass state to sd_numa_mask()...
6820 	 */
6821 	sched_domains_curr_level = tl->numa_level;
6822 #endif
6823 
6824 	sd_weight = cpumask_weight(tl->mask(cpu));
6825 
6826 	if (tl->sd_flags)
6827 		sd_flags = (*tl->sd_flags)();
6828 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6829 			"wrong sd_flags in topology description\n"))
6830 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6831 
6832 	*sd = (struct sched_domain){
6833 		.min_interval		= sd_weight,
6834 		.max_interval		= 2*sd_weight,
6835 		.busy_factor		= 32,
6836 		.imbalance_pct		= 125,
6837 
6838 		.cache_nice_tries	= 0,
6839 		.busy_idx		= 0,
6840 		.idle_idx		= 0,
6841 		.newidle_idx		= 0,
6842 		.wake_idx		= 0,
6843 		.forkexec_idx		= 0,
6844 
6845 		.flags			= 1*SD_LOAD_BALANCE
6846 					| 1*SD_BALANCE_NEWIDLE
6847 					| 1*SD_BALANCE_EXEC
6848 					| 1*SD_BALANCE_FORK
6849 					| 0*SD_BALANCE_WAKE
6850 					| 1*SD_WAKE_AFFINE
6851 					| 0*SD_SHARE_CPUCAPACITY
6852 					| 0*SD_SHARE_PKG_RESOURCES
6853 					| 0*SD_SERIALIZE
6854 					| 0*SD_PREFER_SIBLING
6855 					| 0*SD_NUMA
6856 					| sd_flags
6857 					,
6858 
6859 		.last_balance		= jiffies,
6860 		.balance_interval	= sd_weight,
6861 		.smt_gain		= 0,
6862 		.max_newidle_lb_cost	= 0,
6863 		.next_decay_max_lb_cost	= jiffies,
6864 		.child			= child,
6865 #ifdef CONFIG_SCHED_DEBUG
6866 		.name			= tl->name,
6867 #endif
6868 	};
6869 
6870 	/*
6871 	 * Convert topological properties into behaviour.
6872 	 */
6873 
6874 	if (sd->flags & SD_ASYM_CPUCAPACITY) {
6875 		struct sched_domain *t = sd;
6876 
6877 		for_each_lower_domain(t)
6878 			t->flags |= SD_BALANCE_WAKE;
6879 	}
6880 
6881 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6882 		sd->flags |= SD_PREFER_SIBLING;
6883 		sd->imbalance_pct = 110;
6884 		sd->smt_gain = 1178; /* ~15% */
6885 
6886 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6887 		sd->imbalance_pct = 117;
6888 		sd->cache_nice_tries = 1;
6889 		sd->busy_idx = 2;
6890 
6891 #ifdef CONFIG_NUMA
6892 	} else if (sd->flags & SD_NUMA) {
6893 		sd->cache_nice_tries = 2;
6894 		sd->busy_idx = 3;
6895 		sd->idle_idx = 2;
6896 
6897 		sd->flags |= SD_SERIALIZE;
6898 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6899 			sd->flags &= ~(SD_BALANCE_EXEC |
6900 				       SD_BALANCE_FORK |
6901 				       SD_WAKE_AFFINE);
6902 		}
6903 
6904 #endif
6905 	} else {
6906 		sd->flags |= SD_PREFER_SIBLING;
6907 		sd->cache_nice_tries = 1;
6908 		sd->busy_idx = 2;
6909 		sd->idle_idx = 1;
6910 	}
6911 
6912 	sd->private = &tl->data;
6913 
6914 	return sd;
6915 }
6916 
6917 /*
6918  * Topology list, bottom-up.
6919  */
6920 static struct sched_domain_topology_level default_topology[] = {
6921 #ifdef CONFIG_SCHED_SMT
6922 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6923 #endif
6924 #ifdef CONFIG_SCHED_MC
6925 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6926 #endif
6927 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6928 	{ NULL, },
6929 };
6930 
6931 static struct sched_domain_topology_level *sched_domain_topology =
6932 	default_topology;
6933 
6934 #define for_each_sd_topology(tl)			\
6935 	for (tl = sched_domain_topology; tl->mask; tl++)
6936 
set_sched_topology(struct sched_domain_topology_level * tl)6937 void set_sched_topology(struct sched_domain_topology_level *tl)
6938 {
6939 	sched_domain_topology = tl;
6940 }
6941 
6942 #ifdef CONFIG_NUMA
6943 
sd_numa_mask(int cpu)6944 static const struct cpumask *sd_numa_mask(int cpu)
6945 {
6946 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6947 }
6948 
sched_numa_warn(const char * str)6949 static void sched_numa_warn(const char *str)
6950 {
6951 	static int done = false;
6952 	int i,j;
6953 
6954 	if (done)
6955 		return;
6956 
6957 	done = true;
6958 
6959 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6960 
6961 	for (i = 0; i < nr_node_ids; i++) {
6962 		printk(KERN_WARNING "  ");
6963 		for (j = 0; j < nr_node_ids; j++)
6964 			printk(KERN_CONT "%02d ", node_distance(i,j));
6965 		printk(KERN_CONT "\n");
6966 	}
6967 	printk(KERN_WARNING "\n");
6968 }
6969 
find_numa_distance(int distance)6970 bool find_numa_distance(int distance)
6971 {
6972 	int i;
6973 
6974 	if (distance == node_distance(0, 0))
6975 		return true;
6976 
6977 	for (i = 0; i < sched_domains_numa_levels; i++) {
6978 		if (sched_domains_numa_distance[i] == distance)
6979 			return true;
6980 	}
6981 
6982 	return false;
6983 }
6984 
6985 /*
6986  * A system can have three types of NUMA topology:
6987  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6988  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6989  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6990  *
6991  * The difference between a glueless mesh topology and a backplane
6992  * topology lies in whether communication between not directly
6993  * connected nodes goes through intermediary nodes (where programs
6994  * could run), or through backplane controllers. This affects
6995  * placement of programs.
6996  *
6997  * The type of topology can be discerned with the following tests:
6998  * - If the maximum distance between any nodes is 1 hop, the system
6999  *   is directly connected.
7000  * - If for two nodes A and B, located N > 1 hops away from each other,
7001  *   there is an intermediary node C, which is < N hops away from both
7002  *   nodes A and B, the system is a glueless mesh.
7003  */
init_numa_topology_type(void)7004 static void init_numa_topology_type(void)
7005 {
7006 	int a, b, c, n;
7007 
7008 	n = sched_max_numa_distance;
7009 
7010 	if (sched_domains_numa_levels <= 1) {
7011 		sched_numa_topology_type = NUMA_DIRECT;
7012 		return;
7013 	}
7014 
7015 	for_each_online_node(a) {
7016 		for_each_online_node(b) {
7017 			/* Find two nodes furthest removed from each other. */
7018 			if (node_distance(a, b) < n)
7019 				continue;
7020 
7021 			/* Is there an intermediary node between a and b? */
7022 			for_each_online_node(c) {
7023 				if (node_distance(a, c) < n &&
7024 				    node_distance(b, c) < n) {
7025 					sched_numa_topology_type =
7026 							NUMA_GLUELESS_MESH;
7027 					return;
7028 				}
7029 			}
7030 
7031 			sched_numa_topology_type = NUMA_BACKPLANE;
7032 			return;
7033 		}
7034 	}
7035 }
7036 
sched_init_numa(void)7037 static void sched_init_numa(void)
7038 {
7039 	int next_distance, curr_distance = node_distance(0, 0);
7040 	struct sched_domain_topology_level *tl;
7041 	int level = 0;
7042 	int i, j, k;
7043 
7044 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
7045 	if (!sched_domains_numa_distance)
7046 		return;
7047 
7048 	/*
7049 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
7050 	 * unique distances in the node_distance() table.
7051 	 *
7052 	 * Assumes node_distance(0,j) includes all distances in
7053 	 * node_distance(i,j) in order to avoid cubic time.
7054 	 */
7055 	next_distance = curr_distance;
7056 	for (i = 0; i < nr_node_ids; i++) {
7057 		for (j = 0; j < nr_node_ids; j++) {
7058 			for (k = 0; k < nr_node_ids; k++) {
7059 				int distance = node_distance(i, k);
7060 
7061 				if (distance > curr_distance &&
7062 				    (distance < next_distance ||
7063 				     next_distance == curr_distance))
7064 					next_distance = distance;
7065 
7066 				/*
7067 				 * While not a strong assumption it would be nice to know
7068 				 * about cases where if node A is connected to B, B is not
7069 				 * equally connected to A.
7070 				 */
7071 				if (sched_debug() && node_distance(k, i) != distance)
7072 					sched_numa_warn("Node-distance not symmetric");
7073 
7074 				if (sched_debug() && i && !find_numa_distance(distance))
7075 					sched_numa_warn("Node-0 not representative");
7076 			}
7077 			if (next_distance != curr_distance) {
7078 				sched_domains_numa_distance[level++] = next_distance;
7079 				sched_domains_numa_levels = level;
7080 				curr_distance = next_distance;
7081 			} else break;
7082 		}
7083 
7084 		/*
7085 		 * In case of sched_debug() we verify the above assumption.
7086 		 */
7087 		if (!sched_debug())
7088 			break;
7089 	}
7090 
7091 	if (!level)
7092 		return;
7093 
7094 	/*
7095 	 * 'level' contains the number of unique distances, excluding the
7096 	 * identity distance node_distance(i,i).
