1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <drm/drmP.h>
29 #include <drm/amdgpu_drm.h>
30 #include "amdgpu.h"
31 #include "amdgpu_trace.h"
32
33 /*
34 * GPUVM
35 * GPUVM is similar to the legacy gart on older asics, however
36 * rather than there being a single global gart table
37 * for the entire GPU, there are multiple VM page tables active
38 * at any given time. The VM page tables can contain a mix
39 * vram pages and system memory pages and system memory pages
40 * can be mapped as snooped (cached system pages) or unsnooped
41 * (uncached system pages).
42 * Each VM has an ID associated with it and there is a page table
43 * associated with each VMID. When execting a command buffer,
44 * the kernel tells the the ring what VMID to use for that command
45 * buffer. VMIDs are allocated dynamically as commands are submitted.
46 * The userspace drivers maintain their own address space and the kernel
47 * sets up their pages tables accordingly when they submit their
48 * command buffers and a VMID is assigned.
49 * Cayman/Trinity support up to 8 active VMs at any given time;
50 * SI supports 16.
51 */
52
53 /**
54 * amdgpu_vm_num_pde - return the number of page directory entries
55 *
56 * @adev: amdgpu_device pointer
57 *
58 * Calculate the number of page directory entries (cayman+).
59 */
amdgpu_vm_num_pdes(struct amdgpu_device * adev)60 static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev)
61 {
62 return adev->vm_manager.max_pfn >> amdgpu_vm_block_size;
63 }
64
65 /**
66 * amdgpu_vm_directory_size - returns the size of the page directory in bytes
67 *
68 * @adev: amdgpu_device pointer
69 *
70 * Calculate the size of the page directory in bytes (cayman+).
71 */
amdgpu_vm_directory_size(struct amdgpu_device * adev)72 static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev)
73 {
74 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8);
75 }
76
77 /**
78 * amdgpu_vm_get_bos - add the vm BOs to a validation list
79 *
80 * @vm: vm providing the BOs
81 * @head: head of validation list
82 *
83 * Add the page directory to the list of BOs to
84 * validate for command submission (cayman+).
85 */
amdgpu_vm_get_bos(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct list_head * head)86 struct amdgpu_bo_list_entry *amdgpu_vm_get_bos(struct amdgpu_device *adev,
87 struct amdgpu_vm *vm,
88 struct list_head *head)
89 {
90 struct amdgpu_bo_list_entry *list;
91 unsigned i, idx;
92
93 list = drm_malloc_ab(vm->max_pde_used + 2,
94 sizeof(struct amdgpu_bo_list_entry));
95 if (!list) {
96 return NULL;
97 }
98
99 /* add the vm page table to the list */
100 list[0].robj = vm->page_directory;
101 list[0].prefered_domains = AMDGPU_GEM_DOMAIN_VRAM;
102 list[0].allowed_domains = AMDGPU_GEM_DOMAIN_VRAM;
103 list[0].priority = 0;
104 list[0].tv.bo = &vm->page_directory->tbo;
105 list[0].tv.shared = true;
106 list_add(&list[0].tv.head, head);
107
108 for (i = 0, idx = 1; i <= vm->max_pde_used; i++) {
109 if (!vm->page_tables[i].bo)
110 continue;
111
112 list[idx].robj = vm->page_tables[i].bo;
113 list[idx].prefered_domains = AMDGPU_GEM_DOMAIN_VRAM;
114 list[idx].allowed_domains = AMDGPU_GEM_DOMAIN_VRAM;
115 list[idx].priority = 0;
116 list[idx].tv.bo = &list[idx].robj->tbo;
117 list[idx].tv.shared = true;
118 list_add(&list[idx++].tv.head, head);
119 }
120
121 return list;
122 }
123
124 /**
125 * amdgpu_vm_grab_id - allocate the next free VMID
126 *
127 * @vm: vm to allocate id for
128 * @ring: ring we want to submit job to
129 * @sync: sync object where we add dependencies
130 *
131 * Allocate an id for the vm, adding fences to the sync obj as necessary.
132 *
133 * Global mutex must be locked!
134 */
amdgpu_vm_grab_id(struct amdgpu_vm * vm,struct amdgpu_ring * ring,struct amdgpu_sync * sync)135 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
136 struct amdgpu_sync *sync)
137 {
138 struct fence *best[AMDGPU_MAX_RINGS] = {};
139 struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
140 struct amdgpu_device *adev = ring->adev;
141
142 unsigned choices[2] = {};
143 unsigned i;
144
145 /* check if the id is still valid */
146 if (vm_id->id) {
147 unsigned id = vm_id->id;
148 long owner;
149
150 owner = atomic_long_read(&adev->vm_manager.ids[id].owner);
151 if (owner == (long)vm) {
152 trace_amdgpu_vm_grab_id(vm_id->id, ring->idx);
153 return 0;
154 }
155 }
156
157 /* we definately need to flush */
158 vm_id->pd_gpu_addr = ~0ll;
159
160 /* skip over VMID 0, since it is the system VM */
161 for (i = 1; i < adev->vm_manager.nvm; ++i) {
162 struct fence *fence = adev->vm_manager.ids[i].active;
163 struct amdgpu_ring *fring;
164
165 if (fence == NULL) {
166 /* found a free one */
167 vm_id->id = i;
168 trace_amdgpu_vm_grab_id(i, ring->idx);
169 return 0;
170 }
171
172 fring = amdgpu_ring_from_fence(fence);
173 if (best[fring->idx] == NULL ||
174 fence_is_later(best[fring->idx], fence)) {
175 best[fring->idx] = fence;
176 choices[fring == ring ? 0 : 1] = i;
177 }
178 }
179
180 for (i = 0; i < 2; ++i) {
181 if (choices[i]) {
182 struct fence *fence;
183
184 fence = adev->vm_manager.ids[choices[i]].active;
185 vm_id->id = choices[i];
186
187 trace_amdgpu_vm_grab_id(choices[i], ring->idx);
188 return amdgpu_sync_fence(ring->adev, sync, fence);
189 }
190 }
191
192 /* should never happen */
193 BUG();
194 return -EINVAL;
195 }
196
197 /**
198 * amdgpu_vm_flush - hardware flush the vm
199 *
200 * @ring: ring to use for flush
201 * @vm: vm we want to flush
202 * @updates: last vm update that we waited for
203 *
204 * Flush the vm (cayman+).
