• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 
21 #include <asm/pgtable.h>
22 #include "internal.h"
23 
24 /*
25  * swapper_space is a fiction, retained to simplify the path through
26  * vmscan's shrink_page_list.
27  */
28 static const struct address_space_operations swap_aops = {
29 	.writepage	= swap_writepage,
30 	.set_page_dirty	= swap_set_page_dirty,
31 #ifdef CONFIG_MIGRATION
32 	.migratepage	= migrate_page,
33 #endif
34 };
35 
36 struct address_space swapper_spaces[MAX_SWAPFILES] = {
37 	[0 ... MAX_SWAPFILES - 1] = {
38 		.page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
39 		.i_mmap_writable = ATOMIC_INIT(0),
40 		.a_ops		= &swap_aops,
41 	}
42 };
43 
44 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
45 
46 static struct {
47 	unsigned long add_total;
48 	unsigned long del_total;
49 	unsigned long find_success;
50 	unsigned long find_total;
51 } swap_cache_info;
52 
total_swapcache_pages(void)53 unsigned long total_swapcache_pages(void)
54 {
55 	int i;
56 	unsigned long ret = 0;
57 
58 	for (i = 0; i < MAX_SWAPFILES; i++)
59 		ret += swapper_spaces[i].nrpages;
60 	return ret;
61 }
62 
63 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
64 
show_swap_cache_info(void)65 void show_swap_cache_info(void)
66 {
67 	printk("%lu pages in swap cache\n", total_swapcache_pages());
68 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
69 		swap_cache_info.add_total, swap_cache_info.del_total,
70 		swap_cache_info.find_success, swap_cache_info.find_total);
71 	printk("Free swap  = %ldkB\n",
72 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
73 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
74 }
75 
76 /*
77  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
78  * but sets SwapCache flag and private instead of mapping and index.
79  */
__add_to_swap_cache(struct page * page,swp_entry_t entry)80 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
81 {
82 	int error;
83 	struct address_space *address_space;
84 
85 	VM_BUG_ON_PAGE(!PageLocked(page), page);
86 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
87 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
88 
89 	page_cache_get(page);
90 	SetPageSwapCache(page);
91 	set_page_private(page, entry.val);
92 
93 	address_space = swap_address_space(entry);
94 	spin_lock_irq(&address_space->tree_lock);
95 	error = radix_tree_insert(&address_space->page_tree,
96 					entry.val, page);
97 	if (likely(!error)) {
98 		address_space->nrpages++;
99 		__inc_zone_page_state(page, NR_FILE_PAGES);
100 		INC_CACHE_INFO(add_total);
101 	}
102 	spin_unlock_irq(&address_space->tree_lock);
103 
104 	if (unlikely(error)) {
105 		/*
106 		 * Only the context which have set SWAP_HAS_CACHE flag
107 		 * would call add_to_swap_cache().
108 		 * So add_to_swap_cache() doesn't returns -EEXIST.
109 		 */
110 		VM_BUG_ON(error == -EEXIST);
111 		set_page_private(page, 0UL);
112 		ClearPageSwapCache(page);
113 		page_cache_release(page);
114 	}
115 
116 	return error;
117 }
118 
119 
add_to_swap_cache(struct page * page,swp_entry_t entry,gfp_t gfp_mask)120 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
121 {
122 	int error;
123 
124 	error = radix_tree_maybe_preload(gfp_mask);
125 	if (!error) {
126 		error = __add_to_swap_cache(page, entry);
127 		radix_tree_preload_end();
128 	}
129 	return error;
130 }
131 
132 /*
133  * This must be called only on pages that have
134  * been verified to be in the swap cache.
