1 /*
2 * random.c -- A strong random number generator
3 *
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42 /*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
128 * void add_device_randomness(const void *buf, unsigned int size);
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
131 * void add_interrupt_randomness(int irq, int irq_flags);
132 * void add_disk_randomness(struct gendisk *disk);
133 *
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238 #include <linux/utsname.h>
239 #include <linux/module.h>
240 #include <linux/kernel.h>
241 #include <linux/major.h>
242 #include <linux/string.h>
243 #include <linux/fcntl.h>
244 #include <linux/slab.h>
245 #include <linux/random.h>
246 #include <linux/poll.h>
247 #include <linux/init.h>
248 #include <linux/fs.h>
249 #include <linux/genhd.h>
250 #include <linux/interrupt.h>
251 #include <linux/mm.h>
252 #include <linux/spinlock.h>
253 #include <linux/kthread.h>
254 #include <linux/percpu.h>
255 #include <linux/cryptohash.h>
256 #include <linux/fips.h>
257 #include <linux/ptrace.h>
258 #include <linux/kmemcheck.h>
259 #include <linux/workqueue.h>
260 #include <linux/irq.h>
261 #include <linux/syscalls.h>
262 #include <linux/completion.h>
263
264 #include <asm/processor.h>
265 #include <asm/uaccess.h>
266 #include <asm/irq.h>
267 #include <asm/irq_regs.h>
268 #include <asm/io.h>
269
270 #define CREATE_TRACE_POINTS
271 #include <trace/events/random.h>
272
273 /* #define ADD_INTERRUPT_BENCH */
274
275 /*
276 * Configuration information
277 */
278 #define INPUT_POOL_SHIFT 12
279 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
280 #define OUTPUT_POOL_SHIFT 10
281 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
282 #define SEC_XFER_SIZE 512
283 #define EXTRACT_SIZE 10
284
285 #define DEBUG_RANDOM_BOOT 0
286
287 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
288
289 /*
290 * To allow fractional bits to be tracked, the entropy_count field is
291 * denominated in units of 1/8th bits.
292 *
293 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
294 * credit_entropy_bits() needs to be 64 bits wide.
295 */
296 #define ENTROPY_SHIFT 3
297 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
298
299 /*
300 * The minimum number of bits of entropy before we wake up a read on
301 * /dev/random. Should be enough to do a significant reseed.
302 */
303 static int random_read_wakeup_bits = 64;
304
305 /*
306 * If the entropy count falls under this number of bits, then we
307 * should wake up processes which are selecting or polling on write
308 * access to /dev/random.
309 */
310 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
311
312 /*
313 * The minimum number of seconds between urandom pool reseeding. We
314 * do this to limit the amount of entropy that can be drained from the
315 * input pool even if there are heavy demands on /dev/urandom.
316 */
317 static int random_min_urandom_seed = 60;
318
319 /*
320 * Originally, we used a primitive polynomial of degree .poolwords
321 * over GF(2). The taps for various sizes are defined below. They
322 * were chosen to be evenly spaced except for the last tap, which is 1
323 * to get the twisting happening as fast as possible.
324 *
325 * For the purposes of better mixing, we use the CRC-32 polynomial as
326 * well to make a (modified) twisted Generalized Feedback Shift
327 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
328 * generators. ACM Transactions on Modeling and Computer Simulation
329 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
330 * GFSR generators II. ACM Transactions on Modeling and Computer
331 * Simulation 4:254-266)
332 *
333 * Thanks to Colin Plumb for suggesting this.
334 *
335 * The mixing operation is much less sensitive than the output hash,
336 * where we use SHA-1. All that we want of mixing operation is that
337 * it be a good non-cryptographic hash; i.e. it not produce collisions
338 * when fed "random" data of the sort we expect to see. As long as
339 * the pool state differs for different inputs, we have preserved the
340 * input entropy and done a good job. The fact that an intelligent
341 * attacker can construct inputs that will produce controlled
342 * alterations to the pool's state is not important because we don't
343 * consider such inputs to contribute any randomness. The only
344 * property we need with respect to them is that the attacker can't
345 * increase his/her knowledge of the pool's state. Since all
346 * additions are reversible (knowing the final state and the input,
347 * you can reconstruct the initial state), if an attacker has any
348 * uncertainty about the initial state, he/she can only shuffle that
349 * uncertainty about, but never cause any collisions (which would
350 * decrease the uncertainty).
351 *
352 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
353 * Videau in their paper, "The Linux Pseudorandom Number Generator
354 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
355 * paper, they point out that we are not using a true Twisted GFSR,
356 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
357 * is, with only three taps, instead of the six that we are using).
358 * As a result, the resulting polynomial is neither primitive nor
359 * irreducible, and hence does not have a maximal period over
360 * GF(2**32). They suggest a slight change to the generator
361 * polynomial which improves the resulting TGFSR polynomial to be
362 * irreducible, which we have made here.
363 */
364 static struct poolinfo {
365 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
366 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
367 int tap1, tap2, tap3, tap4, tap5;
368 } poolinfo_table[] = {
369 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
370 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
371 { S(128), 104, 76, 51, 25, 1 },
372 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
373 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
374 { S(32), 26, 19, 14, 7, 1 },
375 #if 0
376 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
377 { S(2048), 1638, 1231, 819, 411, 1 },
378
379 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
380 { S(1024), 817, 615, 412, 204, 1 },
381
382 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
383 { S(1024), 819, 616, 410, 207, 2 },
384
385 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
386 { S(512), 411, 308, 208, 104, 1 },
387
388 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
389 { S(512), 409, 307, 206, 102, 2 },
390 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
391 { S(512), 409, 309, 205, 103, 2 },
392
393 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
394 { S(256), 205, 155, 101, 52, 1 },
395
396 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
397 { S(128), 103, 78, 51, 27, 2 },
398
399 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
400 { S(64), 52, 39, 26, 14, 1 },
401 #endif
402 };
403
404 /*
405 * Static global variables
406 */
407 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
408 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
409 static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait);
410 static struct fasync_struct *fasync;
411
412 static DEFINE_SPINLOCK(random_ready_list_lock);
413 static LIST_HEAD(random_ready_list);
414
415 /**********************************************************************
416 *
417 * OS independent entropy store. Here are the functions which handle
418 * storing entropy in an entropy pool.
