1 /*
2 * TLB Management (flush/create/diagnostics) for ARC700
3 *
4 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * vineetg: Aug 2011
11 * -Reintroduce duplicate PD fixup - some customer chips still have the issue
12 *
13 * vineetg: May 2011
14 * -No need to flush_cache_page( ) for each call to update_mmu_cache()
15 * some of the LMBench tests improved amazingly
16 * = page-fault thrice as fast (75 usec to 28 usec)
17 * = mmap twice as fast (9.6 msec to 4.6 msec),
18 * = fork (5.3 msec to 3.7 msec)
19 *
20 * vineetg: April 2011 :
21 * -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
22 * helps avoid a shift when preparing PD0 from PTE
23 *
24 * vineetg: April 2011 : Preparing for MMU V3
25 * -MMU v2/v3 BCRs decoded differently
26 * -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
27 * -tlb_entry_erase( ) can be void
28 * -local_flush_tlb_range( ):
29 * = need not "ceil" @end
30 * = walks MMU only if range spans < 32 entries, as opposed to 256
31 *
32 * Vineetg: Sept 10th 2008
33 * -Changes related to MMU v2 (Rel 4.8)
34 *
35 * Vineetg: Aug 29th 2008
36 * -In TLB Flush operations (Metal Fix MMU) there is a explict command to
37 * flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
38 * it fails. Thus need to load it with ANY valid value before invoking
39 * TLBIVUTLB cmd
40 *
41 * Vineetg: Aug 21th 2008:
42 * -Reduced the duration of IRQ lockouts in TLB Flush routines
43 * -Multiple copies of TLB erase code seperated into a "single" function
44 * -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
45 * in interrupt-safe region.
46 *
47 * Vineetg: April 23rd Bug #93131
48 * Problem: tlb_flush_kernel_range() doesnt do anything if the range to
49 * flush is more than the size of TLB itself.
50 *
51 * Rahul Trivedi : Codito Technologies 2004
52 */
53
54 #include <linux/module.h>
55 #include <linux/bug.h>
56 #include <asm/arcregs.h>
57 #include <asm/setup.h>
58 #include <asm/mmu_context.h>
59 #include <asm/mmu.h>
60
61 /* Need for ARC MMU v2
62 *
63 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
64 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
65 * map into same set, there would be contention for the 2 ways causing severe
66 * Thrashing.
67 *
68 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
69 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
70 * Given this, the thrasing problem should never happen because once the 3
71 * J-TLB entries are created (even though 3rd will knock out one of the prev
72 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
73 *
74 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
75 * This is a simple design for keeping them in sync. So what do we do?
76 * The solution which James came up was pretty neat. It utilised the assoc
77 * of uTLBs by not invalidating always but only when absolutely necessary.
78 *
79 * - Existing TLB commands work as before
80 * - New command (TLBWriteNI) for TLB write without clearing uTLBs
81 * - New command (TLBIVUTLB) to invalidate uTLBs.
82 *
83 * The uTLBs need only be invalidated when pages are being removed from the
84 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
85 * as a result of a miss, the removed entry is still allowed to exist in the
86 * uTLBs as it is still valid and present in the OS page table. This allows the
87 * full associativity of the uTLBs to hide the limited associativity of the main
88 * TLB.
89 *
90 * During a miss handler, the new "TLBWriteNI" command is used to load
91 * entries without clearing the uTLBs.
92 *
93 * When the OS page table is updated, TLB entries that may be associated with a
94 * removed page are removed (flushed) from the TLB using TLBWrite. In this
95 * circumstance, the uTLBs must also be cleared. This is done by using the
96 * existing TLBWrite command. An explicit IVUTLB is also required for those
97 * corner cases when TLBWrite was not executed at all because the corresp
98 * J-TLB entry got evicted/replaced.