205 *
206 * Global and local mutex must be locked!
207 */
amdgpu_vm_flush(struct amdgpu_ring * ring,struct amdgpu_vm * vm,struct fence * updates)208 void amdgpu_vm_flush(struct amdgpu_ring *ring,
209 struct amdgpu_vm *vm,
210 struct fence *updates)
211 {
212 uint64_t pd_addr = amdgpu_bo_gpu_offset(vm->page_directory);
213 struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
214 struct fence *flushed_updates = vm_id->flushed_updates;
215 bool is_later;
216
217 if (!flushed_updates)
218 is_later = true;
219 else if (!updates)
220 is_later = false;
221 else
222 is_later = fence_is_later(updates, flushed_updates);
223
224 if (pd_addr != vm_id->pd_gpu_addr || is_later) {
225 trace_amdgpu_vm_flush(pd_addr, ring->idx, vm_id->id);
226 if (is_later) {
227 vm_id->flushed_updates = fence_get(updates);
228 fence_put(flushed_updates);
229 }
230 vm_id->pd_gpu_addr = pd_addr;
231 amdgpu_ring_emit_vm_flush(ring, vm_id->id, vm_id->pd_gpu_addr);
232 }
233 }
234
235 /**
236 * amdgpu_vm_fence - remember fence for vm
237 *
238 * @adev: amdgpu_device pointer
239 * @vm: vm we want to fence
240 * @fence: fence to remember
241 *
242 * Fence the vm (cayman+).
243 * Set the fence used to protect page table and id.
244 *
245 * Global and local mutex must be locked!
246 */
amdgpu_vm_fence(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct fence * fence)247 void amdgpu_vm_fence(struct amdgpu_device *adev,
248 struct amdgpu_vm *vm,
249 struct fence *fence)
250 {
251 struct amdgpu_ring *ring = amdgpu_ring_from_fence(fence);
252 unsigned vm_id = vm->ids[ring->idx].id;
253
254 fence_put(adev->vm_manager.ids[vm_id].active);
255 adev->vm_manager.ids[vm_id].active = fence_get(fence);
256 atomic_long_set(&adev->vm_manager.ids[vm_id].owner, (long)vm);
257 }
258
259 /**
260 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
261 *
262 * @vm: requested vm
263 * @bo: requested buffer object
264 *
265 * Find @bo inside the requested vm (cayman+).
266 * Search inside the @bos vm list for the requested vm
267 * Returns the found bo_va or NULL if none is found
268 *
269 * Object has to be reserved!
270 */
amdgpu_vm_bo_find(struct amdgpu_vm * vm,struct amdgpu_bo * bo)271 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
272 struct amdgpu_bo *bo)
273 {
274 struct amdgpu_bo_va *bo_va;
275
276 list_for_each_entry(bo_va, &bo->va, bo_list) {
277 if (bo_va->vm == vm) {
278 return bo_va;
279 }
280 }
281 return NULL;
282 }
283
284 /**
285 * amdgpu_vm_update_pages - helper to call the right asic function
286 *
287 * @adev: amdgpu_device pointer
288 * @ib: indirect buffer to fill with commands
289 * @pe: addr of the page entry
290 * @addr: dst addr to write into pe
291 * @count: number of page entries to update
292 * @incr: increase next addr by incr bytes
293 * @flags: hw access flags
294 * @gtt_flags: GTT hw access flags
295 *
296 * Traces the parameters and calls the right asic functions
297 * to setup the page table using the DMA.
298 */
amdgpu_vm_update_pages(struct amdgpu_device * adev,struct amdgpu_ib * ib,uint64_t pe,uint64_t addr,unsigned count,uint32_t incr,uint32_t flags,uint32_t gtt_flags)299 static void amdgpu_vm_update_pages(struct amdgpu_device *adev,
300 struct amdgpu_ib *ib,
301 uint64_t pe, uint64_t addr,
302 unsigned count, uint32_t incr,
303 uint32_t flags, uint32_t gtt_flags)
304 {
305 trace_amdgpu_vm_set_page(pe, addr, count, incr, flags);
306
307 if ((flags & AMDGPU_PTE_SYSTEM) && (flags == gtt_flags)) {
308 uint64_t src = adev->gart.table_addr + (addr >> 12) * 8;
309 amdgpu_vm_copy_pte(adev, ib, pe, src, count);
310
311 } else if ((flags & AMDGPU_PTE_SYSTEM) || (count < 3)) {
312 amdgpu_vm_write_pte(adev, ib, pe, addr,
313 count, incr, flags);
314
315 } else {
316 amdgpu_vm_set_pte_pde(adev, ib, pe, addr,
317 count, incr, flags);
318 }
319 }
320
amdgpu_vm_free_job(struct amdgpu_job * job)321 int amdgpu_vm_free_job(struct amdgpu_job *job)
322 {
323 int i;
324 for (i = 0; i < job->num_ibs; i++)
325 amdgpu_ib_free(job->adev, &job->ibs[i]);
326 kfree(job->ibs);
327 return 0;
328 }
329
330 /**
331 * amdgpu_vm_clear_bo - initially clear the page dir/table
332 *
333 * @adev: amdgpu_device pointer
334 * @bo: bo to clear
335 *
336 * need to reserve bo first before calling it.
