• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  */
25 
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <linux/math64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/nand_bch.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/sched.h>
43 #include <linux/fs.h>
44 #include <linux/pagemap.h>
45 #include <linux/seq_file.h>
46 #include <linux/debugfs.h>
47 
48 /* Default simulator parameters values */
49 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
50     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
51     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
52     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
53 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
54 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
55 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
56 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
57 #endif
58 
59 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
60 #define CONFIG_NANDSIM_ACCESS_DELAY 25
61 #endif
62 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
63 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
64 #endif
65 #ifndef CONFIG_NANDSIM_ERASE_DELAY
66 #define CONFIG_NANDSIM_ERASE_DELAY 2
67 #endif
68 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
69 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
70 #endif
71 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
72 #define CONFIG_NANDSIM_INPUT_CYCLE  50
73 #endif
74 #ifndef CONFIG_NANDSIM_BUS_WIDTH
75 #define CONFIG_NANDSIM_BUS_WIDTH  8
76 #endif
77 #ifndef CONFIG_NANDSIM_DO_DELAYS
78 #define CONFIG_NANDSIM_DO_DELAYS  0
79 #endif
80 #ifndef CONFIG_NANDSIM_LOG
81 #define CONFIG_NANDSIM_LOG        0
82 #endif
83 #ifndef CONFIG_NANDSIM_DBG
84 #define CONFIG_NANDSIM_DBG        0
85 #endif
86 #ifndef CONFIG_NANDSIM_MAX_PARTS
87 #define CONFIG_NANDSIM_MAX_PARTS  32
88 #endif
89 
90 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
91 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
92 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
93 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
94 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
95 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
96 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
97 static uint log            = CONFIG_NANDSIM_LOG;
98 static uint dbg            = CONFIG_NANDSIM_DBG;
99 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
100 static unsigned int parts_num;
101 static char *badblocks = NULL;
102 static char *weakblocks = NULL;
103 static char *weakpages = NULL;
104 static unsigned int bitflips = 0;
105 static char *gravepages = NULL;
106 static unsigned int overridesize = 0;
107 static char *cache_file = NULL;
108 static unsigned int bbt;
109 static unsigned int bch;
110 static u_char id_bytes[8] = {
111 	[0] = CONFIG_NANDSIM_FIRST_ID_BYTE,
112 	[1] = CONFIG_NANDSIM_SECOND_ID_BYTE,
113 	[2] = CONFIG_NANDSIM_THIRD_ID_BYTE,
114 	[3] = CONFIG_NANDSIM_FOURTH_ID_BYTE,
115 	[4 ... 7] = 0xFF,
116 };
117 
118 module_param_array(id_bytes, byte, NULL, 0400);
119 module_param_named(first_id_byte, id_bytes[0], byte, 0400);
120 module_param_named(second_id_byte, id_bytes[1], byte, 0400);
121 module_param_named(third_id_byte, id_bytes[2], byte, 0400);
122 module_param_named(fourth_id_byte, id_bytes[3], byte, 0400);
123 module_param(access_delay,   uint, 0400);
124 module_param(programm_delay, uint, 0400);
125 module_param(erase_delay,    uint, 0400);
126 module_param(output_cycle,   uint, 0400);
127 module_param(input_cycle,    uint, 0400);
128 module_param(bus_width,      uint, 0400);
129 module_param(do_delays,      uint, 0400);
130 module_param(log,            uint, 0400);
131 module_param(dbg,            uint, 0400);
132 module_param_array(parts, ulong, &parts_num, 0400);
133 module_param(badblocks,      charp, 0400);
134 module_param(weakblocks,     charp, 0400);
135 module_param(weakpages,      charp, 0400);
136 module_param(bitflips,       uint, 0400);
137 module_param(gravepages,     charp, 0400);
138 module_param(overridesize,   uint, 0400);
139 module_param(cache_file,     charp, 0400);
140 module_param(bbt,	     uint, 0400);
141 module_param(bch,	     uint, 0400);
142 
143 MODULE_PARM_DESC(id_bytes,       "The ID bytes returned by NAND Flash 'read ID' command");
144 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)");
145 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)");
146 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command (obsolete)");
147 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)");
148 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
149 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
150 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
151 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
152 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
153 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
154 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
155 MODULE_PARM_DESC(log,            "Perform logging if not zero");
156 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
157 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
158 /* Page and erase block positions for the following parameters are independent of any partitions */
159 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
160 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
161 				 " separated by commas e.g. 113:2 means eb 113"
162 				 " can be erased only twice before failing");
163 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
164 				 " separated by commas e.g. 1401:2 means page 1401"
165 				 " can be written only twice before failing");
166 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
167 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
168 				 " separated by commas e.g. 1401:2 means page 1401"
169 				 " can be read only twice before failing");
170 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
171 				 "The size is specified in erase blocks and as the exponent of a power of two"
172 				 " e.g. 5 means a size of 32 erase blocks");
173 MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
174 MODULE_PARM_DESC(bbt,		 "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
175 MODULE_PARM_DESC(bch,		 "Enable BCH ecc and set how many bits should "
176 				 "be correctable in 512-byte blocks");
177 
178 /* The largest possible page size */
179 #define NS_LARGEST_PAGE_SIZE	4096
180 
181 /* The prefix for simulator output */
182 #define NS_OUTPUT_PREFIX "[nandsim]"
183 
184 /* Simulator's output macros (logging, debugging, warning, error) */
185 #define NS_LOG(args...) \
186 	do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
187 #define NS_DBG(args...) \
188 	do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
189 #define NS_WARN(args...) \
190 	do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
191 #define NS_ERR(args...) \
192 	do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
193 #define NS_INFO(args...) \
194 	do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
195 
196 /* Busy-wait delay macros (microseconds, milliseconds) */
197 #define NS_UDELAY(us) \
198         do { if (do_delays) udelay(us); } while(0)
199 #define NS_MDELAY(us) \
200         do { if (do_delays) mdelay(us); } while(0)
201 
202 /* Is the nandsim structure initialized ? */
203 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
204 
205 /* Good operation completion status */
206 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
207 
208 /* Operation failed completion status */
209 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
210 
211 /* Calculate the page offset in flash RAM image by (row, column) address */
212 #define NS_RAW_OFFSET(ns) \
213 	(((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
214 
215 /* Calculate the OOB offset in flash RAM image by (row, column) address */
216 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
217 
218 /* After a command is input, the simulator goes to one of the following states */
219 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
220 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
221 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
222 #define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
223 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
224 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
225 #define STATE_CMD_STATUS       0x00000007 /* read status */
226 #define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
227 #define STATE_CMD_READID       0x0000000A /* read ID */
228 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
229 #define STATE_CMD_RESET        0x0000000C /* reset */
230 #define STATE_CMD_RNDOUT       0x0000000D /* random output command */
231 #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
232 #define STATE_CMD_MASK         0x0000000F /* command states mask */
233 
234 /* After an address is input, the simulator goes to one of these states */
235 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
236 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
237 #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
238 #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
239 #define STATE_ADDR_MASK        0x00000070 /* address states mask */
240 
241 /* During data input/output the simulator is in these states */
242 #define STATE_DATAIN           0x00000100 /* waiting for data input */
243 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
244 
245 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
246 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
247 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
248 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
249 
250 /* Previous operation is done, ready to accept new requests */
251 #define STATE_READY            0x00000000
252 
253 /* This state is used to mark that the next state isn't known yet */
254 #define STATE_UNKNOWN          0x10000000
255 
256 /* Simulator's actions bit masks */
257 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
258 #define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
259 #define ACTION_SECERASE  0x00300000 /* erase sector */
260 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
261 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
262 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
263 #define ACTION_MASK      0x00700000 /* action mask */
264 
265 #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
266 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
267 
268 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
269 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
270 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
271 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
272 #define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
273 #define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
274 #define OPT_SMALLPAGE    (OPT_PAGE512) /* 512-byte page chips */
275 
276 /* Remove action bits from state */
277 #define NS_STATE(x) ((x) & ~ACTION_MASK)
278 
279 /*
280  * Maximum previous states which need to be saved. Currently saving is
281  * only needed for page program operation with preceded read command
282  * (which is only valid for 512-byte pages).
283  */
284 #define NS_MAX_PREVSTATES 1
285 
286 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
287 #define NS_MAX_HELD_PAGES 16
288 
289 struct nandsim_debug_info {
290 	struct dentry *dfs_root;
291 	struct dentry *dfs_wear_report;
292 };
293 
294 /*
295  * A union to represent flash memory contents and flash buffer.
296  */
297 union ns_mem {
298 	u_char *byte;    /* for byte access */
299 	uint16_t *word;  /* for 16-bit word access */
300 };
301 
302 /*
303  * The structure which describes all the internal simulator data.