99 */
100
101
102 /* A copy of the ASID from the PID reg is kept in asid_cache */
103 DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
104
105 /*
106 * Utility Routine to erase a J-TLB entry
107 * Caller needs to setup Index Reg (manually or via getIndex)
108 */
__tlb_entry_erase(void)109 static inline void __tlb_entry_erase(void)
110 {
111 write_aux_reg(ARC_REG_TLBPD1, 0);
112
113 if (is_pae40_enabled())
114 write_aux_reg(ARC_REG_TLBPD1HI, 0);
115
116 write_aux_reg(ARC_REG_TLBPD0, 0);
117 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
118 }
119
120 #if (CONFIG_ARC_MMU_VER < 4)
121
tlb_entry_lkup(unsigned long vaddr_n_asid)122 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
123 {
124 unsigned int idx;
125
126 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
127
128 write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
129 idx = read_aux_reg(ARC_REG_TLBINDEX);
130
131 return idx;
132 }
133
tlb_entry_erase(unsigned int vaddr_n_asid)134 static void tlb_entry_erase(unsigned int vaddr_n_asid)
135 {
136 unsigned int idx;
137
138 /* Locate the TLB entry for this vaddr + ASID */
139 idx = tlb_entry_lkup(vaddr_n_asid);
140
141 /* No error means entry found, zero it out */
142 if (likely(!(idx & TLB_LKUP_ERR))) {
143 __tlb_entry_erase();
144 } else {
145 /* Duplicate entry error */
146 WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
147 vaddr_n_asid);
148 }
149 }
150
151 /****************************************************************************
152 * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
153 *
154 * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
155 *
156 * utlb_invalidate ( )
157 * -For v2 MMU calls Flush uTLB Cmd
158 * -For v1 MMU does nothing (except for Metal Fix v1 MMU)
159 * This is because in v1 TLBWrite itself invalidate uTLBs
160 ***************************************************************************/
161
utlb_invalidate(void)162 static void utlb_invalidate(void)
163 {
164 #if (CONFIG_ARC_MMU_VER >= 2)
165
166 #if (CONFIG_ARC_MMU_VER == 2)
167 /* MMU v2 introduced the uTLB Flush command.
168 * There was however an obscure hardware bug, where uTLB flush would
169 * fail when a prior probe for J-TLB (both totally unrelated) would
170 * return lkup err - because the entry didnt exist in MMU.
171 * The Workround was to set Index reg with some valid value, prior to
172 * flush. This was fixed in MMU v3 hence not needed any more
173 */
174 unsigned int idx;
175
176 /* make sure INDEX Reg is valid */
177 idx = read_aux_reg(ARC_REG_TLBINDEX);
178
179 /* If not write some dummy val */
180 if (unlikely(idx & TLB_LKUP_ERR))
181 write_aux_reg(ARC_REG_TLBINDEX, 0xa);
182 #endif
183
184 write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
185 #endif
186
187 }
188
tlb_entry_insert(unsigned int pd0,pte_t pd1)189 static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
190 {
191 unsigned int idx;
192
193 /*
194 * First verify if entry for this vaddr+ASID already exists
195 * This also sets up PD0 (vaddr, ASID..) for final commit
196 */
197 idx = tlb_entry_lkup(pd0);
198
199 /*
200 * If Not already present get a free slot from MMU.
201 * Otherwise, Probe would have located the entry and set INDEX Reg
202 * with existing location. This will cause Write CMD to over-write
203 * existing entry with new PD0 and PD1
204 */
205 if (likely(idx & TLB_LKUP_ERR))
206 write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
207
208 /* setup the other half of TLB entry (pfn, rwx..) */
209 write_aux_reg(ARC_REG_TLBPD1, pd1);
210
211 /*
212 * Commit the Entry to MMU
213 * It doesnt sound safe to use the TLBWriteNI cmd here
214 * which doesn't flush uTLBs. I'd rather be safe than sorry.