337 */
amdgpu_vm_clear_bo(struct amdgpu_device * adev,struct amdgpu_bo * bo)338 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
339 struct amdgpu_bo *bo)
340 {
341 struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
342 struct fence *fence = NULL;
343 struct amdgpu_ib *ib;
344 unsigned entries;
345 uint64_t addr;
346 int r;
347
348 r = reservation_object_reserve_shared(bo->tbo.resv);
349 if (r)
350 return r;
351
352 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
353 if (r)
354 goto error;
355
356 addr = amdgpu_bo_gpu_offset(bo);
357 entries = amdgpu_bo_size(bo) / 8;
358
359 ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
360 if (!ib)
361 goto error;
362
363 r = amdgpu_ib_get(ring, NULL, entries * 2 + 64, ib);
364 if (r)
365 goto error_free;
366
367 ib->length_dw = 0;
368
369 amdgpu_vm_update_pages(adev, ib, addr, 0, entries, 0, 0, 0);
370 amdgpu_vm_pad_ib(adev, ib);
371 WARN_ON(ib->length_dw > 64);
372 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
373 &amdgpu_vm_free_job,
374 AMDGPU_FENCE_OWNER_VM,
375 &fence);
376 if (!r)
377 amdgpu_bo_fence(bo, fence, true);
378 fence_put(fence);
379 if (amdgpu_enable_scheduler)
380 return 0;
381
382 error_free:
383 amdgpu_ib_free(adev, ib);
384 kfree(ib);
385
386 error:
387 return r;
388 }
389
390 /**
391 * amdgpu_vm_map_gart - get the physical address of a gart page
392 *
393 * @adev: amdgpu_device pointer
394 * @addr: the unmapped addr
395 *
396 * Look up the physical address of the page that the pte resolves
397 * to (cayman+).
398 * Returns the physical address of the page.
399 */
amdgpu_vm_map_gart(struct amdgpu_device * adev,uint64_t addr)400 uint64_t amdgpu_vm_map_gart(struct amdgpu_device *adev, uint64_t addr)
401 {
402 uint64_t result;
403
404 /* page table offset */
405 result = adev->gart.pages_addr[addr >> PAGE_SHIFT];
406
407 /* in case cpu page size != gpu page size*/
408 result |= addr & (~PAGE_MASK);
409
410 return result;
411 }
412
413 /**
414 * amdgpu_vm_update_pdes - make sure that page directory is valid
415 *
416 * @adev: amdgpu_device pointer
417 * @vm: requested vm
418 * @start: start of GPU address range
419 * @end: end of GPU address range
420 *
421 * Allocates new page tables if necessary
422 * and updates the page directory (cayman+).
423 * Returns 0 for success, error for failure.
424 *
425 * Global and local mutex must be locked!
426 */
amdgpu_vm_update_page_directory(struct amdgpu_device * adev,struct amdgpu_vm * vm)427 int amdgpu_vm_update_page_directory(struct amdgpu_device *adev,
428 struct amdgpu_vm *vm)
429 {
430 struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
431 struct amdgpu_bo *pd = vm->page_directory;
432 uint64_t pd_addr = amdgpu_bo_gpu_offset(pd);
433 uint32_t incr = AMDGPU_VM_PTE_COUNT * 8;
434 uint64_t last_pde = ~0, last_pt = ~0;
435 unsigned count = 0, pt_idx, ndw;
436 struct amdgpu_ib *ib;
437 struct fence *fence = NULL;
438
439 int r;
440
441 /* padding, etc. */
442 ndw = 64;
443
444 /* assume the worst case */
445 ndw += vm->max_pde_used * 6;
446
447 /* update too big for an IB */
448 if (ndw > 0xfffff)
449 return -ENOMEM;
450
451 ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
452 if (!ib)
453 return -ENOMEM;
454
455 r = amdgpu_ib_get(ring, NULL, ndw * 4, ib);
456 if (r) {
457 kfree(ib);
458 return r;
459 }
460 ib->length_dw = 0;
461
462 /* walk over the address space and update the page directory */
463 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
464 struct amdgpu_bo *bo = vm->page_tables[pt_idx].bo;
465 uint64_t pde, pt;
466
467 if (bo == NULL)
468 continue;
469
470 pt = amdgpu_bo_gpu_offset(bo);
471 if (vm->page_tables[pt_idx].addr == pt)
472 continue;
473 vm->page_tables[pt_idx].addr = pt;
474
475 pde = pd_addr + pt_idx * 8;
476 if (((last_pde + 8 * count) != pde) ||
477 ((last_pt + incr * count) != pt)) {
478
479 if (count) {
480 amdgpu_vm_update_pages(adev, ib, last_pde,
481 last_pt, count, incr,
482 AMDGPU_PTE_VALID, 0);
483 }
484
485 count = 1;
486 last_pde = pde;
487 last_pt = pt;
488 } else {
489 ++count;
490 }
491 }
492
493 if (count)
494 amdgpu_vm_update_pages(adev, ib, last_pde, last_pt, count,
495 incr, AMDGPU_PTE_VALID, 0);
496
497 if (ib->length_dw != 0) {
498 amdgpu_vm_pad_ib(adev, ib);
499 amdgpu_sync_resv(adev, &ib->sync, pd->tbo.resv, AMDGPU_FENCE_OWNER_VM);
500 WARN_ON(ib->length_dw > ndw);
501 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
502 &amdgpu_vm_free_job,
503 AMDGPU_FENCE_OWNER_VM,
504 &fence);
505 if (r)
506 goto error_free;
507
508 amdgpu_bo_fence(pd, fence, true);
509 fence_put(vm->page_directory_fence);
510 vm->page_directory_fence = fence_get(fence);
511 fence_put(fence);
512 }
513
514 if (!amdgpu_enable_scheduler || ib->length_dw == 0) {
515 amdgpu_ib_free(adev, ib);
516 kfree(ib);
517 }
518
519 return 0;
520
521 error_free:
522 amdgpu_ib_free(adev, ib);
523 kfree(ib);
524 return r;
525 }
526
527 /**
528 * amdgpu_vm_frag_ptes - add fragment information to PTEs
529 *
530 * @adev: amdgpu_device pointer
531 * @ib: IB for the update
532 * @pe_start: first PTE to handle
533 * @pe_end: last PTE to handle
534 * @addr: addr those PTEs should point to
535 * @flags: hw mapping flags
536 * @gtt_flags: GTT hw mapping flags
537 *
538 * Global and local mutex must be locked!