7097 	 *
7098 	 * The sched_domains_numa_distance[] array includes the actual distance
7099 	 * numbers.
7100 	 */
7101 
7102 	/*
7103 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
7104 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
7105 	 * the array will contain less then 'level' members. This could be
7106 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
7107 	 * in other functions.
7108 	 *
7109 	 * We reset it to 'level' at the end of this function.
7110 	 */
7111 	sched_domains_numa_levels = 0;
7112 
7113 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
7114 	if (!sched_domains_numa_masks)
7115 		return;
7116 
7117 	/*
7118 	 * Now for each level, construct a mask per node which contains all
7119 	 * cpus of nodes that are that many hops away from us.
7120 	 */
7121 	for (i = 0; i < level; i++) {
7122 		sched_domains_numa_masks[i] =
7123 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
7124 		if (!sched_domains_numa_masks[i])
7125 			return;
7126 
7127 		for (j = 0; j < nr_node_ids; j++) {
7128 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
7129 			if (!mask)
7130 				return;
7131 
7132 			sched_domains_numa_masks[i][j] = mask;
7133 
7134 			for_each_node(k) {
7135 				if (node_distance(j, k) > sched_domains_numa_distance[i])
7136 					continue;
7137 
7138 				cpumask_or(mask, mask, cpumask_of_node(k));
7139 			}
7140 		}
7141 	}
7142 
7143 	/* Compute default topology size */
7144 	for (i = 0; sched_domain_topology[i].mask; i++);
7145 
7146 	tl = kzalloc((i + level + 1) *
7147 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
7148 	if (!tl)
7149 		return;
7150 
7151 	/*
7152 	 * Copy the default topology bits..
7153 	 */
7154 	for (i = 0; sched_domain_topology[i].mask; i++)
7155 		tl[i] = sched_domain_topology[i];
7156 
7157 	/*
7158 	 * .. and append 'j' levels of NUMA goodness.
7159 	 */
7160 	for (j = 0; j < level; i++, j++) {
7161 		tl[i] = (struct sched_domain_topology_level){
7162 			.mask = sd_numa_mask,
7163 			.sd_flags = cpu_numa_flags,
7164 			.flags = SDTL_OVERLAP,
7165 			.numa_level = j,
7166 			SD_INIT_NAME(NUMA)
7167 		};
7168 	}
7169 
7170 	sched_domain_topology = tl;
7171 
7172 	sched_domains_numa_levels = level;
7173 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
7174 
7175 	init_numa_topology_type();
7176 }
7177 
sched_domains_numa_masks_set(int cpu)7178 static void sched_domains_numa_masks_set(int cpu)
7179 {
7180 	int i, j;
7181 	int node = cpu_to_node(cpu);
7182 
7183 	for (i = 0; i < sched_domains_numa_levels; i++) {
7184 		for (j = 0; j < nr_node_ids; j++) {
7185 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
7186 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
7187 		}
7188 	}
7189 }
7190 
sched_domains_numa_masks_clear(int cpu)7191 static void sched_domains_numa_masks_clear(int cpu)
7192 {
7193 	int i, j;
7194 	for (i = 0; i < sched_domains_numa_levels; i++) {
7195 		for (j = 0; j < nr_node_ids; j++)
7196 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
7197 	}
7198 }
7199 
7200 /*
7201  * Update sched_domains_numa_masks[level][node] array when new cpus
7202  * are onlined.
7203  */
sched_domains_numa_masks_update(struct notifier_block * nfb,unsigned long action,void * hcpu)7204 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
7205 					   unsigned long action,
7206 					   void *hcpu)
7207 {
7208 	int cpu = (long)hcpu;
7209 
7210 	switch (action & ~CPU_TASKS_FROZEN) {
7211 	case CPU_ONLINE:
7212 		sched_domains_numa_masks_set(cpu);
7213 		break;
7214 
7215 	case CPU_DEAD:
7216 		sched_domains_numa_masks_clear(cpu);
7217 		break;
7218 
7219 	default:
7220 		return NOTIFY_DONE;
7221 	}
7222 
7223 	return NOTIFY_OK;
7224 }
7225 #else
sched_init_numa(void)7226 static inline void sched_init_numa(void)
7227 {
7228 }
7229 
sched_domains_numa_masks_update(struct notifier_block * nfb,unsigned long action,void * hcpu)7230 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
7231 					   unsigned long action,
7232 					   void *hcpu)
7233 {
7234 	return 0;
7235 }
7236 #endif /* CONFIG_NUMA */
7237 
__sdt_alloc(const struct cpumask * cpu_map)7238 static int __sdt_alloc(const struct cpumask *cpu_map)
7239 {
7240 	struct sched_domain_topology_level *tl;
7241 	int j;
7242 
7243 	for_each_sd_topology(tl) {
7244 		struct sd_data *sdd = &tl->data;
7245 
7246 		sdd->sd = alloc_percpu(struct sched_domain *);
7247 		if (!sdd->sd)
7248 			return -ENOMEM;
7249 
7250 		sdd->sg = alloc_percpu(struct sched_group *);
7251 		if (!sdd->sg)
7252 			return -ENOMEM;
7253 
7254 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
7255 		if (!sdd->sgc)
7256 			return -ENOMEM;
7257 
7258 		for_each_cpu(j, cpu_map) {
7259 			struct sched_domain *sd;
7260 			struct sched_group *sg;
7261 			struct sched_group_capacity *sgc;
7262 
7263 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7264 					GFP_KERNEL, cpu_to_node(j));
7265 			if (!sd)
7266 				return -ENOMEM;
7267 
7268 			*per_cpu_ptr(sdd->sd, j) = sd;
7269 
7270 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7271 					GFP_KERNEL, cpu_to_node(j));
7272 			if (!sg)
7273 				return -ENOMEM;
7274 
7275 			sg->next = sg;
7276 
7277 			*per_cpu_ptr(sdd->sg, j) = sg;
7278 
7279 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
7280 					GFP_KERNEL, cpu_to_node(j));
7281 			if (!sgc)
7282 				return -ENOMEM;
7283 
7284 			*per_cpu_ptr(sdd->sgc, j) = sgc;
7285 		}
7286 	}
7287 
7288 	return 0;
7289 }
7290 
__sdt_free(const struct cpumask * cpu_map)7291 static void __sdt_free(const struct cpumask *cpu_map)
7292 {
7293 	struct sched_domain_topology_level *tl;
7294 	int j;
7295 
7296 	for_each_sd_topology(tl) {
7297 		struct sd_data *sdd = &tl->data;
7298 
7299 		for_each_cpu(j, cpu_map) {
7300 			struct sched_domain *sd;
7301 
7302 			if (sdd->sd) {
7303 				sd = *per_cpu_ptr(sdd->sd, j);
7304 				if (sd && (sd->flags & SD_OVERLAP))
7305 					free_sched_groups(sd->groups, 0);
7306 				kfree(*per_cpu_ptr(sdd->sd, j));
7307 			}
7308 
7309 			if (sdd->sg)
7310 				kfree(*per_cpu_ptr(sdd->sg, j));
7311 			if (sdd->sgc)
7312 				kfree(*per_cpu_ptr(sdd->sgc, j));
7313 		}
7314 		free_percpu(sdd->sd);
7315 		sdd->sd = NULL;
7316 		free_percpu(sdd->sg);
7317 		sdd->sg = NULL;
7318 		free_percpu(sdd->sgc);
7319 		sdd->sgc = NULL;
7320 	}
7321 }
7322 
build_sched_domain(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain_attr * attr,struct sched_domain * child,int cpu)7323 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7324 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7325 		struct sched_domain *child, int cpu)
7326 {
7327 	struct sched_domain *sd = sd_init(tl, child, cpu);
7328 
7329 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7330 	if (child) {
7331 		sd->level = child->level + 1;
7332 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
7333 		child->parent = sd;
7334 
7335 		if (!cpumask_subset(sched_domain_span(child),
7336 				    sched_domain_span(sd))) {
7337 			pr_err("BUG: arch topology borken\n");
7338 #ifdef CONFIG_SCHED_DEBUG
7339 			pr_err("     the %s domain not a subset of the %s domain\n",
7340 					child->name, sd->name);
7341 #endif
7342 			/* Fixup, ensure @sd has at least @child cpus. */
7343 			cpumask_or(sched_domain_span(sd),
7344 				   sched_domain_span(sd),
7345 				   sched_domain_span(child));
7346 		}
7347 
7348 	}
7349 	set_domain_attribute(sd, attr);
7350 
7351 	return sd;
7352 }
7353 
7354 /*
7355  * Build sched domains for a given set of cpus and attach the sched domains
7356  * to the individual cpus
7357  */
build_sched_domains(const struct cpumask * cpu_map,struct sched_domain_attr * attr)7358 static int build_sched_domains(const struct cpumask *cpu_map,
7359 			       struct sched_domain_attr *attr)
7360 {
7361 	enum s_alloc alloc_state;
7362 	struct sched_domain *sd;
7363 	struct s_data d;
7364 	int i, ret = -ENOMEM;
7365 
7366 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7367 	if (alloc_state != sa_rootdomain)
7368 		goto error;
7369 
7370 	/* Set up domains for cpus specified by the cpu_map. */
7371 	for_each_cpu(i, cpu_map) {
7372 		struct sched_domain_topology_level *tl;
7373 
7374 		sd = NULL;
7375 		for_each_sd_topology(tl) {
7376 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
7377 			if (tl == sched_domain_topology)
7378 				*per_cpu_ptr(d.sd, i) = sd;
7379 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7380 				sd->flags |= SD_OVERLAP;
7381 		}
7382 	}
7383 
7384 	/* Build the groups for the domains */
7385 	for_each_cpu(i, cpu_map) {
7386 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7387 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
7388 			if (sd->flags & SD_OVERLAP) {
7389 				if (build_overlap_sched_groups(sd, i))
7390 					goto error;
7391 			} else {
7392 				if (build_sched_groups(sd, i))
7393 					goto error;
7394 			}
7395 		}
7396 	}
7397 
7398 	/* Calculate CPU capacity for physical packages and nodes */
7399 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
7400 		struct sched_domain_topology_level *tl = sched_domain_topology;
7401 
7402 		if (!cpumask_test_cpu(i, cpu_map))
7403 			continue;
7404 
7405 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent, tl++) {
7406 			init_sched_energy(i, sd, tl->energy);
7407 			claim_allocations(i, sd);
7408 			init_sched_groups_capacity(i, sd);
7409 		}
7410 	}
7411 
7412 	/* Attach the domains */
7413 	rcu_read_lock();
7414 	for_each_cpu(i, cpu_map) {
7415 		int max_cpu = READ_ONCE(d.rd->max_cap_orig_cpu);
7416 		int min_cpu = READ_ONCE(d.rd->min_cap_orig_cpu);
7417 
7418 		if ((max_cpu < 0) || (cpu_rq(i)->cpu_capacity_orig >
7419 		    cpu_rq(max_cpu)->cpu_capacity_orig))
7420 			WRITE_ONCE(d.rd->max_cap_orig_cpu, i);
7421 
7422 		if ((min_cpu < 0) || (cpu_rq(i)->cpu_capacity_orig <
7423 		    cpu_rq(min_cpu)->cpu_capacity_orig))
7424 			WRITE_ONCE(d.rd->min_cap_orig_cpu, i);
7425 
7426 		sd = *per_cpu_ptr(d.sd, i);
7427 
7428 		cpu_attach_domain(sd, d.rd, i);
7429 	}
7430 	rcu_read_unlock();
7431 
7432 	ret = 0;
7433 error:
7434 	__free_domain_allocs(&d, alloc_state, cpu_map);
7435 	return ret;
7436 }
7437 
7438 static cpumask_var_t *doms_cur;	/* current sched domains */
7439 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
7440 static struct sched_domain_attr *dattr_cur;
7441 				/* attribues of custom domains in 'doms_cur' */
7442 
7443 /*
7444  * Special case: If a kmalloc of a doms_cur partition (array of
7445  * cpumask) fails, then fallback to a single sched domain,
7446  * as determined by the single cpumask fallback_doms.
