1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47
48 #include "rbd_types.h"
49
50 #define RBD_DEBUG /* Activate rbd_assert() calls */
51
52 /*
53 * Increment the given counter and return its updated value.
54 * If the counter is already 0 it will not be incremented.
55 * If the counter is already at its maximum value returns
56 * -EINVAL without updating it.
57 */
atomic_inc_return_safe(atomic_t * v)58 static int atomic_inc_return_safe(atomic_t *v)
59 {
60 unsigned int counter;
61
62 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
63 if (counter <= (unsigned int)INT_MAX)
64 return (int)counter;
65
66 atomic_dec(v);
67
68 return -EINVAL;
69 }
70
71 /* Decrement the counter. Return the resulting value, or -EINVAL */
atomic_dec_return_safe(atomic_t * v)72 static int atomic_dec_return_safe(atomic_t *v)
73 {
74 int counter;
75
76 counter = atomic_dec_return(v);
77 if (counter >= 0)
78 return counter;
79
80 atomic_inc(v);
81
82 return -EINVAL;
83 }
84
85 #define RBD_DRV_NAME "rbd"
86
87 #define RBD_MINORS_PER_MAJOR 256
88 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
89
90 #define RBD_MAX_PARENT_CHAIN_LEN 16
91
92 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
93 #define RBD_MAX_SNAP_NAME_LEN \
94 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
95
96 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
97
98 #define RBD_SNAP_HEAD_NAME "-"
99
100 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
101
102 /* This allows a single page to hold an image name sent by OSD */
103 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
104 #define RBD_IMAGE_ID_LEN_MAX 64
105
106 #define RBD_OBJ_PREFIX_LEN_MAX 64
107
108 /* Feature bits */
109
110 #define RBD_FEATURE_LAYERING (1<<0)
111 #define RBD_FEATURE_STRIPINGV2 (1<<1)
112 #define RBD_FEATURES_ALL \
113 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
114
115 /* Features supported by this (client software) implementation. */
116
117 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
118
119 /*
120 * An RBD device name will be "rbd#", where the "rbd" comes from
121 * RBD_DRV_NAME above, and # is a unique integer identifier.
122 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
123 * enough to hold all possible device names.
124 */
125 #define DEV_NAME_LEN 32
126 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
127
128 /*
129 * block device image metadata (in-memory version)
130 */
131 struct rbd_image_header {
132 /* These six fields never change for a given rbd image */
133 char *object_prefix;
134 __u8 obj_order;
135 __u8 crypt_type;
136 __u8 comp_type;
137 u64 stripe_unit;
138 u64 stripe_count;
139 u64 features; /* Might be changeable someday? */
140
141 /* The remaining fields need to be updated occasionally */
142 u64 image_size;
143 struct ceph_snap_context *snapc;
144 char *snap_names; /* format 1 only */
145 u64 *snap_sizes; /* format 1 only */
146 };
147
148 /*
149 * An rbd image specification.
150 *
151 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
152 * identify an image. Each rbd_dev structure includes a pointer to
153 * an rbd_spec structure that encapsulates this identity.
154 *
155 * Each of the id's in an rbd_spec has an associated name. For a
156 * user-mapped image, the names are supplied and the id's associated
157 * with them are looked up. For a layered image, a parent image is
158 * defined by the tuple, and the names are looked up.
159 *
160 * An rbd_dev structure contains a parent_spec pointer which is
161 * non-null if the image it represents is a child in a layered
162 * image. This pointer will refer to the rbd_spec structure used
163 * by the parent rbd_dev for its own identity (i.e., the structure
164 * is shared between the parent and child).
165 *
166 * Since these structures are populated once, during the discovery
167 * phase of image construction, they are effectively immutable so
168 * we make no effort to synchronize access to them.
169 *
170 * Note that code herein does not assume the image name is known (it
171 * could be a null pointer).
172 */
173 struct rbd_spec {
174 u64 pool_id;
175 const char *pool_name;
176
177 const char *image_id;
178 const char *image_name;
179
180 u64 snap_id;
181 const char *snap_name;
182
183 struct kref kref;
184 };
185
186 /*
187 * an instance of the client. multiple devices may share an rbd client.
188 */
189 struct rbd_client {
190 struct ceph_client *client;
191 struct kref kref;
192 struct list_head node;
193 };
194
195 struct rbd_img_request;
196 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
197
198 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
199
200 struct rbd_obj_request;
201 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
202
203 enum obj_request_type {
204 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
205 };
206
207 enum obj_operation_type {
208 OBJ_OP_WRITE,
209 OBJ_OP_READ,
210 OBJ_OP_DISCARD,
211 };
212
213 enum obj_req_flags {
214 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
215 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
216 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
217 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
218 };
219
220 struct rbd_obj_request {
221 const char *object_name;
222 u64 offset; /* object start byte */
223 u64 length; /* bytes from offset */
224 unsigned long flags;
225
226 /*
227 * An object request associated with an image will have its
228 * img_data flag set; a standalone object request will not.
229 *
230 * A standalone object request will have which == BAD_WHICH
231 * and a null obj_request pointer.
232 *
233 * An object request initiated in support of a layered image
234 * object (to check for its existence before a write) will
235 * have which == BAD_WHICH and a non-null obj_request pointer.
236 *
237 * Finally, an object request for rbd image data will have
238 * which != BAD_WHICH, and will have a non-null img_request
239 * pointer. The value of which will be in the range
240 * 0..(img_request->obj_request_count-1).
241 */
242 union {
243 struct rbd_obj_request *obj_request; /* STAT op */
244 struct {
245 struct rbd_img_request *img_request;
246 u64 img_offset;
247 /* links for img_request->obj_requests list */
248 struct list_head links;
249 };
250 };
251 u32 which; /* posn image request list */
252
253 enum obj_request_type type;
254 union {
255 struct bio *bio_list;
256 struct {
257 struct page **pages;
258 u32 page_count;
259 };
260 };
261 struct page **copyup_pages;
262 u32 copyup_page_count;
263
264 struct ceph_osd_request *osd_req;
265
266 u64 xferred; /* bytes transferred */
267 int result;
268
269 rbd_obj_callback_t callback;
270 struct completion completion;
271
272 struct kref kref;
273 };
274
275 enum img_req_flags {
276 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
277 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
278 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
279 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */
280 };
281
282 struct rbd_img_request {
283 struct rbd_device *rbd_dev;
284 u64 offset; /* starting image byte offset */
285 u64 length; /* byte count from offset */
286 unsigned long flags;
287 union {
288 u64 snap_id; /* for reads */
289 struct ceph_snap_context *snapc; /* for writes */
290 };
291 union {
292 struct request *rq; /* block request */
293 struct rbd_obj_request *obj_request; /* obj req initiator */
294 };
295 struct page **copyup_pages;
296 u32 copyup_page_count;
297 spinlock_t completion_lock;/* protects next_completion */
298 u32 next_completion;
299 rbd_img_callback_t callback;
300 u64 xferred;/* aggregate bytes transferred */
301 int result; /* first nonzero obj_request result */
302
303 u32 obj_request_count;
304 struct list_head obj_requests; /* rbd_obj_request structs */
305
306 struct kref kref;
307 };
308
309 #define for_each_obj_request(ireq, oreq) \
310 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_from(ireq, oreq) \
312 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
313 #define for_each_obj_request_safe(ireq, oreq, n) \
314 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
315
316 struct rbd_mapping {
317 u64 size;
318 u64 features;
319 bool read_only;
320 };
321
322 /*
323 * a single device
324 */
325 struct rbd_device {
326 int dev_id; /* blkdev unique id */
327
328 int major; /* blkdev assigned major */
329 int minor;
330 struct gendisk *disk; /* blkdev's gendisk and rq */
331
332 u32 image_format; /* Either 1 or 2 */
333 struct rbd_client *rbd_client;
334
335 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
336
337 spinlock_t lock; /* queue, flags, open_count */
338
339 struct rbd_image_header header;
340 unsigned long flags; /* possibly lock protected */
341 struct rbd_spec *spec;
342 struct rbd_options *opts;
343
344 char *header_name;
345
346 struct ceph_file_layout layout;
347
348 struct ceph_osd_event *watch_event;
349 struct rbd_obj_request *watch_request;
350
351 struct rbd_spec *parent_spec;
352 u64 parent_overlap;
353 atomic_t parent_ref;
354 struct rbd_device *parent;
355
356 /* Block layer tags. */
357 struct blk_mq_tag_set tag_set;
358
359 /* protects updating the header */
360 struct rw_semaphore header_rwsem;
361
362 struct rbd_mapping mapping;
363
364 struct list_head node;
365
366 /* sysfs related */
367 struct device dev;
368 unsigned long open_count; /* protected by lock */
369 };
370
371 /*
372 * Flag bits for rbd_dev->flags. If atomicity is required,
373 * rbd_dev->lock is used to protect access.
374 *
375 * Currently, only the "removing" flag (which is coupled with the
376 * "open_count" field) requires atomic access.
377 */
378 enum rbd_dev_flags {
379 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
380 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
381 };
382
383 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
384
385 static LIST_HEAD(rbd_dev_list); /* devices */
386 static DEFINE_SPINLOCK(rbd_dev_list_lock);
387
388 static LIST_HEAD(rbd_client_list); /* clients */
389 static DEFINE_SPINLOCK(rbd_client_list_lock);
390
391 /* Slab caches for frequently-allocated structures */
392
393 static struct kmem_cache *rbd_img_request_cache;
394 static struct kmem_cache *rbd_obj_request_cache;
395 static struct kmem_cache *rbd_segment_name_cache;
396
397 static int rbd_major;
398 static DEFINE_IDA(rbd_dev_id_ida);
399
400 static struct workqueue_struct *rbd_wq;
401
402 /*
403 * Default to false for now, as single-major requires >= 0.75 version of
404 * userspace rbd utility.
405 */
406 static bool single_major = false;
407 module_param(single_major, bool, S_IRUGO);
408 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
409
410 static int rbd_img_request_submit(struct rbd_img_request *img_request);
411
412 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
413 size_t count);
414 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
415 size_t count);
416 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
417 size_t count);
418 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
419 size_t count);
420 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
421 static void rbd_spec_put(struct rbd_spec *spec);
422
rbd_dev_id_to_minor(int dev_id)423 static int rbd_dev_id_to_minor(int dev_id)
424 {
425 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
426 }
427
minor_to_rbd_dev_id(int minor)428 static int minor_to_rbd_dev_id(int minor)
429 {
430 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
431 }
432
433 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
434 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
435 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
436 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
437
438 static struct attribute *rbd_bus_attrs[] = {
439 &bus_attr_add.attr,
440 &bus_attr_remove.attr,
441 &bus_attr_add_single_major.attr,
442 &bus_attr_remove_single_major.attr,
443 NULL,
444 };
445
rbd_bus_is_visible(struct kobject * kobj,struct attribute * attr,int index)446 static umode_t rbd_bus_is_visible(struct kobject *kobj,
447 struct attribute *attr, int index)
448 {
449 if (!single_major &&
450 (attr == &bus_attr_add_single_major.attr ||
451 attr == &bus_attr_remove_single_major.attr))
452 return 0;
453
454 return attr->mode;
455 }
456
457 static const struct attribute_group rbd_bus_group = {
458 .attrs = rbd_bus_attrs,
459 .is_visible = rbd_bus_is_visible,
460 };
461 __ATTRIBUTE_GROUPS(rbd_bus);
462
463 static struct bus_type rbd_bus_type = {
464 .name = "rbd",
465 .bus_groups = rbd_bus_groups,
466 };
467
rbd_root_dev_release(struct device * dev)468 static void rbd_root_dev_release(struct device *dev)
469 {
470 }
471
472 static struct device rbd_root_dev = {
473 .init_name = "rbd",
474 .release = rbd_root_dev_release,
475 };
476
477 static __printf(2, 3)
rbd_warn(struct rbd_device * rbd_dev,const char * fmt,...)478 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
479 {
480 struct va_format vaf;
481 va_list args;
482
483 va_start(args, fmt);
484 vaf.fmt = fmt;
485 vaf.va = &args;
486
487 if (!rbd_dev)
488 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
489 else if (rbd_dev->disk)
490 printk(KERN_WARNING "%s: %s: %pV\n",
491 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
492 else if (rbd_dev->spec && rbd_dev->spec->image_name)
493 printk(KERN_WARNING "%s: image %s: %pV\n",
494 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
495 else if (rbd_dev->spec && rbd_dev->spec->image_id)
496 printk(KERN_WARNING "%s: id %s: %pV\n",
497 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
498 else /* punt */
499 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
500 RBD_DRV_NAME, rbd_dev, &vaf);
501 va_end(args);
502 }
503
504 #ifdef RBD_DEBUG
505 #define rbd_assert(expr) \
506 if (unlikely(!(expr))) { \
507 printk(KERN_ERR "\nAssertion failure in %s() " \
508 "at line %d:\n\n" \
509 "\trbd_assert(%s);\n\n", \
510 __func__, __LINE__, #expr); \
511 BUG(); \
512 }
513 #else /* !RBD_DEBUG */
514 # define rbd_assert(expr) ((void) 0)
515 #endif /* !RBD_DEBUG */
516
517 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
518 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
519 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
520 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
521
522 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
523 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
524 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
525 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
526 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
527 u64 snap_id);
528 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
529 u8 *order, u64 *snap_size);
530 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
531 u64 *snap_features);
532 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
533
rbd_open(struct block_device * bdev,fmode_t mode)534 static int rbd_open(struct block_device *bdev, fmode_t mode)
535 {
536 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
537 bool removing = false;
538
539 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
540 return -EROFS;
541
542 spin_lock_irq(&rbd_dev->lock);
543 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
544 removing = true;
545 else
546 rbd_dev->open_count++;
547 spin_unlock_irq(&rbd_dev->lock);
548 if (removing)
549 return -ENOENT;
550
551 (void) get_device(&rbd_dev->dev);
552
553 return 0;
554 }
555
rbd_release(struct gendisk * disk,fmode_t mode)556 static void rbd_release(struct gendisk *disk, fmode_t mode)
557 {
558 struct rbd_device *rbd_dev = disk->private_data;
559 unsigned long open_count_before;
560
561 spin_lock_irq(&rbd_dev->lock);
562 open_count_before = rbd_dev->open_count--;
563 spin_unlock_irq(&rbd_dev->lock);
564 rbd_assert(open_count_before > 0);
565
566 put_device(&rbd_dev->dev);
567 }
568
rbd_ioctl_set_ro(struct rbd_device * rbd_dev,unsigned long arg)569 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
570 {
571 int ret = 0;
572 int val;
573 bool ro;
574 bool ro_changed = false;
575
576 /* get_user() may sleep, so call it before taking rbd_dev->lock */
577 if (get_user(val, (int __user *)(arg)))
578 return -EFAULT;
579
580 ro = val ? true : false;
581 /* Snapshot doesn't allow to write*/
582 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
583 return -EROFS;
584
585 spin_lock_irq(&rbd_dev->lock);
586 /* prevent others open this device */
587 if (rbd_dev->open_count > 1) {
588 ret = -EBUSY;
589 goto out;
590 }
591
592 if (rbd_dev->mapping.read_only != ro) {
593 rbd_dev->mapping.read_only = ro;
594 ro_changed = true;
595 }
596
597 out:
598 spin_unlock_irq(&rbd_dev->lock);
599 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
600 if (ret == 0 && ro_changed)
601 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
602
603 return ret;
604 }
605
rbd_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)606 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
607 unsigned int cmd, unsigned long arg)
608 {
609 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
610 int ret = 0;
611
612 switch (cmd) {
613 case BLKROSET:
614 ret = rbd_ioctl_set_ro(rbd_dev, arg);
615 break;
616 default:
617 ret = -ENOTTY;
618 }
619
620 return ret;
621 }
622
623 #ifdef CONFIG_COMPAT
rbd_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)624 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
625 unsigned int cmd, unsigned long arg)
626 {
627 return rbd_ioctl(bdev, mode, cmd, arg);
628 }
629 #endif /* CONFIG_COMPAT */
630
631 static const struct block_device_operations rbd_bd_ops = {
632 .owner = THIS_MODULE,
633 .open = rbd_open,
634 .release = rbd_release,
635 .ioctl = rbd_ioctl,
636 #ifdef CONFIG_COMPAT
637 .compat_ioctl = rbd_compat_ioctl,
638 #endif
639 };
640
641 /*
642 * Initialize an rbd client instance. Success or not, this function
643 * consumes ceph_opts. Caller holds client_mutex.
644 */
rbd_client_create(struct ceph_options * ceph_opts)645 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
646 {
647 struct rbd_client *rbdc;
648 int ret = -ENOMEM;
649
650 dout("%s:\n", __func__);
651 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
652 if (!rbdc)
653 goto out_opt;
654
655 kref_init(&rbdc->kref);
656 INIT_LIST_HEAD(&rbdc->node);
657
658 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
659 if (IS_ERR(rbdc->client))
660 goto out_rbdc;
661 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
662
663 ret = ceph_open_session(rbdc->client);
664 if (ret < 0)
665 goto out_client;
666
667 spin_lock(&rbd_client_list_lock);
668 list_add_tail(&rbdc->node, &rbd_client_list);
669 spin_unlock(&rbd_client_list_lock);
670
671 dout("%s: rbdc %p\n", __func__, rbdc);
672
673 return rbdc;
674 out_client:
675 ceph_destroy_client(rbdc->client);
676 out_rbdc:
677 kfree(rbdc);
678 out_opt:
679 if (ceph_opts)
680 ceph_destroy_options(ceph_opts);
681 dout("%s: error %d\n", __func__, ret);
682
683 return ERR_PTR(ret);
684 }
685
__rbd_get_client(struct rbd_client * rbdc)686 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
687 {
688 kref_get(&rbdc->kref);
689
690 return rbdc;
691 }
692
693 /*
694 * Find a ceph client with specific addr and configuration. If
695 * found, bump its reference count.
696 */
rbd_client_find(struct ceph_options * ceph_opts)697 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
698 {
699 struct rbd_client *client_node;
700 bool found = false;
701
702 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
703 return NULL;
704
705 spin_lock(&rbd_client_list_lock);
706 list_for_each_entry(client_node, &rbd_client_list, node) {
707 if (!ceph_compare_options(ceph_opts, client_node->client)) {
708 __rbd_get_client(client_node);
709
710 found = true;
711 break;
712 }
713 }
714 spin_unlock(&rbd_client_list_lock);
715
716 return found ? client_node : NULL;
717 }
718
719 /*
720 * (Per device) rbd map options
721 */
722 enum {
723 Opt_queue_depth,
724 Opt_last_int,
725 /* int args above */
726 Opt_last_string,
727 /* string args above */
728 Opt_read_only,
729 Opt_read_write,
730 Opt_err
731 };
732
733 static match_table_t rbd_opts_tokens = {
734 {Opt_queue_depth, "queue_depth=%d"},
735 /* int args above */
736 /* string args above */
737 {Opt_read_only, "read_only"},
738 {Opt_read_only, "ro"}, /* Alternate spelling */
739 {Opt_read_write, "read_write"},
740 {Opt_read_write, "rw"}, /* Alternate spelling */
741 {Opt_err, NULL}
742 };
743
744 struct rbd_options {
745 int queue_depth;
746 bool read_only;
747 };
748
749 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
750 #define RBD_READ_ONLY_DEFAULT false
751
parse_rbd_opts_token(char * c,void * private)752 static int parse_rbd_opts_token(char *c, void *private)
753 {
754 struct rbd_options *rbd_opts = private;
755 substring_t argstr[MAX_OPT_ARGS];
756 int token, intval, ret;
757
758 token = match_token(c, rbd_opts_tokens, argstr);
759 if (token < Opt_last_int) {
760 ret = match_int(&argstr[0], &intval);
761 if (ret < 0) {
762 pr_err("bad mount option arg (not int) at '%s'\n", c);
763 return ret;
764 }
765 dout("got int token %d val %d\n", token, intval);
766 } else if (token > Opt_last_int && token < Opt_last_string) {
767 dout("got string token %d val %s\n", token, argstr[0].from);
768 } else {
769 dout("got token %d\n", token);
770 }
771
772 switch (token) {
773 case Opt_queue_depth:
774 if (intval < 1) {
775 pr_err("queue_depth out of range\n");
776 return -EINVAL;
777 }
778 rbd_opts->queue_depth = intval;
779 break;
780 case Opt_read_only:
781 rbd_opts->read_only = true;
782 break;
783 case Opt_read_write:
784 rbd_opts->read_only = false;
785 break;
786 default:
787 /* libceph prints "bad option" msg */
788 return -EINVAL;
789 }
790
791 return 0;
792 }
793
obj_op_name(enum obj_operation_type op_type)794 static char* obj_op_name(enum obj_operation_type op_type)
795 {
796 switch (op_type) {
797 case OBJ_OP_READ:
798 return "read";
799 case OBJ_OP_WRITE:
800 return "write";
801 case OBJ_OP_DISCARD:
802 return "discard";
803 default:
804 return "???";
805 }
806 }
807
808 /*
809 * Get a ceph client with specific addr and configuration, if one does
810 * not exist create it. Either way, ceph_opts is consumed by this
811 * function.
812 */
rbd_get_client(struct ceph_options * ceph_opts)813 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
814 {
815 struct rbd_client *rbdc;
816
817 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
818 rbdc = rbd_client_find(ceph_opts);
819 if (rbdc) /* using an existing client */
820 ceph_destroy_options(ceph_opts);
821 else
822 rbdc = rbd_client_create(ceph_opts);
823 mutex_unlock(&client_mutex);
824
825 return rbdc;
826 }
827
828 /*
829 * Destroy ceph client
830 *
831 * Caller must hold rbd_client_list_lock.
832 */
rbd_client_release(struct kref * kref)833 static void rbd_client_release(struct kref *kref)
834 {
835 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
836
837 dout("%s: rbdc %p\n", __func__, rbdc);
838 spin_lock(&rbd_client_list_lock);
839 list_del(&rbdc->node);
840 spin_unlock(&rbd_client_list_lock);
841
842 ceph_destroy_client(rbdc->client);
843 kfree(rbdc);
844 }
845
846 /*
847 * Drop reference to ceph client node. If it's not referenced anymore, release
848 * it.