215 */
216 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
217 }
218
219 #else /* CONFIG_ARC_MMU_VER >= 4) */
220
utlb_invalidate(void)221 static void utlb_invalidate(void)
222 {
223 /* No need since uTLB is always in sync with JTLB */
224 }
225
tlb_entry_erase(unsigned int vaddr_n_asid)226 static void tlb_entry_erase(unsigned int vaddr_n_asid)
227 {
228 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
229 write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
230 }
231
tlb_entry_insert(unsigned int pd0,pte_t pd1)232 static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
233 {
234 write_aux_reg(ARC_REG_TLBPD0, pd0);
235 write_aux_reg(ARC_REG_TLBPD1, pd1);
236
237 if (is_pae40_enabled())
238 write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32);
239
240 write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
241 }
242
243 #endif
244
245 /*
246 * Un-conditionally (without lookup) erase the entire MMU contents
247 */
248
local_flush_tlb_all(void)249 noinline void local_flush_tlb_all(void)
250 {
251 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
252 unsigned long flags;
253 unsigned int entry;
254 int num_tlb = mmu->sets * mmu->ways;
255
256 local_irq_save(flags);
257
258 /* Load PD0 and PD1 with template for a Blank Entry */
259 write_aux_reg(ARC_REG_TLBPD1, 0);
260
261 if (is_pae40_enabled())
262 write_aux_reg(ARC_REG_TLBPD1HI, 0);
263
264 write_aux_reg(ARC_REG_TLBPD0, 0);
265
266 for (entry = 0; entry < num_tlb; entry++) {
267 /* write this entry to the TLB */
268 write_aux_reg(ARC_REG_TLBINDEX, entry);
269 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
270 }
271
272 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
273 const int stlb_idx = 0x800;
274
275 /* Blank sTLB entry */
276 write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ);
277
278 for (entry = stlb_idx; entry < stlb_idx + 16; entry++) {
279 write_aux_reg(ARC_REG_TLBINDEX, entry);
280 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
281 }
282 }
283
284 utlb_invalidate();
285
286 local_irq_restore(flags);
287 }
288
289 /*
290 * Flush the entrie MM for userland. The fastest way is to move to Next ASID
291 */
local_flush_tlb_mm(struct mm_struct * mm)292 noinline void local_flush_tlb_mm(struct mm_struct *mm)
293 {
294 /*
295 * Small optimisation courtesy IA64
296 * flush_mm called during fork,exit,munmap etc, multiple times as well.
297 * Only for fork( ) do we need to move parent to a new MMU ctxt,
298 * all other cases are NOPs, hence this check.
299 */
300 if (atomic_read(&mm->mm_users) == 0)
301 return;
302
303 /*
304 * - Move to a new ASID, but only if the mm is still wired in
305 * (Android Binder ended up calling this for vma->mm != tsk->mm,
306 * causing h/w - s/w ASID to get out of sync)
307 * - Also get_new_mmu_context() new implementation allocates a new
308 * ASID only if it is not allocated already - so unallocate first
309 */
310 destroy_context(mm);
311 if (current->mm == mm)
312 get_new_mmu_context(mm);
313 }
314
315 /*
316 * Flush a Range of TLB entries for userland.
317 * @start is inclusive, while @end is exclusive
318 * Difference between this and Kernel Range Flush is
319 * -Here the fastest way (if range is too large) is to move to next ASID
320 * without doing any explicit Shootdown
321 * -In case of kernel Flush, entry has to be shot down explictly
322 */
local_flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)323 void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
324 unsigned long end)
325 {
326 const unsigned int cpu = smp_processor_id();
327 unsigned long flags;
328
329 /* If range @start to @end is more than 32 TLB entries deep,
330 * its better to move to a new ASID rather than searching for
331 * individual entries and then shooting them down
332 *
333 * The calc above is rough, doesn't account for unaligned parts,
334 * since this is heuristics based anyways
335 */
336 if (unlikely((end - start) >= PAGE_SIZE * 32)) {
337 local_flush_tlb_mm(vma->vm_mm);
338 return;
339 }
340
341 /*
342 * @start moved to page start: this alone suffices for checking
343 * loop end condition below, w/o need for aligning @end to end
344 * e.g. 2000 to 4001 will anyhow loop twice
345 */
346 start &= PAGE_MASK;
347
348 local_irq_save(flags);
349
350 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
351 while (start < end) {
352 tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
353 start += PAGE_SIZE;
354 }
355 }
356
357 utlb_invalidate();
358
359 local_irq_restore(flags);
360 }
361
362 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
363 * @start, @end interpreted as kvaddr
364 * Interestingly, shared TLB entries can also be flushed using just
365 * @start,@end alone (interpreted as user vaddr), although technically SASID
366 * is also needed. However our smart TLbProbe lookup takes care of that.