304  */
305 struct nandsim {
306 	struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
307 	unsigned int nbparts;
308 
309 	uint busw;              /* flash chip bus width (8 or 16) */
310 	u_char ids[8];          /* chip's ID bytes */
311 	uint32_t options;       /* chip's characteristic bits */
312 	uint32_t state;         /* current chip state */
313 	uint32_t nxstate;       /* next expected state */
314 
315 	uint32_t *op;           /* current operation, NULL operations isn't known yet  */
316 	uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
317 	uint16_t npstates;      /* number of previous states saved */
318 	uint16_t stateidx;      /* current state index */
319 
320 	/* The simulated NAND flash pages array */
321 	union ns_mem *pages;
322 
323 	/* Slab allocator for nand pages */
324 	struct kmem_cache *nand_pages_slab;
325 
326 	/* Internal buffer of page + OOB size bytes */
327 	union ns_mem buf;
328 
329 	/* NAND flash "geometry" */
330 	struct {
331 		uint64_t totsz;     /* total flash size, bytes */
332 		uint32_t secsz;     /* flash sector (erase block) size, bytes */
333 		uint pgsz;          /* NAND flash page size, bytes */
334 		uint oobsz;         /* page OOB area size, bytes */
335 		uint64_t totszoob;  /* total flash size including OOB, bytes */
336 		uint pgszoob;       /* page size including OOB , bytes*/
337 		uint secszoob;      /* sector size including OOB, bytes */
338 		uint pgnum;         /* total number of pages */
339 		uint pgsec;         /* number of pages per sector */
340 		uint secshift;      /* bits number in sector size */
341 		uint pgshift;       /* bits number in page size */
342 		uint pgaddrbytes;   /* bytes per page address */
343 		uint secaddrbytes;  /* bytes per sector address */
344 		uint idbytes;       /* the number ID bytes that this chip outputs */
345 	} geom;
346 
347 	/* NAND flash internal registers */
348 	struct {
349 		unsigned command; /* the command register */
350 		u_char   status;  /* the status register */
351 		uint     row;     /* the page number */
352 		uint     column;  /* the offset within page */
353 		uint     count;   /* internal counter */
354 		uint     num;     /* number of bytes which must be processed */
355 		uint     off;     /* fixed page offset */
356 	} regs;
357 
358 	/* NAND flash lines state */
359         struct {
360                 int ce;  /* chip Enable */
361                 int cle; /* command Latch Enable */
362                 int ale; /* address Latch Enable */
363                 int wp;  /* write Protect */
364         } lines;
365 
366 	/* Fields needed when using a cache file */
367 	struct file *cfile; /* Open file */
368 	unsigned long *pages_written; /* Which pages have been written */
369 	void *file_buf;
370 	struct page *held_pages[NS_MAX_HELD_PAGES];
371 	int held_cnt;
372 
373 	struct nandsim_debug_info dbg;
374 };
375 
376 /*
377  * Operations array. To perform any operation the simulator must pass
378  * through the correspondent states chain.
379  */
380 static struct nandsim_operations {
381 	uint32_t reqopts;  /* options which are required to perform the operation */
382 	uint32_t states[NS_OPER_STATES]; /* operation's states */
383 } ops[NS_OPER_NUM] = {
384 	/* Read page + OOB from the beginning */
385 	{OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
386 			STATE_DATAOUT, STATE_READY}},
387 	/* Read page + OOB from the second half */
388 	{OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
389 			STATE_DATAOUT, STATE_READY}},
390 	/* Read OOB */
391 	{OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
392 			STATE_DATAOUT, STATE_READY}},
393 	/* Program page starting from the beginning */
394 	{OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
395 			STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
396 	/* Program page starting from the beginning */
397 	{OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
398 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
399 	/* Program page starting from the second half */
400 	{OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
401 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
402 	/* Program OOB */
403 	{OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
404 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
405 	/* Erase sector */
406 	{OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
407 	/* Read status */
408 	{OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
409 	/* Read ID */
410 	{OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
411 	/* Large page devices read page */
412 	{OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
413 			       STATE_DATAOUT, STATE_READY}},
414 	/* Large page devices random page read */
415 	{OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
416 			       STATE_DATAOUT, STATE_READY}},
417 };
418 
419 struct weak_block {
420 	struct list_head list;
421 	unsigned int erase_block_no;
422 	unsigned int max_erases;
423 	unsigned int erases_done;
424 };
425 
426 static LIST_HEAD(weak_blocks);
427 
428 struct weak_page {
429 	struct list_head list;
430 	unsigned int page_no;
431 	unsigned int max_writes;
432 	unsigned int writes_done;
433 };
434 
435 static LIST_HEAD(weak_pages);
436 
437 struct grave_page {
438 	struct list_head list;
439 	unsigned int page_no;
440 	unsigned int max_reads;
441 	unsigned int reads_done;
442 };
443 
444 static LIST_HEAD(grave_pages);
445 
446 static unsigned long *erase_block_wear = NULL;
447 static unsigned int wear_eb_count = 0;
448 static unsigned long total_wear = 0;
449 
450 /* MTD structure for NAND controller */
451 static struct mtd_info *nsmtd;
452 
nandsim_debugfs_show(struct seq_file * m,void * private)453 static int nandsim_debugfs_show(struct seq_file *m, void *private)
454 {
455 	unsigned long wmin = -1, wmax = 0, avg;
456 	unsigned long deciles[10], decile_max[10], tot = 0;
457 	unsigned int i;
458 
459 	/* Calc wear stats */
460 	for (i = 0; i < wear_eb_count; ++i) {
461 		unsigned long wear = erase_block_wear[i];
462 		if (wear < wmin)
463 			wmin = wear;
464 		if (wear > wmax)
465 			wmax = wear;
466 		tot += wear;
467 	}
468 
469 	for (i = 0; i < 9; ++i) {
470 		deciles[i] = 0;
471 		decile_max[i] = (wmax * (i + 1) + 5) / 10;
472 	}
473 	deciles[9] = 0;
474 	decile_max[9] = wmax;
475 	for (i = 0; i < wear_eb_count; ++i) {
476 		int d;
477 		unsigned long wear = erase_block_wear[i];
478 		for (d = 0; d < 10; ++d)
479 			if (wear <= decile_max[d]) {
480 				deciles[d] += 1;
481 				break;
482 			}
483 	}
484 	avg = tot / wear_eb_count;
485 
486 	/* Output wear report */
487 	seq_printf(m, "Total numbers of erases:  %lu\n", tot);
488 	seq_printf(m, "Number of erase blocks:   %u\n", wear_eb_count);
489 	seq_printf(m, "Average number of erases: %lu\n", avg);
490 	seq_printf(m, "Maximum number of erases: %lu\n", wmax);
491 	seq_printf(m, "Minimum number of erases: %lu\n", wmin);
492 	for (i = 0; i < 10; ++i) {
493 		unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
494 		if (from > decile_max[i])
495 			continue;
496 		seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
497 			from,
498 			decile_max[i],
499 			deciles[i]);
500 	}
501 
502 	return 0;
503 }
504 
nandsim_debugfs_open(struct inode * inode,struct file * file)505 static int nandsim_debugfs_open(struct inode *inode, struct file *file)
506 {
507 	return single_open(file, nandsim_debugfs_show, inode->i_private);
508 }
509 
510 static const struct file_operations dfs_fops = {
511 	.open		= nandsim_debugfs_open,
512 	.read		= seq_read,
513 	.llseek		= seq_lseek,
514 	.release	= single_release,
515 };
516 
517 /**
518  * nandsim_debugfs_create - initialize debugfs
519  * @dev: nandsim device description object
520  *
521  * This function creates all debugfs files for UBI device @ubi. Returns zero in
522  * case of success and a negative error code in case of failure.
523  */
nandsim_debugfs_create(struct nandsim * dev)524 static int nandsim_debugfs_create(struct nandsim *dev)
525 {
526 	struct nandsim_debug_info *dbg = &dev->dbg;
527 	struct dentry *dent;
528 	int err;
529 
530 	if (!IS_ENABLED(CONFIG_DEBUG_FS))
531 		return 0;
532 
533 	dent = debugfs_create_dir("nandsim", NULL);
534 	if (IS_ERR_OR_NULL(dent)) {
535 		int err = dent ? -ENODEV : PTR_ERR(dent);
536 
537 		NS_ERR("cannot create \"nandsim\" debugfs directory, err %d\n",
538 			err);
539 		return err;
540 	}
541 	dbg->dfs_root = dent;
542 
543 	dent = debugfs_create_file("wear_report", S_IRUSR,
544 				   dbg->dfs_root, dev, &dfs_fops);
545 	if (IS_ERR_OR_NULL(dent))
546 		goto out_remove;
547 	dbg->dfs_wear_report = dent;
548 
549 	return 0;
550 
551 out_remove:
552 	debugfs_remove_recursive(dbg->dfs_root);
553 	err = dent ? PTR_ERR(dent) : -ENODEV;
554 	return err;
555 }
556 
557 /**
558  * nandsim_debugfs_remove - destroy all debugfs files
559  */
nandsim_debugfs_remove(struct nandsim * ns)560 static void nandsim_debugfs_remove(struct nandsim *ns)
561 {
562 	if (IS_ENABLED(CONFIG_DEBUG_FS))
563 		debugfs_remove_recursive(ns->dbg.dfs_root);
564 }
565 
566 /*
567  * Allocate array of page pointers, create slab allocation for an array
568  * and initialize the array by NULL pointers.
569  *
570  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
571  */
alloc_device(struct nandsim * ns)572 static int alloc_device(struct nandsim *ns)
573 {
574 	struct file *cfile;
575 	int i, err;
576 
577 	if (cache_file) {
578 		cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
579 		if (IS_ERR(cfile))
580 			return PTR_ERR(cfile);
581 		if (!(cfile->f_mode & FMODE_CAN_READ)) {
582 			NS_ERR("alloc_device: cache file not readable\n");
583 			err = -EINVAL;
584 			goto err_close;
585 		}
586 		if (!(cfile->f_mode & FMODE_CAN_WRITE)) {
587 			NS_ERR("alloc_device: cache file not writeable\n");
588 			err = -EINVAL;
589 			goto err_close;
590 		}
591 		ns->pages_written = vzalloc(BITS_TO_LONGS(ns->geom.pgnum) *
592 					    sizeof(unsigned long));
593 		if (!ns->pages_written) {
594 			NS_ERR("alloc_device: unable to allocate pages written array\n");
595 			err = -ENOMEM;
596 			goto err_close;
597 		}
598 		ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
599 		if (!ns->file_buf) {
600 			NS_ERR("alloc_device: unable to allocate file buf\n");
601 			err = -ENOMEM;
602 			goto err_free;
603 		}
604 		ns->cfile = cfile;
605 		return 0;
606 	}
607 
608 	ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
609 	if (!ns->pages) {
610 		NS_ERR("alloc_device: unable to allocate page array\n");
611 		return -ENOMEM;
612 	}
613 	for (i = 0; i < ns->geom.pgnum; i++) {
614 		ns->pages[i].byte = NULL;
615 	}
616 	ns->nand_pages_slab = kmem_cache_create("nandsim",
617 						ns->geom.pgszoob, 0, 0, NULL);
618 	if (!ns->nand_pages_slab) {
619 		NS_ERR("cache_create: unable to create kmem_cache\n");
620 		return -ENOMEM;
621 	}
622 
623 	return 0;
624 
625 err_free:
626 	vfree(ns->pages_written);
627 err_close:
628 	filp_close(cfile, NULL);
629 	return err;
630 }
631 
632 /*
633  * Free any allocated pages, and free the array of page pointers.
