1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50 DRM_FORMAT_C8,
51 DRM_FORMAT_RGB565,
52 DRM_FORMAT_XRGB1555,
53 DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB8888,
61 DRM_FORMAT_XBGR8888,
62 DRM_FORMAT_XRGB2101010,
63 DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_ARGB8888,
72 DRM_FORMAT_ABGR8888,
73 DRM_FORMAT_XRGB2101010,
74 DRM_FORMAT_XBGR2101010,
75 DRM_FORMAT_YUYV,
76 DRM_FORMAT_YVYU,
77 DRM_FORMAT_UYVY,
78 DRM_FORMAT_VYUY,
79 };
80
81 /* Cursor formats */
82 static const uint32_t intel_cursor_formats[] = {
83 DRM_FORMAT_ARGB8888,
84 };
85
86 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
87
88 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
89 struct intel_crtc_state *pipe_config);
90 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
91 struct intel_crtc_state *pipe_config);
92
93 static int intel_framebuffer_init(struct drm_device *dev,
94 struct intel_framebuffer *ifb,
95 struct drm_mode_fb_cmd2 *mode_cmd,
96 struct drm_i915_gem_object *obj);
97 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
100 struct intel_link_m_n *m_n,
101 struct intel_link_m_n *m2_n2);
102 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
103 static void haswell_set_pipeconf(struct drm_crtc *crtc);
104 static void intel_set_pipe_csc(struct drm_crtc *crtc);
105 static void vlv_prepare_pll(struct intel_crtc *crtc,
106 const struct intel_crtc_state *pipe_config);
107 static void chv_prepare_pll(struct intel_crtc *crtc,
108 const struct intel_crtc_state *pipe_config);
109 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112 struct intel_crtc_state *crtc_state);
113 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114 int num_connectors);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119 static void intel_pre_disable_primary(struct drm_crtc *crtc);
120
121 typedef struct {
122 int min, max;
123 } intel_range_t;
124
125 typedef struct {
126 int dot_limit;
127 int p2_slow, p2_fast;
128 } intel_p2_t;
129
130 typedef struct intel_limit intel_limit_t;
131 struct intel_limit {
132 intel_range_t dot, vco, n, m, m1, m2, p, p1;
133 intel_p2_t p2;
134 };
135
136 /* returns HPLL frequency in kHz */
valleyview_get_vco(struct drm_i915_private * dev_priv)137 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
138 {
139 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
140
141 /* Obtain SKU information */
142 mutex_lock(&dev_priv->sb_lock);
143 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
144 CCK_FUSE_HPLL_FREQ_MASK;
145 mutex_unlock(&dev_priv->sb_lock);
146
147 return vco_freq[hpll_freq] * 1000;
148 }
149
vlv_get_cck_clock_hpll(struct drm_i915_private * dev_priv,const char * name,u32 reg)150 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
151 const char *name, u32 reg)
152 {
153 u32 val;
154 int divider;
155
156 if (dev_priv->hpll_freq == 0)
157 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
158
159 mutex_lock(&dev_priv->sb_lock);
160 val = vlv_cck_read(dev_priv, reg);
161 mutex_unlock(&dev_priv->sb_lock);
162
163 divider = val & CCK_FREQUENCY_VALUES;
164
165 WARN((val & CCK_FREQUENCY_STATUS) !=
166 (divider << CCK_FREQUENCY_STATUS_SHIFT),
167 "%s change in progress\n", name);
168
169 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
170 }
171
172 int
intel_pch_rawclk(struct drm_device * dev)173 intel_pch_rawclk(struct drm_device *dev)
174 {
175 struct drm_i915_private *dev_priv = dev->dev_private;
176
177 WARN_ON(!HAS_PCH_SPLIT(dev));
178
179 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
180 }
181
182 /* hrawclock is 1/4 the FSB frequency */
intel_hrawclk(struct drm_device * dev)183 int intel_hrawclk(struct drm_device *dev)
184 {
185 struct drm_i915_private *dev_priv = dev->dev_private;
186 uint32_t clkcfg;
187
188 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
189 if (IS_VALLEYVIEW(dev))
190 return 200;
191
192 clkcfg = I915_READ(CLKCFG);
193 switch (clkcfg & CLKCFG_FSB_MASK) {
194 case CLKCFG_FSB_400:
195 return 100;
196 case CLKCFG_FSB_533:
197 return 133;
198 case CLKCFG_FSB_667:
199 return 166;
200 case CLKCFG_FSB_800:
201 return 200;
202 case CLKCFG_FSB_1067:
203 return 266;
204 case CLKCFG_FSB_1333:
205 return 333;
206 /* these two are just a guess; one of them might be right */
207 case CLKCFG_FSB_1600:
208 case CLKCFG_FSB_1600_ALT:
209 return 400;
210 default:
211 return 133;
212 }
213 }
214
intel_update_czclk(struct drm_i915_private * dev_priv)215 static void intel_update_czclk(struct drm_i915_private *dev_priv)
216 {
217 if (!IS_VALLEYVIEW(dev_priv))
218 return;
219
220 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
221 CCK_CZ_CLOCK_CONTROL);
222
223 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
224 }
225
226 static inline u32 /* units of 100MHz */
intel_fdi_link_freq(struct drm_device * dev)227 intel_fdi_link_freq(struct drm_device *dev)
228 {
229 if (IS_GEN5(dev)) {
230 struct drm_i915_private *dev_priv = dev->dev_private;
231 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
232 } else
233 return 27;
234 }
235
236 static const intel_limit_t intel_limits_i8xx_dac = {
237 .dot = { .min = 25000, .max = 350000 },
238 .vco = { .min = 908000, .max = 1512000 },
239 .n = { .min = 2, .max = 16 },
240 .m = { .min = 96, .max = 140 },
241 .m1 = { .min = 18, .max = 26 },
242 .m2 = { .min = 6, .max = 16 },
243 .p = { .min = 4, .max = 128 },
244 .p1 = { .min = 2, .max = 33 },
245 .p2 = { .dot_limit = 165000,
246 .p2_slow = 4, .p2_fast = 2 },
247 };
248
249 static const intel_limit_t intel_limits_i8xx_dvo = {
250 .dot = { .min = 25000, .max = 350000 },
251 .vco = { .min = 908000, .max = 1512000 },
252 .n = { .min = 2, .max = 16 },
253 .m = { .min = 96, .max = 140 },
254 .m1 = { .min = 18, .max = 26 },
255 .m2 = { .min = 6, .max = 16 },
256 .p = { .min = 4, .max = 128 },
257 .p1 = { .min = 2, .max = 33 },
258 .p2 = { .dot_limit = 165000,
259 .p2_slow = 4, .p2_fast = 4 },
260 };
261
262 static const intel_limit_t intel_limits_i8xx_lvds = {
263 .dot = { .min = 25000, .max = 350000 },
264 .vco = { .min = 908000, .max = 1512000 },
265 .n = { .min = 2, .max = 16 },
266 .m = { .min = 96, .max = 140 },
267 .m1 = { .min = 18, .max = 26 },
268 .m2 = { .min = 6, .max = 16 },
269 .p = { .min = 4, .max = 128 },
270 .p1 = { .min = 1, .max = 6 },
271 .p2 = { .dot_limit = 165000,
272 .p2_slow = 14, .p2_fast = 7 },
273 };
274
275 static const intel_limit_t intel_limits_i9xx_sdvo = {
276 .dot = { .min = 20000, .max = 400000 },
277 .vco = { .min = 1400000, .max = 2800000 },
278 .n = { .min = 1, .max = 6 },
279 .m = { .min = 70, .max = 120 },
280 .m1 = { .min = 8, .max = 18 },
281 .m2 = { .min = 3, .max = 7 },
282 .p = { .min = 5, .max = 80 },
283 .p1 = { .min = 1, .max = 8 },
284 .p2 = { .dot_limit = 200000,
285 .p2_slow = 10, .p2_fast = 5 },
286 };
287
288 static const intel_limit_t intel_limits_i9xx_lvds = {
289 .dot = { .min = 20000, .max = 400000 },
290 .vco = { .min = 1400000, .max = 2800000 },
291 .n = { .min = 1, .max = 6 },
292 .m = { .min = 70, .max = 120 },
293 .m1 = { .min = 8, .max = 18 },
294 .m2 = { .min = 3, .max = 7 },
295 .p = { .min = 7, .max = 98 },
296 .p1 = { .min = 1, .max = 8 },
297 .p2 = { .dot_limit = 112000,
298 .p2_slow = 14, .p2_fast = 7 },
299 };
300
301
302 static const intel_limit_t intel_limits_g4x_sdvo = {
303 .dot = { .min = 25000, .max = 270000 },
304 .vco = { .min = 1750000, .max = 3500000},
305 .n = { .min = 1, .max = 4 },
306 .m = { .min = 104, .max = 138 },
307 .m1 = { .min = 17, .max = 23 },
308 .m2 = { .min = 5, .max = 11 },
309 .p = { .min = 10, .max = 30 },
310 .p1 = { .min = 1, .max = 3},
311 .p2 = { .dot_limit = 270000,
312 .p2_slow = 10,
313 .p2_fast = 10
314 },
315 };
316
317 static const intel_limit_t intel_limits_g4x_hdmi = {
318 .dot = { .min = 22000, .max = 400000 },
319 .vco = { .min = 1750000, .max = 3500000},
320 .n = { .min = 1, .max = 4 },
321 .m = { .min = 104, .max = 138 },
322 .m1 = { .min = 16, .max = 23 },
323 .m2 = { .min = 5, .max = 11 },
324 .p = { .min = 5, .max = 80 },
325 .p1 = { .min = 1, .max = 8},
326 .p2 = { .dot_limit = 165000,
327 .p2_slow = 10, .p2_fast = 5 },
328 };
329
330 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
331 .dot = { .min = 20000, .max = 115000 },
332 .vco = { .min = 1750000, .max = 3500000 },
333 .n = { .min = 1, .max = 3 },
334 .m = { .min = 104, .max = 138 },
335 .m1 = { .min = 17, .max = 23 },
336 .m2 = { .min = 5, .max = 11 },
337 .p = { .min = 28, .max = 112 },
338 .p1 = { .min = 2, .max = 8 },
339 .p2 = { .dot_limit = 0,
340 .p2_slow = 14, .p2_fast = 14
341 },
342 };
343
344 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
345 .dot = { .min = 80000, .max = 224000 },
346 .vco = { .min = 1750000, .max = 3500000 },
347 .n = { .min = 1, .max = 3 },
348 .m = { .min = 104, .max = 138 },
349 .m1 = { .min = 17, .max = 23 },
350 .m2 = { .min = 5, .max = 11 },
351 .p = { .min = 14, .max = 42 },
352 .p1 = { .min = 2, .max = 6 },
353 .p2 = { .dot_limit = 0,
354 .p2_slow = 7, .p2_fast = 7
355 },
356 };
357
358 static const intel_limit_t intel_limits_pineview_sdvo = {
359 .dot = { .min = 20000, .max = 400000},
360 .vco = { .min = 1700000, .max = 3500000 },
361 /* Pineview's Ncounter is a ring counter */
362 .n = { .min = 3, .max = 6 },
363 .m = { .min = 2, .max = 256 },
364 /* Pineview only has one combined m divider, which we treat as m2. */
365 .m1 = { .min = 0, .max = 0 },
366 .m2 = { .min = 0, .max = 254 },
367 .p = { .min = 5, .max = 80 },
368 .p1 = { .min = 1, .max = 8 },
369 .p2 = { .dot_limit = 200000,
370 .p2_slow = 10, .p2_fast = 5 },
371 };
372
373 static const intel_limit_t intel_limits_pineview_lvds = {
374 .dot = { .min = 20000, .max = 400000 },
375 .vco = { .min = 1700000, .max = 3500000 },
376 .n = { .min = 3, .max = 6 },
377 .m = { .min = 2, .max = 256 },
378 .m1 = { .min = 0, .max = 0 },
379 .m2 = { .min = 0, .max = 254 },
380 .p = { .min = 7, .max = 112 },
381 .p1 = { .min = 1, .max = 8 },
382 .p2 = { .dot_limit = 112000,
383 .p2_slow = 14, .p2_fast = 14 },
384 };
385
386 /* Ironlake / Sandybridge
387 *
388 * We calculate clock using (register_value + 2) for N/M1/M2, so here
389 * the range value for them is (actual_value - 2).
390 */
391 static const intel_limit_t intel_limits_ironlake_dac = {
392 .dot = { .min = 25000, .max = 350000 },
393 .vco = { .min = 1760000, .max = 3510000 },
394 .n = { .min = 1, .max = 5 },
395 .m = { .min = 79, .max = 127 },
396 .m1 = { .min = 12, .max = 22 },
397 .m2 = { .min = 5, .max = 9 },
398 .p = { .min = 5, .max = 80 },
399 .p1 = { .min = 1, .max = 8 },
400 .p2 = { .dot_limit = 225000,
401 .p2_slow = 10, .p2_fast = 5 },
402 };
403
404 static const intel_limit_t intel_limits_ironlake_single_lvds = {
405 .dot = { .min = 25000, .max = 350000 },
406 .vco = { .min = 1760000, .max = 3510000 },
407 .n = { .min = 1, .max = 3 },
408 .m = { .min = 79, .max = 118 },
409 .m1 = { .min = 12, .max = 22 },
410 .m2 = { .min = 5, .max = 9 },
411 .p = { .min = 28, .max = 112 },
412 .p1 = { .min = 2, .max = 8 },
413 .p2 = { .dot_limit = 225000,
414 .p2_slow = 14, .p2_fast = 14 },
415 };
416
417 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
418 .dot = { .min = 25000, .max = 350000 },
419 .vco = { .min = 1760000, .max = 3510000 },
420 .n = { .min = 1, .max = 3 },
421 .m = { .min = 79, .max = 127 },
422 .m1 = { .min = 12, .max = 22 },
423 .m2 = { .min = 5, .max = 9 },
424 .p = { .min = 14, .max = 56 },
425 .p1 = { .min = 2, .max = 8 },
426 .p2 = { .dot_limit = 225000,
427 .p2_slow = 7, .p2_fast = 7 },
428 };
429
430 /* LVDS 100mhz refclk limits. */
431 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
432 .dot = { .min = 25000, .max = 350000 },
433 .vco = { .min = 1760000, .max = 3510000 },
434 .n = { .min = 1, .max = 2 },
435 .m = { .min = 79, .max = 126 },
436 .m1 = { .min = 12, .max = 22 },
437 .m2 = { .min = 5, .max = 9 },
438 .p = { .min = 28, .max = 112 },
439 .p1 = { .min = 2, .max = 8 },
440 .p2 = { .dot_limit = 225000,
441 .p2_slow = 14, .p2_fast = 14 },
442 };
443
444 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
445 .dot = { .min = 25000, .max = 350000 },
446 .vco = { .min = 1760000, .max = 3510000 },
447 .n = { .min = 1, .max = 3 },
448 .m = { .min = 79, .max = 126 },
449 .m1 = { .min = 12, .max = 22 },
450 .m2 = { .min = 5, .max = 9 },
451 .p = { .min = 14, .max = 42 },
452 .p1 = { .min = 2, .max = 6 },
453 .p2 = { .dot_limit = 225000,
454 .p2_slow = 7, .p2_fast = 7 },
455 };
456
457 static const intel_limit_t intel_limits_vlv = {
458 /*
459 * These are the data rate limits (measured in fast clocks)
460 * since those are the strictest limits we have. The fast
461 * clock and actual rate limits are more relaxed, so checking
462 * them would make no difference.
463 */
464 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
465 .vco = { .min = 4000000, .max = 6000000 },
466 .n = { .min = 1, .max = 7 },
467 .m1 = { .min = 2, .max = 3 },
468 .m2 = { .min = 11, .max = 156 },
469 .p1 = { .min = 2, .max = 3 },
470 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
471 };
472
473 static const intel_limit_t intel_limits_chv = {
474 /*
475 * These are the data rate limits (measured in fast clocks)
476 * since those are the strictest limits we have. The fast
477 * clock and actual rate limits are more relaxed, so checking
478 * them would make no difference.
479 */
480 .dot = { .min = 25000 * 5, .max = 540000 * 5},
481 .vco = { .min = 4800000, .max = 6480000 },
482 .n = { .min = 1, .max = 1 },
483 .m1 = { .min = 2, .max = 2 },
484 .m2 = { .min = 24 << 22, .max = 175 << 22 },
485 .p1 = { .min = 2, .max = 4 },
486 .p2 = { .p2_slow = 1, .p2_fast = 14 },
487 };
488
489 static const intel_limit_t intel_limits_bxt = {
490 /* FIXME: find real dot limits */
491 .dot = { .min = 0, .max = INT_MAX },
492 .vco = { .min = 4800000, .max = 6700000 },
493 .n = { .min = 1, .max = 1 },
494 .m1 = { .min = 2, .max = 2 },
495 /* FIXME: find real m2 limits */
496 .m2 = { .min = 2 << 22, .max = 255 << 22 },
497 .p1 = { .min = 2, .max = 4 },
498 .p2 = { .p2_slow = 1, .p2_fast = 20 },
499 };
500
501 static bool
needs_modeset(struct drm_crtc_state * state)502 needs_modeset(struct drm_crtc_state *state)
503 {
504 return drm_atomic_crtc_needs_modeset(state);
505 }
506
507 /**
508 * Returns whether any output on the specified pipe is of the specified type
509 */
intel_pipe_has_type(struct intel_crtc * crtc,enum intel_output_type type)510 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
511 {
512 struct drm_device *dev = crtc->base.dev;
513 struct intel_encoder *encoder;
514
515 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
516 if (encoder->type == type)
517 return true;
518
519 return false;
520 }
521
522 /**
523 * Returns whether any output on the specified pipe will have the specified
524 * type after a staged modeset is complete, i.e., the same as
525 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
526 * encoder->crtc.
527 */
intel_pipe_will_have_type(const struct intel_crtc_state * crtc_state,int type)528 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
529 int type)
530 {
531 struct drm_atomic_state *state = crtc_state->base.state;
532 struct drm_connector *connector;
533 struct drm_connector_state *connector_state;
534 struct intel_encoder *encoder;
535 int i, num_connectors = 0;
536
537 for_each_connector_in_state(state, connector, connector_state, i) {
538 if (connector_state->crtc != crtc_state->base.crtc)
539 continue;
540
541 num_connectors++;
542
543 encoder = to_intel_encoder(connector_state->best_encoder);
544 if (encoder->type == type)
545 return true;
546 }
547
548 WARN_ON(num_connectors == 0);
549
550 return false;
551 }
552
553 static const intel_limit_t *
intel_ironlake_limit(struct intel_crtc_state * crtc_state,int refclk)554 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
555 {
556 struct drm_device *dev = crtc_state->base.crtc->dev;
557 const intel_limit_t *limit;
558
559 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
560 if (intel_is_dual_link_lvds(dev)) {
561 if (refclk == 100000)
562 limit = &intel_limits_ironlake_dual_lvds_100m;
563 else
564 limit = &intel_limits_ironlake_dual_lvds;
565 } else {
566 if (refclk == 100000)
567 limit = &intel_limits_ironlake_single_lvds_100m;
568 else
569 limit = &intel_limits_ironlake_single_lvds;
570 }
571 } else
572 limit = &intel_limits_ironlake_dac;
573
574 return limit;
575 }
576
577 static const intel_limit_t *
intel_g4x_limit(struct intel_crtc_state * crtc_state)578 intel_g4x_limit(struct intel_crtc_state *crtc_state)
579 {
580 struct drm_device *dev = crtc_state->base.crtc->dev;
581 const intel_limit_t *limit;
582
583 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
584 if (intel_is_dual_link_lvds(dev))
585 limit = &intel_limits_g4x_dual_channel_lvds;
586 else
587 limit = &intel_limits_g4x_single_channel_lvds;
588 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
589 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
590 limit = &intel_limits_g4x_hdmi;
591 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
592 limit = &intel_limits_g4x_sdvo;
593 } else /* The option is for other outputs */
594 limit = &intel_limits_i9xx_sdvo;
595
596 return limit;
597 }
598
599 static const intel_limit_t *
intel_limit(struct intel_crtc_state * crtc_state,int refclk)600 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
601 {
602 struct drm_device *dev = crtc_state->base.crtc->dev;
603 const intel_limit_t *limit;
604
605 if (IS_BROXTON(dev))
606 limit = &intel_limits_bxt;
607 else if (HAS_PCH_SPLIT(dev))
608 limit = intel_ironlake_limit(crtc_state, refclk);
609 else if (IS_G4X(dev)) {
610 limit = intel_g4x_limit(crtc_state);
611 } else if (IS_PINEVIEW(dev)) {
612 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
613 limit = &intel_limits_pineview_lvds;
614 else
615 limit = &intel_limits_pineview_sdvo;
616 } else if (IS_CHERRYVIEW(dev)) {
617 limit = &intel_limits_chv;
618 } else if (IS_VALLEYVIEW(dev)) {
619 limit = &intel_limits_vlv;
620 } else if (!IS_GEN2(dev)) {
621 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
622 limit = &intel_limits_i9xx_lvds;
623 else
624 limit = &intel_limits_i9xx_sdvo;
625 } else {
626 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
627 limit = &intel_limits_i8xx_lvds;
628 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
629 limit = &intel_limits_i8xx_dvo;
630 else
631 limit = &intel_limits_i8xx_dac;
632 }
633 return limit;
634 }
635
636 /*
637 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
638 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
639 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
640 * The helpers' return value is the rate of the clock that is fed to the
641 * display engine's pipe which can be the above fast dot clock rate or a
642 * divided-down version of it.
643 */
644 /* m1 is reserved as 0 in Pineview, n is a ring counter */
pnv_calc_dpll_params(int refclk,intel_clock_t * clock)645 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
646 {
647 clock->m = clock->m2 + 2;
648 clock->p = clock->p1 * clock->p2;
649 if (WARN_ON(clock->n == 0 || clock->p == 0))
650 return 0;
651 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
652 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
653
654 return clock->dot;
655 }
656
i9xx_dpll_compute_m(struct dpll * dpll)657 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
658 {
659 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
660 }
661
i9xx_calc_dpll_params(int refclk,intel_clock_t * clock)662 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
663 {
664 clock->m = i9xx_dpll_compute_m(clock);
665 clock->p = clock->p1 * clock->p2;
666 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
667 return 0;
668 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
669 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
670
671 return clock->dot;
672 }
673
vlv_calc_dpll_params(int refclk,intel_clock_t * clock)674 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
675 {
676 clock->m = clock->m1 * clock->m2;
677 clock->p = clock->p1 * clock->p2;
678 if (WARN_ON(clock->n == 0 || clock->p == 0))
679 return 0;
680 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
681 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
682
683 return clock->dot / 5;
684 }
685
chv_calc_dpll_params(int refclk,intel_clock_t * clock)686 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
687 {
688 clock->m = clock->m1 * clock->m2;
689 clock->p = clock->p1 * clock->p2;
690 if (WARN_ON(clock->n == 0 || clock->p == 0))
691 return 0;
692 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
693 clock->n << 22);
694 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
695
696 return clock->dot / 5;
697 }
698
699 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
700 /**
701 * Returns whether the given set of divisors are valid for a given refclk with
702 * the given connectors.
703 */
704
intel_PLL_is_valid(struct drm_device * dev,const intel_limit_t * limit,const intel_clock_t * clock)705 static bool intel_PLL_is_valid(struct drm_device *dev,
706 const intel_limit_t *limit,
707 const intel_clock_t *clock)
708 {
709 if (clock->n < limit->n.min || limit->n.max < clock->n)
710 INTELPllInvalid("n out of range\n");
711 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
712 INTELPllInvalid("p1 out of range\n");
713 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
714 INTELPllInvalid("m2 out of range\n");
715 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
716 INTELPllInvalid("m1 out of range\n");
717
718 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
719 if (clock->m1 <= clock->m2)
720 INTELPllInvalid("m1 <= m2\n");
721
722 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
723 if (clock->p < limit->p.min || limit->p.max < clock->p)
724 INTELPllInvalid("p out of range\n");
725 if (clock->m < limit->m.min || limit->m.max < clock->m)
726 INTELPllInvalid("m out of range\n");
727 }
728
729 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
730 INTELPllInvalid("vco out of range\n");
731 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
732 * connector, etc., rather than just a single range.
733 */
734 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
735 INTELPllInvalid("dot out of range\n");
736
737 return true;
738 }
739
740 static int
i9xx_select_p2_div(const intel_limit_t * limit,const struct intel_crtc_state * crtc_state,int target)741 i9xx_select_p2_div(const intel_limit_t *limit,
742 const struct intel_crtc_state *crtc_state,
743 int target)
744 {
745 struct drm_device *dev = crtc_state->base.crtc->dev;
746
747 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
748 /*
749 * For LVDS just rely on its current settings for dual-channel.
750 * We haven't figured out how to reliably set up different
751 * single/dual channel state, if we even can.
752 */
753 if (intel_is_dual_link_lvds(dev))
754 return limit->p2.p2_fast;
755 else
756 return limit->p2.p2_slow;
757 } else {
758 if (target < limit->p2.dot_limit)
759 return limit->p2.p2_slow;
760 else
761 return limit->p2.p2_fast;
762 }
763 }
764
765 static bool
i9xx_find_best_dpll(const intel_limit_t * limit,struct intel_crtc_state * crtc_state,int target,int refclk,intel_clock_t * match_clock,intel_clock_t * best_clock)766 i9xx_find_best_dpll(const intel_limit_t *limit,
767 struct intel_crtc_state *crtc_state,
768 int target, int refclk, intel_clock_t *match_clock,
769 intel_clock_t *best_clock)
770 {
771 struct drm_device *dev = crtc_state->base.crtc->dev;
772 intel_clock_t clock;
773 int err = target;
774
775 memset(best_clock, 0, sizeof(*best_clock));
776
777 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
778
779 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
780 clock.m1++) {
781 for (clock.m2 = limit->m2.min;
782 clock.m2 <= limit->m2.max; clock.m2++) {
783 if (clock.m2 >= clock.m1)
784 break;
785 for (clock.n = limit->n.min;
786 clock.n <= limit->n.max; clock.n++) {
787 for (clock.p1 = limit->p1.min;
788 clock.p1 <= limit->p1.max; clock.p1++) {
789 int this_err;
790
791 i9xx_calc_dpll_params(refclk, &clock);
792 if (!intel_PLL_is_valid(dev, limit,
793 &clock))
794 continue;
795 if (match_clock &&
796 clock.p != match_clock->p)
797 continue;
798
799 this_err = abs(clock.dot - target);
800 if (this_err < err) {
801 *best_clock = clock;
802 err = this_err;
803 }
804 }
805 }
806 }
807 }
808
809 return (err != target);
810 }
811
812 static bool
pnv_find_best_dpll(const intel_limit_t * limit,struct intel_crtc_state * crtc_state,int target,int refclk,intel_clock_t * match_clock,intel_clock_t * best_clock)813 pnv_find_best_dpll(const intel_limit_t *limit,
814 struct intel_crtc_state *crtc_state,
815 int target, int refclk, intel_clock_t *match_clock,
816 intel_clock_t *best_clock)
817 {
818 struct drm_device *dev = crtc_state->base.crtc->dev;
819 intel_clock_t clock;
820 int err = target;
821
822 memset(best_clock, 0, sizeof(*best_clock));
823
824 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
825
826 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
827 clock.m1++) {
828 for (clock.m2 = limit->m2.min;
829 clock.m2 <= limit->m2.max; clock.m2++) {
830 for (clock.n = limit->n.min;
831 clock.n <= limit->n.max; clock.n++) {
832 for (clock.p1 = limit->p1.min;
833 clock.p1 <= limit->p1.max; clock.p1++) {
834 int this_err;
835
836 pnv_calc_dpll_params(refclk, &clock);
837 if (!intel_PLL_is_valid(dev, limit,
838 &clock))
839 continue;
840 if (match_clock &&
841 clock.p != match_clock->p)
842 continue;
843
844 this_err = abs(clock.dot - target);
845 if (this_err < err) {
846 *best_clock = clock;
847 err = this_err;
848 }
849 }
850 }
851 }
852 }
853
854 return (err != target);
855 }
856
857 static bool
g4x_find_best_dpll(const intel_limit_t * limit,struct intel_crtc_state * crtc_state,int target,int refclk,intel_clock_t * match_clock,intel_clock_t * best_clock)858 g4x_find_best_dpll(const intel_limit_t *limit,
859 struct intel_crtc_state *crtc_state,
860 int target, int refclk, intel_clock_t *match_clock,
861 intel_clock_t *best_clock)
862 {
863 struct drm_device *dev = crtc_state->base.crtc->dev;
864 intel_clock_t clock;
865 int max_n;
866 bool found = false;
867 /* approximately equals target * 0.00585 */
868 int err_most = (target >> 8) + (target >> 9);
869
870 memset(best_clock, 0, sizeof(*best_clock));
871
872 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
873
874 max_n = limit->n.max;
875 /* based on hardware requirement, prefer smaller n to precision */
876 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
877 /* based on hardware requirement, prefere larger m1,m2 */
878 for (clock.m1 = limit->m1.max;
879 clock.m1 >= limit->m1.min; clock.m1--) {
880 for (clock.m2 = limit->m2.max;
881 clock.m2 >= limit->m2.min; clock.m2--) {
882 for (clock.p1 = limit->p1.max;
883 clock.p1 >= limit->p1.min; clock.p1--) {
884 int this_err;
885
886 i9xx_calc_dpll_params(refclk, &clock);
887 if (!intel_PLL_is_valid(dev, limit,
888 &clock))
889 continue;
890
891 this_err = abs(clock.dot - target);
892 if (this_err < err_most) {
893 *best_clock = clock;
894 err_most = this_err;
895 max_n = clock.n;
896 found = true;
897 }
898 }
899 }
900 }
901 }
902 return found;
903 }
904
905 /*
906 * Check if the calculated PLL configuration is more optimal compared to the
907 * best configuration and error found so far. Return the calculated error.