367 */
local_flush_tlb_kernel_range(unsigned long start,unsigned long end)368 void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
369 {
370 unsigned long flags;
371
372 /* exactly same as above, except for TLB entry not taking ASID */
373
374 if (unlikely((end - start) >= PAGE_SIZE * 32)) {
375 local_flush_tlb_all();
376 return;
377 }
378
379 start &= PAGE_MASK;
380
381 local_irq_save(flags);
382 while (start < end) {
383 tlb_entry_erase(start);
384 start += PAGE_SIZE;
385 }
386
387 utlb_invalidate();
388
389 local_irq_restore(flags);
390 }
391
392 /*
393 * Delete TLB entry in MMU for a given page (??? address)
394 * NOTE One TLB entry contains translation for single PAGE
395 */
396
local_flush_tlb_page(struct vm_area_struct * vma,unsigned long page)397 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
398 {
399 const unsigned int cpu = smp_processor_id();
400 unsigned long flags;
401
402 /* Note that it is critical that interrupts are DISABLED between
403 * checking the ASID and using it flush the TLB entry
404 */
405 local_irq_save(flags);
406
407 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
408 tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
409 utlb_invalidate();
410 }
411
412 local_irq_restore(flags);
413 }
414
415 #ifdef CONFIG_SMP
416
417 struct tlb_args {
418 struct vm_area_struct *ta_vma;
419 unsigned long ta_start;
420 unsigned long ta_end;
421 };
422
ipi_flush_tlb_page(void * arg)423 static inline void ipi_flush_tlb_page(void *arg)
424 {
425 struct tlb_args *ta = arg;
426
427 local_flush_tlb_page(ta->ta_vma, ta->ta_start);
428 }
429
ipi_flush_tlb_range(void * arg)430 static inline void ipi_flush_tlb_range(void *arg)
431 {
432 struct tlb_args *ta = arg;
433
434 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
435 }
436
437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
ipi_flush_pmd_tlb_range(void * arg)438 static inline void ipi_flush_pmd_tlb_range(void *arg)
439 {
440 struct tlb_args *ta = arg;
441
442 local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
443 }
444 #endif
445
ipi_flush_tlb_kernel_range(void * arg)446 static inline void ipi_flush_tlb_kernel_range(void *arg)
447 {
448 struct tlb_args *ta = (struct tlb_args *)arg;
449
450 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
451 }
452
flush_tlb_all(void)453 void flush_tlb_all(void)
454 {
455 on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
456 }
457
flush_tlb_mm(struct mm_struct * mm)458 void flush_tlb_mm(struct mm_struct *mm)
459 {
460 on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
461 mm, 1);
462 }
463
flush_tlb_page(struct vm_area_struct * vma,unsigned long uaddr)464 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
465 {
466 struct tlb_args ta = {
467 .ta_vma = vma,
468 .ta_start = uaddr
469 };
470
471 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
472 }
473
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)474 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
475 unsigned long end)
476 {
477 struct tlb_args ta = {
478 .ta_vma = vma,
479 .ta_start = start,
480 .ta_end = end
481 };
482
483 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
484 }
485
486 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
flush_pmd_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)487 void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
488 unsigned long end)
489 {
490 struct tlb_args ta = {
491 .ta_vma = vma,
492 .ta_start = start,
493 .ta_end = end
494 };
495
496 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1);
497 }
498 #endif
499
flush_tlb_kernel_range(unsigned long start,unsigned long end)500 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
501 {
502 struct tlb_args ta = {
503 .ta_start = start,
504 .ta_end = end
505 };
506
507 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
508 }
509 #endif
510
511 /*
512 * Routine to create a TLB entry
513 */
create_tlb(struct vm_area_struct * vma,unsigned long vaddr,pte_t * ptep)514 void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep)
515 {
516 unsigned long flags;
517 unsigned int asid_or_sasid, rwx;
518 unsigned long pd0;
519 pte_t pd1;
520
521 /*
522 * create_tlb() assumes that current->mm == vma->mm, since
523 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
524 * -completes the lazy write to SASID reg (again valid for curr tsk)
525 *
526 * Removing the assumption involves
527 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
528 * -Fix the TLB paranoid debug code to not trigger false negatives.