419 *
420 **********************************************************************/
421
422 struct entropy_store;
423 struct entropy_store {
424 /* read-only data: */
425 const struct poolinfo *poolinfo;
426 __u32 *pool;
427 const char *name;
428 struct entropy_store *pull;
429 struct work_struct push_work;
430
431 /* read-write data: */
432 unsigned long last_pulled;
433 spinlock_t lock;
434 unsigned short add_ptr;
435 unsigned short input_rotate;
436 int entropy_count;
437 int entropy_total;
438 unsigned int initialized:1;
439 unsigned int limit:1;
440 unsigned int last_data_init:1;
441 __u8 last_data[EXTRACT_SIZE];
442 };
443
444 static void push_to_pool(struct work_struct *work);
445 static __u32 input_pool_data[INPUT_POOL_WORDS];
446 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
447 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
448
449 static struct entropy_store input_pool = {
450 .poolinfo = &poolinfo_table[0],
451 .name = "input",
452 .limit = 1,
453 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
454 .pool = input_pool_data
455 };
456
457 static struct entropy_store blocking_pool = {
458 .poolinfo = &poolinfo_table[1],
459 .name = "blocking",
460 .limit = 1,
461 .pull = &input_pool,
462 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
463 .pool = blocking_pool_data,
464 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
465 push_to_pool),
466 };
467
468 static struct entropy_store nonblocking_pool = {
469 .poolinfo = &poolinfo_table[1],
470 .name = "nonblocking",
471 .pull = &input_pool,
472 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
473 .pool = nonblocking_pool_data,
474 .push_work = __WORK_INITIALIZER(nonblocking_pool.push_work,
475 push_to_pool),
476 };
477
478 static __u32 const twist_table[8] = {
479 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
480 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
481
482 /*
483 * This function adds bytes into the entropy "pool". It does not
484 * update the entropy estimate. The caller should call
485 * credit_entropy_bits if this is appropriate.
486 *
487 * The pool is stirred with a primitive polynomial of the appropriate
488 * degree, and then twisted. We twist by three bits at a time because
489 * it's cheap to do so and helps slightly in the expected case where
490 * the entropy is concentrated in the low-order bits.
491 */
_mix_pool_bytes(struct entropy_store * r,const void * in,int nbytes)492 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
493 int nbytes)
494 {
495 unsigned long i, tap1, tap2, tap3, tap4, tap5;
496 int input_rotate;
497 int wordmask = r->poolinfo->poolwords - 1;
498 const char *bytes = in;
499 __u32 w;
500
501 tap1 = r->poolinfo->tap1;
502 tap2 = r->poolinfo->tap2;
503 tap3 = r->poolinfo->tap3;
504 tap4 = r->poolinfo->tap4;
505 tap5 = r->poolinfo->tap5;
506
507 input_rotate = r->input_rotate;
508 i = r->add_ptr;
509
510 /* mix one byte at a time to simplify size handling and churn faster */
511 while (nbytes--) {
512 w = rol32(*bytes++, input_rotate);
513 i = (i - 1) & wordmask;
514
515 /* XOR in the various taps */
516 w ^= r->pool[i];
517 w ^= r->pool[(i + tap1) & wordmask];
518 w ^= r->pool[(i + tap2) & wordmask];
519 w ^= r->pool[(i + tap3) & wordmask];
520 w ^= r->pool[(i + tap4) & wordmask];
521 w ^= r->pool[(i + tap5) & wordmask];
522
523 /* Mix the result back in with a twist */
524 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
525
526 /*
527 * Normally, we add 7 bits of rotation to the pool.
528 * At the beginning of the pool, add an extra 7 bits
529 * rotation, so that successive passes spread the
530 * input bits across the pool evenly.
531 */
532 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
533 }
534
535 r->input_rotate = input_rotate;
536 r->add_ptr = i;
537 }
538
__mix_pool_bytes(struct entropy_store * r,const void * in,int nbytes)539 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
540 int nbytes)
541 {
542 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
543 _mix_pool_bytes(r, in, nbytes);
544 }
545
mix_pool_bytes(struct entropy_store * r,const void * in,int nbytes)546 static void mix_pool_bytes(struct entropy_store *r, const void *in,
547 int nbytes)
548 {
549 unsigned long flags;
550
551 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
552 spin_lock_irqsave(&r->lock, flags);
553 _mix_pool_bytes(r, in, nbytes);
554 spin_unlock_irqrestore(&r->lock, flags);
555 }
556
557 struct fast_pool {
558 __u32 pool[4];
559 unsigned long last;
560 unsigned short reg_idx;
561 unsigned char count;
562 };
563
564 /*
565 * This is a fast mixing routine used by the interrupt randomness
566 * collector. It's hardcoded for an 128 bit pool and assumes that any
567 * locks that might be needed are taken by the caller.
568 */
fast_mix(struct fast_pool * f)569 static void fast_mix(struct fast_pool *f)
570 {
571 __u32 a = f->pool[0], b = f->pool[1];
572 __u32 c = f->pool[2], d = f->pool[3];
573
574 a += b; c += d;
575 b = rol32(b, 6); d = rol32(d, 27);
576 d ^= a; b ^= c;
577
578 a += b; c += d;
579 b = rol32(b, 16); d = rol32(d, 14);
580 d ^= a; b ^= c;
581
582 a += b; c += d;
583 b = rol32(b, 6); d = rol32(d, 27);
584 d ^= a; b ^= c;
585
586 a += b; c += d;
587 b = rol32(b, 16); d = rol32(d, 14);
588 d ^= a; b ^= c;
589
590 f->pool[0] = a; f->pool[1] = b;
591 f->pool[2] = c; f->pool[3] = d;
592 f->count++;
593 }
594
process_random_ready_list(void)595 static void process_random_ready_list(void)
596 {
597 unsigned long flags;
598 struct random_ready_callback *rdy, *tmp;
599
600 spin_lock_irqsave(&random_ready_list_lock, flags);
601 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
602 struct module *owner = rdy->owner;
603
604 list_del_init(&rdy->list);
605 rdy->func(rdy);
606 module_put(owner);
607 }
608 spin_unlock_irqrestore(&random_ready_list_lock, flags);
609 }
610
611 /*
612 * Credit (or debit) the entropy store with n bits of entropy.
613 * Use credit_entropy_bits_safe() if the value comes from userspace
614 * or otherwise should be checked for extreme values.
615 */
credit_entropy_bits(struct entropy_store * r,int nbits)616 static void credit_entropy_bits(struct entropy_store *r, int nbits)
617 {
618 int entropy_count, orig;
619 const int pool_size = r->poolinfo->poolfracbits;
620 int nfrac = nbits << ENTROPY_SHIFT;
621
622 if (!nbits)
623 return;
624
625 retry:
626 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
627 if (nfrac < 0) {
628 /* Debit */
629 entropy_count += nfrac;
630 } else {
631 /*
632 * Credit: we have to account for the possibility of
633 * overwriting already present entropy. Even in the
634 * ideal case of pure Shannon entropy, new contributions
635 * approach the full value asymptotically:
636 *
637 * entropy <- entropy + (pool_size - entropy) *
638 * (1 - exp(-add_entropy/pool_size))
639 *
640 * For add_entropy <= pool_size/2 then
641 * (1 - exp(-add_entropy/pool_size)) >=
642 * (add_entropy/pool_size)*0.7869...