135  */
__delete_from_swap_cache(struct page * page)136 void __delete_from_swap_cache(struct page *page)
137 {
138 	swp_entry_t entry;
139 	struct address_space *address_space;
140 
141 	VM_BUG_ON_PAGE(!PageLocked(page), page);
142 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
143 	VM_BUG_ON_PAGE(PageWriteback(page), page);
144 
145 	entry.val = page_private(page);
146 	address_space = swap_address_space(entry);
147 	radix_tree_delete(&address_space->page_tree, page_private(page));
148 	set_page_private(page, 0);
149 	ClearPageSwapCache(page);
150 	address_space->nrpages--;
151 	__dec_zone_page_state(page, NR_FILE_PAGES);
152 	INC_CACHE_INFO(del_total);
153 }
154 
155 /**
156  * add_to_swap - allocate swap space for a page
157  * @page: page we want to move to swap
158  *
159  * Allocate swap space for the page and add the page to the
160  * swap cache.  Caller needs to hold the page lock.
161  */
add_to_swap(struct page * page,struct list_head * list)162 int add_to_swap(struct page *page, struct list_head *list)
163 {
164 	swp_entry_t entry;
165 	int err;
166 
167 	VM_BUG_ON_PAGE(!PageLocked(page), page);
168 	VM_BUG_ON_PAGE(!PageUptodate(page), page);
169 
170 	entry = get_swap_page();
171 	if (!entry.val)
172 		return 0;
173 
174 	if (unlikely(PageTransHuge(page)))
175 		if (unlikely(split_huge_page_to_list(page, list))) {
176 			swapcache_free(entry);
177 			return 0;
178 		}
179 
180 	/*
181 	 * Radix-tree node allocations from PF_MEMALLOC contexts could
182 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
183 	 * stops emergency reserves from being allocated.
184 	 *
185 	 * TODO: this could cause a theoretical memory reclaim
186 	 * deadlock in the swap out path.
187 	 */
188 	/*
189 	 * Add it to the swap cache and mark it dirty
190 	 */
191 	err = add_to_swap_cache(page, entry,
192 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
193 
194 	if (!err) {	/* Success */
195 		SetPageDirty(page);
196 		return 1;
197 	} else {	/* -ENOMEM radix-tree allocation failure */
198 		/*
199 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
200 		 * clear SWAP_HAS_CACHE flag.
201 		 */
202 		swapcache_free(entry);
203 		return 0;
204 	}
205 }
206 
207 /*
208  * This must be called only on pages that have
209  * been verified to be in the swap cache and locked.
210  * It will never put the page into the free list,
211  * the caller has a reference on the page.
212  */
delete_from_swap_cache(struct page * page)213 void delete_from_swap_cache(struct page *page)
214 {
215 	swp_entry_t entry;
216 	struct address_space *address_space;
217 
218 	entry.val = page_private(page);
219 
220 	address_space = swap_address_space(entry);
221 	spin_lock_irq(&address_space->tree_lock);
222 	__delete_from_swap_cache(page);
223 	spin_unlock_irq(&address_space->tree_lock);
224 
225 	swapcache_free(entry);
226 	page_cache_release(page);
227 }
228 
229 /*
230  * If we are the only user, then try to free up the swap cache.
231  *
232  * Its ok to check for PageSwapCache without the page lock
233  * here because we are going to recheck again inside
234  * try_to_free_swap() _with_ the lock.
235  * 					- Marcelo
236  */
free_swap_cache(struct page * page)237 static inline void free_swap_cache(struct page *page)
238 {
239 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
240 		try_to_free_swap(page);
241 		unlock_page(page);
242 	}
243 }
244 
245 /*
246  * Perform a free_page(), also freeing any swap cache associated with
247  * this page if it is the last user of the page.
248  */
free_page_and_swap_cache(struct page * page)249 void free_page_and_swap_cache(struct page *page)
250 {
251 	free_swap_cache(page);
252 	page_cache_release(page);
253 }
254 
255 /*
256  * Passed an array of pages, drop them all from swapcache and then release
257  * them.  They are removed from the LRU and freed if this is their last use.
258  */
free_pages_and_swap_cache(struct page ** pages,int nr)259 void free_pages_and_swap_cache(struct page **pages, int nr)
260 {
261 	struct page **pagep = pages;
262 	int i;
263 
264 	lru_add_drain();
265 	for (i = 0; i < nr; i++)
266 		free_swap_cache(pagep[i]);
267 	release_pages(pagep, nr, false);
268 }
269 
270 /*
271  * Lookup a swap entry in the swap cache. A found page will be returned
272  * unlocked and with its refcount incremented - we rely on the kernel
273  * lock getting page table operations atomic even if we drop the page
274  * lock before returning.