529 * -More importantly it makes this handler inconsistent with fast-path
530 * TLB Refill handler which always deals with "current"
531 *
532 * Lets see the use cases when current->mm != vma->mm and we land here
533 * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault
534 * Here VM wants to pre-install a TLB entry for user stack while
535 * current->mm still points to pre-execve mm (hence the condition).
536 * However the stack vaddr is soon relocated (randomization) and
537 * move_page_tables() tries to undo that TLB entry.
538 * Thus not creating TLB entry is not any worse.
539 *
540 * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
541 * breakpoint in debugged task. Not creating a TLB now is not
542 * performance critical.
543 *
544 * Both the cases above are not good enough for code churn.
545 */
546 if (current->active_mm != vma->vm_mm)
547 return;
548
549 local_irq_save(flags);
550
551 tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr);
552
553 vaddr &= PAGE_MASK;
554
555 /* update this PTE credentials */
556 pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
557
558 /* Create HW TLB(PD0,PD1) from PTE */
559
560 /* ASID for this task */
561 asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
562
563 pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
564
565 /*
566 * ARC MMU provides fully orthogonal access bits for K/U mode,
567 * however Linux only saves 1 set to save PTE real-estate
568 * Here we convert 3 PTE bits into 6 MMU bits:
569 * -Kernel only entries have Kr Kw Kx 0 0 0
570 * -User entries have mirrored K and U bits
571 */
572 rwx = pte_val(*ptep) & PTE_BITS_RWX;
573
574 if (pte_val(*ptep) & _PAGE_GLOBAL)
575 rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */
576 else
577 rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */
578
579 pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
580
581 tlb_entry_insert(pd0, pd1);
582
583 local_irq_restore(flags);
584 }
585
586 /*
587 * Called at the end of pagefault, for a userspace mapped page
588 * -pre-install the corresponding TLB entry into MMU
589 * -Finalize the delayed D-cache flush of kernel mapping of page due to
590 * flush_dcache_page(), copy_user_page()
591 *
592 * Note that flush (when done) involves both WBACK - so physical page is
593 * in sync as well as INV - so any non-congruent aliases don't remain
594 */
update_mmu_cache(struct vm_area_struct * vma,unsigned long vaddr_unaligned,pte_t * ptep)595 void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
596 pte_t *ptep)
597 {
598 unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
599 phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK;
600 struct page *page = pfn_to_page(pte_pfn(*ptep));
601
602 create_tlb(vma, vaddr, ptep);
603
604 if (page == ZERO_PAGE(0)) {
605 return;
606 }
607
608 /*
609 * Exec page : Independent of aliasing/page-color considerations,
610 * since icache doesn't snoop dcache on ARC, any dirty
611 * K-mapping of a code page needs to be wback+inv so that
612 * icache fetch by userspace sees code correctly.
613 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
614 * so userspace sees the right data.