908 */
vlv_PLL_is_optimal(struct drm_device * dev,int target_freq,const intel_clock_t * calculated_clock,const intel_clock_t * best_clock,unsigned int best_error_ppm,unsigned int * error_ppm)909 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
910 const intel_clock_t *calculated_clock,
911 const intel_clock_t *best_clock,
912 unsigned int best_error_ppm,
913 unsigned int *error_ppm)
914 {
915 /*
916 * For CHV ignore the error and consider only the P value.
917 * Prefer a bigger P value based on HW requirements.
918 */
919 if (IS_CHERRYVIEW(dev)) {
920 *error_ppm = 0;
921
922 return calculated_clock->p > best_clock->p;
923 }
924
925 if (WARN_ON_ONCE(!target_freq))
926 return false;
927
928 *error_ppm = div_u64(1000000ULL *
929 abs(target_freq - calculated_clock->dot),
930 target_freq);
931 /*
932 * Prefer a better P value over a better (smaller) error if the error
933 * is small. Ensure this preference for future configurations too by
934 * setting the error to 0.
935 */
936 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
937 *error_ppm = 0;
938
939 return true;
940 }
941
942 return *error_ppm + 10 < best_error_ppm;
943 }
944
945 static bool
vlv_find_best_dpll(const intel_limit_t * limit,struct intel_crtc_state * crtc_state,int target,int refclk,intel_clock_t * match_clock,intel_clock_t * best_clock)946 vlv_find_best_dpll(const intel_limit_t *limit,
947 struct intel_crtc_state *crtc_state,
948 int target, int refclk, intel_clock_t *match_clock,
949 intel_clock_t *best_clock)
950 {
951 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
952 struct drm_device *dev = crtc->base.dev;
953 intel_clock_t clock;
954 unsigned int bestppm = 1000000;
955 /* min update 19.2 MHz */
956 int max_n = min(limit->n.max, refclk / 19200);
957 bool found = false;
958
959 target *= 5; /* fast clock */
960
961 memset(best_clock, 0, sizeof(*best_clock));
962
963 /* based on hardware requirement, prefer smaller n to precision */
964 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
965 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
966 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
967 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
968 clock.p = clock.p1 * clock.p2;
969 /* based on hardware requirement, prefer bigger m1,m2 values */
970 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
971 unsigned int ppm;
972
973 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
974 refclk * clock.m1);
975
976 vlv_calc_dpll_params(refclk, &clock);
977
978 if (!intel_PLL_is_valid(dev, limit,
979 &clock))
980 continue;
981
982 if (!vlv_PLL_is_optimal(dev, target,
983 &clock,
984 best_clock,
985 bestppm, &ppm))
986 continue;
987
988 *best_clock = clock;
989 bestppm = ppm;
990 found = true;
991 }
992 }
993 }
994 }
995
996 return found;
997 }
998
999 static bool
chv_find_best_dpll(const intel_limit_t * limit,struct intel_crtc_state * crtc_state,int target,int refclk,intel_clock_t * match_clock,intel_clock_t * best_clock)1000 chv_find_best_dpll(const intel_limit_t *limit,
1001 struct intel_crtc_state *crtc_state,
1002 int target, int refclk, intel_clock_t *match_clock,
1003 intel_clock_t *best_clock)
1004 {
1005 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1006 struct drm_device *dev = crtc->base.dev;
1007 unsigned int best_error_ppm;
1008 intel_clock_t clock;
1009 uint64_t m2;
1010 int found = false;
1011
1012 memset(best_clock, 0, sizeof(*best_clock));
1013 best_error_ppm = 1000000;
1014
1015 /*
1016 * Based on hardware doc, the n always set to 1, and m1 always
1017 * set to 2. If requires to support 200Mhz refclk, we need to
1018 * revisit this because n may not 1 anymore.
1019 */
1020 clock.n = 1, clock.m1 = 2;
1021 target *= 5; /* fast clock */
1022
1023 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1024 for (clock.p2 = limit->p2.p2_fast;
1025 clock.p2 >= limit->p2.p2_slow;
1026 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1027 unsigned int error_ppm;
1028
1029 clock.p = clock.p1 * clock.p2;
1030
1031 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1032 clock.n) << 22, refclk * clock.m1);
1033
1034 if (m2 > INT_MAX/clock.m1)
1035 continue;
1036
1037 clock.m2 = m2;
1038
1039 chv_calc_dpll_params(refclk, &clock);
1040
1041 if (!intel_PLL_is_valid(dev, limit, &clock))
1042 continue;
1043
1044 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1045 best_error_ppm, &error_ppm))
1046 continue;
1047
1048 *best_clock = clock;
1049 best_error_ppm = error_ppm;
1050 found = true;
1051 }
1052 }
1053
1054 return found;
1055 }
1056
bxt_find_best_dpll(struct intel_crtc_state * crtc_state,int target_clock,intel_clock_t * best_clock)1057 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1058 intel_clock_t *best_clock)
1059 {
1060 int refclk = i9xx_get_refclk(crtc_state, 0);
1061
1062 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1063 target_clock, refclk, NULL, best_clock);
1064 }
1065
intel_crtc_active(struct drm_crtc * crtc)1066 bool intel_crtc_active(struct drm_crtc *crtc)
1067 {
1068 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1069
1070 /* Be paranoid as we can arrive here with only partial
1071 * state retrieved from the hardware during setup.
1072 *
1073 * We can ditch the adjusted_mode.crtc_clock check as soon
1074 * as Haswell has gained clock readout/fastboot support.
1075 *
1076 * We can ditch the crtc->primary->fb check as soon as we can
1077 * properly reconstruct framebuffers.
1078 *
1079 * FIXME: The intel_crtc->active here should be switched to
1080 * crtc->state->active once we have proper CRTC states wired up
1081 * for atomic.
1082 */
1083 return intel_crtc->active && crtc->primary->state->fb &&
1084 intel_crtc->config->base.adjusted_mode.crtc_clock;
1085 }
1086
intel_pipe_to_cpu_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)1087 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1088 enum pipe pipe)
1089 {
1090 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1091 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1092
1093 return intel_crtc->config->cpu_transcoder;
1094 }
1095
pipe_dsl_stopped(struct drm_device * dev,enum pipe pipe)1096 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1097 {
1098 struct drm_i915_private *dev_priv = dev->dev_private;
1099 u32 reg = PIPEDSL(pipe);
1100 u32 line1, line2;
1101 u32 line_mask;
1102
1103 if (IS_GEN2(dev))
1104 line_mask = DSL_LINEMASK_GEN2;
1105 else
1106 line_mask = DSL_LINEMASK_GEN3;
1107
1108 line1 = I915_READ(reg) & line_mask;
1109 msleep(5);
1110 line2 = I915_READ(reg) & line_mask;
1111
1112 return line1 == line2;
1113 }
1114
1115 /*
1116 * intel_wait_for_pipe_off - wait for pipe to turn off
1117 * @crtc: crtc whose pipe to wait for
1118 *
1119 * After disabling a pipe, we can't wait for vblank in the usual way,
1120 * spinning on the vblank interrupt status bit, since we won't actually
1121 * see an interrupt when the pipe is disabled.
1122 *
1123 * On Gen4 and above:
1124 * wait for the pipe register state bit to turn off
1125 *
1126 * Otherwise:
1127 * wait for the display line value to settle (it usually
1128 * ends up stopping at the start of the next frame).
1129 *
1130 */
intel_wait_for_pipe_off(struct intel_crtc * crtc)1131 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1132 {
1133 struct drm_device *dev = crtc->base.dev;
1134 struct drm_i915_private *dev_priv = dev->dev_private;
1135 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1136 enum pipe pipe = crtc->pipe;
1137
1138 if (INTEL_INFO(dev)->gen >= 4) {
1139 int reg = PIPECONF(cpu_transcoder);
1140
1141 /* Wait for the Pipe State to go off */
1142 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1143 100))
1144 WARN(1, "pipe_off wait timed out\n");
1145 } else {
1146 /* Wait for the display line to settle */
1147 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1148 WARN(1, "pipe_off wait timed out\n");
1149 }
1150 }
1151
state_string(bool enabled)1152 static const char *state_string(bool enabled)
1153 {
1154 return enabled ? "on" : "off";
1155 }
1156
1157 /* Only for pre-ILK configs */
assert_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1158 void assert_pll(struct drm_i915_private *dev_priv,
1159 enum pipe pipe, bool state)
1160 {
1161 u32 val;
1162 bool cur_state;
1163
1164 val = I915_READ(DPLL(pipe));
1165 cur_state = !!(val & DPLL_VCO_ENABLE);
1166 I915_STATE_WARN(cur_state != state,
1167 "PLL state assertion failure (expected %s, current %s)\n",
1168 state_string(state), state_string(cur_state));
1169 }
1170
1171 /* XXX: the dsi pll is shared between MIPI DSI ports */
assert_dsi_pll(struct drm_i915_private * dev_priv,bool state)1172 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1173 {
1174 u32 val;
1175 bool cur_state;
1176
1177 mutex_lock(&dev_priv->sb_lock);
1178 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1179 mutex_unlock(&dev_priv->sb_lock);
1180
1181 cur_state = val & DSI_PLL_VCO_EN;
1182 I915_STATE_WARN(cur_state != state,
1183 "DSI PLL state assertion failure (expected %s, current %s)\n",
1184 state_string(state), state_string(cur_state));
1185 }
1186 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1187 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1188
1189 struct intel_shared_dpll *
intel_crtc_to_shared_dpll(struct intel_crtc * crtc)1190 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1191 {
1192 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1193
1194 if (crtc->config->shared_dpll < 0)
1195 return NULL;
1196
1197 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1198 }
1199
1200 /* For ILK+ */
assert_shared_dpll(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll,bool state)1201 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1202 struct intel_shared_dpll *pll,
1203 bool state)
1204 {
1205 bool cur_state;
1206 struct intel_dpll_hw_state hw_state;
1207
1208 if (WARN (!pll,
1209 "asserting DPLL %s with no DPLL\n", state_string(state)))
1210 return;
1211
1212 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1213 I915_STATE_WARN(cur_state != state,
1214 "%s assertion failure (expected %s, current %s)\n",
1215 pll->name, state_string(state), state_string(cur_state));
1216 }
1217
assert_fdi_tx(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1218 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1219 enum pipe pipe, bool state)
1220 {
1221 bool cur_state;
1222 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223 pipe);
1224
1225 if (HAS_DDI(dev_priv->dev)) {
1226 /* DDI does not have a specific FDI_TX register */
1227 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1228 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1229 } else {
1230 u32 val = I915_READ(FDI_TX_CTL(pipe));
1231 cur_state = !!(val & FDI_TX_ENABLE);
1232 }
1233 I915_STATE_WARN(cur_state != state,
1234 "FDI TX state assertion failure (expected %s, current %s)\n",
1235 state_string(state), state_string(cur_state));
1236 }
1237 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1238 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1239
assert_fdi_rx(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1240 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1241 enum pipe pipe, bool state)
1242 {
1243 u32 val;
1244 bool cur_state;
1245
1246 val = I915_READ(FDI_RX_CTL(pipe));
1247 cur_state = !!(val & FDI_RX_ENABLE);
1248 I915_STATE_WARN(cur_state != state,
1249 "FDI RX state assertion failure (expected %s, current %s)\n",
1250 state_string(state), state_string(cur_state));
1251 }
1252 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1253 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1254
assert_fdi_tx_pll_enabled(struct drm_i915_private * dev_priv,enum pipe pipe)1255 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1256 enum pipe pipe)
1257 {
1258 u32 val;
1259
1260 /* ILK FDI PLL is always enabled */
1261 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1262 return;
1263
1264 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1265 if (HAS_DDI(dev_priv->dev))
1266 return;
1267
1268 val = I915_READ(FDI_TX_CTL(pipe));
1269 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1270 }
1271
assert_fdi_rx_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1272 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1273 enum pipe pipe, bool state)
1274 {
1275 u32 val;
1276 bool cur_state;
1277
1278 val = I915_READ(FDI_RX_CTL(pipe));
1279 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1280 I915_STATE_WARN(cur_state != state,
1281 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1282 state_string(state), state_string(cur_state));
1283 }
1284
assert_panel_unlocked(struct drm_i915_private * dev_priv,enum pipe pipe)1285 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1286 enum pipe pipe)
1287 {
1288 struct drm_device *dev = dev_priv->dev;
1289 int pp_reg;
1290 u32 val;
1291 enum pipe panel_pipe = PIPE_A;
1292 bool locked = true;
1293
1294 if (WARN_ON(HAS_DDI(dev)))
1295 return;
1296
1297 if (HAS_PCH_SPLIT(dev)) {
1298 u32 port_sel;
1299
1300 pp_reg = PCH_PP_CONTROL;
1301 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1302
1303 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1304 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1305 panel_pipe = PIPE_B;
1306 /* XXX: else fix for eDP */
1307 } else if (IS_VALLEYVIEW(dev)) {
1308 /* presumably write lock depends on pipe, not port select */
1309 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1310 panel_pipe = pipe;
1311 } else {
1312 pp_reg = PP_CONTROL;
1313 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1314 panel_pipe = PIPE_B;
1315 }
1316
1317 val = I915_READ(pp_reg);
1318 if (!(val & PANEL_POWER_ON) ||
1319 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1320 locked = false;
1321
1322 I915_STATE_WARN(panel_pipe == pipe && locked,
1323 "panel assertion failure, pipe %c regs locked\n",
1324 pipe_name(pipe));
1325 }
1326
assert_cursor(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1327 static void assert_cursor(struct drm_i915_private *dev_priv,
1328 enum pipe pipe, bool state)
1329 {
1330 struct drm_device *dev = dev_priv->dev;
1331 bool cur_state;
1332
1333 if (IS_845G(dev) || IS_I865G(dev))
1334 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1335 else
1336 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1337
1338 I915_STATE_WARN(cur_state != state,
1339 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1340 pipe_name(pipe), state_string(state), state_string(cur_state));
1341 }
1342 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1343 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1344
assert_pipe(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1345 void assert_pipe(struct drm_i915_private *dev_priv,
1346 enum pipe pipe, bool state)
1347 {
1348 bool cur_state;
1349 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1350 pipe);
1351
1352 /* if we need the pipe quirk it must be always on */
1353 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1354 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1355 state = true;
1356
1357 if (!intel_display_power_is_enabled(dev_priv,
1358 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1359 cur_state = false;
1360 } else {
1361 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1362 cur_state = !!(val & PIPECONF_ENABLE);
1363 }
1364
1365 I915_STATE_WARN(cur_state != state,
1366 "pipe %c assertion failure (expected %s, current %s)\n",
1367 pipe_name(pipe), state_string(state), state_string(cur_state));
1368 }
1369
assert_plane(struct drm_i915_private * dev_priv,enum plane plane,bool state)1370 static void assert_plane(struct drm_i915_private *dev_priv,
1371 enum plane plane, bool state)
1372 {
1373 u32 val;
1374 bool cur_state;
1375
1376 val = I915_READ(DSPCNTR(plane));
1377 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1378 I915_STATE_WARN(cur_state != state,
1379 "plane %c assertion failure (expected %s, current %s)\n",
1380 plane_name(plane), state_string(state), state_string(cur_state));
1381 }
1382
1383 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1384 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1385
assert_planes_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1386 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1387 enum pipe pipe)
1388 {
1389 struct drm_device *dev = dev_priv->dev;
1390 int i;
1391
1392 /* Primary planes are fixed to pipes on gen4+ */
1393 if (INTEL_INFO(dev)->gen >= 4) {
1394 u32 val = I915_READ(DSPCNTR(pipe));
1395 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1396 "plane %c assertion failure, should be disabled but not\n",
1397 plane_name(pipe));
1398 return;
1399 }
1400
1401 /* Need to check both planes against the pipe */
1402 for_each_pipe(dev_priv, i) {
1403 u32 val = I915_READ(DSPCNTR(i));
1404 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1405 DISPPLANE_SEL_PIPE_SHIFT;
1406 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1407 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1408 plane_name(i), pipe_name(pipe));
1409 }
1410 }
1411
assert_sprites_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1412 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1413 enum pipe pipe)
1414 {
1415 struct drm_device *dev = dev_priv->dev;
1416 int sprite;
1417
1418 if (INTEL_INFO(dev)->gen >= 9) {
1419 for_each_sprite(dev_priv, pipe, sprite) {
1420 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1421 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1422 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1423 sprite, pipe_name(pipe));
1424 }
1425 } else if (IS_VALLEYVIEW(dev)) {
1426 for_each_sprite(dev_priv, pipe, sprite) {
1427 u32 val = I915_READ(SPCNTR(pipe, sprite));
1428 I915_STATE_WARN(val & SP_ENABLE,
1429 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1430 sprite_name(pipe, sprite), pipe_name(pipe));
1431 }
1432 } else if (INTEL_INFO(dev)->gen >= 7) {
1433 u32 val = I915_READ(SPRCTL(pipe));
1434 I915_STATE_WARN(val & SPRITE_ENABLE,
1435 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1436 plane_name(pipe), pipe_name(pipe));
1437 } else if (INTEL_INFO(dev)->gen >= 5) {
1438 u32 val = I915_READ(DVSCNTR(pipe));
1439 I915_STATE_WARN(val & DVS_ENABLE,
1440 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1441 plane_name(pipe), pipe_name(pipe));
1442 }
1443 }
1444
assert_vblank_disabled(struct drm_crtc * crtc)1445 static void assert_vblank_disabled(struct drm_crtc *crtc)
1446 {
1447 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1448 drm_crtc_vblank_put(crtc);
1449 }
1450
ibx_assert_pch_refclk_enabled(struct drm_i915_private * dev_priv)1451 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1452 {
1453 u32 val;
1454 bool enabled;
1455
1456 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1457
1458 val = I915_READ(PCH_DREF_CONTROL);
1459 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1460 DREF_SUPERSPREAD_SOURCE_MASK));
1461 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1462 }
1463
assert_pch_transcoder_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1464 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1465 enum pipe pipe)
1466 {
1467 u32 val;
1468 bool enabled;
1469
1470 val = I915_READ(PCH_TRANSCONF(pipe));
1471 enabled = !!(val & TRANS_ENABLE);
1472 I915_STATE_WARN(enabled,
1473 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1474 pipe_name(pipe));
1475 }
1476
dp_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 port_sel,u32 val)1477 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1478 enum pipe pipe, u32 port_sel, u32 val)
1479 {
1480 if ((val & DP_PORT_EN) == 0)
1481 return false;
1482
1483 if (HAS_PCH_CPT(dev_priv->dev)) {
1484 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1485 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1486 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1487 return false;
1488 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1489 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1490 return false;
1491 } else {
1492 if ((val & DP_PIPE_MASK) != (pipe << 30))
1493 return false;
1494 }
1495 return true;
1496 }
1497
hdmi_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1498 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1499 enum pipe pipe, u32 val)
1500 {
1501 if ((val & SDVO_ENABLE) == 0)
1502 return false;
1503
1504 if (HAS_PCH_CPT(dev_priv->dev)) {
1505 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1506 return false;
1507 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1508 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1509 return false;
1510 } else {
1511 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1512 return false;
1513 }
1514 return true;
1515 }
1516
lvds_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1517 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1518 enum pipe pipe, u32 val)
1519 {
1520 if ((val & LVDS_PORT_EN) == 0)
1521 return false;
1522
1523 if (HAS_PCH_CPT(dev_priv->dev)) {
1524 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1525 return false;
1526 } else {
1527 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1528 return false;
1529 }
1530 return true;
1531 }
1532
adpa_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1533 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1534 enum pipe pipe, u32 val)
1535 {
1536 if ((val & ADPA_DAC_ENABLE) == 0)
1537 return false;
1538 if (HAS_PCH_CPT(dev_priv->dev)) {
1539 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1540 return false;
1541 } else {
1542 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1543 return false;
1544 }
1545 return true;
1546 }
1547
assert_pch_dp_disabled(struct drm_i915_private * dev_priv,enum pipe pipe,int reg,u32 port_sel)1548 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1549 enum pipe pipe, int reg, u32 port_sel)
1550 {
1551 u32 val = I915_READ(reg);
1552 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1553 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1554 reg, pipe_name(pipe));
1555
1556 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1557 && (val & DP_PIPEB_SELECT),
1558 "IBX PCH dp port still using transcoder B\n");
1559 }
1560
assert_pch_hdmi_disabled(struct drm_i915_private * dev_priv,enum pipe pipe,int reg)1561 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1562 enum pipe pipe, int reg)
1563 {
1564 u32 val = I915_READ(reg);
1565 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1566 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1567 reg, pipe_name(pipe));
1568
1569 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1570 && (val & SDVO_PIPE_B_SELECT),
1571 "IBX PCH hdmi port still using transcoder B\n");
1572 }
1573
assert_pch_ports_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1574 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1575 enum pipe pipe)
1576 {
1577 u32 val;
1578
1579 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1580 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1581 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1582
1583 val = I915_READ(PCH_ADPA);
1584 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1585 "PCH VGA enabled on transcoder %c, should be disabled\n",
1586 pipe_name(pipe));
1587
1588 val = I915_READ(PCH_LVDS);
1589 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1590 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1591 pipe_name(pipe));
1592
1593 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1594 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1595 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1596 }
1597
vlv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1598 static void vlv_enable_pll(struct intel_crtc *crtc,
1599 const struct intel_crtc_state *pipe_config)
1600 {
1601 struct drm_device *dev = crtc->base.dev;
1602 struct drm_i915_private *dev_priv = dev->dev_private;
1603 int reg = DPLL(crtc->pipe);
1604 u32 dpll = pipe_config->dpll_hw_state.dpll;
1605
1606 assert_pipe_disabled(dev_priv, crtc->pipe);
1607
1608 /* No really, not for ILK+ */
1609 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1610
1611 /* PLL is protected by panel, make sure we can write it */
1612 if (IS_MOBILE(dev_priv->dev))
1613 assert_panel_unlocked(dev_priv, crtc->pipe);
1614
1615 I915_WRITE(reg, dpll);
1616 POSTING_READ(reg);
1617 udelay(150);
1618
1619 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1620 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1621
1622 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1623 POSTING_READ(DPLL_MD(crtc->pipe));
1624
1625 /* We do this three times for luck */
1626 I915_WRITE(reg, dpll);
1627 POSTING_READ(reg);
1628 udelay(150); /* wait for warmup */
1629 I915_WRITE(reg, dpll);
1630 POSTING_READ(reg);
1631 udelay(150); /* wait for warmup */
1632 I915_WRITE(reg, dpll);
1633 POSTING_READ(reg);
1634 udelay(150); /* wait for warmup */
1635 }
1636
chv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1637 static void chv_enable_pll(struct intel_crtc *crtc,
1638 const struct intel_crtc_state *pipe_config)
1639 {
1640 struct drm_device *dev = crtc->base.dev;
1641 struct drm_i915_private *dev_priv = dev->dev_private;
1642 int pipe = crtc->pipe;
1643 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1644 u32 tmp;
1645
1646 assert_pipe_disabled(dev_priv, crtc->pipe);
1647
1648 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1649
1650 mutex_lock(&dev_priv->sb_lock);
1651
1652 /* Enable back the 10bit clock to display controller */
1653 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1654 tmp |= DPIO_DCLKP_EN;
1655 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1656
1657 mutex_unlock(&dev_priv->sb_lock);
1658
1659 /*
1660 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1661 */
1662 udelay(1);
1663
1664 /* Enable PLL */
1665 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1666
1667 /* Check PLL is locked */
1668 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1669 DRM_ERROR("PLL %d failed to lock\n", pipe);
1670
1671 /* not sure when this should be written */
1672 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1673 POSTING_READ(DPLL_MD(pipe));
1674 }
1675
intel_num_dvo_pipes(struct drm_device * dev)1676 static int intel_num_dvo_pipes(struct drm_device *dev)
1677 {
1678 struct intel_crtc *crtc;
1679 int count = 0;
1680
1681 for_each_intel_crtc(dev, crtc)
1682 count += crtc->base.state->active &&
1683 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1684
1685 return count;
1686 }
1687
i9xx_enable_pll(struct intel_crtc * crtc)1688 static void i9xx_enable_pll(struct intel_crtc *crtc)
1689 {
1690 struct drm_device *dev = crtc->base.dev;
1691 struct drm_i915_private *dev_priv = dev->dev_private;
1692 int reg = DPLL(crtc->pipe);
1693 u32 dpll = crtc->config->dpll_hw_state.dpll;
1694
1695 assert_pipe_disabled(dev_priv, crtc->pipe);
1696
1697 /* No really, not for ILK+ */
1698 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1699
1700 /* PLL is protected by panel, make sure we can write it */
1701 if (IS_MOBILE(dev) && !IS_I830(dev))
1702 assert_panel_unlocked(dev_priv, crtc->pipe);
1703
1704 /* Enable DVO 2x clock on both PLLs if necessary */
1705 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1706 /*
1707 * It appears to be important that we don't enable this
1708 * for the current pipe before otherwise configuring the
1709 * PLL. No idea how this should be handled if multiple
1710 * DVO outputs are enabled simultaneosly.
1711 */
1712 dpll |= DPLL_DVO_2X_MODE;
1713 I915_WRITE(DPLL(!crtc->pipe),
1714 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1715 }
1716
1717 /*
1718 * Apparently we need to have VGA mode enabled prior to changing
1719 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1720 * dividers, even though the register value does change.
1721 */
1722 I915_WRITE(reg, 0);
1723
1724 I915_WRITE(reg, dpll);
1725
1726 /* Wait for the clocks to stabilize. */
1727 POSTING_READ(reg);
1728 udelay(150);
1729
1730 if (INTEL_INFO(dev)->gen >= 4) {
1731 I915_WRITE(DPLL_MD(crtc->pipe),
1732 crtc->config->dpll_hw_state.dpll_md);
1733 } else {
1734 /* The pixel multiplier can only be updated once the
1735 * DPLL is enabled and the clocks are stable.
1736 *
1737 * So write it again.
1738 */
1739 I915_WRITE(reg, dpll);
1740 }
1741
1742 /* We do this three times for luck */
1743 I915_WRITE(reg, dpll);
1744 POSTING_READ(reg);
1745 udelay(150); /* wait for warmup */
1746 I915_WRITE(reg, dpll);
1747 POSTING_READ(reg);
1748 udelay(150); /* wait for warmup */
1749 I915_WRITE(reg, dpll);
1750 POSTING_READ(reg);
1751 udelay(150); /* wait for warmup */
1752 }
1753
1754 /**
1755 * i9xx_disable_pll - disable a PLL
1756 * @dev_priv: i915 private structure
1757 * @pipe: pipe PLL to disable
1758 *
1759 * Disable the PLL for @pipe, making sure the pipe is off first.
1760 *
1761 * Note! This is for pre-ILK only.