849 */
rbd_put_client(struct rbd_client * rbdc)850 static void rbd_put_client(struct rbd_client *rbdc)
851 {
852 if (rbdc)
853 kref_put(&rbdc->kref, rbd_client_release);
854 }
855
rbd_image_format_valid(u32 image_format)856 static bool rbd_image_format_valid(u32 image_format)
857 {
858 return image_format == 1 || image_format == 2;
859 }
860
rbd_dev_ondisk_valid(struct rbd_image_header_ondisk * ondisk)861 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
862 {
863 size_t size;
864 u32 snap_count;
865
866 /* The header has to start with the magic rbd header text */
867 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
868 return false;
869
870 /* The bio layer requires at least sector-sized I/O */
871
872 if (ondisk->options.order < SECTOR_SHIFT)
873 return false;
874
875 /* If we use u64 in a few spots we may be able to loosen this */
876
877 if (ondisk->options.order > 8 * sizeof (int) - 1)
878 return false;
879
880 /*
881 * The size of a snapshot header has to fit in a size_t, and
882 * that limits the number of snapshots.
883 */
884 snap_count = le32_to_cpu(ondisk->snap_count);
885 size = SIZE_MAX - sizeof (struct ceph_snap_context);
886 if (snap_count > size / sizeof (__le64))
887 return false;
888
889 /*
890 * Not only that, but the size of the entire the snapshot
891 * header must also be representable in a size_t.
892 */
893 size -= snap_count * sizeof (__le64);
894 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
895 return false;
896
897 return true;
898 }
899
900 /*
901 * Fill an rbd image header with information from the given format 1
902 * on-disk header.
903 */
rbd_header_from_disk(struct rbd_device * rbd_dev,struct rbd_image_header_ondisk * ondisk)904 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
905 struct rbd_image_header_ondisk *ondisk)
906 {
907 struct rbd_image_header *header = &rbd_dev->header;
908 bool first_time = header->object_prefix == NULL;
909 struct ceph_snap_context *snapc;
910 char *object_prefix = NULL;
911 char *snap_names = NULL;
912 u64 *snap_sizes = NULL;
913 u32 snap_count;
914 size_t size;
915 int ret = -ENOMEM;
916 u32 i;
917
918 /* Allocate this now to avoid having to handle failure below */
919
920 if (first_time) {
921 size_t len;
922
923 len = strnlen(ondisk->object_prefix,
924 sizeof (ondisk->object_prefix));
925 object_prefix = kmalloc(len + 1, GFP_KERNEL);
926 if (!object_prefix)
927 return -ENOMEM;
928 memcpy(object_prefix, ondisk->object_prefix, len);
929 object_prefix[len] = '\0';
930 }
931
932 /* Allocate the snapshot context and fill it in */
933
934 snap_count = le32_to_cpu(ondisk->snap_count);
935 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
936 if (!snapc)
937 goto out_err;
938 snapc->seq = le64_to_cpu(ondisk->snap_seq);
939 if (snap_count) {
940 struct rbd_image_snap_ondisk *snaps;
941 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
942
943 /* We'll keep a copy of the snapshot names... */
944
945 if (snap_names_len > (u64)SIZE_MAX)
946 goto out_2big;
947 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
948 if (!snap_names)
949 goto out_err;
950
951 /* ...as well as the array of their sizes. */
952
953 size = snap_count * sizeof (*header->snap_sizes);
954 snap_sizes = kmalloc(size, GFP_KERNEL);
955 if (!snap_sizes)
956 goto out_err;
957
958 /*
959 * Copy the names, and fill in each snapshot's id
960 * and size.
961 *
962 * Note that rbd_dev_v1_header_info() guarantees the
963 * ondisk buffer we're working with has
964 * snap_names_len bytes beyond the end of the
965 * snapshot id array, this memcpy() is safe.
966 */
967 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
968 snaps = ondisk->snaps;
969 for (i = 0; i < snap_count; i++) {
970 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
971 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
972 }
973 }
974
975 /* We won't fail any more, fill in the header */
976
977 if (first_time) {
978 header->object_prefix = object_prefix;
979 header->obj_order = ondisk->options.order;
980 header->crypt_type = ondisk->options.crypt_type;
981 header->comp_type = ondisk->options.comp_type;
982 /* The rest aren't used for format 1 images */
983 header->stripe_unit = 0;
984 header->stripe_count = 0;
985 header->features = 0;
986 } else {
987 ceph_put_snap_context(header->snapc);
988 kfree(header->snap_names);
989 kfree(header->snap_sizes);
990 }
991
992 /* The remaining fields always get updated (when we refresh) */
993
994 header->image_size = le64_to_cpu(ondisk->image_size);
995 header->snapc = snapc;
996 header->snap_names = snap_names;
997 header->snap_sizes = snap_sizes;
998
999 return 0;
1000 out_2big:
1001 ret = -EIO;
1002 out_err:
1003 kfree(snap_sizes);
1004 kfree(snap_names);
1005 ceph_put_snap_context(snapc);
1006 kfree(object_prefix);
1007
1008 return ret;
1009 }
1010
_rbd_dev_v1_snap_name(struct rbd_device * rbd_dev,u32 which)1011 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1012 {
1013 const char *snap_name;
1014
1015 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1016
1017 /* Skip over names until we find the one we are looking for */
1018
1019 snap_name = rbd_dev->header.snap_names;
1020 while (which--)
1021 snap_name += strlen(snap_name) + 1;
1022
1023 return kstrdup(snap_name, GFP_KERNEL);
1024 }
1025
1026 /*
1027 * Snapshot id comparison function for use with qsort()/bsearch().
1028 * Note that result is for snapshots in *descending* order.
1029 */
snapid_compare_reverse(const void * s1,const void * s2)1030 static int snapid_compare_reverse(const void *s1, const void *s2)
1031 {
1032 u64 snap_id1 = *(u64 *)s1;
1033 u64 snap_id2 = *(u64 *)s2;
1034
1035 if (snap_id1 < snap_id2)
1036 return 1;
1037 return snap_id1 == snap_id2 ? 0 : -1;
1038 }
1039
1040 /*
1041 * Search a snapshot context to see if the given snapshot id is
1042 * present.
1043 *
1044 * Returns the position of the snapshot id in the array if it's found,
1045 * or BAD_SNAP_INDEX otherwise.
1046 *
1047 * Note: The snapshot array is in kept sorted (by the osd) in
1048 * reverse order, highest snapshot id first.
1049 */
rbd_dev_snap_index(struct rbd_device * rbd_dev,u64 snap_id)1050 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1051 {
1052 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1053 u64 *found;
1054
1055 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1056 sizeof (snap_id), snapid_compare_reverse);
1057
1058 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1059 }
1060
rbd_dev_v1_snap_name(struct rbd_device * rbd_dev,u64 snap_id)1061 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1062 u64 snap_id)
1063 {
1064 u32 which;
1065 const char *snap_name;
1066
1067 which = rbd_dev_snap_index(rbd_dev, snap_id);
1068 if (which == BAD_SNAP_INDEX)
1069 return ERR_PTR(-ENOENT);
1070
1071 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1072 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1073 }
1074
rbd_snap_name(struct rbd_device * rbd_dev,u64 snap_id)1075 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1076 {
1077 if (snap_id == CEPH_NOSNAP)
1078 return RBD_SNAP_HEAD_NAME;
1079
1080 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1081 if (rbd_dev->image_format == 1)
1082 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1083
1084 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1085 }
1086
rbd_snap_size(struct rbd_device * rbd_dev,u64 snap_id,u64 * snap_size)1087 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1088 u64 *snap_size)
1089 {
1090 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1091 if (snap_id == CEPH_NOSNAP) {
1092 *snap_size = rbd_dev->header.image_size;
1093 } else if (rbd_dev->image_format == 1) {
1094 u32 which;
1095
1096 which = rbd_dev_snap_index(rbd_dev, snap_id);
1097 if (which == BAD_SNAP_INDEX)
1098 return -ENOENT;
1099
1100 *snap_size = rbd_dev->header.snap_sizes[which];
1101 } else {
1102 u64 size = 0;
1103 int ret;
1104
1105 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1106 if (ret)
1107 return ret;
1108
1109 *snap_size = size;
1110 }
1111 return 0;
1112 }
1113
rbd_snap_features(struct rbd_device * rbd_dev,u64 snap_id,u64 * snap_features)1114 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1115 u64 *snap_features)
1116 {
1117 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1118 if (snap_id == CEPH_NOSNAP) {
1119 *snap_features = rbd_dev->header.features;
1120 } else if (rbd_dev->image_format == 1) {
1121 *snap_features = 0; /* No features for format 1 */
1122 } else {
1123 u64 features = 0;
1124 int ret;
1125
1126 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1127 if (ret)
1128 return ret;
1129
1130 *snap_features = features;
1131 }
1132 return 0;
1133 }
1134
rbd_dev_mapping_set(struct rbd_device * rbd_dev)1135 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1136 {
1137 u64 snap_id = rbd_dev->spec->snap_id;
1138 u64 size = 0;
1139 u64 features = 0;
1140 int ret;
1141
1142 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1143 if (ret)
1144 return ret;
1145 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1146 if (ret)
1147 return ret;
1148
1149 rbd_dev->mapping.size = size;
1150 rbd_dev->mapping.features = features;
1151
1152 return 0;
1153 }
1154
rbd_dev_mapping_clear(struct rbd_device * rbd_dev)1155 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1156 {
1157 rbd_dev->mapping.size = 0;
1158 rbd_dev->mapping.features = 0;
1159 }
1160
rbd_segment_name_free(const char * name)1161 static void rbd_segment_name_free(const char *name)
1162 {
1163 /* The explicit cast here is needed to drop the const qualifier */
1164
1165 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1166 }
1167
rbd_segment_name(struct rbd_device * rbd_dev,u64 offset)1168 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1169 {
1170 char *name;
1171 u64 segment;
1172 int ret;
1173 char *name_format;
1174
1175 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1176 if (!name)
1177 return NULL;
1178 segment = offset >> rbd_dev->header.obj_order;
1179 name_format = "%s.%012llx";
1180 if (rbd_dev->image_format == 2)
1181 name_format = "%s.%016llx";
1182 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1183 rbd_dev->header.object_prefix, segment);
1184 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1185 pr_err("error formatting segment name for #%llu (%d)\n",
1186 segment, ret);
1187 rbd_segment_name_free(name);
1188 name = NULL;
1189 }
1190
1191 return name;
1192 }
1193
rbd_segment_offset(struct rbd_device * rbd_dev,u64 offset)1194 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1195 {
1196 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1197
1198 return offset & (segment_size - 1);
1199 }
1200
rbd_segment_length(struct rbd_device * rbd_dev,u64 offset,u64 length)1201 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1202 u64 offset, u64 length)
1203 {
1204 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1205
1206 offset &= segment_size - 1;
1207
1208 rbd_assert(length <= U64_MAX - offset);
1209 if (offset + length > segment_size)
1210 length = segment_size - offset;
1211
1212 return length;
1213 }
1214
1215 /*
1216 * returns the size of an object in the image
1217 */
rbd_obj_bytes(struct rbd_image_header * header)1218 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1219 {
1220 return 1 << header->obj_order;
1221 }
1222
1223 /*
1224 * bio helpers
1225 */
1226
bio_chain_put(struct bio * chain)1227 static void bio_chain_put(struct bio *chain)
1228 {
1229 struct bio *tmp;
1230
1231 while (chain) {
1232 tmp = chain;
1233 chain = chain->bi_next;
1234 bio_put(tmp);
1235 }
1236 }
1237
1238 /*
1239 * zeros a bio chain, starting at specific offset
1240 */
zero_bio_chain(struct bio * chain,int start_ofs)1241 static void zero_bio_chain(struct bio *chain, int start_ofs)
1242 {
1243 struct bio_vec bv;
1244 struct bvec_iter iter;
1245 unsigned long flags;
1246 void *buf;
1247 int pos = 0;
1248
1249 while (chain) {
1250 bio_for_each_segment(bv, chain, iter) {
1251 if (pos + bv.bv_len > start_ofs) {
1252 int remainder = max(start_ofs - pos, 0);
1253 buf = bvec_kmap_irq(&bv, &flags);
1254 memset(buf + remainder, 0,
1255 bv.bv_len - remainder);
1256 flush_dcache_page(bv.bv_page);
1257 bvec_kunmap_irq(buf, &flags);
1258 }
1259 pos += bv.bv_len;
1260 }
1261
1262 chain = chain->bi_next;
1263 }
1264 }
1265
1266 /*
1267 * similar to zero_bio_chain(), zeros data defined by a page array,
1268 * starting at the given byte offset from the start of the array and
1269 * continuing up to the given end offset. The pages array is
1270 * assumed to be big enough to hold all bytes up to the end.
1271 */
zero_pages(struct page ** pages,u64 offset,u64 end)1272 static void zero_pages(struct page **pages, u64 offset, u64 end)
1273 {
1274 struct page **page = &pages[offset >> PAGE_SHIFT];
1275
1276 rbd_assert(end > offset);
1277 rbd_assert(end - offset <= (u64)SIZE_MAX);
1278 while (offset < end) {
1279 size_t page_offset;
1280 size_t length;
1281 unsigned long flags;
1282 void *kaddr;
1283
1284 page_offset = offset & ~PAGE_MASK;
1285 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1286 local_irq_save(flags);
1287 kaddr = kmap_atomic(*page);
1288 memset(kaddr + page_offset, 0, length);
1289 flush_dcache_page(*page);
1290 kunmap_atomic(kaddr);
1291 local_irq_restore(flags);
1292
1293 offset += length;
1294 page++;
1295 }
1296 }
1297
1298 /*
1299 * Clone a portion of a bio, starting at the given byte offset
1300 * and continuing for the number of bytes indicated.
1301 */
bio_clone_range(struct bio * bio_src,unsigned int offset,unsigned int len,gfp_t gfpmask)1302 static struct bio *bio_clone_range(struct bio *bio_src,
1303 unsigned int offset,
1304 unsigned int len,
1305 gfp_t gfpmask)
1306 {
1307 struct bio *bio;
1308
1309 bio = bio_clone(bio_src, gfpmask);
1310 if (!bio)
1311 return NULL; /* ENOMEM */
1312
1313 bio_advance(bio, offset);
1314 bio->bi_iter.bi_size = len;
1315
1316 return bio;
1317 }
1318
1319 /*
1320 * Clone a portion of a bio chain, starting at the given byte offset
1321 * into the first bio in the source chain and continuing for the
1322 * number of bytes indicated. The result is another bio chain of
1323 * exactly the given length, or a null pointer on error.
1324 *
1325 * The bio_src and offset parameters are both in-out. On entry they
1326 * refer to the first source bio and the offset into that bio where
1327 * the start of data to be cloned is located.
1328 *
1329 * On return, bio_src is updated to refer to the bio in the source
1330 * chain that contains first un-cloned byte, and *offset will
1331 * contain the offset of that byte within that bio.
1332 */
bio_chain_clone_range(struct bio ** bio_src,unsigned int * offset,unsigned int len,gfp_t gfpmask)1333 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1334 unsigned int *offset,
1335 unsigned int len,
1336 gfp_t gfpmask)
1337 {
1338 struct bio *bi = *bio_src;
1339 unsigned int off = *offset;
1340 struct bio *chain = NULL;
1341 struct bio **end;
1342
1343 /* Build up a chain of clone bios up to the limit */
1344
1345 if (!bi || off >= bi->bi_iter.bi_size || !len)
1346 return NULL; /* Nothing to clone */
1347
1348 end = &chain;
1349 while (len) {
1350 unsigned int bi_size;
1351 struct bio *bio;
1352
1353 if (!bi) {
1354 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1355 goto out_err; /* EINVAL; ran out of bio's */
1356 }
1357 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1358 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1359 if (!bio)
1360 goto out_err; /* ENOMEM */
1361
1362 *end = bio;
1363 end = &bio->bi_next;
1364
1365 off += bi_size;
1366 if (off == bi->bi_iter.bi_size) {
1367 bi = bi->bi_next;
1368 off = 0;
1369 }
1370 len -= bi_size;
1371 }
1372 *bio_src = bi;
1373 *offset = off;
1374
1375 return chain;
1376 out_err:
1377 bio_chain_put(chain);
1378
1379 return NULL;
1380 }
1381
1382 /*
1383 * The default/initial value for all object request flags is 0. For
1384 * each flag, once its value is set to 1 it is never reset to 0
1385 * again.
1386 */
obj_request_img_data_set(struct rbd_obj_request * obj_request)1387 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1388 {
1389 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1390 struct rbd_device *rbd_dev;
1391
1392 rbd_dev = obj_request->img_request->rbd_dev;
1393 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1394 obj_request);
1395 }
1396 }
1397
obj_request_img_data_test(struct rbd_obj_request * obj_request)1398 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1399 {
1400 smp_mb();
1401 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1402 }
1403
obj_request_done_set(struct rbd_obj_request * obj_request)1404 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1405 {
1406 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1407 struct rbd_device *rbd_dev = NULL;
1408
1409 if (obj_request_img_data_test(obj_request))
1410 rbd_dev = obj_request->img_request->rbd_dev;
1411 rbd_warn(rbd_dev, "obj_request %p already marked done",
1412 obj_request);
1413 }
1414 }
1415
obj_request_done_test(struct rbd_obj_request * obj_request)1416 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1417 {
1418 smp_mb();
1419 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1420 }
1421
1422 /*
1423 * This sets the KNOWN flag after (possibly) setting the EXISTS
1424 * flag. The latter is set based on the "exists" value provided.
1425 *
1426 * Note that for our purposes once an object exists it never goes
1427 * away again. It's possible that the response from two existence
1428 * checks are separated by the creation of the target object, and
1429 * the first ("doesn't exist") response arrives *after* the second
1430 * ("does exist"). In that case we ignore the second one.
1431 */
obj_request_existence_set(struct rbd_obj_request * obj_request,bool exists)1432 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1433 bool exists)
1434 {
1435 if (exists)
1436 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1437 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1438 smp_mb();
1439 }
1440
obj_request_known_test(struct rbd_obj_request * obj_request)1441 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1442 {
1443 smp_mb();
1444 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1445 }
1446
obj_request_exists_test(struct rbd_obj_request * obj_request)1447 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1448 {
1449 smp_mb();
1450 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1451 }
1452
obj_request_overlaps_parent(struct rbd_obj_request * obj_request)1453 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1454 {
1455 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1456
1457 return obj_request->img_offset <
1458 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1459 }
1460
rbd_obj_request_get(struct rbd_obj_request * obj_request)1461 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1462 {
1463 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1464 atomic_read(&obj_request->kref.refcount));
1465 kref_get(&obj_request->kref);
1466 }
1467
1468 static void rbd_obj_request_destroy(struct kref *kref);
rbd_obj_request_put(struct rbd_obj_request * obj_request)1469 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1470 {
1471 rbd_assert(obj_request != NULL);
1472 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1473 atomic_read(&obj_request->kref.refcount));
1474 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1475 }
1476
rbd_img_request_get(struct rbd_img_request * img_request)1477 static void rbd_img_request_get(struct rbd_img_request *img_request)
1478 {
1479 dout("%s: img %p (was %d)\n", __func__, img_request,
1480 atomic_read(&img_request->kref.refcount));
1481 kref_get(&img_request->kref);
1482 }
1483
1484 static bool img_request_child_test(struct rbd_img_request *img_request);
1485 static void rbd_parent_request_destroy(struct kref *kref);
1486 static void rbd_img_request_destroy(struct kref *kref);
rbd_img_request_put(struct rbd_img_request * img_request)1487 static void rbd_img_request_put(struct rbd_img_request *img_request)
1488 {
1489 rbd_assert(img_request != NULL);
1490 dout("%s: img %p (was %d)\n", __func__, img_request,
1491 atomic_read(&img_request->kref.refcount));
1492 if (img_request_child_test(img_request))
1493 kref_put(&img_request->kref, rbd_parent_request_destroy);
1494 else
1495 kref_put(&img_request->kref, rbd_img_request_destroy);
1496 }
1497
rbd_img_obj_request_add(struct rbd_img_request * img_request,struct rbd_obj_request * obj_request)1498 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1499 struct rbd_obj_request *obj_request)
1500 {
1501 rbd_assert(obj_request->img_request == NULL);
1502
1503 /* Image request now owns object's original reference */
1504 obj_request->img_request = img_request;
1505 obj_request->which = img_request->obj_request_count;
1506 rbd_assert(!obj_request_img_data_test(obj_request));
1507 obj_request_img_data_set(obj_request);
1508 rbd_assert(obj_request->which != BAD_WHICH);
1509 img_request->obj_request_count++;
1510 list_add_tail(&obj_request->links, &img_request->obj_requests);
1511 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1512 obj_request->which);
1513 }
1514
rbd_img_obj_request_del(struct rbd_img_request * img_request,struct rbd_obj_request * obj_request)1515 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1516 struct rbd_obj_request *obj_request)
1517 {
1518 rbd_assert(obj_request->which != BAD_WHICH);
1519
1520 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1521 obj_request->which);
1522 list_del(&obj_request->links);
1523 rbd_assert(img_request->obj_request_count > 0);
1524 img_request->obj_request_count--;
1525 rbd_assert(obj_request->which == img_request->obj_request_count);
1526 obj_request->which = BAD_WHICH;
1527 rbd_assert(obj_request_img_data_test(obj_request));
1528 rbd_assert(obj_request->img_request == img_request);
1529 obj_request->img_request = NULL;
1530 obj_request->callback = NULL;
1531 rbd_obj_request_put(obj_request);
1532 }
1533
obj_request_type_valid(enum obj_request_type type)1534 static bool obj_request_type_valid(enum obj_request_type type)
1535 {
1536 switch (type) {
1537 case OBJ_REQUEST_NODATA:
1538 case OBJ_REQUEST_BIO:
1539 case OBJ_REQUEST_PAGES:
1540 return true;
1541 default:
1542 return false;
1543 }
1544 }
1545
rbd_obj_request_submit(struct ceph_osd_client * osdc,struct rbd_obj_request * obj_request)1546 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1547 struct rbd_obj_request *obj_request)
1548 {
1549 dout("%s %p\n", __func__, obj_request);
1550 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1551 }
1552
rbd_obj_request_end(struct rbd_obj_request * obj_request)1553 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1554 {
1555 dout("%s %p\n", __func__, obj_request);
1556 ceph_osdc_cancel_request(obj_request->osd_req);
1557 }
1558
1559 /*
1560 * Wait for an object request to complete. If interrupted, cancel the
1561 * underlying osd request.