643 * so we can approximate the exponential with
644 * 3/4*add_entropy/pool_size and still be on the
645 * safe side by adding at most pool_size/2 at a time.
646 *
647 * The use of pool_size-2 in the while statement is to
648 * prevent rounding artifacts from making the loop
649 * arbitrarily long; this limits the loop to log2(pool_size)*2
650 * turns no matter how large nbits is.
651 */
652 int pnfrac = nfrac;
653 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
654 /* The +2 corresponds to the /4 in the denominator */
655
656 do {
657 unsigned int anfrac = min(pnfrac, pool_size/2);
658 unsigned int add =
659 ((pool_size - entropy_count)*anfrac*3) >> s;
660
661 entropy_count += add;
662 pnfrac -= anfrac;
663 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
664 }
665
666 if (unlikely(entropy_count < 0)) {
667 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
668 r->name, entropy_count);
669 WARN_ON(1);
670 entropy_count = 0;
671 } else if (entropy_count > pool_size)
672 entropy_count = pool_size;
673 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
674 goto retry;
675
676 r->entropy_total += nbits;
677 if (!r->initialized && r->entropy_total > 128) {
678 r->initialized = 1;
679 r->entropy_total = 0;
680 if (r == &nonblocking_pool) {
681 process_random_ready_list();
682 wake_up_all(&urandom_init_wait);
683 pr_notice("random: %s pool is initialized\n", r->name);
684 }
685 }
686
687 trace_credit_entropy_bits(r->name, nbits,
688 entropy_count >> ENTROPY_SHIFT,
689 r->entropy_total, _RET_IP_);
690
691 if (r == &input_pool) {
692 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
693
694 /* should we wake readers? */
695 if (entropy_bits >= random_read_wakeup_bits) {
696 wake_up_interruptible(&random_read_wait);
697 kill_fasync(&fasync, SIGIO, POLL_IN);
698 }
699 /* If the input pool is getting full, send some
700 * entropy to the two output pools, flipping back and
701 * forth between them, until the output pools are 75%
702 * full.
703 */
704 if (entropy_bits > random_write_wakeup_bits &&
705 r->initialized &&
706 r->entropy_total >= 2*random_read_wakeup_bits) {
707 static struct entropy_store *last = &blocking_pool;
708 struct entropy_store *other = &blocking_pool;
709
710 if (last == &blocking_pool)
711 other = &nonblocking_pool;
712 if (other->entropy_count <=
713 3 * other->poolinfo->poolfracbits / 4)
714 last = other;
715 if (last->entropy_count <=
716 3 * last->poolinfo->poolfracbits / 4) {
717 schedule_work(&last->push_work);
718 r->entropy_total = 0;
719 }
720 }
721 }
722 }
723
credit_entropy_bits_safe(struct entropy_store * r,int nbits)724 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
725 {
726 const int nbits_max = r->poolinfo->poolwords * 32;
727
728 if (nbits < 0)
729 return -EINVAL;
730
731 /* Cap the value to avoid overflows */
732 nbits = min(nbits, nbits_max);
733
734 credit_entropy_bits(r, nbits);
735 return 0;
736 }
737
738 /*********************************************************************
739 *
740 * Entropy input management
741 *
742 *********************************************************************/
743
744 /* There is one of these per entropy source */
745 struct timer_rand_state {
746 cycles_t last_time;
747 long last_delta, last_delta2;
748 unsigned dont_count_entropy:1;
749 };
750
751 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
752
753 /*
754 * Add device- or boot-specific data to the input and nonblocking
755 * pools to help initialize them to unique values.
756 *
757 * None of this adds any entropy, it is meant to avoid the
758 * problem of the nonblocking pool having similar initial state
759 * across largely identical devices.
760 */
add_device_randomness(const void * buf,unsigned int size)761 void add_device_randomness(const void *buf, unsigned int size)
762 {
763 unsigned long time = random_get_entropy() ^ jiffies;
764 unsigned long flags;
765
766 trace_add_device_randomness(size, _RET_IP_);
767 spin_lock_irqsave(&input_pool.lock, flags);
768 _mix_pool_bytes(&input_pool, buf, size);
769 _mix_pool_bytes(&input_pool, &time, sizeof(time));
770 spin_unlock_irqrestore(&input_pool.lock, flags);
771
772 spin_lock_irqsave(&nonblocking_pool.lock, flags);
773 _mix_pool_bytes(&nonblocking_pool, buf, size);
774 _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time));
775 spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
776 }
777 EXPORT_SYMBOL(add_device_randomness);
778
779 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
780
781 /*
782 * This function adds entropy to the entropy "pool" by using timing
783 * delays. It uses the timer_rand_state structure to make an estimate
784 * of how many bits of entropy this call has added to the pool.
785 *
786 * The number "num" is also added to the pool - it should somehow describe
787 * the type of event which just happened. This is currently 0-255 for
788 * keyboard scan codes, and 256 upwards for interrupts.
789 *
790 */
add_timer_randomness(struct timer_rand_state * state,unsigned num)791 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
792 {
793 struct entropy_store *r;
794 struct {
795 long jiffies;
796 unsigned cycles;
797 unsigned num;
798 } sample;
799 long delta, delta2, delta3;
800
801 preempt_disable();
802
803 sample.jiffies = jiffies;
804 sample.cycles = random_get_entropy();
805 sample.num = num;
806 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
807 mix_pool_bytes(r, &sample, sizeof(sample));
808
809 /*
810 * Calculate number of bits of randomness we probably added.
811 * We take into account the first, second and third-order deltas
812 * in order to make our estimate.
813 */
814
815 if (!state->dont_count_entropy) {
816 delta = sample.jiffies - state->last_time;
817 state->last_time = sample.jiffies;
818
819 delta2 = delta - state->last_delta;
820 state->last_delta = delta;
821
822 delta3 = delta2 - state->last_delta2;
823 state->last_delta2 = delta2;
824
825 if (delta < 0)
826 delta = -delta;
827 if (delta2 < 0)
828 delta2 = -delta2;
829 if (delta3 < 0)
830 delta3 = -delta3;
831 if (delta > delta2)
832 delta = delta2;
833 if (delta > delta3)
834 delta = delta3;
835
836 /*
837 * delta is now minimum absolute delta.
838 * Round down by 1 bit on general principles,
839 * and limit entropy entimate to 12 bits.