1762 */
i9xx_disable_pll(struct intel_crtc * crtc)1763 static void i9xx_disable_pll(struct intel_crtc *crtc)
1764 {
1765 struct drm_device *dev = crtc->base.dev;
1766 struct drm_i915_private *dev_priv = dev->dev_private;
1767 enum pipe pipe = crtc->pipe;
1768
1769 /* Disable DVO 2x clock on both PLLs if necessary */
1770 if (IS_I830(dev) &&
1771 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1772 !intel_num_dvo_pipes(dev)) {
1773 I915_WRITE(DPLL(PIPE_B),
1774 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1775 I915_WRITE(DPLL(PIPE_A),
1776 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1777 }
1778
1779 /* Don't disable pipe or pipe PLLs if needed */
1780 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1781 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1782 return;
1783
1784 /* Make sure the pipe isn't still relying on us */
1785 assert_pipe_disabled(dev_priv, pipe);
1786
1787 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1788 POSTING_READ(DPLL(pipe));
1789 }
1790
vlv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1791 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1792 {
1793 u32 val;
1794
1795 /* Make sure the pipe isn't still relying on us */
1796 assert_pipe_disabled(dev_priv, pipe);
1797
1798 /*
1799 * Leave integrated clock source and reference clock enabled for pipe B.
1800 * The latter is needed for VGA hotplug / manual detection.
1801 */
1802 val = DPLL_VGA_MODE_DIS;
1803 if (pipe == PIPE_B)
1804 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1805 I915_WRITE(DPLL(pipe), val);
1806 POSTING_READ(DPLL(pipe));
1807
1808 }
1809
chv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1810 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1811 {
1812 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1813 u32 val;
1814
1815 /* Make sure the pipe isn't still relying on us */
1816 assert_pipe_disabled(dev_priv, pipe);
1817
1818 /* Set PLL en = 0 */
1819 val = DPLL_SSC_REF_CLK_CHV |
1820 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1821 if (pipe != PIPE_A)
1822 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1823 I915_WRITE(DPLL(pipe), val);
1824 POSTING_READ(DPLL(pipe));
1825
1826 mutex_lock(&dev_priv->sb_lock);
1827
1828 /* Disable 10bit clock to display controller */
1829 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1830 val &= ~DPIO_DCLKP_EN;
1831 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1832
1833 mutex_unlock(&dev_priv->sb_lock);
1834 }
1835
vlv_wait_port_ready(struct drm_i915_private * dev_priv,struct intel_digital_port * dport,unsigned int expected_mask)1836 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1837 struct intel_digital_port *dport,
1838 unsigned int expected_mask)
1839 {
1840 u32 port_mask;
1841 int dpll_reg;
1842
1843 switch (dport->port) {
1844 case PORT_B:
1845 port_mask = DPLL_PORTB_READY_MASK;
1846 dpll_reg = DPLL(0);
1847 break;
1848 case PORT_C:
1849 port_mask = DPLL_PORTC_READY_MASK;
1850 dpll_reg = DPLL(0);
1851 expected_mask <<= 4;
1852 break;
1853 case PORT_D:
1854 port_mask = DPLL_PORTD_READY_MASK;
1855 dpll_reg = DPIO_PHY_STATUS;
1856 break;
1857 default:
1858 BUG();
1859 }
1860
1861 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1862 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1863 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1864 }
1865
intel_prepare_shared_dpll(struct intel_crtc * crtc)1866 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1867 {
1868 struct drm_device *dev = crtc->base.dev;
1869 struct drm_i915_private *dev_priv = dev->dev_private;
1870 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1871
1872 if (WARN_ON(pll == NULL))
1873 return;
1874
1875 WARN_ON(!pll->config.crtc_mask);
1876 if (pll->active == 0) {
1877 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1878 WARN_ON(pll->on);
1879 assert_shared_dpll_disabled(dev_priv, pll);
1880
1881 pll->mode_set(dev_priv, pll);
1882 }
1883 }
1884
1885 /**
1886 * intel_enable_shared_dpll - enable PCH PLL
1887 * @dev_priv: i915 private structure
1888 * @pipe: pipe PLL to enable
1889 *
1890 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1891 * drives the transcoder clock.
1892 */
intel_enable_shared_dpll(struct intel_crtc * crtc)1893 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1894 {
1895 struct drm_device *dev = crtc->base.dev;
1896 struct drm_i915_private *dev_priv = dev->dev_private;
1897 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1898
1899 if (WARN_ON(pll == NULL))
1900 return;
1901
1902 if (WARN_ON(pll->config.crtc_mask == 0))
1903 return;
1904
1905 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1906 pll->name, pll->active, pll->on,
1907 crtc->base.base.id);
1908
1909 if (pll->active++) {
1910 WARN_ON(!pll->on);
1911 assert_shared_dpll_enabled(dev_priv, pll);
1912 return;
1913 }
1914 WARN_ON(pll->on);
1915
1916 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1917
1918 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1919 pll->enable(dev_priv, pll);
1920 pll->on = true;
1921 }
1922
intel_disable_shared_dpll(struct intel_crtc * crtc)1923 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1924 {
1925 struct drm_device *dev = crtc->base.dev;
1926 struct drm_i915_private *dev_priv = dev->dev_private;
1927 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1928
1929 /* PCH only available on ILK+ */
1930 if (INTEL_INFO(dev)->gen < 5)
1931 return;
1932
1933 if (pll == NULL)
1934 return;
1935
1936 if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1937 return;
1938
1939 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1940 pll->name, pll->active, pll->on,
1941 crtc->base.base.id);
1942
1943 if (WARN_ON(pll->active == 0)) {
1944 assert_shared_dpll_disabled(dev_priv, pll);
1945 return;
1946 }
1947
1948 assert_shared_dpll_enabled(dev_priv, pll);
1949 WARN_ON(!pll->on);
1950 if (--pll->active)
1951 return;
1952
1953 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1954 pll->disable(dev_priv, pll);
1955 pll->on = false;
1956
1957 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1958 }
1959
ironlake_enable_pch_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)1960 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1961 enum pipe pipe)
1962 {
1963 struct drm_device *dev = dev_priv->dev;
1964 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1965 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1966 uint32_t reg, val, pipeconf_val;
1967
1968 /* PCH only available on ILK+ */
1969 BUG_ON(!HAS_PCH_SPLIT(dev));
1970
1971 /* Make sure PCH DPLL is enabled */
1972 assert_shared_dpll_enabled(dev_priv,
1973 intel_crtc_to_shared_dpll(intel_crtc));
1974
1975 /* FDI must be feeding us bits for PCH ports */
1976 assert_fdi_tx_enabled(dev_priv, pipe);
1977 assert_fdi_rx_enabled(dev_priv, pipe);
1978
1979 if (HAS_PCH_CPT(dev)) {
1980 /* Workaround: Set the timing override bit before enabling the
1981 * pch transcoder. */
1982 reg = TRANS_CHICKEN2(pipe);
1983 val = I915_READ(reg);
1984 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1985 I915_WRITE(reg, val);
1986 }
1987
1988 reg = PCH_TRANSCONF(pipe);
1989 val = I915_READ(reg);
1990 pipeconf_val = I915_READ(PIPECONF(pipe));
1991
1992 if (HAS_PCH_IBX(dev_priv->dev)) {
1993 /*
1994 * Make the BPC in transcoder be consistent with
1995 * that in pipeconf reg. For HDMI we must use 8bpc
1996 * here for both 8bpc and 12bpc.
1997 */
1998 val &= ~PIPECONF_BPC_MASK;
1999 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2000 val |= PIPECONF_8BPC;
2001 else
2002 val |= pipeconf_val & PIPECONF_BPC_MASK;
2003 }
2004
2005 val &= ~TRANS_INTERLACE_MASK;
2006 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2007 if (HAS_PCH_IBX(dev_priv->dev) &&
2008 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2009 val |= TRANS_LEGACY_INTERLACED_ILK;
2010 else
2011 val |= TRANS_INTERLACED;
2012 else
2013 val |= TRANS_PROGRESSIVE;
2014
2015 I915_WRITE(reg, val | TRANS_ENABLE);
2016 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2017 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2018 }
2019
lpt_enable_pch_transcoder(struct drm_i915_private * dev_priv,enum transcoder cpu_transcoder)2020 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2021 enum transcoder cpu_transcoder)
2022 {
2023 u32 val, pipeconf_val;
2024
2025 /* PCH only available on ILK+ */
2026 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2027
2028 /* FDI must be feeding us bits for PCH ports */
2029 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2030 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2031
2032 /* Workaround: set timing override bit. */
2033 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2034 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2035 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2036
2037 val = TRANS_ENABLE;
2038 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2039
2040 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2041 PIPECONF_INTERLACED_ILK)
2042 val |= TRANS_INTERLACED;
2043 else
2044 val |= TRANS_PROGRESSIVE;
2045
2046 I915_WRITE(LPT_TRANSCONF, val);
2047 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2048 DRM_ERROR("Failed to enable PCH transcoder\n");
2049 }
2050
ironlake_disable_pch_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)2051 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2052 enum pipe pipe)
2053 {
2054 struct drm_device *dev = dev_priv->dev;
2055 uint32_t reg, val;
2056
2057 /* FDI relies on the transcoder */
2058 assert_fdi_tx_disabled(dev_priv, pipe);
2059 assert_fdi_rx_disabled(dev_priv, pipe);
2060
2061 /* Ports must be off as well */
2062 assert_pch_ports_disabled(dev_priv, pipe);
2063
2064 reg = PCH_TRANSCONF(pipe);
2065 val = I915_READ(reg);
2066 val &= ~TRANS_ENABLE;
2067 I915_WRITE(reg, val);
2068 /* wait for PCH transcoder off, transcoder state */
2069 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2070 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2071
2072 if (!HAS_PCH_IBX(dev)) {
2073 /* Workaround: Clear the timing override chicken bit again. */
2074 reg = TRANS_CHICKEN2(pipe);
2075 val = I915_READ(reg);
2076 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2077 I915_WRITE(reg, val);
2078 }
2079 }
2080
lpt_disable_pch_transcoder(struct drm_i915_private * dev_priv)2081 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2082 {
2083 u32 val;
2084
2085 val = I915_READ(LPT_TRANSCONF);
2086 val &= ~TRANS_ENABLE;
2087 I915_WRITE(LPT_TRANSCONF, val);
2088 /* wait for PCH transcoder off, transcoder state */
2089 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2090 DRM_ERROR("Failed to disable PCH transcoder\n");
2091
2092 /* Workaround: clear timing override bit. */
2093 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2094 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2095 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2096 }
2097
2098 /**
2099 * intel_enable_pipe - enable a pipe, asserting requirements
2100 * @crtc: crtc responsible for the pipe
2101 *
2102 * Enable @crtc's pipe, making sure that various hardware specific requirements
2103 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2104 */
intel_enable_pipe(struct intel_crtc * crtc)2105 static void intel_enable_pipe(struct intel_crtc *crtc)
2106 {
2107 struct drm_device *dev = crtc->base.dev;
2108 struct drm_i915_private *dev_priv = dev->dev_private;
2109 enum pipe pipe = crtc->pipe;
2110 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2111 pipe);
2112 enum pipe pch_transcoder;
2113 int reg;
2114 u32 val;
2115
2116 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2117
2118 assert_planes_disabled(dev_priv, pipe);
2119 assert_cursor_disabled(dev_priv, pipe);
2120 assert_sprites_disabled(dev_priv, pipe);
2121
2122 if (HAS_PCH_LPT(dev_priv->dev))
2123 pch_transcoder = TRANSCODER_A;
2124 else
2125 pch_transcoder = pipe;
2126
2127 /*
2128 * A pipe without a PLL won't actually be able to drive bits from
2129 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2130 * need the check.
2131 */
2132 if (HAS_GMCH_DISPLAY(dev_priv->dev))
2133 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2134 assert_dsi_pll_enabled(dev_priv);
2135 else
2136 assert_pll_enabled(dev_priv, pipe);
2137 else {
2138 if (crtc->config->has_pch_encoder) {
2139 /* if driving the PCH, we need FDI enabled */
2140 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2141 assert_fdi_tx_pll_enabled(dev_priv,
2142 (enum pipe) cpu_transcoder);
2143 }
2144 /* FIXME: assert CPU port conditions for SNB+ */
2145 }
2146
2147 reg = PIPECONF(cpu_transcoder);
2148 val = I915_READ(reg);
2149 if (val & PIPECONF_ENABLE) {
2150 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2151 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2152 return;
2153 }
2154
2155 I915_WRITE(reg, val | PIPECONF_ENABLE);
2156 POSTING_READ(reg);
2157 }
2158
2159 /**
2160 * intel_disable_pipe - disable a pipe, asserting requirements
2161 * @crtc: crtc whose pipes is to be disabled
2162 *
2163 * Disable the pipe of @crtc, making sure that various hardware
2164 * specific requirements are met, if applicable, e.g. plane
2165 * disabled, panel fitter off, etc.
2166 *
2167 * Will wait until the pipe has shut down before returning.
2168 */
intel_disable_pipe(struct intel_crtc * crtc)2169 static void intel_disable_pipe(struct intel_crtc *crtc)
2170 {
2171 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2172 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2173 enum pipe pipe = crtc->pipe;
2174 int reg;
2175 u32 val;
2176
2177 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2178
2179 /*
2180 * Make sure planes won't keep trying to pump pixels to us,
2181 * or we might hang the display.
2182 */
2183 assert_planes_disabled(dev_priv, pipe);
2184 assert_cursor_disabled(dev_priv, pipe);
2185 assert_sprites_disabled(dev_priv, pipe);
2186
2187 reg = PIPECONF(cpu_transcoder);
2188 val = I915_READ(reg);
2189 if ((val & PIPECONF_ENABLE) == 0)
2190 return;
2191
2192 /*
2193 * Double wide has implications for planes
2194 * so best keep it disabled when not needed.
2195 */
2196 if (crtc->config->double_wide)
2197 val &= ~PIPECONF_DOUBLE_WIDE;
2198
2199 /* Don't disable pipe or pipe PLLs if needed */
2200 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2201 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2202 val &= ~PIPECONF_ENABLE;
2203
2204 I915_WRITE(reg, val);
2205 if ((val & PIPECONF_ENABLE) == 0)
2206 intel_wait_for_pipe_off(crtc);
2207 }
2208
need_vtd_wa(struct drm_device * dev)2209 static bool need_vtd_wa(struct drm_device *dev)
2210 {
2211 #ifdef CONFIG_INTEL_IOMMU
2212 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2213 return true;
2214 #endif
2215 return false;
2216 }
2217
2218 unsigned int
intel_tile_height(struct drm_device * dev,uint32_t pixel_format,uint64_t fb_format_modifier,unsigned int plane)2219 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2220 uint64_t fb_format_modifier, unsigned int plane)
2221 {
2222 unsigned int tile_height;
2223 uint32_t pixel_bytes;
2224
2225 switch (fb_format_modifier) {
2226 case DRM_FORMAT_MOD_NONE:
2227 tile_height = 1;
2228 break;
2229 case I915_FORMAT_MOD_X_TILED:
2230 tile_height = IS_GEN2(dev) ? 16 : 8;
2231 break;
2232 case I915_FORMAT_MOD_Y_TILED:
2233 tile_height = 32;
2234 break;
2235 case I915_FORMAT_MOD_Yf_TILED:
2236 pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
2237 switch (pixel_bytes) {
2238 default:
2239 case 1:
2240 tile_height = 64;
2241 break;
2242 case 2:
2243 case 4:
2244 tile_height = 32;
2245 break;
2246 case 8:
2247 tile_height = 16;
2248 break;
2249 case 16:
2250 WARN_ONCE(1,
2251 "128-bit pixels are not supported for display!");
2252 tile_height = 16;
2253 break;
2254 }
2255 break;
2256 default:
2257 MISSING_CASE(fb_format_modifier);
2258 tile_height = 1;
2259 break;
2260 }
2261
2262 return tile_height;
2263 }
2264
2265 unsigned int
intel_fb_align_height(struct drm_device * dev,unsigned int height,uint32_t pixel_format,uint64_t fb_format_modifier)2266 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2267 uint32_t pixel_format, uint64_t fb_format_modifier)
2268 {
2269 return ALIGN(height, intel_tile_height(dev, pixel_format,
2270 fb_format_modifier, 0));
2271 }
2272
2273 static int
intel_fill_fb_ggtt_view(struct i915_ggtt_view * view,struct drm_framebuffer * fb,const struct drm_plane_state * plane_state)2274 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2275 const struct drm_plane_state *plane_state)
2276 {
2277 struct intel_rotation_info *info = &view->rotation_info;
2278 unsigned int tile_height, tile_pitch;
2279
2280 *view = i915_ggtt_view_normal;
2281
2282 if (!plane_state)
2283 return 0;
2284
2285 if (!intel_rotation_90_or_270(plane_state->rotation))
2286 return 0;
2287
2288 *view = i915_ggtt_view_rotated;
2289
2290 info->height = fb->height;
2291 info->pixel_format = fb->pixel_format;
2292 info->pitch = fb->pitches[0];
2293 info->uv_offset = fb->offsets[1];
2294 info->fb_modifier = fb->modifier[0];
2295
2296 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2297 fb->modifier[0], 0);
2298 tile_pitch = PAGE_SIZE / tile_height;
2299 info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2300 info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2301 info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2302
2303 if (info->pixel_format == DRM_FORMAT_NV12) {
2304 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2305 fb->modifier[0], 1);
2306 tile_pitch = PAGE_SIZE / tile_height;
2307 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2308 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
2309 tile_height);
2310 info->size_uv = info->width_pages_uv * info->height_pages_uv *
2311 PAGE_SIZE;
2312 }
2313
2314 return 0;
2315 }
2316
intel_linear_alignment(struct drm_i915_private * dev_priv)2317 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2318 {
2319 if (INTEL_INFO(dev_priv)->gen >= 9)
2320 return 256 * 1024;
2321 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2322 IS_VALLEYVIEW(dev_priv))
2323 return 128 * 1024;
2324 else if (INTEL_INFO(dev_priv)->gen >= 4)
2325 return 4 * 1024;
2326 else
2327 return 0;
2328 }
2329
2330 int
intel_pin_and_fence_fb_obj(struct drm_plane * plane,struct drm_framebuffer * fb,const struct drm_plane_state * plane_state,struct intel_engine_cs * pipelined,struct drm_i915_gem_request ** pipelined_request)2331 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2332 struct drm_framebuffer *fb,
2333 const struct drm_plane_state *plane_state,
2334 struct intel_engine_cs *pipelined,
2335 struct drm_i915_gem_request **pipelined_request)
2336 {
2337 struct drm_device *dev = fb->dev;
2338 struct drm_i915_private *dev_priv = dev->dev_private;
2339 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2340 struct i915_ggtt_view view;
2341 u32 alignment;
2342 int ret;
2343
2344 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2345
2346 switch (fb->modifier[0]) {
2347 case DRM_FORMAT_MOD_NONE:
2348 alignment = intel_linear_alignment(dev_priv);
2349 break;
2350 case I915_FORMAT_MOD_X_TILED:
2351 if (INTEL_INFO(dev)->gen >= 9)
2352 alignment = 256 * 1024;
2353 else {
2354 /* pin() will align the object as required by fence */
2355 alignment = 0;
2356 }
2357 break;
2358 case I915_FORMAT_MOD_Y_TILED:
2359 case I915_FORMAT_MOD_Yf_TILED:
2360 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2361 "Y tiling bo slipped through, driver bug!\n"))
2362 return -EINVAL;
2363 alignment = 1 * 1024 * 1024;
2364 break;
2365 default:
2366 MISSING_CASE(fb->modifier[0]);
2367 return -EINVAL;
2368 }
2369
2370 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2371 if (ret)
2372 return ret;
2373
2374 /* Note that the w/a also requires 64 PTE of padding following the
2375 * bo. We currently fill all unused PTE with the shadow page and so
2376 * we should always have valid PTE following the scanout preventing
2377 * the VT-d warning.
2378 */
2379 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2380 alignment = 256 * 1024;
2381
2382 /*
2383 * Global gtt pte registers are special registers which actually forward
2384 * writes to a chunk of system memory. Which means that there is no risk
2385 * that the register values disappear as soon as we call
2386 * intel_runtime_pm_put(), so it is correct to wrap only the
2387 * pin/unpin/fence and not more.
2388 */
2389 intel_runtime_pm_get(dev_priv);
2390
2391 dev_priv->mm.interruptible = false;
2392 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2393 pipelined_request, &view);
2394 if (ret)
2395 goto err_interruptible;
2396
2397 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2398 * fence, whereas 965+ only requires a fence if using
2399 * framebuffer compression. For simplicity, we always install
2400 * a fence as the cost is not that onerous.
2401 */
2402 if (view.type == I915_GGTT_VIEW_NORMAL) {
2403 ret = i915_gem_object_get_fence(obj);
2404 if (ret == -EDEADLK) {
2405 /*
2406 * -EDEADLK means there are no free fences
2407 * no pending flips.
2408 *
2409 * This is propagated to atomic, but it uses
2410 * -EDEADLK to force a locking recovery, so
2411 * change the returned error to -EBUSY.
2412 */
2413 ret = -EBUSY;
2414 goto err_unpin;
2415 } else if (ret)
2416 goto err_unpin;
2417
2418 i915_gem_object_pin_fence(obj);
2419 }
2420
2421 dev_priv->mm.interruptible = true;
2422 intel_runtime_pm_put(dev_priv);
2423 return 0;
2424
2425 err_unpin:
2426 i915_gem_object_unpin_from_display_plane(obj, &view);
2427 err_interruptible:
2428 dev_priv->mm.interruptible = true;
2429 intel_runtime_pm_put(dev_priv);
2430 return ret;
2431 }
2432
intel_unpin_fb_obj(struct drm_framebuffer * fb,const struct drm_plane_state * plane_state)2433 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2434 const struct drm_plane_state *plane_state)
2435 {
2436 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2437 struct i915_ggtt_view view;
2438 int ret;
2439
2440 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2441
2442 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2443 WARN_ONCE(ret, "Couldn't get view from plane state!");
2444
2445 if (view.type == I915_GGTT_VIEW_NORMAL)
2446 i915_gem_object_unpin_fence(obj);
2447
2448 i915_gem_object_unpin_from_display_plane(obj, &view);
2449 }
2450
2451 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2452 * is assumed to be a power-of-two. */
intel_gen4_compute_page_offset(struct drm_i915_private * dev_priv,int * x,int * y,unsigned int tiling_mode,unsigned int cpp,unsigned int pitch)2453 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2454 int *x, int *y,
2455 unsigned int tiling_mode,
2456 unsigned int cpp,
2457 unsigned int pitch)
2458 {
2459 if (tiling_mode != I915_TILING_NONE) {
2460 unsigned int tile_rows, tiles;
2461
2462 tile_rows = *y / 8;
2463 *y %= 8;
2464
2465 tiles = *x / (512/cpp);
2466 *x %= 512/cpp;
2467
2468 return tile_rows * pitch * 8 + tiles * 4096;
2469 } else {
2470 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2471 unsigned int offset;
2472
2473 offset = *y * pitch + *x * cpp;
2474 *y = (offset & alignment) / pitch;
2475 *x = ((offset & alignment) - *y * pitch) / cpp;
2476 return offset & ~alignment;
2477 }
2478 }
2479
i9xx_format_to_fourcc(int format)2480 static int i9xx_format_to_fourcc(int format)
2481 {
2482 switch (format) {
2483 case DISPPLANE_8BPP:
2484 return DRM_FORMAT_C8;
2485 case DISPPLANE_BGRX555:
2486 return DRM_FORMAT_XRGB1555;
2487 case DISPPLANE_BGRX565:
2488 return DRM_FORMAT_RGB565;
2489 default:
2490 case DISPPLANE_BGRX888:
2491 return DRM_FORMAT_XRGB8888;
2492 case DISPPLANE_RGBX888:
2493 return DRM_FORMAT_XBGR8888;
2494 case DISPPLANE_BGRX101010:
2495 return DRM_FORMAT_XRGB2101010;
2496 case DISPPLANE_RGBX101010:
2497 return DRM_FORMAT_XBGR2101010;
2498 }
2499 }
2500
skl_format_to_fourcc(int format,bool rgb_order,bool alpha)2501 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2502 {
2503 switch (format) {
2504 case PLANE_CTL_FORMAT_RGB_565:
2505 return DRM_FORMAT_RGB565;
2506 default:
2507 case PLANE_CTL_FORMAT_XRGB_8888:
2508 if (rgb_order) {
2509 if (alpha)
2510 return DRM_FORMAT_ABGR8888;
2511 else
2512 return DRM_FORMAT_XBGR8888;
2513 } else {
2514 if (alpha)
2515 return DRM_FORMAT_ARGB8888;
2516 else
2517 return DRM_FORMAT_XRGB8888;
2518 }
2519 case PLANE_CTL_FORMAT_XRGB_2101010:
2520 if (rgb_order)
2521 return DRM_FORMAT_XBGR2101010;
2522 else
2523 return DRM_FORMAT_XRGB2101010;
2524 }
2525 }
2526
2527 static bool
intel_alloc_initial_plane_obj(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)2528 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2529 struct intel_initial_plane_config *plane_config)
2530 {
2531 struct drm_device *dev = crtc->base.dev;
2532 struct drm_i915_private *dev_priv = to_i915(dev);
2533 struct drm_i915_gem_object *obj = NULL;
2534 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2535 struct drm_framebuffer *fb = &plane_config->fb->base;
2536 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2537 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2538 PAGE_SIZE);
2539
2540 size_aligned -= base_aligned;
2541
2542 if (plane_config->size == 0)
2543 return false;
2544
2545 /* If the FB is too big, just don't use it since fbdev is not very
2546 * important and we should probably use that space with FBC or other
2547 * features. */
2548 if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2549 return false;
2550
2551 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2552 base_aligned,
2553 base_aligned,
2554 size_aligned);
2555 if (!obj)
2556 return false;
2557
2558 obj->tiling_mode = plane_config->tiling;
2559 if (obj->tiling_mode == I915_TILING_X)
2560 obj->stride = fb->pitches[0];
2561
2562 mode_cmd.pixel_format = fb->pixel_format;
2563 mode_cmd.width = fb->width;
2564 mode_cmd.height = fb->height;
2565 mode_cmd.pitches[0] = fb->pitches[0];
2566 mode_cmd.modifier[0] = fb->modifier[0];
2567 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2568
2569 mutex_lock(&dev->struct_mutex);
2570 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2571 &mode_cmd, obj)) {
2572 DRM_DEBUG_KMS("intel fb init failed\n");
2573 goto out_unref_obj;
2574 }
2575 mutex_unlock(&dev->struct_mutex);
2576
2577 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2578 return true;
2579
2580 out_unref_obj:
2581 drm_gem_object_unreference(&obj->base);
2582 mutex_unlock(&dev->struct_mutex);
2583 return false;
2584 }
2585
2586 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2587 static void
update_state_fb(struct drm_plane * plane)2588 update_state_fb(struct drm_plane *plane)
2589 {
2590 if (plane->fb == plane->state->fb)
2591 return;
2592
2593 if (plane->state->fb)
2594 drm_framebuffer_unreference(plane->state->fb);
2595 plane->state->fb = plane->fb;
2596 if (plane->state->fb)
2597 drm_framebuffer_reference(plane->state->fb);
2598 }
2599
2600 static void
intel_find_initial_plane_obj(struct intel_crtc * intel_crtc,struct intel_initial_plane_config * plane_config)2601 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2602 struct intel_initial_plane_config *plane_config)
2603 {
2604 struct drm_device *dev = intel_crtc->base.dev;
2605 struct drm_i915_private *dev_priv = dev->dev_private;
2606 struct drm_crtc *c;
2607 struct intel_crtc *i;
2608 struct drm_i915_gem_object *obj;
2609 struct drm_plane *primary = intel_crtc->base.primary;
2610 struct drm_plane_state *plane_state = primary->state;
2611 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2612 struct intel_plane *intel_plane = to_intel_plane(primary);
2613 struct drm_framebuffer *fb;
2614
2615 if (!plane_config->fb)
2616 return;
2617
2618 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2619 fb = &plane_config->fb->base;
2620 goto valid_fb;
2621 }
2622
2623 kfree(plane_config->fb);
2624
2625 /*
2626 * Failed to alloc the obj, check to see if we should share
2627 * an fb with another CRTC instead
2628 */
2629 for_each_crtc(dev, c) {
2630 i = to_intel_crtc(c);
2631
2632 if (c == &intel_crtc->base)
2633 continue;
2634
2635 if (!i->active)
2636 continue;
2637
2638 fb = c->primary->fb;
2639 if (!fb)
2640 continue;
2641
2642 obj = intel_fb_obj(fb);
2643 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2644 drm_framebuffer_reference(fb);
2645 goto valid_fb;
2646 }
2647 }
2648
2649 /*
2650 * We've failed to reconstruct the BIOS FB. Current display state
2651 * indicates that the primary plane is visible, but has a NULL FB,
2652 * which will lead to problems later if we don't fix it up. The
2653 * simplest solution is to just disable the primary plane now and
2654 * pretend the BIOS never had it enabled.