7447  */
7448 static cpumask_var_t fallback_doms;
7449 
7450 /*
7451  * arch_update_cpu_topology lets virtualized architectures update the
7452  * cpu core maps. It is supposed to return 1 if the topology changed
7453  * or 0 if it stayed the same.
7454  */
arch_update_cpu_topology(void)7455 int __weak arch_update_cpu_topology(void)
7456 {
7457 	return 0;
7458 }
7459 
alloc_sched_domains(unsigned int ndoms)7460 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7461 {
7462 	int i;
7463 	cpumask_var_t *doms;
7464 
7465 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7466 	if (!doms)
7467 		return NULL;
7468 	for (i = 0; i < ndoms; i++) {
7469 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7470 			free_sched_domains(doms, i);
7471 			return NULL;
7472 		}
7473 	}
7474 	return doms;
7475 }
7476 
free_sched_domains(cpumask_var_t doms[],unsigned int ndoms)7477 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7478 {
7479 	unsigned int i;
7480 	for (i = 0; i < ndoms; i++)
7481 		free_cpumask_var(doms[i]);
7482 	kfree(doms);
7483 }
7484 
7485 /*
7486  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7487  * For now this just excludes isolated cpus, but could be used to
7488  * exclude other special cases in the future.
7489  */
init_sched_domains(const struct cpumask * cpu_map)7490 static int init_sched_domains(const struct cpumask *cpu_map)
7491 {
7492 	int err;
7493 
7494 	arch_update_cpu_topology();
7495 	ndoms_cur = 1;
7496 	doms_cur = alloc_sched_domains(ndoms_cur);
7497 	if (!doms_cur)
7498 		doms_cur = &fallback_doms;
7499 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7500 	err = build_sched_domains(doms_cur[0], NULL);
7501 	register_sched_domain_sysctl();
7502 
7503 	return err;
7504 }
7505 
7506 /*
7507  * Detach sched domains from a group of cpus specified in cpu_map
7508  * These cpus will now be attached to the NULL domain
7509  */
detach_destroy_domains(const struct cpumask * cpu_map)7510 static void detach_destroy_domains(const struct cpumask *cpu_map)
7511 {
7512 	int i;
7513 
7514 	rcu_read_lock();
7515 	for_each_cpu(i, cpu_map)
7516 		cpu_attach_domain(NULL, &def_root_domain, i);
7517 	rcu_read_unlock();
7518 }
7519 
7520 /* handle null as "default" */
dattrs_equal(struct sched_domain_attr * cur,int idx_cur,struct sched_domain_attr * new,int idx_new)7521 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7522 			struct sched_domain_attr *new, int idx_new)
7523 {
7524 	struct sched_domain_attr tmp;
7525 
7526 	/* fast path */
7527 	if (!new && !cur)
7528 		return 1;
7529 
7530 	tmp = SD_ATTR_INIT;
7531 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7532 			new ? (new + idx_new) : &tmp,
7533 			sizeof(struct sched_domain_attr));
7534 }
7535 
7536 /*
7537  * Partition sched domains as specified by the 'ndoms_new'
7538  * cpumasks in the array doms_new[] of cpumasks. This compares
7539  * doms_new[] to the current sched domain partitioning, doms_cur[].
7540  * It destroys each deleted domain and builds each new domain.
7541  *
7542  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7543  * The masks don't intersect (don't overlap.) We should setup one
7544  * sched domain for each mask. CPUs not in any of the cpumasks will
7545  * not be load balanced. If the same cpumask appears both in the
7546  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7547  * it as it is.
7548  *
7549  * The passed in 'doms_new' should be allocated using
7550  * alloc_sched_domains.  This routine takes ownership of it and will
7551  * free_sched_domains it when done with it. If the caller failed the
7552  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7553  * and partition_sched_domains() will fallback to the single partition
7554  * 'fallback_doms', it also forces the domains to be rebuilt.
7555  *
7556  * If doms_new == NULL it will be replaced with cpu_online_mask.
7557  * ndoms_new == 0 is a special case for destroying existing domains,
7558  * and it will not create the default domain.
7559  *
7560  * Call with hotplug lock held
7561  */
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)7562 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7563 			     struct sched_domain_attr *dattr_new)
7564 {
7565 	int i, j, n;
7566 	int new_topology;
7567 
7568 	mutex_lock(&sched_domains_mutex);
7569 
7570 	/* always unregister in case we don't destroy any domains */
7571 	unregister_sched_domain_sysctl();
7572 
7573 	/* Let architecture update cpu core mappings. */
7574 	new_topology = arch_update_cpu_topology();
7575 
7576 	n = doms_new ? ndoms_new : 0;
7577 
7578 	/* Destroy deleted domains */
7579 	for (i = 0; i < ndoms_cur; i++) {
7580 		for (j = 0; j < n && !new_topology; j++) {
7581 			if (cpumask_equal(doms_cur[i], doms_new[j])
7582 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7583 				goto match1;
7584 		}
7585 		/* no match - a current sched domain not in new doms_new[] */
7586 		detach_destroy_domains(doms_cur[i]);
7587 match1:
7588 		;
7589 	}
7590 
7591 	n = ndoms_cur;
7592 	if (doms_new == NULL) {
7593 		n = 0;
7594 		doms_new = &fallback_doms;
7595 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7596 		WARN_ON_ONCE(dattr_new);
7597 	}
7598 
7599 	/* Build new domains */
7600 	for (i = 0; i < ndoms_new; i++) {
7601 		for (j = 0; j < n && !new_topology; j++) {
7602 			if (cpumask_equal(doms_new[i], doms_cur[j])
7603 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7604 				goto match2;
7605 		}
7606 		/* no match - add a new doms_new */
7607 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7608 match2:
7609 		;
7610 	}
7611 
7612 	/* Remember the new sched domains */
7613 	if (doms_cur != &fallback_doms)
7614 		free_sched_domains(doms_cur, ndoms_cur);
7615 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7616 	doms_cur = doms_new;
7617 	dattr_cur = dattr_new;
7618 	ndoms_cur = ndoms_new;
7619 
7620 	register_sched_domain_sysctl();
7621 
7622 	mutex_unlock(&sched_domains_mutex);
7623 }
7624 
7625 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7626 
7627 /*
7628  * Update cpusets according to cpu_active mask.  If cpusets are
7629  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7630  * around partition_sched_domains().
7631  *
7632  * If we come here as part of a suspend/resume, don't touch cpusets because we
7633  * want to restore it back to its original state upon resume anyway.
7634  */
cpuset_cpu_active(struct notifier_block * nfb,unsigned long action,void * hcpu)7635 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7636 			     void *hcpu)
7637 {
7638 	switch (action) {
7639 	case CPU_ONLINE_FROZEN:
7640 	case CPU_DOWN_FAILED_FROZEN:
7641 
7642 		/*
7643 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7644 		 * resume sequence. As long as this is not the last online
7645 		 * operation in the resume sequence, just build a single sched
7646 		 * domain, ignoring cpusets.