275  */
lookup_swap_cache(swp_entry_t entry)276 struct page * lookup_swap_cache(swp_entry_t entry)
277 {
278 	struct page *page;
279 
280 	page = find_get_page(swap_address_space(entry), entry.val);
281 
282 	if (page) {
283 		INC_CACHE_INFO(find_success);
284 		if (TestClearPageReadahead(page))
285 			atomic_inc(&swapin_readahead_hits);
286 	}
287 
288 	INC_CACHE_INFO(find_total);
289 	return page;
290 }
291 
__read_swap_cache_async(swp_entry_t entry,gfp_t gfp_mask,struct vm_area_struct * vma,unsigned long addr,bool * new_page_allocated)292 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
293 			struct vm_area_struct *vma, unsigned long addr,
294 			bool *new_page_allocated)
295 {
296 	struct page *found_page, *new_page = NULL;
297 	struct address_space *swapper_space = swap_address_space(entry);
298 	int err;
299 	*new_page_allocated = false;
300 
301 	do {
302 		/*
303 		 * First check the swap cache.  Since this is normally
304 		 * called after lookup_swap_cache() failed, re-calling
305 		 * that would confuse statistics.
306 		 */
307 		found_page = find_get_page(swapper_space, entry.val);
308 		if (found_page)
309 			break;
310 
311 		/*
312 		 * Get a new page to read into from swap.
313 		 */
314 		if (!new_page) {
315 			new_page = alloc_page_vma(gfp_mask, vma, addr);
316 			if (!new_page)
317 				break;		/* Out of memory */
318 		}
319 
320 		/*
321 		 * call radix_tree_preload() while we can wait.
322 		 */
323 		err = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
324 		if (err)
325 			break;
326 
327 		/*
328 		 * Swap entry may have been freed since our caller observed it.
329 		 */
330 		err = swapcache_prepare(entry);
331 		if (err == -EEXIST) {
332 			radix_tree_preload_end();
333 			/*
334 			 * We might race against get_swap_page() and stumble
335 			 * across a SWAP_HAS_CACHE swap_map entry whose page
336 			 * has not been brought into the swapcache yet, while
337 			 * the other end is scheduled away waiting on discard
338 			 * I/O completion at scan_swap_map().
339 			 *
340 			 * In order to avoid turning this transitory state
341 			 * into a permanent loop around this -EEXIST case
342 			 * if !CONFIG_PREEMPT and the I/O completion happens
343 			 * to be waiting on the CPU waitqueue where we are now
344 			 * busy looping, we just conditionally invoke the
345 			 * scheduler here, if there are some more important
346 			 * tasks to run.
347 			 */
348 			cond_resched();
349 			continue;
350 		}
351 		if (err) {		/* swp entry is obsolete ? */
352 			radix_tree_preload_end();
353 			break;
354 		}
355 
356 		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
357 		__set_page_locked(new_page);
358 		SetPageSwapBacked(new_page);
359 		err = __add_to_swap_cache(new_page, entry);
360 		if (likely(!err)) {
361 			radix_tree_preload_end();
362 			/*
363 			 * Initiate read into locked page and return.
364 			 */
365 			lru_cache_add_anon(new_page);
366 			*new_page_allocated = true;
367 			return new_page;
368 		}
369 		radix_tree_preload_end();
370 		ClearPageSwapBacked(new_page);
371 		__clear_page_locked(new_page);
372 		/*
373 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
374 		 * clear SWAP_HAS_CACHE flag.
375 		 */
376 		swapcache_free(entry);
377 	} while (err != -ENOMEM);
378 
379 	if (new_page)
380 		page_cache_release(new_page);
381 	return found_page;
382 }
383 
384 /*
385  * Locate a page of swap in physical memory, reserving swap cache space
386  * and reading the disk if it is not already cached.
387  * A failure return means that either the page allocation failed or that
388  * the swap entry is no longer in use.