539 */
amdgpu_vm_frag_ptes(struct amdgpu_device * adev,struct amdgpu_ib * ib,uint64_t pe_start,uint64_t pe_end,uint64_t addr,uint32_t flags,uint32_t gtt_flags)540 static void amdgpu_vm_frag_ptes(struct amdgpu_device *adev,
541 struct amdgpu_ib *ib,
542 uint64_t pe_start, uint64_t pe_end,
543 uint64_t addr, uint32_t flags,
544 uint32_t gtt_flags)
545 {
546 /**
547 * The MC L1 TLB supports variable sized pages, based on a fragment
548 * field in the PTE. When this field is set to a non-zero value, page
549 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
550 * flags are considered valid for all PTEs within the fragment range
551 * and corresponding mappings are assumed to be physically contiguous.
552 *
553 * The L1 TLB can store a single PTE for the whole fragment,
554 * significantly increasing the space available for translation
555 * caching. This leads to large improvements in throughput when the
556 * TLB is under pressure.
557 *
558 * The L2 TLB distributes small and large fragments into two
559 * asymmetric partitions. The large fragment cache is significantly
560 * larger. Thus, we try to use large fragments wherever possible.
561 * Userspace can support this by aligning virtual base address and
562 * allocation size to the fragment size.
563 */
564
565 /* SI and newer are optimized for 64KB */
566 uint64_t frag_flags = AMDGPU_PTE_FRAG_64KB;
567 uint64_t frag_align = 0x80;
568
569 uint64_t frag_start = ALIGN(pe_start, frag_align);
570 uint64_t frag_end = pe_end & ~(frag_align - 1);
571
572 unsigned count;
573
574 /* system pages are non continuously */
575 if ((flags & AMDGPU_PTE_SYSTEM) || !(flags & AMDGPU_PTE_VALID) ||
576 (frag_start >= frag_end)) {
577
578 count = (pe_end - pe_start) / 8;
579 amdgpu_vm_update_pages(adev, ib, pe_start, addr, count,
580 AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
581 return;
582 }
583
584 /* handle the 4K area at the beginning */
585 if (pe_start != frag_start) {
586 count = (frag_start - pe_start) / 8;
587 amdgpu_vm_update_pages(adev, ib, pe_start, addr, count,
588 AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
589 addr += AMDGPU_GPU_PAGE_SIZE * count;
590 }
591
592 /* handle the area in the middle */
593 count = (frag_end - frag_start) / 8;
594 amdgpu_vm_update_pages(adev, ib, frag_start, addr, count,
595 AMDGPU_GPU_PAGE_SIZE, flags | frag_flags,
596 gtt_flags);
597
598 /* handle the 4K area at the end */
599 if (frag_end != pe_end) {
600 addr += AMDGPU_GPU_PAGE_SIZE * count;
601 count = (pe_end - frag_end) / 8;
602 amdgpu_vm_update_pages(adev, ib, frag_end, addr, count,
603 AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
604 }
605 }
606
607 /**
608 * amdgpu_vm_update_ptes - make sure that page tables are valid
609 *
610 * @adev: amdgpu_device pointer
611 * @vm: requested vm
612 * @start: start of GPU address range
613 * @end: end of GPU address range
614 * @dst: destination address to map to
615 * @flags: mapping flags
616 *
617 * Update the page tables in the range @start - @end (cayman+).
618 *
619 * Global and local mutex must be locked!
620 */
amdgpu_vm_update_ptes(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_ib * ib,uint64_t start,uint64_t end,uint64_t dst,uint32_t flags,uint32_t gtt_flags)621 static int amdgpu_vm_update_ptes(struct amdgpu_device *adev,
622 struct amdgpu_vm *vm,
623 struct amdgpu_ib *ib,
624 uint64_t start, uint64_t end,
625 uint64_t dst, uint32_t flags,
626 uint32_t gtt_flags)
627 {
628 uint64_t mask = AMDGPU_VM_PTE_COUNT - 1;
629 uint64_t last_pte = ~0, last_dst = ~0;
630 void *owner = AMDGPU_FENCE_OWNER_VM;
631 unsigned count = 0;
632 uint64_t addr;
633
634 /* sync to everything on unmapping */
635 if (!(flags & AMDGPU_PTE_VALID))
636 owner = AMDGPU_FENCE_OWNER_UNDEFINED;
637
638 /* walk over the address space and update the page tables */
639 for (addr = start; addr < end; ) {
640 uint64_t pt_idx = addr >> amdgpu_vm_block_size;
641 struct amdgpu_bo *pt = vm->page_tables[pt_idx].bo;
642 unsigned nptes;
643 uint64_t pte;
644 int r;
645
646 amdgpu_sync_resv(adev, &ib->sync, pt->tbo.resv, owner);
647 r = reservation_object_reserve_shared(pt->tbo.resv);
648 if (r)
649 return r;
650
651 if ((addr & ~mask) == (end & ~mask))
652 nptes = end - addr;
653 else
654 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
655
656 pte = amdgpu_bo_gpu_offset(pt);
657 pte += (addr & mask) * 8;
658
659 if ((last_pte + 8 * count) != pte) {
660
661 if (count) {
662 amdgpu_vm_frag_ptes(adev, ib, last_pte,
663 last_pte + 8 * count,
664 last_dst, flags,
665 gtt_flags);
666 }
667
668 count = nptes;
669 last_pte = pte;
670 last_dst = dst;
671 } else {
672 count += nptes;
673 }
674
675 addr += nptes;
676 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
677 }
678
679 if (count) {
680 amdgpu_vm_frag_ptes(adev, ib, last_pte,
681 last_pte + 8 * count,
682 last_dst, flags, gtt_flags);
683 }
684
685 return 0;
686 }
687
688 /**
689 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
690 *
691 * @adev: amdgpu_device pointer
692 * @vm: requested vm
693 * @mapping: mapped range and flags to use for the update
694 * @addr: addr to set the area to
695 * @gtt_flags: flags as they are used for GTT
696 * @fence: optional resulting fence
697 *
698 * Fill in the page table entries for @mapping.