634  */
free_device(struct nandsim * ns)635 static void free_device(struct nandsim *ns)
636 {
637 	int i;
638 
639 	if (ns->cfile) {
640 		kfree(ns->file_buf);
641 		vfree(ns->pages_written);
642 		filp_close(ns->cfile, NULL);
643 		return;
644 	}
645 
646 	if (ns->pages) {
647 		for (i = 0; i < ns->geom.pgnum; i++) {
648 			if (ns->pages[i].byte)
649 				kmem_cache_free(ns->nand_pages_slab,
650 						ns->pages[i].byte);
651 		}
652 		kmem_cache_destroy(ns->nand_pages_slab);
653 		vfree(ns->pages);
654 	}
655 }
656 
get_partition_name(int i)657 static char *get_partition_name(int i)
658 {
659 	return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i);
660 }
661 
662 /*
663  * Initialize the nandsim structure.
664  *
665  * RETURNS: 0 if success, -ERRNO if failure.
666  */
init_nandsim(struct mtd_info * mtd)667 static int init_nandsim(struct mtd_info *mtd)
668 {
669 	struct nand_chip *chip = mtd->priv;
670 	struct nandsim   *ns   = chip->priv;
671 	int i, ret = 0;
672 	uint64_t remains;
673 	uint64_t next_offset;
674 
675 	if (NS_IS_INITIALIZED(ns)) {
676 		NS_ERR("init_nandsim: nandsim is already initialized\n");
677 		return -EIO;
678 	}
679 
680 	/* Force mtd to not do delays */
681 	chip->chip_delay = 0;
682 
683 	/* Initialize the NAND flash parameters */
684 	ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
685 	ns->geom.totsz    = mtd->size;
686 	ns->geom.pgsz     = mtd->writesize;
687 	ns->geom.oobsz    = mtd->oobsize;
688 	ns->geom.secsz    = mtd->erasesize;
689 	ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
690 	ns->geom.pgnum    = div_u64(ns->geom.totsz, ns->geom.pgsz);
691 	ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
692 	ns->geom.secshift = ffs(ns->geom.secsz) - 1;
693 	ns->geom.pgshift  = chip->page_shift;
694 	ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
695 	ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
696 	ns->options = 0;
697 
698 	if (ns->geom.pgsz == 512) {
699 		ns->options |= OPT_PAGE512;
700 		if (ns->busw == 8)
701 			ns->options |= OPT_PAGE512_8BIT;
702 	} else if (ns->geom.pgsz == 2048) {
703 		ns->options |= OPT_PAGE2048;
704 	} else if (ns->geom.pgsz == 4096) {
705 		ns->options |= OPT_PAGE4096;
706 	} else {
707 		NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
708 		return -EIO;
709 	}
710 
711 	if (ns->options & OPT_SMALLPAGE) {
712 		if (ns->geom.totsz <= (32 << 20)) {
713 			ns->geom.pgaddrbytes  = 3;
714 			ns->geom.secaddrbytes = 2;
715 		} else {
716 			ns->geom.pgaddrbytes  = 4;
717 			ns->geom.secaddrbytes = 3;
718 		}
719 	} else {
720 		if (ns->geom.totsz <= (128 << 20)) {
721 			ns->geom.pgaddrbytes  = 4;
722 			ns->geom.secaddrbytes = 2;
723 		} else {
724 			ns->geom.pgaddrbytes  = 5;
725 			ns->geom.secaddrbytes = 3;
726 		}
727 	}
728 
729 	/* Fill the partition_info structure */
730 	if (parts_num > ARRAY_SIZE(ns->partitions)) {
731 		NS_ERR("too many partitions.\n");
732 		return -EINVAL;
733 	}
734 	remains = ns->geom.totsz;
735 	next_offset = 0;
736 	for (i = 0; i < parts_num; ++i) {
737 		uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
738 
739 		if (!part_sz || part_sz > remains) {
740 			NS_ERR("bad partition size.\n");
741 			return -EINVAL;
742 		}
743 		ns->partitions[i].name   = get_partition_name(i);
744 		if (!ns->partitions[i].name) {
745 			NS_ERR("unable to allocate memory.\n");
746 			return -ENOMEM;
747 		}
748 		ns->partitions[i].offset = next_offset;
749 		ns->partitions[i].size   = part_sz;
750 		next_offset += ns->partitions[i].size;
751 		remains -= ns->partitions[i].size;
752 	}
753 	ns->nbparts = parts_num;
754 	if (remains) {
755 		if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
756 			NS_ERR("too many partitions.\n");
757 			return -EINVAL;
758 		}
759 		ns->partitions[i].name   = get_partition_name(i);
760 		if (!ns->partitions[i].name) {
761 			NS_ERR("unable to allocate memory.\n");
762 			return -ENOMEM;
763 		}
764 		ns->partitions[i].offset = next_offset;
765 		ns->partitions[i].size   = remains;
766 		ns->nbparts += 1;
767 	}
768 
769 	if (ns->busw == 16)
770 		NS_WARN("16-bit flashes support wasn't tested\n");
771 
772 	printk("flash size: %llu MiB\n",
773 			(unsigned long long)ns->geom.totsz >> 20);
774 	printk("page size: %u bytes\n",         ns->geom.pgsz);
775 	printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
776 	printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
777 	printk("pages number: %u\n",            ns->geom.pgnum);
778 	printk("pages per sector: %u\n",        ns->geom.pgsec);
779 	printk("bus width: %u\n",               ns->busw);
780 	printk("bits in sector size: %u\n",     ns->geom.secshift);
781 	printk("bits in page size: %u\n",       ns->geom.pgshift);
782 	printk("bits in OOB size: %u\n",	ffs(ns->geom.oobsz) - 1);
783 	printk("flash size with OOB: %llu KiB\n",
784 			(unsigned long long)ns->geom.totszoob >> 10);
785 	printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
786 	printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
787 	printk("options: %#x\n",                ns->options);
788 
789 	if ((ret = alloc_device(ns)) != 0)
790 		return ret;
791 
792 	/* Allocate / initialize the internal buffer */
793 	ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
794 	if (!ns->buf.byte) {
795 		NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
796 			ns->geom.pgszoob);
797 		return -ENOMEM;
798 	}
799 	memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
800 
801 	return 0;
802 }
803 
804 /*
805  * Free the nandsim structure.
806  */
free_nandsim(struct nandsim * ns)807 static void free_nandsim(struct nandsim *ns)
808 {
809 	kfree(ns->buf.byte);
810 	free_device(ns);
811 
812 	return;
813 }
814 
parse_badblocks(struct nandsim * ns,struct mtd_info * mtd)815 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
816 {
817 	char *w;
818 	int zero_ok;
819 	unsigned int erase_block_no;
820 	loff_t offset;
821 
822 	if (!badblocks)
823 		return 0;
824 	w = badblocks;
825 	do {
826 		zero_ok = (*w == '0' ? 1 : 0);
827 		erase_block_no = simple_strtoul(w, &w, 0);
828 		if (!zero_ok && !erase_block_no) {
829 			NS_ERR("invalid badblocks.\n");
830 			return -EINVAL;
831 		}
832 		offset = (loff_t)erase_block_no * ns->geom.secsz;
833 		if (mtd_block_markbad(mtd, offset)) {
834 			NS_ERR("invalid badblocks.\n");
835 			return -EINVAL;
836 		}
837 		if (*w == ',')
838 			w += 1;
839 	} while (*w);
840 	return 0;
841 }
842 
parse_weakblocks(void)843 static int parse_weakblocks(void)
844 {
845 	char *w;
846 	int zero_ok;
847 	unsigned int erase_block_no;
848 	unsigned int max_erases;
849 	struct weak_block *wb;
850 
851 	if (!weakblocks)
852 		return 0;
853 	w = weakblocks;
854 	do {
855 		zero_ok = (*w == '0' ? 1 : 0);
856 		erase_block_no = simple_strtoul(w, &w, 0);
857 		if (!zero_ok && !erase_block_no) {
858 			NS_ERR("invalid weakblocks.\n");
859 			return -EINVAL;
860 		}
861 		max_erases = 3;
862 		if (*w == ':') {
863 			w += 1;
864 			max_erases = simple_strtoul(w, &w, 0);
865 		}
866 		if (*w == ',')
867 			w += 1;
868 		wb = kzalloc(sizeof(*wb), GFP_KERNEL);
869 		if (!wb) {
870 			NS_ERR("unable to allocate memory.\n");
871 			return -ENOMEM;
872 		}
873 		wb->erase_block_no = erase_block_no;
874 		wb->max_erases = max_erases;
875 		list_add(&wb->list, &weak_blocks);
876 	} while (*w);
877 	return 0;
878 }
879 
erase_error(unsigned int erase_block_no)880 static int erase_error(unsigned int erase_block_no)
881 {
882 	struct weak_block *wb;
883 
884 	list_for_each_entry(wb, &weak_blocks, list)
885 		if (wb->erase_block_no == erase_block_no) {
886 			if (wb->erases_done >= wb->max_erases)
887 				return 1;
888 			wb->erases_done += 1;
889 			return 0;
890 		}
891 	return 0;
892 }
893 