1562 *
1563 * @timeout: in jiffies, 0 means "wait forever"
1564 */
__rbd_obj_request_wait(struct rbd_obj_request * obj_request,unsigned long timeout)1565 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1566 unsigned long timeout)
1567 {
1568 long ret;
1569
1570 dout("%s %p\n", __func__, obj_request);
1571 ret = wait_for_completion_interruptible_timeout(
1572 &obj_request->completion,
1573 ceph_timeout_jiffies(timeout));
1574 if (ret <= 0) {
1575 if (ret == 0)
1576 ret = -ETIMEDOUT;
1577 rbd_obj_request_end(obj_request);
1578 } else {
1579 ret = 0;
1580 }
1581
1582 dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1583 return ret;
1584 }
1585
rbd_obj_request_wait(struct rbd_obj_request * obj_request)1586 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1587 {
1588 return __rbd_obj_request_wait(obj_request, 0);
1589 }
1590
rbd_obj_request_wait_timeout(struct rbd_obj_request * obj_request,unsigned long timeout)1591 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request,
1592 unsigned long timeout)
1593 {
1594 return __rbd_obj_request_wait(obj_request, timeout);
1595 }
1596
rbd_img_request_complete(struct rbd_img_request * img_request)1597 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1598 {
1599
1600 dout("%s: img %p\n", __func__, img_request);
1601
1602 /*
1603 * If no error occurred, compute the aggregate transfer
1604 * count for the image request. We could instead use
1605 * atomic64_cmpxchg() to update it as each object request
1606 * completes; not clear which way is better off hand.
1607 */
1608 if (!img_request->result) {
1609 struct rbd_obj_request *obj_request;
1610 u64 xferred = 0;
1611
1612 for_each_obj_request(img_request, obj_request)
1613 xferred += obj_request->xferred;
1614 img_request->xferred = xferred;
1615 }
1616
1617 if (img_request->callback)
1618 img_request->callback(img_request);
1619 else
1620 rbd_img_request_put(img_request);
1621 }
1622
1623 /*
1624 * The default/initial value for all image request flags is 0. Each
1625 * is conditionally set to 1 at image request initialization time
1626 * and currently never change thereafter.
1627 */
img_request_write_set(struct rbd_img_request * img_request)1628 static void img_request_write_set(struct rbd_img_request *img_request)
1629 {
1630 set_bit(IMG_REQ_WRITE, &img_request->flags);
1631 smp_mb();
1632 }
1633
img_request_write_test(struct rbd_img_request * img_request)1634 static bool img_request_write_test(struct rbd_img_request *img_request)
1635 {
1636 smp_mb();
1637 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1638 }
1639
1640 /*
1641 * Set the discard flag when the img_request is an discard request
1642 */
img_request_discard_set(struct rbd_img_request * img_request)1643 static void img_request_discard_set(struct rbd_img_request *img_request)
1644 {
1645 set_bit(IMG_REQ_DISCARD, &img_request->flags);
1646 smp_mb();
1647 }
1648
img_request_discard_test(struct rbd_img_request * img_request)1649 static bool img_request_discard_test(struct rbd_img_request *img_request)
1650 {
1651 smp_mb();
1652 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1653 }
1654
img_request_child_set(struct rbd_img_request * img_request)1655 static void img_request_child_set(struct rbd_img_request *img_request)
1656 {
1657 set_bit(IMG_REQ_CHILD, &img_request->flags);
1658 smp_mb();
1659 }
1660
img_request_child_clear(struct rbd_img_request * img_request)1661 static void img_request_child_clear(struct rbd_img_request *img_request)
1662 {
1663 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1664 smp_mb();
1665 }
1666
img_request_child_test(struct rbd_img_request * img_request)1667 static bool img_request_child_test(struct rbd_img_request *img_request)
1668 {
1669 smp_mb();
1670 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1671 }
1672
img_request_layered_set(struct rbd_img_request * img_request)1673 static void img_request_layered_set(struct rbd_img_request *img_request)
1674 {
1675 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1676 smp_mb();
1677 }
1678
img_request_layered_clear(struct rbd_img_request * img_request)1679 static void img_request_layered_clear(struct rbd_img_request *img_request)
1680 {
1681 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1682 smp_mb();
1683 }
1684
img_request_layered_test(struct rbd_img_request * img_request)1685 static bool img_request_layered_test(struct rbd_img_request *img_request)
1686 {
1687 smp_mb();
1688 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1689 }
1690
1691 static enum obj_operation_type
rbd_img_request_op_type(struct rbd_img_request * img_request)1692 rbd_img_request_op_type(struct rbd_img_request *img_request)
1693 {
1694 if (img_request_write_test(img_request))
1695 return OBJ_OP_WRITE;
1696 else if (img_request_discard_test(img_request))
1697 return OBJ_OP_DISCARD;
1698 else
1699 return OBJ_OP_READ;
1700 }
1701
1702 static void
rbd_img_obj_request_read_callback(struct rbd_obj_request * obj_request)1703 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1704 {
1705 u64 xferred = obj_request->xferred;
1706 u64 length = obj_request->length;
1707
1708 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1709 obj_request, obj_request->img_request, obj_request->result,
1710 xferred, length);
1711 /*
1712 * ENOENT means a hole in the image. We zero-fill the entire
1713 * length of the request. A short read also implies zero-fill
1714 * to the end of the request. An error requires the whole
1715 * length of the request to be reported finished with an error
1716 * to the block layer. In each case we update the xferred
1717 * count to indicate the whole request was satisfied.
1718 */
1719 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1720 if (obj_request->result == -ENOENT) {
1721 if (obj_request->type == OBJ_REQUEST_BIO)
1722 zero_bio_chain(obj_request->bio_list, 0);
1723 else
1724 zero_pages(obj_request->pages, 0, length);
1725 obj_request->result = 0;
1726 } else if (xferred < length && !obj_request->result) {
1727 if (obj_request->type == OBJ_REQUEST_BIO)
1728 zero_bio_chain(obj_request->bio_list, xferred);
1729 else
1730 zero_pages(obj_request->pages, xferred, length);
1731 }
1732 obj_request->xferred = length;
1733 obj_request_done_set(obj_request);
1734 }
1735
rbd_obj_request_complete(struct rbd_obj_request * obj_request)1736 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1737 {
1738 dout("%s: obj %p cb %p\n", __func__, obj_request,
1739 obj_request->callback);
1740 if (obj_request->callback)
1741 obj_request->callback(obj_request);
1742 else
1743 complete_all(&obj_request->completion);
1744 }
1745
rbd_osd_trivial_callback(struct rbd_obj_request * obj_request)1746 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1747 {
1748 dout("%s: obj %p\n", __func__, obj_request);
1749 obj_request_done_set(obj_request);
1750 }
1751
rbd_osd_read_callback(struct rbd_obj_request * obj_request)1752 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1753 {
1754 struct rbd_img_request *img_request = NULL;
1755 struct rbd_device *rbd_dev = NULL;
1756 bool layered = false;
1757
1758 if (obj_request_img_data_test(obj_request)) {
1759 img_request = obj_request->img_request;
1760 layered = img_request && img_request_layered_test(img_request);
1761 rbd_dev = img_request->rbd_dev;
1762 }
1763
1764 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1765 obj_request, img_request, obj_request->result,
1766 obj_request->xferred, obj_request->length);
1767 if (layered && obj_request->result == -ENOENT &&
1768 obj_request->img_offset < rbd_dev->parent_overlap)
1769 rbd_img_parent_read(obj_request);
1770 else if (img_request)
1771 rbd_img_obj_request_read_callback(obj_request);
1772 else
1773 obj_request_done_set(obj_request);
1774 }
1775
rbd_osd_write_callback(struct rbd_obj_request * obj_request)1776 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1777 {
1778 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1779 obj_request->result, obj_request->length);
1780 /*
1781 * There is no such thing as a successful short write. Set
1782 * it to our originally-requested length.
1783 */
1784 obj_request->xferred = obj_request->length;
1785 obj_request_done_set(obj_request);
1786 }
1787
rbd_osd_discard_callback(struct rbd_obj_request * obj_request)1788 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1789 {
1790 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1791 obj_request->result, obj_request->length);
1792 /*
1793 * There is no such thing as a successful short discard. Set
1794 * it to our originally-requested length.
1795 */
1796 obj_request->xferred = obj_request->length;
1797 /* discarding a non-existent object is not a problem */
1798 if (obj_request->result == -ENOENT)
1799 obj_request->result = 0;
1800 obj_request_done_set(obj_request);
1801 }
1802
1803 /*
1804 * For a simple stat call there's nothing to do. We'll do more if
1805 * this is part of a write sequence for a layered image.
1806 */
rbd_osd_stat_callback(struct rbd_obj_request * obj_request)1807 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1808 {
1809 dout("%s: obj %p\n", __func__, obj_request);
1810 obj_request_done_set(obj_request);
1811 }
1812
rbd_osd_call_callback(struct rbd_obj_request * obj_request)1813 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1814 {
1815 dout("%s: obj %p\n", __func__, obj_request);
1816
1817 if (obj_request_img_data_test(obj_request))
1818 rbd_osd_copyup_callback(obj_request);
1819 else
1820 obj_request_done_set(obj_request);
1821 }
1822
rbd_osd_req_callback(struct ceph_osd_request * osd_req,struct ceph_msg * msg)1823 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1824 struct ceph_msg *msg)
1825 {
1826 struct rbd_obj_request *obj_request = osd_req->r_priv;
1827 u16 opcode;
1828
1829 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1830 rbd_assert(osd_req == obj_request->osd_req);
1831 if (obj_request_img_data_test(obj_request)) {
1832 rbd_assert(obj_request->img_request);
1833 rbd_assert(obj_request->which != BAD_WHICH);
1834 } else {
1835 rbd_assert(obj_request->which == BAD_WHICH);
1836 }
1837
1838 if (osd_req->r_result < 0)
1839 obj_request->result = osd_req->r_result;
1840
1841 rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1842
1843 /*
1844 * We support a 64-bit length, but ultimately it has to be
1845 * passed to the block layer, which just supports a 32-bit
1846 * length field.
1847 */
1848 obj_request->xferred = osd_req->r_reply_op_len[0];
1849 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1850
1851 opcode = osd_req->r_ops[0].op;
1852 switch (opcode) {
1853 case CEPH_OSD_OP_READ:
1854 rbd_osd_read_callback(obj_request);
1855 break;
1856 case CEPH_OSD_OP_SETALLOCHINT:
1857 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1858 osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1859 /* fall through */
1860 case CEPH_OSD_OP_WRITE:
1861 case CEPH_OSD_OP_WRITEFULL:
1862 rbd_osd_write_callback(obj_request);
1863 break;
1864 case CEPH_OSD_OP_STAT:
1865 rbd_osd_stat_callback(obj_request);
1866 break;
1867 case CEPH_OSD_OP_DELETE:
1868 case CEPH_OSD_OP_TRUNCATE:
1869 case CEPH_OSD_OP_ZERO:
1870 rbd_osd_discard_callback(obj_request);
1871 break;
1872 case CEPH_OSD_OP_CALL:
1873 rbd_osd_call_callback(obj_request);
1874 break;
1875 case CEPH_OSD_OP_NOTIFY_ACK:
1876 case CEPH_OSD_OP_WATCH:
1877 rbd_osd_trivial_callback(obj_request);
1878 break;
1879 default:
1880 rbd_warn(NULL, "%s: unsupported op %hu",
1881 obj_request->object_name, (unsigned short) opcode);
1882 break;
1883 }
1884
1885 if (obj_request_done_test(obj_request))
1886 rbd_obj_request_complete(obj_request);
1887 }
1888
rbd_osd_req_format_read(struct rbd_obj_request * obj_request)1889 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1890 {
1891 struct rbd_img_request *img_request = obj_request->img_request;
1892 struct ceph_osd_request *osd_req = obj_request->osd_req;
1893 u64 snap_id;
1894
1895 rbd_assert(osd_req != NULL);
1896
1897 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1898 ceph_osdc_build_request(osd_req, obj_request->offset,
1899 NULL, snap_id, NULL);
1900 }
1901
rbd_osd_req_format_write(struct rbd_obj_request * obj_request)1902 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1903 {
1904 struct rbd_img_request *img_request = obj_request->img_request;
1905 struct ceph_osd_request *osd_req = obj_request->osd_req;
1906 struct ceph_snap_context *snapc;
1907 struct timespec mtime = CURRENT_TIME;
1908
1909 rbd_assert(osd_req != NULL);
1910
1911 snapc = img_request ? img_request->snapc : NULL;
1912 ceph_osdc_build_request(osd_req, obj_request->offset,
1913 snapc, CEPH_NOSNAP, &mtime);
1914 }
1915
1916 /*
1917 * Create an osd request. A read request has one osd op (read).
1918 * A write request has either one (watch) or two (hint+write) osd ops.
1919 * (All rbd data writes are prefixed with an allocation hint op, but
1920 * technically osd watch is a write request, hence this distinction.)
1921 */
rbd_osd_req_create(struct rbd_device * rbd_dev,enum obj_operation_type op_type,unsigned int num_ops,struct rbd_obj_request * obj_request)1922 static struct ceph_osd_request *rbd_osd_req_create(
1923 struct rbd_device *rbd_dev,
1924 enum obj_operation_type op_type,
1925 unsigned int num_ops,
1926 struct rbd_obj_request *obj_request)
1927 {
1928 struct ceph_snap_context *snapc = NULL;
1929 struct ceph_osd_client *osdc;
1930 struct ceph_osd_request *osd_req;
1931
1932 if (obj_request_img_data_test(obj_request) &&
1933 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1934 struct rbd_img_request *img_request = obj_request->img_request;
1935 if (op_type == OBJ_OP_WRITE) {
1936 rbd_assert(img_request_write_test(img_request));
1937 } else {
1938 rbd_assert(img_request_discard_test(img_request));
1939 }
1940 snapc = img_request->snapc;
1941 }
1942
1943 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1944
1945 /* Allocate and initialize the request, for the num_ops ops */
1946
1947 osdc = &rbd_dev->rbd_client->client->osdc;
1948 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1949 GFP_NOIO);
1950 if (!osd_req)
1951 return NULL; /* ENOMEM */
1952
1953 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1954 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1955 else
1956 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1957
1958 osd_req->r_callback = rbd_osd_req_callback;
1959 osd_req->r_priv = obj_request;
1960
1961 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1962 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1963
1964 return osd_req;
1965 }
1966
1967 /*
1968 * Create a copyup osd request based on the information in the object
1969 * request supplied. A copyup request has two or three osd ops, a
1970 * copyup method call, potentially a hint op, and a write or truncate
1971 * or zero op.
1972 */
1973 static struct ceph_osd_request *
rbd_osd_req_create_copyup(struct rbd_obj_request * obj_request)1974 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1975 {
1976 struct rbd_img_request *img_request;
1977 struct ceph_snap_context *snapc;
1978 struct rbd_device *rbd_dev;
1979 struct ceph_osd_client *osdc;
1980 struct ceph_osd_request *osd_req;
1981 int num_osd_ops = 3;
1982
1983 rbd_assert(obj_request_img_data_test(obj_request));
1984 img_request = obj_request->img_request;
1985 rbd_assert(img_request);
1986 rbd_assert(img_request_write_test(img_request) ||
1987 img_request_discard_test(img_request));
1988
1989 if (img_request_discard_test(img_request))
1990 num_osd_ops = 2;
1991
1992 /* Allocate and initialize the request, for all the ops */
1993
1994 snapc = img_request->snapc;
1995 rbd_dev = img_request->rbd_dev;
1996 osdc = &rbd_dev->rbd_client->client->osdc;
1997 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1998 false, GFP_NOIO);
1999 if (!osd_req)
2000 return NULL; /* ENOMEM */
2001
2002 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2003 osd_req->r_callback = rbd_osd_req_callback;
2004 osd_req->r_priv = obj_request;
2005
2006 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
2007 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
2008
2009 return osd_req;
2010 }
2011
2012
rbd_osd_req_destroy(struct ceph_osd_request * osd_req)2013 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2014 {
2015 ceph_osdc_put_request(osd_req);
2016 }
2017
2018 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2019
rbd_obj_request_create(const char * object_name,u64 offset,u64 length,enum obj_request_type type)2020 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2021 u64 offset, u64 length,
2022 enum obj_request_type type)
2023 {
2024 struct rbd_obj_request *obj_request;
2025 size_t size;
2026 char *name;
2027
2028 rbd_assert(obj_request_type_valid(type));
2029
2030 size = strlen(object_name) + 1;
2031 name = kmalloc(size, GFP_NOIO);
2032 if (!name)
2033 return NULL;
2034
2035 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2036 if (!obj_request) {
2037 kfree(name);
2038 return NULL;
2039 }
2040
2041 obj_request->object_name = memcpy(name, object_name, size);
2042 obj_request->offset = offset;
2043 obj_request->length = length;
2044 obj_request->flags = 0;
2045 obj_request->which = BAD_WHICH;
2046 obj_request->type = type;
2047 INIT_LIST_HEAD(&obj_request->links);
2048 init_completion(&obj_request->completion);
2049 kref_init(&obj_request->kref);
2050
2051 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2052 offset, length, (int)type, obj_request);
2053
2054 return obj_request;
2055 }
2056
rbd_obj_request_destroy(struct kref * kref)2057 static void rbd_obj_request_destroy(struct kref *kref)
2058 {
2059 struct rbd_obj_request *obj_request;
2060
2061 obj_request = container_of(kref, struct rbd_obj_request, kref);
2062
2063 dout("%s: obj %p\n", __func__, obj_request);
2064
2065 rbd_assert(obj_request->img_request == NULL);
2066 rbd_assert(obj_request->which == BAD_WHICH);
2067
2068 if (obj_request->osd_req)
2069 rbd_osd_req_destroy(obj_request->osd_req);
2070
2071 rbd_assert(obj_request_type_valid(obj_request->type));
2072 switch (obj_request->type) {
2073 case OBJ_REQUEST_NODATA:
2074 break; /* Nothing to do */
2075 case OBJ_REQUEST_BIO:
2076 if (obj_request->bio_list)
2077 bio_chain_put(obj_request->bio_list);
2078 break;
2079 case OBJ_REQUEST_PAGES:
2080 if (obj_request->pages)
2081 ceph_release_page_vector(obj_request->pages,
2082 obj_request->page_count);
2083 break;
2084 }
2085
2086 kfree(obj_request->object_name);
2087 obj_request->object_name = NULL;
2088 kmem_cache_free(rbd_obj_request_cache, obj_request);
2089 }
2090
2091 /* It's OK to call this for a device with no parent */
2092
2093 static void rbd_spec_put(struct rbd_spec *spec);
rbd_dev_unparent(struct rbd_device * rbd_dev)2094 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2095 {
2096 rbd_dev_remove_parent(rbd_dev);
2097 rbd_spec_put(rbd_dev->parent_spec);
2098 rbd_dev->parent_spec = NULL;
2099 rbd_dev->parent_overlap = 0;
2100 }
2101
2102 /*
2103 * Parent image reference counting is used to determine when an
2104 * image's parent fields can be safely torn down--after there are no
2105 * more in-flight requests to the parent image. When the last
2106 * reference is dropped, cleaning them up is safe.
2107 */
rbd_dev_parent_put(struct rbd_device * rbd_dev)2108 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2109 {
2110 int counter;
2111
2112 if (!rbd_dev->parent_spec)
2113 return;
2114
2115 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2116 if (counter > 0)
2117 return;
2118
2119 /* Last reference; clean up parent data structures */
2120
2121 if (!counter)
2122 rbd_dev_unparent(rbd_dev);
2123 else
2124 rbd_warn(rbd_dev, "parent reference underflow");
2125 }
2126
2127 /*
2128 * If an image has a non-zero parent overlap, get a reference to its
2129 * parent.
2130 *
2131 * Returns true if the rbd device has a parent with a non-zero
2132 * overlap and a reference for it was successfully taken, or
2133 * false otherwise.
2134 */
rbd_dev_parent_get(struct rbd_device * rbd_dev)2135 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2136 {
2137 int counter = 0;
2138
2139 if (!rbd_dev->parent_spec)
2140 return false;
2141
2142 down_read(&rbd_dev->header_rwsem);
2143 if (rbd_dev->parent_overlap)
2144 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2145 up_read(&rbd_dev->header_rwsem);
2146
2147 if (counter < 0)
2148 rbd_warn(rbd_dev, "parent reference overflow");
2149
2150 return counter > 0;
2151 }
2152
2153 /*
2154 * Caller is responsible for filling in the list of object requests
2155 * that comprises the image request, and the Linux request pointer
2156 * (if there is one).