615 * (Avoids the flush for Non-exec + congruent mapping case)
616 */
617 if ((vma->vm_flags & VM_EXEC) ||
618 addr_not_cache_congruent(paddr, vaddr)) {
619
620 int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
621 if (dirty) {
622 /* wback + inv dcache lines (K-mapping) */
623 __flush_dcache_page(paddr, paddr);
624
625 /* invalidate any existing icache lines (U-mapping) */
626 if (vma->vm_flags & VM_EXEC)
627 __inv_icache_page(paddr, vaddr);
628 }
629 }
630 }
631
632 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
633
634 /*
635 * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
636 * support.
637 *
638 * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
639 * new bit "SZ" in TLB page desciptor to distinguish between them.
640 * Super Page size is configurable in hardware (4K to 16M), but fixed once
641 * RTL builds.
642 *
643 * The exact THP size a Linx configuration will support is a function of:
644 * - MMU page size (typical 8K, RTL fixed)
645 * - software page walker address split between PGD:PTE:PFN (typical
646 * 11:8:13, but can be changed with 1 line)
647 * So for above default, THP size supported is 8K * (2^8) = 2M
648 *
649 * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
650 * reduces to 1 level (as PTE is folded into PGD and canonically referred
651 * to as PMD).
652 * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
653 */
654
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)655 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
656 pmd_t *pmd)
657 {
658 pte_t pte = __pte(pmd_val(*pmd));
659 update_mmu_cache(vma, addr, &pte);
660 }
661
pgtable_trans_huge_deposit(struct mm_struct * mm,pmd_t * pmdp,pgtable_t pgtable)662 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
663 pgtable_t pgtable)
664 {
665 struct list_head *lh = (struct list_head *) pgtable;
666
667 assert_spin_locked(&mm->page_table_lock);
668
669 /* FIFO */
670 if (!pmd_huge_pte(mm, pmdp))
671 INIT_LIST_HEAD(lh);
672 else
673 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
674 pmd_huge_pte(mm, pmdp) = pgtable;
675 }
676
pgtable_trans_huge_withdraw(struct mm_struct * mm,pmd_t * pmdp)677 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
678 {
679 struct list_head *lh;
680 pgtable_t pgtable;
681
682 assert_spin_locked(&mm->page_table_lock);
683
684 pgtable = pmd_huge_pte(mm, pmdp);
685 lh = (struct list_head *) pgtable;
686 if (list_empty(lh))
687 pmd_huge_pte(mm, pmdp) = NULL;
688 else {
689 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
690 list_del(lh);
691 }
692
693 pte_val(pgtable[0]) = 0;
694 pte_val(pgtable[1]) = 0;
695
696 return pgtable;
697 }
698
local_flush_pmd_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)699 void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
700 unsigned long end)
701 {
702 unsigned int cpu;
703 unsigned long flags;
704
705 local_irq_save(flags);
706
707 cpu = smp_processor_id();
708
709 if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) {
710 unsigned int asid = hw_pid(vma->vm_mm, cpu);
711
712 /* No need to loop here: this will always be for 1 Huge Page */
713 tlb_entry_erase(start | _PAGE_HW_SZ | asid);
714 }
715
716 local_irq_restore(flags);
717 }
718
719 #endif
720
721 /* Read the Cache Build Confuration Registers, Decode them and save into
722 * the cpuinfo structure for later use.