parse_weakpages(void)894 static int parse_weakpages(void)
895 {
896 	char *w;
897 	int zero_ok;
898 	unsigned int page_no;
899 	unsigned int max_writes;
900 	struct weak_page *wp;
901 
902 	if (!weakpages)
903 		return 0;
904 	w = weakpages;
905 	do {
906 		zero_ok = (*w == '0' ? 1 : 0);
907 		page_no = simple_strtoul(w, &w, 0);
908 		if (!zero_ok && !page_no) {
909 			NS_ERR("invalid weakpagess.\n");
910 			return -EINVAL;
911 		}
912 		max_writes = 3;
913 		if (*w == ':') {
914 			w += 1;
915 			max_writes = simple_strtoul(w, &w, 0);
916 		}
917 		if (*w == ',')
918 			w += 1;
919 		wp = kzalloc(sizeof(*wp), GFP_KERNEL);
920 		if (!wp) {
921 			NS_ERR("unable to allocate memory.\n");
922 			return -ENOMEM;
923 		}
924 		wp->page_no = page_no;
925 		wp->max_writes = max_writes;
926 		list_add(&wp->list, &weak_pages);
927 	} while (*w);
928 	return 0;
929 }
930 
write_error(unsigned int page_no)931 static int write_error(unsigned int page_no)
932 {
933 	struct weak_page *wp;
934 
935 	list_for_each_entry(wp, &weak_pages, list)
936 		if (wp->page_no == page_no) {
937 			if (wp->writes_done >= wp->max_writes)
938 				return 1;
939 			wp->writes_done += 1;
940 			return 0;
941 		}
942 	return 0;
943 }
944 
parse_gravepages(void)945 static int parse_gravepages(void)
946 {
947 	char *g;
948 	int zero_ok;
949 	unsigned int page_no;
950 	unsigned int max_reads;
951 	struct grave_page *gp;
952 
953 	if (!gravepages)
954 		return 0;
955 	g = gravepages;
956 	do {
957 		zero_ok = (*g == '0' ? 1 : 0);
958 		page_no = simple_strtoul(g, &g, 0);
959 		if (!zero_ok && !page_no) {
960 			NS_ERR("invalid gravepagess.\n");
961 			return -EINVAL;
962 		}
963 		max_reads = 3;
964 		if (*g == ':') {
965 			g += 1;
966 			max_reads = simple_strtoul(g, &g, 0);
967 		}
968 		if (*g == ',')
969 			g += 1;
970 		gp = kzalloc(sizeof(*gp), GFP_KERNEL);
971 		if (!gp) {
972 			NS_ERR("unable to allocate memory.\n");
973 			return -ENOMEM;
974 		}
975 		gp->page_no = page_no;
976 		gp->max_reads = max_reads;
977 		list_add(&gp->list, &grave_pages);
978 	} while (*g);
979 	return 0;
980 }
981 
read_error(unsigned int page_no)982 static int read_error(unsigned int page_no)
983 {
984 	struct grave_page *gp;
985 
986 	list_for_each_entry(gp, &grave_pages, list)
987 		if (gp->page_no == page_no) {
988 			if (gp->reads_done >= gp->max_reads)
989 				return 1;
990 			gp->reads_done += 1;
991 			return 0;
992 		}
993 	return 0;
994 }
995 
free_lists(void)996 static void free_lists(void)
997 {
998 	struct list_head *pos, *n;
999 	list_for_each_safe(pos, n, &weak_blocks) {
1000 		list_del(pos);
1001 		kfree(list_entry(pos, struct weak_block, list));
1002 	}
1003 	list_for_each_safe(pos, n, &weak_pages) {
1004 		list_del(pos);
1005 		kfree(list_entry(pos, struct weak_page, list));
1006 	}
1007 	list_for_each_safe(pos, n, &grave_pages) {
1008 		list_del(pos);
1009 		kfree(list_entry(pos, struct grave_page, list));
1010 	}
1011 	kfree(erase_block_wear);
1012 }
1013 
setup_wear_reporting(struct mtd_info * mtd)1014 static int setup_wear_reporting(struct mtd_info *mtd)
1015 {
1016 	size_t mem;
1017 
1018 	wear_eb_count = div_u64(mtd->size, mtd->erasesize);
1019 	mem = wear_eb_count * sizeof(unsigned long);
1020 	if (mem / sizeof(unsigned long) != wear_eb_count) {
1021 		NS_ERR("Too many erase blocks for wear reporting\n");
1022 		return -ENOMEM;
1023 	}
1024 	erase_block_wear = kzalloc(mem, GFP_KERNEL);
1025 	if (!erase_block_wear) {
1026 		NS_ERR("Too many erase blocks for wear reporting\n");
1027 		return -ENOMEM;
1028 	}
1029 	return 0;
1030 }
1031 
update_wear(unsigned int erase_block_no)1032 static void update_wear(unsigned int erase_block_no)
1033 {
1034 	if (!erase_block_wear)
1035 		return;
1036 	total_wear += 1;
1037 	/*
1038 	 * TODO: Notify this through a debugfs entry,
1039 	 * instead of showing an error message.
1040 	 */
1041 	if (total_wear == 0)
1042 		NS_ERR("Erase counter total overflow\n");
1043 	erase_block_wear[erase_block_no] += 1;
1044 	if (erase_block_wear[erase_block_no] == 0)
1045 		NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
1046 }
1047 
1048 /*
1049  * Returns the string representation of 'state' state.
1050  */
get_state_name(uint32_t state)1051 static char *get_state_name(uint32_t state)
1052 {
1053 	switch (NS_STATE(state)) {
1054 		case STATE_CMD_READ0:
1055 			return "STATE_CMD_READ0";
1056 		case STATE_CMD_READ1:
1057 			return "STATE_CMD_READ1";
1058 		case STATE_CMD_PAGEPROG:
1059 			return "STATE_CMD_PAGEPROG";
1060 		case STATE_CMD_READOOB:
1061 			return "STATE_CMD_READOOB";
1062 		case STATE_CMD_READSTART:
1063 			return "STATE_CMD_READSTART";
1064 		case STATE_CMD_ERASE1:
1065 			return "STATE_CMD_ERASE1";
1066 		case STATE_CMD_STATUS:
1067 			return "STATE_CMD_STATUS";
1068 		case STATE_CMD_SEQIN:
1069 			return "STATE_CMD_SEQIN";
1070 		case STATE_CMD_READID:
1071 			return "STATE_CMD_READID";
1072 		case STATE_CMD_ERASE2:
1073 			return "STATE_CMD_ERASE2";
1074 		case STATE_CMD_RESET:
1075 			return "STATE_CMD_RESET";
1076 		case STATE_CMD_RNDOUT:
1077 			return "STATE_CMD_RNDOUT";
1078 		case STATE_CMD_RNDOUTSTART:
1079 			return "STATE_CMD_RNDOUTSTART";
1080 		case STATE_ADDR_PAGE:
1081 			return "STATE_ADDR_PAGE";
1082 		case STATE_ADDR_SEC:
1083 			return "STATE_ADDR_SEC";
1084 		case STATE_ADDR_ZERO:
1085 			return "STATE_ADDR_ZERO";
1086 		case STATE_ADDR_COLUMN:
1087 			return "STATE_ADDR_COLUMN";
1088 		case STATE_DATAIN:
1089 			return "STATE_DATAIN";
1090 		case STATE_DATAOUT:
1091 			return "STATE_DATAOUT";
1092 		case STATE_DATAOUT_ID:
1093 			return "STATE_DATAOUT_ID";
1094 		case STATE_DATAOUT_STATUS:
1095 			return "STATE_DATAOUT_STATUS";
1096 		case STATE_READY:
1097 			return "STATE_READY";
1098 		case STATE_UNKNOWN:
1099 			return "STATE_UNKNOWN";
1100 	}
1101 
1102 	NS_ERR("get_state_name: unknown state, BUG\n");
1103 	return NULL;
1104 }
1105 
1106 /*
1107  * Check if command is valid.
1108  *
1109  * RETURNS: 1 if wrong command, 0 if right.
1110  */
check_command(int cmd)1111 static int check_command(int cmd)
1112 {
1113 	switch (cmd) {
1114 
1115 	case NAND_CMD_READ0:
1116 	case NAND_CMD_READ1:
1117 	case NAND_CMD_READSTART:
1118 	case NAND_CMD_PAGEPROG:
1119 	case NAND_CMD_READOOB:
1120 	case NAND_CMD_ERASE1:
1121 	case NAND_CMD_STATUS:
1122 	case NAND_CMD_SEQIN:
1123 	case NAND_CMD_READID:
1124 	case NAND_CMD_ERASE2:
1125 	case NAND_CMD_RESET:
1126 	case NAND_CMD_RNDOUT:
1127 	case NAND_CMD_RNDOUTSTART:
1128 		return 0;
1129 
1130 	default:
1131 		return 1;
1132 	}
1133 }
1134 
1135 /*
1136  * Returns state after command is accepted by command number.
1137  */
get_state_by_command(unsigned command)1138 static uint32_t get_state_by_command(unsigned command)
1139 {
1140 	switch (command) {
1141 		case NAND_CMD_READ0:
1142 			return STATE_CMD_READ0;
1143 		case NAND_CMD_READ1:
1144 			return STATE_CMD_READ1;
1145 		case NAND_CMD_PAGEPROG:
1146 			return STATE_CMD_PAGEPROG;
1147 		case NAND_CMD_READSTART:
1148 			return STATE_CMD_READSTART;
1149 		case NAND_CMD_READOOB:
1150 			return STATE_CMD_READOOB;
1151 		case NAND_CMD_ERASE1:
1152 			return STATE_CMD_ERASE1;
1153 		case NAND_CMD_STATUS:
1154 			return STATE_CMD_STATUS;
1155 		case NAND_CMD_SEQIN:
1156 			return STATE_CMD_SEQIN;
1157 		case NAND_CMD_READID:
1158 			return STATE_CMD_READID;
1159 		case NAND_CMD_ERASE2:
1160 			return STATE_CMD_ERASE2;
1161 		case NAND_CMD_RESET:
1162 			return STATE_CMD_RESET;
1163 		case NAND_CMD_RNDOUT:
1164 			return STATE_CMD_RNDOUT;
1165 		case NAND_CMD_RNDOUTSTART:
1166 			return STATE_CMD_RNDOUTSTART;
1167 	}
1168 
1169 	NS_ERR("get_state_by_command: unknown command, BUG\n");
1170 	return 0;
1171 }
1172 
1173 /*
1174  * Move an address byte to the correspondent internal register.