2655 */
2656 to_intel_plane_state(plane_state)->visible = false;
2657 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2658 intel_pre_disable_primary(&intel_crtc->base);
2659 intel_plane->disable_plane(primary, &intel_crtc->base);
2660
2661 return;
2662
2663 valid_fb:
2664 plane_state->src_x = 0;
2665 plane_state->src_y = 0;
2666 plane_state->src_w = fb->width << 16;
2667 plane_state->src_h = fb->height << 16;
2668
2669 plane_state->crtc_x = 0;
2670 plane_state->crtc_y = 0;
2671 plane_state->crtc_w = fb->width;
2672 plane_state->crtc_h = fb->height;
2673
2674 obj = intel_fb_obj(fb);
2675 if (obj->tiling_mode != I915_TILING_NONE)
2676 dev_priv->preserve_bios_swizzle = true;
2677
2678 drm_framebuffer_reference(fb);
2679 primary->fb = primary->state->fb = fb;
2680 primary->crtc = primary->state->crtc = &intel_crtc->base;
2681 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2682 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2683 }
2684
i9xx_update_primary_plane(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y)2685 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2686 struct drm_framebuffer *fb,
2687 int x, int y)
2688 {
2689 struct drm_device *dev = crtc->dev;
2690 struct drm_i915_private *dev_priv = dev->dev_private;
2691 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2692 struct drm_plane *primary = crtc->primary;
2693 bool visible = to_intel_plane_state(primary->state)->visible;
2694 struct drm_i915_gem_object *obj;
2695 int plane = intel_crtc->plane;
2696 unsigned long linear_offset;
2697 u32 dspcntr;
2698 u32 reg = DSPCNTR(plane);
2699 int pixel_size;
2700
2701 if (!visible || !fb) {
2702 I915_WRITE(reg, 0);
2703 if (INTEL_INFO(dev)->gen >= 4)
2704 I915_WRITE(DSPSURF(plane), 0);
2705 else
2706 I915_WRITE(DSPADDR(plane), 0);
2707 POSTING_READ(reg);
2708 return;
2709 }
2710
2711 obj = intel_fb_obj(fb);
2712 if (WARN_ON(obj == NULL))
2713 return;
2714
2715 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2716
2717 dspcntr = DISPPLANE_GAMMA_ENABLE;
2718
2719 dspcntr |= DISPLAY_PLANE_ENABLE;
2720
2721 if (INTEL_INFO(dev)->gen < 4) {
2722 if (intel_crtc->pipe == PIPE_B)
2723 dspcntr |= DISPPLANE_SEL_PIPE_B;
2724
2725 /* pipesrc and dspsize control the size that is scaled from,
2726 * which should always be the user's requested size.
2727 */
2728 I915_WRITE(DSPSIZE(plane),
2729 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2730 (intel_crtc->config->pipe_src_w - 1));
2731 I915_WRITE(DSPPOS(plane), 0);
2732 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2733 I915_WRITE(PRIMSIZE(plane),
2734 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2735 (intel_crtc->config->pipe_src_w - 1));
2736 I915_WRITE(PRIMPOS(plane), 0);
2737 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2738 }
2739
2740 switch (fb->pixel_format) {
2741 case DRM_FORMAT_C8:
2742 dspcntr |= DISPPLANE_8BPP;
2743 break;
2744 case DRM_FORMAT_XRGB1555:
2745 dspcntr |= DISPPLANE_BGRX555;
2746 break;
2747 case DRM_FORMAT_RGB565:
2748 dspcntr |= DISPPLANE_BGRX565;
2749 break;
2750 case DRM_FORMAT_XRGB8888:
2751 dspcntr |= DISPPLANE_BGRX888;
2752 break;
2753 case DRM_FORMAT_XBGR8888:
2754 dspcntr |= DISPPLANE_RGBX888;
2755 break;
2756 case DRM_FORMAT_XRGB2101010:
2757 dspcntr |= DISPPLANE_BGRX101010;
2758 break;
2759 case DRM_FORMAT_XBGR2101010:
2760 dspcntr |= DISPPLANE_RGBX101010;
2761 break;
2762 default:
2763 BUG();
2764 }
2765
2766 if (INTEL_INFO(dev)->gen >= 4 &&
2767 obj->tiling_mode != I915_TILING_NONE)
2768 dspcntr |= DISPPLANE_TILED;
2769
2770 if (IS_G4X(dev))
2771 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2772
2773 linear_offset = y * fb->pitches[0] + x * pixel_size;
2774
2775 if (INTEL_INFO(dev)->gen >= 4) {
2776 intel_crtc->dspaddr_offset =
2777 intel_gen4_compute_page_offset(dev_priv,
2778 &x, &y, obj->tiling_mode,
2779 pixel_size,
2780 fb->pitches[0]);
2781 linear_offset -= intel_crtc->dspaddr_offset;
2782 } else {
2783 intel_crtc->dspaddr_offset = linear_offset;
2784 }
2785
2786 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2787 dspcntr |= DISPPLANE_ROTATE_180;
2788
2789 x += (intel_crtc->config->pipe_src_w - 1);
2790 y += (intel_crtc->config->pipe_src_h - 1);
2791
2792 /* Finding the last pixel of the last line of the display
2793 data and adding to linear_offset*/
2794 linear_offset +=
2795 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2796 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2797 }
2798
2799 intel_crtc->adjusted_x = x;
2800 intel_crtc->adjusted_y = y;
2801
2802 I915_WRITE(reg, dspcntr);
2803
2804 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2805 if (INTEL_INFO(dev)->gen >= 4) {
2806 I915_WRITE(DSPSURF(plane),
2807 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2808 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2809 I915_WRITE(DSPLINOFF(plane), linear_offset);
2810 } else
2811 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2812 POSTING_READ(reg);
2813 }
2814
ironlake_update_primary_plane(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y)2815 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2816 struct drm_framebuffer *fb,
2817 int x, int y)
2818 {
2819 struct drm_device *dev = crtc->dev;
2820 struct drm_i915_private *dev_priv = dev->dev_private;
2821 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2822 struct drm_plane *primary = crtc->primary;
2823 bool visible = to_intel_plane_state(primary->state)->visible;
2824 struct drm_i915_gem_object *obj;
2825 int plane = intel_crtc->plane;
2826 unsigned long linear_offset;
2827 u32 dspcntr;
2828 u32 reg = DSPCNTR(plane);
2829 int pixel_size;
2830
2831 if (!visible || !fb) {
2832 I915_WRITE(reg, 0);
2833 I915_WRITE(DSPSURF(plane), 0);
2834 POSTING_READ(reg);
2835 return;
2836 }
2837
2838 obj = intel_fb_obj(fb);
2839 if (WARN_ON(obj == NULL))
2840 return;
2841
2842 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2843
2844 dspcntr = DISPPLANE_GAMMA_ENABLE;
2845
2846 dspcntr |= DISPLAY_PLANE_ENABLE;
2847
2848 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2849 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2850
2851 switch (fb->pixel_format) {
2852 case DRM_FORMAT_C8:
2853 dspcntr |= DISPPLANE_8BPP;
2854 break;
2855 case DRM_FORMAT_RGB565:
2856 dspcntr |= DISPPLANE_BGRX565;
2857 break;
2858 case DRM_FORMAT_XRGB8888:
2859 dspcntr |= DISPPLANE_BGRX888;
2860 break;
2861 case DRM_FORMAT_XBGR8888:
2862 dspcntr |= DISPPLANE_RGBX888;
2863 break;
2864 case DRM_FORMAT_XRGB2101010:
2865 dspcntr |= DISPPLANE_BGRX101010;
2866 break;
2867 case DRM_FORMAT_XBGR2101010:
2868 dspcntr |= DISPPLANE_RGBX101010;
2869 break;
2870 default:
2871 BUG();
2872 }
2873
2874 if (obj->tiling_mode != I915_TILING_NONE)
2875 dspcntr |= DISPPLANE_TILED;
2876
2877 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2878 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2879
2880 linear_offset = y * fb->pitches[0] + x * pixel_size;
2881 intel_crtc->dspaddr_offset =
2882 intel_gen4_compute_page_offset(dev_priv,
2883 &x, &y, obj->tiling_mode,
2884 pixel_size,
2885 fb->pitches[0]);
2886 linear_offset -= intel_crtc->dspaddr_offset;
2887 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2888 dspcntr |= DISPPLANE_ROTATE_180;
2889
2890 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2891 x += (intel_crtc->config->pipe_src_w - 1);
2892 y += (intel_crtc->config->pipe_src_h - 1);
2893
2894 /* Finding the last pixel of the last line of the display
2895 data and adding to linear_offset*/
2896 linear_offset +=
2897 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2898 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2899 }
2900 }
2901
2902 intel_crtc->adjusted_x = x;
2903 intel_crtc->adjusted_y = y;
2904
2905 I915_WRITE(reg, dspcntr);
2906
2907 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2908 I915_WRITE(DSPSURF(plane),
2909 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2910 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2911 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2912 } else {
2913 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2914 I915_WRITE(DSPLINOFF(plane), linear_offset);
2915 }
2916 POSTING_READ(reg);
2917 }
2918
intel_fb_stride_alignment(struct drm_device * dev,uint64_t fb_modifier,uint32_t pixel_format)2919 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2920 uint32_t pixel_format)
2921 {
2922 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2923
2924 /*
2925 * The stride is either expressed as a multiple of 64 bytes
2926 * chunks for linear buffers or in number of tiles for tiled
2927 * buffers.
2928 */
2929 switch (fb_modifier) {
2930 case DRM_FORMAT_MOD_NONE:
2931 return 64;
2932 case I915_FORMAT_MOD_X_TILED:
2933 if (INTEL_INFO(dev)->gen == 2)
2934 return 128;
2935 return 512;
2936 case I915_FORMAT_MOD_Y_TILED:
2937 /* No need to check for old gens and Y tiling since this is
2938 * about the display engine and those will be blocked before
2939 * we get here.
2940 */
2941 return 128;
2942 case I915_FORMAT_MOD_Yf_TILED:
2943 if (bits_per_pixel == 8)
2944 return 64;
2945 else
2946 return 128;
2947 default:
2948 MISSING_CASE(fb_modifier);
2949 return 64;
2950 }
2951 }
2952
intel_plane_obj_offset(struct intel_plane * intel_plane,struct drm_i915_gem_object * obj,unsigned int plane)2953 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2954 struct drm_i915_gem_object *obj,
2955 unsigned int plane)
2956 {
2957 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2958 struct i915_vma *vma;
2959 u64 offset;
2960
2961 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2962 view = &i915_ggtt_view_rotated;
2963
2964 vma = i915_gem_obj_to_ggtt_view(obj, view);
2965 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2966 view->type))
2967 return -1;
2968
2969 offset = vma->node.start;
2970
2971 if (plane == 1) {
2972 offset += vma->ggtt_view.rotation_info.uv_start_page *
2973 PAGE_SIZE;
2974 }
2975
2976 WARN_ON(upper_32_bits(offset));
2977
2978 return lower_32_bits(offset);
2979 }
2980
skl_detach_scaler(struct intel_crtc * intel_crtc,int id)2981 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2982 {
2983 struct drm_device *dev = intel_crtc->base.dev;
2984 struct drm_i915_private *dev_priv = dev->dev_private;
2985
2986 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2987 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2988 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2989 }
2990
2991 /*
2992 * This function detaches (aka. unbinds) unused scalers in hardware
2993 */
skl_detach_scalers(struct intel_crtc * intel_crtc)2994 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2995 {
2996 struct intel_crtc_scaler_state *scaler_state;
2997 int i;
2998
2999 scaler_state = &intel_crtc->config->scaler_state;
3000
3001 /* loop through and disable scalers that aren't in use */
3002 for (i = 0; i < intel_crtc->num_scalers; i++) {
3003 if (!scaler_state->scalers[i].in_use)
3004 skl_detach_scaler(intel_crtc, i);
3005 }
3006 }
3007
skl_plane_ctl_format(uint32_t pixel_format)3008 u32 skl_plane_ctl_format(uint32_t pixel_format)
3009 {
3010 switch (pixel_format) {
3011 case DRM_FORMAT_C8:
3012 return PLANE_CTL_FORMAT_INDEXED;
3013 case DRM_FORMAT_RGB565:
3014 return PLANE_CTL_FORMAT_RGB_565;
3015 case DRM_FORMAT_XBGR8888:
3016 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3017 case DRM_FORMAT_XRGB8888:
3018 return PLANE_CTL_FORMAT_XRGB_8888;
3019 /*
3020 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3021 * to be already pre-multiplied. We need to add a knob (or a different
3022 * DRM_FORMAT) for user-space to configure that.
3023 */
3024 case DRM_FORMAT_ABGR8888:
3025 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3026 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3027 case DRM_FORMAT_ARGB8888:
3028 return PLANE_CTL_FORMAT_XRGB_8888 |
3029 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3030 case DRM_FORMAT_XRGB2101010:
3031 return PLANE_CTL_FORMAT_XRGB_2101010;
3032 case DRM_FORMAT_XBGR2101010:
3033 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3034 case DRM_FORMAT_YUYV:
3035 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3036 case DRM_FORMAT_YVYU:
3037 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3038 case DRM_FORMAT_UYVY:
3039 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3040 case DRM_FORMAT_VYUY:
3041 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3042 default:
3043 MISSING_CASE(pixel_format);
3044 }
3045
3046 return 0;
3047 }
3048
skl_plane_ctl_tiling(uint64_t fb_modifier)3049 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3050 {
3051 switch (fb_modifier) {
3052 case DRM_FORMAT_MOD_NONE:
3053 break;
3054 case I915_FORMAT_MOD_X_TILED:
3055 return PLANE_CTL_TILED_X;
3056 case I915_FORMAT_MOD_Y_TILED:
3057 return PLANE_CTL_TILED_Y;
3058 case I915_FORMAT_MOD_Yf_TILED:
3059 return PLANE_CTL_TILED_YF;
3060 default:
3061 MISSING_CASE(fb_modifier);
3062 }
3063
3064 return 0;
3065 }
3066
skl_plane_ctl_rotation(unsigned int rotation)3067 u32 skl_plane_ctl_rotation(unsigned int rotation)
3068 {
3069 switch (rotation) {
3070 case BIT(DRM_ROTATE_0):
3071 break;
3072 /*
3073 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3074 * while i915 HW rotation is clockwise, thats why this swapping.
3075 */
3076 case BIT(DRM_ROTATE_90):
3077 return PLANE_CTL_ROTATE_270;
3078 case BIT(DRM_ROTATE_180):
3079 return PLANE_CTL_ROTATE_180;
3080 case BIT(DRM_ROTATE_270):
3081 return PLANE_CTL_ROTATE_90;
3082 default:
3083 MISSING_CASE(rotation);
3084 }
3085
3086 return 0;
3087 }
3088
skylake_update_primary_plane(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y)3089 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3090 struct drm_framebuffer *fb,
3091 int x, int y)
3092 {
3093 struct drm_device *dev = crtc->dev;
3094 struct drm_i915_private *dev_priv = dev->dev_private;
3095 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3096 struct drm_plane *plane = crtc->primary;
3097 bool visible = to_intel_plane_state(plane->state)->visible;
3098 struct drm_i915_gem_object *obj;
3099 int pipe = intel_crtc->pipe;
3100 u32 plane_ctl, stride_div, stride;
3101 u32 tile_height, plane_offset, plane_size;
3102 unsigned int rotation;
3103 int x_offset, y_offset;
3104 u32 surf_addr;
3105 struct intel_crtc_state *crtc_state = intel_crtc->config;
3106 struct intel_plane_state *plane_state;
3107 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3108 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3109 int scaler_id = -1;
3110
3111 plane_state = to_intel_plane_state(plane->state);
3112
3113 if (!visible || !fb) {
3114 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3115 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3116 POSTING_READ(PLANE_CTL(pipe, 0));
3117 return;
3118 }
3119
3120 plane_ctl = PLANE_CTL_ENABLE |
3121 PLANE_CTL_PIPE_GAMMA_ENABLE |
3122 PLANE_CTL_PIPE_CSC_ENABLE;
3123
3124 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3125 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3126 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3127
3128 rotation = plane->state->rotation;
3129 plane_ctl |= skl_plane_ctl_rotation(rotation);
3130
3131 obj = intel_fb_obj(fb);
3132 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3133 fb->pixel_format);
3134 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3135
3136 WARN_ON(drm_rect_width(&plane_state->src) == 0);
3137
3138 scaler_id = plane_state->scaler_id;
3139 src_x = plane_state->src.x1 >> 16;
3140 src_y = plane_state->src.y1 >> 16;
3141 src_w = drm_rect_width(&plane_state->src) >> 16;
3142 src_h = drm_rect_height(&plane_state->src) >> 16;
3143 dst_x = plane_state->dst.x1;
3144 dst_y = plane_state->dst.y1;
3145 dst_w = drm_rect_width(&plane_state->dst);
3146 dst_h = drm_rect_height(&plane_state->dst);
3147
3148 WARN_ON(x != src_x || y != src_y);
3149
3150 if (intel_rotation_90_or_270(rotation)) {
3151 /* stride = Surface height in tiles */
3152 tile_height = intel_tile_height(dev, fb->pixel_format,
3153 fb->modifier[0], 0);
3154 stride = DIV_ROUND_UP(fb->height, tile_height);
3155 x_offset = stride * tile_height - y - src_h;
3156 y_offset = x;
3157 plane_size = (src_w - 1) << 16 | (src_h - 1);
3158 } else {
3159 stride = fb->pitches[0] / stride_div;
3160 x_offset = x;
3161 y_offset = y;
3162 plane_size = (src_h - 1) << 16 | (src_w - 1);
3163 }
3164 plane_offset = y_offset << 16 | x_offset;
3165
3166 intel_crtc->adjusted_x = x_offset;
3167 intel_crtc->adjusted_y = y_offset;
3168
3169 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3170 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3171 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3172 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3173
3174 if (scaler_id >= 0) {
3175 uint32_t ps_ctrl = 0;
3176
3177 WARN_ON(!dst_w || !dst_h);
3178 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3179 crtc_state->scaler_state.scalers[scaler_id].mode;
3180 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3181 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3182 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3183 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3184 I915_WRITE(PLANE_POS(pipe, 0), 0);
3185 } else {
3186 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3187 }
3188
3189 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3190
3191 POSTING_READ(PLANE_SURF(pipe, 0));
3192 }
3193
3194 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3195 static int
intel_pipe_set_base_atomic(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y,enum mode_set_atomic state)3196 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3197 int x, int y, enum mode_set_atomic state)
3198 {
3199 struct drm_device *dev = crtc->dev;
3200 struct drm_i915_private *dev_priv = dev->dev_private;
3201
3202 if (dev_priv->fbc.disable_fbc)
3203 dev_priv->fbc.disable_fbc(dev_priv);
3204
3205 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3206
3207 return 0;
3208 }
3209
intel_complete_page_flips(struct drm_device * dev)3210 static void intel_complete_page_flips(struct drm_device *dev)
3211 {
3212 struct drm_crtc *crtc;
3213
3214 for_each_crtc(dev, crtc) {
3215 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3216 enum plane plane = intel_crtc->plane;
3217
3218 intel_prepare_page_flip(dev, plane);
3219 intel_finish_page_flip_plane(dev, plane);
3220 }
3221 }
3222
intel_update_primary_planes(struct drm_device * dev)3223 static void intel_update_primary_planes(struct drm_device *dev)
3224 {
3225 struct drm_crtc *crtc;
3226
3227 for_each_crtc(dev, crtc) {
3228 struct intel_plane *plane = to_intel_plane(crtc->primary);
3229 struct intel_plane_state *plane_state;
3230
3231 drm_modeset_lock_crtc(crtc, &plane->base);
3232
3233 plane_state = to_intel_plane_state(plane->base.state);
3234
3235 if (plane_state->base.fb)
3236 plane->commit_plane(&plane->base, plane_state);
3237
3238 drm_modeset_unlock_crtc(crtc);
3239 }
3240 }
3241
intel_prepare_reset(struct drm_device * dev)3242 void intel_prepare_reset(struct drm_device *dev)
3243 {
3244 /* no reset support for gen2 */
3245 if (IS_GEN2(dev))
3246 return;
3247
3248 /* reset doesn't touch the display */
3249 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3250 return;
3251
3252 drm_modeset_lock_all(dev);
3253 /*
3254 * Disabling the crtcs gracefully seems nicer. Also the
3255 * g33 docs say we should at least disable all the planes.
3256 */
3257 intel_display_suspend(dev);
3258 }
3259
intel_finish_reset(struct drm_device * dev)3260 void intel_finish_reset(struct drm_device *dev)
3261 {
3262 struct drm_i915_private *dev_priv = to_i915(dev);
3263
3264 /*
3265 * Flips in the rings will be nuked by the reset,
3266 * so complete all pending flips so that user space
3267 * will get its events and not get stuck.
3268 */
3269 intel_complete_page_flips(dev);
3270
3271 /* no reset support for gen2 */
3272 if (IS_GEN2(dev))
3273 return;
3274
3275 /* reset doesn't touch the display */
3276 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3277 /*
3278 * Flips in the rings have been nuked by the reset,
3279 * so update the base address of all primary
3280 * planes to the the last fb to make sure we're
3281 * showing the correct fb after a reset.
3282 *
3283 * FIXME: Atomic will make this obsolete since we won't schedule
3284 * CS-based flips (which might get lost in gpu resets) any more.
3285 */
3286 intel_update_primary_planes(dev);
3287 return;
3288 }
3289
3290 /*
3291 * The display has been reset as well,
3292 * so need a full re-initialization.
3293 */
3294 intel_runtime_pm_disable_interrupts(dev_priv);
3295 intel_runtime_pm_enable_interrupts(dev_priv);
3296
3297 intel_modeset_init_hw(dev);
3298
3299 spin_lock_irq(&dev_priv->irq_lock);
3300 if (dev_priv->display.hpd_irq_setup)
3301 dev_priv->display.hpd_irq_setup(dev);
3302 spin_unlock_irq(&dev_priv->irq_lock);
3303
3304 intel_display_resume(dev);
3305
3306 intel_hpd_init(dev_priv);
3307
3308 drm_modeset_unlock_all(dev);
3309 }
3310
3311 static void
intel_finish_fb(struct drm_framebuffer * old_fb)3312 intel_finish_fb(struct drm_framebuffer *old_fb)
3313 {
3314 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3315 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3316 bool was_interruptible = dev_priv->mm.interruptible;
3317 int ret;
3318
3319 /* Big Hammer, we also need to ensure that any pending
3320 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3321 * current scanout is retired before unpinning the old
3322 * framebuffer. Note that we rely on userspace rendering
3323 * into the buffer attached to the pipe they are waiting
3324 * on. If not, userspace generates a GPU hang with IPEHR
3325 * point to the MI_WAIT_FOR_EVENT.
3326 *
3327 * This should only fail upon a hung GPU, in which case we
3328 * can safely continue.
3329 */
3330 dev_priv->mm.interruptible = false;
3331 ret = i915_gem_object_wait_rendering(obj, true);
3332 dev_priv->mm.interruptible = was_interruptible;
3333
3334 WARN_ON(ret);
3335 }
3336
intel_crtc_has_pending_flip(struct drm_crtc * crtc)3337 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3338 {
3339 struct drm_device *dev = crtc->dev;
3340 struct drm_i915_private *dev_priv = dev->dev_private;
3341 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3342 bool pending;
3343
3344 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3345 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3346 return false;
3347
3348 spin_lock_irq(&dev->event_lock);
3349 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3350 spin_unlock_irq(&dev->event_lock);
3351
3352 return pending;
3353 }
3354
intel_update_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * old_crtc_state)3355 static void intel_update_pipe_config(struct intel_crtc *crtc,
3356 struct intel_crtc_state *old_crtc_state)
3357 {
3358 struct drm_device *dev = crtc->base.dev;
3359 struct drm_i915_private *dev_priv = dev->dev_private;
3360 struct intel_crtc_state *pipe_config =
3361 to_intel_crtc_state(crtc->base.state);
3362
3363 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3364 crtc->base.mode = crtc->base.state->mode;
3365
3366 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3367 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3368 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3369
3370 if (HAS_DDI(dev))
3371 intel_set_pipe_csc(&crtc->base);
3372
3373 /*
3374 * Update pipe size and adjust fitter if needed: the reason for this is
3375 * that in compute_mode_changes we check the native mode (not the pfit
3376 * mode) to see if we can flip rather than do a full mode set. In the
3377 * fastboot case, we'll flip, but if we don't update the pipesrc and
3378 * pfit state, we'll end up with a big fb scanned out into the wrong
3379 * sized surface.