7647 		 */
7648 		partition_sched_domains(1, NULL, NULL);
7649 		if (--num_cpus_frozen)
7650 			break;
7651 
7652 		/*
7653 		 * This is the last CPU online operation. So fall through and
7654 		 * restore the original sched domains by considering the
7655 		 * cpuset configurations.
7656 		 */
7657 		cpuset_force_rebuild();
7658 
7659 	case CPU_ONLINE:
7660 		cpuset_update_active_cpus(true);
7661 		break;
7662 	default:
7663 		return NOTIFY_DONE;
7664 	}
7665 	return NOTIFY_OK;
7666 }
7667 
cpuset_cpu_inactive(struct notifier_block * nfb,unsigned long action,void * hcpu)7668 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7669 			       void *hcpu)
7670 {
7671 	unsigned long flags;
7672 	long cpu = (long)hcpu;
7673 	struct dl_bw *dl_b;
7674 	bool overflow;
7675 	int cpus;
7676 
7677 	switch (action) {
7678 	case CPU_DOWN_PREPARE:
7679 		rcu_read_lock_sched();
7680 		dl_b = dl_bw_of(cpu);
7681 
7682 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7683 		cpus = dl_bw_cpus(cpu);
7684 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7685 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7686 
7687 		rcu_read_unlock_sched();
7688 
7689 		if (overflow)
7690 			return notifier_from_errno(-EBUSY);
7691 		cpuset_update_active_cpus(false);
7692 		break;
7693 	case CPU_DOWN_PREPARE_FROZEN:
7694 		num_cpus_frozen++;
7695 		partition_sched_domains(1, NULL, NULL);
7696 		break;
7697 	default:
7698 		return NOTIFY_DONE;
7699 	}
7700 	return NOTIFY_OK;
7701 }
7702 
sched_init_smp(void)7703 void __init sched_init_smp(void)
7704 {
7705 	cpumask_var_t non_isolated_cpus;
7706 
7707 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7708 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7709 
7710 	sched_init_numa();
7711 
7712 	/*
7713 	 * There's no userspace yet to cause hotplug operations; hence all the
7714 	 * cpu masks are stable and all blatant races in the below code cannot
7715 	 * happen.
7716 	 */
7717 	mutex_lock(&sched_domains_mutex);
7718 	init_sched_domains(cpu_active_mask);
7719 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7720 	if (cpumask_empty(non_isolated_cpus))
7721 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7722 	mutex_unlock(&sched_domains_mutex);
7723 
7724 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7725 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7726 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7727 
7728 	init_hrtick();
7729 
7730 	/* Move init over to a non-isolated CPU */
7731 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7732 		BUG();
7733 	sched_init_granularity();
7734 	free_cpumask_var(non_isolated_cpus);
7735 
7736 	init_sched_rt_class();
7737 	init_sched_dl_class();
7738 }
7739 #else
sched_init_smp(void)7740 void __init sched_init_smp(void)
7741 {
7742 	sched_init_granularity();
7743 }
7744 #endif /* CONFIG_SMP */
7745 
in_sched_functions(unsigned long addr)7746 int in_sched_functions(unsigned long addr)
7747 {
7748 	return in_lock_functions(addr) ||
7749 		(addr >= (unsigned long)__sched_text_start
7750 		&& addr < (unsigned long)__sched_text_end);
7751 }
7752 
7753 #ifdef CONFIG_CGROUP_SCHED
7754 /*
7755  * Default task group.
7756  * Every task in system belongs to this group at bootup.
7757  */
7758 struct task_group root_task_group;
7759 LIST_HEAD(task_groups);
7760 #endif
7761 
7762 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7763 
sched_init(void)7764 void __init sched_init(void)
7765 {
7766 	int i, j;
7767 	unsigned long alloc_size = 0, ptr;
7768 
7769 #ifdef CONFIG_FAIR_GROUP_SCHED
7770 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7771 #endif
7772 #ifdef CONFIG_RT_GROUP_SCHED
7773 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7774 #endif
7775 	if (alloc_size) {
7776 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7777 
7778 #ifdef CONFIG_FAIR_GROUP_SCHED
7779 		root_task_group.se = (struct sched_entity **)ptr;
7780 		ptr += nr_cpu_ids * sizeof(void **);
7781 
7782 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7783 		ptr += nr_cpu_ids * sizeof(void **);
7784 
7785 #endif /* CONFIG_FAIR_GROUP_SCHED */
7786 #ifdef CONFIG_RT_GROUP_SCHED
7787 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7788 		ptr += nr_cpu_ids * sizeof(void **);
7789 
7790 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7791 		ptr += nr_cpu_ids * sizeof(void **);
7792 
7793 #endif /* CONFIG_RT_GROUP_SCHED */
7794 	}
7795 #ifdef CONFIG_CPUMASK_OFFSTACK
7796 	for_each_possible_cpu(i) {
7797 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7798 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7799 	}
7800 #endif /* CONFIG_CPUMASK_OFFSTACK */
7801 
7802 	init_rt_bandwidth(&def_rt_bandwidth,
7803 			global_rt_period(), global_rt_runtime());
7804 	init_dl_bandwidth(&def_dl_bandwidth,
7805 			global_rt_period(), global_rt_runtime());
7806 
7807 #ifdef CONFIG_SMP
7808 	init_defrootdomain();
7809 #endif
7810 
7811 #ifdef CONFIG_RT_GROUP_SCHED
7812 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7813 			global_rt_period(), global_rt_runtime());
7814 #endif /* CONFIG_RT_GROUP_SCHED */
7815 
7816 #ifdef CONFIG_CGROUP_SCHED
7817 	list_add(&root_task_group.list, &task_groups);
7818 	INIT_LIST_HEAD(&root_task_group.children);
7819 	INIT_LIST_HEAD(&root_task_group.siblings);
7820 	autogroup_init(&init_task);
7821 
7822 #endif /* CONFIG_CGROUP_SCHED */
7823 
7824 	for_each_possible_cpu(i) {
7825 		struct rq *rq;
7826 
7827 		rq = cpu_rq(i);
7828 		raw_spin_lock_init(&rq->lock);
7829 		rq->nr_running = 0;
7830 		rq->calc_load_active = 0;
7831 		rq->calc_load_update = jiffies + LOAD_FREQ;
7832 		init_cfs_rq(&rq->cfs);
7833 		init_rt_rq(&rq->rt);
7834 		init_dl_rq(&rq->dl);
7835 #ifdef CONFIG_FAIR_GROUP_SCHED
7836 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7837 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7838 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7839 		/*
7840 		 * How much cpu bandwidth does root_task_group get?
7841 		 *
7842 		 * In case of task-groups formed thr' the cgroup filesystem, it
7843 		 * gets 100% of the cpu resources in the system. This overall
7844 		 * system cpu resource is divided among the tasks of
7845 		 * root_task_group and its child task-groups in a fair manner,
7846 		 * based on each entity's (task or task-group's) weight
7847 		 * (se->load.weight).
7848 		 *
7849 		 * In other words, if root_task_group has 10 tasks of weight
7850 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7851 		 * then A0's share of the cpu resource is:
7852 		 *
7853 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7854 		 *
7855 		 * We achieve this by letting root_task_group's tasks sit
7856 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7857 		 */
7858 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7859 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7860 #endif /* CONFIG_FAIR_GROUP_SCHED */
7861 
7862 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7863 #ifdef CONFIG_RT_GROUP_SCHED
7864 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7865 #endif
7866 
7867 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7868 			rq->cpu_load[j] = 0;
7869 
7870 		rq->last_load_update_tick = jiffies;
7871 
7872 #ifdef CONFIG_SMP
7873 		rq->sd = NULL;
7874 		rq->rd = NULL;
7875 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7876 		rq->balance_callback = NULL;
7877 		rq->active_balance = 0;
7878 		rq->next_balance = jiffies;
7879 		rq->push_cpu = 0;
7880 		rq->push_task = NULL;
7881 		rq->cpu = i;
7882 		rq->online = 0;
7883 		rq->idle_stamp = 0;
7884 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7885 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7886 #ifdef CONFIG_SCHED_WALT
7887 		rq->cur_irqload = 0;
7888 		rq->avg_irqload = 0;
7889 		rq->irqload_ts = 0;
7890 #endif
7891 
7892 		INIT_LIST_HEAD(&rq->cfs_tasks);
7893 
7894 		rq_attach_root(rq, &def_root_domain);
7895 #ifdef CONFIG_NO_HZ_COMMON
7896 		rq->nohz_flags = 0;
7897 #endif
7898 #ifdef CONFIG_NO_HZ_FULL
7899 		rq->last_sched_tick = 0;
7900 #endif
7901 #endif
7902 		init_rq_hrtick(rq);
7903 		atomic_set(&rq->nr_iowait, 0);
7904 	}
7905 
7906 	set_load_weight(&init_task);
7907 
7908 #ifdef CONFIG_PREEMPT_NOTIFIERS
7909 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7910 #endif
7911 
7912 	/*
7913 	 * The boot idle thread does lazy MMU switching as well:
7914 	 */
7915 	atomic_inc(&init_mm.mm_count);
7916 	enter_lazy_tlb(&init_mm, current);
7917 
7918 	/*
7919 	 * During early bootup we pretend to be a normal task:
7920 	 */
7921 	current->sched_class = &fair_sched_class;
7922 
7923 	/*
7924 	 * Make us the idle thread. Technically, schedule() should not be
7925 	 * called from this thread, however somewhere below it might be,
7926 	 * but because we are the idle thread, we just pick up running again
7927 	 * when this runqueue becomes "idle".