723 * No Validation is done here, simply read/convert the BCRs
724 */
read_decode_mmu_bcr(void)725 void read_decode_mmu_bcr(void)
726 {
727 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
728 unsigned int tmp;
729 struct bcr_mmu_1_2 {
730 #ifdef CONFIG_CPU_BIG_ENDIAN
731 unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
732 #else
733 unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
734 #endif
735 } *mmu2;
736
737 struct bcr_mmu_3 {
738 #ifdef CONFIG_CPU_BIG_ENDIAN
739 unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4,
740 u_itlb:4, u_dtlb:4;
741 #else
742 unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4,
743 ways:4, ver:8;
744 #endif
745 } *mmu3;
746
747 struct bcr_mmu_4 {
748 #ifdef CONFIG_CPU_BIG_ENDIAN
749 unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1,
750 n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3;
751 #else
752 /* DTLB ITLB JES JE JA */
753 unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2,
754 pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8;
755 #endif
756 } *mmu4;
757
758 tmp = read_aux_reg(ARC_REG_MMU_BCR);
759 mmu->ver = (tmp >> 24);
760
761 if (mmu->ver <= 2) {
762 mmu2 = (struct bcr_mmu_1_2 *)&tmp;
763 mmu->pg_sz_k = TO_KB(0x2000);
764 mmu->sets = 1 << mmu2->sets;
765 mmu->ways = 1 << mmu2->ways;
766 mmu->u_dtlb = mmu2->u_dtlb;
767 mmu->u_itlb = mmu2->u_itlb;
768 } else if (mmu->ver == 3) {
769 mmu3 = (struct bcr_mmu_3 *)&tmp;
770 mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
771 mmu->sets = 1 << mmu3->sets;
772 mmu->ways = 1 << mmu3->ways;
773 mmu->u_dtlb = mmu3->u_dtlb;
774 mmu->u_itlb = mmu3->u_itlb;
775 mmu->sasid = mmu3->sasid;
776 } else {
777 mmu4 = (struct bcr_mmu_4 *)&tmp;
778 mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
779 mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
780 mmu->sets = 64 << mmu4->n_entry;
781 mmu->ways = mmu4->n_ways * 2;
782 mmu->u_dtlb = mmu4->u_dtlb * 4;
783 mmu->u_itlb = mmu4->u_itlb * 4;
784 mmu->sasid = mmu4->sasid;
785 mmu->pae = mmu4->pae;
786 }
787 }
788
arc_mmu_mumbojumbo(int cpu_id,char * buf,int len)789 char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
790 {
791 int n = 0;
792 struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
793 char super_pg[64] = "";
794
795 if (p_mmu->s_pg_sz_m)
796 scnprintf(super_pg, 64, "%dM Super Page%s, ",
797 p_mmu->s_pg_sz_m,
798 IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE));
799
800 n += scnprintf(buf + n, len - n,
801 "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d %s%s\n",
802 p_mmu->ver, p_mmu->pg_sz_k, super_pg,
803 p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways,
804 p_mmu->u_dtlb, p_mmu->u_itlb,
805 IS_AVAIL2(p_mmu->pae, "PAE40 ", CONFIG_ARC_HAS_PAE40));
806
807 return buf;
808 }
809
arc_mmu_init(void)810 void arc_mmu_init(void)
811 {
812 char str[256];
813 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
814
815 printk(arc_mmu_mumbojumbo(0, str, sizeof(str)));
816
817 /* For efficiency sake, kernel is compile time built for a MMU ver
818 * This must match the hardware it is running on.
819 * Linux built for MMU V2, if run on MMU V1 will break down because V1
820 * hardware doesn't understand cmds such as WriteNI, or IVUTLB
821 * On the other hand, Linux built for V1 if run on MMU V2 will do
822 * un-needed workarounds to prevent memcpy thrashing.
823 * Similarly MMU V3 has new features which won't work on older MMU
824 */
825 if (mmu->ver != CONFIG_ARC_MMU_VER) {
826 panic("MMU ver %d doesn't match kernel built for %d...\n",
827 mmu->ver, CONFIG_ARC_MMU_VER);
828 }
829
830 if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
831 panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
832
833 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
834 mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE))
835 panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
836 (unsigned long)TO_MB(HPAGE_PMD_SIZE));
837
838 if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae)
839 panic("Hardware doesn't support PAE40\n");
840
841 /* Enable the MMU */
842 write_aux_reg(ARC_REG_PID, MMU_ENABLE);
843
844 /* In smp we use this reg for interrupt 1 scratch */
845 #ifndef CONFIG_SMP
846 /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
847 write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
848 #endif
849 }
850
851 /*
852 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
853 * The mapping is Column-first.