3380 */
3381
3382 I915_WRITE(PIPESRC(crtc->pipe),
3383 ((pipe_config->pipe_src_w - 1) << 16) |
3384 (pipe_config->pipe_src_h - 1));
3385
3386 /* on skylake this is done by detaching scalers */
3387 if (INTEL_INFO(dev)->gen >= 9) {
3388 skl_detach_scalers(crtc);
3389
3390 if (pipe_config->pch_pfit.enabled)
3391 skylake_pfit_enable(crtc);
3392 } else if (HAS_PCH_SPLIT(dev)) {
3393 if (pipe_config->pch_pfit.enabled)
3394 ironlake_pfit_enable(crtc);
3395 else if (old_crtc_state->pch_pfit.enabled)
3396 ironlake_pfit_disable(crtc, true);
3397 }
3398 }
3399
intel_fdi_normal_train(struct drm_crtc * crtc)3400 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3401 {
3402 struct drm_device *dev = crtc->dev;
3403 struct drm_i915_private *dev_priv = dev->dev_private;
3404 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3405 int pipe = intel_crtc->pipe;
3406 u32 reg, temp;
3407
3408 /* enable normal train */
3409 reg = FDI_TX_CTL(pipe);
3410 temp = I915_READ(reg);
3411 if (IS_IVYBRIDGE(dev)) {
3412 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3413 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3414 } else {
3415 temp &= ~FDI_LINK_TRAIN_NONE;
3416 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3417 }
3418 I915_WRITE(reg, temp);
3419
3420 reg = FDI_RX_CTL(pipe);
3421 temp = I915_READ(reg);
3422 if (HAS_PCH_CPT(dev)) {
3423 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3424 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3425 } else {
3426 temp &= ~FDI_LINK_TRAIN_NONE;
3427 temp |= FDI_LINK_TRAIN_NONE;
3428 }
3429 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3430
3431 /* wait one idle pattern time */
3432 POSTING_READ(reg);
3433 udelay(1000);
3434
3435 /* IVB wants error correction enabled */
3436 if (IS_IVYBRIDGE(dev))
3437 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3438 FDI_FE_ERRC_ENABLE);
3439 }
3440
3441 /* The FDI link training functions for ILK/Ibexpeak. */
ironlake_fdi_link_train(struct drm_crtc * crtc)3442 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3443 {
3444 struct drm_device *dev = crtc->dev;
3445 struct drm_i915_private *dev_priv = dev->dev_private;
3446 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3447 int pipe = intel_crtc->pipe;
3448 u32 reg, temp, tries;
3449
3450 /* FDI needs bits from pipe first */
3451 assert_pipe_enabled(dev_priv, pipe);
3452
3453 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3454 for train result */
3455 reg = FDI_RX_IMR(pipe);
3456 temp = I915_READ(reg);
3457 temp &= ~FDI_RX_SYMBOL_LOCK;
3458 temp &= ~FDI_RX_BIT_LOCK;
3459 I915_WRITE(reg, temp);
3460 I915_READ(reg);
3461 udelay(150);
3462
3463 /* enable CPU FDI TX and PCH FDI RX */
3464 reg = FDI_TX_CTL(pipe);
3465 temp = I915_READ(reg);
3466 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3467 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3468 temp &= ~FDI_LINK_TRAIN_NONE;
3469 temp |= FDI_LINK_TRAIN_PATTERN_1;
3470 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3471
3472 reg = FDI_RX_CTL(pipe);
3473 temp = I915_READ(reg);
3474 temp &= ~FDI_LINK_TRAIN_NONE;
3475 temp |= FDI_LINK_TRAIN_PATTERN_1;
3476 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3477
3478 POSTING_READ(reg);
3479 udelay(150);
3480
3481 /* Ironlake workaround, enable clock pointer after FDI enable*/
3482 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3483 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3484 FDI_RX_PHASE_SYNC_POINTER_EN);
3485
3486 reg = FDI_RX_IIR(pipe);
3487 for (tries = 0; tries < 5; tries++) {
3488 temp = I915_READ(reg);
3489 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3490
3491 if ((temp & FDI_RX_BIT_LOCK)) {
3492 DRM_DEBUG_KMS("FDI train 1 done.\n");
3493 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3494 break;
3495 }
3496 }
3497 if (tries == 5)
3498 DRM_ERROR("FDI train 1 fail!\n");
3499
3500 /* Train 2 */
3501 reg = FDI_TX_CTL(pipe);
3502 temp = I915_READ(reg);
3503 temp &= ~FDI_LINK_TRAIN_NONE;
3504 temp |= FDI_LINK_TRAIN_PATTERN_2;
3505 I915_WRITE(reg, temp);
3506
3507 reg = FDI_RX_CTL(pipe);
3508 temp = I915_READ(reg);
3509 temp &= ~FDI_LINK_TRAIN_NONE;
3510 temp |= FDI_LINK_TRAIN_PATTERN_2;
3511 I915_WRITE(reg, temp);
3512
3513 POSTING_READ(reg);
3514 udelay(150);
3515
3516 reg = FDI_RX_IIR(pipe);
3517 for (tries = 0; tries < 5; tries++) {
3518 temp = I915_READ(reg);
3519 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3520
3521 if (temp & FDI_RX_SYMBOL_LOCK) {
3522 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3523 DRM_DEBUG_KMS("FDI train 2 done.\n");
3524 break;
3525 }
3526 }
3527 if (tries == 5)
3528 DRM_ERROR("FDI train 2 fail!\n");
3529
3530 DRM_DEBUG_KMS("FDI train done\n");
3531
3532 }
3533
3534 static const int snb_b_fdi_train_param[] = {
3535 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3536 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3537 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3538 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3539 };
3540
3541 /* The FDI link training functions for SNB/Cougarpoint. */
gen6_fdi_link_train(struct drm_crtc * crtc)3542 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3543 {
3544 struct drm_device *dev = crtc->dev;
3545 struct drm_i915_private *dev_priv = dev->dev_private;
3546 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3547 int pipe = intel_crtc->pipe;
3548 u32 reg, temp, i, retry;
3549
3550 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3551 for train result */
3552 reg = FDI_RX_IMR(pipe);
3553 temp = I915_READ(reg);
3554 temp &= ~FDI_RX_SYMBOL_LOCK;
3555 temp &= ~FDI_RX_BIT_LOCK;
3556 I915_WRITE(reg, temp);
3557
3558 POSTING_READ(reg);
3559 udelay(150);
3560
3561 /* enable CPU FDI TX and PCH FDI RX */
3562 reg = FDI_TX_CTL(pipe);
3563 temp = I915_READ(reg);
3564 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3565 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3566 temp &= ~FDI_LINK_TRAIN_NONE;
3567 temp |= FDI_LINK_TRAIN_PATTERN_1;
3568 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3569 /* SNB-B */
3570 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3571 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3572
3573 I915_WRITE(FDI_RX_MISC(pipe),
3574 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3575
3576 reg = FDI_RX_CTL(pipe);
3577 temp = I915_READ(reg);
3578 if (HAS_PCH_CPT(dev)) {
3579 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3580 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3581 } else {
3582 temp &= ~FDI_LINK_TRAIN_NONE;
3583 temp |= FDI_LINK_TRAIN_PATTERN_1;
3584 }
3585 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3586
3587 POSTING_READ(reg);
3588 udelay(150);
3589
3590 for (i = 0; i < 4; i++) {
3591 reg = FDI_TX_CTL(pipe);
3592 temp = I915_READ(reg);
3593 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3594 temp |= snb_b_fdi_train_param[i];
3595 I915_WRITE(reg, temp);
3596
3597 POSTING_READ(reg);
3598 udelay(500);
3599
3600 for (retry = 0; retry < 5; retry++) {
3601 reg = FDI_RX_IIR(pipe);
3602 temp = I915_READ(reg);
3603 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3604 if (temp & FDI_RX_BIT_LOCK) {
3605 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3606 DRM_DEBUG_KMS("FDI train 1 done.\n");
3607 break;
3608 }
3609 udelay(50);
3610 }
3611 if (retry < 5)
3612 break;
3613 }
3614 if (i == 4)
3615 DRM_ERROR("FDI train 1 fail!\n");
3616
3617 /* Train 2 */
3618 reg = FDI_TX_CTL(pipe);
3619 temp = I915_READ(reg);
3620 temp &= ~FDI_LINK_TRAIN_NONE;
3621 temp |= FDI_LINK_TRAIN_PATTERN_2;
3622 if (IS_GEN6(dev)) {
3623 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3624 /* SNB-B */
3625 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3626 }
3627 I915_WRITE(reg, temp);
3628
3629 reg = FDI_RX_CTL(pipe);
3630 temp = I915_READ(reg);
3631 if (HAS_PCH_CPT(dev)) {
3632 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3633 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3634 } else {
3635 temp &= ~FDI_LINK_TRAIN_NONE;
3636 temp |= FDI_LINK_TRAIN_PATTERN_2;
3637 }
3638 I915_WRITE(reg, temp);
3639
3640 POSTING_READ(reg);
3641 udelay(150);
3642
3643 for (i = 0; i < 4; i++) {
3644 reg = FDI_TX_CTL(pipe);
3645 temp = I915_READ(reg);
3646 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3647 temp |= snb_b_fdi_train_param[i];
3648 I915_WRITE(reg, temp);
3649
3650 POSTING_READ(reg);
3651 udelay(500);
3652
3653 for (retry = 0; retry < 5; retry++) {
3654 reg = FDI_RX_IIR(pipe);
3655 temp = I915_READ(reg);
3656 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3657 if (temp & FDI_RX_SYMBOL_LOCK) {
3658 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3659 DRM_DEBUG_KMS("FDI train 2 done.\n");
3660 break;
3661 }
3662 udelay(50);
3663 }
3664 if (retry < 5)
3665 break;
3666 }
3667 if (i == 4)
3668 DRM_ERROR("FDI train 2 fail!\n");
3669
3670 DRM_DEBUG_KMS("FDI train done.\n");
3671 }
3672
3673 /* Manual link training for Ivy Bridge A0 parts */
ivb_manual_fdi_link_train(struct drm_crtc * crtc)3674 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3675 {
3676 struct drm_device *dev = crtc->dev;
3677 struct drm_i915_private *dev_priv = dev->dev_private;
3678 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3679 int pipe = intel_crtc->pipe;
3680 u32 reg, temp, i, j;
3681
3682 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3683 for train result */
3684 reg = FDI_RX_IMR(pipe);
3685 temp = I915_READ(reg);
3686 temp &= ~FDI_RX_SYMBOL_LOCK;
3687 temp &= ~FDI_RX_BIT_LOCK;
3688 I915_WRITE(reg, temp);
3689
3690 POSTING_READ(reg);
3691 udelay(150);
3692
3693 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3694 I915_READ(FDI_RX_IIR(pipe)));
3695
3696 /* Try each vswing and preemphasis setting twice before moving on */
3697 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3698 /* disable first in case we need to retry */
3699 reg = FDI_TX_CTL(pipe);
3700 temp = I915_READ(reg);
3701 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3702 temp &= ~FDI_TX_ENABLE;
3703 I915_WRITE(reg, temp);
3704
3705 reg = FDI_RX_CTL(pipe);
3706 temp = I915_READ(reg);
3707 temp &= ~FDI_LINK_TRAIN_AUTO;
3708 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3709 temp &= ~FDI_RX_ENABLE;
3710 I915_WRITE(reg, temp);
3711
3712 /* enable CPU FDI TX and PCH FDI RX */
3713 reg = FDI_TX_CTL(pipe);
3714 temp = I915_READ(reg);
3715 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3716 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3717 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3718 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3719 temp |= snb_b_fdi_train_param[j/2];
3720 temp |= FDI_COMPOSITE_SYNC;
3721 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3722
3723 I915_WRITE(FDI_RX_MISC(pipe),
3724 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3725
3726 reg = FDI_RX_CTL(pipe);
3727 temp = I915_READ(reg);
3728 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3729 temp |= FDI_COMPOSITE_SYNC;
3730 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3731
3732 POSTING_READ(reg);
3733 udelay(1); /* should be 0.5us */
3734
3735 for (i = 0; i < 4; i++) {
3736 reg = FDI_RX_IIR(pipe);
3737 temp = I915_READ(reg);
3738 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3739
3740 if (temp & FDI_RX_BIT_LOCK ||
3741 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3742 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3743 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3744 i);
3745 break;
3746 }
3747 udelay(1); /* should be 0.5us */
3748 }
3749 if (i == 4) {
3750 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3751 continue;
3752 }
3753
3754 /* Train 2 */
3755 reg = FDI_TX_CTL(pipe);
3756 temp = I915_READ(reg);
3757 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3758 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3759 I915_WRITE(reg, temp);
3760
3761 reg = FDI_RX_CTL(pipe);
3762 temp = I915_READ(reg);
3763 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3764 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3765 I915_WRITE(reg, temp);
3766
3767 POSTING_READ(reg);
3768 udelay(2); /* should be 1.5us */
3769
3770 for (i = 0; i < 4; i++) {
3771 reg = FDI_RX_IIR(pipe);
3772 temp = I915_READ(reg);
3773 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3774
3775 if (temp & FDI_RX_SYMBOL_LOCK ||
3776 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3777 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3778 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3779 i);
3780 goto train_done;
3781 }
3782 udelay(2); /* should be 1.5us */
3783 }
3784 if (i == 4)
3785 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3786 }
3787
3788 train_done:
3789 DRM_DEBUG_KMS("FDI train done.\n");
3790 }
3791
ironlake_fdi_pll_enable(struct intel_crtc * intel_crtc)3792 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3793 {
3794 struct drm_device *dev = intel_crtc->base.dev;
3795 struct drm_i915_private *dev_priv = dev->dev_private;
3796 int pipe = intel_crtc->pipe;
3797 u32 reg, temp;
3798
3799
3800 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3801 reg = FDI_RX_CTL(pipe);
3802 temp = I915_READ(reg);
3803 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3804 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3805 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3806 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3807
3808 POSTING_READ(reg);
3809 udelay(200);
3810
3811 /* Switch from Rawclk to PCDclk */
3812 temp = I915_READ(reg);
3813 I915_WRITE(reg, temp | FDI_PCDCLK);
3814
3815 POSTING_READ(reg);
3816 udelay(200);
3817
3818 /* Enable CPU FDI TX PLL, always on for Ironlake */
3819 reg = FDI_TX_CTL(pipe);
3820 temp = I915_READ(reg);
3821 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3822 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3823
3824 POSTING_READ(reg);
3825 udelay(100);
3826 }
3827 }
3828
ironlake_fdi_pll_disable(struct intel_crtc * intel_crtc)3829 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3830 {
3831 struct drm_device *dev = intel_crtc->base.dev;
3832 struct drm_i915_private *dev_priv = dev->dev_private;
3833 int pipe = intel_crtc->pipe;
3834 u32 reg, temp;
3835
3836 /* Switch from PCDclk to Rawclk */
3837 reg = FDI_RX_CTL(pipe);
3838 temp = I915_READ(reg);
3839 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3840
3841 /* Disable CPU FDI TX PLL */
3842 reg = FDI_TX_CTL(pipe);
3843 temp = I915_READ(reg);
3844 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3845
3846 POSTING_READ(reg);
3847 udelay(100);
3848
3849 reg = FDI_RX_CTL(pipe);
3850 temp = I915_READ(reg);
3851 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3852
3853 /* Wait for the clocks to turn off. */
3854 POSTING_READ(reg);
3855 udelay(100);
3856 }
3857
ironlake_fdi_disable(struct drm_crtc * crtc)3858 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3859 {
3860 struct drm_device *dev = crtc->dev;
3861 struct drm_i915_private *dev_priv = dev->dev_private;
3862 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3863 int pipe = intel_crtc->pipe;
3864 u32 reg, temp;
3865
3866 /* disable CPU FDI tx and PCH FDI rx */
3867 reg = FDI_TX_CTL(pipe);
3868 temp = I915_READ(reg);
3869 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3870 POSTING_READ(reg);
3871
3872 reg = FDI_RX_CTL(pipe);
3873 temp = I915_READ(reg);
3874 temp &= ~(0x7 << 16);
3875 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3876 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3877
3878 POSTING_READ(reg);
3879 udelay(100);
3880
3881 /* Ironlake workaround, disable clock pointer after downing FDI */
3882 if (HAS_PCH_IBX(dev))
3883 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3884
3885 /* still set train pattern 1 */
3886 reg = FDI_TX_CTL(pipe);
3887 temp = I915_READ(reg);
3888 temp &= ~FDI_LINK_TRAIN_NONE;
3889 temp |= FDI_LINK_TRAIN_PATTERN_1;
3890 I915_WRITE(reg, temp);
3891
3892 reg = FDI_RX_CTL(pipe);
3893 temp = I915_READ(reg);
3894 if (HAS_PCH_CPT(dev)) {
3895 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3896 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3897 } else {
3898 temp &= ~FDI_LINK_TRAIN_NONE;
3899 temp |= FDI_LINK_TRAIN_PATTERN_1;
3900 }
3901 /* BPC in FDI rx is consistent with that in PIPECONF */
3902 temp &= ~(0x07 << 16);
3903 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3904 I915_WRITE(reg, temp);
3905
3906 POSTING_READ(reg);
3907 udelay(100);
3908 }
3909
intel_has_pending_fb_unpin(struct drm_device * dev)3910 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3911 {
3912 struct intel_crtc *crtc;
3913
3914 /* Note that we don't need to be called with mode_config.lock here
3915 * as our list of CRTC objects is static for the lifetime of the
3916 * device and so cannot disappear as we iterate. Similarly, we can
3917 * happily treat the predicates as racy, atomic checks as userspace
3918 * cannot claim and pin a new fb without at least acquring the
3919 * struct_mutex and so serialising with us.
3920 */
3921 for_each_intel_crtc(dev, crtc) {
3922 if (atomic_read(&crtc->unpin_work_count) == 0)
3923 continue;
3924
3925 if (crtc->unpin_work)
3926 intel_wait_for_vblank(dev, crtc->pipe);
3927
3928 return true;
3929 }
3930
3931 return false;
3932 }
3933
page_flip_completed(struct intel_crtc * intel_crtc)3934 static void page_flip_completed(struct intel_crtc *intel_crtc)
3935 {
3936 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3937 struct intel_unpin_work *work = intel_crtc->unpin_work;
3938
3939 /* ensure that the unpin work is consistent wrt ->pending. */
3940 smp_rmb();
3941 intel_crtc->unpin_work = NULL;
3942
3943 if (work->event)
3944 drm_send_vblank_event(intel_crtc->base.dev,
3945 intel_crtc->pipe,
3946 work->event);
3947
3948 drm_crtc_vblank_put(&intel_crtc->base);
3949
3950 wake_up_all(&dev_priv->pending_flip_queue);
3951 trace_i915_flip_complete(intel_crtc->plane,
3952 work->pending_flip_obj);
3953
3954 queue_work(dev_priv->wq, &work->work);
3955 }
3956
intel_crtc_wait_for_pending_flips(struct drm_crtc * crtc)3957 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3958 {
3959 struct drm_device *dev = crtc->dev;
3960 struct drm_i915_private *dev_priv = dev->dev_private;
3961
3962 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3963 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3964 !intel_crtc_has_pending_flip(crtc),
3965 60*HZ) == 0)) {
3966 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3967
3968 spin_lock_irq(&dev->event_lock);
3969 if (intel_crtc->unpin_work) {
3970 WARN_ONCE(1, "Removing stuck page flip\n");
3971 page_flip_completed(intel_crtc);
3972 }
3973 spin_unlock_irq(&dev->event_lock);
3974 }
3975
3976 if (crtc->primary->fb) {
3977 mutex_lock(&dev->struct_mutex);
3978 intel_finish_fb(crtc->primary->fb);
3979 mutex_unlock(&dev->struct_mutex);
3980 }
3981 }
3982
3983 /* Program iCLKIP clock to the desired frequency */
lpt_program_iclkip(struct drm_crtc * crtc)3984 static void lpt_program_iclkip(struct drm_crtc *crtc)
3985 {
3986 struct drm_device *dev = crtc->dev;
3987 struct drm_i915_private *dev_priv = dev->dev_private;
3988 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3989 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3990 u32 temp;
3991
3992 mutex_lock(&dev_priv->sb_lock);
3993
3994 /* It is necessary to ungate the pixclk gate prior to programming
3995 * the divisors, and gate it back when it is done.
3996 */
3997 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3998
3999 /* Disable SSCCTL */
4000 intel_sbi_write(dev_priv, SBI_SSCCTL6,
4001 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
4002 SBI_SSCCTL_DISABLE,
4003 SBI_ICLK);
4004
4005 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
4006 if (clock == 20000) {
4007 auxdiv = 1;
4008 divsel = 0x41;
4009 phaseinc = 0x20;
4010 } else {
4011 /* The iCLK virtual clock root frequency is in MHz,
4012 * but the adjusted_mode->crtc_clock in in KHz. To get the
4013 * divisors, it is necessary to divide one by another, so we
4014 * convert the virtual clock precision to KHz here for higher
4015 * precision.
4016 */
4017 u32 iclk_virtual_root_freq = 172800 * 1000;
4018 u32 iclk_pi_range = 64;
4019 u32 desired_divisor, msb_divisor_value, pi_value;
4020
4021 desired_divisor = (iclk_virtual_root_freq / clock);
4022 msb_divisor_value = desired_divisor / iclk_pi_range;
4023 pi_value = desired_divisor % iclk_pi_range;
4024
4025 auxdiv = 0;
4026 divsel = msb_divisor_value - 2;
4027 phaseinc = pi_value;
4028 }
4029
4030 /* This should not happen with any sane values */
4031 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4032 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4033 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4034 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4035
4036 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4037 clock,
4038 auxdiv,
4039 divsel,
4040 phasedir,
4041 phaseinc);
4042
4043 /* Program SSCDIVINTPHASE6 */
4044 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4045 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4046 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4047 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4048 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4049 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4050 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4051 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4052
4053 /* Program SSCAUXDIV */
4054 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4055 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4056 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4057 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4058
4059 /* Enable modulator and associated divider */
4060 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4061 temp &= ~SBI_SSCCTL_DISABLE;
4062 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4063
4064 /* Wait for initialization time */
4065 udelay(24);
4066
4067 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4068
4069 mutex_unlock(&dev_priv->sb_lock);
4070 }
4071
ironlake_pch_transcoder_set_timings(struct intel_crtc * crtc,enum pipe pch_transcoder)4072 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4073 enum pipe pch_transcoder)
4074 {
4075 struct drm_device *dev = crtc->base.dev;
4076 struct drm_i915_private *dev_priv = dev->dev_private;
4077 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4078
4079 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4080 I915_READ(HTOTAL(cpu_transcoder)));
4081 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4082 I915_READ(HBLANK(cpu_transcoder)));
4083 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4084 I915_READ(HSYNC(cpu_transcoder)));
4085
4086 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4087 I915_READ(VTOTAL(cpu_transcoder)));
4088 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4089 I915_READ(VBLANK(cpu_transcoder)));
4090 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4091 I915_READ(VSYNC(cpu_transcoder)));
4092 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4093 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4094 }
4095
cpt_set_fdi_bc_bifurcation(struct drm_device * dev,bool enable)4096 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4097 {
4098 struct drm_i915_private *dev_priv = dev->dev_private;
4099 uint32_t temp;
4100
4101 temp = I915_READ(SOUTH_CHICKEN1);
4102 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4103 return;
4104
4105 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4106 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4107
4108 temp &= ~FDI_BC_BIFURCATION_SELECT;
4109 if (enable)
4110 temp |= FDI_BC_BIFURCATION_SELECT;
4111
4112 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4113 I915_WRITE(SOUTH_CHICKEN1, temp);
4114 POSTING_READ(SOUTH_CHICKEN1);
4115 }
4116
ivybridge_update_fdi_bc_bifurcation(struct intel_crtc * intel_crtc)4117 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4118 {
4119 struct drm_device *dev = intel_crtc->base.dev;
4120
4121 switch (intel_crtc->pipe) {
4122 case PIPE_A:
4123 break;
4124 case PIPE_B:
4125 if (intel_crtc->config->fdi_lanes > 2)
4126 cpt_set_fdi_bc_bifurcation(dev, false);
4127 else
4128 cpt_set_fdi_bc_bifurcation(dev, true);
4129
4130 break;
4131 case PIPE_C:
4132 cpt_set_fdi_bc_bifurcation(dev, true);
4133
4134 break;
4135 default:
4136 BUG();
4137 }
4138 }
4139
4140 /*
4141 * Enable PCH resources required for PCH ports:
4142 * - PCH PLLs
4143 * - FDI training & RX/TX
4144 * - update transcoder timings
4145 * - DP transcoding bits
4146 * - transcoder
4147 */
ironlake_pch_enable(struct drm_crtc * crtc)4148 static void ironlake_pch_enable(struct drm_crtc *crtc)
4149 {
4150 struct drm_device *dev = crtc->dev;
4151 struct drm_i915_private *dev_priv = dev->dev_private;
4152 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4153 int pipe = intel_crtc->pipe;
4154 u32 reg, temp;
4155
4156 assert_pch_transcoder_disabled(dev_priv, pipe);
4157
4158 if (IS_IVYBRIDGE(dev))
4159 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4160
4161 /* Write the TU size bits before fdi link training, so that error
4162 * detection works. */
4163 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4164 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4165
4166 /* For PCH output, training FDI link */
4167 dev_priv->display.fdi_link_train(crtc);
4168
4169 /* We need to program the right clock selection before writing the pixel
4170 * mutliplier into the DPLL. */
4171 if (HAS_PCH_CPT(dev)) {
4172 u32 sel;
4173
4174 temp = I915_READ(PCH_DPLL_SEL);
4175 temp |= TRANS_DPLL_ENABLE(pipe);
4176 sel = TRANS_DPLLB_SEL(pipe);
4177 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4178 temp |= sel;
4179 else
4180 temp &= ~sel;
4181 I915_WRITE(PCH_DPLL_SEL, temp);
4182 }
4183
4184 /* XXX: pch pll's can be enabled any time before we enable the PCH
4185 * transcoder, and we actually should do this to not upset any PCH
4186 * transcoder that already use the clock when we share it.
4187 *
4188 * Note that enable_shared_dpll tries to do the right thing, but
4189 * get_shared_dpll unconditionally resets the pll - we need that to have
4190 * the right LVDS enable sequence. */
4191 intel_enable_shared_dpll(intel_crtc);
4192
4193 /* set transcoder timing, panel must allow it */
4194 assert_panel_unlocked(dev_priv, pipe);
4195 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4196
4197 intel_fdi_normal_train(crtc);
4198
4199 /* For PCH DP, enable TRANS_DP_CTL */
4200 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4201 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4202 reg = TRANS_DP_CTL(pipe);
4203 temp = I915_READ(reg);
4204 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4205 TRANS_DP_SYNC_MASK |
4206 TRANS_DP_BPC_MASK);
4207 temp |= TRANS_DP_OUTPUT_ENABLE;
4208 temp |= bpc << 9; /* same format but at 11:9 */
4209
4210 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4211 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4212 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4213 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4214
4215 switch (intel_trans_dp_port_sel(crtc)) {
4216 case PCH_DP_B:
4217 temp |= TRANS_DP_PORT_SEL_B;
4218 break;
4219 case PCH_DP_C:
4220 temp |= TRANS_DP_PORT_SEL_C;
4221 break;
4222 case PCH_DP_D:
4223 temp |= TRANS_DP_PORT_SEL_D;
4224 break;
4225 default:
4226 BUG();
4227 }
4228
4229 I915_WRITE(reg, temp);
4230 }
4231
4232 ironlake_enable_pch_transcoder(dev_priv, pipe);
4233 }
4234
lpt_pch_enable(struct drm_crtc * crtc)4235 static void lpt_pch_enable(struct drm_crtc *crtc)
4236 {
4237 struct drm_device *dev = crtc->dev;
4238 struct drm_i915_private *dev_priv = dev->dev_private;
4239 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4240 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4241
4242 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4243
4244 lpt_program_iclkip(crtc);
4245
4246 /* Set transcoder timing. */
4247 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4248
4249 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4250 }
4251
intel_get_shared_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)4252 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4253 struct intel_crtc_state *crtc_state)
4254 {
4255 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4256 struct intel_shared_dpll *pll;
4257 struct intel_shared_dpll_config *shared_dpll;
4258 enum intel_dpll_id i;
4259 int max = dev_priv->num_shared_dpll;
4260
4261 shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4262
4263 if (HAS_PCH_IBX(dev_priv->dev)) {
4264 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4265 i = (enum intel_dpll_id) crtc->pipe;
4266 pll = &dev_priv->shared_dplls[i];
4267
4268 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4269 crtc->base.base.id, pll->name);
4270
4271 WARN_ON(shared_dpll[i].crtc_mask);
4272
4273 goto found;
4274 }
4275
4276 if (IS_BROXTON(dev_priv->dev)) {
4277 /* PLL is attached to port in bxt */
4278 struct intel_encoder *encoder;
4279 struct intel_digital_port *intel_dig_port;
4280
4281 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4282 if (WARN_ON(!encoder))
4283 return NULL;
4284
4285 intel_dig_port = enc_to_dig_port(&encoder->base);
4286 /* 1:1 mapping between ports and PLLs */
4287 i = (enum intel_dpll_id)intel_dig_port->port;
4288 pll = &dev_priv->shared_dplls[i];
4289 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4290 crtc->base.base.id, pll->name);
4291 WARN_ON(shared_dpll[i].crtc_mask);
4292
4293 goto found;
4294 } else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
4295 /* Do not consider SPLL */
4296 max = 2;
4297
4298 for (i = 0; i < max; i++) {
4299 pll = &dev_priv->shared_dplls[i];
4300
4301 /* Only want to check enabled timings first */
4302 if (shared_dpll[i].crtc_mask == 0)
4303 continue;
4304
4305 if (memcmp(&crtc_state->dpll_hw_state,
4306 &shared_dpll[i].hw_state,
4307 sizeof(crtc_state->dpll_hw_state)) == 0) {
4308 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4309 crtc->base.base.id, pll->name,
4310 shared_dpll[i].crtc_mask,
4311 pll->active);
4312 goto found;
4313 }
4314 }
4315
4316 /* Ok no matching timings, maybe there's a free one? */
4317 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4318 pll = &dev_priv->shared_dplls[i];
4319 if (shared_dpll[i].crtc_mask == 0) {
4320 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4321 crtc->base.base.id, pll->name);
4322 goto found;
4323 }
4324 }
4325
4326 return NULL;
4327
4328 found:
4329 if (shared_dpll[i].crtc_mask == 0)
4330 shared_dpll[i].hw_state =
4331 crtc_state->dpll_hw_state;
4332
4333 crtc_state->shared_dpll = i;
4334 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4335 pipe_name(crtc->pipe));
4336
4337 shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4338
4339 return pll;
4340 }
4341
intel_shared_dpll_commit(struct drm_atomic_state * state)4342 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4343 {
4344 struct drm_i915_private *dev_priv = to_i915(state->dev);
4345 struct intel_shared_dpll_config *shared_dpll;
4346 struct intel_shared_dpll *pll;
4347 enum intel_dpll_id i;
4348
4349 if (!to_intel_atomic_state(state)->dpll_set)
4350 return;
4351
4352 shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4353 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4354 pll = &dev_priv->shared_dplls[i];
4355 pll->config = shared_dpll[i];
4356 }
4357 }
4358
cpt_verify_modeset(struct drm_device * dev,int pipe)4359 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4360 {
4361 struct drm_i915_private *dev_priv = dev->dev_private;
4362 int dslreg = PIPEDSL(pipe);
4363 u32 temp;
4364
4365 temp = I915_READ(dslreg);
4366 udelay(500);
4367 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4368 if (wait_for(I915_READ(dslreg) != temp, 5))
4369 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4370 }
4371 }
4372
4373 static int
skl_update_scaler(struct intel_crtc_state * crtc_state,bool force_detach,unsigned scaler_user,int * scaler_id,unsigned int rotation,int src_w,int src_h,int dst_w,int dst_h)4374 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4375 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4376 int src_w, int src_h, int dst_w, int dst_h)
4377 {
4378 struct intel_crtc_scaler_state *scaler_state =
4379 &crtc_state->scaler_state;
4380 struct intel_crtc *intel_crtc =
4381 to_intel_crtc(crtc_state->base.crtc);
4382 int need_scaling;
4383
4384 need_scaling = intel_rotation_90_or_270(rotation) ?