840 */
841 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
842 }
843 preempt_enable();
844 }
845
add_input_randomness(unsigned int type,unsigned int code,unsigned int value)846 void add_input_randomness(unsigned int type, unsigned int code,
847 unsigned int value)
848 {
849 static unsigned char last_value;
850
851 /* ignore autorepeat and the like */
852 if (value == last_value)
853 return;
854
855 last_value = value;
856 add_timer_randomness(&input_timer_state,
857 (type << 4) ^ code ^ (code >> 4) ^ value);
858 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
859 }
860 EXPORT_SYMBOL_GPL(add_input_randomness);
861
862 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
863
864 #ifdef ADD_INTERRUPT_BENCH
865 static unsigned long avg_cycles, avg_deviation;
866
867 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
868 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
869
add_interrupt_bench(cycles_t start)870 static void add_interrupt_bench(cycles_t start)
871 {
872 long delta = random_get_entropy() - start;
873
874 /* Use a weighted moving average */
875 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
876 avg_cycles += delta;
877 /* And average deviation */
878 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
879 avg_deviation += delta;
880 }
881 #else
882 #define add_interrupt_bench(x)
883 #endif
884
get_reg(struct fast_pool * f,struct pt_regs * regs)885 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
886 {
887 __u32 *ptr = (__u32 *) regs;
888 unsigned int idx;
889
890 if (regs == NULL)
891 return 0;
892 idx = READ_ONCE(f->reg_idx);
893 if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
894 idx = 0;
895 ptr += idx++;
896 WRITE_ONCE(f->reg_idx, idx);
897 return *ptr;
898 }
899
add_interrupt_randomness(int irq,int irq_flags)900 void add_interrupt_randomness(int irq, int irq_flags)
901 {
902 struct entropy_store *r;
903 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
904 struct pt_regs *regs = get_irq_regs();
905 unsigned long now = jiffies;
906 cycles_t cycles = random_get_entropy();
907 __u32 c_high, j_high;
908 __u64 ip;
909 unsigned long seed;
910 int credit = 0;
911
912 if (cycles == 0)
913 cycles = get_reg(fast_pool, regs);
914 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
915 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
916 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
917 fast_pool->pool[1] ^= now ^ c_high;
918 ip = regs ? instruction_pointer(regs) : _RET_IP_;
919 fast_pool->pool[2] ^= ip;
920 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
921 get_reg(fast_pool, regs);
922
923 fast_mix(fast_pool);
924 add_interrupt_bench(cycles);
925
926 if ((fast_pool->count < 64) &&
927 !time_after(now, fast_pool->last + HZ))
928 return;
929
930 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
931 if (!spin_trylock(&r->lock))
932 return;
933
934 fast_pool->last = now;
935 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
936
937 /*
938 * If we have architectural seed generator, produce a seed and
939 * add it to the pool. For the sake of paranoia don't let the
940 * architectural seed generator dominate the input from the
941 * interrupt noise.
942 */
943 if (arch_get_random_seed_long(&seed)) {
944 __mix_pool_bytes(r, &seed, sizeof(seed));
945 credit = 1;
946 }
947 spin_unlock(&r->lock);
948
949 fast_pool->count = 0;
950
951 /* award one bit for the contents of the fast pool */
952 credit_entropy_bits(r, credit + 1);
953 }
954 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
955
956 #ifdef CONFIG_BLOCK
add_disk_randomness(struct gendisk * disk)957 void add_disk_randomness(struct gendisk *disk)
958 {
959 if (!disk || !disk->random)
960 return;
961 /* first major is 1, so we get >= 0x200 here */
962 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
963 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
964 }
965 EXPORT_SYMBOL_GPL(add_disk_randomness);
966 #endif
967
968 /*********************************************************************
969 *
970 * Entropy extraction routines
971 *
972 *********************************************************************/
973
974 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
975 size_t nbytes, int min, int rsvd);
976
977 /*
978 * This utility inline function is responsible for transferring entropy
979 * from the primary pool to the secondary extraction pool. We make
980 * sure we pull enough for a 'catastrophic reseed'.
981 */
982 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
xfer_secondary_pool(struct entropy_store * r,size_t nbytes)983 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
984 {
985 if (!r->pull ||
986 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
987 r->entropy_count > r->poolinfo->poolfracbits)
988 return;
989
990 if (r->limit == 0 && random_min_urandom_seed) {
991 unsigned long now = jiffies;
992
993 if (time_before(now,
994 r->last_pulled + random_min_urandom_seed * HZ))
995 return;
996 r->last_pulled = now;
997 }
998
999 _xfer_secondary_pool(r, nbytes);
1000 }
1001
_xfer_secondary_pool(struct entropy_store * r,size_t nbytes)1002 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1003 {
1004 __u32 tmp[OUTPUT_POOL_WORDS];
1005
1006 /* For /dev/random's pool, always leave two wakeups' worth */
1007 int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
1008 int bytes = nbytes;
1009
1010 /* pull at least as much as a wakeup */
1011 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1012 /* but never more than the buffer size */
1013 bytes = min_t(int, bytes, sizeof(tmp));
1014
1015 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1016 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1017 bytes = extract_entropy(r->pull, tmp, bytes,
1018 random_read_wakeup_bits / 8, rsvd_bytes);
1019 mix_pool_bytes(r, tmp, bytes);
1020 credit_entropy_bits(r, bytes*8);
1021 }
1022
1023 /*
1024 * Used as a workqueue function so that when the input pool is getting
1025 * full, we can "spill over" some entropy to the output pools. That
1026 * way the output pools can store some of the excess entropy instead
1027 * of letting it go to waste.
1028 */
push_to_pool(struct work_struct * work)1029 static void push_to_pool(struct work_struct *work)
1030 {
1031 struct entropy_store *r = container_of(work, struct entropy_store,
1032 push_work);
1033 BUG_ON(!r);
1034 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
1035 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1036 r->pull->entropy_count >> ENTROPY_SHIFT);
1037 }
1038
1039 /*
1040 * This function decides how many bytes to actually take from the
1041 * given pool, and also debits the entropy count accordingly.
1042 */
account(struct entropy_store * r,size_t nbytes,int min,int reserved)1043 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1044 int reserved)
1045 {
1046 int entropy_count, orig;
1047 size_t ibytes, nfrac;
1048
1049 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1050
1051 /* Can we pull enough? */
1052 retry:
1053 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
1054 ibytes = nbytes;
1055 /* If limited, never pull more than available */
1056 if (r->limit) {
1057 int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1058
1059 if ((have_bytes -= reserved) < 0)
1060 have_bytes = 0;
1061 ibytes = min_t(size_t, ibytes, have_bytes);
1062 }
1063 if (ibytes < min)
1064 ibytes = 0;
1065
1066 if (unlikely(entropy_count < 0)) {
1067 pr_warn("random: negative entropy count: pool %s count %d\n",
1068 r->name, entropy_count);
1069 WARN_ON(1);
1070 entropy_count = 0;
1071 }
1072 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1073 if ((size_t) entropy_count > nfrac)
1074 entropy_count -= nfrac;
1075 else
1076 entropy_count = 0;
1077
1078 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1079 goto retry;
1080
1081 trace_debit_entropy(r->name, 8 * ibytes);
1082 if (ibytes &&
1083 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1084 wake_up_interruptible(&random_write_wait);
1085 kill_fasync(&fasync, SIGIO, POLL_OUT);
1086 }
1087
1088 return ibytes;
1089 }
1090
1091 /*
1092 * This function does the actual extraction for extract_entropy and
1093 * extract_entropy_user.