699 * Returns 0 for success, -EINVAL for failure.
700 *
701 * Object have to be reserved and mutex must be locked!
702 */
amdgpu_vm_bo_update_mapping(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_bo_va_mapping * mapping,uint64_t addr,uint32_t gtt_flags,struct fence ** fence)703 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
704 struct amdgpu_vm *vm,
705 struct amdgpu_bo_va_mapping *mapping,
706 uint64_t addr, uint32_t gtt_flags,
707 struct fence **fence)
708 {
709 struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
710 unsigned nptes, ncmds, ndw;
711 uint32_t flags = gtt_flags;
712 struct amdgpu_ib *ib;
713 struct fence *f = NULL;
714 int r;
715
716 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
717 * but in case of something, we filter the flags in first place
718 */
719 if (!(mapping->flags & AMDGPU_PTE_READABLE))
720 flags &= ~AMDGPU_PTE_READABLE;
721 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
722 flags &= ~AMDGPU_PTE_WRITEABLE;
723
724 trace_amdgpu_vm_bo_update(mapping);
725
726 nptes = mapping->it.last - mapping->it.start + 1;
727
728 /*
729 * reserve space for one command every (1 << BLOCK_SIZE)
730 * entries or 2k dwords (whatever is smaller)
731 */
732 ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1;
733
734 /* padding, etc. */
735 ndw = 64;
736
737 if ((flags & AMDGPU_PTE_SYSTEM) && (flags == gtt_flags)) {
738 /* only copy commands needed */
739 ndw += ncmds * 7;
740
741 } else if (flags & AMDGPU_PTE_SYSTEM) {
742 /* header for write data commands */
743 ndw += ncmds * 4;
744
745 /* body of write data command */
746 ndw += nptes * 2;
747
748 } else {
749 /* set page commands needed */
750 ndw += ncmds * 10;
751
752 /* two extra commands for begin/end of fragment */
753 ndw += 2 * 10;
754 }
755
756 /* update too big for an IB */
757 if (ndw > 0xfffff)
758 return -ENOMEM;
759
760 ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
761 if (!ib)
762 return -ENOMEM;
763
764 r = amdgpu_ib_get(ring, NULL, ndw * 4, ib);
765 if (r) {
766 kfree(ib);
767 return r;
768 }
769
770 ib->length_dw = 0;
771
772 r = amdgpu_vm_update_ptes(adev, vm, ib, mapping->it.start,
773 mapping->it.last + 1, addr + mapping->offset,
774 flags, gtt_flags);
775
776 if (r) {
777 amdgpu_ib_free(adev, ib);
778 kfree(ib);
779 return r;
780 }
781
782 amdgpu_vm_pad_ib(adev, ib);
783 WARN_ON(ib->length_dw > ndw);
784 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
785 &amdgpu_vm_free_job,
786 AMDGPU_FENCE_OWNER_VM,
787 &f);
788 if (r)
789 goto error_free;
790
791 amdgpu_bo_fence(vm->page_directory, f, true);
792 if (fence) {
793 fence_put(*fence);
794 *fence = fence_get(f);
795 }
796 fence_put(f);
797 if (!amdgpu_enable_scheduler) {
798 amdgpu_ib_free(adev, ib);
799 kfree(ib);
800 }
801 return 0;
802
803 error_free:
804 amdgpu_ib_free(adev, ib);
805 kfree(ib);
806 return r;
807 }
808
809 /**
810 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
811 *
812 * @adev: amdgpu_device pointer
813 * @bo_va: requested BO and VM object
814 * @mem: ttm mem
815 *
816 * Fill in the page table entries for @bo_va.
817 * Returns 0 for success, -EINVAL for failure.
818 *
819 * Object have to be reserved and mutex must be locked!
820 */
amdgpu_vm_bo_update(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va,struct ttm_mem_reg * mem)821 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
822 struct amdgpu_bo_va *bo_va,
823 struct ttm_mem_reg *mem)
824 {
825 struct amdgpu_vm *vm = bo_va->vm;
826 struct amdgpu_bo_va_mapping *mapping;
827 uint32_t flags;
828 uint64_t addr;
829 int r;
830
831 if (mem) {
832 addr = (u64)mem->start << PAGE_SHIFT;
833 if (mem->mem_type != TTM_PL_TT)
834 addr += adev->vm_manager.vram_base_offset;
835 } else {
836 addr = 0;
837 }
838
839 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
840
841 spin_lock(&vm->status_lock);
842 if (!list_empty(&bo_va->vm_status))
843 list_splice_init(&bo_va->valids, &bo_va->invalids);
844 spin_unlock(&vm->status_lock);
845
846 list_for_each_entry(mapping, &bo_va->invalids, list) {
847 r = amdgpu_vm_bo_update_mapping(adev, vm, mapping, addr,
848 flags, &bo_va->last_pt_update);
849 if (r)
850 return r;
851 }
852
853 if (trace_amdgpu_vm_bo_mapping_enabled()) {
854 list_for_each_entry(mapping, &bo_va->valids, list)
855 trace_amdgpu_vm_bo_mapping(mapping);
856
857 list_for_each_entry(mapping, &bo_va->invalids, list)
858 trace_amdgpu_vm_bo_mapping(mapping);
859 }
860
861 spin_lock(&vm->status_lock);
862 list_splice_init(&bo_va->invalids, &bo_va->valids);
863 list_del_init(&bo_va->vm_status);
864 if (!mem)
865 list_add(&bo_va->vm_status, &vm->cleared);
866 spin_unlock(&vm->status_lock);
867
868 return 0;
869 }
870
871 /**
872 * amdgpu_vm_clear_freed - clear freed BOs in the PT
873 *
874 * @adev: amdgpu_device pointer
875 * @vm: requested vm
876 *
877 * Make sure all freed BOs are cleared in the PT.