4385 (src_h != dst_w || src_w != dst_h):
4386 (src_w != dst_w || src_h != dst_h);
4387
4388 /*
4389 * if plane is being disabled or scaler is no more required or force detach
4390 * - free scaler binded to this plane/crtc
4391 * - in order to do this, update crtc->scaler_usage
4392 *
4393 * Here scaler state in crtc_state is set free so that
4394 * scaler can be assigned to other user. Actual register
4395 * update to free the scaler is done in plane/panel-fit programming.
4396 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4397 */
4398 if (force_detach || !need_scaling) {
4399 if (*scaler_id >= 0) {
4400 scaler_state->scaler_users &= ~(1 << scaler_user);
4401 scaler_state->scalers[*scaler_id].in_use = 0;
4402
4403 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4404 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4405 intel_crtc->pipe, scaler_user, *scaler_id,
4406 scaler_state->scaler_users);
4407 *scaler_id = -1;
4408 }
4409 return 0;
4410 }
4411
4412 /* range checks */
4413 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4414 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4415
4416 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4417 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4418 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4419 "size is out of scaler range\n",
4420 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4421 return -EINVAL;
4422 }
4423
4424 /* mark this plane as a scaler user in crtc_state */
4425 scaler_state->scaler_users |= (1 << scaler_user);
4426 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4427 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4428 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4429 scaler_state->scaler_users);
4430
4431 return 0;
4432 }
4433
4434 /**
4435 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4436 *
4437 * @state: crtc's scaler state
4438 *
4439 * Return
4440 * 0 - scaler_usage updated successfully
4441 * error - requested scaling cannot be supported or other error condition
4442 */
skl_update_scaler_crtc(struct intel_crtc_state * state)4443 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4444 {
4445 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4446 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4447
4448 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4449 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4450
4451 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4452 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4453 state->pipe_src_w, state->pipe_src_h,
4454 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4455 }
4456
4457 /**
4458 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4459 *
4460 * @state: crtc's scaler state
4461 * @plane_state: atomic plane state to update
4462 *
4463 * Return
4464 * 0 - scaler_usage updated successfully
4465 * error - requested scaling cannot be supported or other error condition
4466 */
skl_update_scaler_plane(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)4467 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4468 struct intel_plane_state *plane_state)
4469 {
4470
4471 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4472 struct intel_plane *intel_plane =
4473 to_intel_plane(plane_state->base.plane);
4474 struct drm_framebuffer *fb = plane_state->base.fb;
4475 int ret;
4476
4477 bool force_detach = !fb || !plane_state->visible;
4478
4479 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4480 intel_plane->base.base.id, intel_crtc->pipe,
4481 drm_plane_index(&intel_plane->base));
4482
4483 ret = skl_update_scaler(crtc_state, force_detach,
4484 drm_plane_index(&intel_plane->base),
4485 &plane_state->scaler_id,
4486 plane_state->base.rotation,
4487 drm_rect_width(&plane_state->src) >> 16,
4488 drm_rect_height(&plane_state->src) >> 16,
4489 drm_rect_width(&plane_state->dst),
4490 drm_rect_height(&plane_state->dst));
4491
4492 if (ret || plane_state->scaler_id < 0)
4493 return ret;
4494
4495 /* check colorkey */
4496 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4497 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4498 intel_plane->base.base.id);
4499 return -EINVAL;
4500 }
4501
4502 /* Check src format */
4503 switch (fb->pixel_format) {
4504 case DRM_FORMAT_RGB565:
4505 case DRM_FORMAT_XBGR8888:
4506 case DRM_FORMAT_XRGB8888:
4507 case DRM_FORMAT_ABGR8888:
4508 case DRM_FORMAT_ARGB8888:
4509 case DRM_FORMAT_XRGB2101010:
4510 case DRM_FORMAT_XBGR2101010:
4511 case DRM_FORMAT_YUYV:
4512 case DRM_FORMAT_YVYU:
4513 case DRM_FORMAT_UYVY:
4514 case DRM_FORMAT_VYUY:
4515 break;
4516 default:
4517 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4518 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4519 return -EINVAL;
4520 }
4521
4522 return 0;
4523 }
4524
skylake_scaler_disable(struct intel_crtc * crtc)4525 static void skylake_scaler_disable(struct intel_crtc *crtc)
4526 {
4527 int i;
4528
4529 for (i = 0; i < crtc->num_scalers; i++)
4530 skl_detach_scaler(crtc, i);
4531 }
4532
skylake_pfit_enable(struct intel_crtc * crtc)4533 static void skylake_pfit_enable(struct intel_crtc *crtc)
4534 {
4535 struct drm_device *dev = crtc->base.dev;
4536 struct drm_i915_private *dev_priv = dev->dev_private;
4537 int pipe = crtc->pipe;
4538 struct intel_crtc_scaler_state *scaler_state =
4539 &crtc->config->scaler_state;
4540
4541 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4542
4543 if (crtc->config->pch_pfit.enabled) {
4544 int id;
4545
4546 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4547 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4548 return;
4549 }
4550
4551 id = scaler_state->scaler_id;
4552 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4553 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4554 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4555 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4556
4557 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4558 }
4559 }
4560
ironlake_pfit_enable(struct intel_crtc * crtc)4561 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4562 {
4563 struct drm_device *dev = crtc->base.dev;
4564 struct drm_i915_private *dev_priv = dev->dev_private;
4565 int pipe = crtc->pipe;
4566
4567 if (crtc->config->pch_pfit.enabled) {
4568 /* Force use of hard-coded filter coefficients
4569 * as some pre-programmed values are broken,
4570 * e.g. x201.
4571 */
4572 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4573 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4574 PF_PIPE_SEL_IVB(pipe));
4575 else
4576 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4577 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4578 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4579 }
4580 }
4581
hsw_enable_ips(struct intel_crtc * crtc)4582 void hsw_enable_ips(struct intel_crtc *crtc)
4583 {
4584 struct drm_device *dev = crtc->base.dev;
4585 struct drm_i915_private *dev_priv = dev->dev_private;
4586
4587 if (!crtc->config->ips_enabled)
4588 return;
4589
4590 /* We can only enable IPS after we enable a plane and wait for a vblank */
4591 intel_wait_for_vblank(dev, crtc->pipe);
4592
4593 assert_plane_enabled(dev_priv, crtc->plane);
4594 if (IS_BROADWELL(dev)) {
4595 mutex_lock(&dev_priv->rps.hw_lock);
4596 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4597 mutex_unlock(&dev_priv->rps.hw_lock);
4598 /* Quoting Art Runyan: "its not safe to expect any particular
4599 * value in IPS_CTL bit 31 after enabling IPS through the
4600 * mailbox." Moreover, the mailbox may return a bogus state,
4601 * so we need to just enable it and continue on.
4602 */
4603 } else {
4604 I915_WRITE(IPS_CTL, IPS_ENABLE);
4605 /* The bit only becomes 1 in the next vblank, so this wait here
4606 * is essentially intel_wait_for_vblank. If we don't have this
4607 * and don't wait for vblanks until the end of crtc_enable, then
4608 * the HW state readout code will complain that the expected
4609 * IPS_CTL value is not the one we read. */
4610 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4611 DRM_ERROR("Timed out waiting for IPS enable\n");
4612 }
4613 }
4614
hsw_disable_ips(struct intel_crtc * crtc)4615 void hsw_disable_ips(struct intel_crtc *crtc)
4616 {
4617 struct drm_device *dev = crtc->base.dev;
4618 struct drm_i915_private *dev_priv = dev->dev_private;
4619
4620 if (!crtc->config->ips_enabled)
4621 return;
4622
4623 assert_plane_enabled(dev_priv, crtc->plane);
4624 if (IS_BROADWELL(dev)) {
4625 mutex_lock(&dev_priv->rps.hw_lock);
4626 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4627 mutex_unlock(&dev_priv->rps.hw_lock);
4628 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4629 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4630 DRM_ERROR("Timed out waiting for IPS disable\n");
4631 } else {
4632 I915_WRITE(IPS_CTL, 0);
4633 POSTING_READ(IPS_CTL);
4634 }
4635
4636 /* We need to wait for a vblank before we can disable the plane. */
4637 intel_wait_for_vblank(dev, crtc->pipe);
4638 }
4639
4640 /** Loads the palette/gamma unit for the CRTC with the prepared values */
intel_crtc_load_lut(struct drm_crtc * crtc)4641 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4642 {
4643 struct drm_device *dev = crtc->dev;
4644 struct drm_i915_private *dev_priv = dev->dev_private;
4645 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4646 enum pipe pipe = intel_crtc->pipe;
4647 int i;
4648 bool reenable_ips = false;
4649
4650 /* The clocks have to be on to load the palette. */
4651 if (!crtc->state->active)
4652 return;
4653
4654 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4655 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4656 assert_dsi_pll_enabled(dev_priv);
4657 else
4658 assert_pll_enabled(dev_priv, pipe);
4659 }
4660
4661 /* Workaround : Do not read or write the pipe palette/gamma data while
4662 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4663 */
4664 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4665 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4666 GAMMA_MODE_MODE_SPLIT)) {
4667 hsw_disable_ips(intel_crtc);
4668 reenable_ips = true;
4669 }
4670
4671 for (i = 0; i < 256; i++) {
4672 u32 palreg;
4673
4674 if (HAS_GMCH_DISPLAY(dev))
4675 palreg = PALETTE(pipe, i);
4676 else
4677 palreg = LGC_PALETTE(pipe, i);
4678
4679 I915_WRITE(palreg,
4680 (intel_crtc->lut_r[i] << 16) |
4681 (intel_crtc->lut_g[i] << 8) |
4682 intel_crtc->lut_b[i]);
4683 }
4684
4685 if (reenable_ips)
4686 hsw_enable_ips(intel_crtc);
4687 }
4688
intel_crtc_dpms_overlay_disable(struct intel_crtc * intel_crtc)4689 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4690 {
4691 if (intel_crtc->overlay) {
4692 struct drm_device *dev = intel_crtc->base.dev;
4693 struct drm_i915_private *dev_priv = dev->dev_private;
4694
4695 mutex_lock(&dev->struct_mutex);
4696 dev_priv->mm.interruptible = false;
4697 (void) intel_overlay_switch_off(intel_crtc->overlay);
4698 dev_priv->mm.interruptible = true;
4699 mutex_unlock(&dev->struct_mutex);
4700 }
4701
4702 /* Let userspace switch the overlay on again. In most cases userspace
4703 * has to recompute where to put it anyway.
4704 */
4705 }
4706
4707 /**
4708 * intel_post_enable_primary - Perform operations after enabling primary plane
4709 * @crtc: the CRTC whose primary plane was just enabled
4710 *
4711 * Performs potentially sleeping operations that must be done after the primary
4712 * plane is enabled, such as updating FBC and IPS. Note that this may be
4713 * called due to an explicit primary plane update, or due to an implicit
4714 * re-enable that is caused when a sprite plane is updated to no longer
4715 * completely hide the primary plane.
4716 */
4717 static void
intel_post_enable_primary(struct drm_crtc * crtc)4718 intel_post_enable_primary(struct drm_crtc *crtc)
4719 {
4720 struct drm_device *dev = crtc->dev;
4721 struct drm_i915_private *dev_priv = dev->dev_private;
4722 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4723 int pipe = intel_crtc->pipe;
4724
4725 /*
4726 * BDW signals flip done immediately if the plane
4727 * is disabled, even if the plane enable is already
4728 * armed to occur at the next vblank :(
4729 */
4730 if (IS_BROADWELL(dev))
4731 intel_wait_for_vblank(dev, pipe);
4732
4733 /*
4734 * FIXME IPS should be fine as long as one plane is
4735 * enabled, but in practice it seems to have problems
4736 * when going from primary only to sprite only and vice
4737 * versa.
4738 */
4739 hsw_enable_ips(intel_crtc);
4740
4741 /*
4742 * Gen2 reports pipe underruns whenever all planes are disabled.
4743 * So don't enable underrun reporting before at least some planes
4744 * are enabled.
4745 * FIXME: Need to fix the logic to work when we turn off all planes
4746 * but leave the pipe running.
4747 */
4748 if (IS_GEN2(dev))
4749 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4750
4751 /* Underruns don't raise interrupts, so check manually. */
4752 if (HAS_GMCH_DISPLAY(dev))
4753 i9xx_check_fifo_underruns(dev_priv);
4754 }
4755
4756 /**
4757 * intel_pre_disable_primary - Perform operations before disabling primary plane
4758 * @crtc: the CRTC whose primary plane is to be disabled
4759 *
4760 * Performs potentially sleeping operations that must be done before the
4761 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4762 * be called due to an explicit primary plane update, or due to an implicit
4763 * disable that is caused when a sprite plane completely hides the primary
4764 * plane.
4765 */
4766 static void
intel_pre_disable_primary(struct drm_crtc * crtc)4767 intel_pre_disable_primary(struct drm_crtc *crtc)
4768 {
4769 struct drm_device *dev = crtc->dev;
4770 struct drm_i915_private *dev_priv = dev->dev_private;
4771 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4772 int pipe = intel_crtc->pipe;
4773
4774 /*
4775 * Gen2 reports pipe underruns whenever all planes are disabled.
4776 * So diasble underrun reporting before all the planes get disabled.
4777 * FIXME: Need to fix the logic to work when we turn off all planes
4778 * but leave the pipe running.
4779 */
4780 if (IS_GEN2(dev))
4781 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4782
4783 /*
4784 * Vblank time updates from the shadow to live plane control register
4785 * are blocked if the memory self-refresh mode is active at that
4786 * moment. So to make sure the plane gets truly disabled, disable
4787 * first the self-refresh mode. The self-refresh enable bit in turn
4788 * will be checked/applied by the HW only at the next frame start
4789 * event which is after the vblank start event, so we need to have a
4790 * wait-for-vblank between disabling the plane and the pipe.
4791 */
4792 if (HAS_GMCH_DISPLAY(dev)) {
4793 intel_set_memory_cxsr(dev_priv, false);
4794 dev_priv->wm.vlv.cxsr = false;
4795 intel_wait_for_vblank(dev, pipe);
4796 }
4797
4798 /*
4799 * FIXME IPS should be fine as long as one plane is
4800 * enabled, but in practice it seems to have problems
4801 * when going from primary only to sprite only and vice
4802 * versa.
4803 */
4804 hsw_disable_ips(intel_crtc);
4805 }
4806
intel_post_plane_update(struct intel_crtc * crtc)4807 static void intel_post_plane_update(struct intel_crtc *crtc)
4808 {
4809 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4810 struct drm_device *dev = crtc->base.dev;
4811 struct drm_i915_private *dev_priv = dev->dev_private;
4812 struct drm_plane *plane;
4813
4814 if (atomic->wait_vblank)
4815 intel_wait_for_vblank(dev, crtc->pipe);
4816
4817 intel_frontbuffer_flip(dev, atomic->fb_bits);
4818
4819 if (atomic->disable_cxsr)
4820 crtc->wm.cxsr_allowed = true;
4821
4822 if (crtc->atomic.update_wm_post)
4823 intel_update_watermarks(&crtc->base);
4824
4825 if (atomic->update_fbc)
4826 intel_fbc_update(dev_priv);
4827
4828 if (atomic->post_enable_primary)
4829 intel_post_enable_primary(&crtc->base);
4830
4831 drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4832 intel_update_sprite_watermarks(plane, &crtc->base,
4833 0, 0, 0, false, false);
4834
4835 memset(atomic, 0, sizeof(*atomic));
4836 }
4837
intel_pre_plane_update(struct intel_crtc * crtc)4838 static void intel_pre_plane_update(struct intel_crtc *crtc)
4839 {
4840 struct drm_device *dev = crtc->base.dev;
4841 struct drm_i915_private *dev_priv = dev->dev_private;
4842 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4843 struct drm_plane *p;
4844
4845 /* Track fb's for any planes being disabled */
4846 drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4847 struct intel_plane *plane = to_intel_plane(p);
4848
4849 mutex_lock(&dev->struct_mutex);
4850 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4851 plane->frontbuffer_bit);
4852 mutex_unlock(&dev->struct_mutex);
4853 }
4854
4855 if (atomic->wait_for_flips)
4856 intel_crtc_wait_for_pending_flips(&crtc->base);
4857
4858 if (atomic->disable_fbc)
4859 intel_fbc_disable_crtc(crtc);
4860
4861 if (crtc->atomic.disable_ips)
4862 hsw_disable_ips(crtc);
4863
4864 if (atomic->pre_disable_primary)
4865 intel_pre_disable_primary(&crtc->base);
4866
4867 if (atomic->disable_cxsr) {
4868 crtc->wm.cxsr_allowed = false;
4869 intel_set_memory_cxsr(dev_priv, false);
4870 }
4871 }
4872
intel_crtc_disable_planes(struct drm_crtc * crtc,unsigned plane_mask)4873 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4874 {
4875 struct drm_device *dev = crtc->dev;
4876 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4877 struct drm_plane *p;
4878 int pipe = intel_crtc->pipe;
4879
4880 intel_crtc_dpms_overlay_disable(intel_crtc);
4881
4882 drm_for_each_plane_mask(p, dev, plane_mask)
4883 to_intel_plane(p)->disable_plane(p, crtc);
4884
4885 /*
4886 * FIXME: Once we grow proper nuclear flip support out of this we need
4887 * to compute the mask of flip planes precisely. For the time being
4888 * consider this a flip to a NULL plane.
4889 */
4890 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4891 }
4892
ironlake_crtc_enable(struct drm_crtc * crtc)4893 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4894 {
4895 struct drm_device *dev = crtc->dev;
4896 struct drm_i915_private *dev_priv = dev->dev_private;
4897 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4898 struct intel_encoder *encoder;
4899 int pipe = intel_crtc->pipe;
4900
4901 if (WARN_ON(intel_crtc->active))
4902 return;
4903
4904 if (intel_crtc->config->has_pch_encoder)
4905 intel_prepare_shared_dpll(intel_crtc);
4906
4907 if (intel_crtc->config->has_dp_encoder)
4908 intel_dp_set_m_n(intel_crtc, M1_N1);
4909
4910 intel_set_pipe_timings(intel_crtc);
4911
4912 if (intel_crtc->config->has_pch_encoder) {
4913 intel_cpu_transcoder_set_m_n(intel_crtc,
4914 &intel_crtc->config->fdi_m_n, NULL);
4915 }
4916
4917 ironlake_set_pipeconf(crtc);
4918
4919 intel_crtc->active = true;
4920
4921 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4922 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4923
4924 for_each_encoder_on_crtc(dev, crtc, encoder)
4925 if (encoder->pre_enable)
4926 encoder->pre_enable(encoder);
4927
4928 if (intel_crtc->config->has_pch_encoder) {
4929 /* Note: FDI PLL enabling _must_ be done before we enable the
4930 * cpu pipes, hence this is separate from all the other fdi/pch
4931 * enabling. */
4932 ironlake_fdi_pll_enable(intel_crtc);
4933 } else {
4934 assert_fdi_tx_disabled(dev_priv, pipe);
4935 assert_fdi_rx_disabled(dev_priv, pipe);
4936 }
4937
4938 ironlake_pfit_enable(intel_crtc);
4939
4940 /*
4941 * On ILK+ LUT must be loaded before the pipe is running but with
4942 * clocks enabled
4943 */
4944 intel_crtc_load_lut(crtc);
4945
4946 intel_update_watermarks(crtc);
4947 intel_enable_pipe(intel_crtc);
4948
4949 if (intel_crtc->config->has_pch_encoder)
4950 ironlake_pch_enable(crtc);
4951
4952 assert_vblank_disabled(crtc);
4953 drm_crtc_vblank_on(crtc);
4954
4955 for_each_encoder_on_crtc(dev, crtc, encoder)
4956 encoder->enable(encoder);
4957
4958 if (HAS_PCH_CPT(dev))
4959 cpt_verify_modeset(dev, intel_crtc->pipe);
4960 }
4961
4962 /* IPS only exists on ULT machines and is tied to pipe A. */
hsw_crtc_supports_ips(struct intel_crtc * crtc)4963 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4964 {
4965 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4966 }
4967
haswell_crtc_enable(struct drm_crtc * crtc)4968 static void haswell_crtc_enable(struct drm_crtc *crtc)
4969 {
4970 struct drm_device *dev = crtc->dev;
4971 struct drm_i915_private *dev_priv = dev->dev_private;
4972 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4973 struct intel_encoder *encoder;
4974 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4975 struct intel_crtc_state *pipe_config =
4976 to_intel_crtc_state(crtc->state);
4977 bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
4978
4979 if (WARN_ON(intel_crtc->active))
4980 return;
4981
4982 if (intel_crtc_to_shared_dpll(intel_crtc))
4983 intel_enable_shared_dpll(intel_crtc);
4984
4985 if (intel_crtc->config->has_dp_encoder)
4986 intel_dp_set_m_n(intel_crtc, M1_N1);
4987
4988 intel_set_pipe_timings(intel_crtc);
4989
4990 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4991 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4992 intel_crtc->config->pixel_multiplier - 1);
4993 }
4994
4995 if (intel_crtc->config->has_pch_encoder) {
4996 intel_cpu_transcoder_set_m_n(intel_crtc,
4997 &intel_crtc->config->fdi_m_n, NULL);
4998 }
4999
5000 haswell_set_pipeconf(crtc);
5001
5002 intel_set_pipe_csc(crtc);
5003
5004 intel_crtc->active = true;
5005
5006 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5007 for_each_encoder_on_crtc(dev, crtc, encoder) {
5008 if (encoder->pre_pll_enable)
5009 encoder->pre_pll_enable(encoder);
5010 if (encoder->pre_enable)
5011 encoder->pre_enable(encoder);
5012 }
5013
5014 if (intel_crtc->config->has_pch_encoder) {
5015 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5016 true);
5017 dev_priv->display.fdi_link_train(crtc);
5018 }
5019
5020 if (!is_dsi)
5021 intel_ddi_enable_pipe_clock(intel_crtc);
5022
5023 if (INTEL_INFO(dev)->gen >= 9)
5024 skylake_pfit_enable(intel_crtc);
5025 else
5026 ironlake_pfit_enable(intel_crtc);
5027
5028 /*
5029 * On ILK+ LUT must be loaded before the pipe is running but with
5030 * clocks enabled
5031 */
5032 intel_crtc_load_lut(crtc);
5033
5034 intel_ddi_set_pipe_settings(crtc);
5035 if (!is_dsi)
5036 intel_ddi_enable_transcoder_func(crtc);
5037
5038 intel_update_watermarks(crtc);
5039 intel_enable_pipe(intel_crtc);
5040
5041 if (intel_crtc->config->has_pch_encoder)
5042 lpt_pch_enable(crtc);
5043
5044 if (intel_crtc->config->dp_encoder_is_mst && !is_dsi)
5045 intel_ddi_set_vc_payload_alloc(crtc, true);
5046
5047 assert_vblank_disabled(crtc);
5048 drm_crtc_vblank_on(crtc);
5049
5050 for_each_encoder_on_crtc(dev, crtc, encoder) {
5051 encoder->enable(encoder);
5052 intel_opregion_notify_encoder(encoder, true);
5053 }
5054
5055 /* If we change the relative order between pipe/planes enabling, we need
5056 * to change the workaround. */
5057 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5058 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5059 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5060 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5061 }
5062 }
5063
ironlake_pfit_disable(struct intel_crtc * crtc,bool force)5064 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5065 {
5066 struct drm_device *dev = crtc->base.dev;
5067 struct drm_i915_private *dev_priv = dev->dev_private;
5068 int pipe = crtc->pipe;
5069
5070 /* To avoid upsetting the power well on haswell only disable the pfit if
5071 * it's in use. The hw state code will make sure we get this right. */
5072 if (force || crtc->config->pch_pfit.enabled) {
5073 I915_WRITE(PF_CTL(pipe), 0);
5074 I915_WRITE(PF_WIN_POS(pipe), 0);
5075 I915_WRITE(PF_WIN_SZ(pipe), 0);
5076 }
5077 }
5078
ironlake_crtc_disable(struct drm_crtc * crtc)5079 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5080 {
5081 struct drm_device *dev = crtc->dev;
5082 struct drm_i915_private *dev_priv = dev->dev_private;
5083 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5084 struct intel_encoder *encoder;
5085 int pipe = intel_crtc->pipe;
5086 u32 reg, temp;
5087
5088 for_each_encoder_on_crtc(dev, crtc, encoder)
5089 encoder->disable(encoder);
5090
5091 drm_crtc_vblank_off(crtc);
5092 assert_vblank_disabled(crtc);
5093
5094 if (intel_crtc->config->has_pch_encoder)
5095 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5096
5097 intel_disable_pipe(intel_crtc);
5098
5099 ironlake_pfit_disable(intel_crtc, false);
5100
5101 if (intel_crtc->config->has_pch_encoder)
5102 ironlake_fdi_disable(crtc);
5103
5104 for_each_encoder_on_crtc(dev, crtc, encoder)
5105 if (encoder->post_disable)
5106 encoder->post_disable(encoder);
5107
5108 if (intel_crtc->config->has_pch_encoder) {
5109 ironlake_disable_pch_transcoder(dev_priv, pipe);
5110
5111 if (HAS_PCH_CPT(dev)) {
5112 /* disable TRANS_DP_CTL */
5113 reg = TRANS_DP_CTL(pipe);
5114 temp = I915_READ(reg);
5115 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5116 TRANS_DP_PORT_SEL_MASK);
5117 temp |= TRANS_DP_PORT_SEL_NONE;
5118 I915_WRITE(reg, temp);
5119
5120 /* disable DPLL_SEL */
5121 temp = I915_READ(PCH_DPLL_SEL);
5122 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5123 I915_WRITE(PCH_DPLL_SEL, temp);
5124 }
5125
5126 ironlake_fdi_pll_disable(intel_crtc);
5127 }
5128 }
5129
haswell_crtc_disable(struct drm_crtc * crtc)5130 static void haswell_crtc_disable(struct drm_crtc *crtc)
5131 {
5132 struct drm_device *dev = crtc->dev;
5133 struct drm_i915_private *dev_priv = dev->dev_private;
5134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5135 struct intel_encoder *encoder;
5136 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5137 bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5138
5139 for_each_encoder_on_crtc(dev, crtc, encoder) {
5140 intel_opregion_notify_encoder(encoder, false);
5141 encoder->disable(encoder);
5142 }
5143
5144 drm_crtc_vblank_off(crtc);
5145 assert_vblank_disabled(crtc);
5146
5147 if (intel_crtc->config->has_pch_encoder)
5148 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5149 false);
5150 intel_disable_pipe(intel_crtc);
5151
5152 if (intel_crtc->config->dp_encoder_is_mst)
5153 intel_ddi_set_vc_payload_alloc(crtc, false);
5154
5155 if (!is_dsi)
5156 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5157
5158 if (INTEL_INFO(dev)->gen >= 9)
5159 skylake_scaler_disable(intel_crtc);
5160 else
5161 ironlake_pfit_disable(intel_crtc, false);
5162
5163 if (!is_dsi)
5164 intel_ddi_disable_pipe_clock(intel_crtc);
5165
5166 if (intel_crtc->config->has_pch_encoder) {
5167 lpt_disable_pch_transcoder(dev_priv);
5168 intel_ddi_fdi_disable(crtc);
5169 }
5170
5171 for_each_encoder_on_crtc(dev, crtc, encoder)
5172 if (encoder->post_disable)
5173 encoder->post_disable(encoder);
5174 }
5175
i9xx_pfit_enable(struct intel_crtc * crtc)5176 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5177 {
5178 struct drm_device *dev = crtc->base.dev;
5179 struct drm_i915_private *dev_priv = dev->dev_private;
5180 struct intel_crtc_state *pipe_config = crtc->config;
5181
5182 if (!pipe_config->gmch_pfit.control)
5183 return;
5184
5185 /*
5186 * The panel fitter should only be adjusted whilst the pipe is disabled,
5187 * according to register description and PRM.