1175  */
accept_addr_byte(struct nandsim * ns,u_char bt)1176 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1177 {
1178 	uint byte = (uint)bt;
1179 
1180 	if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1181 		ns->regs.column |= (byte << 8 * ns->regs.count);
1182 	else {
1183 		ns->regs.row |= (byte << 8 * (ns->regs.count -
1184 						ns->geom.pgaddrbytes +
1185 						ns->geom.secaddrbytes));
1186 	}
1187 
1188 	return;
1189 }
1190 
1191 /*
1192  * Switch to STATE_READY state.
1193  */
switch_to_ready_state(struct nandsim * ns,u_char status)1194 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1195 {
1196 	NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1197 
1198 	ns->state       = STATE_READY;
1199 	ns->nxstate     = STATE_UNKNOWN;
1200 	ns->op          = NULL;
1201 	ns->npstates    = 0;
1202 	ns->stateidx    = 0;
1203 	ns->regs.num    = 0;
1204 	ns->regs.count  = 0;
1205 	ns->regs.off    = 0;
1206 	ns->regs.row    = 0;
1207 	ns->regs.column = 0;
1208 	ns->regs.status = status;
1209 }
1210 
1211 /*
1212  * If the operation isn't known yet, try to find it in the global array
1213  * of supported operations.
1214  *
1215  * Operation can be unknown because of the following.
1216  *   1. New command was accepted and this is the first call to find the
1217  *      correspondent states chain. In this case ns->npstates = 0;
1218  *   2. There are several operations which begin with the same command(s)
1219  *      (for example program from the second half and read from the
1220  *      second half operations both begin with the READ1 command). In this
1221  *      case the ns->pstates[] array contains previous states.
1222  *
1223  * Thus, the function tries to find operation containing the following
1224  * states (if the 'flag' parameter is 0):
1225  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1226  *
1227  * If (one and only one) matching operation is found, it is accepted (
1228  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1229  * zeroed).
1230  *
1231  * If there are several matches, the current state is pushed to the
1232  * ns->pstates.
1233  *
1234  * The operation can be unknown only while commands are input to the chip.
1235  * As soon as address command is accepted, the operation must be known.
1236  * In such situation the function is called with 'flag' != 0, and the
1237  * operation is searched using the following pattern:
1238  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1239  *
1240  * It is supposed that this pattern must either match one operation or
1241  * none. There can't be ambiguity in that case.
1242  *
1243  * If no matches found, the function does the following:
1244  *   1. if there are saved states present, try to ignore them and search
1245  *      again only using the last command. If nothing was found, switch
1246  *      to the STATE_READY state.
1247  *   2. if there are no saved states, switch to the STATE_READY state.
1248  *
1249  * RETURNS: -2 - no matched operations found.
1250  *          -1 - several matches.
1251  *           0 - operation is found.
1252  */
find_operation(struct nandsim * ns,uint32_t flag)1253 static int find_operation(struct nandsim *ns, uint32_t flag)
1254 {
1255 	int opsfound = 0;
1256 	int i, j, idx = 0;
1257 
1258 	for (i = 0; i < NS_OPER_NUM; i++) {
1259 
1260 		int found = 1;
1261 
1262 		if (!(ns->options & ops[i].reqopts))
1263 			/* Ignore operations we can't perform */
1264 			continue;
1265 
1266 		if (flag) {
1267 			if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1268 				continue;
1269 		} else {
1270 			if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1271 				continue;
1272 		}
1273 
1274 		for (j = 0; j < ns->npstates; j++)
1275 			if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1276 				&& (ns->options & ops[idx].reqopts)) {
1277 				found = 0;
1278 				break;
1279 			}
1280 
1281 		if (found) {
1282 			idx = i;
1283 			opsfound += 1;
1284 		}
1285 	}
1286 
1287 	if (opsfound == 1) {
1288 		/* Exact match */
1289 		ns->op = &ops[idx].states[0];
1290 		if (flag) {
1291 			/*
1292 			 * In this case the find_operation function was
1293 			 * called when address has just began input. But it isn't
1294 			 * yet fully input and the current state must
1295 			 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1296 			 * state must be the next state (ns->nxstate).
1297 			 */
1298 			ns->stateidx = ns->npstates - 1;
1299 		} else {
1300 			ns->stateidx = ns->npstates;
1301 		}
1302 		ns->npstates = 0;
1303 		ns->state = ns->op[ns->stateidx];
1304 		ns->nxstate = ns->op[ns->stateidx + 1];
1305 		NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1306 				idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1307 		return 0;
1308 	}
1309 
1310 	if (opsfound == 0) {
1311 		/* Nothing was found. Try to ignore previous commands (if any) and search again */
1312 		if (ns->npstates != 0) {
1313 			NS_DBG("find_operation: no operation found, try again with state %s\n",
1314 					get_state_name(ns->state));
1315 			ns->npstates = 0;
1316 			return find_operation(ns, 0);
1317 
1318 		}
1319 		NS_DBG("find_operation: no operations found\n");
1320 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1321 		return -2;
1322 	}
1323 
1324 	if (flag) {
1325 		/* This shouldn't happen */
1326 		NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1327 		return -2;
1328 	}
1329 
1330 	NS_DBG("find_operation: there is still ambiguity\n");
1331 
1332 	ns->pstates[ns->npstates++] = ns->state;
1333 
1334 	return -1;
1335 }
1336 
put_pages(struct nandsim * ns)1337 static void put_pages(struct nandsim *ns)
1338 {
1339 	int i;
1340 
1341 	for (i = 0; i < ns->held_cnt; i++)
1342 		page_cache_release(ns->held_pages[i]);
1343 }
1344 
1345 /* Get page cache pages in advance to provide NOFS memory allocation */
get_pages(struct nandsim * ns,struct file * file,size_t count,loff_t pos)1346 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1347 {
1348 	pgoff_t index, start_index, end_index;
1349 	struct page *page;
1350 	struct address_space *mapping = file->f_mapping;
1351 
1352 	start_index = pos >> PAGE_CACHE_SHIFT;
1353 	end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1354 	if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1355 		return -EINVAL;
1356 	ns->held_cnt = 0;
1357 	for (index = start_index; index <= end_index; index++) {
1358 		page = find_get_page(mapping, index);
1359 		if (page == NULL) {
1360 			page = find_or_create_page(mapping, index, GFP_NOFS);
1361 			if (page == NULL) {
1362 				write_inode_now(mapping->host, 1);
1363 				page = find_or_create_page(mapping, index, GFP_NOFS);
1364 			}
1365 			if (page == NULL) {
1366 				put_pages(ns);
1367 				return -ENOMEM;
1368 			}
1369 			unlock_page(page);
1370 		}
1371 		ns->held_pages[ns->held_cnt++] = page;
1372 	}
1373 	return 0;
1374 }
1375 
set_memalloc(void)1376 static int set_memalloc(void)
1377 {
1378 	if (current->flags & PF_MEMALLOC)
1379 		return 0;
1380 	current->flags |= PF_MEMALLOC;
1381 	return 1;
1382 }
1383 
clear_memalloc(int memalloc)1384 static void clear_memalloc(int memalloc)
1385 {
1386 	if (memalloc)
1387 		current->flags &= ~PF_MEMALLOC;
1388 }
1389 
read_file(struct nandsim * ns,struct file * file,void * buf,size_t count,loff_t pos)1390 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1391 {
1392 	ssize_t tx;
1393 	int err, memalloc;
1394 
1395 	err = get_pages(ns, file, count, pos);
1396 	if (err)
1397 		return err;
1398 	memalloc = set_memalloc();
1399 	tx = kernel_read(file, pos, buf, count);
1400 	clear_memalloc(memalloc);
1401 	put_pages(ns);
1402 	return tx;
1403 }
1404 
write_file(struct nandsim * ns,struct file * file,void * buf,size_t count,loff_t pos)1405 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1406 {
1407 	ssize_t tx;
1408 	int err, memalloc;
1409 
1410 	err = get_pages(ns, file, count, pos);
1411 	if (err)
1412 		return err;
1413 	memalloc = set_memalloc();
1414 	tx = kernel_write(file, buf, count, pos);
1415 	clear_memalloc(memalloc);
1416 	put_pages(ns);
1417 	return tx;
1418 }
1419 
1420 /*
1421  * Returns a pointer to the current page.
1422  */
NS_GET_PAGE(struct nandsim * ns)1423 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1424 {
1425 	return &(ns->pages[ns->regs.row]);
1426 }
1427 
1428 /*
1429  * Retuns a pointer to the current byte, within the current page.
1430  */
NS_PAGE_BYTE_OFF(struct nandsim * ns)1431 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1432 {
1433 	return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1434 }
1435 
do_read_error(struct nandsim * ns,int num)1436 static int do_read_error(struct nandsim *ns, int num)
1437 {
1438 	unsigned int page_no = ns->regs.row;
1439 
1440 	if (read_error(page_no)) {
1441 		prandom_bytes(ns->buf.byte, num);
1442 		NS_WARN("simulating read error in page %u\n", page_no);
1443 		return 1;
1444 	}
1445 	return 0;
1446 }
1447 
do_bit_flips(struct nandsim * ns,int num)1448 static void do_bit_flips(struct nandsim *ns, int num)
1449 {
1450 	if (bitflips && prandom_u32() < (1 << 22)) {
1451 		int flips = 1;
1452 		if (bitflips > 1)
1453 			flips = (prandom_u32() % (int) bitflips) + 1;
1454 		while (flips--) {
1455 			int pos = prandom_u32() % (num * 8);
1456 			ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1457 			NS_WARN("read_page: flipping bit %d in page %d "
1458 				"reading from %d ecc: corrected=%u failed=%u\n",
1459 				pos, ns->regs.row, ns->regs.column + ns->regs.off,
1460 				nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1461 		}
1462 	}
1463 }
1464 
1465 /*
1466  * Fill the NAND buffer with data read from the specified page.