854 * --------------------- -----------
855 * |way0|way1|way2|way3| |way0|way1|
856 * --------------------- -----------
857 * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 |
858 * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 |
859 * ~ ~ ~ ~
860 * [set127] | 508| 509| 510| 511| | 254| 255|
861 * --------------------- -----------
862 * For normal operations we don't(must not) care how above works since
863 * MMU cmd getIndex(vaddr) abstracts that out.
864 * However for walking WAYS of a SET, we need to know this
865 */
866 #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way))
867
868 /* Handling of Duplicate PD (TLB entry) in MMU.
869 * -Could be due to buggy customer tapeouts or obscure kernel bugs
870 * -MMU complaints not at the time of duplicate PD installation, but at the
871 * time of lookup matching multiple ways.
872 * -Ideally these should never happen - but if they do - workaround by deleting
873 * the duplicate one.
874 * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
875 */
876 volatile int dup_pd_silent; /* Be slient abt it or complain (default) */
877
do_tlb_overlap_fault(unsigned long cause,unsigned long address,struct pt_regs * regs)878 void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
879 struct pt_regs *regs)
880 {
881 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
882 unsigned int pd0[mmu->ways];
883 unsigned long flags;
884 int set;
885
886 local_irq_save(flags);
887
888 /* loop thru all sets of TLB */
889 for (set = 0; set < mmu->sets; set++) {
890
891 int is_valid, way;
892
893 /* read out all the ways of current set */
894 for (way = 0, is_valid = 0; way < mmu->ways; way++) {
895 write_aux_reg(ARC_REG_TLBINDEX,
896 SET_WAY_TO_IDX(mmu, set, way));
897 write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
898 pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
899 is_valid |= pd0[way] & _PAGE_PRESENT;
900 pd0[way] &= PAGE_MASK;
901 }
902
903 /* If all the WAYS in SET are empty, skip to next SET */
904 if (!is_valid)
905 continue;
906
907 /* Scan the set for duplicate ways: needs a nested loop */
908 for (way = 0; way < mmu->ways - 1; way++) {
909
910 int n;
911
912 if (!pd0[way])
913 continue;
914
915 for (n = way + 1; n < mmu->ways; n++) {
916 if (pd0[way] != pd0[n])
917 continue;
918
919 if (!dup_pd_silent)
920 pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
921 pd0[way], set, way, n);
922
923 /*
924 * clear entry @way and not @n.
925 * This is critical to our optimised loop
926 */
927 pd0[way] = 0;
928 write_aux_reg(ARC_REG_TLBINDEX,
929 SET_WAY_TO_IDX(mmu, set, way));
930 __tlb_entry_erase();
931 }
932 }
933 }
934
935 local_irq_restore(flags);
936 }
937
938 /***********************************************************************
939 * Diagnostic Routines
940 * -Called from Low Level TLB Hanlders if things don;t look good
941 **********************************************************************/
942
943 #ifdef CONFIG_ARC_DBG_TLB_PARANOIA
944
945 /*
946 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
947 * don't match
948 */
print_asid_mismatch(int mm_asid,int mmu_asid,int is_fast_path)949 void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path)
950 {
951 pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
952 is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid);
953
954 __asm__ __volatile__("flag 1");
955 }
956
tlb_paranoid_check(unsigned int mm_asid,unsigned long addr)957 void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr)
958 {
959 unsigned int mmu_asid;
960
961 mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff;
962
963 /*
964 * At the time of a TLB miss/installation
965 * - HW version needs to match SW version
966 * - SW needs to have a valid ASID
967 */
968 if (addr < 0x70000000 &&
969 ((mm_asid == MM_CTXT_NO_ASID) ||
970 (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK))))
971 print_asid_mismatch(mm_asid, mmu_asid, 0);
972 }
973 #endif
974