389  */
read_swap_cache_async(swp_entry_t entry,gfp_t gfp_mask,struct vm_area_struct * vma,unsigned long addr)390 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
391 			struct vm_area_struct *vma, unsigned long addr)
392 {
393 	bool page_was_allocated;
394 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
395 			vma, addr, &page_was_allocated);
396 
397 	if (page_was_allocated)
398 		swap_readpage(retpage);
399 
400 	return retpage;
401 }
402 
swapin_nr_pages(unsigned long offset)403 static unsigned long swapin_nr_pages(unsigned long offset)
404 {
405 	static unsigned long prev_offset;
406 	unsigned int pages, max_pages, last_ra;
407 	static atomic_t last_readahead_pages;
408 
409 	max_pages = 1 << READ_ONCE(page_cluster);
410 	if (max_pages <= 1)
411 		return 1;
412 
413 	/*
414 	 * This heuristic has been found to work well on both sequential and
415 	 * random loads, swapping to hard disk or to SSD: please don't ask
416 	 * what the "+ 2" means, it just happens to work well, that's all.
417 	 */
418 	pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
419 	if (pages == 2) {
420 		/*
421 		 * We can have no readahead hits to judge by: but must not get
422 		 * stuck here forever, so check for an adjacent offset instead
423 		 * (and don't even bother to check whether swap type is same).
424 		 */
425 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
426 			pages = 1;
427 		prev_offset = offset;
428 	} else {
429 		unsigned int roundup = 4;
430 		while (roundup < pages)
431 			roundup <<= 1;
432 		pages = roundup;
433 	}
434 
435 	if (pages > max_pages)
436 		pages = max_pages;
437 
438 	/* Don't shrink readahead too fast */
439 	last_ra = atomic_read(&last_readahead_pages) / 2;
440 	if (pages < last_ra)
441 		pages = last_ra;
442 	atomic_set(&last_readahead_pages, pages);
443 
444 	return pages;
445 }
446 
447 /**
448  * swapin_readahead - swap in pages in hope we need them soon
449  * @entry: swap entry of this memory
450  * @gfp_mask: memory allocation flags
451  * @vma: user vma this address belongs to
452  * @addr: target address for mempolicy
453  *
454  * Returns the struct page for entry and addr, after queueing swapin.
455  *
456  * Primitive swap readahead code. We simply read an aligned block of
457  * (1 << page_cluster) entries in the swap area. This method is chosen
458  * because it doesn't cost us any seek time.  We also make sure to queue
459  * the 'original' request together with the readahead ones...
460  *
461  * This has been extended to use the NUMA policies from the mm triggering
462  * the readahead.
463  *
464  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
465  */
swapin_readahead(swp_entry_t entry,gfp_t gfp_mask,struct vm_area_struct * vma,unsigned long addr)466 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
467 			struct vm_area_struct *vma, unsigned long addr)
468 {
469 	struct page *page;
470 	unsigned long entry_offset = swp_offset(entry);
471 	unsigned long offset = entry_offset;
472 	unsigned long start_offset, end_offset;
473 	unsigned long mask;
474 	struct blk_plug plug;
475 
476 	mask = swapin_nr_pages(offset) - 1;
477 	if (!mask)
478 		goto skip;
479 
480 	/* Read a page_cluster sized and aligned cluster around offset. */
481 	start_offset = offset & ~mask;
482 	end_offset = offset | mask;
483 	if (!start_offset)	/* First page is swap header. */
484 		start_offset++;
485 
486 	blk_start_plug(&plug);
487 	for (offset = start_offset; offset <= end_offset ; offset++) {
488 		/* Ok, do the async read-ahead now */
489 		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
490 						gfp_mask, vma, addr);
491 		if (!page)
492 			continue;
493 		if (offset != entry_offset)
494 			SetPageReadahead(page);
495 		page_cache_release(page);
496 	}
497 	blk_finish_plug(&plug);
498 
499 	lru_add_drain();	/* Push any new pages onto the LRU now */
500 skip:
501 	return read_swap_cache_async(entry, gfp_mask, vma, addr);
502 }
503