7928 	 */
7929 	init_idle(current, smp_processor_id());
7930 
7931 	calc_load_update = jiffies + LOAD_FREQ;
7932 
7933 #ifdef CONFIG_SMP
7934 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7935 	/* May be allocated at isolcpus cmdline parse time */
7936 	if (cpu_isolated_map == NULL)
7937 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7938 	idle_thread_set_boot_cpu();
7939 	set_cpu_rq_start_time();
7940 #endif
7941 	init_sched_fair_class();
7942 
7943 	scheduler_running = 1;
7944 }
7945 
7946 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
preempt_count_equals(int preempt_offset)7947 static inline int preempt_count_equals(int preempt_offset)
7948 {
7949 	int nested = preempt_count() + rcu_preempt_depth();
7950 
7951 	return (nested == preempt_offset);
7952 }
7953 
7954 static int __might_sleep_init_called;
__might_sleep_init(void)7955 int __init __might_sleep_init(void)
7956 {
7957 	__might_sleep_init_called = 1;
7958 	return 0;
7959 }
7960 early_initcall(__might_sleep_init);
7961 
__might_sleep(const char * file,int line,int preempt_offset)7962 void __might_sleep(const char *file, int line, int preempt_offset)
7963 {
7964 	/*
7965 	 * Blocking primitives will set (and therefore destroy) current->state,
7966 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7967 	 * otherwise we will destroy state.
7968 	 */
7969 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7970 			"do not call blocking ops when !TASK_RUNNING; "
7971 			"state=%lx set at [<%p>] %pS\n",
7972 			current->state,
7973 			(void *)current->task_state_change,
7974 			(void *)current->task_state_change);
7975 
7976 	___might_sleep(file, line, preempt_offset);
7977 }
7978 EXPORT_SYMBOL(__might_sleep);
7979 
___might_sleep(const char * file,int line,int preempt_offset)7980 void ___might_sleep(const char *file, int line, int preempt_offset)
7981 {
7982 	static unsigned long prev_jiffy;	/* ratelimiting */
7983 
7984 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7985 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7986 	     !is_idle_task(current)) || oops_in_progress)
7987 		return;
7988 	if (system_state != SYSTEM_RUNNING &&
7989 	    (!__might_sleep_init_called || system_state != SYSTEM_BOOTING))
7990 		return;
7991 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7992 		return;
7993 	prev_jiffy = jiffies;
7994 
7995 	printk(KERN_ERR
7996 		"BUG: sleeping function called from invalid context at %s:%d\n",
7997 			file, line);
7998 	printk(KERN_ERR
7999 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8000 			in_atomic(), irqs_disabled(),
8001 			current->pid, current->comm);
8002 
8003 	if (task_stack_end_corrupted(current))
8004 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
8005 
8006 	debug_show_held_locks(current);
8007 	if (irqs_disabled())
8008 		print_irqtrace_events(current);
8009 #ifdef CONFIG_DEBUG_PREEMPT
8010 	if (!preempt_count_equals(preempt_offset)) {
8011 		pr_err("Preemption disabled at:");
8012 		print_ip_sym(current->preempt_disable_ip);
8013 		pr_cont("\n");
8014 	}
8015 #endif
8016 	dump_stack();
8017 }
8018 EXPORT_SYMBOL(___might_sleep);
8019 #endif
8020 
8021 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)8022 void normalize_rt_tasks(void)
8023 {
8024 	struct task_struct *g, *p;
8025 	struct sched_attr attr = {
8026 		.sched_policy = SCHED_NORMAL,
8027 	};
8028 
8029 	read_lock(&tasklist_lock);
8030 	for_each_process_thread(g, p) {
8031 		/*
8032 		 * Only normalize user tasks:
8033 		 */
8034 		if (p->flags & PF_KTHREAD)
8035 			continue;
8036 
8037 		p->se.exec_start		= 0;
8038 #ifdef CONFIG_SCHEDSTATS
8039 		p->se.statistics.wait_start	= 0;
8040 		p->se.statistics.sleep_start	= 0;
8041 		p->se.statistics.block_start	= 0;
8042 #endif
8043 
8044 		if (!dl_task(p) && !rt_task(p)) {
8045 			/*
8046 			 * Renice negative nice level userspace
8047 			 * tasks back to 0:
8048 			 */
8049 			if (task_nice(p) < 0)
8050 				set_user_nice(p, 0);
8051 			continue;
8052 		}
8053 
8054 		__sched_setscheduler(p, &attr, false, false);
8055 	}
8056 	read_unlock(&tasklist_lock);
8057 }
8058 
8059 #endif /* CONFIG_MAGIC_SYSRQ */
8060 
8061 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8062 /*
8063  * These functions are only useful for the IA64 MCA handling, or kdb.
8064  *
8065  * They can only be called when the whole system has been
8066  * stopped - every CPU needs to be quiescent, and no scheduling
8067  * activity can take place. Using them for anything else would
8068  * be a serious bug, and as a result, they aren't even visible
8069  * under any other configuration.
8070  */
8071 
8072 /**
8073  * curr_task - return the current task for a given cpu.
8074  * @cpu: the processor in question.
8075  *
8076  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8077  *
8078  * Return: The current task for @cpu.
8079  */
curr_task(int cpu)8080 struct task_struct *curr_task(int cpu)
8081 {
8082 	return cpu_curr(cpu);
8083 }
8084 
8085 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8086 
8087 #ifdef CONFIG_IA64
8088 /**
8089  * set_curr_task - set the current task for a given cpu.
8090  * @cpu: the processor in question.
8091  * @p: the task pointer to set.
8092  *
8093  * Description: This function must only be used when non-maskable interrupts
8094  * are serviced on a separate stack. It allows the architecture to switch the
8095  * notion of the current task on a cpu in a non-blocking manner. This function
8096  * must be called with all CPU's synchronized, and interrupts disabled, the
8097  * and caller must save the original value of the current task (see
8098  * curr_task() above) and restore that value before reenabling interrupts and
8099  * re-starting the system.
8100  *
8101  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8102  */
set_curr_task(int cpu,struct task_struct * p)8103 void set_curr_task(int cpu, struct task_struct *p)
8104 {
8105 	cpu_curr(cpu) = p;
8106 }
8107 
8108 #endif
8109 
8110 #ifdef CONFIG_CGROUP_SCHED
8111 /* task_group_lock serializes the addition/removal of task groups */
8112 static DEFINE_SPINLOCK(task_group_lock);
8113 
sched_free_group(struct task_group * tg)8114 static void sched_free_group(struct task_group *tg)
8115 {
8116 	free_fair_sched_group(tg);
8117 	free_rt_sched_group(tg);
8118 	autogroup_free(tg);
8119 	kfree(tg);
8120 }
8121 
8122 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)8123 struct task_group *sched_create_group(struct task_group *parent)
8124 {
8125 	struct task_group *tg;
8126 
8127 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8128 	if (!tg)
8129 		return ERR_PTR(-ENOMEM);
8130 
8131 	if (!alloc_fair_sched_group(tg, parent))
8132 		goto err;
8133 
8134 	if (!alloc_rt_sched_group(tg, parent))
8135 		goto err;
8136 
8137 	return tg;
8138 
8139 err:
8140 	sched_free_group(tg);
8141 	return ERR_PTR(-ENOMEM);
8142 }
8143 
sched_online_group(struct task_group * tg,struct task_group * parent)8144 void sched_online_group(struct task_group *tg, struct task_group *parent)
8145 {
8146 	unsigned long flags;
8147 
8148 	spin_lock_irqsave(&task_group_lock, flags);
8149 	list_add_rcu(&tg->list, &task_groups);
8150 
8151 	WARN_ON(!parent); /* root should already exist */
8152 
8153 	tg->parent = parent;
8154 	INIT_LIST_HEAD(&tg->children);
8155 	list_add_rcu(&tg->siblings, &parent->children);
8156 	spin_unlock_irqrestore(&task_group_lock, flags);
8157 }
8158 
8159 /* rcu callback to free various structures associated with a task group */
sched_free_group_rcu(struct rcu_head * rhp)8160 static void sched_free_group_rcu(struct rcu_head *rhp)
8161 {
8162 	/* now it should be safe to free those cfs_rqs */
8163 	sched_free_group(container_of(rhp, struct task_group, rcu));
8164 }
8165 
sched_destroy_group(struct task_group * tg)8166 void sched_destroy_group(struct task_group *tg)
8167 {
8168 	/* wait for possible concurrent references to cfs_rqs complete */
8169 	call_rcu(&tg->rcu, sched_free_group_rcu);
8170 }
8171 
sched_offline_group(struct task_group * tg)8172 void sched_offline_group(struct task_group *tg)
8173 {
8174 	unsigned long flags;
8175 
8176 	/* end participation in shares distribution */
8177 	unregister_fair_sched_group(tg);
8178 
8179 	spin_lock_irqsave(&task_group_lock, flags);
8180 	list_del_rcu(&tg->list);
8181 	list_del_rcu(&tg->siblings);
8182 	spin_unlock_irqrestore(&task_group_lock, flags);
8183 }
8184 
sched_change_group(struct task_struct * tsk,int type)8185 static void sched_change_group(struct task_struct *tsk, int type)
8186 {
8187 	struct task_group *tg;
8188 
8189 	/*
8190 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
8191 	 * which is pointless here. Thus, we pass "true" to task_css_check()
8192 	 * to prevent lockdep warnings.