878 * Returns 0 for success.
879 *
880 * PTs have to be reserved and mutex must be locked!
881 */
amdgpu_vm_clear_freed(struct amdgpu_device * adev,struct amdgpu_vm * vm)882 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
883 struct amdgpu_vm *vm)
884 {
885 struct amdgpu_bo_va_mapping *mapping;
886 int r;
887
888 spin_lock(&vm->freed_lock);
889 while (!list_empty(&vm->freed)) {
890 mapping = list_first_entry(&vm->freed,
891 struct amdgpu_bo_va_mapping, list);
892 list_del(&mapping->list);
893 spin_unlock(&vm->freed_lock);
894 r = amdgpu_vm_bo_update_mapping(adev, vm, mapping, 0, 0, NULL);
895 kfree(mapping);
896 if (r)
897 return r;
898
899 spin_lock(&vm->freed_lock);
900 }
901 spin_unlock(&vm->freed_lock);
902
903 return 0;
904
905 }
906
907 /**
908 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
909 *
910 * @adev: amdgpu_device pointer
911 * @vm: requested vm
912 *
913 * Make sure all invalidated BOs are cleared in the PT.
914 * Returns 0 for success.
915 *
916 * PTs have to be reserved and mutex must be locked!
917 */
amdgpu_vm_clear_invalids(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_sync * sync)918 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
919 struct amdgpu_vm *vm, struct amdgpu_sync *sync)
920 {
921 struct amdgpu_bo_va *bo_va = NULL;
922 int r = 0;
923
924 spin_lock(&vm->status_lock);
925 while (!list_empty(&vm->invalidated)) {
926 bo_va = list_first_entry(&vm->invalidated,
927 struct amdgpu_bo_va, vm_status);
928 spin_unlock(&vm->status_lock);
929 mutex_lock(&bo_va->mutex);
930 r = amdgpu_vm_bo_update(adev, bo_va, NULL);
931 mutex_unlock(&bo_va->mutex);
932 if (r)
933 return r;
934
935 spin_lock(&vm->status_lock);
936 }
937 spin_unlock(&vm->status_lock);
938
939 if (bo_va)
940 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
941
942 return r;
943 }
944
945 /**
946 * amdgpu_vm_bo_add - add a bo to a specific vm
947 *
948 * @adev: amdgpu_device pointer
949 * @vm: requested vm
950 * @bo: amdgpu buffer object
951 *
952 * Add @bo into the requested vm (cayman+).
953 * Add @bo to the list of bos associated with the vm
954 * Returns newly added bo_va or NULL for failure
955 *
956 * Object has to be reserved!
957 */
amdgpu_vm_bo_add(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_bo * bo)958 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
959 struct amdgpu_vm *vm,
960 struct amdgpu_bo *bo)
961 {
962 struct amdgpu_bo_va *bo_va;
963
964 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
965 if (bo_va == NULL) {
966 return NULL;
967 }
968 bo_va->vm = vm;
969 bo_va->bo = bo;
970 bo_va->ref_count = 1;
971 INIT_LIST_HEAD(&bo_va->bo_list);
972 INIT_LIST_HEAD(&bo_va->valids);
973 INIT_LIST_HEAD(&bo_va->invalids);
974 INIT_LIST_HEAD(&bo_va->vm_status);
975 mutex_init(&bo_va->mutex);
976 list_add_tail(&bo_va->bo_list, &bo->va);
977
978 return bo_va;
979 }
980
981 /**
982 * amdgpu_vm_bo_map - map bo inside a vm
983 *
984 * @adev: amdgpu_device pointer
985 * @bo_va: bo_va to store the address
986 * @saddr: where to map the BO
987 * @offset: requested offset in the BO
988 * @flags: attributes of pages (read/write/valid/etc.)
989 *
990 * Add a mapping of the BO at the specefied addr into the VM.
991 * Returns 0 for success, error for failure.
992 *
993 * Object has to be reserved and unreserved outside!