1094 *
1095 * Note: we assume that .poolwords is a multiple of 16 words.
1096 */
extract_buf(struct entropy_store * r,__u8 * out)1097 static void extract_buf(struct entropy_store *r, __u8 *out)
1098 {
1099 int i;
1100 union {
1101 __u32 w[5];
1102 unsigned long l[LONGS(20)];
1103 } hash;
1104 __u32 workspace[SHA_WORKSPACE_WORDS];
1105 unsigned long flags;
1106
1107 /*
1108 * If we have an architectural hardware random number
1109 * generator, use it for SHA's initial vector
1110 */
1111 sha_init(hash.w);
1112 for (i = 0; i < LONGS(20); i++) {
1113 unsigned long v;
1114 if (!arch_get_random_long(&v))
1115 break;
1116 hash.l[i] = v;
1117 }
1118
1119 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1120 spin_lock_irqsave(&r->lock, flags);
1121 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1122 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1123
1124 /*
1125 * We mix the hash back into the pool to prevent backtracking
1126 * attacks (where the attacker knows the state of the pool
1127 * plus the current outputs, and attempts to find previous
1128 * ouputs), unless the hash function can be inverted. By
1129 * mixing at least a SHA1 worth of hash data back, we make
1130 * brute-forcing the feedback as hard as brute-forcing the
1131 * hash.
1132 */
1133 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
1134 spin_unlock_irqrestore(&r->lock, flags);
1135
1136 memzero_explicit(workspace, sizeof(workspace));
1137
1138 /*
1139 * In case the hash function has some recognizable output
1140 * pattern, we fold it in half. Thus, we always feed back
1141 * twice as much data as we output.
1142 */
1143 hash.w[0] ^= hash.w[3];
1144 hash.w[1] ^= hash.w[4];
1145 hash.w[2] ^= rol32(hash.w[2], 16);
1146
1147 memcpy(out, &hash, EXTRACT_SIZE);
1148 memzero_explicit(&hash, sizeof(hash));
1149 }
1150
1151 /*
1152 * This function extracts randomness from the "entropy pool", and
1153 * returns it in a buffer.
1154 *
1155 * The min parameter specifies the minimum amount we can pull before
1156 * failing to avoid races that defeat catastrophic reseeding while the
1157 * reserved parameter indicates how much entropy we must leave in the
1158 * pool after each pull to avoid starving other readers.
1159 */
extract_entropy(struct entropy_store * r,void * buf,size_t nbytes,int min,int reserved)1160 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1161 size_t nbytes, int min, int reserved)
1162 {
1163 ssize_t ret = 0, i;
1164 __u8 tmp[EXTRACT_SIZE];
1165 unsigned long flags;
1166
1167 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1168 if (fips_enabled) {
1169 spin_lock_irqsave(&r->lock, flags);
1170 if (!r->last_data_init) {
1171 r->last_data_init = 1;
1172 spin_unlock_irqrestore(&r->lock, flags);
1173 trace_extract_entropy(r->name, EXTRACT_SIZE,
1174 ENTROPY_BITS(r), _RET_IP_);
1175 xfer_secondary_pool(r, EXTRACT_SIZE);
1176 extract_buf(r, tmp);
1177 spin_lock_irqsave(&r->lock, flags);
1178 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1179 }
1180 spin_unlock_irqrestore(&r->lock, flags);
1181 }
1182
1183 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1184 xfer_secondary_pool(r, nbytes);
1185 nbytes = account(r, nbytes, min, reserved);
1186
1187 while (nbytes) {
1188 extract_buf(r, tmp);
1189
1190 if (fips_enabled) {
1191 spin_lock_irqsave(&r->lock, flags);
1192 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1193 panic("Hardware RNG duplicated output!\n");
1194 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1195 spin_unlock_irqrestore(&r->lock, flags);
1196 }
1197 i = min_t(int, nbytes, EXTRACT_SIZE);
1198 memcpy(buf, tmp, i);
1199 nbytes -= i;
1200 buf += i;
1201 ret += i;
1202 }
1203
1204 /* Wipe data just returned from memory */
1205 memzero_explicit(tmp, sizeof(tmp));
1206
1207 return ret;
1208 }
1209
1210 /*
1211 * This function extracts randomness from the "entropy pool", and
1212 * returns it in a userspace buffer.
1213 */
extract_entropy_user(struct entropy_store * r,void __user * buf,size_t nbytes)1214 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1215 size_t nbytes)
1216 {
1217 ssize_t ret = 0, i;
1218 __u8 tmp[EXTRACT_SIZE];
1219 int large_request = (nbytes > 256);
1220
1221 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1222 xfer_secondary_pool(r, nbytes);
1223 nbytes = account(r, nbytes, 0, 0);
1224
1225 while (nbytes) {
1226 if (large_request && need_resched()) {
1227 if (signal_pending(current)) {
1228 if (ret == 0)
1229 ret = -ERESTARTSYS;
1230 break;
1231 }
1232 schedule();
1233 }
1234
1235 extract_buf(r, tmp);
1236 i = min_t(int, nbytes, EXTRACT_SIZE);
1237 if (copy_to_user(buf, tmp, i)) {
1238 ret = -EFAULT;
1239 break;
1240 }
1241
1242 nbytes -= i;
1243 buf += i;
1244 ret += i;
1245 }
1246
1247 /* Wipe data just returned from memory */
1248 memzero_explicit(tmp, sizeof(tmp));
1249
1250 return ret;
1251 }
1252
1253 /*
1254 * This function is the exported kernel interface. It returns some
1255 * number of good random numbers, suitable for key generation, seeding
1256 * TCP sequence numbers, etc. It does not rely on the hardware random
1257 * number generator. For random bytes direct from the hardware RNG
1258 * (when available), use get_random_bytes_arch().
1259 */
get_random_bytes(void * buf,int nbytes)1260 void get_random_bytes(void *buf, int nbytes)
1261 {
1262 #if DEBUG_RANDOM_BOOT > 0
1263 if (unlikely(nonblocking_pool.initialized == 0))
1264 printk(KERN_NOTICE "random: %pF get_random_bytes called "
1265 "with %d bits of entropy available\n",
1266 (void *) _RET_IP_,
1267 nonblocking_pool.entropy_total);
1268 #endif
1269 trace_get_random_bytes(nbytes, _RET_IP_);
1270 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1271 }
1272 EXPORT_SYMBOL(get_random_bytes);
1273
1274 /*
1275 * Add a callback function that will be invoked when the nonblocking
1276 * pool is initialised.