8193 	 */
8194 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8195 			  struct task_group, css);
8196 	tg = autogroup_task_group(tsk, tg);
8197 	tsk->sched_task_group = tg;
8198 
8199 #ifdef CONFIG_FAIR_GROUP_SCHED
8200 	if (tsk->sched_class->task_change_group)
8201 		tsk->sched_class->task_change_group(tsk, type);
8202 	else
8203 #endif
8204 		set_task_rq(tsk, task_cpu(tsk));
8205 }
8206 
8207 /*
8208  * Change task's runqueue when it moves between groups.
8209  *
8210  * The caller of this function should have put the task in its new group by
8211  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8212  * its new group.
8213  */
sched_move_task(struct task_struct * tsk)8214 void sched_move_task(struct task_struct *tsk)
8215 {
8216 	int queued, running;
8217 	unsigned long flags;
8218 	struct rq *rq;
8219 
8220 	rq = task_rq_lock(tsk, &flags);
8221 
8222 	running = task_current(rq, tsk);
8223 	queued = task_on_rq_queued(tsk);
8224 
8225 	if (queued)
8226 		dequeue_task(rq, tsk, DEQUEUE_SAVE);
8227 	if (unlikely(running))
8228 		put_prev_task(rq, tsk);
8229 
8230 	sched_change_group(tsk, TASK_MOVE_GROUP);
8231 
8232 	if (unlikely(running))
8233 		tsk->sched_class->set_curr_task(rq);
8234 	if (queued)
8235 		enqueue_task(rq, tsk, ENQUEUE_RESTORE);
8236 
8237 	task_rq_unlock(rq, tsk, &flags);
8238 }
8239 #endif /* CONFIG_CGROUP_SCHED */
8240 
8241 #ifdef CONFIG_RT_GROUP_SCHED
8242 /*
8243  * Ensure that the real time constraints are schedulable.
8244  */
8245 static DEFINE_MUTEX(rt_constraints_mutex);
8246 
8247 /* Must be called with tasklist_lock held */
tg_has_rt_tasks(struct task_group * tg)8248 static inline int tg_has_rt_tasks(struct task_group *tg)
8249 {
8250 	struct task_struct *g, *p;
8251 
8252 	/*
8253 	 * Autogroups do not have RT tasks; see autogroup_create().
8254 	 */
8255 	if (task_group_is_autogroup(tg))
8256 		return 0;
8257 
8258 	for_each_process_thread(g, p) {
8259 		if (rt_task(p) && task_group(p) == tg)
8260 			return 1;
8261 	}
8262 
8263 	return 0;
8264 }
8265 
8266 struct rt_schedulable_data {
8267 	struct task_group *tg;
8268 	u64 rt_period;
8269 	u64 rt_runtime;
8270 };
8271 
tg_rt_schedulable(struct task_group * tg,void * data)8272 static int tg_rt_schedulable(struct task_group *tg, void *data)
8273 {
8274 	struct rt_schedulable_data *d = data;
8275 	struct task_group *child;
8276 	unsigned long total, sum = 0;
8277 	u64 period, runtime;
8278 
8279 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8280 	runtime = tg->rt_bandwidth.rt_runtime;
8281 
8282 	if (tg == d->tg) {
8283 		period = d->rt_period;
8284 		runtime = d->rt_runtime;
8285 	}
8286 
8287 	/*
8288 	 * Cannot have more runtime than the period.
8289 	 */
8290 	if (runtime > period && runtime != RUNTIME_INF)
8291 		return -EINVAL;
8292 
8293 	/*
8294 	 * Ensure we don't starve existing RT tasks.
8295 	 */
8296 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8297 		return -EBUSY;
8298 
8299 	total = to_ratio(period, runtime);
8300 
8301 	/*
8302 	 * Nobody can have more than the global setting allows.
8303 	 */
8304 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8305 		return -EINVAL;
8306 
8307 	/*
8308 	 * The sum of our children's runtime should not exceed our own.
8309 	 */
8310 	list_for_each_entry_rcu(child, &tg->children, siblings) {
8311 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
8312 		runtime = child->rt_bandwidth.rt_runtime;
8313 
8314 		if (child == d->tg) {
8315 			period = d->rt_period;
8316 			runtime = d->rt_runtime;
8317 		}
8318 
8319 		sum += to_ratio(period, runtime);
8320 	}
8321 
8322 	if (sum > total)
8323 		return -EINVAL;
8324 
8325 	return 0;
8326 }
8327 
__rt_schedulable(struct task_group * tg,u64 period,u64 runtime)8328 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8329 {
8330 	int ret;
8331 
8332 	struct rt_schedulable_data data = {
8333 		.tg = tg,
8334 		.rt_period = period,
8335 		.rt_runtime = runtime,
8336 	};
8337 
8338 	rcu_read_lock();
8339 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8340 	rcu_read_unlock();
8341 
8342 	return ret;
8343 }
8344 
tg_set_rt_bandwidth(struct task_group * tg,u64 rt_period,u64 rt_runtime)8345 static int tg_set_rt_bandwidth(struct task_group *tg,
8346 		u64 rt_period, u64 rt_runtime)
8347 {
8348 	int i, err = 0;
8349 
8350 	/*
8351 	 * Disallowing the root group RT runtime is BAD, it would disallow the
8352 	 * kernel creating (and or operating) RT threads.
8353 	 */
8354 	if (tg == &root_task_group && rt_runtime == 0)
8355 		return -EINVAL;
8356 
8357 	/* No period doesn't make any sense. */
8358 	if (rt_period == 0)
8359 		return -EINVAL;
8360 
8361 	mutex_lock(&rt_constraints_mutex);
8362 	read_lock(&tasklist_lock);
8363 	err = __rt_schedulable(tg, rt_period, rt_runtime);
8364 	if (err)
8365 		goto unlock;
8366 
8367 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8368 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8369 	tg->rt_bandwidth.rt_runtime = rt_runtime;
8370 
8371 	for_each_possible_cpu(i) {
8372 		struct rt_rq *rt_rq = tg->rt_rq[i];
8373 
8374 		raw_spin_lock(&rt_rq->rt_runtime_lock);
8375 		rt_rq->rt_runtime = rt_runtime;
8376 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
8377 	}
8378 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8379 unlock:
8380 	read_unlock(&tasklist_lock);
8381 	mutex_unlock(&rt_constraints_mutex);
8382 
8383 	return err;
8384 }
8385 
sched_group_set_rt_runtime(struct task_group * tg,long rt_runtime_us)8386 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8387 {
8388 	u64 rt_runtime, rt_period;
8389 
8390 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8391 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8392 	if (rt_runtime_us < 0)
8393 		rt_runtime = RUNTIME_INF;
8394 
8395 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8396 }
8397 
sched_group_rt_runtime(struct task_group * tg)8398 static long sched_group_rt_runtime(struct task_group *tg)
8399 {
8400 	u64 rt_runtime_us;
8401 
8402 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8403 		return -1;
8404 
8405 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8406 	do_div(rt_runtime_us, NSEC_PER_USEC);
8407 	return rt_runtime_us;
8408 }
8409 
sched_group_set_rt_period(struct task_group * tg,u64 rt_period_us)8410 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8411 {
8412 	u64 rt_runtime, rt_period;
8413 
8414 	rt_period = rt_period_us * NSEC_PER_USEC;
8415 	rt_runtime = tg->rt_bandwidth.rt_runtime;
8416 
8417 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8418 }
8419 
sched_group_rt_period(struct task_group * tg)8420 static long sched_group_rt_period(struct task_group *tg)
8421 {
8422 	u64 rt_period_us;
8423 
8424 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8425 	do_div(rt_period_us, NSEC_PER_USEC);
8426 	return rt_period_us;
8427 }
8428 #endif /* CONFIG_RT_GROUP_SCHED */
8429 
8430 #ifdef CONFIG_RT_GROUP_SCHED
sched_rt_global_constraints(void)8431 static int sched_rt_global_constraints(void)
8432 {
8433 	int ret = 0;
8434 
8435 	mutex_lock(&rt_constraints_mutex);
8436 	read_lock(&tasklist_lock);
8437 	ret = __rt_schedulable(NULL, 0, 0);
8438 	read_unlock(&tasklist_lock);
8439 	mutex_unlock(&rt_constraints_mutex);
8440 
8441 	return ret;
8442 }
8443 
sched_rt_can_attach(struct task_group * tg,struct task_struct * tsk)8444 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8445 {
8446 	/* Don't accept realtime tasks when there is no way for them to run */
8447 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8448 		return 0;
8449 
8450 	return 1;
8451 }
8452 
8453 #else /* !CONFIG_RT_GROUP_SCHED */
sched_rt_global_constraints(void)8454 static int sched_rt_global_constraints(void)
8455 {
8456 	unsigned long flags;
8457 	int i, ret = 0;
8458 
8459 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8460 	for_each_possible_cpu(i) {
8461 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8462 
8463 		raw_spin_lock(&rt_rq->rt_runtime_lock);
8464 		rt_rq->rt_runtime = global_rt_runtime();
8465 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
8466 	}
8467 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8468 
8469 	return ret;
8470 }
8471 #endif /* CONFIG_RT_GROUP_SCHED */
8472 
sched_dl_global_validate(void)8473 static int sched_dl_global_validate(void)
8474 {
8475 	u64 runtime = global_rt_runtime();
8476 	u64 period = global_rt_period();
8477 	u64 new_bw = to_ratio(period, runtime);
8478 	struct dl_bw *dl_b;
8479 	int cpu, ret = 0;
8480 	unsigned long flags;
8481 
8482 	/*
8483 	 * Here we want to check the bandwidth not being set to some
8484 	 * value smaller than the currently allocated bandwidth in
8485 	 * any of the root_domains.