2157 */
rbd_img_request_create(struct rbd_device * rbd_dev,u64 offset,u64 length,enum obj_operation_type op_type,struct ceph_snap_context * snapc)2158 static struct rbd_img_request *rbd_img_request_create(
2159 struct rbd_device *rbd_dev,
2160 u64 offset, u64 length,
2161 enum obj_operation_type op_type,
2162 struct ceph_snap_context *snapc)
2163 {
2164 struct rbd_img_request *img_request;
2165
2166 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2167 if (!img_request)
2168 return NULL;
2169
2170 img_request->rq = NULL;
2171 img_request->rbd_dev = rbd_dev;
2172 img_request->offset = offset;
2173 img_request->length = length;
2174 img_request->flags = 0;
2175 if (op_type == OBJ_OP_DISCARD) {
2176 img_request_discard_set(img_request);
2177 img_request->snapc = snapc;
2178 } else if (op_type == OBJ_OP_WRITE) {
2179 img_request_write_set(img_request);
2180 img_request->snapc = snapc;
2181 } else {
2182 img_request->snap_id = rbd_dev->spec->snap_id;
2183 }
2184 if (rbd_dev_parent_get(rbd_dev))
2185 img_request_layered_set(img_request);
2186 spin_lock_init(&img_request->completion_lock);
2187 img_request->next_completion = 0;
2188 img_request->callback = NULL;
2189 img_request->result = 0;
2190 img_request->obj_request_count = 0;
2191 INIT_LIST_HEAD(&img_request->obj_requests);
2192 kref_init(&img_request->kref);
2193
2194 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2195 obj_op_name(op_type), offset, length, img_request);
2196
2197 return img_request;
2198 }
2199
rbd_img_request_destroy(struct kref * kref)2200 static void rbd_img_request_destroy(struct kref *kref)
2201 {
2202 struct rbd_img_request *img_request;
2203 struct rbd_obj_request *obj_request;
2204 struct rbd_obj_request *next_obj_request;
2205
2206 img_request = container_of(kref, struct rbd_img_request, kref);
2207
2208 dout("%s: img %p\n", __func__, img_request);
2209
2210 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2211 rbd_img_obj_request_del(img_request, obj_request);
2212 rbd_assert(img_request->obj_request_count == 0);
2213
2214 if (img_request_layered_test(img_request)) {
2215 img_request_layered_clear(img_request);
2216 rbd_dev_parent_put(img_request->rbd_dev);
2217 }
2218
2219 if (img_request_write_test(img_request) ||
2220 img_request_discard_test(img_request))
2221 ceph_put_snap_context(img_request->snapc);
2222
2223 kmem_cache_free(rbd_img_request_cache, img_request);
2224 }
2225
rbd_parent_request_create(struct rbd_obj_request * obj_request,u64 img_offset,u64 length)2226 static struct rbd_img_request *rbd_parent_request_create(
2227 struct rbd_obj_request *obj_request,
2228 u64 img_offset, u64 length)
2229 {
2230 struct rbd_img_request *parent_request;
2231 struct rbd_device *rbd_dev;
2232
2233 rbd_assert(obj_request->img_request);
2234 rbd_dev = obj_request->img_request->rbd_dev;
2235
2236 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2237 length, OBJ_OP_READ, NULL);
2238 if (!parent_request)
2239 return NULL;
2240
2241 img_request_child_set(parent_request);
2242 rbd_obj_request_get(obj_request);
2243 parent_request->obj_request = obj_request;
2244
2245 return parent_request;
2246 }
2247
rbd_parent_request_destroy(struct kref * kref)2248 static void rbd_parent_request_destroy(struct kref *kref)
2249 {
2250 struct rbd_img_request *parent_request;
2251 struct rbd_obj_request *orig_request;
2252
2253 parent_request = container_of(kref, struct rbd_img_request, kref);
2254 orig_request = parent_request->obj_request;
2255
2256 parent_request->obj_request = NULL;
2257 rbd_obj_request_put(orig_request);
2258 img_request_child_clear(parent_request);
2259
2260 rbd_img_request_destroy(kref);
2261 }
2262
rbd_img_obj_end_request(struct rbd_obj_request * obj_request)2263 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2264 {
2265 struct rbd_img_request *img_request;
2266 unsigned int xferred;
2267 int result;
2268 bool more;
2269
2270 rbd_assert(obj_request_img_data_test(obj_request));
2271 img_request = obj_request->img_request;
2272
2273 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2274 xferred = (unsigned int)obj_request->xferred;
2275 result = obj_request->result;
2276 if (result) {
2277 struct rbd_device *rbd_dev = img_request->rbd_dev;
2278 enum obj_operation_type op_type;
2279
2280 if (img_request_discard_test(img_request))
2281 op_type = OBJ_OP_DISCARD;
2282 else if (img_request_write_test(img_request))
2283 op_type = OBJ_OP_WRITE;
2284 else
2285 op_type = OBJ_OP_READ;
2286
2287 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2288 obj_op_name(op_type), obj_request->length,
2289 obj_request->img_offset, obj_request->offset);
2290 rbd_warn(rbd_dev, " result %d xferred %x",
2291 result, xferred);
2292 if (!img_request->result)
2293 img_request->result = result;
2294 /*
2295 * Need to end I/O on the entire obj_request worth of
2296 * bytes in case of error.
2297 */
2298 xferred = obj_request->length;
2299 }
2300
2301 /* Image object requests don't own their page array */
2302
2303 if (obj_request->type == OBJ_REQUEST_PAGES) {
2304 obj_request->pages = NULL;
2305 obj_request->page_count = 0;
2306 }
2307
2308 if (img_request_child_test(img_request)) {
2309 rbd_assert(img_request->obj_request != NULL);
2310 more = obj_request->which < img_request->obj_request_count - 1;
2311 } else {
2312 rbd_assert(img_request->rq != NULL);
2313
2314 more = blk_update_request(img_request->rq, result, xferred);
2315 if (!more)
2316 __blk_mq_end_request(img_request->rq, result);
2317 }
2318
2319 return more;
2320 }
2321
rbd_img_obj_callback(struct rbd_obj_request * obj_request)2322 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2323 {
2324 struct rbd_img_request *img_request;
2325 u32 which = obj_request->which;
2326 bool more = true;
2327
2328 rbd_assert(obj_request_img_data_test(obj_request));
2329 img_request = obj_request->img_request;
2330
2331 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2332 rbd_assert(img_request != NULL);
2333 rbd_assert(img_request->obj_request_count > 0);
2334 rbd_assert(which != BAD_WHICH);
2335 rbd_assert(which < img_request->obj_request_count);
2336
2337 spin_lock_irq(&img_request->completion_lock);
2338 if (which != img_request->next_completion)
2339 goto out;
2340
2341 for_each_obj_request_from(img_request, obj_request) {
2342 rbd_assert(more);
2343 rbd_assert(which < img_request->obj_request_count);
2344
2345 if (!obj_request_done_test(obj_request))
2346 break;
2347 more = rbd_img_obj_end_request(obj_request);
2348 which++;
2349 }
2350
2351 rbd_assert(more ^ (which == img_request->obj_request_count));
2352 img_request->next_completion = which;
2353 out:
2354 spin_unlock_irq(&img_request->completion_lock);
2355 rbd_img_request_put(img_request);
2356
2357 if (!more)
2358 rbd_img_request_complete(img_request);
2359 }
2360
2361 /*
2362 * Add individual osd ops to the given ceph_osd_request and prepare
2363 * them for submission. num_ops is the current number of
2364 * osd operations already to the object request.
2365 */
rbd_img_obj_request_fill(struct rbd_obj_request * obj_request,struct ceph_osd_request * osd_request,enum obj_operation_type op_type,unsigned int num_ops)2366 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2367 struct ceph_osd_request *osd_request,
2368 enum obj_operation_type op_type,
2369 unsigned int num_ops)
2370 {
2371 struct rbd_img_request *img_request = obj_request->img_request;
2372 struct rbd_device *rbd_dev = img_request->rbd_dev;
2373 u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2374 u64 offset = obj_request->offset;
2375 u64 length = obj_request->length;
2376 u64 img_end;
2377 u16 opcode;
2378
2379 if (op_type == OBJ_OP_DISCARD) {
2380 if (!offset && length == object_size &&
2381 (!img_request_layered_test(img_request) ||
2382 !obj_request_overlaps_parent(obj_request))) {
2383 opcode = CEPH_OSD_OP_DELETE;
2384 } else if ((offset + length == object_size)) {
2385 opcode = CEPH_OSD_OP_TRUNCATE;
2386 } else {
2387 down_read(&rbd_dev->header_rwsem);
2388 img_end = rbd_dev->header.image_size;
2389 up_read(&rbd_dev->header_rwsem);
2390
2391 if (obj_request->img_offset + length == img_end)
2392 opcode = CEPH_OSD_OP_TRUNCATE;
2393 else
2394 opcode = CEPH_OSD_OP_ZERO;
2395 }
2396 } else if (op_type == OBJ_OP_WRITE) {
2397 if (!offset && length == object_size)
2398 opcode = CEPH_OSD_OP_WRITEFULL;
2399 else
2400 opcode = CEPH_OSD_OP_WRITE;
2401 osd_req_op_alloc_hint_init(osd_request, num_ops,
2402 object_size, object_size);
2403 num_ops++;
2404 } else {
2405 opcode = CEPH_OSD_OP_READ;
2406 }
2407
2408 if (opcode == CEPH_OSD_OP_DELETE)
2409 osd_req_op_init(osd_request, num_ops, opcode, 0);
2410 else
2411 osd_req_op_extent_init(osd_request, num_ops, opcode,
2412 offset, length, 0, 0);
2413
2414 if (obj_request->type == OBJ_REQUEST_BIO)
2415 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2416 obj_request->bio_list, length);
2417 else if (obj_request->type == OBJ_REQUEST_PAGES)
2418 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2419 obj_request->pages, length,
2420 offset & ~PAGE_MASK, false, false);
2421
2422 /* Discards are also writes */
2423 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2424 rbd_osd_req_format_write(obj_request);
2425 else
2426 rbd_osd_req_format_read(obj_request);
2427 }
2428
2429 /*
2430 * Split up an image request into one or more object requests, each
2431 * to a different object. The "type" parameter indicates whether
2432 * "data_desc" is the pointer to the head of a list of bio
2433 * structures, or the base of a page array. In either case this
2434 * function assumes data_desc describes memory sufficient to hold
2435 * all data described by the image request.
2436 */
rbd_img_request_fill(struct rbd_img_request * img_request,enum obj_request_type type,void * data_desc)2437 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2438 enum obj_request_type type,
2439 void *data_desc)
2440 {
2441 struct rbd_device *rbd_dev = img_request->rbd_dev;
2442 struct rbd_obj_request *obj_request = NULL;
2443 struct rbd_obj_request *next_obj_request;
2444 struct bio *bio_list = NULL;
2445 unsigned int bio_offset = 0;
2446 struct page **pages = NULL;
2447 enum obj_operation_type op_type;
2448 u64 img_offset;
2449 u64 resid;
2450
2451 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2452 (int)type, data_desc);
2453
2454 img_offset = img_request->offset;
2455 resid = img_request->length;
2456 rbd_assert(resid > 0);
2457 op_type = rbd_img_request_op_type(img_request);
2458
2459 if (type == OBJ_REQUEST_BIO) {
2460 bio_list = data_desc;
2461 rbd_assert(img_offset ==
2462 bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2463 } else if (type == OBJ_REQUEST_PAGES) {
2464 pages = data_desc;
2465 }
2466
2467 while (resid) {
2468 struct ceph_osd_request *osd_req;
2469 const char *object_name;
2470 u64 offset;
2471 u64 length;
2472
2473 object_name = rbd_segment_name(rbd_dev, img_offset);
2474 if (!object_name)
2475 goto out_unwind;
2476 offset = rbd_segment_offset(rbd_dev, img_offset);
2477 length = rbd_segment_length(rbd_dev, img_offset, resid);
2478 obj_request = rbd_obj_request_create(object_name,
2479 offset, length, type);
2480 /* object request has its own copy of the object name */
2481 rbd_segment_name_free(object_name);
2482 if (!obj_request)
2483 goto out_unwind;
2484
2485 /*
2486 * set obj_request->img_request before creating the
2487 * osd_request so that it gets the right snapc
2488 */
2489 rbd_img_obj_request_add(img_request, obj_request);
2490
2491 if (type == OBJ_REQUEST_BIO) {
2492 unsigned int clone_size;
2493
2494 rbd_assert(length <= (u64)UINT_MAX);
2495 clone_size = (unsigned int)length;
2496 obj_request->bio_list =
2497 bio_chain_clone_range(&bio_list,
2498 &bio_offset,
2499 clone_size,
2500 GFP_NOIO);
2501 if (!obj_request->bio_list)
2502 goto out_unwind;
2503 } else if (type == OBJ_REQUEST_PAGES) {
2504 unsigned int page_count;
2505
2506 obj_request->pages = pages;
2507 page_count = (u32)calc_pages_for(offset, length);
2508 obj_request->page_count = page_count;
2509 if ((offset + length) & ~PAGE_MASK)
2510 page_count--; /* more on last page */
2511 pages += page_count;
2512 }
2513
2514 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2515 (op_type == OBJ_OP_WRITE) ? 2 : 1,
2516 obj_request);
2517 if (!osd_req)
2518 goto out_unwind;
2519
2520 obj_request->osd_req = osd_req;
2521 obj_request->callback = rbd_img_obj_callback;
2522 obj_request->img_offset = img_offset;
2523
2524 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2525
2526 rbd_img_request_get(img_request);
2527
2528 img_offset += length;
2529 resid -= length;
2530 }
2531
2532 return 0;
2533
2534 out_unwind:
2535 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2536 rbd_img_obj_request_del(img_request, obj_request);
2537
2538 return -ENOMEM;
2539 }
2540
2541 static void
rbd_osd_copyup_callback(struct rbd_obj_request * obj_request)2542 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2543 {
2544 struct rbd_img_request *img_request;
2545 struct rbd_device *rbd_dev;
2546 struct page **pages;
2547 u32 page_count;
2548
2549 dout("%s: obj %p\n", __func__, obj_request);
2550
2551 rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2552 obj_request->type == OBJ_REQUEST_NODATA);
2553 rbd_assert(obj_request_img_data_test(obj_request));
2554 img_request = obj_request->img_request;
2555 rbd_assert(img_request);
2556
2557 rbd_dev = img_request->rbd_dev;
2558 rbd_assert(rbd_dev);
2559
2560 pages = obj_request->copyup_pages;
2561 rbd_assert(pages != NULL);
2562 obj_request->copyup_pages = NULL;
2563 page_count = obj_request->copyup_page_count;
2564 rbd_assert(page_count);
2565 obj_request->copyup_page_count = 0;
2566 ceph_release_page_vector(pages, page_count);
2567
2568 /*
2569 * We want the transfer count to reflect the size of the
2570 * original write request. There is no such thing as a
2571 * successful short write, so if the request was successful
2572 * we can just set it to the originally-requested length.
2573 */
2574 if (!obj_request->result)
2575 obj_request->xferred = obj_request->length;
2576
2577 obj_request_done_set(obj_request);
2578 }
2579
2580 static void
rbd_img_obj_parent_read_full_callback(struct rbd_img_request * img_request)2581 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2582 {
2583 struct rbd_obj_request *orig_request;
2584 struct ceph_osd_request *osd_req;
2585 struct ceph_osd_client *osdc;
2586 struct rbd_device *rbd_dev;
2587 struct page **pages;
2588 enum obj_operation_type op_type;
2589 u32 page_count;
2590 int img_result;
2591 u64 parent_length;
2592
2593 rbd_assert(img_request_child_test(img_request));
2594
2595 /* First get what we need from the image request */
2596
2597 pages = img_request->copyup_pages;
2598 rbd_assert(pages != NULL);
2599 img_request->copyup_pages = NULL;
2600 page_count = img_request->copyup_page_count;
2601 rbd_assert(page_count);
2602 img_request->copyup_page_count = 0;
2603
2604 orig_request = img_request->obj_request;
2605 rbd_assert(orig_request != NULL);
2606 rbd_assert(obj_request_type_valid(orig_request->type));
2607 img_result = img_request->result;
2608 parent_length = img_request->length;
2609 rbd_assert(parent_length == img_request->xferred);
2610 rbd_img_request_put(img_request);
2611
2612 rbd_assert(orig_request->img_request);
2613 rbd_dev = orig_request->img_request->rbd_dev;
2614 rbd_assert(rbd_dev);
2615
2616 /*
2617 * If the overlap has become 0 (most likely because the
2618 * image has been flattened) we need to free the pages
2619 * and re-submit the original write request.
2620 */
2621 if (!rbd_dev->parent_overlap) {
2622 struct ceph_osd_client *osdc;
2623
2624 ceph_release_page_vector(pages, page_count);
2625 osdc = &rbd_dev->rbd_client->client->osdc;
2626 img_result = rbd_obj_request_submit(osdc, orig_request);
2627 if (!img_result)
2628 return;
2629 }
2630
2631 if (img_result)
2632 goto out_err;
2633
2634 /*
2635 * The original osd request is of no use to use any more.
2636 * We need a new one that can hold the three ops in a copyup
2637 * request. Allocate the new copyup osd request for the
2638 * original request, and release the old one.
2639 */
2640 img_result = -ENOMEM;
2641 osd_req = rbd_osd_req_create_copyup(orig_request);
2642 if (!osd_req)
2643 goto out_err;
2644 rbd_osd_req_destroy(orig_request->osd_req);
2645 orig_request->osd_req = osd_req;
2646 orig_request->copyup_pages = pages;
2647 orig_request->copyup_page_count = page_count;
2648
2649 /* Initialize the copyup op */
2650
2651 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2652 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2653 false, false);
2654
2655 /* Add the other op(s) */
2656
2657 op_type = rbd_img_request_op_type(orig_request->img_request);
2658 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2659
2660 /* All set, send it off. */
2661
2662 osdc = &rbd_dev->rbd_client->client->osdc;
2663 img_result = rbd_obj_request_submit(osdc, orig_request);
2664 if (!img_result)
2665 return;
2666 out_err:
2667 /* Record the error code and complete the request */
2668
2669 orig_request->result = img_result;
2670 orig_request->xferred = 0;
2671 obj_request_done_set(orig_request);
2672 rbd_obj_request_complete(orig_request);
2673 }
2674
2675 /*
2676 * Read from the parent image the range of data that covers the
2677 * entire target of the given object request. This is used for
2678 * satisfying a layered image write request when the target of an
2679 * object request from the image request does not exist.
2680 *
2681 * A page array big enough to hold the returned data is allocated
2682 * and supplied to rbd_img_request_fill() as the "data descriptor."
2683 * When the read completes, this page array will be transferred to
2684 * the original object request for the copyup operation.
2685 *
2686 * If an error occurs, record it as the result of the original
2687 * object request and mark it done so it gets completed.
2688 */
rbd_img_obj_parent_read_full(struct rbd_obj_request * obj_request)2689 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2690 {
2691 struct rbd_img_request *img_request = NULL;
2692 struct rbd_img_request *parent_request = NULL;
2693 struct rbd_device *rbd_dev;
2694 u64 img_offset;
2695 u64 length;
2696 struct page **pages = NULL;
2697 u32 page_count;
2698 int result;
2699
2700 rbd_assert(obj_request_img_data_test(obj_request));
2701 rbd_assert(obj_request_type_valid(obj_request->type));
2702
2703 img_request = obj_request->img_request;
2704 rbd_assert(img_request != NULL);
2705 rbd_dev = img_request->rbd_dev;
2706 rbd_assert(rbd_dev->parent != NULL);
2707
2708 /*
2709 * Determine the byte range covered by the object in the
2710 * child image to which the original request was to be sent.
2711 */
2712 img_offset = obj_request->img_offset - obj_request->offset;
2713 length = (u64)1 << rbd_dev->header.obj_order;
2714
2715 /*
2716 * There is no defined parent data beyond the parent
2717 * overlap, so limit what we read at that boundary if
2718 * necessary.
2719 */
2720 if (img_offset + length > rbd_dev->parent_overlap) {
2721 rbd_assert(img_offset < rbd_dev->parent_overlap);
2722 length = rbd_dev->parent_overlap - img_offset;
2723 }
2724
2725 /*
2726 * Allocate a page array big enough to receive the data read
2727 * from the parent.
2728 */
2729 page_count = (u32)calc_pages_for(0, length);
2730 pages = ceph_alloc_page_vector(page_count, GFP_NOIO);
2731 if (IS_ERR(pages)) {
2732 result = PTR_ERR(pages);
2733 pages = NULL;
2734 goto out_err;
2735 }
2736
2737 result = -ENOMEM;
2738 parent_request = rbd_parent_request_create(obj_request,
2739 img_offset, length);
2740 if (!parent_request)
2741 goto out_err;
2742
2743 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2744 if (result)
2745 goto out_err;
2746 parent_request->copyup_pages = pages;
2747 parent_request->copyup_page_count = page_count;
2748
2749 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2750 result = rbd_img_request_submit(parent_request);
2751 if (!result)
2752 return 0;
2753
2754 parent_request->copyup_pages = NULL;
2755 parent_request->copyup_page_count = 0;
2756 parent_request->obj_request = NULL;
2757 rbd_obj_request_put(obj_request);
2758 out_err:
2759 if (pages)
2760 ceph_release_page_vector(pages, page_count);
2761 if (parent_request)
2762 rbd_img_request_put(parent_request);
2763 obj_request->result = result;
2764 obj_request->xferred = 0;
2765 obj_request_done_set(obj_request);
2766
2767 return result;
2768 }
2769
rbd_img_obj_exists_callback(struct rbd_obj_request * obj_request)2770 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2771 {
2772 struct rbd_obj_request *orig_request;
2773 struct rbd_device *rbd_dev;
2774 int result;
2775
2776 rbd_assert(!obj_request_img_data_test(obj_request));
2777
2778 /*
2779 * All we need from the object request is the original
2780 * request and the result of the STAT op. Grab those, then
2781 * we're done with the request.
2782 */
2783 orig_request = obj_request->obj_request;
2784 obj_request->obj_request = NULL;
2785 rbd_obj_request_put(orig_request);
2786 rbd_assert(orig_request);
2787 rbd_assert(orig_request->img_request);
2788
2789 result = obj_request->result;
2790 obj_request->result = 0;
2791
2792 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2793 obj_request, orig_request, result,
2794 obj_request->xferred, obj_request->length);
2795 rbd_obj_request_put(obj_request);
2796
2797 /*
2798 * If the overlap has become 0 (most likely because the
2799 * image has been flattened) we need to free the pages
2800 * and re-submit the original write request.
2801 */
2802 rbd_dev = orig_request->img_request->rbd_dev;
2803 if (!rbd_dev->parent_overlap) {
2804 struct ceph_osd_client *osdc;
2805
2806 osdc = &rbd_dev->rbd_client->client->osdc;
2807 result = rbd_obj_request_submit(osdc, orig_request);
2808 if (!result)
2809 return;
2810 }
2811
2812 /*
2813 * Our only purpose here is to determine whether the object
2814 * exists, and we don't want to treat the non-existence as
2815 * an error. If something else comes back, transfer the
2816 * error to the original request and complete it now.
2817 */
2818 if (!result) {
2819 obj_request_existence_set(orig_request, true);
2820 } else if (result == -ENOENT) {
2821 obj_request_existence_set(orig_request, false);
2822 } else if (result) {
2823 orig_request->result = result;
2824 goto out;
2825 }
2826
2827 /*
2828 * Resubmit the original request now that we have recorded
2829 * whether the target object exists.