994 */
amdgpu_vm_bo_map(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va,uint64_t saddr,uint64_t offset,uint64_t size,uint32_t flags)995 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
996 struct amdgpu_bo_va *bo_va,
997 uint64_t saddr, uint64_t offset,
998 uint64_t size, uint32_t flags)
999 {
1000 struct amdgpu_bo_va_mapping *mapping;
1001 struct amdgpu_vm *vm = bo_va->vm;
1002 struct interval_tree_node *it;
1003 unsigned last_pfn, pt_idx;
1004 uint64_t eaddr;
1005 int r;
1006
1007 /* validate the parameters */
1008 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1009 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1010 return -EINVAL;
1011
1012 /* make sure object fit at this offset */
1013 eaddr = saddr + size - 1;
1014 if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo)))
1015 return -EINVAL;
1016
1017 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
1018 if (last_pfn >= adev->vm_manager.max_pfn) {
1019 dev_err(adev->dev, "va above limit (0x%08X >= 0x%08X)\n",
1020 last_pfn, adev->vm_manager.max_pfn);
1021 return -EINVAL;
1022 }
1023
1024 saddr /= AMDGPU_GPU_PAGE_SIZE;
1025 eaddr /= AMDGPU_GPU_PAGE_SIZE;
1026
1027 spin_lock(&vm->it_lock);
1028 it = interval_tree_iter_first(&vm->va, saddr, eaddr);
1029 spin_unlock(&vm->it_lock);
1030 if (it) {
1031 struct amdgpu_bo_va_mapping *tmp;
1032 tmp = container_of(it, struct amdgpu_bo_va_mapping, it);
1033 /* bo and tmp overlap, invalid addr */
1034 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1035 "0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr,
1036 tmp->it.start, tmp->it.last + 1);
1037 r = -EINVAL;
1038 goto error;
1039 }
1040
1041 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1042 if (!mapping) {
1043 r = -ENOMEM;
1044 goto error;
1045 }
1046
1047 INIT_LIST_HEAD(&mapping->list);
1048 mapping->it.start = saddr;
1049 mapping->it.last = eaddr;
1050 mapping->offset = offset;
1051 mapping->flags = flags;
1052
1053 mutex_lock(&bo_va->mutex);
1054 list_add(&mapping->list, &bo_va->invalids);
1055 mutex_unlock(&bo_va->mutex);
1056 spin_lock(&vm->it_lock);
1057 interval_tree_insert(&mapping->it, &vm->va);
1058 spin_unlock(&vm->it_lock);
1059 trace_amdgpu_vm_bo_map(bo_va, mapping);
1060
1061 /* Make sure the page tables are allocated */
1062 saddr >>= amdgpu_vm_block_size;
1063 eaddr >>= amdgpu_vm_block_size;
1064
1065 BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev));
1066
1067 if (eaddr > vm->max_pde_used)
1068 vm->max_pde_used = eaddr;
1069
1070 /* walk over the address space and allocate the page tables */
1071 for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) {
1072 struct reservation_object *resv = vm->page_directory->tbo.resv;
1073 struct amdgpu_bo *pt;
1074
1075 if (vm->page_tables[pt_idx].bo)
1076 continue;
1077
1078 r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8,
1079 AMDGPU_GPU_PAGE_SIZE, true,
1080 AMDGPU_GEM_DOMAIN_VRAM,
1081 AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1082 NULL, resv, &pt);
1083 if (r)
1084 goto error_free;
1085
1086 /* Keep a reference to the page table to avoid freeing
1087 * them up in the wrong order.
1088 */
1089 pt->parent = amdgpu_bo_ref(vm->page_directory);
1090
1091 r = amdgpu_vm_clear_bo(adev, pt);
1092 if (r) {
1093 amdgpu_bo_unref(&pt);
1094 goto error_free;
1095 }
1096
1097 vm->page_tables[pt_idx].addr = 0;
1098 vm->page_tables[pt_idx].bo = pt;
1099 }
1100
1101 return 0;
1102
1103 error_free:
1104 list_del(&mapping->list);
1105 spin_lock(&vm->it_lock);
1106 interval_tree_remove(&mapping->it, &vm->va);
1107 spin_unlock(&vm->it_lock);
1108 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1109 kfree(mapping);
1110
1111 error:
1112 return r;
1113 }
1114
1115 /**
1116 * amdgpu_vm_bo_unmap - remove bo mapping from vm
1117 *
1118 * @adev: amdgpu_device pointer
1119 * @bo_va: bo_va to remove the address from
1120 * @saddr: where to the BO is mapped
1121 *
1122 * Remove a mapping of the BO at the specefied addr from the VM.
1123 * Returns 0 for success, error for failure.
1124 *
1125 * Object has to be reserved and unreserved outside!
1126 */
amdgpu_vm_bo_unmap(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va,uint64_t saddr)1127 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1128 struct amdgpu_bo_va *bo_va,
1129 uint64_t saddr)
1130 {
1131 struct amdgpu_bo_va_mapping *mapping;
1132 struct amdgpu_vm *vm = bo_va->vm;
1133 bool valid = true;
1134
1135 saddr /= AMDGPU_GPU_PAGE_SIZE;
1136 mutex_lock(&bo_va->mutex);
1137 list_for_each_entry(mapping, &bo_va->valids, list) {
1138 if (mapping->it.start == saddr)
1139 break;
1140 }
1141
1142 if (&mapping->list == &bo_va->valids) {
1143 valid = false;
1144
1145 list_for_each_entry(mapping, &bo_va->invalids, list) {
1146 if (mapping->it.start == saddr)
1147 break;
1148 }
1149
1150 if (&mapping->list == &bo_va->invalids) {
1151 mutex_unlock(&bo_va->mutex);
1152 return -ENOENT;
1153 }
1154 }
1155 mutex_unlock(&bo_va->mutex);
1156 list_del(&mapping->list);
1157 spin_lock(&vm->it_lock);
1158 interval_tree_remove(&mapping->it, &vm->va);
1159 spin_unlock(&vm->it_lock);
1160 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1161
1162 if (valid) {
1163 spin_lock(&vm->freed_lock);
1164 list_add(&mapping->list, &vm->freed);
1165 spin_unlock(&vm->freed_lock);
1166 } else {
1167 kfree(mapping);
1168 }
1169
1170 return 0;
1171 }
1172
1173 /**
1174 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
1175 *
1176 * @adev: amdgpu_device pointer
1177 * @bo_va: requested bo_va
1178 *
1179 * Remove @bo_va->bo from the requested vm (cayman+).
1180 *
1181 * Object have to be reserved!