8486 	 *
8487 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8488 	 * cycling on root_domains... Discussion on different/better
8489 	 * solutions is welcome!
8490 	 */
8491 	for_each_possible_cpu(cpu) {
8492 		rcu_read_lock_sched();
8493 		dl_b = dl_bw_of(cpu);
8494 
8495 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8496 		if (new_bw < dl_b->total_bw)
8497 			ret = -EBUSY;
8498 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8499 
8500 		rcu_read_unlock_sched();
8501 
8502 		if (ret)
8503 			break;
8504 	}
8505 
8506 	return ret;
8507 }
8508 
sched_dl_do_global(void)8509 static void sched_dl_do_global(void)
8510 {
8511 	u64 new_bw = -1;
8512 	struct dl_bw *dl_b;
8513 	int cpu;
8514 	unsigned long flags;
8515 
8516 	def_dl_bandwidth.dl_period = global_rt_period();
8517 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
8518 
8519 	if (global_rt_runtime() != RUNTIME_INF)
8520 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8521 
8522 	/*
8523 	 * FIXME: As above...
8524 	 */
8525 	for_each_possible_cpu(cpu) {
8526 		rcu_read_lock_sched();
8527 		dl_b = dl_bw_of(cpu);
8528 
8529 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8530 		dl_b->bw = new_bw;
8531 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8532 
8533 		rcu_read_unlock_sched();
8534 	}
8535 }
8536 
sched_rt_global_validate(void)8537 static int sched_rt_global_validate(void)
8538 {
8539 	if (sysctl_sched_rt_period <= 0)
8540 		return -EINVAL;
8541 
8542 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8543 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8544 		return -EINVAL;
8545 
8546 	return 0;
8547 }
8548 
sched_rt_do_global(void)8549 static void sched_rt_do_global(void)
8550 {
8551 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
8552 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8553 }
8554 
sched_rt_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)8555 int sched_rt_handler(struct ctl_table *table, int write,
8556 		void __user *buffer, size_t *lenp,
8557 		loff_t *ppos)
8558 {
8559 	int old_period, old_runtime;
8560 	static DEFINE_MUTEX(mutex);
8561 	int ret;
8562 
8563 	mutex_lock(&mutex);
8564 	old_period = sysctl_sched_rt_period;
8565 	old_runtime = sysctl_sched_rt_runtime;
8566 
8567 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8568 
8569 	if (!ret && write) {
8570 		ret = sched_rt_global_validate();
8571 		if (ret)
8572 			goto undo;
8573 
8574 		ret = sched_dl_global_validate();
8575 		if (ret)
8576 			goto undo;
8577 
8578 		ret = sched_rt_global_constraints();
8579 		if (ret)
8580 			goto undo;
8581 
8582 		sched_rt_do_global();
8583 		sched_dl_do_global();
8584 	}
8585 	if (0) {
8586 undo:
8587 		sysctl_sched_rt_period = old_period;
8588 		sysctl_sched_rt_runtime = old_runtime;
8589 	}
8590 	mutex_unlock(&mutex);
8591 
8592 	return ret;
8593 }
8594 
sched_rr_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)8595 int sched_rr_handler(struct ctl_table *table, int write,
8596 		void __user *buffer, size_t *lenp,
8597 		loff_t *ppos)
8598 {
8599 	int ret;
8600 	static DEFINE_MUTEX(mutex);
8601 
8602 	mutex_lock(&mutex);
8603 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8604 	/* make sure that internally we keep jiffies */
8605 	/* also, writing zero resets timeslice to default */
8606 	if (!ret && write) {
8607 		sched_rr_timeslice =
8608 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
8609 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
8610 	}
8611 	mutex_unlock(&mutex);
8612 	return ret;
8613 }
8614 
8615 #ifdef CONFIG_CGROUP_SCHED
8616 
css_tg(struct cgroup_subsys_state * css)8617 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8618 {
8619 	return css ? container_of(css, struct task_group, css) : NULL;
8620 }
8621 
8622 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)8623 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8624 {
8625 	struct task_group *parent = css_tg(parent_css);
8626 	struct task_group *tg;
8627 
8628 	if (!parent) {
8629 		/* This is early initialization for the top cgroup */
8630 		return &root_task_group.css;
8631 	}
8632 
8633 	tg = sched_create_group(parent);
8634 	if (IS_ERR(tg))
8635 		return ERR_PTR(-ENOMEM);
8636 
8637 	return &tg->css;
8638 }
8639 
8640 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)8641 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8642 {
8643 	struct task_group *tg = css_tg(css);
8644 	struct task_group *parent = css_tg(css->parent);
8645 
8646 	if (parent)
8647 		sched_online_group(tg, parent);
8648 	return 0;
8649 }
8650 
cpu_cgroup_css_released(struct cgroup_subsys_state * css)8651 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8652 {
8653 	struct task_group *tg = css_tg(css);
8654 
8655 	sched_offline_group(tg);
8656 }
8657 
cpu_cgroup_css_free(struct cgroup_subsys_state * css)8658 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8659 {
8660 	struct task_group *tg = css_tg(css);
8661 
8662 	/*
8663 	 * Relies on the RCU grace period between css_released() and this.
8664 	 */
8665 	sched_free_group(tg);
8666 }
8667 
8668 /*
8669  * This is called before wake_up_new_task(), therefore we really only
8670  * have to set its group bits, all the other stuff does not apply.
8671  */
cpu_cgroup_fork(struct task_struct * task,void * private)8672 static void cpu_cgroup_fork(struct task_struct *task, void *private)
8673 {
8674 	unsigned long flags;
8675 	struct rq *rq;
8676 
8677 	rq = task_rq_lock(task, &flags);
8678 
8679 	update_rq_clock(rq);
8680 	sched_change_group(task, TASK_SET_GROUP);
8681 
8682 	task_rq_unlock(rq, task, &flags);
8683 }
8684 
cpu_cgroup_can_attach(struct cgroup_taskset * tset)8685 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8686 {
8687 	struct task_struct *task;
8688 	struct cgroup_subsys_state *css;
8689 	int ret = 0;
8690 
8691 	cgroup_taskset_for_each(task, css, tset) {
8692 #ifdef CONFIG_RT_GROUP_SCHED
8693 		if (!sched_rt_can_attach(css_tg(css), task))
8694 			return -EINVAL;
8695 #endif
8696 		/*
8697 		 * Serialize against wake_up_new_task() such that if its
8698 		 * running, we're sure to observe its full state.
8699 		 */
8700 		raw_spin_lock_irq(&task->pi_lock);
8701 		/*
8702 		 * Avoid calling sched_move_task() before wake_up_new_task()
8703 		 * has happened. This would lead to problems with PELT, due to
8704 		 * move wanting to detach+attach while we're not attached yet.
8705 		 */
8706 		if (task->state == TASK_NEW)
8707 			ret = -EINVAL;
8708 		raw_spin_unlock_irq(&task->pi_lock);
8709 
8710 		if (ret)
8711 			break;
8712 	}
8713 	return ret;
8714 }
8715 
cpu_cgroup_attach(struct cgroup_taskset * tset)8716 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8717 {
8718 	struct task_struct *task;
8719 	struct cgroup_subsys_state *css;
8720 
8721 	cgroup_taskset_for_each(task, css, tset)
8722 		sched_move_task(task);
8723 }
8724 
8725 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)8726 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8727 				struct cftype *cftype, u64 shareval)
8728 {
8729 	if (shareval > scale_load_down(ULONG_MAX))
8730 		shareval = MAX_SHARES;
8731 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8732 }
8733 
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8734 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8735 			       struct cftype *cft)
8736 {
8737 	struct task_group *tg = css_tg(css);
8738 
8739 	return (u64) scale_load_down(tg->shares);
8740 }
8741 
8742 #ifdef CONFIG_CFS_BANDWIDTH
8743 static DEFINE_MUTEX(cfs_constraints_mutex);
8744 
8745 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8746 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8747 
8748 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8749 
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota)8750 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8751 {
8752 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8753 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8754 
8755 	if (tg == &root_task_group)
8756 		return -EINVAL;
8757 
8758 	/*
8759 	 * Ensure we have at some amount of bandwidth every period.  This is
8760 	 * to prevent reaching a state of large arrears when throttled via
8761 	 * entity_tick() resulting in prolonged exit starvation.
8762 	 */
8763 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8764 		return -EINVAL;
8765 
8766 	/*
8767 	 * Likewise, bound things on the otherside by preventing insane quota
8768 	 * periods.  This also allows us to normalize in computing quota
8769 	 * feasibility.
8770 	 */
8771 	if (period > max_cfs_quota_period)
8772 		return -EINVAL;
8773 
8774 	/*
8775 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8776 	 * unthrottle_offline_cfs_rqs().