2830 */
2831 orig_request->result = rbd_img_obj_request_submit(orig_request);
2832 out:
2833 if (orig_request->result)
2834 rbd_obj_request_complete(orig_request);
2835 }
2836
rbd_img_obj_exists_submit(struct rbd_obj_request * obj_request)2837 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2838 {
2839 struct rbd_obj_request *stat_request;
2840 struct rbd_device *rbd_dev;
2841 struct ceph_osd_client *osdc;
2842 struct page **pages = NULL;
2843 u32 page_count;
2844 size_t size;
2845 int ret;
2846
2847 /*
2848 * The response data for a STAT call consists of:
2849 * le64 length;
2850 * struct {
2851 * le32 tv_sec;
2852 * le32 tv_nsec;
2853 * } mtime;
2854 */
2855 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2856 page_count = (u32)calc_pages_for(0, size);
2857 pages = ceph_alloc_page_vector(page_count, GFP_NOIO);
2858 if (IS_ERR(pages))
2859 return PTR_ERR(pages);
2860
2861 ret = -ENOMEM;
2862 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2863 OBJ_REQUEST_PAGES);
2864 if (!stat_request)
2865 goto out;
2866
2867 rbd_obj_request_get(obj_request);
2868 stat_request->obj_request = obj_request;
2869 stat_request->pages = pages;
2870 stat_request->page_count = page_count;
2871
2872 rbd_assert(obj_request->img_request);
2873 rbd_dev = obj_request->img_request->rbd_dev;
2874 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2875 stat_request);
2876 if (!stat_request->osd_req)
2877 goto out;
2878 stat_request->callback = rbd_img_obj_exists_callback;
2879
2880 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2881 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2882 false, false);
2883 rbd_osd_req_format_read(stat_request);
2884
2885 osdc = &rbd_dev->rbd_client->client->osdc;
2886 ret = rbd_obj_request_submit(osdc, stat_request);
2887 out:
2888 if (ret)
2889 rbd_obj_request_put(obj_request);
2890
2891 return ret;
2892 }
2893
img_obj_request_simple(struct rbd_obj_request * obj_request)2894 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2895 {
2896 struct rbd_img_request *img_request;
2897 struct rbd_device *rbd_dev;
2898
2899 rbd_assert(obj_request_img_data_test(obj_request));
2900
2901 img_request = obj_request->img_request;
2902 rbd_assert(img_request);
2903 rbd_dev = img_request->rbd_dev;
2904
2905 /* Reads */
2906 if (!img_request_write_test(img_request) &&
2907 !img_request_discard_test(img_request))
2908 return true;
2909
2910 /* Non-layered writes */
2911 if (!img_request_layered_test(img_request))
2912 return true;
2913
2914 /*
2915 * Layered writes outside of the parent overlap range don't
2916 * share any data with the parent.
2917 */
2918 if (!obj_request_overlaps_parent(obj_request))
2919 return true;
2920
2921 /*
2922 * Entire-object layered writes - we will overwrite whatever
2923 * parent data there is anyway.
2924 */
2925 if (!obj_request->offset &&
2926 obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2927 return true;
2928
2929 /*
2930 * If the object is known to already exist, its parent data has
2931 * already been copied.
2932 */
2933 if (obj_request_known_test(obj_request) &&
2934 obj_request_exists_test(obj_request))
2935 return true;
2936
2937 return false;
2938 }
2939
rbd_img_obj_request_submit(struct rbd_obj_request * obj_request)2940 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2941 {
2942 if (img_obj_request_simple(obj_request)) {
2943 struct rbd_device *rbd_dev;
2944 struct ceph_osd_client *osdc;
2945
2946 rbd_dev = obj_request->img_request->rbd_dev;
2947 osdc = &rbd_dev->rbd_client->client->osdc;
2948
2949 return rbd_obj_request_submit(osdc, obj_request);
2950 }
2951
2952 /*
2953 * It's a layered write. The target object might exist but
2954 * we may not know that yet. If we know it doesn't exist,
2955 * start by reading the data for the full target object from
2956 * the parent so we can use it for a copyup to the target.
2957 */
2958 if (obj_request_known_test(obj_request))
2959 return rbd_img_obj_parent_read_full(obj_request);
2960
2961 /* We don't know whether the target exists. Go find out. */
2962
2963 return rbd_img_obj_exists_submit(obj_request);
2964 }
2965
rbd_img_request_submit(struct rbd_img_request * img_request)2966 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2967 {
2968 struct rbd_obj_request *obj_request;
2969 struct rbd_obj_request *next_obj_request;
2970
2971 dout("%s: img %p\n", __func__, img_request);
2972 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2973 int ret;
2974
2975 ret = rbd_img_obj_request_submit(obj_request);
2976 if (ret)
2977 return ret;
2978 }
2979
2980 return 0;
2981 }
2982
rbd_img_parent_read_callback(struct rbd_img_request * img_request)2983 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2984 {
2985 struct rbd_obj_request *obj_request;
2986 struct rbd_device *rbd_dev;
2987 u64 obj_end;
2988 u64 img_xferred;
2989 int img_result;
2990
2991 rbd_assert(img_request_child_test(img_request));
2992
2993 /* First get what we need from the image request and release it */
2994
2995 obj_request = img_request->obj_request;
2996 img_xferred = img_request->xferred;
2997 img_result = img_request->result;
2998 rbd_img_request_put(img_request);
2999
3000 /*
3001 * If the overlap has become 0 (most likely because the
3002 * image has been flattened) we need to re-submit the
3003 * original request.
3004 */
3005 rbd_assert(obj_request);
3006 rbd_assert(obj_request->img_request);
3007 rbd_dev = obj_request->img_request->rbd_dev;
3008 if (!rbd_dev->parent_overlap) {
3009 struct ceph_osd_client *osdc;
3010
3011 osdc = &rbd_dev->rbd_client->client->osdc;
3012 img_result = rbd_obj_request_submit(osdc, obj_request);
3013 if (!img_result)
3014 return;
3015 }
3016
3017 obj_request->result = img_result;
3018 if (obj_request->result)
3019 goto out;
3020
3021 /*
3022 * We need to zero anything beyond the parent overlap
3023 * boundary. Since rbd_img_obj_request_read_callback()
3024 * will zero anything beyond the end of a short read, an
3025 * easy way to do this is to pretend the data from the
3026 * parent came up short--ending at the overlap boundary.
3027 */
3028 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3029 obj_end = obj_request->img_offset + obj_request->length;
3030 if (obj_end > rbd_dev->parent_overlap) {
3031 u64 xferred = 0;
3032
3033 if (obj_request->img_offset < rbd_dev->parent_overlap)
3034 xferred = rbd_dev->parent_overlap -
3035 obj_request->img_offset;
3036
3037 obj_request->xferred = min(img_xferred, xferred);
3038 } else {
3039 obj_request->xferred = img_xferred;
3040 }
3041 out:
3042 rbd_img_obj_request_read_callback(obj_request);
3043 rbd_obj_request_complete(obj_request);
3044 }
3045
rbd_img_parent_read(struct rbd_obj_request * obj_request)3046 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3047 {
3048 struct rbd_img_request *img_request;
3049 int result;
3050
3051 rbd_assert(obj_request_img_data_test(obj_request));
3052 rbd_assert(obj_request->img_request != NULL);
3053 rbd_assert(obj_request->result == (s32) -ENOENT);
3054 rbd_assert(obj_request_type_valid(obj_request->type));
3055
3056 /* rbd_read_finish(obj_request, obj_request->length); */
3057 img_request = rbd_parent_request_create(obj_request,
3058 obj_request->img_offset,
3059 obj_request->length);
3060 result = -ENOMEM;
3061 if (!img_request)
3062 goto out_err;
3063
3064 if (obj_request->type == OBJ_REQUEST_BIO)
3065 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3066 obj_request->bio_list);
3067 else
3068 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3069 obj_request->pages);
3070 if (result)
3071 goto out_err;
3072
3073 img_request->callback = rbd_img_parent_read_callback;
3074 result = rbd_img_request_submit(img_request);
3075 if (result)
3076 goto out_err;
3077
3078 return;
3079 out_err:
3080 if (img_request)
3081 rbd_img_request_put(img_request);
3082 obj_request->result = result;
3083 obj_request->xferred = 0;
3084 obj_request_done_set(obj_request);
3085 }
3086
rbd_obj_notify_ack_sync(struct rbd_device * rbd_dev,u64 notify_id)3087 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3088 {
3089 struct rbd_obj_request *obj_request;
3090 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3091 int ret;
3092
3093 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3094 OBJ_REQUEST_NODATA);
3095 if (!obj_request)
3096 return -ENOMEM;
3097
3098 ret = -ENOMEM;
3099 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3100 obj_request);
3101 if (!obj_request->osd_req)
3102 goto out;
3103
3104 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3105 notify_id, 0, 0);
3106 rbd_osd_req_format_read(obj_request);
3107
3108 ret = rbd_obj_request_submit(osdc, obj_request);
3109 if (ret)
3110 goto out;
3111 ret = rbd_obj_request_wait(obj_request);
3112 out:
3113 rbd_obj_request_put(obj_request);
3114
3115 return ret;
3116 }
3117
rbd_watch_cb(u64 ver,u64 notify_id,u8 opcode,void * data)3118 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3119 {
3120 struct rbd_device *rbd_dev = (struct rbd_device *)data;
3121 int ret;
3122
3123 if (!rbd_dev)
3124 return;
3125
3126 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3127 rbd_dev->header_name, (unsigned long long)notify_id,
3128 (unsigned int)opcode);
3129
3130 /*
3131 * Until adequate refresh error handling is in place, there is
3132 * not much we can do here, except warn.
3133 *
3134 * See http://tracker.ceph.com/issues/5040
3135 */
3136 ret = rbd_dev_refresh(rbd_dev);
3137 if (ret)
3138 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3139
3140 ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3141 if (ret)
3142 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3143 }
3144
3145 /*
3146 * Send a (un)watch request and wait for the ack. Return a request
3147 * with a ref held on success or error.
3148 */
rbd_obj_watch_request_helper(struct rbd_device * rbd_dev,bool watch)3149 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3150 struct rbd_device *rbd_dev,
3151 bool watch)
3152 {
3153 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3154 struct ceph_options *opts = osdc->client->options;
3155 struct rbd_obj_request *obj_request;
3156 int ret;
3157
3158 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3159 OBJ_REQUEST_NODATA);
3160 if (!obj_request)
3161 return ERR_PTR(-ENOMEM);
3162
3163 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3164 obj_request);
3165 if (!obj_request->osd_req) {
3166 ret = -ENOMEM;
3167 goto out;
3168 }
3169
3170 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3171 rbd_dev->watch_event->cookie, 0, watch);
3172 rbd_osd_req_format_write(obj_request);
3173
3174 if (watch)
3175 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3176
3177 ret = rbd_obj_request_submit(osdc, obj_request);
3178 if (ret)
3179 goto out;
3180
3181 ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout);
3182 if (ret)
3183 goto out;
3184
3185 ret = obj_request->result;
3186 if (ret) {
3187 if (watch)
3188 rbd_obj_request_end(obj_request);
3189 goto out;
3190 }
3191
3192 return obj_request;
3193
3194 out:
3195 rbd_obj_request_put(obj_request);
3196 return ERR_PTR(ret);
3197 }
3198
3199 /*
3200 * Initiate a watch request, synchronously.
3201 */
rbd_dev_header_watch_sync(struct rbd_device * rbd_dev)3202 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3203 {
3204 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3205 struct rbd_obj_request *obj_request;
3206 int ret;
3207
3208 rbd_assert(!rbd_dev->watch_event);
3209 rbd_assert(!rbd_dev->watch_request);
3210
3211 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3212 &rbd_dev->watch_event);
3213 if (ret < 0)
3214 return ret;
3215
3216 obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3217 if (IS_ERR(obj_request)) {
3218 ceph_osdc_cancel_event(rbd_dev->watch_event);
3219 rbd_dev->watch_event = NULL;
3220 return PTR_ERR(obj_request);
3221 }
3222
3223 /*
3224 * A watch request is set to linger, so the underlying osd
3225 * request won't go away until we unregister it. We retain
3226 * a pointer to the object request during that time (in
3227 * rbd_dev->watch_request), so we'll keep a reference to it.
3228 * We'll drop that reference after we've unregistered it in
3229 * rbd_dev_header_unwatch_sync().
3230 */
3231 rbd_dev->watch_request = obj_request;
3232
3233 return 0;
3234 }
3235
3236 /*
3237 * Tear down a watch request, synchronously.
3238 */
rbd_dev_header_unwatch_sync(struct rbd_device * rbd_dev)3239 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3240 {
3241 struct rbd_obj_request *obj_request;
3242
3243 rbd_assert(rbd_dev->watch_event);
3244 rbd_assert(rbd_dev->watch_request);
3245
3246 rbd_obj_request_end(rbd_dev->watch_request);
3247 rbd_obj_request_put(rbd_dev->watch_request);
3248 rbd_dev->watch_request = NULL;
3249
3250 obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3251 if (!IS_ERR(obj_request))
3252 rbd_obj_request_put(obj_request);
3253 else
3254 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3255 PTR_ERR(obj_request));
3256
3257 ceph_osdc_cancel_event(rbd_dev->watch_event);
3258 rbd_dev->watch_event = NULL;
3259 }
3260
3261 /*
3262 * Synchronous osd object method call. Returns the number of bytes
3263 * returned in the outbound buffer, or a negative error code.
3264 */
rbd_obj_method_sync(struct rbd_device * rbd_dev,const char * object_name,const char * class_name,const char * method_name,const void * outbound,size_t outbound_size,void * inbound,size_t inbound_size)3265 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3266 const char *object_name,
3267 const char *class_name,
3268 const char *method_name,
3269 const void *outbound,
3270 size_t outbound_size,
3271 void *inbound,
3272 size_t inbound_size)
3273 {
3274 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3275 struct rbd_obj_request *obj_request;
3276 struct page **pages;
3277 u32 page_count;
3278 int ret;
3279
3280 /*
3281 * Method calls are ultimately read operations. The result
3282 * should placed into the inbound buffer provided. They
3283 * also supply outbound data--parameters for the object
3284 * method. Currently if this is present it will be a
3285 * snapshot id.
3286 */
3287 page_count = (u32)calc_pages_for(0, inbound_size);
3288 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3289 if (IS_ERR(pages))
3290 return PTR_ERR(pages);
3291
3292 ret = -ENOMEM;
3293 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3294 OBJ_REQUEST_PAGES);
3295 if (!obj_request)
3296 goto out;
3297
3298 obj_request->pages = pages;
3299 obj_request->page_count = page_count;
3300
3301 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3302 obj_request);
3303 if (!obj_request->osd_req)
3304 goto out;
3305
3306 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3307 class_name, method_name);
3308 if (outbound_size) {
3309 struct ceph_pagelist *pagelist;
3310
3311 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3312 if (!pagelist)
3313 goto out;
3314
3315 ceph_pagelist_init(pagelist);
3316 ceph_pagelist_append(pagelist, outbound, outbound_size);
3317 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3318 pagelist);
3319 }
3320 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3321 obj_request->pages, inbound_size,
3322 0, false, false);
3323 rbd_osd_req_format_read(obj_request);
3324
3325 ret = rbd_obj_request_submit(osdc, obj_request);
3326 if (ret)
3327 goto out;
3328 ret = rbd_obj_request_wait(obj_request);
3329 if (ret)
3330 goto out;
3331
3332 ret = obj_request->result;
3333 if (ret < 0)
3334 goto out;
3335
3336 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3337 ret = (int)obj_request->xferred;
3338 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3339 out:
3340 if (obj_request)
3341 rbd_obj_request_put(obj_request);
3342 else
3343 ceph_release_page_vector(pages, page_count);
3344
3345 return ret;
3346 }
3347
rbd_queue_workfn(struct work_struct * work)3348 static void rbd_queue_workfn(struct work_struct *work)
3349 {
3350 struct request *rq = blk_mq_rq_from_pdu(work);
3351 struct rbd_device *rbd_dev = rq->q->queuedata;
3352 struct rbd_img_request *img_request;
3353 struct ceph_snap_context *snapc = NULL;
3354 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3355 u64 length = blk_rq_bytes(rq);
3356 enum obj_operation_type op_type;
3357 u64 mapping_size;
3358 int result;
3359
3360 if (rq->cmd_type != REQ_TYPE_FS) {
3361 dout("%s: non-fs request type %d\n", __func__,
3362 (int) rq->cmd_type);
3363 result = -EIO;
3364 goto err;
3365 }
3366
3367 if (rq->cmd_flags & REQ_DISCARD)
3368 op_type = OBJ_OP_DISCARD;
3369 else if (rq->cmd_flags & REQ_WRITE)
3370 op_type = OBJ_OP_WRITE;
3371 else
3372 op_type = OBJ_OP_READ;
3373
3374 /* Ignore/skip any zero-length requests */
3375
3376 if (!length) {
3377 dout("%s: zero-length request\n", __func__);
3378 result = 0;
3379 goto err_rq;
3380 }
3381
3382 /* Only reads are allowed to a read-only device */
3383
3384 if (op_type != OBJ_OP_READ) {
3385 if (rbd_dev->mapping.read_only) {
3386 result = -EROFS;
3387 goto err_rq;
3388 }
3389 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3390 }
3391
3392 /*
3393 * Quit early if the mapped snapshot no longer exists. It's
3394 * still possible the snapshot will have disappeared by the
3395 * time our request arrives at the osd, but there's no sense in
3396 * sending it if we already know.
3397 */
3398 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3399 dout("request for non-existent snapshot");
3400 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3401 result = -ENXIO;
3402 goto err_rq;
3403 }
3404
3405 if (offset && length > U64_MAX - offset + 1) {
3406 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3407 length);
3408 result = -EINVAL;
3409 goto err_rq; /* Shouldn't happen */
3410 }
3411
3412 blk_mq_start_request(rq);
3413
3414 down_read(&rbd_dev->header_rwsem);
3415 mapping_size = rbd_dev->mapping.size;
3416 if (op_type != OBJ_OP_READ) {
3417 snapc = rbd_dev->header.snapc;
3418 ceph_get_snap_context(snapc);
3419 }
3420 up_read(&rbd_dev->header_rwsem);
3421
3422 if (offset + length > mapping_size) {
3423 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3424 length, mapping_size);
3425 result = -EIO;
3426 goto err_rq;
3427 }
3428
3429 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3430 snapc);
3431 if (!img_request) {
3432 result = -ENOMEM;
3433 goto err_rq;
3434 }
3435 img_request->rq = rq;
3436 snapc = NULL; /* img_request consumes a ref */
3437
3438 if (op_type == OBJ_OP_DISCARD)
3439 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3440 NULL);
3441 else
3442 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3443 rq->bio);
3444 if (result)
3445 goto err_img_request;
3446
3447 result = rbd_img_request_submit(img_request);
3448 if (result)
3449 goto err_img_request;
3450
3451 return;
3452
3453 err_img_request:
3454 rbd_img_request_put(img_request);
3455 err_rq:
3456 if (result)
3457 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3458 obj_op_name(op_type), length, offset, result);
3459 ceph_put_snap_context(snapc);
3460 err:
3461 blk_mq_end_request(rq, result);
3462 }
3463
rbd_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)3464 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3465 const struct blk_mq_queue_data *bd)
3466 {
3467 struct request *rq = bd->rq;
3468 struct work_struct *work = blk_mq_rq_to_pdu(rq);
3469
3470 queue_work(rbd_wq, work);
3471 return BLK_MQ_RQ_QUEUE_OK;
3472 }
3473
rbd_free_disk(struct rbd_device * rbd_dev)3474 static void rbd_free_disk(struct rbd_device *rbd_dev)
3475 {
3476 struct gendisk *disk = rbd_dev->disk;
3477
3478 if (!disk)
3479 return;
3480
3481 rbd_dev->disk = NULL;
3482 if (disk->flags & GENHD_FL_UP) {
3483 del_gendisk(disk);
3484 if (disk->queue)
3485 blk_cleanup_queue(disk->queue);
3486 blk_mq_free_tag_set(&rbd_dev->tag_set);
3487 }
3488 put_disk(disk);
3489 }
3490
rbd_obj_read_sync(struct rbd_device * rbd_dev,const char * object_name,u64 offset,u64 length,void * buf)3491 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3492 const char *object_name,
3493 u64 offset, u64 length, void *buf)
3494
3495 {
3496 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3497 struct rbd_obj_request *obj_request;
3498 struct page **pages = NULL;
3499 u32 page_count;
3500 size_t size;
3501 int ret;
3502
3503 page_count = (u32) calc_pages_for(offset, length);
3504 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3505 if (IS_ERR(pages))
3506 return PTR_ERR(pages);
3507
3508 ret = -ENOMEM;
3509 obj_request = rbd_obj_request_create(object_name, offset, length,
3510 OBJ_REQUEST_PAGES);
3511 if (!obj_request)
3512 goto out;
3513
3514 obj_request->pages = pages;
3515 obj_request->page_count = page_count;
3516
3517 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3518 obj_request);
3519 if (!obj_request->osd_req)
3520 goto out;
3521
3522 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3523 offset, length, 0, 0);
3524 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3525 obj_request->pages,
3526 obj_request->length,
3527 obj_request->offset & ~PAGE_MASK,
3528 false, false);
3529 rbd_osd_req_format_read(obj_request);
3530
3531 ret = rbd_obj_request_submit(osdc, obj_request);
3532 if (ret)
3533 goto out;
3534 ret = rbd_obj_request_wait(obj_request);
3535 if (ret)
3536 goto out;
3537
3538 ret = obj_request->result;
3539 if (ret < 0)
3540 goto out;
3541
3542 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3543 size = (size_t) obj_request->xferred;
3544 ceph_copy_from_page_vector(pages, buf, 0, size);
3545 rbd_assert(size <= (size_t)INT_MAX);
3546 ret = (int)size;
3547 out:
3548 if (obj_request)
3549 rbd_obj_request_put(obj_request);
3550 else
3551 ceph_release_page_vector(pages, page_count);
3552
3553 return ret;
3554 }
3555
3556 /*
3557 * Read the complete header for the given rbd device. On successful
3558 * return, the rbd_dev->header field will contain up-to-date
3559 * information about the image.
3560 */
rbd_dev_v1_header_info(struct rbd_device * rbd_dev)3561 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3562 {
3563 struct rbd_image_header_ondisk *ondisk = NULL;
3564 u32 snap_count = 0;
3565 u64 names_size = 0;
3566 u32 want_count;
3567 int ret;
3568
3569 /*
3570 * The complete header will include an array of its 64-bit
3571 * snapshot ids, followed by the names of those snapshots as
3572 * a contiguous block of NUL-terminated strings. Note that
3573 * the number of snapshots could change by the time we read
3574 * it in, in which case we re-read it.