1277 *
1278 * returns: 0 if callback is successfully added
1279 * -EALREADY if pool is already initialised (callback not called)
1280 * -ENOENT if module for callback is not alive
1281 */
add_random_ready_callback(struct random_ready_callback * rdy)1282 int add_random_ready_callback(struct random_ready_callback *rdy)
1283 {
1284 struct module *owner;
1285 unsigned long flags;
1286 int err = -EALREADY;
1287
1288 if (likely(nonblocking_pool.initialized))
1289 return err;
1290
1291 owner = rdy->owner;
1292 if (!try_module_get(owner))
1293 return -ENOENT;
1294
1295 spin_lock_irqsave(&random_ready_list_lock, flags);
1296 if (nonblocking_pool.initialized)
1297 goto out;
1298
1299 owner = NULL;
1300
1301 list_add(&rdy->list, &random_ready_list);
1302 err = 0;
1303
1304 out:
1305 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1306
1307 module_put(owner);
1308
1309 return err;
1310 }
1311 EXPORT_SYMBOL(add_random_ready_callback);
1312
1313 /*
1314 * Delete a previously registered readiness callback function.
1315 */
del_random_ready_callback(struct random_ready_callback * rdy)1316 void del_random_ready_callback(struct random_ready_callback *rdy)
1317 {
1318 unsigned long flags;
1319 struct module *owner = NULL;
1320
1321 spin_lock_irqsave(&random_ready_list_lock, flags);
1322 if (!list_empty(&rdy->list)) {
1323 list_del_init(&rdy->list);
1324 owner = rdy->owner;
1325 }
1326 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1327
1328 module_put(owner);
1329 }
1330 EXPORT_SYMBOL(del_random_ready_callback);
1331
1332 /*
1333 * This function will use the architecture-specific hardware random
1334 * number generator if it is available. The arch-specific hw RNG will
1335 * almost certainly be faster than what we can do in software, but it
1336 * is impossible to verify that it is implemented securely (as
1337 * opposed, to, say, the AES encryption of a sequence number using a
1338 * key known by the NSA). So it's useful if we need the speed, but
1339 * only if we're willing to trust the hardware manufacturer not to
1340 * have put in a back door.
1341 */
get_random_bytes_arch(void * buf,int nbytes)1342 void get_random_bytes_arch(void *buf, int nbytes)
1343 {
1344 char *p = buf;
1345
1346 trace_get_random_bytes_arch(nbytes, _RET_IP_);
1347 while (nbytes) {
1348 unsigned long v;
1349 int chunk = min(nbytes, (int)sizeof(unsigned long));
1350
1351 if (!arch_get_random_long(&v))
1352 break;
1353
1354 memcpy(p, &v, chunk);
1355 p += chunk;
1356 nbytes -= chunk;
1357 }
1358
1359 if (nbytes)
1360 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1361 }
1362 EXPORT_SYMBOL(get_random_bytes_arch);
1363
1364
1365 /*
1366 * init_std_data - initialize pool with system data
1367 *
1368 * @r: pool to initialize
1369 *
1370 * This function clears the pool's entropy count and mixes some system
1371 * data into the pool to prepare it for use. The pool is not cleared
1372 * as that can only decrease the entropy in the pool.
1373 */
init_std_data(struct entropy_store * r)1374 static void init_std_data(struct entropy_store *r)
1375 {
1376 int i;
1377 ktime_t now = ktime_get_real();
1378 unsigned long rv;
1379
1380 r->last_pulled = jiffies;
1381 mix_pool_bytes(r, &now, sizeof(now));
1382 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1383 if (!arch_get_random_seed_long(&rv) &&
1384 !arch_get_random_long(&rv))
1385 rv = random_get_entropy();
1386 mix_pool_bytes(r, &rv, sizeof(rv));
1387 }
1388 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1389 }
1390
1391 /*
1392 * Note that setup_arch() may call add_device_randomness()
1393 * long before we get here. This allows seeding of the pools
1394 * with some platform dependent data very early in the boot
1395 * process. But it limits our options here. We must use
1396 * statically allocated structures that already have all
1397 * initializations complete at compile time. We should also
1398 * take care not to overwrite the precious per platform data
1399 * we were given.
1400 */
rand_initialize(void)1401 static int rand_initialize(void)
1402 {
1403 init_std_data(&input_pool);
1404 init_std_data(&blocking_pool);
1405 init_std_data(&nonblocking_pool);
1406 return 0;
1407 }
1408 early_initcall(rand_initialize);
1409
1410 #ifdef CONFIG_BLOCK
rand_initialize_disk(struct gendisk * disk)1411 void rand_initialize_disk(struct gendisk *disk)
1412 {
1413 struct timer_rand_state *state;
1414
1415 /*
1416 * If kzalloc returns null, we just won't use that entropy
1417 * source.
1418 */
1419 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1420 if (state) {
1421 state->last_time = INITIAL_JIFFIES;
1422 disk->random = state;
1423 }
1424 }
1425 #endif
1426
1427 static ssize_t
_random_read(int nonblock,char __user * buf,size_t nbytes)1428 _random_read(int nonblock, char __user *buf, size_t nbytes)
1429 {
1430 ssize_t n;
1431
1432 if (nbytes == 0)
1433 return 0;
1434
1435 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1436 while (1) {
1437 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1438 if (n < 0)
1439 return n;
1440 trace_random_read(n*8, (nbytes-n)*8,
1441 ENTROPY_BITS(&blocking_pool),
1442 ENTROPY_BITS(&input_pool));
1443 if (n > 0)
1444 return n;
1445
1446 /* Pool is (near) empty. Maybe wait and retry. */
1447 if (nonblock)
1448 return -EAGAIN;
1449
1450 wait_event_interruptible(random_read_wait,
1451 ENTROPY_BITS(&input_pool) >=
1452 random_read_wakeup_bits);
1453 if (signal_pending(current))
1454 return -ERESTARTSYS;
1455 }
1456 }
1457
1458 static ssize_t
random_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)1459 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1460 {
1461 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1462 }
1463
1464 static ssize_t
urandom_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)1465 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1466 {
1467 static int maxwarn = 10;
1468 int ret;
1469
1470 if (unlikely(nonblocking_pool.initialized == 0) &&
1471 maxwarn > 0) {
1472 maxwarn--;
1473 printk(KERN_NOTICE "random: %s: uninitialized urandom read "
1474 "(%zd bytes read, %d bits of entropy available)\n",
1475 current->comm, nbytes, nonblocking_pool.entropy_total);
1476 }
1477