8777 	 */
8778 	get_online_cpus();
8779 	mutex_lock(&cfs_constraints_mutex);
8780 	ret = __cfs_schedulable(tg, period, quota);
8781 	if (ret)
8782 		goto out_unlock;
8783 
8784 	runtime_enabled = quota != RUNTIME_INF;
8785 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8786 	/*
8787 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8788 	 * before making related changes, and on->off must occur afterwards
8789 	 */
8790 	if (runtime_enabled && !runtime_was_enabled)
8791 		cfs_bandwidth_usage_inc();
8792 	raw_spin_lock_irq(&cfs_b->lock);
8793 	cfs_b->period = ns_to_ktime(period);
8794 	cfs_b->quota = quota;
8795 
8796 	__refill_cfs_bandwidth_runtime(cfs_b);
8797 	/* restart the period timer (if active) to handle new period expiry */
8798 	if (runtime_enabled)
8799 		start_cfs_bandwidth(cfs_b);
8800 	raw_spin_unlock_irq(&cfs_b->lock);
8801 
8802 	for_each_online_cpu(i) {
8803 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8804 		struct rq *rq = cfs_rq->rq;
8805 
8806 		raw_spin_lock_irq(&rq->lock);
8807 		cfs_rq->runtime_enabled = runtime_enabled;
8808 		cfs_rq->runtime_remaining = 0;
8809 
8810 		if (cfs_rq->throttled)
8811 			unthrottle_cfs_rq(cfs_rq);
8812 		raw_spin_unlock_irq(&rq->lock);
8813 	}
8814 	if (runtime_was_enabled && !runtime_enabled)
8815 		cfs_bandwidth_usage_dec();
8816 out_unlock:
8817 	mutex_unlock(&cfs_constraints_mutex);
8818 	put_online_cpus();
8819 
8820 	return ret;
8821 }
8822 
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)8823 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8824 {
8825 	u64 quota, period;
8826 
8827 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8828 	if (cfs_quota_us < 0)
8829 		quota = RUNTIME_INF;
8830 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
8831 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8832 	else
8833 		return -EINVAL;
8834 
8835 	return tg_set_cfs_bandwidth(tg, period, quota);
8836 }
8837 
tg_get_cfs_quota(struct task_group * tg)8838 long tg_get_cfs_quota(struct task_group *tg)
8839 {
8840 	u64 quota_us;
8841 
8842 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8843 		return -1;
8844 
8845 	quota_us = tg->cfs_bandwidth.quota;
8846 	do_div(quota_us, NSEC_PER_USEC);
8847 
8848 	return quota_us;
8849 }
8850 
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)8851 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8852 {
8853 	u64 quota, period;
8854 
8855 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8856 		return -EINVAL;
8857 
8858 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8859 	quota = tg->cfs_bandwidth.quota;
8860 
8861 	return tg_set_cfs_bandwidth(tg, period, quota);
8862 }
8863 
tg_get_cfs_period(struct task_group * tg)8864 long tg_get_cfs_period(struct task_group *tg)
8865 {
8866 	u64 cfs_period_us;
8867 
8868 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8869 	do_div(cfs_period_us, NSEC_PER_USEC);
8870 
8871 	return cfs_period_us;
8872 }
8873 
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)8874 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8875 				  struct cftype *cft)
8876 {
8877 	return tg_get_cfs_quota(css_tg(css));
8878 }
8879 
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)8880 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8881 				   struct cftype *cftype, s64 cfs_quota_us)
8882 {
8883 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8884 }
8885 
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8886 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8887 				   struct cftype *cft)
8888 {
8889 	return tg_get_cfs_period(css_tg(css));
8890 }
8891 
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)8892 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8893 				    struct cftype *cftype, u64 cfs_period_us)
8894 {
8895 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8896 }
8897 
8898 struct cfs_schedulable_data {
8899 	struct task_group *tg;
8900 	u64 period, quota;
8901 };
8902 
8903 /*
8904  * normalize group quota/period to be quota/max_period
8905  * note: units are usecs
8906  */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)8907 static u64 normalize_cfs_quota(struct task_group *tg,
8908 			       struct cfs_schedulable_data *d)
8909 {
8910 	u64 quota, period;
8911 
8912 	if (tg == d->tg) {
8913 		period = d->period;
8914 		quota = d->quota;
8915 	} else {
8916 		period = tg_get_cfs_period(tg);
8917 		quota = tg_get_cfs_quota(tg);
8918 	}
8919 
8920 	/* note: these should typically be equivalent */
8921 	if (quota == RUNTIME_INF || quota == -1)
8922 		return RUNTIME_INF;
8923 
8924 	return to_ratio(period, quota);
8925 }
8926 
tg_cfs_schedulable_down(struct task_group * tg,void * data)8927 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8928 {
8929 	struct cfs_schedulable_data *d = data;
8930 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8931 	s64 quota = 0, parent_quota = -1;
8932 
8933 	if (!tg->parent) {
8934 		quota = RUNTIME_INF;
8935 	} else {
8936 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8937 
8938 		quota = normalize_cfs_quota(tg, d);
8939 		parent_quota = parent_b->hierarchical_quota;
8940 
8941 		/*
8942 		 * ensure max(child_quota) <= parent_quota, inherit when no
8943 		 * limit is set
8944 		 */
8945 		if (quota == RUNTIME_INF)
8946 			quota = parent_quota;
8947 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8948 			return -EINVAL;
8949 	}
8950 	cfs_b->hierarchical_quota = quota;
8951 
8952 	return 0;
8953 }
8954 
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)8955 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8956 {
8957 	int ret;
8958 	struct cfs_schedulable_data data = {
8959 		.tg = tg,
8960 		.period = period,
8961 		.quota = quota,
8962 	};
8963 
8964 	if (quota != RUNTIME_INF) {
8965 		do_div(data.period, NSEC_PER_USEC);
8966 		do_div(data.quota, NSEC_PER_USEC);
8967 	}
8968 
8969 	rcu_read_lock();
8970 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8971 	rcu_read_unlock();
8972 
8973 	return ret;
8974 }
8975 
cpu_stats_show(struct seq_file * sf,void * v)8976 static int cpu_stats_show(struct seq_file *sf, void *v)
8977 {
8978 	struct task_group *tg = css_tg(seq_css(sf));
8979 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8980 
8981 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8982 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8983 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8984 
8985 	return 0;
8986 }
8987 #endif /* CONFIG_CFS_BANDWIDTH */
8988 #endif /* CONFIG_FAIR_GROUP_SCHED */
8989 
8990 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)8991 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8992 				struct cftype *cft, s64 val)
8993 {
8994 	return sched_group_set_rt_runtime(css_tg(css), val);
8995 }
8996 
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)8997 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8998 			       struct cftype *cft)
8999 {
9000 	return sched_group_rt_runtime(css_tg(css));
9001 }
9002 
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)9003 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9004 				    struct cftype *cftype, u64 rt_period_us)
9005 {
9006 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9007 }
9008 
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)9009 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9010 				   struct cftype *cft)
9011 {
9012 	return sched_group_rt_period(css_tg(css));
9013 }
9014 #endif /* CONFIG_RT_GROUP_SCHED */
9015 
9016 static struct cftype cpu_files[] = {
9017 #ifdef CONFIG_FAIR_GROUP_SCHED
9018 	{
9019 		.name = "shares",
9020 		.read_u64 = cpu_shares_read_u64,
9021 		.write_u64 = cpu_shares_write_u64,
9022 	},
9023 #endif
9024 #ifdef CONFIG_CFS_BANDWIDTH
9025 	{
9026 		.name = "cfs_quota_us",
9027 		.read_s64 = cpu_cfs_quota_read_s64,
9028 		.write_s64 = cpu_cfs_quota_write_s64,
9029 	},
9030 	{
9031 		.name = "cfs_period_us",
9032 		.read_u64 = cpu_cfs_period_read_u64,
9033 		.write_u64 = cpu_cfs_period_write_u64,
9034 	},
9035 	{
9036 		.name = "stat",
9037 		.seq_show = cpu_stats_show,
9038 	},
9039 #endif
9040 #ifdef CONFIG_RT_GROUP_SCHED
9041 	{
9042 		.name = "rt_runtime_us",
9043 		.read_s64 = cpu_rt_runtime_read,
9044 		.write_s64 = cpu_rt_runtime_write,
9045 	},
9046 	{
9047 		.name = "rt_period_us",
9048 		.read_u64 = cpu_rt_period_read_uint,
9049 		.write_u64 = cpu_rt_period_write_uint,
9050 	},
9051 #endif
9052 	{ }	/* terminate */
9053 };
9054 
9055 struct cgroup_subsys cpu_cgrp_subsys = {
9056 	.css_alloc	= cpu_cgroup_css_alloc,
9057 	.css_online	= cpu_cgroup_css_online,
9058 	.css_released	= cpu_cgroup_css_released,
9059 	.css_free	= cpu_cgroup_css_free,
9060 	.fork		= cpu_cgroup_fork,
9061 	.can_attach	= cpu_cgroup_can_attach,
9062 	.attach		= cpu_cgroup_attach,
9063 	.legacy_cftypes	= cpu_files,
9064 	.early_init	= 1,
9065 };
9066 
9067 #endif	/* CONFIG_CGROUP_SCHED */
9068 
dump_cpu_task(int cpu)9069 void dump_cpu_task(int cpu)
9070 {
9071 	pr_info("Task dump for CPU %d:\n", cpu);
9072 	sched_show_task(cpu_curr(cpu));
9073 }
9074