5188 */
5189 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5190 assert_pipe_disabled(dev_priv, crtc->pipe);
5191
5192 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5193 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5194
5195 /* Border color in case we don't scale up to the full screen. Black by
5196 * default, change to something else for debugging. */
5197 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5198 }
5199
port_to_power_domain(enum port port)5200 static enum intel_display_power_domain port_to_power_domain(enum port port)
5201 {
5202 switch (port) {
5203 case PORT_A:
5204 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5205 case PORT_B:
5206 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5207 case PORT_C:
5208 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5209 case PORT_D:
5210 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5211 case PORT_E:
5212 return POWER_DOMAIN_PORT_DDI_E_2_LANES;
5213 default:
5214 MISSING_CASE(port);
5215 return POWER_DOMAIN_PORT_OTHER;
5216 }
5217 }
5218
port_to_aux_power_domain(enum port port)5219 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5220 {
5221 switch (port) {
5222 case PORT_A:
5223 return POWER_DOMAIN_AUX_A;
5224 case PORT_B:
5225 return POWER_DOMAIN_AUX_B;
5226 case PORT_C:
5227 return POWER_DOMAIN_AUX_C;
5228 case PORT_D:
5229 return POWER_DOMAIN_AUX_D;
5230 case PORT_E:
5231 /* FIXME: Check VBT for actual wiring of PORT E */
5232 return POWER_DOMAIN_AUX_D;
5233 default:
5234 MISSING_CASE(port);
5235 return POWER_DOMAIN_AUX_A;
5236 }
5237 }
5238
5239 #define for_each_power_domain(domain, mask) \
5240 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5241 if ((1 << (domain)) & (mask))
5242
5243 enum intel_display_power_domain
intel_display_port_power_domain(struct intel_encoder * intel_encoder)5244 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5245 {
5246 struct drm_device *dev = intel_encoder->base.dev;
5247 struct intel_digital_port *intel_dig_port;
5248
5249 switch (intel_encoder->type) {
5250 case INTEL_OUTPUT_UNKNOWN:
5251 /* Only DDI platforms should ever use this output type */
5252 WARN_ON_ONCE(!HAS_DDI(dev));
5253 case INTEL_OUTPUT_DISPLAYPORT:
5254 case INTEL_OUTPUT_HDMI:
5255 case INTEL_OUTPUT_EDP:
5256 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5257 return port_to_power_domain(intel_dig_port->port);
5258 case INTEL_OUTPUT_DP_MST:
5259 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5260 return port_to_power_domain(intel_dig_port->port);
5261 case INTEL_OUTPUT_ANALOG:
5262 return POWER_DOMAIN_PORT_CRT;
5263 case INTEL_OUTPUT_DSI:
5264 return POWER_DOMAIN_PORT_DSI;
5265 default:
5266 return POWER_DOMAIN_PORT_OTHER;
5267 }
5268 }
5269
5270 enum intel_display_power_domain
intel_display_port_aux_power_domain(struct intel_encoder * intel_encoder)5271 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5272 {
5273 struct drm_device *dev = intel_encoder->base.dev;
5274 struct intel_digital_port *intel_dig_port;
5275
5276 switch (intel_encoder->type) {
5277 case INTEL_OUTPUT_UNKNOWN:
5278 case INTEL_OUTPUT_HDMI:
5279 /*
5280 * Only DDI platforms should ever use these output types.
5281 * We can get here after the HDMI detect code has already set
5282 * the type of the shared encoder. Since we can't be sure
5283 * what's the status of the given connectors, play safe and
5284 * run the DP detection too.
5285 */
5286 WARN_ON_ONCE(!HAS_DDI(dev));
5287 case INTEL_OUTPUT_DISPLAYPORT:
5288 case INTEL_OUTPUT_EDP:
5289 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5290 return port_to_aux_power_domain(intel_dig_port->port);
5291 case INTEL_OUTPUT_DP_MST:
5292 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5293 return port_to_aux_power_domain(intel_dig_port->port);
5294 default:
5295 MISSING_CASE(intel_encoder->type);
5296 return POWER_DOMAIN_AUX_A;
5297 }
5298 }
5299
get_crtc_power_domains(struct drm_crtc * crtc)5300 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5301 {
5302 struct drm_device *dev = crtc->dev;
5303 struct intel_encoder *intel_encoder;
5304 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5305 enum pipe pipe = intel_crtc->pipe;
5306 unsigned long mask;
5307 enum transcoder transcoder;
5308
5309 if (!crtc->state->active)
5310 return 0;
5311
5312 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5313
5314 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5315 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5316 if (intel_crtc->config->pch_pfit.enabled ||
5317 intel_crtc->config->pch_pfit.force_thru)
5318 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5319
5320 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5321 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5322
5323 return mask;
5324 }
5325
modeset_get_crtc_power_domains(struct drm_crtc * crtc)5326 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5327 {
5328 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5329 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5330 enum intel_display_power_domain domain;
5331 unsigned long domains, new_domains, old_domains;
5332
5333 old_domains = intel_crtc->enabled_power_domains;
5334 intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5335
5336 domains = new_domains & ~old_domains;
5337
5338 for_each_power_domain(domain, domains)
5339 intel_display_power_get(dev_priv, domain);
5340
5341 return old_domains & ~new_domains;
5342 }
5343
modeset_put_power_domains(struct drm_i915_private * dev_priv,unsigned long domains)5344 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5345 unsigned long domains)
5346 {
5347 enum intel_display_power_domain domain;
5348
5349 for_each_power_domain(domain, domains)
5350 intel_display_power_put(dev_priv, domain);
5351 }
5352
modeset_update_crtc_power_domains(struct drm_atomic_state * state)5353 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5354 {
5355 struct drm_device *dev = state->dev;
5356 struct drm_i915_private *dev_priv = dev->dev_private;
5357 unsigned long put_domains[I915_MAX_PIPES] = {};
5358 struct drm_crtc_state *crtc_state;
5359 struct drm_crtc *crtc;
5360 int i;
5361
5362 for_each_crtc_in_state(state, crtc, crtc_state, i) {
5363 if (needs_modeset(crtc->state))
5364 put_domains[to_intel_crtc(crtc)->pipe] =
5365 modeset_get_crtc_power_domains(crtc);
5366 }
5367
5368 if (dev_priv->display.modeset_commit_cdclk) {
5369 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5370
5371 if (cdclk != dev_priv->cdclk_freq &&
5372 !WARN_ON(!state->allow_modeset))
5373 dev_priv->display.modeset_commit_cdclk(state);
5374 }
5375
5376 for (i = 0; i < I915_MAX_PIPES; i++)
5377 if (put_domains[i])
5378 modeset_put_power_domains(dev_priv, put_domains[i]);
5379 }
5380
intel_compute_max_dotclk(struct drm_i915_private * dev_priv)5381 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5382 {
5383 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5384
5385 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5386 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5387 return max_cdclk_freq;
5388 else if (IS_CHERRYVIEW(dev_priv))
5389 return max_cdclk_freq*95/100;
5390 else if (INTEL_INFO(dev_priv)->gen < 4)
5391 return 2*max_cdclk_freq*90/100;
5392 else
5393 return max_cdclk_freq*90/100;
5394 }
5395
intel_update_max_cdclk(struct drm_device * dev)5396 static void intel_update_max_cdclk(struct drm_device *dev)
5397 {
5398 struct drm_i915_private *dev_priv = dev->dev_private;
5399
5400 if (IS_SKYLAKE(dev)) {
5401 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5402
5403 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5404 dev_priv->max_cdclk_freq = 675000;
5405 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5406 dev_priv->max_cdclk_freq = 540000;
5407 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5408 dev_priv->max_cdclk_freq = 450000;
5409 else
5410 dev_priv->max_cdclk_freq = 337500;
5411 } else if (IS_BROADWELL(dev)) {
5412 /*
5413 * FIXME with extra cooling we can allow
5414 * 540 MHz for ULX and 675 Mhz for ULT.
5415 * How can we know if extra cooling is
5416 * available? PCI ID, VTB, something else?
5417 */
5418 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5419 dev_priv->max_cdclk_freq = 450000;
5420 else if (IS_BDW_ULX(dev))
5421 dev_priv->max_cdclk_freq = 450000;
5422 else if (IS_BDW_ULT(dev))
5423 dev_priv->max_cdclk_freq = 540000;
5424 else
5425 dev_priv->max_cdclk_freq = 675000;
5426 } else if (IS_CHERRYVIEW(dev)) {
5427 dev_priv->max_cdclk_freq = 320000;
5428 } else if (IS_VALLEYVIEW(dev)) {
5429 dev_priv->max_cdclk_freq = 400000;
5430 } else {
5431 /* otherwise assume cdclk is fixed */
5432 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5433 }
5434
5435 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5436
5437 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5438 dev_priv->max_cdclk_freq);
5439
5440 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5441 dev_priv->max_dotclk_freq);
5442 }
5443
intel_update_cdclk(struct drm_device * dev)5444 static void intel_update_cdclk(struct drm_device *dev)
5445 {
5446 struct drm_i915_private *dev_priv = dev->dev_private;
5447
5448 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5449 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5450 dev_priv->cdclk_freq);
5451
5452 /*
5453 * Program the gmbus_freq based on the cdclk frequency.
5454 * BSpec erroneously claims we should aim for 4MHz, but
5455 * in fact 1MHz is the correct frequency.
5456 */
5457 if (IS_VALLEYVIEW(dev)) {
5458 /*
5459 * Program the gmbus_freq based on the cdclk frequency.
5460 * BSpec erroneously claims we should aim for 4MHz, but
5461 * in fact 1MHz is the correct frequency.
5462 */
5463 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5464 }
5465
5466 if (dev_priv->max_cdclk_freq == 0)
5467 intel_update_max_cdclk(dev);
5468 }
5469
broxton_set_cdclk(struct drm_device * dev,int frequency)5470 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5471 {
5472 struct drm_i915_private *dev_priv = dev->dev_private;
5473 uint32_t divider;
5474 uint32_t ratio;
5475 uint32_t current_freq;
5476 int ret;
5477
5478 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5479 switch (frequency) {
5480 case 144000:
5481 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5482 ratio = BXT_DE_PLL_RATIO(60);
5483 break;
5484 case 288000:
5485 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5486 ratio = BXT_DE_PLL_RATIO(60);
5487 break;
5488 case 384000:
5489 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5490 ratio = BXT_DE_PLL_RATIO(60);
5491 break;
5492 case 576000:
5493 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5494 ratio = BXT_DE_PLL_RATIO(60);
5495 break;
5496 case 624000:
5497 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5498 ratio = BXT_DE_PLL_RATIO(65);
5499 break;
5500 case 19200:
5501 /*
5502 * Bypass frequency with DE PLL disabled. Init ratio, divider
5503 * to suppress GCC warning.
5504 */
5505 ratio = 0;
5506 divider = 0;
5507 break;
5508 default:
5509 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5510
5511 return;
5512 }
5513
5514 mutex_lock(&dev_priv->rps.hw_lock);
5515 /* Inform power controller of upcoming frequency change */
5516 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5517 0x80000000);
5518 mutex_unlock(&dev_priv->rps.hw_lock);
5519
5520 if (ret) {
5521 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5522 ret, frequency);
5523 return;
5524 }
5525
5526 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5527 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5528 current_freq = current_freq * 500 + 1000;
5529
5530 /*
5531 * DE PLL has to be disabled when
5532 * - setting to 19.2MHz (bypass, PLL isn't used)
5533 * - before setting to 624MHz (PLL needs toggling)
5534 * - before setting to any frequency from 624MHz (PLL needs toggling)
5535 */
5536 if (frequency == 19200 || frequency == 624000 ||
5537 current_freq == 624000) {
5538 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5539 /* Timeout 200us */
5540 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5541 1))
5542 DRM_ERROR("timout waiting for DE PLL unlock\n");
5543 }
5544
5545 if (frequency != 19200) {
5546 uint32_t val;
5547
5548 val = I915_READ(BXT_DE_PLL_CTL);
5549 val &= ~BXT_DE_PLL_RATIO_MASK;
5550 val |= ratio;
5551 I915_WRITE(BXT_DE_PLL_CTL, val);
5552
5553 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5554 /* Timeout 200us */
5555 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5556 DRM_ERROR("timeout waiting for DE PLL lock\n");
5557
5558 val = I915_READ(CDCLK_CTL);
5559 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5560 val |= divider;
5561 /*
5562 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5563 * enable otherwise.
5564 */
5565 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5566 if (frequency >= 500000)
5567 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5568
5569 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5570 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5571 val |= (frequency - 1000) / 500;
5572 I915_WRITE(CDCLK_CTL, val);
5573 }
5574
5575 mutex_lock(&dev_priv->rps.hw_lock);
5576 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5577 DIV_ROUND_UP(frequency, 25000));
5578 mutex_unlock(&dev_priv->rps.hw_lock);
5579
5580 if (ret) {
5581 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5582 ret, frequency);
5583 return;
5584 }
5585
5586 intel_update_cdclk(dev);
5587 }
5588
broxton_init_cdclk(struct drm_device * dev)5589 void broxton_init_cdclk(struct drm_device *dev)
5590 {
5591 struct drm_i915_private *dev_priv = dev->dev_private;
5592 uint32_t val;
5593
5594 /*
5595 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5596 * or else the reset will hang because there is no PCH to respond.
5597 * Move the handshake programming to initialization sequence.
5598 * Previously was left up to BIOS.
5599 */
5600 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5601 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5602 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5603
5604 /* Enable PG1 for cdclk */
5605 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5606
5607 /* check if cd clock is enabled */
5608 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5609 DRM_DEBUG_KMS("Display already initialized\n");
5610 return;
5611 }
5612
5613 /*
5614 * FIXME:
5615 * - The initial CDCLK needs to be read from VBT.
5616 * Need to make this change after VBT has changes for BXT.
5617 * - check if setting the max (or any) cdclk freq is really necessary
5618 * here, it belongs to modeset time
5619 */
5620 broxton_set_cdclk(dev, 624000);
5621
5622 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5623 POSTING_READ(DBUF_CTL);
5624
5625 udelay(10);
5626
5627 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5628 DRM_ERROR("DBuf power enable timeout!\n");
5629 }
5630
broxton_uninit_cdclk(struct drm_device * dev)5631 void broxton_uninit_cdclk(struct drm_device *dev)
5632 {
5633 struct drm_i915_private *dev_priv = dev->dev_private;
5634
5635 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5636 POSTING_READ(DBUF_CTL);
5637
5638 udelay(10);
5639
5640 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5641 DRM_ERROR("DBuf power disable timeout!\n");
5642
5643 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5644 broxton_set_cdclk(dev, 19200);
5645
5646 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5647 }
5648
5649 static const struct skl_cdclk_entry {
5650 unsigned int freq;
5651 unsigned int vco;
5652 } skl_cdclk_frequencies[] = {
5653 { .freq = 308570, .vco = 8640 },
5654 { .freq = 337500, .vco = 8100 },
5655 { .freq = 432000, .vco = 8640 },
5656 { .freq = 450000, .vco = 8100 },
5657 { .freq = 540000, .vco = 8100 },
5658 { .freq = 617140, .vco = 8640 },
5659 { .freq = 675000, .vco = 8100 },
5660 };
5661
skl_cdclk_decimal(unsigned int freq)5662 static unsigned int skl_cdclk_decimal(unsigned int freq)
5663 {
5664 return (freq - 1000) / 500;
5665 }
5666
skl_cdclk_get_vco(unsigned int freq)5667 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5668 {
5669 unsigned int i;
5670
5671 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5672 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5673
5674 if (e->freq == freq)
5675 return e->vco;
5676 }
5677
5678 return 8100;
5679 }
5680
5681 static void
skl_dpll0_enable(struct drm_i915_private * dev_priv,unsigned int required_vco)5682 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5683 {
5684 unsigned int min_freq;
5685 u32 val;
5686
5687 /* select the minimum CDCLK before enabling DPLL 0 */
5688 val = I915_READ(CDCLK_CTL);
5689 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5690 val |= CDCLK_FREQ_337_308;
5691
5692 if (required_vco == 8640)
5693 min_freq = 308570;
5694 else
5695 min_freq = 337500;
5696
5697 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5698
5699 I915_WRITE(CDCLK_CTL, val);
5700 POSTING_READ(CDCLK_CTL);
5701
5702 /*
5703 * We always enable DPLL0 with the lowest link rate possible, but still
5704 * taking into account the VCO required to operate the eDP panel at the
5705 * desired frequency. The usual DP link rates operate with a VCO of
5706 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5707 * The modeset code is responsible for the selection of the exact link
5708 * rate later on, with the constraint of choosing a frequency that
5709 * works with required_vco.
5710 */
5711 val = I915_READ(DPLL_CTRL1);
5712
5713 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5714 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5715 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5716 if (required_vco == 8640)
5717 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5718 SKL_DPLL0);
5719 else
5720 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5721 SKL_DPLL0);
5722
5723 I915_WRITE(DPLL_CTRL1, val);
5724 POSTING_READ(DPLL_CTRL1);
5725
5726 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5727
5728 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5729 DRM_ERROR("DPLL0 not locked\n");
5730 }
5731
skl_cdclk_pcu_ready(struct drm_i915_private * dev_priv)5732 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5733 {
5734 int ret;
5735 u32 val;
5736
5737 /* inform PCU we want to change CDCLK */
5738 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5739 mutex_lock(&dev_priv->rps.hw_lock);
5740 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5741 mutex_unlock(&dev_priv->rps.hw_lock);
5742
5743 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5744 }
5745
skl_cdclk_wait_for_pcu_ready(struct drm_i915_private * dev_priv)5746 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5747 {
5748 unsigned int i;
5749
5750 for (i = 0; i < 15; i++) {
5751 if (skl_cdclk_pcu_ready(dev_priv))
5752 return true;
5753 udelay(10);
5754 }
5755
5756 return false;
5757 }
5758
skl_set_cdclk(struct drm_i915_private * dev_priv,unsigned int freq)5759 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5760 {
5761 struct drm_device *dev = dev_priv->dev;
5762 u32 freq_select, pcu_ack;
5763
5764 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5765
5766 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5767 DRM_ERROR("failed to inform PCU about cdclk change\n");
5768 return;
5769 }
5770
5771 /* set CDCLK_CTL */
5772 switch(freq) {
5773 case 450000:
5774 case 432000:
5775 freq_select = CDCLK_FREQ_450_432;
5776 pcu_ack = 1;
5777 break;
5778 case 540000:
5779 freq_select = CDCLK_FREQ_540;
5780 pcu_ack = 2;
5781 break;
5782 case 308570:
5783 case 337500:
5784 default:
5785 freq_select = CDCLK_FREQ_337_308;
5786 pcu_ack = 0;
5787 break;
5788 case 617140:
5789 case 675000:
5790 freq_select = CDCLK_FREQ_675_617;
5791 pcu_ack = 3;
5792 break;
5793 }
5794
5795 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5796 POSTING_READ(CDCLK_CTL);
5797
5798 /* inform PCU of the change */
5799 mutex_lock(&dev_priv->rps.hw_lock);
5800 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5801 mutex_unlock(&dev_priv->rps.hw_lock);
5802
5803 intel_update_cdclk(dev);
5804 }
5805
skl_uninit_cdclk(struct drm_i915_private * dev_priv)5806 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5807 {
5808 /* disable DBUF power */
5809 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5810 POSTING_READ(DBUF_CTL);
5811
5812 udelay(10);
5813
5814 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5815 DRM_ERROR("DBuf power disable timeout\n");
5816
5817 /*
5818 * DMC assumes ownership of LCPLL and will get confused if we touch it.
5819 */
5820 if (dev_priv->csr.dmc_payload) {
5821 /* disable DPLL0 */
5822 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) &
5823 ~LCPLL_PLL_ENABLE);
5824 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5825 DRM_ERROR("Couldn't disable DPLL0\n");
5826 }
5827
5828 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5829 }
5830
skl_init_cdclk(struct drm_i915_private * dev_priv)5831 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5832 {
5833 u32 val;
5834 unsigned int required_vco;
5835
5836 /* enable PCH reset handshake */
5837 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5838 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5839
5840 /* enable PG1 and Misc I/O */
5841 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5842
5843 /* DPLL0 not enabled (happens on early BIOS versions) */
5844 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5845 /* enable DPLL0 */
5846 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5847 skl_dpll0_enable(dev_priv, required_vco);
5848 }
5849
5850 /* set CDCLK to the frequency the BIOS chose */
5851 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5852
5853 /* enable DBUF power */
5854 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5855 POSTING_READ(DBUF_CTL);
5856
5857 udelay(10);
5858
5859 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5860 DRM_ERROR("DBuf power enable timeout\n");
5861 }
5862
5863 /* Adjust CDclk dividers to allow high res or save power if possible */
valleyview_set_cdclk(struct drm_device * dev,int cdclk)5864 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5865 {
5866 struct drm_i915_private *dev_priv = dev->dev_private;
5867 u32 val, cmd;
5868
5869 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5870 != dev_priv->cdclk_freq);
5871
5872 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5873 cmd = 2;
5874 else if (cdclk == 266667)
5875 cmd = 1;
5876 else
5877 cmd = 0;
5878
5879 mutex_lock(&dev_priv->rps.hw_lock);
5880 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5881 val &= ~DSPFREQGUAR_MASK;
5882 val |= (cmd << DSPFREQGUAR_SHIFT);
5883 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5884 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5885 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5886 50)) {
5887 DRM_ERROR("timed out waiting for CDclk change\n");
5888 }
5889 mutex_unlock(&dev_priv->rps.hw_lock);
5890
5891 mutex_lock(&dev_priv->sb_lock);
5892
5893 if (cdclk == 400000) {
5894 u32 divider;
5895
5896 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5897
5898 /* adjust cdclk divider */
5899 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5900 val &= ~CCK_FREQUENCY_VALUES;
5901 val |= divider;
5902 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5903
5904 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5905 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5906 50))
5907 DRM_ERROR("timed out waiting for CDclk change\n");
5908 }
5909
5910 /* adjust self-refresh exit latency value */
5911 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5912 val &= ~0x7f;
5913
5914 /*
5915 * For high bandwidth configs, we set a higher latency in the bunit
5916 * so that the core display fetch happens in time to avoid underruns.
5917 */
5918 if (cdclk == 400000)
5919 val |= 4500 / 250; /* 4.5 usec */
5920 else
5921 val |= 3000 / 250; /* 3.0 usec */
5922 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5923
5924 mutex_unlock(&dev_priv->sb_lock);
5925
5926 intel_update_cdclk(dev);
5927 }
5928
cherryview_set_cdclk(struct drm_device * dev,int cdclk)5929 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5930 {
5931 struct drm_i915_private *dev_priv = dev->dev_private;
5932 u32 val, cmd;
5933
5934 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5935 != dev_priv->cdclk_freq);
5936
5937 switch (cdclk) {
5938 case 333333:
5939 case 320000:
5940 case 266667:
5941 case 200000:
5942 break;
5943 default:
5944 MISSING_CASE(cdclk);
5945 return;
5946 }
5947
5948 /*
5949 * Specs are full of misinformation, but testing on actual
5950 * hardware has shown that we just need to write the desired
5951 * CCK divider into the Punit register.
5952 */
5953 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5954
5955 mutex_lock(&dev_priv->rps.hw_lock);
5956 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5957 val &= ~DSPFREQGUAR_MASK_CHV;
5958 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5959 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5960 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5961 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5962 50)) {
5963 DRM_ERROR("timed out waiting for CDclk change\n");
5964 }
5965 mutex_unlock(&dev_priv->rps.hw_lock);
5966
5967 intel_update_cdclk(dev);
5968 }
5969
valleyview_calc_cdclk(struct drm_i915_private * dev_priv,int max_pixclk)5970 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5971 int max_pixclk)
5972 {
5973 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5974 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5975
5976 /*
5977 * Really only a few cases to deal with, as only 4 CDclks are supported:
5978 * 200MHz
5979 * 267MHz
5980 * 320/333MHz (depends on HPLL freq)
5981 * 400MHz (VLV only)
5982 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5983 * of the lower bin and adjust if needed.
5984 *
5985 * We seem to get an unstable or solid color picture at 200MHz.
5986 * Not sure what's wrong. For now use 200MHz only when all pipes
5987 * are off.
5988 */
5989 if (!IS_CHERRYVIEW(dev_priv) &&
5990 max_pixclk > freq_320*limit/100)
5991 return 400000;
5992 else if (max_pixclk > 266667*limit/100)
5993 return freq_320;
5994 else if (max_pixclk > 0)
5995 return 266667;
5996 else
5997 return 200000;
5998 }
5999
broxton_calc_cdclk(struct drm_i915_private * dev_priv,int max_pixclk)6000 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
6001 int max_pixclk)
6002 {
6003 /*
6004 * FIXME:
6005 * - remove the guardband, it's not needed on BXT
6006 * - set 19.2MHz bypass frequency if there are no active pipes
6007 */
6008 if (max_pixclk > 576000*9/10)
6009 return 624000;
6010 else if (max_pixclk > 384000*9/10)
6011 return 576000;
6012 else if (max_pixclk > 288000*9/10)
6013 return 384000;
6014 else if (max_pixclk > 144000*9/10)
6015 return 288000;
6016 else
6017 return 144000;
6018 }
6019
6020 /* Compute the max pixel clock for new configuration. Uses atomic state if
6021 * that's non-NULL, look at current state otherwise. */
intel_mode_max_pixclk(struct drm_device * dev,struct drm_atomic_state * state)6022 static int intel_mode_max_pixclk(struct drm_device *dev,
6023 struct drm_atomic_state *state)
6024 {
6025 struct intel_crtc *intel_crtc;
6026 struct intel_crtc_state *crtc_state;
6027 int max_pixclk = 0;
6028
6029 for_each_intel_crtc(dev, intel_crtc) {
6030 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6031 if (IS_ERR(crtc_state))
6032 return PTR_ERR(crtc_state);
6033
6034 if (!crtc_state->base.enable)
6035 continue;
6036
6037 max_pixclk = max(max_pixclk,
6038 crtc_state->base.adjusted_mode.crtc_clock);
6039 }
6040
6041 return max_pixclk;
6042 }
6043
valleyview_modeset_calc_cdclk(struct drm_atomic_state * state)6044 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6045 {
6046 struct drm_device *dev = state->dev;
6047 struct drm_i915_private *dev_priv = dev->dev_private;
6048 int max_pixclk = intel_mode_max_pixclk(dev, state);
6049
6050 if (max_pixclk < 0)
6051 return max_pixclk;
6052
6053 to_intel_atomic_state(state)->cdclk =
6054 valleyview_calc_cdclk(dev_priv, max_pixclk);
6055
6056 return 0;
6057 }
6058
broxton_modeset_calc_cdclk(struct drm_atomic_state * state)6059 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
6060 {
6061 struct drm_device *dev = state->dev;
6062 struct drm_i915_private *dev_priv = dev->dev_private;
6063 int max_pixclk = intel_mode_max_pixclk(dev, state);
6064
6065 if (max_pixclk < 0)
6066 return max_pixclk;
6067
6068 to_intel_atomic_state(state)->cdclk =
6069 broxton_calc_cdclk(dev_priv, max_pixclk);
6070
6071 return 0;
6072 }
6073
vlv_program_pfi_credits(struct drm_i915_private * dev_priv)6074 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6075 {
6076 unsigned int credits, default_credits;
6077
6078 if (IS_CHERRYVIEW(dev_priv))
6079 default_credits = PFI_CREDIT(12);
6080 else
6081 default_credits = PFI_CREDIT(8);
6082
6083 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6084 /* CHV suggested value is 31 or 63 */
6085 if (IS_CHERRYVIEW(dev_priv))
6086 credits = PFI_CREDIT_63;
6087 else
6088 credits = PFI_CREDIT(15);
6089 } else {
6090 credits = default_credits;
6091 }
6092
6093 /*
6094 * WA - write default credits before re-programming
6095 * FIXME: should we also set the resend bit here?
6096 */
6097 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6098 default_credits);
6099
6100 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6101 credits | PFI_CREDIT_RESEND);
6102
6103 /*
6104 * FIXME is this guaranteed to clear
6105 * immediately or should we poll for it?
6106 */
6107 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6108 }
6109
valleyview_modeset_commit_cdclk(struct drm_atomic_state * old_state)6110 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6111 {
6112 struct drm_device *dev = old_state->dev;
6113 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
6114 struct drm_i915_private *dev_priv = dev->dev_private;
6115
6116 /*
6117 * FIXME: We can end up here with all power domains off, yet
6118 * with a CDCLK frequency other than the minimum. To account
6119 * for this take the PIPE-A power domain, which covers the HW
6120 * blocks needed for the following programming. This can be
6121 * removed once it's guaranteed that we get here either with
6122 * the minimum CDCLK set, or the required power domains
6123 * enabled.