1467  */
read_page(struct nandsim * ns,int num)1468 static void read_page(struct nandsim *ns, int num)
1469 {
1470 	union ns_mem *mypage;
1471 
1472 	if (ns->cfile) {
1473 		if (!test_bit(ns->regs.row, ns->pages_written)) {
1474 			NS_DBG("read_page: page %d not written\n", ns->regs.row);
1475 			memset(ns->buf.byte, 0xFF, num);
1476 		} else {
1477 			loff_t pos;
1478 			ssize_t tx;
1479 
1480 			NS_DBG("read_page: page %d written, reading from %d\n",
1481 				ns->regs.row, ns->regs.column + ns->regs.off);
1482 			if (do_read_error(ns, num))
1483 				return;
1484 			pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1485 			tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos);
1486 			if (tx != num) {
1487 				NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1488 				return;
1489 			}
1490 			do_bit_flips(ns, num);
1491 		}
1492 		return;
1493 	}
1494 
1495 	mypage = NS_GET_PAGE(ns);
1496 	if (mypage->byte == NULL) {
1497 		NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1498 		memset(ns->buf.byte, 0xFF, num);
1499 	} else {
1500 		NS_DBG("read_page: page %d allocated, reading from %d\n",
1501 			ns->regs.row, ns->regs.column + ns->regs.off);
1502 		if (do_read_error(ns, num))
1503 			return;
1504 		memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1505 		do_bit_flips(ns, num);
1506 	}
1507 }
1508 
1509 /*
1510  * Erase all pages in the specified sector.
1511  */
erase_sector(struct nandsim * ns)1512 static void erase_sector(struct nandsim *ns)
1513 {
1514 	union ns_mem *mypage;
1515 	int i;
1516 
1517 	if (ns->cfile) {
1518 		for (i = 0; i < ns->geom.pgsec; i++)
1519 			if (__test_and_clear_bit(ns->regs.row + i,
1520 						 ns->pages_written)) {
1521 				NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1522 			}
1523 		return;
1524 	}
1525 
1526 	mypage = NS_GET_PAGE(ns);
1527 	for (i = 0; i < ns->geom.pgsec; i++) {
1528 		if (mypage->byte != NULL) {
1529 			NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1530 			kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1531 			mypage->byte = NULL;
1532 		}
1533 		mypage++;
1534 	}
1535 }
1536 
1537 /*
1538  * Program the specified page with the contents from the NAND buffer.
1539  */
prog_page(struct nandsim * ns,int num)1540 static int prog_page(struct nandsim *ns, int num)
1541 {
1542 	int i;
1543 	union ns_mem *mypage;
1544 	u_char *pg_off;
1545 
1546 	if (ns->cfile) {
1547 		loff_t off;
1548 		ssize_t tx;
1549 		int all;
1550 
1551 		NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1552 		pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1553 		off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1554 		if (!test_bit(ns->regs.row, ns->pages_written)) {
1555 			all = 1;
1556 			memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1557 		} else {
1558 			all = 0;
1559 			tx = read_file(ns, ns->cfile, pg_off, num, off);
1560 			if (tx != num) {
1561 				NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1562 				return -1;
1563 			}
1564 		}
1565 		for (i = 0; i < num; i++)
1566 			pg_off[i] &= ns->buf.byte[i];
1567 		if (all) {
1568 			loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1569 			tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos);
1570 			if (tx != ns->geom.pgszoob) {
1571 				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1572 				return -1;
1573 			}
1574 			__set_bit(ns->regs.row, ns->pages_written);
1575 		} else {
1576 			tx = write_file(ns, ns->cfile, pg_off, num, off);
1577 			if (tx != num) {
1578 				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1579 				return -1;
1580 			}
1581 		}
1582 		return 0;
1583 	}
1584 
1585 	mypage = NS_GET_PAGE(ns);
1586 	if (mypage->byte == NULL) {
1587 		NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1588 		/*
1589 		 * We allocate memory with GFP_NOFS because a flash FS may
1590 		 * utilize this. If it is holding an FS lock, then gets here,
1591 		 * then kernel memory alloc runs writeback which goes to the FS
1592 		 * again and deadlocks. This was seen in practice.
1593 		 */
1594 		mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1595 		if (mypage->byte == NULL) {
1596 			NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1597 			return -1;
1598 		}
1599 		memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1600 	}
1601 
1602 	pg_off = NS_PAGE_BYTE_OFF(ns);
1603 	for (i = 0; i < num; i++)
1604 		pg_off[i] &= ns->buf.byte[i];
1605 
1606 	return 0;
1607 }
1608 
1609 /*
1610  * If state has any action bit, perform this action.
1611  *
1612  * RETURNS: 0 if success, -1 if error.
1613  */
do_state_action(struct nandsim * ns,uint32_t action)1614 static int do_state_action(struct nandsim *ns, uint32_t action)
1615 {
1616 	int num;
1617 	int busdiv = ns->busw == 8 ? 1 : 2;
1618 	unsigned int erase_block_no, page_no;
1619 
1620 	action &= ACTION_MASK;
1621 
1622 	/* Check that page address input is correct */
1623 	if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1624 		NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1625 		return -1;
1626 	}
1627 
1628 	switch (action) {
1629 
1630 	case ACTION_CPY:
1631 		/*
1632 		 * Copy page data to the internal buffer.
1633 		 */
1634 
1635 		/* Column shouldn't be very large */
1636 		if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1637 			NS_ERR("do_state_action: column number is too large\n");
1638 			break;
1639 		}
1640 		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1641 		read_page(ns, num);
1642 
1643 		NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1644 			num, NS_RAW_OFFSET(ns) + ns->regs.off);
1645 
1646 		if (ns->regs.off == 0)
1647 			NS_LOG("read page %d\n", ns->regs.row);
1648 		else if (ns->regs.off < ns->geom.pgsz)
1649 			NS_LOG("read page %d (second half)\n", ns->regs.row);
1650 		else
1651 			NS_LOG("read OOB of page %d\n", ns->regs.row);
1652 
1653 		NS_UDELAY(access_delay);
1654 		NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1655 
1656 		break;
1657 
1658 	case ACTION_SECERASE:
1659 		/*
1660 		 * Erase sector.
1661 		 */
1662 
1663 		if (ns->lines.wp) {
1664 			NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1665 			return -1;
1666 		}
1667 
1668 		if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1669 			|| (ns->regs.row & ~(ns->geom.secsz - 1))) {
1670 			NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1671 			return -1;
1672 		}
1673 
1674 		ns->regs.row = (ns->regs.row <<
1675 				8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1676 		ns->regs.column = 0;
1677 
1678 		erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1679 
1680 		NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1681 				ns->regs.row, NS_RAW_OFFSET(ns));
1682 		NS_LOG("erase sector %u\n", erase_block_no);
1683 
1684 		erase_sector(ns);
1685 
1686 		NS_MDELAY(erase_delay);
1687 
1688 		if (erase_block_wear)
1689 			update_wear(erase_block_no);
1690 
1691 		if (erase_error(erase_block_no)) {
1692 			NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1693 			return -1;
1694 		}
1695 
1696 		break;
1697 
1698 	case ACTION_PRGPAGE:
1699 		/*
1700 		 * Program page - move internal buffer data to the page.
1701 		 */
1702 
1703 		if (ns->lines.wp) {
1704 			NS_WARN("do_state_action: device is write-protected, programm\n");
1705 			return -1;
1706 		}
1707 
1708 		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1709 		if (num != ns->regs.count) {
1710 			NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1711 					ns->regs.count, num);
1712 			return -1;
1713 		}
1714 
1715 		if (prog_page(ns, num) == -1)
1716 			return -1;
1717 
1718 		page_no = ns->regs.row;
1719 
1720 		NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1721 			num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1722 		NS_LOG("programm page %d\n", ns->regs.row);
1723 
1724 		NS_UDELAY(programm_delay);
1725 		NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1726 
1727 		if (write_error(page_no)) {
1728 			NS_WARN("simulating write failure in page %u\n", page_no);
1729 			return -1;
1730 		}
1731 
1732 		break;
1733 
1734 	case ACTION_ZEROOFF:
1735 		NS_DBG("do_state_action: set internal offset to 0\n");
1736 		ns->regs.off = 0;
1737 		break;
1738 
1739 	case ACTION_HALFOFF:
1740 		if (!(ns->options & OPT_PAGE512_8BIT)) {
1741 			NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1742 				"byte page size 8x chips\n");
1743 			return -1;
1744 		}
1745 		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1746 		ns->regs.off = ns->geom.pgsz/2;
1747 		break;
1748 
1749 	case ACTION_OOBOFF:
1750 		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1751 		ns->regs.off = ns->geom.pgsz;
1752 		break;
1753 
1754 	default:
1755 		NS_DBG("do_state_action: BUG! unknown action\n");
1756 	}
1757 
1758 	return 0;
1759 }
1760 
1761 /*
1762  * Switch simulator's state.
1763  */
switch_state(struct nandsim * ns)1764 static void switch_state(struct nandsim *ns)
1765 {
1766 	if (ns->op) {
1767 		/*
1768 		 * The current operation have already been identified.
1769 		 * Just follow the states chain.
1770 		 */
1771 
1772 		ns->stateidx += 1;
1773 		ns->state = ns->nxstate;
1774 		ns->nxstate = ns->op[ns->stateidx + 1];
1775 
1776 		NS_DBG("switch_state: operation is known, switch to the next state, "
1777 			"state: %s, nxstate: %s\n",
1778 			get_state_name(ns->state), get_state_name(ns->nxstate));
1779 
1780 		/* See, whether we need to do some action */
1781 		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1782 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1783 			return;
1784 		}
1785 
1786 	} else {
1787 		/*
1788 		 * We don't yet know which operation we perform.
1789 		 * Try to identify it.
1790 		 */
1791 
1792 		/*
1793 		 *  The only event causing the switch_state function to
1794 		 *  be called with yet unknown operation is new command.