1182 */
amdgpu_vm_bo_rmv(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va)1183 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
1184 struct amdgpu_bo_va *bo_va)
1185 {
1186 struct amdgpu_bo_va_mapping *mapping, *next;
1187 struct amdgpu_vm *vm = bo_va->vm;
1188
1189 list_del(&bo_va->bo_list);
1190
1191 spin_lock(&vm->status_lock);
1192 list_del(&bo_va->vm_status);
1193 spin_unlock(&vm->status_lock);
1194
1195 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1196 list_del(&mapping->list);
1197 spin_lock(&vm->it_lock);
1198 interval_tree_remove(&mapping->it, &vm->va);
1199 spin_unlock(&vm->it_lock);
1200 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1201 spin_lock(&vm->freed_lock);
1202 list_add(&mapping->list, &vm->freed);
1203 spin_unlock(&vm->freed_lock);
1204 }
1205 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1206 list_del(&mapping->list);
1207 spin_lock(&vm->it_lock);
1208 interval_tree_remove(&mapping->it, &vm->va);
1209 spin_unlock(&vm->it_lock);
1210 kfree(mapping);
1211 }
1212 fence_put(bo_va->last_pt_update);
1213 mutex_destroy(&bo_va->mutex);
1214 kfree(bo_va);
1215 }
1216
1217 /**
1218 * amdgpu_vm_bo_invalidate - mark the bo as invalid
1219 *
1220 * @adev: amdgpu_device pointer
1221 * @vm: requested vm
1222 * @bo: amdgpu buffer object
1223 *
1224 * Mark @bo as invalid (cayman+).
1225 */
amdgpu_vm_bo_invalidate(struct amdgpu_device * adev,struct amdgpu_bo * bo)1226 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
1227 struct amdgpu_bo *bo)
1228 {
1229 struct amdgpu_bo_va *bo_va;
1230
1231 list_for_each_entry(bo_va, &bo->va, bo_list) {
1232 spin_lock(&bo_va->vm->status_lock);
1233 if (list_empty(&bo_va->vm_status))
1234 list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1235 spin_unlock(&bo_va->vm->status_lock);
1236 }
1237 }
1238
1239 /**
1240 * amdgpu_vm_init - initialize a vm instance
1241 *
1242 * @adev: amdgpu_device pointer
1243 * @vm: requested vm
1244 *
1245 * Init @vm fields (cayman+).
1246 */
amdgpu_vm_init(struct amdgpu_device * adev,struct amdgpu_vm * vm)1247 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1248 {
1249 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
1250 AMDGPU_VM_PTE_COUNT * 8);
1251 unsigned pd_size, pd_entries;
1252 int i, r;
1253
1254 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1255 vm->ids[i].id = 0;
1256 vm->ids[i].flushed_updates = NULL;
1257 }
1258 vm->va = RB_ROOT;
1259 spin_lock_init(&vm->status_lock);
1260 INIT_LIST_HEAD(&vm->invalidated);
1261 INIT_LIST_HEAD(&vm->cleared);
1262 INIT_LIST_HEAD(&vm->freed);
1263 spin_lock_init(&vm->it_lock);
1264 spin_lock_init(&vm->freed_lock);
1265 pd_size = amdgpu_vm_directory_size(adev);
1266 pd_entries = amdgpu_vm_num_pdes(adev);
1267
1268 /* allocate page table array */
1269 vm->page_tables = drm_calloc_large(pd_entries, sizeof(struct amdgpu_vm_pt));
1270 if (vm->page_tables == NULL) {
1271 DRM_ERROR("Cannot allocate memory for page table array\n");
1272 return -ENOMEM;
1273 }
1274
1275 vm->page_directory_fence = NULL;
1276
1277 r = amdgpu_bo_create(adev, pd_size, align, true,
1278 AMDGPU_GEM_DOMAIN_VRAM,
1279 AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1280 NULL, NULL, &vm->page_directory);
1281 if (r)
1282 return r;
1283 r = amdgpu_bo_reserve(vm->page_directory, false);
1284 if (r) {
1285 amdgpu_bo_unref(&vm->page_directory);
1286 vm->page_directory = NULL;
1287 return r;
1288 }
1289 r = amdgpu_vm_clear_bo(adev, vm->page_directory);
1290 amdgpu_bo_unreserve(vm->page_directory);
1291 if (r) {
1292 amdgpu_bo_unref(&vm->page_directory);
1293 vm->page_directory = NULL;
1294 return r;
1295 }
1296
1297 return 0;
1298 }
1299
1300 /**
1301 * amdgpu_vm_fini - tear down a vm instance
1302 *
1303 * @adev: amdgpu_device pointer
1304 * @vm: requested vm
1305 *
1306 * Tear down @vm (cayman+).
1307 * Unbind the VM and remove all bos from the vm bo list
1308 */
amdgpu_vm_fini(struct amdgpu_device * adev,struct amdgpu_vm * vm)1309 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1310 {
1311 struct amdgpu_bo_va_mapping *mapping, *tmp;
1312 int i;
1313
1314 if (!RB_EMPTY_ROOT(&vm->va)) {
1315 dev_err(adev->dev, "still active bo inside vm\n");
1316 }
1317 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) {
1318 list_del(&mapping->list);
1319 interval_tree_remove(&mapping->it, &vm->va);
1320 kfree(mapping);
1321 }
1322 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
1323 list_del(&mapping->list);
1324 kfree(mapping);
1325 }
1326
1327 for (i = 0; i < amdgpu_vm_num_pdes(adev); i++)
1328 amdgpu_bo_unref(&vm->page_tables[i].bo);
1329 drm_free_large(vm->page_tables);
1330
1331 amdgpu_bo_unref(&vm->page_directory);
1332 fence_put(vm->page_directory_fence);
1333 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1334 unsigned id = vm->ids[i].id;
1335
1336 atomic_long_cmpxchg(&adev->vm_manager.ids[id].owner,
1337 (long)vm, 0);
1338 fence_put(vm->ids[i].flushed_updates);
1339 }
1340
1341 }
1342
1343 /**
1344 * amdgpu_vm_manager_fini - cleanup VM manager
1345 *
1346 * @adev: amdgpu_device pointer
1347 *
1348 * Cleanup the VM manager and free resources.
1349 */
amdgpu_vm_manager_fini(struct amdgpu_device * adev)1350 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
1351 {
1352 unsigned i;
1353
1354 for (i = 0; i < AMDGPU_NUM_VM; ++i)
1355 fence_put(adev->vm_manager.ids[i].active);
1356 }
1357