3575 */
3576 do {
3577 size_t size;
3578
3579 kfree(ondisk);
3580
3581 size = sizeof (*ondisk);
3582 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3583 size += names_size;
3584 ondisk = kmalloc(size, GFP_KERNEL);
3585 if (!ondisk)
3586 return -ENOMEM;
3587
3588 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3589 0, size, ondisk);
3590 if (ret < 0)
3591 goto out;
3592 if ((size_t)ret < size) {
3593 ret = -ENXIO;
3594 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3595 size, ret);
3596 goto out;
3597 }
3598 if (!rbd_dev_ondisk_valid(ondisk)) {
3599 ret = -ENXIO;
3600 rbd_warn(rbd_dev, "invalid header");
3601 goto out;
3602 }
3603
3604 names_size = le64_to_cpu(ondisk->snap_names_len);
3605 want_count = snap_count;
3606 snap_count = le32_to_cpu(ondisk->snap_count);
3607 } while (snap_count != want_count);
3608
3609 ret = rbd_header_from_disk(rbd_dev, ondisk);
3610 out:
3611 kfree(ondisk);
3612
3613 return ret;
3614 }
3615
3616 /*
3617 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3618 * has disappeared from the (just updated) snapshot context.
3619 */
rbd_exists_validate(struct rbd_device * rbd_dev)3620 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3621 {
3622 u64 snap_id;
3623
3624 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3625 return;
3626
3627 snap_id = rbd_dev->spec->snap_id;
3628 if (snap_id == CEPH_NOSNAP)
3629 return;
3630
3631 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3632 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3633 }
3634
rbd_dev_update_size(struct rbd_device * rbd_dev)3635 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3636 {
3637 sector_t size;
3638 bool removing;
3639
3640 /*
3641 * Don't hold the lock while doing disk operations,
3642 * or lock ordering will conflict with the bdev mutex via:
3643 * rbd_add() -> blkdev_get() -> rbd_open()
3644 */
3645 spin_lock_irq(&rbd_dev->lock);
3646 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3647 spin_unlock_irq(&rbd_dev->lock);
3648 /*
3649 * If the device is being removed, rbd_dev->disk has
3650 * been destroyed, so don't try to update its size
3651 */
3652 if (!removing) {
3653 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3654 dout("setting size to %llu sectors", (unsigned long long)size);
3655 set_capacity(rbd_dev->disk, size);
3656 revalidate_disk(rbd_dev->disk);
3657 }
3658 }
3659
rbd_dev_refresh(struct rbd_device * rbd_dev)3660 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3661 {
3662 u64 mapping_size;
3663 int ret;
3664
3665 down_write(&rbd_dev->header_rwsem);
3666 mapping_size = rbd_dev->mapping.size;
3667
3668 ret = rbd_dev_header_info(rbd_dev);
3669 if (ret)
3670 goto out;
3671
3672 /*
3673 * If there is a parent, see if it has disappeared due to the
3674 * mapped image getting flattened.
3675 */
3676 if (rbd_dev->parent) {
3677 ret = rbd_dev_v2_parent_info(rbd_dev);
3678 if (ret)
3679 goto out;
3680 }
3681
3682 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3683 rbd_dev->mapping.size = rbd_dev->header.image_size;
3684 } else {
3685 /* validate mapped snapshot's EXISTS flag */
3686 rbd_exists_validate(rbd_dev);
3687 }
3688
3689 out:
3690 up_write(&rbd_dev->header_rwsem);
3691 if (!ret && mapping_size != rbd_dev->mapping.size)
3692 rbd_dev_update_size(rbd_dev);
3693
3694 return ret;
3695 }
3696
rbd_init_request(void * data,struct request * rq,unsigned int hctx_idx,unsigned int request_idx,unsigned int numa_node)3697 static int rbd_init_request(void *data, struct request *rq,
3698 unsigned int hctx_idx, unsigned int request_idx,
3699 unsigned int numa_node)
3700 {
3701 struct work_struct *work = blk_mq_rq_to_pdu(rq);
3702
3703 INIT_WORK(work, rbd_queue_workfn);
3704 return 0;
3705 }
3706
3707 static struct blk_mq_ops rbd_mq_ops = {
3708 .queue_rq = rbd_queue_rq,
3709 .map_queue = blk_mq_map_queue,
3710 .init_request = rbd_init_request,
3711 };
3712
rbd_init_disk(struct rbd_device * rbd_dev)3713 static int rbd_init_disk(struct rbd_device *rbd_dev)
3714 {
3715 struct gendisk *disk;
3716 struct request_queue *q;
3717 u64 segment_size;
3718 int err;
3719
3720 /* create gendisk info */
3721 disk = alloc_disk(single_major ?
3722 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3723 RBD_MINORS_PER_MAJOR);
3724 if (!disk)
3725 return -ENOMEM;
3726
3727 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3728 rbd_dev->dev_id);
3729 disk->major = rbd_dev->major;
3730 disk->first_minor = rbd_dev->minor;
3731 if (single_major)
3732 disk->flags |= GENHD_FL_EXT_DEVT;
3733 disk->fops = &rbd_bd_ops;
3734 disk->private_data = rbd_dev;
3735
3736 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3737 rbd_dev->tag_set.ops = &rbd_mq_ops;
3738 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3739 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3740 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3741 rbd_dev->tag_set.nr_hw_queues = 1;
3742 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3743
3744 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3745 if (err)
3746 goto out_disk;
3747
3748 q = blk_mq_init_queue(&rbd_dev->tag_set);
3749 if (IS_ERR(q)) {
3750 err = PTR_ERR(q);
3751 goto out_tag_set;
3752 }
3753
3754 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3755 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3756
3757 /* set io sizes to object size */
3758 segment_size = rbd_obj_bytes(&rbd_dev->header);
3759 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3760 q->limits.max_sectors = queue_max_hw_sectors(q);
3761 blk_queue_max_segments(q, USHRT_MAX);
3762 blk_queue_max_segment_size(q, segment_size);
3763 blk_queue_io_min(q, segment_size);
3764 blk_queue_io_opt(q, segment_size);
3765
3766 /* enable the discard support */
3767 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3768 q->limits.discard_granularity = segment_size;
3769 q->limits.discard_alignment = segment_size;
3770 blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
3771 q->limits.discard_zeroes_data = 1;
3772
3773 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
3774 q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES;
3775
3776 disk->queue = q;
3777
3778 q->queuedata = rbd_dev;
3779
3780 rbd_dev->disk = disk;
3781
3782 return 0;
3783 out_tag_set:
3784 blk_mq_free_tag_set(&rbd_dev->tag_set);
3785 out_disk:
3786 put_disk(disk);
3787 return err;
3788 }
3789
3790 /*
3791 sysfs
3792 */
3793
dev_to_rbd_dev(struct device * dev)3794 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3795 {
3796 return container_of(dev, struct rbd_device, dev);
3797 }
3798
rbd_size_show(struct device * dev,struct device_attribute * attr,char * buf)3799 static ssize_t rbd_size_show(struct device *dev,
3800 struct device_attribute *attr, char *buf)
3801 {
3802 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3803
3804 return sprintf(buf, "%llu\n",
3805 (unsigned long long)rbd_dev->mapping.size);
3806 }
3807
3808 /*
3809 * Note this shows the features for whatever's mapped, which is not
3810 * necessarily the base image.
3811 */
rbd_features_show(struct device * dev,struct device_attribute * attr,char * buf)3812 static ssize_t rbd_features_show(struct device *dev,
3813 struct device_attribute *attr, char *buf)
3814 {
3815 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3816
3817 return sprintf(buf, "0x%016llx\n",
3818 (unsigned long long)rbd_dev->mapping.features);
3819 }
3820
rbd_major_show(struct device * dev,struct device_attribute * attr,char * buf)3821 static ssize_t rbd_major_show(struct device *dev,
3822 struct device_attribute *attr, char *buf)
3823 {
3824 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3825
3826 if (rbd_dev->major)
3827 return sprintf(buf, "%d\n", rbd_dev->major);
3828
3829 return sprintf(buf, "(none)\n");
3830 }
3831
rbd_minor_show(struct device * dev,struct device_attribute * attr,char * buf)3832 static ssize_t rbd_minor_show(struct device *dev,
3833 struct device_attribute *attr, char *buf)
3834 {
3835 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3836
3837 return sprintf(buf, "%d\n", rbd_dev->minor);
3838 }
3839
rbd_client_id_show(struct device * dev,struct device_attribute * attr,char * buf)3840 static ssize_t rbd_client_id_show(struct device *dev,
3841 struct device_attribute *attr, char *buf)
3842 {
3843 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3844
3845 return sprintf(buf, "client%lld\n",
3846 ceph_client_id(rbd_dev->rbd_client->client));
3847 }
3848
rbd_pool_show(struct device * dev,struct device_attribute * attr,char * buf)3849 static ssize_t rbd_pool_show(struct device *dev,
3850 struct device_attribute *attr, char *buf)
3851 {
3852 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3853
3854 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3855 }
3856
rbd_pool_id_show(struct device * dev,struct device_attribute * attr,char * buf)3857 static ssize_t rbd_pool_id_show(struct device *dev,
3858 struct device_attribute *attr, char *buf)
3859 {
3860 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3861
3862 return sprintf(buf, "%llu\n",
3863 (unsigned long long) rbd_dev->spec->pool_id);
3864 }
3865
rbd_name_show(struct device * dev,struct device_attribute * attr,char * buf)3866 static ssize_t rbd_name_show(struct device *dev,
3867 struct device_attribute *attr, char *buf)
3868 {
3869 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3870
3871 if (rbd_dev->spec->image_name)
3872 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3873
3874 return sprintf(buf, "(unknown)\n");
3875 }
3876
rbd_image_id_show(struct device * dev,struct device_attribute * attr,char * buf)3877 static ssize_t rbd_image_id_show(struct device *dev,
3878 struct device_attribute *attr, char *buf)
3879 {
3880 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3881
3882 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3883 }
3884
3885 /*
3886 * Shows the name of the currently-mapped snapshot (or
3887 * RBD_SNAP_HEAD_NAME for the base image).
3888 */
rbd_snap_show(struct device * dev,struct device_attribute * attr,char * buf)3889 static ssize_t rbd_snap_show(struct device *dev,
3890 struct device_attribute *attr,
3891 char *buf)
3892 {
3893 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3894
3895 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3896 }
3897
3898 /*
3899 * For a v2 image, shows the chain of parent images, separated by empty
3900 * lines. For v1 images or if there is no parent, shows "(no parent
3901 * image)".
3902 */
rbd_parent_show(struct device * dev,struct device_attribute * attr,char * buf)3903 static ssize_t rbd_parent_show(struct device *dev,
3904 struct device_attribute *attr,
3905 char *buf)
3906 {
3907 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3908 ssize_t count = 0;
3909
3910 if (!rbd_dev->parent)
3911 return sprintf(buf, "(no parent image)\n");
3912
3913 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3914 struct rbd_spec *spec = rbd_dev->parent_spec;
3915
3916 count += sprintf(&buf[count], "%s"
3917 "pool_id %llu\npool_name %s\n"
3918 "image_id %s\nimage_name %s\n"
3919 "snap_id %llu\nsnap_name %s\n"
3920 "overlap %llu\n",
3921 !count ? "" : "\n", /* first? */
3922 spec->pool_id, spec->pool_name,
3923 spec->image_id, spec->image_name ?: "(unknown)",
3924 spec->snap_id, spec->snap_name,
3925 rbd_dev->parent_overlap);
3926 }
3927
3928 return count;
3929 }
3930
rbd_image_refresh(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)3931 static ssize_t rbd_image_refresh(struct device *dev,
3932 struct device_attribute *attr,
3933 const char *buf,
3934 size_t size)
3935 {
3936 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3937 int ret;
3938
3939 if (!capable(CAP_SYS_ADMIN))
3940 return -EPERM;
3941
3942 ret = rbd_dev_refresh(rbd_dev);
3943 if (ret)
3944 return ret;
3945
3946 return size;
3947 }
3948
3949 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3950 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3951 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3952 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3953 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3954 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3955 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3956 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3957 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3958 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3959 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3960 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3961
3962 static struct attribute *rbd_attrs[] = {
3963 &dev_attr_size.attr,
3964 &dev_attr_features.attr,
3965 &dev_attr_major.attr,
3966 &dev_attr_minor.attr,
3967 &dev_attr_client_id.attr,
3968 &dev_attr_pool.attr,
3969 &dev_attr_pool_id.attr,
3970 &dev_attr_name.attr,
3971 &dev_attr_image_id.attr,
3972 &dev_attr_current_snap.attr,
3973 &dev_attr_parent.attr,
3974 &dev_attr_refresh.attr,
3975 NULL
3976 };
3977
3978 static struct attribute_group rbd_attr_group = {
3979 .attrs = rbd_attrs,
3980 };
3981
3982 static const struct attribute_group *rbd_attr_groups[] = {
3983 &rbd_attr_group,
3984 NULL
3985 };
3986
3987 static void rbd_dev_release(struct device *dev);
3988
3989 static struct device_type rbd_device_type = {
3990 .name = "rbd",
3991 .groups = rbd_attr_groups,
3992 .release = rbd_dev_release,
3993 };
3994
rbd_spec_get(struct rbd_spec * spec)3995 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3996 {
3997 kref_get(&spec->kref);
3998
3999 return spec;
4000 }
4001
4002 static void rbd_spec_free(struct kref *kref);
rbd_spec_put(struct rbd_spec * spec)4003 static void rbd_spec_put(struct rbd_spec *spec)
4004 {
4005 if (spec)
4006 kref_put(&spec->kref, rbd_spec_free);
4007 }
4008
rbd_spec_alloc(void)4009 static struct rbd_spec *rbd_spec_alloc(void)
4010 {
4011 struct rbd_spec *spec;
4012
4013 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4014 if (!spec)
4015 return NULL;
4016
4017 spec->pool_id = CEPH_NOPOOL;
4018 spec->snap_id = CEPH_NOSNAP;
4019 kref_init(&spec->kref);
4020
4021 return spec;
4022 }
4023
rbd_spec_free(struct kref * kref)4024 static void rbd_spec_free(struct kref *kref)
4025 {
4026 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4027
4028 kfree(spec->pool_name);
4029 kfree(spec->image_id);
4030 kfree(spec->image_name);
4031 kfree(spec->snap_name);
4032 kfree(spec);
4033 }
4034
rbd_dev_release(struct device * dev)4035 static void rbd_dev_release(struct device *dev)
4036 {
4037 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4038 bool need_put = !!rbd_dev->opts;
4039
4040 rbd_put_client(rbd_dev->rbd_client);
4041 rbd_spec_put(rbd_dev->spec);
4042 kfree(rbd_dev->opts);
4043 kfree(rbd_dev);
4044
4045 /*
4046 * This is racy, but way better than putting module outside of
4047 * the release callback. The race window is pretty small, so
4048 * doing something similar to dm (dm-builtin.c) is overkill.
4049 */
4050 if (need_put)
4051 module_put(THIS_MODULE);
4052 }
4053
rbd_dev_create(struct rbd_client * rbdc,struct rbd_spec * spec,struct rbd_options * opts)4054 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4055 struct rbd_spec *spec,
4056 struct rbd_options *opts)
4057 {
4058 struct rbd_device *rbd_dev;
4059
4060 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4061 if (!rbd_dev)
4062 return NULL;
4063
4064 spin_lock_init(&rbd_dev->lock);
4065 rbd_dev->flags = 0;
4066 atomic_set(&rbd_dev->parent_ref, 0);
4067 INIT_LIST_HEAD(&rbd_dev->node);
4068 init_rwsem(&rbd_dev->header_rwsem);
4069
4070 rbd_dev->dev.bus = &rbd_bus_type;
4071 rbd_dev->dev.type = &rbd_device_type;
4072 rbd_dev->dev.parent = &rbd_root_dev;
4073 device_initialize(&rbd_dev->dev);
4074
4075 rbd_dev->rbd_client = rbdc;
4076 rbd_dev->spec = spec;
4077 rbd_dev->opts = opts;
4078
4079 /* Initialize the layout used for all rbd requests */
4080
4081 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4082 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4083 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4084 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4085
4086 /*
4087 * If this is a mapping rbd_dev (as opposed to a parent one),
4088 * pin our module. We have a ref from do_rbd_add(), so use
4089 * __module_get().
4090 */
4091 if (rbd_dev->opts)
4092 __module_get(THIS_MODULE);
4093
4094 return rbd_dev;
4095 }
4096
rbd_dev_destroy(struct rbd_device * rbd_dev)4097 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4098 {
4099 if (rbd_dev)
4100 put_device(&rbd_dev->dev);
4101 }
4102
4103 /*
4104 * Get the size and object order for an image snapshot, or if
4105 * snap_id is CEPH_NOSNAP, gets this information for the base
4106 * image.
4107 */
_rbd_dev_v2_snap_size(struct rbd_device * rbd_dev,u64 snap_id,u8 * order,u64 * snap_size)4108 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4109 u8 *order, u64 *snap_size)
4110 {
4111 __le64 snapid = cpu_to_le64(snap_id);
4112 int ret;
4113 struct {
4114 u8 order;
4115 __le64 size;
4116 } __attribute__ ((packed)) size_buf = { 0 };
4117
4118 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4119 "rbd", "get_size",
4120 &snapid, sizeof (snapid),
4121 &size_buf, sizeof (size_buf));
4122 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4123 if (ret < 0)
4124 return ret;
4125 if (ret < sizeof (size_buf))
4126 return -ERANGE;
4127
4128 if (order) {
4129 *order = size_buf.order;
4130 dout(" order %u", (unsigned int)*order);
4131 }
4132 *snap_size = le64_to_cpu(size_buf.size);
4133
4134 dout(" snap_id 0x%016llx snap_size = %llu\n",
4135 (unsigned long long)snap_id,
4136 (unsigned long long)*snap_size);
4137
4138 return 0;
4139 }
4140
rbd_dev_v2_image_size(struct rbd_device * rbd_dev)4141 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4142 {
4143 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4144 &rbd_dev->header.obj_order,
4145 &rbd_dev->header.image_size);
4146 }
4147
rbd_dev_v2_object_prefix(struct rbd_device * rbd_dev)4148 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4149 {
4150 void *reply_buf;
4151 int ret;
4152 void *p;
4153
4154 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4155 if (!reply_buf)
4156 return -ENOMEM;
4157
4158 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4159 "rbd", "get_object_prefix", NULL, 0,
4160 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4161 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4162 if (ret < 0)
4163 goto out;
4164
4165 p = reply_buf;
4166 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4167 p + ret, NULL, GFP_NOIO);
4168 ret = 0;
4169
4170 if (IS_ERR(rbd_dev->header.object_prefix)) {
4171 ret = PTR_ERR(rbd_dev->header.object_prefix);
4172 rbd_dev->header.object_prefix = NULL;
4173 } else {
4174 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
4175 }
4176 out:
4177 kfree(reply_buf);
4178
4179 return ret;
4180 }
4181
_rbd_dev_v2_snap_features(struct rbd_device * rbd_dev,u64 snap_id,u64 * snap_features)4182 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4183 u64 *snap_features)
4184 {
4185 __le64 snapid = cpu_to_le64(snap_id);
4186 struct {
4187 __le64 features;
4188 __le64 incompat;
4189 } __attribute__ ((packed)) features_buf = { 0 };
4190 u64 incompat;
4191 int ret;
4192
4193 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4194 "rbd", "get_features",
4195 &snapid, sizeof (snapid),
4196 &features_buf, sizeof (features_buf));
4197 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4198 if (ret < 0)
4199 return ret;
4200 if (ret < sizeof (features_buf))
4201 return -ERANGE;
4202
4203 incompat = le64_to_cpu(features_buf.incompat);
4204 if (incompat & ~RBD_FEATURES_SUPPORTED)
4205 return -ENXIO;
4206
4207 *snap_features = le64_to_cpu(features_buf.features);
4208
4209 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4210 (unsigned long long)snap_id,
4211 (unsigned long long)*snap_features,
4212 (unsigned long long)le64_to_cpu(features_buf.incompat));
4213
4214 return 0;
4215 }
4216
rbd_dev_v2_features(struct rbd_device * rbd_dev)4217 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4218 {
4219 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4220 &rbd_dev->header.features);
4221 }
4222
rbd_dev_v2_parent_info(struct rbd_device * rbd_dev)4223 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4224 {
4225 struct rbd_spec *parent_spec;
4226 size_t size;
4227 void *reply_buf = NULL;
4228 __le64 snapid;
4229 void *p;
4230 void *end;
4231 u64 pool_id;
4232 char *image_id;
4233 u64 snap_id;
4234 u64 overlap;
4235 int ret;
4236
4237 parent_spec = rbd_spec_alloc();
4238 if (!parent_spec)
4239 return -ENOMEM;
4240
4241 size = sizeof (__le64) + /* pool_id */
4242 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
4243 sizeof (__le64) + /* snap_id */
4244 sizeof (__le64); /* overlap */
4245 reply_buf = kmalloc(size, GFP_KERNEL);
4246 if (!reply_buf) {
4247 ret = -ENOMEM;
4248 goto out_err;
4249 }
4250
4251 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4252 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4253 "rbd", "get_parent",
4254 &snapid, sizeof (snapid),
4255 reply_buf, size);
4256 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4257 if (ret < 0)
4258 goto out_err;
4259
4260 p = reply_buf;
4261 end = reply_buf + ret;
4262 ret = -ERANGE;
4263 ceph_decode_64_safe(&p, end, pool_id, out_err);
4264 if (pool_id == CEPH_NOPOOL) {
4265 /*
4266 * Either the parent never existed, or we have
4267 * record of it but the image got flattened so it no
4268 * longer has a parent. When the parent of a
4269 * layered image disappears we immediately set the
4270 * overlap to 0. The effect of this is that all new
4271 * requests will be treated as if the image had no
4272 * parent.
4273 */
4274 if (rbd_dev->parent_overlap) {
4275 rbd_dev->parent_overlap = 0;
4276 rbd_dev_parent_put(rbd_dev);
4277 pr_info("%s: clone image has been flattened\n",
4278 rbd_dev->disk->disk_name);
4279 }
4280
4281 goto out; /* No parent? No problem. */
4282 }
4283
4284 /* The ceph file layout needs to fit pool id in 32 bits */
4285
4286 ret = -EIO;
4287 if (pool_id > (u64)U32_MAX) {
4288 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4289 (unsigned long long)pool_id, U32_MAX);
4290 goto out_err;
4291 }
4292
4293 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4294 if (IS_ERR(image_id)) {
4295 ret = PTR_ERR(image_id);
4296 goto out_err;
4297 }
4298 ceph_decode_64_safe(&p, end, snap_id, out_err);
4299 ceph_decode_64_safe(&p, end, overlap, out_err);
4300
4301 /*
4302 * The parent won't change (except when the clone is
4303 * flattened, already handled that). So we only need to
4304 * record the parent spec we have not already done so.