1795 		 */
1796 		ns->state = get_state_by_command(ns->regs.command);
1797 
1798 		NS_DBG("switch_state: operation is unknown, try to find it\n");
1799 
1800 		if (find_operation(ns, 0) != 0)
1801 			return;
1802 
1803 		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1804 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1805 			return;
1806 		}
1807 	}
1808 
1809 	/* For 16x devices column means the page offset in words */
1810 	if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1811 		NS_DBG("switch_state: double the column number for 16x device\n");
1812 		ns->regs.column <<= 1;
1813 	}
1814 
1815 	if (NS_STATE(ns->nxstate) == STATE_READY) {
1816 		/*
1817 		 * The current state is the last. Return to STATE_READY
1818 		 */
1819 
1820 		u_char status = NS_STATUS_OK(ns);
1821 
1822 		/* In case of data states, see if all bytes were input/output */
1823 		if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1824 			&& ns->regs.count != ns->regs.num) {
1825 			NS_WARN("switch_state: not all bytes were processed, %d left\n",
1826 					ns->regs.num - ns->regs.count);
1827 			status = NS_STATUS_FAILED(ns);
1828 		}
1829 
1830 		NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1831 
1832 		switch_to_ready_state(ns, status);
1833 
1834 		return;
1835 	} else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1836 		/*
1837 		 * If the next state is data input/output, switch to it now
1838 		 */
1839 
1840 		ns->state      = ns->nxstate;
1841 		ns->nxstate    = ns->op[++ns->stateidx + 1];
1842 		ns->regs.num   = ns->regs.count = 0;
1843 
1844 		NS_DBG("switch_state: the next state is data I/O, switch, "
1845 			"state: %s, nxstate: %s\n",
1846 			get_state_name(ns->state), get_state_name(ns->nxstate));
1847 
1848 		/*
1849 		 * Set the internal register to the count of bytes which
1850 		 * are expected to be input or output
1851 		 */
1852 		switch (NS_STATE(ns->state)) {
1853 			case STATE_DATAIN:
1854 			case STATE_DATAOUT:
1855 				ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1856 				break;
1857 
1858 			case STATE_DATAOUT_ID:
1859 				ns->regs.num = ns->geom.idbytes;
1860 				break;
1861 
1862 			case STATE_DATAOUT_STATUS:
1863 				ns->regs.count = ns->regs.num = 0;
1864 				break;
1865 
1866 			default:
1867 				NS_ERR("switch_state: BUG! unknown data state\n");
1868 		}
1869 
1870 	} else if (ns->nxstate & STATE_ADDR_MASK) {
1871 		/*
1872 		 * If the next state is address input, set the internal
1873 		 * register to the number of expected address bytes
1874 		 */
1875 
1876 		ns->regs.count = 0;
1877 
1878 		switch (NS_STATE(ns->nxstate)) {
1879 			case STATE_ADDR_PAGE:
1880 				ns->regs.num = ns->geom.pgaddrbytes;
1881 
1882 				break;
1883 			case STATE_ADDR_SEC:
1884 				ns->regs.num = ns->geom.secaddrbytes;
1885 				break;
1886 
1887 			case STATE_ADDR_ZERO:
1888 				ns->regs.num = 1;
1889 				break;
1890 
1891 			case STATE_ADDR_COLUMN:
1892 				/* Column address is always 2 bytes */
1893 				ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1894 				break;
1895 
1896 			default:
1897 				NS_ERR("switch_state: BUG! unknown address state\n");
1898 		}
1899 	} else {
1900 		/*
1901 		 * Just reset internal counters.
1902 		 */
1903 
1904 		ns->regs.num = 0;
1905 		ns->regs.count = 0;
1906 	}
1907 }
1908 
ns_nand_read_byte(struct mtd_info * mtd)1909 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1910 {
1911 	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1912 	u_char outb = 0x00;
1913 
1914 	/* Sanity and correctness checks */
1915 	if (!ns->lines.ce) {
1916 		NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1917 		return outb;
1918 	}
1919 	if (ns->lines.ale || ns->lines.cle) {
1920 		NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1921 		return outb;
1922 	}
1923 	if (!(ns->state & STATE_DATAOUT_MASK)) {
1924 		NS_WARN("read_byte: unexpected data output cycle, state is %s "
1925 			"return %#x\n", get_state_name(ns->state), (uint)outb);
1926 		return outb;
1927 	}
1928 
1929 	/* Status register may be read as many times as it is wanted */
1930 	if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1931 		NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1932 		return ns->regs.status;
1933 	}
1934 
1935 	/* Check if there is any data in the internal buffer which may be read */
1936 	if (ns->regs.count == ns->regs.num) {
1937 		NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1938 		return outb;
1939 	}
1940 
1941 	switch (NS_STATE(ns->state)) {
1942 		case STATE_DATAOUT:
1943 			if (ns->busw == 8) {
1944 				outb = ns->buf.byte[ns->regs.count];
1945 				ns->regs.count += 1;
1946 			} else {
1947 				outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1948 				ns->regs.count += 2;
1949 			}
1950 			break;
1951 		case STATE_DATAOUT_ID:
1952 			NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1953 			outb = ns->ids[ns->regs.count];
1954 			ns->regs.count += 1;
1955 			break;
1956 		default:
1957 			BUG();
1958 	}
1959 
1960 	if (ns->regs.count == ns->regs.num) {
1961 		NS_DBG("read_byte: all bytes were read\n");
1962 
1963 		if (NS_STATE(ns->nxstate) == STATE_READY)
1964 			switch_state(ns);
1965 	}
1966 
1967 	return outb;
1968 }
1969 
ns_nand_write_byte(struct mtd_info * mtd,u_char byte)1970 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1971 {
1972 	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1973 
1974 	/* Sanity and correctness checks */
1975 	if (!ns->lines.ce) {
1976 		NS_ERR("write_byte: chip is disabled, ignore write\n");
1977 		return;
1978 	}
1979 	if (ns->lines.ale && ns->lines.cle) {
1980 		NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1981 		return;
1982 	}
1983 
1984 	if (ns->lines.cle == 1) {
1985 		/*
1986 		 * The byte written is a command.
1987 		 */
1988 
1989 		if (byte == NAND_CMD_RESET) {
1990 			NS_LOG("reset chip\n");
1991 			switch_to_ready_state(ns, NS_STATUS_OK(ns));
1992 			return;
1993 		}
1994 
1995 		/* Check that the command byte is correct */
1996 		if (check_command(byte)) {
1997 			NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1998 			return;
1999 		}
2000 
2001 		if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
2002 			|| NS_STATE(ns->state) == STATE_DATAOUT) {
2003 			int row = ns->regs.row;
2004 
2005 			switch_state(ns);
2006 			if (byte == NAND_CMD_RNDOUT)
2007 				ns->regs.row = row;
2008 		}
2009 
2010 		/* Check if chip is expecting command */
2011 		if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
2012 			/* Do not warn if only 2 id bytes are read */
2013 			if (!(ns->regs.command == NAND_CMD_READID &&
2014 			    NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
2015 				/*
2016 				 * We are in situation when something else (not command)
2017 				 * was expected but command was input. In this case ignore
2018 				 * previous command(s)/state(s) and accept the last one.
2019 				 */
2020 				NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2021 					"ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2022 			}
2023 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2024 		}
2025 
2026 		NS_DBG("command byte corresponding to %s state accepted\n",
2027 			get_state_name(get_state_by_command(byte)));
2028 		ns->regs.command = byte;
2029 		switch_state(ns);
2030 
2031 	} else if (ns->lines.ale == 1) {
2032 		/*
2033 		 * The byte written is an address.
2034 		 */
2035 
2036 		if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2037 
2038 			NS_DBG("write_byte: operation isn't known yet, identify it\n");
2039 
2040 			if (find_operation(ns, 1) < 0)
2041 				return;
2042 
2043 			if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2044 				switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2045 				return;
2046 			}
2047 
2048 			ns->regs.count = 0;
2049 			switch (NS_STATE(ns->nxstate)) {
2050 				case STATE_ADDR_PAGE:
2051 					ns->regs.num = ns->geom.pgaddrbytes;
2052 					break;
2053 				case STATE_ADDR_SEC:
2054 					ns->regs.num = ns->geom.secaddrbytes;
2055 					break;
2056 				case STATE_ADDR_ZERO:
2057 					ns->regs.num = 1;
2058 					break;
2059 				default:
2060 					BUG();
2061 			}
2062 		}
2063 
2064 		/* Check that chip is expecting address */
2065 		if (!(ns->nxstate & STATE_ADDR_MASK)) {
2066 			NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2067 				"switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2068 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2069 			return;
2070 		}
2071 
2072 		/* Check if this is expected byte */
2073 		if (ns->regs.count == ns->regs.num) {
2074 			NS_ERR("write_byte: no more address bytes expected\n");
2075 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2076 			return;
2077 		}
2078 
2079 		accept_addr_byte(ns, byte);
2080 
2081 		ns->regs.count += 1;
2082 
2083 		NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2084 				(uint)byte, ns->regs.count, ns->regs.num);
2085 
2086 		if (ns->regs.count == ns->regs.num) {
2087 			NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2088 			switch_state(ns);
2089 		}
2090 
2091 	} else {
2092 		/*
2093 		 * The byte written is an input data.