1478 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1479 ret = extract_entropy_user(&nonblocking_pool, buf, nbytes);
1480
1481 trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool),
1482 ENTROPY_BITS(&input_pool));
1483 return ret;
1484 }
1485
1486 static unsigned int
random_poll(struct file * file,poll_table * wait)1487 random_poll(struct file *file, poll_table * wait)
1488 {
1489 unsigned int mask;
1490
1491 poll_wait(file, &random_read_wait, wait);
1492 poll_wait(file, &random_write_wait, wait);
1493 mask = 0;
1494 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1495 mask |= POLLIN | POLLRDNORM;
1496 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1497 mask |= POLLOUT | POLLWRNORM;
1498 return mask;
1499 }
1500
1501 static int
write_pool(struct entropy_store * r,const char __user * buffer,size_t count)1502 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1503 {
1504 size_t bytes;
1505 __u32 t, buf[16];
1506 const char __user *p = buffer;
1507
1508 while (count > 0) {
1509 int b, i = 0;
1510
1511 bytes = min(count, sizeof(buf));
1512 if (copy_from_user(&buf, p, bytes))
1513 return -EFAULT;
1514
1515 for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1516 if (!arch_get_random_int(&t))
1517 break;
1518 buf[i] ^= t;
1519 }
1520
1521 count -= bytes;
1522 p += bytes;
1523
1524 mix_pool_bytes(r, buf, bytes);
1525 cond_resched();
1526 }
1527
1528 return 0;
1529 }
1530
random_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)1531 static ssize_t random_write(struct file *file, const char __user *buffer,
1532 size_t count, loff_t *ppos)
1533 {
1534 size_t ret;
1535
1536 ret = write_pool(&blocking_pool, buffer, count);
1537 if (ret)
1538 return ret;
1539 ret = write_pool(&nonblocking_pool, buffer, count);
1540 if (ret)
1541 return ret;
1542
1543 return (ssize_t)count;
1544 }
1545
random_ioctl(struct file * f,unsigned int cmd,unsigned long arg)1546 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1547 {
1548 int size, ent_count;
1549 int __user *p = (int __user *)arg;
1550 int retval;
1551
1552 switch (cmd) {
1553 case RNDGETENTCNT:
1554 /* inherently racy, no point locking */
1555 ent_count = ENTROPY_BITS(&input_pool);
1556 if (put_user(ent_count, p))
1557 return -EFAULT;
1558 return 0;
1559 case RNDADDTOENTCNT:
1560 if (!capable(CAP_SYS_ADMIN))
1561 return -EPERM;
1562 if (get_user(ent_count, p))
1563 return -EFAULT;
1564 return credit_entropy_bits_safe(&input_pool, ent_count);
1565 case RNDADDENTROPY:
1566 if (!capable(CAP_SYS_ADMIN))
1567 return -EPERM;
1568 if (get_user(ent_count, p++))
1569 return -EFAULT;
1570 if (ent_count < 0)
1571 return -EINVAL;
1572 if (get_user(size, p++))
1573 return -EFAULT;
1574 retval = write_pool(&input_pool, (const char __user *)p,
1575 size);
1576 if (retval < 0)
1577 return retval;
1578 return credit_entropy_bits_safe(&input_pool, ent_count);
1579 case RNDZAPENTCNT:
1580 case RNDCLEARPOOL:
1581 /*
1582 * Clear the entropy pool counters. We no longer clear
1583 * the entropy pool, as that's silly.
1584 */
1585 if (!capable(CAP_SYS_ADMIN))
1586 return -EPERM;
1587 input_pool.entropy_count = 0;
1588 nonblocking_pool.entropy_count = 0;
1589 blocking_pool.entropy_count = 0;
1590 return 0;
1591 default:
1592 return -EINVAL;
1593 }
1594 }
1595
random_fasync(int fd,struct file * filp,int on)1596 static int random_fasync(int fd, struct file *filp, int on)
1597 {
1598 return fasync_helper(fd, filp, on, &fasync);
1599 }
1600
1601 const struct file_operations random_fops = {
1602 .read = random_read,
1603 .write = random_write,
1604 .poll = random_poll,
1605 .unlocked_ioctl = random_ioctl,
1606 .fasync = random_fasync,
1607 .llseek = noop_llseek,
1608 };
1609
1610 const struct file_operations urandom_fops = {
1611 .read = urandom_read,
1612 .write = random_write,
1613 .unlocked_ioctl = random_ioctl,
1614 .fasync = random_fasync,
1615 .llseek = noop_llseek,
1616 };
1617
SYSCALL_DEFINE3(getrandom,char __user *,buf,size_t,count,unsigned int,flags)1618 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1619 unsigned int, flags)
1620 {
1621 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1622 return -EINVAL;
1623
1624 if (count > INT_MAX)
1625 count = INT_MAX;
1626
1627 if (flags & GRND_RANDOM)
1628 return _random_read(flags & GRND_NONBLOCK, buf, count);
1629
1630 if (unlikely(nonblocking_pool.initialized == 0)) {
1631 if (flags & GRND_NONBLOCK)
1632 return -EAGAIN;
1633 wait_event_interruptible(urandom_init_wait,
1634 nonblocking_pool.initialized);
1635 if (signal_pending(current))
1636 return -ERESTARTSYS;
1637 }
1638 return urandom_read(NULL, buf, count, NULL);
1639 }
1640
1641 /***************************************************************
1642 * Random UUID interface
1643 *
1644 * Used here for a Boot ID, but can be useful for other kernel
1645 * drivers.
1646 ***************************************************************/
1647
1648 /*
1649 * Generate random UUID
1650 */
generate_random_uuid(unsigned char uuid_out[16])1651 void generate_random_uuid(unsigned char uuid_out[16])
1652 {
1653 get_random_bytes(uuid_out, 16);
1654 /* Set UUID version to 4 --- truly random generation */
1655 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1656 /* Set the UUID variant to DCE */
1657 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1658 }
1659 EXPORT_SYMBOL(generate_random_uuid);
1660
1661 /********************************************************************
1662 *
1663 * Sysctl interface
1664 *
1665 ********************************************************************/
1666
1667 #ifdef CONFIG_SYSCTL
1668
1669 #include <linux/sysctl.h>
1670
1671 static int min_read_thresh = 8, min_write_thresh;
1672 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1673 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1674 static char sysctl_bootid[16];
1675
1676 /*
1677 * This function is used to return both the bootid UUID, and random
1678 * UUID. The difference is in whether table->data is NULL; if it is,
1679 * then a new UUID is generated and returned to the user.
1680 *
1681 * If the user accesses this via the proc interface, the UUID will be
1682 * returned as an ASCII string in the standard UUID format; if via the
1683 * sysctl system call, as 16 bytes of binary data.