4305 */
4306 if (!rbd_dev->parent_spec) {
4307 parent_spec->pool_id = pool_id;
4308 parent_spec->image_id = image_id;
4309 parent_spec->snap_id = snap_id;
4310 rbd_dev->parent_spec = parent_spec;
4311 parent_spec = NULL; /* rbd_dev now owns this */
4312 } else {
4313 kfree(image_id);
4314 }
4315
4316 /*
4317 * We always update the parent overlap. If it's zero we issue
4318 * a warning, as we will proceed as if there was no parent.
4319 */
4320 if (!overlap) {
4321 if (parent_spec) {
4322 /* refresh, careful to warn just once */
4323 if (rbd_dev->parent_overlap)
4324 rbd_warn(rbd_dev,
4325 "clone now standalone (overlap became 0)");
4326 } else {
4327 /* initial probe */
4328 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4329 }
4330 }
4331 rbd_dev->parent_overlap = overlap;
4332
4333 out:
4334 ret = 0;
4335 out_err:
4336 kfree(reply_buf);
4337 rbd_spec_put(parent_spec);
4338
4339 return ret;
4340 }
4341
rbd_dev_v2_striping_info(struct rbd_device * rbd_dev)4342 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4343 {
4344 struct {
4345 __le64 stripe_unit;
4346 __le64 stripe_count;
4347 } __attribute__ ((packed)) striping_info_buf = { 0 };
4348 size_t size = sizeof (striping_info_buf);
4349 void *p;
4350 u64 obj_size;
4351 u64 stripe_unit;
4352 u64 stripe_count;
4353 int ret;
4354
4355 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4356 "rbd", "get_stripe_unit_count", NULL, 0,
4357 (char *)&striping_info_buf, size);
4358 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4359 if (ret < 0)
4360 return ret;
4361 if (ret < size)
4362 return -ERANGE;
4363
4364 /*
4365 * We don't actually support the "fancy striping" feature
4366 * (STRIPINGV2) yet, but if the striping sizes are the
4367 * defaults the behavior is the same as before. So find
4368 * out, and only fail if the image has non-default values.
4369 */
4370 ret = -EINVAL;
4371 obj_size = (u64)1 << rbd_dev->header.obj_order;
4372 p = &striping_info_buf;
4373 stripe_unit = ceph_decode_64(&p);
4374 if (stripe_unit != obj_size) {
4375 rbd_warn(rbd_dev, "unsupported stripe unit "
4376 "(got %llu want %llu)",
4377 stripe_unit, obj_size);
4378 return -EINVAL;
4379 }
4380 stripe_count = ceph_decode_64(&p);
4381 if (stripe_count != 1) {
4382 rbd_warn(rbd_dev, "unsupported stripe count "
4383 "(got %llu want 1)", stripe_count);
4384 return -EINVAL;
4385 }
4386 rbd_dev->header.stripe_unit = stripe_unit;
4387 rbd_dev->header.stripe_count = stripe_count;
4388
4389 return 0;
4390 }
4391
rbd_dev_image_name(struct rbd_device * rbd_dev)4392 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4393 {
4394 size_t image_id_size;
4395 char *image_id;
4396 void *p;
4397 void *end;
4398 size_t size;
4399 void *reply_buf = NULL;
4400 size_t len = 0;
4401 char *image_name = NULL;
4402 int ret;
4403
4404 rbd_assert(!rbd_dev->spec->image_name);
4405
4406 len = strlen(rbd_dev->spec->image_id);
4407 image_id_size = sizeof (__le32) + len;
4408 image_id = kmalloc(image_id_size, GFP_KERNEL);
4409 if (!image_id)
4410 return NULL;
4411
4412 p = image_id;
4413 end = image_id + image_id_size;
4414 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4415
4416 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4417 reply_buf = kmalloc(size, GFP_KERNEL);
4418 if (!reply_buf)
4419 goto out;
4420
4421 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4422 "rbd", "dir_get_name",
4423 image_id, image_id_size,
4424 reply_buf, size);
4425 if (ret < 0)
4426 goto out;
4427 p = reply_buf;
4428 end = reply_buf + ret;
4429
4430 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4431 if (IS_ERR(image_name))
4432 image_name = NULL;
4433 else
4434 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4435 out:
4436 kfree(reply_buf);
4437 kfree(image_id);
4438
4439 return image_name;
4440 }
4441
rbd_v1_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)4442 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4443 {
4444 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4445 const char *snap_name;
4446 u32 which = 0;
4447
4448 /* Skip over names until we find the one we are looking for */
4449
4450 snap_name = rbd_dev->header.snap_names;
4451 while (which < snapc->num_snaps) {
4452 if (!strcmp(name, snap_name))
4453 return snapc->snaps[which];
4454 snap_name += strlen(snap_name) + 1;
4455 which++;
4456 }
4457 return CEPH_NOSNAP;
4458 }
4459
rbd_v2_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)4460 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4461 {
4462 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4463 u32 which;
4464 bool found = false;
4465 u64 snap_id;
4466
4467 for (which = 0; !found && which < snapc->num_snaps; which++) {
4468 const char *snap_name;
4469
4470 snap_id = snapc->snaps[which];
4471 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4472 if (IS_ERR(snap_name)) {
4473 /* ignore no-longer existing snapshots */
4474 if (PTR_ERR(snap_name) == -ENOENT)
4475 continue;
4476 else
4477 break;
4478 }
4479 found = !strcmp(name, snap_name);
4480 kfree(snap_name);
4481 }
4482 return found ? snap_id : CEPH_NOSNAP;
4483 }
4484
4485 /*
4486 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4487 * no snapshot by that name is found, or if an error occurs.
4488 */
rbd_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)4489 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4490 {
4491 if (rbd_dev->image_format == 1)
4492 return rbd_v1_snap_id_by_name(rbd_dev, name);
4493
4494 return rbd_v2_snap_id_by_name(rbd_dev, name);
4495 }
4496
4497 /*
4498 * An image being mapped will have everything but the snap id.
4499 */
rbd_spec_fill_snap_id(struct rbd_device * rbd_dev)4500 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4501 {
4502 struct rbd_spec *spec = rbd_dev->spec;
4503
4504 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4505 rbd_assert(spec->image_id && spec->image_name);
4506 rbd_assert(spec->snap_name);
4507
4508 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4509 u64 snap_id;
4510
4511 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4512 if (snap_id == CEPH_NOSNAP)
4513 return -ENOENT;
4514
4515 spec->snap_id = snap_id;
4516 } else {
4517 spec->snap_id = CEPH_NOSNAP;
4518 }
4519
4520 return 0;
4521 }
4522
4523 /*
4524 * A parent image will have all ids but none of the names.
4525 *
4526 * All names in an rbd spec are dynamically allocated. It's OK if we
4527 * can't figure out the name for an image id.
4528 */
rbd_spec_fill_names(struct rbd_device * rbd_dev)4529 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4530 {
4531 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4532 struct rbd_spec *spec = rbd_dev->spec;
4533 const char *pool_name;
4534 const char *image_name;
4535 const char *snap_name;
4536 int ret;
4537
4538 rbd_assert(spec->pool_id != CEPH_NOPOOL);
4539 rbd_assert(spec->image_id);
4540 rbd_assert(spec->snap_id != CEPH_NOSNAP);
4541
4542 /* Get the pool name; we have to make our own copy of this */
4543
4544 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4545 if (!pool_name) {
4546 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4547 return -EIO;
4548 }
4549 pool_name = kstrdup(pool_name, GFP_KERNEL);
4550 if (!pool_name)
4551 return -ENOMEM;
4552
4553 /* Fetch the image name; tolerate failure here */
4554
4555 image_name = rbd_dev_image_name(rbd_dev);
4556 if (!image_name)
4557 rbd_warn(rbd_dev, "unable to get image name");
4558
4559 /* Fetch the snapshot name */
4560
4561 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4562 if (IS_ERR(snap_name)) {
4563 ret = PTR_ERR(snap_name);
4564 goto out_err;
4565 }
4566
4567 spec->pool_name = pool_name;
4568 spec->image_name = image_name;
4569 spec->snap_name = snap_name;
4570
4571 return 0;
4572
4573 out_err:
4574 kfree(image_name);
4575 kfree(pool_name);
4576 return ret;
4577 }
4578
rbd_dev_v2_snap_context(struct rbd_device * rbd_dev)4579 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4580 {
4581 size_t size;
4582 int ret;
4583 void *reply_buf;
4584 void *p;
4585 void *end;
4586 u64 seq;
4587 u32 snap_count;
4588 struct ceph_snap_context *snapc;
4589 u32 i;
4590
4591 /*
4592 * We'll need room for the seq value (maximum snapshot id),
4593 * snapshot count, and array of that many snapshot ids.
4594 * For now we have a fixed upper limit on the number we're
4595 * prepared to receive.
4596 */
4597 size = sizeof (__le64) + sizeof (__le32) +
4598 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4599 reply_buf = kzalloc(size, GFP_KERNEL);
4600 if (!reply_buf)
4601 return -ENOMEM;
4602
4603 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4604 "rbd", "get_snapcontext", NULL, 0,
4605 reply_buf, size);
4606 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4607 if (ret < 0)
4608 goto out;
4609
4610 p = reply_buf;
4611 end = reply_buf + ret;
4612 ret = -ERANGE;
4613 ceph_decode_64_safe(&p, end, seq, out);
4614 ceph_decode_32_safe(&p, end, snap_count, out);
4615
4616 /*
4617 * Make sure the reported number of snapshot ids wouldn't go
4618 * beyond the end of our buffer. But before checking that,
4619 * make sure the computed size of the snapshot context we
4620 * allocate is representable in a size_t.
4621 */
4622 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4623 / sizeof (u64)) {
4624 ret = -EINVAL;
4625 goto out;
4626 }
4627 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4628 goto out;
4629 ret = 0;
4630
4631 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4632 if (!snapc) {
4633 ret = -ENOMEM;
4634 goto out;
4635 }
4636 snapc->seq = seq;
4637 for (i = 0; i < snap_count; i++)
4638 snapc->snaps[i] = ceph_decode_64(&p);
4639
4640 ceph_put_snap_context(rbd_dev->header.snapc);
4641 rbd_dev->header.snapc = snapc;
4642
4643 dout(" snap context seq = %llu, snap_count = %u\n",
4644 (unsigned long long)seq, (unsigned int)snap_count);
4645 out:
4646 kfree(reply_buf);
4647
4648 return ret;
4649 }
4650
rbd_dev_v2_snap_name(struct rbd_device * rbd_dev,u64 snap_id)4651 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4652 u64 snap_id)
4653 {
4654 size_t size;
4655 void *reply_buf;
4656 __le64 snapid;
4657 int ret;
4658 void *p;
4659 void *end;
4660 char *snap_name;
4661
4662 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4663 reply_buf = kmalloc(size, GFP_KERNEL);
4664 if (!reply_buf)
4665 return ERR_PTR(-ENOMEM);
4666
4667 snapid = cpu_to_le64(snap_id);
4668 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4669 "rbd", "get_snapshot_name",
4670 &snapid, sizeof (snapid),
4671 reply_buf, size);
4672 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4673 if (ret < 0) {
4674 snap_name = ERR_PTR(ret);
4675 goto out;
4676 }
4677
4678 p = reply_buf;
4679 end = reply_buf + ret;
4680 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4681 if (IS_ERR(snap_name))
4682 goto out;
4683
4684 dout(" snap_id 0x%016llx snap_name = %s\n",
4685 (unsigned long long)snap_id, snap_name);
4686 out:
4687 kfree(reply_buf);
4688
4689 return snap_name;
4690 }
4691
rbd_dev_v2_header_info(struct rbd_device * rbd_dev)4692 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4693 {
4694 bool first_time = rbd_dev->header.object_prefix == NULL;
4695 int ret;
4696
4697 ret = rbd_dev_v2_image_size(rbd_dev);
4698 if (ret)
4699 return ret;
4700
4701 if (first_time) {
4702 ret = rbd_dev_v2_header_onetime(rbd_dev);
4703 if (ret)
4704 return ret;
4705 }
4706
4707 ret = rbd_dev_v2_snap_context(rbd_dev);
4708 if (ret && first_time) {
4709 kfree(rbd_dev->header.object_prefix);
4710 rbd_dev->header.object_prefix = NULL;
4711 }
4712
4713 return ret;
4714 }
4715
rbd_dev_header_info(struct rbd_device * rbd_dev)4716 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4717 {
4718 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4719
4720 if (rbd_dev->image_format == 1)
4721 return rbd_dev_v1_header_info(rbd_dev);
4722
4723 return rbd_dev_v2_header_info(rbd_dev);
4724 }
4725
4726 /*
4727 * Get a unique rbd identifier for the given new rbd_dev, and add
4728 * the rbd_dev to the global list.
4729 */
rbd_dev_id_get(struct rbd_device * rbd_dev)4730 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4731 {
4732 int new_dev_id;
4733
4734 new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4735 0, minor_to_rbd_dev_id(1 << MINORBITS),
4736 GFP_KERNEL);
4737 if (new_dev_id < 0)
4738 return new_dev_id;
4739
4740 rbd_dev->dev_id = new_dev_id;
4741
4742 spin_lock(&rbd_dev_list_lock);
4743 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4744 spin_unlock(&rbd_dev_list_lock);
4745
4746 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4747
4748 return 0;
4749 }
4750
4751 /*
4752 * Remove an rbd_dev from the global list, and record that its
4753 * identifier is no longer in use.
4754 */
rbd_dev_id_put(struct rbd_device * rbd_dev)4755 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4756 {
4757 spin_lock(&rbd_dev_list_lock);
4758 list_del_init(&rbd_dev->node);
4759 spin_unlock(&rbd_dev_list_lock);
4760
4761 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4762
4763 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4764 }
4765
4766 /*
4767 * Skips over white space at *buf, and updates *buf to point to the
4768 * first found non-space character (if any). Returns the length of
4769 * the token (string of non-white space characters) found. Note
4770 * that *buf must be terminated with '\0'.
4771 */
next_token(const char ** buf)4772 static inline size_t next_token(const char **buf)
4773 {
4774 /*
4775 * These are the characters that produce nonzero for
4776 * isspace() in the "C" and "POSIX" locales.
4777 */
4778 const char *spaces = " \f\n\r\t\v";
4779
4780 *buf += strspn(*buf, spaces); /* Find start of token */
4781
4782 return strcspn(*buf, spaces); /* Return token length */
4783 }
4784
4785 /*
4786 * Finds the next token in *buf, dynamically allocates a buffer big
4787 * enough to hold a copy of it, and copies the token into the new
4788 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4789 * that a duplicate buffer is created even for a zero-length token.
4790 *
4791 * Returns a pointer to the newly-allocated duplicate, or a null
4792 * pointer if memory for the duplicate was not available. If
4793 * the lenp argument is a non-null pointer, the length of the token
4794 * (not including the '\0') is returned in *lenp.
4795 *
4796 * If successful, the *buf pointer will be updated to point beyond
4797 * the end of the found token.
4798 *
4799 * Note: uses GFP_KERNEL for allocation.
4800 */
dup_token(const char ** buf,size_t * lenp)4801 static inline char *dup_token(const char **buf, size_t *lenp)
4802 {
4803 char *dup;
4804 size_t len;
4805
4806 len = next_token(buf);
4807 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4808 if (!dup)
4809 return NULL;
4810 *(dup + len) = '\0';
4811 *buf += len;
4812
4813 if (lenp)
4814 *lenp = len;
4815
4816 return dup;
4817 }
4818
4819 /*
4820 * Parse the options provided for an "rbd add" (i.e., rbd image
4821 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4822 * and the data written is passed here via a NUL-terminated buffer.
4823 * Returns 0 if successful or an error code otherwise.
4824 *
4825 * The information extracted from these options is recorded in
4826 * the other parameters which return dynamically-allocated
4827 * structures:
4828 * ceph_opts
4829 * The address of a pointer that will refer to a ceph options
4830 * structure. Caller must release the returned pointer using
4831 * ceph_destroy_options() when it is no longer needed.
4832 * rbd_opts
4833 * Address of an rbd options pointer. Fully initialized by
4834 * this function; caller must release with kfree().
4835 * spec
4836 * Address of an rbd image specification pointer. Fully
4837 * initialized by this function based on parsed options.
4838 * Caller must release with rbd_spec_put().
4839 *
4840 * The options passed take this form:
4841 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4842 * where:
4843 * <mon_addrs>
4844 * A comma-separated list of one or more monitor addresses.
4845 * A monitor address is an ip address, optionally followed
4846 * by a port number (separated by a colon).
4847 * I.e.: ip1[:port1][,ip2[:port2]...]
4848 * <options>
4849 * A comma-separated list of ceph and/or rbd options.
4850 * <pool_name>
4851 * The name of the rados pool containing the rbd image.
4852 * <image_name>
4853 * The name of the image in that pool to map.
4854 * <snap_id>
4855 * An optional snapshot id. If provided, the mapping will
4856 * present data from the image at the time that snapshot was
4857 * created. The image head is used if no snapshot id is
4858 * provided. Snapshot mappings are always read-only.
4859 */
rbd_add_parse_args(const char * buf,struct ceph_options ** ceph_opts,struct rbd_options ** opts,struct rbd_spec ** rbd_spec)4860 static int rbd_add_parse_args(const char *buf,
4861 struct ceph_options **ceph_opts,
4862 struct rbd_options **opts,
4863 struct rbd_spec **rbd_spec)
4864 {
4865 size_t len;
4866 char *options;
4867 const char *mon_addrs;
4868 char *snap_name;
4869 size_t mon_addrs_size;
4870 struct rbd_spec *spec = NULL;
4871 struct rbd_options *rbd_opts = NULL;
4872 struct ceph_options *copts;
4873 int ret;
4874
4875 /* The first four tokens are required */
4876
4877 len = next_token(&buf);
4878 if (!len) {
4879 rbd_warn(NULL, "no monitor address(es) provided");
4880 return -EINVAL;
4881 }
4882 mon_addrs = buf;
4883 mon_addrs_size = len + 1;
4884 buf += len;
4885
4886 ret = -EINVAL;
4887 options = dup_token(&buf, NULL);
4888 if (!options)
4889 return -ENOMEM;
4890 if (!*options) {
4891 rbd_warn(NULL, "no options provided");
4892 goto out_err;
4893 }
4894
4895 spec = rbd_spec_alloc();
4896 if (!spec)
4897 goto out_mem;
4898
4899 spec->pool_name = dup_token(&buf, NULL);
4900 if (!spec->pool_name)
4901 goto out_mem;
4902 if (!*spec->pool_name) {
4903 rbd_warn(NULL, "no pool name provided");
4904 goto out_err;
4905 }
4906
4907 spec->image_name = dup_token(&buf, NULL);
4908 if (!spec->image_name)
4909 goto out_mem;
4910 if (!*spec->image_name) {
4911 rbd_warn(NULL, "no image name provided");
4912 goto out_err;
4913 }
4914
4915 /*
4916 * Snapshot name is optional; default is to use "-"
4917 * (indicating the head/no snapshot).
4918 */
4919 len = next_token(&buf);
4920 if (!len) {
4921 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4922 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4923 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4924 ret = -ENAMETOOLONG;
4925 goto out_err;
4926 }
4927 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4928 if (!snap_name)
4929 goto out_mem;
4930 *(snap_name + len) = '\0';
4931 spec->snap_name = snap_name;
4932
4933 /* Initialize all rbd options to the defaults */
4934
4935 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4936 if (!rbd_opts)
4937 goto out_mem;
4938
4939 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4940 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
4941
4942 copts = ceph_parse_options(options, mon_addrs,
4943 mon_addrs + mon_addrs_size - 1,
4944 parse_rbd_opts_token, rbd_opts);
4945 if (IS_ERR(copts)) {
4946 ret = PTR_ERR(copts);
4947 goto out_err;
4948 }
4949 kfree(options);
4950
4951 *ceph_opts = copts;
4952 *opts = rbd_opts;
4953 *rbd_spec = spec;
4954
4955 return 0;
4956 out_mem:
4957 ret = -ENOMEM;
4958 out_err:
4959 kfree(rbd_opts);
4960 rbd_spec_put(spec);
4961 kfree(options);
4962
4963 return ret;
4964 }
4965
4966 /*
4967 * Return pool id (>= 0) or a negative error code.
4968 */
rbd_add_get_pool_id(struct rbd_client * rbdc,const char * pool_name)4969 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4970 {
4971 struct ceph_options *opts = rbdc->client->options;
4972 u64 newest_epoch;
4973 int tries = 0;
4974 int ret;
4975
4976 again:
4977 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4978 if (ret == -ENOENT && tries++ < 1) {
4979 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4980 &newest_epoch);
4981 if (ret < 0)
4982 return ret;
4983
4984 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4985 ceph_monc_request_next_osdmap(&rbdc->client->monc);
4986 (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4987 newest_epoch,
4988 opts->mount_timeout);
4989 goto again;
4990 } else {
4991 /* the osdmap we have is new enough */
4992 return -ENOENT;
4993 }
4994 }
4995
4996 return ret;
4997 }
4998
4999 /*
5000 * An rbd format 2 image has a unique identifier, distinct from the
5001 * name given to it by the user. Internally, that identifier is
5002 * what's used to specify the names of objects related to the image.
5003 *
5004 * A special "rbd id" object is used to map an rbd image name to its
5005 * id. If that object doesn't exist, then there is no v2 rbd image
5006 * with the supplied name.
5007 *
5008 * This function will record the given rbd_dev's image_id field if
5009 * it can be determined, and in that case will return 0. If any
5010 * errors occur a negative errno will be returned and the rbd_dev's
5011 * image_id field will be unchanged (and should be NULL).
5012 */
rbd_dev_image_id(struct rbd_device * rbd_dev)5013 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5014 {
5015 int ret;
5016 size_t size;
5017 char *object_name;
5018 void *response;
5019 char *image_id;
5020
5021 /*
5022 * When probing a parent image, the image id is already
5023 * known (and the image name likely is not). There's no
5024 * need to fetch the image id again in this case. We
5025 * do still need to set the image format though.
5026 */
5027 if (rbd_dev->spec->image_id) {
5028 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5029
5030 return 0;
5031 }
5032
5033 /*
5034 * First, see if the format 2 image id file exists, and if
5035 * so, get the image's persistent id from it.