2094 		 */
2095 
2096 		/* Check that chip is expecting data input */
2097 		if (!(ns->state & STATE_DATAIN_MASK)) {
2098 			NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2099 				"switch to %s\n", (uint)byte,
2100 				get_state_name(ns->state), get_state_name(STATE_READY));
2101 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2102 			return;
2103 		}
2104 
2105 		/* Check if this is expected byte */
2106 		if (ns->regs.count == ns->regs.num) {
2107 			NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2108 					ns->regs.num);
2109 			return;
2110 		}
2111 
2112 		if (ns->busw == 8) {
2113 			ns->buf.byte[ns->regs.count] = byte;
2114 			ns->regs.count += 1;
2115 		} else {
2116 			ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2117 			ns->regs.count += 2;
2118 		}
2119 	}
2120 
2121 	return;
2122 }
2123 
ns_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int bitmask)2124 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2125 {
2126 	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2127 
2128 	ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2129 	ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2130 	ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2131 
2132 	if (cmd != NAND_CMD_NONE)
2133 		ns_nand_write_byte(mtd, cmd);
2134 }
2135 
ns_device_ready(struct mtd_info * mtd)2136 static int ns_device_ready(struct mtd_info *mtd)
2137 {
2138 	NS_DBG("device_ready\n");
2139 	return 1;
2140 }
2141 
ns_nand_read_word(struct mtd_info * mtd)2142 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2143 {
2144 	struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2145 
2146 	NS_DBG("read_word\n");
2147 
2148 	return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2149 }
2150 
ns_nand_write_buf(struct mtd_info * mtd,const u_char * buf,int len)2151 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2152 {
2153 	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2154 
2155 	/* Check that chip is expecting data input */
2156 	if (!(ns->state & STATE_DATAIN_MASK)) {
2157 		NS_ERR("write_buf: data input isn't expected, state is %s, "
2158 			"switch to STATE_READY\n", get_state_name(ns->state));
2159 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2160 		return;
2161 	}
2162 
2163 	/* Check if these are expected bytes */
2164 	if (ns->regs.count + len > ns->regs.num) {
2165 		NS_ERR("write_buf: too many input bytes\n");
2166 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2167 		return;
2168 	}
2169 
2170 	memcpy(ns->buf.byte + ns->regs.count, buf, len);
2171 	ns->regs.count += len;
2172 
2173 	if (ns->regs.count == ns->regs.num) {
2174 		NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2175 	}
2176 }
2177 
ns_nand_read_buf(struct mtd_info * mtd,u_char * buf,int len)2178 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2179 {
2180 	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2181 
2182 	/* Sanity and correctness checks */
2183 	if (!ns->lines.ce) {
2184 		NS_ERR("read_buf: chip is disabled\n");
2185 		return;
2186 	}
2187 	if (ns->lines.ale || ns->lines.cle) {
2188 		NS_ERR("read_buf: ALE or CLE pin is high\n");
2189 		return;
2190 	}
2191 	if (!(ns->state & STATE_DATAOUT_MASK)) {
2192 		NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2193 			get_state_name(ns->state));
2194 		return;
2195 	}
2196 
2197 	if (NS_STATE(ns->state) != STATE_DATAOUT) {
2198 		int i;
2199 
2200 		for (i = 0; i < len; i++)
2201 			buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2202 
2203 		return;
2204 	}
2205 
2206 	/* Check if these are expected bytes */
2207 	if (ns->regs.count + len > ns->regs.num) {
2208 		NS_ERR("read_buf: too many bytes to read\n");
2209 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2210 		return;
2211 	}
2212 
2213 	memcpy(buf, ns->buf.byte + ns->regs.count, len);
2214 	ns->regs.count += len;
2215 
2216 	if (ns->regs.count == ns->regs.num) {
2217 		if (NS_STATE(ns->nxstate) == STATE_READY)
2218 			switch_state(ns);
2219 	}
2220 
2221 	return;
2222 }
2223 
2224 /*
2225  * Module initialization function
2226  */
ns_init_module(void)2227 static int __init ns_init_module(void)
2228 {
2229 	struct nand_chip *chip;
2230 	struct nandsim *nand;
2231 	int retval = -ENOMEM, i;
2232 
2233 	if (bus_width != 8 && bus_width != 16) {
2234 		NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2235 		return -EINVAL;
2236 	}
2237 
2238 	/* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2239 	nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2240 				+ sizeof(struct nandsim), GFP_KERNEL);
2241 	if (!nsmtd) {
2242 		NS_ERR("unable to allocate core structures.\n");
2243 		return -ENOMEM;
2244 	}
2245 	chip        = (struct nand_chip *)(nsmtd + 1);
2246         nsmtd->priv = (void *)chip;
2247 	nand        = (struct nandsim *)(chip + 1);
2248 	chip->priv  = (void *)nand;
2249 
2250 	/*
2251 	 * Register simulator's callbacks.
2252 	 */
2253 	chip->cmd_ctrl	 = ns_hwcontrol;
2254 	chip->read_byte  = ns_nand_read_byte;
2255 	chip->dev_ready  = ns_device_ready;
2256 	chip->write_buf  = ns_nand_write_buf;
2257 	chip->read_buf   = ns_nand_read_buf;
2258 	chip->read_word  = ns_nand_read_word;
2259 	chip->ecc.mode   = NAND_ECC_SOFT;
2260 	/* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2261 	/* and 'badblocks' parameters to work */
2262 	chip->options   |= NAND_SKIP_BBTSCAN;
2263 
2264 	switch (bbt) {
2265 	case 2:
2266 		 chip->bbt_options |= NAND_BBT_NO_OOB;
2267 	case 1:
2268 		 chip->bbt_options |= NAND_BBT_USE_FLASH;
2269 	case 0:
2270 		break;
2271 	default:
2272 		NS_ERR("bbt has to be 0..2\n");
2273 		retval = -EINVAL;
2274 		goto error;
2275 	}
2276 	/*
2277 	 * Perform minimum nandsim structure initialization to handle
2278 	 * the initial ID read command correctly
2279 	 */
2280 	if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF)
2281 		nand->geom.idbytes = 8;
2282 	else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF)
2283 		nand->geom.idbytes = 6;
2284 	else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF)
2285 		nand->geom.idbytes = 4;
2286 	else
2287 		nand->geom.idbytes = 2;
2288 	nand->regs.status = NS_STATUS_OK(nand);
2289 	nand->nxstate = STATE_UNKNOWN;
2290 	nand->options |= OPT_PAGE512; /* temporary value */
2291 	memcpy(nand->ids, id_bytes, sizeof(nand->ids));
2292 	if (bus_width == 16) {
2293 		nand->busw = 16;
2294 		chip->options |= NAND_BUSWIDTH_16;
2295 	}
2296 
2297 	nsmtd->owner = THIS_MODULE;
2298 
2299 	if ((retval = parse_weakblocks()) != 0)
2300 		goto error;
2301 
2302 	if ((retval = parse_weakpages()) != 0)
2303 		goto error;
2304 
2305 	if ((retval = parse_gravepages()) != 0)
2306 		goto error;
2307 
2308 	retval = nand_scan_ident(nsmtd, 1, NULL);
2309 	if (retval) {
2310 		NS_ERR("cannot scan NAND Simulator device\n");
2311 		if (retval > 0)
2312 			retval = -ENXIO;
2313 		goto error;
2314 	}
2315 
2316 	if (bch) {
2317 		unsigned int eccsteps, eccbytes;
2318 		if (!mtd_nand_has_bch()) {
2319 			NS_ERR("BCH ECC support is disabled\n");
2320 			retval = -EINVAL;
2321 			goto error;
2322 		}
2323 		/* use 512-byte ecc blocks */
2324 		eccsteps = nsmtd->writesize/512;
2325 		eccbytes = (bch*13+7)/8;
2326 		/* do not bother supporting small page devices */
2327 		if ((nsmtd->oobsize < 64) || !eccsteps) {
2328 			NS_ERR("bch not available on small page devices\n");
2329 			retval = -EINVAL;
2330 			goto error;
2331 		}
2332 		if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
2333 			NS_ERR("invalid bch value %u\n", bch);
2334 			retval = -EINVAL;
2335 			goto error;
2336 		}
2337 		chip->ecc.mode = NAND_ECC_SOFT_BCH;
2338 		chip->ecc.size = 512;
2339 		chip->ecc.strength = bch;
2340 		chip->ecc.bytes = eccbytes;
2341 		NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2342 	}
2343 
2344 	retval = nand_scan_tail(nsmtd);
2345 	if (retval) {
2346 		NS_ERR("can't register NAND Simulator\n");
2347 		if (retval > 0)
2348 			retval = -ENXIO;
2349 		goto error;
2350 	}
2351 
2352 	if (overridesize) {
2353 		uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2354 		if (new_size >> overridesize != nsmtd->erasesize) {
2355 			NS_ERR("overridesize is too big\n");
2356 			retval = -EINVAL;
2357 			goto err_exit;
2358 		}
2359 		/* N.B. This relies on nand_scan not doing anything with the size before we change it */
2360 		nsmtd->size = new_size;
2361 		chip->chipsize = new_size;
2362 		chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2363 		chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2364 	}
2365 
2366 	if ((retval = setup_wear_reporting(nsmtd)) != 0)
2367 		goto err_exit;
2368 
2369 	if ((retval = nandsim_debugfs_create(nand)) != 0)
2370 		goto err_exit;
2371 
2372 	if ((retval = init_nandsim(nsmtd)) != 0)
2373 		goto err_exit;
2374 
2375 	if ((retval = chip->scan_bbt(nsmtd)) != 0)
2376 		goto err_exit;
2377 
2378 	if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2379 		goto err_exit;
2380 
2381 	/* Register NAND partitions */
2382 	retval = mtd_device_register(nsmtd, &nand->partitions[0],
2383 				     nand->nbparts);
2384 	if (retval != 0)
2385 		goto err_exit;
2386 
2387         return 0;
2388 
2389 err_exit:
2390 	free_nandsim(nand);
2391 	nand_release(nsmtd);
2392 	for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2393 		kfree(nand->partitions[i].name);
2394 error:
2395 	kfree(nsmtd);
2396 	free_lists();
2397 
2398 	return retval;
2399 }
2400 
2401 module_init(ns_init_module);
2402 
2403 /*
2404  * Module clean-up function
2405  */
ns_cleanup_module(void)2406 static void __exit ns_cleanup_module(void)
2407 {
2408 	struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2409 	int i;
2410 
2411 	nandsim_debugfs_remove(ns);
2412 	free_nandsim(ns);    /* Free nandsim private resources */
2413 	nand_release(nsmtd); /* Unregister driver */
2414 	for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2415 		kfree(ns->partitions[i].name);
2416 	kfree(nsmtd);        /* Free other structures */
2417 	free_lists();
2418 }
2419 
2420 module_exit(ns_cleanup_module);
2421 
2422 MODULE_LICENSE ("GPL");
2423 MODULE_AUTHOR ("Artem B. Bityuckiy");
2424 MODULE_DESCRIPTION ("The NAND flash simulator");
2425