1684 */
proc_do_uuid(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)1685 static int proc_do_uuid(struct ctl_table *table, int write,
1686 void __user *buffer, size_t *lenp, loff_t *ppos)
1687 {
1688 struct ctl_table fake_table;
1689 unsigned char buf[64], tmp_uuid[16], *uuid;
1690
1691 uuid = table->data;
1692 if (!uuid) {
1693 uuid = tmp_uuid;
1694 generate_random_uuid(uuid);
1695 } else {
1696 static DEFINE_SPINLOCK(bootid_spinlock);
1697
1698 spin_lock(&bootid_spinlock);
1699 if (!uuid[8])
1700 generate_random_uuid(uuid);
1701 spin_unlock(&bootid_spinlock);
1702 }
1703
1704 sprintf(buf, "%pU", uuid);
1705
1706 fake_table.data = buf;
1707 fake_table.maxlen = sizeof(buf);
1708
1709 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1710 }
1711
1712 /*
1713 * Return entropy available scaled to integral bits
1714 */
proc_do_entropy(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)1715 static int proc_do_entropy(struct ctl_table *table, int write,
1716 void __user *buffer, size_t *lenp, loff_t *ppos)
1717 {
1718 struct ctl_table fake_table;
1719 int entropy_count;
1720
1721 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1722
1723 fake_table.data = &entropy_count;
1724 fake_table.maxlen = sizeof(entropy_count);
1725
1726 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1727 }
1728
1729 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1730 extern struct ctl_table random_table[];
1731 struct ctl_table random_table[] = {
1732 {
1733 .procname = "poolsize",
1734 .data = &sysctl_poolsize,
1735 .maxlen = sizeof(int),
1736 .mode = 0444,
1737 .proc_handler = proc_dointvec,
1738 },
1739 {
1740 .procname = "entropy_avail",
1741 .maxlen = sizeof(int),
1742 .mode = 0444,
1743 .proc_handler = proc_do_entropy,
1744 .data = &input_pool.entropy_count,
1745 },
1746 {
1747 .procname = "read_wakeup_threshold",
1748 .data = &random_read_wakeup_bits,
1749 .maxlen = sizeof(int),
1750 .mode = 0644,
1751 .proc_handler = proc_dointvec_minmax,
1752 .extra1 = &min_read_thresh,
1753 .extra2 = &max_read_thresh,
1754 },
1755 {
1756 .procname = "write_wakeup_threshold",
1757 .data = &random_write_wakeup_bits,
1758 .maxlen = sizeof(int),
1759 .mode = 0644,
1760 .proc_handler = proc_dointvec_minmax,
1761 .extra1 = &min_write_thresh,
1762 .extra2 = &max_write_thresh,
1763 },
1764 {
1765 .procname = "urandom_min_reseed_secs",
1766 .data = &random_min_urandom_seed,
1767 .maxlen = sizeof(int),
1768 .mode = 0644,
1769 .proc_handler = proc_dointvec,
1770 },
1771 {
1772 .procname = "boot_id",
1773 .data = &sysctl_bootid,
1774 .maxlen = 16,
1775 .mode = 0444,
1776 .proc_handler = proc_do_uuid,
1777 },
1778 {
1779 .procname = "uuid",
1780 .maxlen = 16,
1781 .mode = 0444,
1782 .proc_handler = proc_do_uuid,
1783 },
1784 #ifdef ADD_INTERRUPT_BENCH
1785 {
1786 .procname = "add_interrupt_avg_cycles",
1787 .data = &avg_cycles,
1788 .maxlen = sizeof(avg_cycles),
1789 .mode = 0444,
1790 .proc_handler = proc_doulongvec_minmax,
1791 },
1792 {
1793 .procname = "add_interrupt_avg_deviation",
1794 .data = &avg_deviation,
1795 .maxlen = sizeof(avg_deviation),
1796 .mode = 0444,
1797 .proc_handler = proc_doulongvec_minmax,
1798 },
1799 #endif
1800 { }
1801 };
1802 #endif /* CONFIG_SYSCTL */
1803
1804 static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1805
random_int_secret_init(void)1806 int random_int_secret_init(void)
1807 {
1808 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1809 return 0;
1810 }
1811
1812 static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash)
1813 __aligned(sizeof(unsigned long));
1814
1815 /*
1816 * Get a random word for internal kernel use only. Similar to urandom but
1817 * with the goal of minimal entropy pool depletion. As a result, the random
1818 * value is not cryptographically secure but for several uses the cost of
1819 * depleting entropy is too high
1820 */
get_random_int(void)1821 unsigned int get_random_int(void)
1822 {
1823 __u32 *hash;
1824 unsigned int ret;
1825
1826 hash = get_cpu_var(get_random_int_hash);
1827
1828 hash[0] += current->pid + jiffies + random_get_entropy();
1829 md5_transform(hash, random_int_secret);
1830 ret = hash[0];
1831 put_cpu_var(get_random_int_hash);
1832
1833 return ret;
1834 }
1835 EXPORT_SYMBOL(get_random_int);
1836
1837 /*
1838 * Same as get_random_int(), but returns unsigned long.
1839 */
get_random_long(void)1840 unsigned long get_random_long(void)
1841 {
1842 __u32 *hash;
1843 unsigned long ret;
1844
1845 hash = get_cpu_var(get_random_int_hash);
1846
1847 hash[0] += current->pid + jiffies + random_get_entropy();
1848 md5_transform(hash, random_int_secret);
1849 ret = *(unsigned long *)hash;
1850 put_cpu_var(get_random_int_hash);
1851
1852 return ret;
1853 }
1854 EXPORT_SYMBOL(get_random_long);
1855
1856 /*
1857 * randomize_range() returns a start address such that
1858 *
1859 * [...... <range> .....]
1860 * start end
1861 *
1862 * a <range> with size "len" starting at the return value is inside in the
1863 * area defined by [start, end], but is otherwise randomized.
1864 */
1865 unsigned long
randomize_range(unsigned long start,unsigned long end,unsigned long len)1866 randomize_range(unsigned long start, unsigned long end, unsigned long len)
1867 {
1868 unsigned long range = end - len - start;
1869
1870 if (end <= start + len)
1871 return 0;
1872 return PAGE_ALIGN(get_random_int() % range + start);
1873 }
1874
1875 /* Interface for in-kernel drivers of true hardware RNGs.
1876 * Those devices may produce endless random bits and will be throttled
1877 * when our pool is full.
1878 */
add_hwgenerator_randomness(const char * buffer,size_t count,size_t entropy)1879 void add_hwgenerator_randomness(const char *buffer, size_t count,
1880 size_t entropy)
1881 {
1882 struct entropy_store *poolp = &input_pool;
1883
1884 if (unlikely(nonblocking_pool.initialized == 0))
1885 poolp = &nonblocking_pool;
1886 else {
1887 /* Suspend writing if we're above the trickle
1888 * threshold. We'll be woken up again once below
1889 * random_write_wakeup_thresh, or when the calling
1890 * thread is about to terminate.
1891 */
1892 wait_event_interruptible(random_write_wait,
1893 kthread_should_stop() ||
1894 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
1895 }
1896 mix_pool_bytes(poolp, buffer, count);
1897 credit_entropy_bits(poolp, entropy);
1898 }
1899 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
1900