5036 */
5037 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5038 object_name = kmalloc(size, GFP_NOIO);
5039 if (!object_name)
5040 return -ENOMEM;
5041 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5042 dout("rbd id object name is %s\n", object_name);
5043
5044 /* Response will be an encoded string, which includes a length */
5045
5046 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5047 response = kzalloc(size, GFP_NOIO);
5048 if (!response) {
5049 ret = -ENOMEM;
5050 goto out;
5051 }
5052
5053 /* If it doesn't exist we'll assume it's a format 1 image */
5054
5055 ret = rbd_obj_method_sync(rbd_dev, object_name,
5056 "rbd", "get_id", NULL, 0,
5057 response, RBD_IMAGE_ID_LEN_MAX);
5058 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5059 if (ret == -ENOENT) {
5060 image_id = kstrdup("", GFP_KERNEL);
5061 ret = image_id ? 0 : -ENOMEM;
5062 if (!ret)
5063 rbd_dev->image_format = 1;
5064 } else if (ret >= 0) {
5065 void *p = response;
5066
5067 image_id = ceph_extract_encoded_string(&p, p + ret,
5068 NULL, GFP_NOIO);
5069 ret = PTR_ERR_OR_ZERO(image_id);
5070 if (!ret)
5071 rbd_dev->image_format = 2;
5072 }
5073
5074 if (!ret) {
5075 rbd_dev->spec->image_id = image_id;
5076 dout("image_id is %s\n", image_id);
5077 }
5078 out:
5079 kfree(response);
5080 kfree(object_name);
5081
5082 return ret;
5083 }
5084
5085 /*
5086 * Undo whatever state changes are made by v1 or v2 header info
5087 * call.
5088 */
rbd_dev_unprobe(struct rbd_device * rbd_dev)5089 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5090 {
5091 struct rbd_image_header *header;
5092
5093 rbd_dev_parent_put(rbd_dev);
5094
5095 /* Free dynamic fields from the header, then zero it out */
5096
5097 header = &rbd_dev->header;
5098 ceph_put_snap_context(header->snapc);
5099 kfree(header->snap_sizes);
5100 kfree(header->snap_names);
5101 kfree(header->object_prefix);
5102 memset(header, 0, sizeof (*header));
5103 }
5104
rbd_dev_v2_header_onetime(struct rbd_device * rbd_dev)5105 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5106 {
5107 int ret;
5108
5109 ret = rbd_dev_v2_object_prefix(rbd_dev);
5110 if (ret)
5111 goto out_err;
5112
5113 /*
5114 * Get the and check features for the image. Currently the
5115 * features are assumed to never change.
5116 */
5117 ret = rbd_dev_v2_features(rbd_dev);
5118 if (ret)
5119 goto out_err;
5120
5121 /* If the image supports fancy striping, get its parameters */
5122
5123 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5124 ret = rbd_dev_v2_striping_info(rbd_dev);
5125 if (ret < 0)
5126 goto out_err;
5127 }
5128 /* No support for crypto and compression type format 2 images */
5129
5130 return 0;
5131 out_err:
5132 rbd_dev->header.features = 0;
5133 kfree(rbd_dev->header.object_prefix);
5134 rbd_dev->header.object_prefix = NULL;
5135
5136 return ret;
5137 }
5138
5139 /*
5140 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5141 * rbd_dev_image_probe() recursion depth, which means it's also the
5142 * length of the already discovered part of the parent chain.
5143 */
rbd_dev_probe_parent(struct rbd_device * rbd_dev,int depth)5144 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5145 {
5146 struct rbd_device *parent = NULL;
5147 int ret;
5148
5149 if (!rbd_dev->parent_spec)
5150 return 0;
5151
5152 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5153 pr_info("parent chain is too long (%d)\n", depth);
5154 ret = -EINVAL;
5155 goto out_err;
5156 }
5157
5158 parent = rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec,
5159 NULL);
5160 if (!parent) {
5161 ret = -ENOMEM;
5162 goto out_err;
5163 }
5164
5165 /*
5166 * Images related by parent/child relationships always share
5167 * rbd_client and spec/parent_spec, so bump their refcounts.
5168 */
5169 __rbd_get_client(rbd_dev->rbd_client);
5170 rbd_spec_get(rbd_dev->parent_spec);
5171
5172 ret = rbd_dev_image_probe(parent, depth);
5173 if (ret < 0)
5174 goto out_err;
5175
5176 rbd_dev->parent = parent;
5177 atomic_set(&rbd_dev->parent_ref, 1);
5178 return 0;
5179
5180 out_err:
5181 rbd_dev_unparent(rbd_dev);
5182 if (parent)
5183 rbd_dev_destroy(parent);
5184 return ret;
5185 }
5186
rbd_dev_device_setup(struct rbd_device * rbd_dev)5187 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5188 {
5189 int ret;
5190
5191 /* Get an id and fill in device name. */
5192
5193 ret = rbd_dev_id_get(rbd_dev);
5194 if (ret)
5195 return ret;
5196
5197 BUILD_BUG_ON(DEV_NAME_LEN
5198 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5199 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5200
5201 /* Record our major and minor device numbers. */
5202
5203 if (!single_major) {
5204 ret = register_blkdev(0, rbd_dev->name);
5205 if (ret < 0)
5206 goto err_out_id;
5207
5208 rbd_dev->major = ret;
5209 rbd_dev->minor = 0;
5210 } else {
5211 rbd_dev->major = rbd_major;
5212 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5213 }
5214
5215 /* Set up the blkdev mapping. */
5216
5217 ret = rbd_init_disk(rbd_dev);
5218 if (ret)
5219 goto err_out_blkdev;
5220
5221 ret = rbd_dev_mapping_set(rbd_dev);
5222 if (ret)
5223 goto err_out_disk;
5224
5225 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5226 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5227
5228 dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5229 ret = device_add(&rbd_dev->dev);
5230 if (ret)
5231 goto err_out_mapping;
5232
5233 /* Everything's ready. Announce the disk to the world. */
5234
5235 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5236 add_disk(rbd_dev->disk);
5237
5238 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5239 (unsigned long long) rbd_dev->mapping.size);
5240
5241 return ret;
5242
5243 err_out_mapping:
5244 rbd_dev_mapping_clear(rbd_dev);
5245 err_out_disk:
5246 rbd_free_disk(rbd_dev);
5247 err_out_blkdev:
5248 if (!single_major)
5249 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5250 err_out_id:
5251 rbd_dev_id_put(rbd_dev);
5252 return ret;
5253 }
5254
rbd_dev_header_name(struct rbd_device * rbd_dev)5255 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5256 {
5257 struct rbd_spec *spec = rbd_dev->spec;
5258 size_t size;
5259
5260 /* Record the header object name for this rbd image. */
5261
5262 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5263
5264 if (rbd_dev->image_format == 1)
5265 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5266 else
5267 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5268
5269 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5270 if (!rbd_dev->header_name)
5271 return -ENOMEM;
5272
5273 if (rbd_dev->image_format == 1)
5274 sprintf(rbd_dev->header_name, "%s%s",
5275 spec->image_name, RBD_SUFFIX);
5276 else
5277 sprintf(rbd_dev->header_name, "%s%s",
5278 RBD_HEADER_PREFIX, spec->image_id);
5279 return 0;
5280 }
5281
rbd_dev_image_release(struct rbd_device * rbd_dev)5282 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5283 {
5284 rbd_dev_unprobe(rbd_dev);
5285 kfree(rbd_dev->header_name);
5286 rbd_dev->header_name = NULL;
5287 rbd_dev->image_format = 0;
5288 kfree(rbd_dev->spec->image_id);
5289 rbd_dev->spec->image_id = NULL;
5290
5291 rbd_dev_destroy(rbd_dev);
5292 }
5293
5294 /*
5295 * Probe for the existence of the header object for the given rbd
5296 * device. If this image is the one being mapped (i.e., not a
5297 * parent), initiate a watch on its header object before using that
5298 * object to get detailed information about the rbd image.
5299 */
rbd_dev_image_probe(struct rbd_device * rbd_dev,int depth)5300 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5301 {
5302 int ret;
5303
5304 /*
5305 * Get the id from the image id object. Unless there's an
5306 * error, rbd_dev->spec->image_id will be filled in with
5307 * a dynamically-allocated string, and rbd_dev->image_format
5308 * will be set to either 1 or 2.
5309 */
5310 ret = rbd_dev_image_id(rbd_dev);
5311 if (ret)
5312 return ret;
5313
5314 ret = rbd_dev_header_name(rbd_dev);
5315 if (ret)
5316 goto err_out_format;
5317
5318 if (!depth) {
5319 ret = rbd_dev_header_watch_sync(rbd_dev);
5320 if (ret) {
5321 if (ret == -ENOENT)
5322 pr_info("image %s/%s does not exist\n",
5323 rbd_dev->spec->pool_name,
5324 rbd_dev->spec->image_name);
5325 goto out_header_name;
5326 }
5327 }
5328
5329 ret = rbd_dev_header_info(rbd_dev);
5330 if (ret)
5331 goto err_out_watch;
5332
5333 /*
5334 * If this image is the one being mapped, we have pool name and
5335 * id, image name and id, and snap name - need to fill snap id.
5336 * Otherwise this is a parent image, identified by pool, image
5337 * and snap ids - need to fill in names for those ids.
5338 */
5339 if (!depth)
5340 ret = rbd_spec_fill_snap_id(rbd_dev);
5341 else
5342 ret = rbd_spec_fill_names(rbd_dev);
5343 if (ret) {
5344 if (ret == -ENOENT)
5345 pr_info("snap %s/%s@%s does not exist\n",
5346 rbd_dev->spec->pool_name,
5347 rbd_dev->spec->image_name,
5348 rbd_dev->spec->snap_name);
5349 goto err_out_probe;
5350 }
5351
5352 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5353 ret = rbd_dev_v2_parent_info(rbd_dev);
5354 if (ret)
5355 goto err_out_probe;
5356
5357 /*
5358 * Need to warn users if this image is the one being
5359 * mapped and has a parent.
5360 */
5361 if (!depth && rbd_dev->parent_spec)
5362 rbd_warn(rbd_dev,
5363 "WARNING: kernel layering is EXPERIMENTAL!");
5364 }
5365
5366 ret = rbd_dev_probe_parent(rbd_dev, depth);
5367 if (ret)
5368 goto err_out_probe;
5369
5370 dout("discovered format %u image, header name is %s\n",
5371 rbd_dev->image_format, rbd_dev->header_name);
5372 return 0;
5373
5374 err_out_probe:
5375 rbd_dev_unprobe(rbd_dev);
5376 err_out_watch:
5377 if (!depth)
5378 rbd_dev_header_unwatch_sync(rbd_dev);
5379 out_header_name:
5380 kfree(rbd_dev->header_name);
5381 rbd_dev->header_name = NULL;
5382 err_out_format:
5383 rbd_dev->image_format = 0;
5384 kfree(rbd_dev->spec->image_id);
5385 rbd_dev->spec->image_id = NULL;
5386 return ret;
5387 }
5388
do_rbd_add(struct bus_type * bus,const char * buf,size_t count)5389 static ssize_t do_rbd_add(struct bus_type *bus,
5390 const char *buf,
5391 size_t count)
5392 {
5393 struct rbd_device *rbd_dev = NULL;
5394 struct ceph_options *ceph_opts = NULL;
5395 struct rbd_options *rbd_opts = NULL;
5396 struct rbd_spec *spec = NULL;
5397 struct rbd_client *rbdc;
5398 bool read_only;
5399 int rc;
5400
5401 if (!capable(CAP_SYS_ADMIN))
5402 return -EPERM;
5403
5404 if (!try_module_get(THIS_MODULE))
5405 return -ENODEV;
5406
5407 /* parse add command */
5408 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5409 if (rc < 0)
5410 goto out;
5411
5412 rbdc = rbd_get_client(ceph_opts);
5413 if (IS_ERR(rbdc)) {
5414 rc = PTR_ERR(rbdc);
5415 goto err_out_args;
5416 }
5417
5418 /* pick the pool */
5419 rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5420 if (rc < 0) {
5421 if (rc == -ENOENT)
5422 pr_info("pool %s does not exist\n", spec->pool_name);
5423 goto err_out_client;
5424 }
5425 spec->pool_id = (u64)rc;
5426
5427 /* The ceph file layout needs to fit pool id in 32 bits */
5428
5429 if (spec->pool_id > (u64)U32_MAX) {
5430 rbd_warn(NULL, "pool id too large (%llu > %u)",
5431 (unsigned long long)spec->pool_id, U32_MAX);
5432 rc = -EIO;
5433 goto err_out_client;
5434 }
5435
5436 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5437 if (!rbd_dev) {
5438 rc = -ENOMEM;
5439 goto err_out_client;
5440 }
5441 rbdc = NULL; /* rbd_dev now owns this */
5442 spec = NULL; /* rbd_dev now owns this */
5443 rbd_opts = NULL; /* rbd_dev now owns this */
5444
5445 rc = rbd_dev_image_probe(rbd_dev, 0);
5446 if (rc < 0)
5447 goto err_out_rbd_dev;
5448
5449 /* If we are mapping a snapshot it must be marked read-only */
5450
5451 read_only = rbd_dev->opts->read_only;
5452 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5453 read_only = true;
5454 rbd_dev->mapping.read_only = read_only;
5455
5456 rc = rbd_dev_device_setup(rbd_dev);
5457 if (rc) {
5458 /*
5459 * rbd_dev_header_unwatch_sync() can't be moved into
5460 * rbd_dev_image_release() without refactoring, see
5461 * commit 1f3ef78861ac.
5462 */
5463 rbd_dev_header_unwatch_sync(rbd_dev);
5464 rbd_dev_image_release(rbd_dev);
5465 goto out;
5466 }
5467
5468 rc = count;
5469 out:
5470 module_put(THIS_MODULE);
5471 return rc;
5472
5473 err_out_rbd_dev:
5474 rbd_dev_destroy(rbd_dev);
5475 err_out_client:
5476 rbd_put_client(rbdc);
5477 err_out_args:
5478 rbd_spec_put(spec);
5479 kfree(rbd_opts);
5480 goto out;
5481 }
5482
rbd_add(struct bus_type * bus,const char * buf,size_t count)5483 static ssize_t rbd_add(struct bus_type *bus,
5484 const char *buf,
5485 size_t count)
5486 {
5487 if (single_major)
5488 return -EINVAL;
5489
5490 return do_rbd_add(bus, buf, count);
5491 }
5492
rbd_add_single_major(struct bus_type * bus,const char * buf,size_t count)5493 static ssize_t rbd_add_single_major(struct bus_type *bus,
5494 const char *buf,
5495 size_t count)
5496 {
5497 return do_rbd_add(bus, buf, count);
5498 }
5499
rbd_dev_device_release(struct rbd_device * rbd_dev)5500 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5501 {
5502 rbd_free_disk(rbd_dev);
5503 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5504 device_del(&rbd_dev->dev);
5505 rbd_dev_mapping_clear(rbd_dev);
5506 if (!single_major)
5507 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5508 rbd_dev_id_put(rbd_dev);
5509 }
5510
rbd_dev_remove_parent(struct rbd_device * rbd_dev)5511 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5512 {
5513 while (rbd_dev->parent) {
5514 struct rbd_device *first = rbd_dev;
5515 struct rbd_device *second = first->parent;
5516 struct rbd_device *third;
5517
5518 /*
5519 * Follow to the parent with no grandparent and
5520 * remove it.
5521 */
5522 while (second && (third = second->parent)) {
5523 first = second;
5524 second = third;
5525 }
5526 rbd_assert(second);
5527 rbd_dev_image_release(second);
5528 first->parent = NULL;
5529 first->parent_overlap = 0;
5530
5531 rbd_assert(first->parent_spec);
5532 rbd_spec_put(first->parent_spec);
5533 first->parent_spec = NULL;
5534 }
5535 }
5536
do_rbd_remove(struct bus_type * bus,const char * buf,size_t count)5537 static ssize_t do_rbd_remove(struct bus_type *bus,
5538 const char *buf,
5539 size_t count)
5540 {
5541 struct rbd_device *rbd_dev = NULL;
5542 struct list_head *tmp;
5543 int dev_id;
5544 unsigned long ul;
5545 bool already = false;
5546 int ret;
5547
5548 if (!capable(CAP_SYS_ADMIN))
5549 return -EPERM;
5550
5551 ret = kstrtoul(buf, 10, &ul);
5552 if (ret)
5553 return ret;
5554
5555 /* convert to int; abort if we lost anything in the conversion */
5556 dev_id = (int)ul;
5557 if (dev_id != ul)
5558 return -EINVAL;
5559
5560 ret = -ENOENT;
5561 spin_lock(&rbd_dev_list_lock);
5562 list_for_each(tmp, &rbd_dev_list) {
5563 rbd_dev = list_entry(tmp, struct rbd_device, node);
5564 if (rbd_dev->dev_id == dev_id) {
5565 ret = 0;
5566 break;
5567 }
5568 }
5569 if (!ret) {
5570 spin_lock_irq(&rbd_dev->lock);
5571 if (rbd_dev->open_count)
5572 ret = -EBUSY;
5573 else
5574 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5575 &rbd_dev->flags);
5576 spin_unlock_irq(&rbd_dev->lock);
5577 }
5578 spin_unlock(&rbd_dev_list_lock);
5579 if (ret < 0 || already)
5580 return ret;
5581
5582 rbd_dev_header_unwatch_sync(rbd_dev);
5583 /*
5584 * flush remaining watch callbacks - these must be complete
5585 * before the osd_client is shutdown
5586 */
5587 dout("%s: flushing notifies", __func__);
5588 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5589
5590 /*
5591 * Don't free anything from rbd_dev->disk until after all
5592 * notifies are completely processed. Otherwise
5593 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5594 * in a potential use after free of rbd_dev->disk or rbd_dev.
5595 */
5596 rbd_dev_device_release(rbd_dev);
5597 rbd_dev_image_release(rbd_dev);
5598
5599 return count;
5600 }
5601
rbd_remove(struct bus_type * bus,const char * buf,size_t count)5602 static ssize_t rbd_remove(struct bus_type *bus,
5603 const char *buf,
5604 size_t count)
5605 {
5606 if (single_major)
5607 return -EINVAL;
5608
5609 return do_rbd_remove(bus, buf, count);
5610 }
5611
rbd_remove_single_major(struct bus_type * bus,const char * buf,size_t count)5612 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5613 const char *buf,
5614 size_t count)
5615 {
5616 return do_rbd_remove(bus, buf, count);
5617 }
5618
5619 /*
5620 * create control files in sysfs
5621 * /sys/bus/rbd/...
5622 */
rbd_sysfs_init(void)5623 static int rbd_sysfs_init(void)
5624 {
5625 int ret;
5626
5627 ret = device_register(&rbd_root_dev);
5628 if (ret < 0)
5629 return ret;
5630
5631 ret = bus_register(&rbd_bus_type);
5632 if (ret < 0)
5633 device_unregister(&rbd_root_dev);
5634
5635 return ret;
5636 }
5637
rbd_sysfs_cleanup(void)5638 static void rbd_sysfs_cleanup(void)
5639 {
5640 bus_unregister(&rbd_bus_type);
5641 device_unregister(&rbd_root_dev);
5642 }
5643
rbd_slab_init(void)5644 static int rbd_slab_init(void)
5645 {
5646 rbd_assert(!rbd_img_request_cache);
5647 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5648 sizeof (struct rbd_img_request),
5649 __alignof__(struct rbd_img_request),
5650 0, NULL);
5651 if (!rbd_img_request_cache)
5652 return -ENOMEM;
5653
5654 rbd_assert(!rbd_obj_request_cache);
5655 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5656 sizeof (struct rbd_obj_request),
5657 __alignof__(struct rbd_obj_request),
5658 0, NULL);
5659 if (!rbd_obj_request_cache)
5660 goto out_err;
5661
5662 rbd_assert(!rbd_segment_name_cache);
5663 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5664 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5665 if (rbd_segment_name_cache)
5666 return 0;
5667 out_err:
5668 kmem_cache_destroy(rbd_obj_request_cache);
5669 rbd_obj_request_cache = NULL;
5670
5671 kmem_cache_destroy(rbd_img_request_cache);
5672 rbd_img_request_cache = NULL;
5673
5674 return -ENOMEM;
5675 }
5676
rbd_slab_exit(void)5677 static void rbd_slab_exit(void)
5678 {
5679 rbd_assert(rbd_segment_name_cache);
5680 kmem_cache_destroy(rbd_segment_name_cache);
5681 rbd_segment_name_cache = NULL;
5682
5683 rbd_assert(rbd_obj_request_cache);
5684 kmem_cache_destroy(rbd_obj_request_cache);
5685 rbd_obj_request_cache = NULL;
5686
5687 rbd_assert(rbd_img_request_cache);
5688 kmem_cache_destroy(rbd_img_request_cache);
5689 rbd_img_request_cache = NULL;
5690 }
5691
rbd_init(void)5692 static int __init rbd_init(void)
5693 {
5694 int rc;
5695
5696 if (!libceph_compatible(NULL)) {
5697 rbd_warn(NULL, "libceph incompatibility (quitting)");
5698 return -EINVAL;
5699 }
5700
5701 rc = rbd_slab_init();
5702 if (rc)
5703 return rc;
5704
5705 /*
5706 * The number of active work items is limited by the number of
5707 * rbd devices * queue depth, so leave @max_active at default.
5708 */
5709 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5710 if (!rbd_wq) {
5711 rc = -ENOMEM;
5712 goto err_out_slab;
5713 }
5714
5715 if (single_major) {
5716 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5717 if (rbd_major < 0) {
5718 rc = rbd_major;
5719 goto err_out_wq;
5720 }
5721 }
5722
5723 rc = rbd_sysfs_init();
5724 if (rc)
5725 goto err_out_blkdev;
5726
5727 if (single_major)
5728 pr_info("loaded (major %d)\n", rbd_major);
5729 else
5730 pr_info("loaded\n");
5731
5732 return 0;
5733
5734 err_out_blkdev:
5735 if (single_major)
5736 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5737 err_out_wq:
5738 destroy_workqueue(rbd_wq);
5739 err_out_slab:
5740 rbd_slab_exit();
5741 return rc;
5742 }
5743
rbd_exit(void)5744 static void __exit rbd_exit(void)
5745 {
5746 ida_destroy(&rbd_dev_id_ida);
5747 rbd_sysfs_cleanup();
5748 if (single_major)
5749 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5750 destroy_workqueue(rbd_wq);
5751 rbd_slab_exit();
5752 }
5753
5754 module_init(rbd_init);
5755 module_exit(rbd_exit);
5756
5757 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5758 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5759 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5760 /* following authorship retained from original osdblk.c */
5761 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5762
5763 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5764 MODULE_LICENSE("GPL");
5765