6124 */
6125 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6126
6127 if (IS_CHERRYVIEW(dev))
6128 cherryview_set_cdclk(dev, req_cdclk);
6129 else
6130 valleyview_set_cdclk(dev, req_cdclk);
6131
6132 vlv_program_pfi_credits(dev_priv);
6133
6134 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6135 }
6136
valleyview_crtc_enable(struct drm_crtc * crtc)6137 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6138 {
6139 struct drm_device *dev = crtc->dev;
6140 struct drm_i915_private *dev_priv = to_i915(dev);
6141 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6142 struct intel_encoder *encoder;
6143 int pipe = intel_crtc->pipe;
6144 bool is_dsi;
6145
6146 if (WARN_ON(intel_crtc->active))
6147 return;
6148
6149 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6150
6151 if (intel_crtc->config->has_dp_encoder)
6152 intel_dp_set_m_n(intel_crtc, M1_N1);
6153
6154 intel_set_pipe_timings(intel_crtc);
6155
6156 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6157 struct drm_i915_private *dev_priv = dev->dev_private;
6158
6159 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6160 I915_WRITE(CHV_CANVAS(pipe), 0);
6161 }
6162
6163 i9xx_set_pipeconf(intel_crtc);
6164
6165 intel_crtc->active = true;
6166
6167 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6168
6169 for_each_encoder_on_crtc(dev, crtc, encoder)
6170 if (encoder->pre_pll_enable)
6171 encoder->pre_pll_enable(encoder);
6172
6173 if (!is_dsi) {
6174 if (IS_CHERRYVIEW(dev)) {
6175 chv_prepare_pll(intel_crtc, intel_crtc->config);
6176 chv_enable_pll(intel_crtc, intel_crtc->config);
6177 } else {
6178 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6179 vlv_enable_pll(intel_crtc, intel_crtc->config);
6180 }
6181 }
6182
6183 for_each_encoder_on_crtc(dev, crtc, encoder)
6184 if (encoder->pre_enable)
6185 encoder->pre_enable(encoder);
6186
6187 i9xx_pfit_enable(intel_crtc);
6188
6189 intel_crtc_load_lut(crtc);
6190
6191 intel_enable_pipe(intel_crtc);
6192
6193 assert_vblank_disabled(crtc);
6194 drm_crtc_vblank_on(crtc);
6195
6196 for_each_encoder_on_crtc(dev, crtc, encoder)
6197 encoder->enable(encoder);
6198 }
6199
i9xx_set_pll_dividers(struct intel_crtc * crtc)6200 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6201 {
6202 struct drm_device *dev = crtc->base.dev;
6203 struct drm_i915_private *dev_priv = dev->dev_private;
6204
6205 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6206 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6207 }
6208
i9xx_crtc_enable(struct drm_crtc * crtc)6209 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6210 {
6211 struct drm_device *dev = crtc->dev;
6212 struct drm_i915_private *dev_priv = to_i915(dev);
6213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6214 struct intel_encoder *encoder;
6215 int pipe = intel_crtc->pipe;
6216
6217 if (WARN_ON(intel_crtc->active))
6218 return;
6219
6220 i9xx_set_pll_dividers(intel_crtc);
6221
6222 if (intel_crtc->config->has_dp_encoder)
6223 intel_dp_set_m_n(intel_crtc, M1_N1);
6224
6225 intel_set_pipe_timings(intel_crtc);
6226
6227 i9xx_set_pipeconf(intel_crtc);
6228
6229 intel_crtc->active = true;
6230
6231 if (!IS_GEN2(dev))
6232 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6233
6234 for_each_encoder_on_crtc(dev, crtc, encoder)
6235 if (encoder->pre_enable)
6236 encoder->pre_enable(encoder);
6237
6238 i9xx_enable_pll(intel_crtc);
6239
6240 i9xx_pfit_enable(intel_crtc);
6241
6242 intel_crtc_load_lut(crtc);
6243
6244 intel_update_watermarks(crtc);
6245 intel_enable_pipe(intel_crtc);
6246
6247 assert_vblank_disabled(crtc);
6248 drm_crtc_vblank_on(crtc);
6249
6250 for_each_encoder_on_crtc(dev, crtc, encoder)
6251 encoder->enable(encoder);
6252 }
6253
i9xx_pfit_disable(struct intel_crtc * crtc)6254 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6255 {
6256 struct drm_device *dev = crtc->base.dev;
6257 struct drm_i915_private *dev_priv = dev->dev_private;
6258
6259 if (!crtc->config->gmch_pfit.control)
6260 return;
6261
6262 assert_pipe_disabled(dev_priv, crtc->pipe);
6263
6264 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6265 I915_READ(PFIT_CONTROL));
6266 I915_WRITE(PFIT_CONTROL, 0);
6267 }
6268
i9xx_crtc_disable(struct drm_crtc * crtc)6269 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6270 {
6271 struct drm_device *dev = crtc->dev;
6272 struct drm_i915_private *dev_priv = dev->dev_private;
6273 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6274 struct intel_encoder *encoder;
6275 int pipe = intel_crtc->pipe;
6276
6277 /*
6278 * On gen2 planes are double buffered but the pipe isn't, so we must
6279 * wait for planes to fully turn off before disabling the pipe.
6280 * We also need to wait on all gmch platforms because of the
6281 * self-refresh mode constraint explained above.
6282 */
6283 intel_wait_for_vblank(dev, pipe);
6284
6285 for_each_encoder_on_crtc(dev, crtc, encoder)
6286 encoder->disable(encoder);
6287
6288 drm_crtc_vblank_off(crtc);
6289 assert_vblank_disabled(crtc);
6290
6291 intel_disable_pipe(intel_crtc);
6292
6293 i9xx_pfit_disable(intel_crtc);
6294
6295 for_each_encoder_on_crtc(dev, crtc, encoder)
6296 if (encoder->post_disable)
6297 encoder->post_disable(encoder);
6298
6299 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6300 if (IS_CHERRYVIEW(dev))
6301 chv_disable_pll(dev_priv, pipe);
6302 else if (IS_VALLEYVIEW(dev))
6303 vlv_disable_pll(dev_priv, pipe);
6304 else
6305 i9xx_disable_pll(intel_crtc);
6306 }
6307
6308 for_each_encoder_on_crtc(dev, crtc, encoder)
6309 if (encoder->post_pll_disable)
6310 encoder->post_pll_disable(encoder);
6311
6312 if (!IS_GEN2(dev))
6313 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6314 }
6315
intel_crtc_disable_noatomic(struct drm_crtc * crtc)6316 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6317 {
6318 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6319 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6320 enum intel_display_power_domain domain;
6321 unsigned long domains;
6322
6323 if (!intel_crtc->active)
6324 return;
6325
6326 if (to_intel_plane_state(crtc->primary->state)->visible) {
6327 intel_crtc_wait_for_pending_flips(crtc);
6328 intel_pre_disable_primary(crtc);
6329
6330 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6331 to_intel_plane_state(crtc->primary->state)->visible = false;
6332 }
6333
6334 dev_priv->display.crtc_disable(crtc);
6335 intel_crtc->active = false;
6336 intel_update_watermarks(crtc);
6337 intel_disable_shared_dpll(intel_crtc);
6338
6339 domains = intel_crtc->enabled_power_domains;
6340 for_each_power_domain(domain, domains)
6341 intel_display_power_put(dev_priv, domain);
6342 intel_crtc->enabled_power_domains = 0;
6343 }
6344
6345 /*
6346 * turn all crtc's off, but do not adjust state
6347 * This has to be paired with a call to intel_modeset_setup_hw_state.
6348 */
intel_display_suspend(struct drm_device * dev)6349 int intel_display_suspend(struct drm_device *dev)
6350 {
6351 struct drm_mode_config *config = &dev->mode_config;
6352 struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6353 struct drm_atomic_state *state;
6354 struct drm_crtc *crtc;
6355 unsigned crtc_mask = 0;
6356 int ret = 0;
6357
6358 if (WARN_ON(!ctx))
6359 return 0;
6360
6361 lockdep_assert_held(&ctx->ww_ctx);
6362 state = drm_atomic_state_alloc(dev);
6363 if (WARN_ON(!state))
6364 return -ENOMEM;
6365
6366 state->acquire_ctx = ctx;
6367 state->allow_modeset = true;
6368
6369 for_each_crtc(dev, crtc) {
6370 struct drm_crtc_state *crtc_state =
6371 drm_atomic_get_crtc_state(state, crtc);
6372
6373 ret = PTR_ERR_OR_ZERO(crtc_state);
6374 if (ret)
6375 goto free;
6376
6377 if (!crtc_state->active)
6378 continue;
6379
6380 crtc_state->active = false;
6381 crtc_mask |= 1 << drm_crtc_index(crtc);
6382 }
6383
6384 if (crtc_mask) {
6385 ret = drm_atomic_commit(state);
6386
6387 if (!ret) {
6388 for_each_crtc(dev, crtc)
6389 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6390 crtc->state->active = true;
6391
6392 return ret;
6393 }
6394 }
6395
6396 free:
6397 if (ret)
6398 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6399 drm_atomic_state_free(state);
6400 return ret;
6401 }
6402
intel_encoder_destroy(struct drm_encoder * encoder)6403 void intel_encoder_destroy(struct drm_encoder *encoder)
6404 {
6405 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6406
6407 drm_encoder_cleanup(encoder);
6408 kfree(intel_encoder);
6409 }
6410
6411 /* Cross check the actual hw state with our own modeset state tracking (and it's
6412 * internal consistency). */
intel_connector_check_state(struct intel_connector * connector)6413 static void intel_connector_check_state(struct intel_connector *connector)
6414 {
6415 struct drm_crtc *crtc = connector->base.state->crtc;
6416
6417 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6418 connector->base.base.id,
6419 connector->base.name);
6420
6421 if (connector->get_hw_state(connector)) {
6422 struct intel_encoder *encoder = connector->encoder;
6423 struct drm_connector_state *conn_state = connector->base.state;
6424
6425 I915_STATE_WARN(!crtc,
6426 "connector enabled without attached crtc\n");
6427
6428 if (!crtc)
6429 return;
6430
6431 I915_STATE_WARN(!crtc->state->active,
6432 "connector is active, but attached crtc isn't\n");
6433
6434 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6435 return;
6436
6437 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6438 "atomic encoder doesn't match attached encoder\n");
6439
6440 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6441 "attached encoder crtc differs from connector crtc\n");
6442 } else {
6443 I915_STATE_WARN(crtc && crtc->state->active,
6444 "attached crtc is active, but connector isn't\n");
6445 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6446 "best encoder set without crtc!\n");
6447 }
6448 }
6449
intel_connector_init(struct intel_connector * connector)6450 int intel_connector_init(struct intel_connector *connector)
6451 {
6452 struct drm_connector_state *connector_state;
6453
6454 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6455 if (!connector_state)
6456 return -ENOMEM;
6457
6458 connector->base.state = connector_state;
6459 return 0;
6460 }
6461
intel_connector_alloc(void)6462 struct intel_connector *intel_connector_alloc(void)
6463 {
6464 struct intel_connector *connector;
6465
6466 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6467 if (!connector)
6468 return NULL;
6469
6470 if (intel_connector_init(connector) < 0) {
6471 kfree(connector);
6472 return NULL;
6473 }
6474
6475 return connector;
6476 }
6477
6478 /* Simple connector->get_hw_state implementation for encoders that support only
6479 * one connector and no cloning and hence the encoder state determines the state
6480 * of the connector. */
intel_connector_get_hw_state(struct intel_connector * connector)6481 bool intel_connector_get_hw_state(struct intel_connector *connector)
6482 {
6483 enum pipe pipe = 0;
6484 struct intel_encoder *encoder = connector->encoder;
6485
6486 return encoder->get_hw_state(encoder, &pipe);
6487 }
6488
pipe_required_fdi_lanes(struct intel_crtc_state * crtc_state)6489 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6490 {
6491 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6492 return crtc_state->fdi_lanes;
6493
6494 return 0;
6495 }
6496
ironlake_check_fdi_lanes(struct drm_device * dev,enum pipe pipe,struct intel_crtc_state * pipe_config)6497 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6498 struct intel_crtc_state *pipe_config)
6499 {
6500 struct drm_atomic_state *state = pipe_config->base.state;
6501 struct intel_crtc *other_crtc;
6502 struct intel_crtc_state *other_crtc_state;
6503
6504 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6505 pipe_name(pipe), pipe_config->fdi_lanes);
6506 if (pipe_config->fdi_lanes > 4) {
6507 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6508 pipe_name(pipe), pipe_config->fdi_lanes);
6509 return -EINVAL;
6510 }
6511
6512 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6513 if (pipe_config->fdi_lanes > 2) {
6514 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6515 pipe_config->fdi_lanes);
6516 return -EINVAL;
6517 } else {
6518 return 0;
6519 }
6520 }
6521
6522 if (INTEL_INFO(dev)->num_pipes == 2)
6523 return 0;
6524
6525 /* Ivybridge 3 pipe is really complicated */
6526 switch (pipe) {
6527 case PIPE_A:
6528 return 0;
6529 case PIPE_B:
6530 if (pipe_config->fdi_lanes <= 2)
6531 return 0;
6532
6533 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6534 other_crtc_state =
6535 intel_atomic_get_crtc_state(state, other_crtc);
6536 if (IS_ERR(other_crtc_state))
6537 return PTR_ERR(other_crtc_state);
6538
6539 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6540 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6541 pipe_name(pipe), pipe_config->fdi_lanes);
6542 return -EINVAL;
6543 }
6544 return 0;
6545 case PIPE_C:
6546 if (pipe_config->fdi_lanes > 2) {
6547 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6548 pipe_name(pipe), pipe_config->fdi_lanes);
6549 return -EINVAL;
6550 }
6551
6552 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6553 other_crtc_state =
6554 intel_atomic_get_crtc_state(state, other_crtc);
6555 if (IS_ERR(other_crtc_state))
6556 return PTR_ERR(other_crtc_state);
6557
6558 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6559 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6560 return -EINVAL;
6561 }
6562 return 0;
6563 default:
6564 BUG();
6565 }
6566 }
6567
6568 #define RETRY 1
ironlake_fdi_compute_config(struct intel_crtc * intel_crtc,struct intel_crtc_state * pipe_config)6569 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6570 struct intel_crtc_state *pipe_config)
6571 {
6572 struct drm_device *dev = intel_crtc->base.dev;
6573 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6574 int lane, link_bw, fdi_dotclock, ret;
6575 bool needs_recompute = false;
6576
6577 retry:
6578 /* FDI is a binary signal running at ~2.7GHz, encoding
6579 * each output octet as 10 bits. The actual frequency
6580 * is stored as a divider into a 100MHz clock, and the
6581 * mode pixel clock is stored in units of 1KHz.
6582 * Hence the bw of each lane in terms of the mode signal
6583 * is:
6584 */
6585 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6586
6587 fdi_dotclock = adjusted_mode->crtc_clock;
6588
6589 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6590 pipe_config->pipe_bpp);
6591
6592 pipe_config->fdi_lanes = lane;
6593
6594 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6595 link_bw, &pipe_config->fdi_m_n);
6596
6597 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6598 intel_crtc->pipe, pipe_config);
6599 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6600 pipe_config->pipe_bpp -= 2*3;
6601 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6602 pipe_config->pipe_bpp);
6603 needs_recompute = true;
6604 pipe_config->bw_constrained = true;
6605
6606 goto retry;
6607 }
6608
6609 if (needs_recompute)
6610 return RETRY;
6611
6612 return ret;
6613 }
6614
pipe_config_supports_ips(struct drm_i915_private * dev_priv,struct intel_crtc_state * pipe_config)6615 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6616 struct intel_crtc_state *pipe_config)
6617 {
6618 if (pipe_config->pipe_bpp > 24)
6619 return false;
6620
6621 /* HSW can handle pixel rate up to cdclk? */
6622 if (IS_HASWELL(dev_priv->dev))
6623 return true;
6624
6625 /*
6626 * We compare against max which means we must take
6627 * the increased cdclk requirement into account when
6628 * calculating the new cdclk.
6629 *
6630 * Should measure whether using a lower cdclk w/o IPS
6631 */
6632 return ilk_pipe_pixel_rate(pipe_config) <=
6633 dev_priv->max_cdclk_freq * 95 / 100;
6634 }
6635
hsw_compute_ips_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)6636 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6637 struct intel_crtc_state *pipe_config)
6638 {
6639 struct drm_device *dev = crtc->base.dev;
6640 struct drm_i915_private *dev_priv = dev->dev_private;
6641
6642 pipe_config->ips_enabled = i915.enable_ips &&
6643 hsw_crtc_supports_ips(crtc) &&
6644 pipe_config_supports_ips(dev_priv, pipe_config);
6645 }
6646
intel_crtc_compute_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)6647 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6648 struct intel_crtc_state *pipe_config)
6649 {
6650 struct drm_device *dev = crtc->base.dev;
6651 struct drm_i915_private *dev_priv = dev->dev_private;
6652 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6653
6654 /* FIXME should check pixel clock limits on all platforms */
6655 if (INTEL_INFO(dev)->gen < 4) {
6656 int clock_limit = dev_priv->max_cdclk_freq;
6657
6658 /*
6659 * Enable pixel doubling when the dot clock
6660 * is > 90% of the (display) core speed.
6661 *
6662 * GDG double wide on either pipe,
6663 * otherwise pipe A only.
6664 */
6665 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6666 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6667 clock_limit *= 2;
6668 pipe_config->double_wide = true;
6669 }
6670
6671 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6672 return -EINVAL;
6673 }
6674
6675 /*
6676 * Pipe horizontal size must be even in:
6677 * - DVO ganged mode
6678 * - LVDS dual channel mode
6679 * - Double wide pipe
6680 */
6681 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6682 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6683 pipe_config->pipe_src_w &= ~1;
6684
6685 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6686 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6687 */
6688 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6689 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6690 return -EINVAL;
6691
6692 if (HAS_IPS(dev))
6693 hsw_compute_ips_config(crtc, pipe_config);
6694
6695 if (pipe_config->has_pch_encoder)
6696 return ironlake_fdi_compute_config(crtc, pipe_config);
6697
6698 return 0;
6699 }
6700
skylake_get_display_clock_speed(struct drm_device * dev)6701 static int skylake_get_display_clock_speed(struct drm_device *dev)
6702 {
6703 struct drm_i915_private *dev_priv = to_i915(dev);
6704 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6705 uint32_t cdctl = I915_READ(CDCLK_CTL);
6706 uint32_t linkrate;
6707
6708 if (!(lcpll1 & LCPLL_PLL_ENABLE))
6709 return 24000; /* 24MHz is the cd freq with NSSC ref */
6710
6711 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6712 return 540000;
6713
6714 linkrate = (I915_READ(DPLL_CTRL1) &
6715 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6716
6717 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6718 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6719 /* vco 8640 */
6720 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6721 case CDCLK_FREQ_450_432:
6722 return 432000;
6723 case CDCLK_FREQ_337_308:
6724 return 308570;
6725 case CDCLK_FREQ_675_617:
6726 return 617140;
6727 default:
6728 WARN(1, "Unknown cd freq selection\n");
6729 }
6730 } else {
6731 /* vco 8100 */
6732 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6733 case CDCLK_FREQ_450_432:
6734 return 450000;
6735 case CDCLK_FREQ_337_308:
6736 return 337500;
6737 case CDCLK_FREQ_675_617:
6738 return 675000;
6739 default:
6740 WARN(1, "Unknown cd freq selection\n");
6741 }
6742 }
6743
6744 /* error case, do as if DPLL0 isn't enabled */
6745 return 24000;
6746 }
6747
broxton_get_display_clock_speed(struct drm_device * dev)6748 static int broxton_get_display_clock_speed(struct drm_device *dev)
6749 {
6750 struct drm_i915_private *dev_priv = to_i915(dev);
6751 uint32_t cdctl = I915_READ(CDCLK_CTL);
6752 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6753 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6754 int cdclk;
6755
6756 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6757 return 19200;
6758
6759 cdclk = 19200 * pll_ratio / 2;
6760
6761 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6762 case BXT_CDCLK_CD2X_DIV_SEL_1:
6763 return cdclk; /* 576MHz or 624MHz */
6764 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6765 return cdclk * 2 / 3; /* 384MHz */
6766 case BXT_CDCLK_CD2X_DIV_SEL_2:
6767 return cdclk / 2; /* 288MHz */
6768 case BXT_CDCLK_CD2X_DIV_SEL_4:
6769 return cdclk / 4; /* 144MHz */
6770 }
6771
6772 /* error case, do as if DE PLL isn't enabled */
6773 return 19200;
6774 }
6775
broadwell_get_display_clock_speed(struct drm_device * dev)6776 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6777 {
6778 struct drm_i915_private *dev_priv = dev->dev_private;
6779 uint32_t lcpll = I915_READ(LCPLL_CTL);
6780 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6781
6782 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6783 return 800000;
6784 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6785 return 450000;
6786 else if (freq == LCPLL_CLK_FREQ_450)
6787 return 450000;
6788 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6789 return 540000;
6790 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6791 return 337500;
6792 else
6793 return 675000;
6794 }
6795
haswell_get_display_clock_speed(struct drm_device * dev)6796 static int haswell_get_display_clock_speed(struct drm_device *dev)
6797 {
6798 struct drm_i915_private *dev_priv = dev->dev_private;
6799 uint32_t lcpll = I915_READ(LCPLL_CTL);
6800 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6801
6802 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6803 return 800000;
6804 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6805 return 450000;
6806 else if (freq == LCPLL_CLK_FREQ_450)
6807 return 450000;
6808 else if (IS_HSW_ULT(dev))
6809 return 337500;
6810 else
6811 return 540000;
6812 }
6813
valleyview_get_display_clock_speed(struct drm_device * dev)6814 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6815 {
6816 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6817 CCK_DISPLAY_CLOCK_CONTROL);
6818 }
6819
ilk_get_display_clock_speed(struct drm_device * dev)6820 static int ilk_get_display_clock_speed(struct drm_device *dev)
6821 {
6822 return 450000;
6823 }
6824
i945_get_display_clock_speed(struct drm_device * dev)6825 static int i945_get_display_clock_speed(struct drm_device *dev)
6826 {
6827 return 400000;
6828 }
6829
i915_get_display_clock_speed(struct drm_device * dev)6830 static int i915_get_display_clock_speed(struct drm_device *dev)
6831 {
6832 return 333333;
6833 }
6834
i9xx_misc_get_display_clock_speed(struct drm_device * dev)6835 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6836 {
6837 return 200000;
6838 }
6839
pnv_get_display_clock_speed(struct drm_device * dev)6840 static int pnv_get_display_clock_speed(struct drm_device *dev)
6841 {
6842 u16 gcfgc = 0;
6843
6844 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6845
6846 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6847 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6848 return 266667;
6849 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6850 return 333333;
6851 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6852 return 444444;
6853 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6854 return 200000;
6855 default:
6856 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6857 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6858 return 133333;
6859 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6860 return 166667;
6861 }
6862 }
6863
i915gm_get_display_clock_speed(struct drm_device * dev)6864 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6865 {
6866 u16 gcfgc = 0;
6867
6868 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6869
6870 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6871 return 133333;
6872 else {
6873 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6874 case GC_DISPLAY_CLOCK_333_MHZ:
6875 return 333333;
6876 default:
6877 case GC_DISPLAY_CLOCK_190_200_MHZ:
6878 return 190000;
6879 }
6880 }
6881 }
6882
i865_get_display_clock_speed(struct drm_device * dev)6883 static int i865_get_display_clock_speed(struct drm_device *dev)
6884 {
6885 return 266667;
6886 }
6887
i85x_get_display_clock_speed(struct drm_device * dev)6888 static int i85x_get_display_clock_speed(struct drm_device *dev)
6889 {
6890 u16 hpllcc = 0;
6891
6892 /*
6893 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6894 * encoding is different :(
6895 * FIXME is this the right way to detect 852GM/852GMV?
6896 */
6897 if (dev->pdev->revision == 0x1)
6898 return 133333;
6899
6900 pci_bus_read_config_word(dev->pdev->bus,
6901 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6902
6903 /* Assume that the hardware is in the high speed state. This
6904 * should be the default.
6905 */
6906 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6907 case GC_CLOCK_133_200:
6908 case GC_CLOCK_133_200_2:
6909 case GC_CLOCK_100_200:
6910 return 200000;
6911 case GC_CLOCK_166_250:
6912 return 250000;
6913 case GC_CLOCK_100_133:
6914 return 133333;
6915 case GC_CLOCK_133_266:
6916 case GC_CLOCK_133_266_2:
6917 case GC_CLOCK_166_266:
6918 return 266667;
6919 }
6920
6921 /* Shouldn't happen */
6922 return 0;
6923 }
6924
i830_get_display_clock_speed(struct drm_device * dev)6925 static int i830_get_display_clock_speed(struct drm_device *dev)
6926 {
6927 return 133333;
6928 }
6929
intel_hpll_vco(struct drm_device * dev)6930 static unsigned int intel_hpll_vco(struct drm_device *dev)
6931 {
6932 struct drm_i915_private *dev_priv = dev->dev_private;
6933 static const unsigned int blb_vco[8] = {
6934 [0] = 3200000,
6935 [1] = 4000000,
6936 [2] = 5333333,
6937 [3] = 4800000,
6938 [4] = 6400000,
6939 };
6940 static const unsigned int pnv_vco[8] = {
6941 [0] = 3200000,
6942 [1] = 4000000,
6943 [2] = 5333333,
6944 [3] = 4800000,
6945 [4] = 2666667,
6946 };
6947 static const unsigned int cl_vco[8] = {
6948 [0] = 3200000,
6949 [1] = 4000000,
6950 [2] = 5333333,
6951 [3] = 6400000,
6952 [4] = 3333333,
6953 [5] = 3566667,
6954 [6] = 4266667,
6955 };
6956 static const unsigned int elk_vco[8] = {
6957 [0] = 3200000,
6958 [1] = 4000000,
6959 [2] = 5333333,
6960 [3] = 4800000,
6961 };
6962 static const unsigned int ctg_vco[8] = {
6963 [0] = 3200000,
6964 [1] = 4000000,
6965 [2] = 5333333,
6966 [3] = 6400000,
6967 [4] = 2666667,
6968 [5] = 4266667,
6969 };
6970 const unsigned int *vco_table;
6971 unsigned int vco;
6972 uint8_t tmp = 0;
6973
6974 /* FIXME other chipsets? */
6975 if (IS_GM45(dev))
6976 vco_table = ctg_vco;
6977 else if (IS_G4X(dev))
6978 vco_table = elk_vco;
6979 else if (IS_CRESTLINE(dev))
6980 vco_table = cl_vco;
6981 else if (IS_PINEVIEW(dev))
6982 vco_table = pnv_vco;
6983 else if (IS_G33(dev))
6984 vco_table = blb_vco;
6985 else
6986 return 0;
6987
6988 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6989
6990 vco = vco_table[tmp & 0x7];
6991 if (vco == 0)
6992 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6993 else
6994 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6995
6996 return vco;
6997 }
6998
gm45_get_display_clock_speed(struct drm_device * dev)6999 static int gm45_get_display_clock_speed(struct drm_device *dev)
7000 {
7001 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7002 uint16_t tmp = 0;
7003
7004 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7005
7006 cdclk_sel = (tmp >> 12) & 0x1;
7007
7008 switch (vco) {
7009 case 2666667:
7010 case 4000000:
7011 case 5333333:
7012 return cdclk_sel ? 333333 : 222222;
7013 case 3200000:
7014 return cdclk_sel ? 320000 : 228571;
7015 default:
7016 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7017 return 222222;
7018 }
7019 }
7020
i965gm_get_display_clock_speed(struct drm_device * dev)7021 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7022 {
7023 static const uint8_t div_3200[] = { 16, 10, 8 };
7024 static const uint8_t div_4000[] = { 20, 12, 10 };
7025 static const uint8_t div_5333[] = { 24, 16, 14 };
7026 const uint8_t *div_table;
7027 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7028 uint16_t tmp = 0;
7029
7030 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7031
7032 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7033
7034 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7035 goto fail;
7036
7037 switch (vco) {
7038 case 3200000:
7039 div_table = div_3200;
7040 break;
7041 case 4000000:
7042 div_table = div_4000;
7043 break;
7044 case 5333333:
7045 div_table = div_5333;
7046 break;
7047 default:
7048 goto fail;
7049 }
7050
7051 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7052
7053 fail:
7054 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7055 return 200000;
7056 }
7057
g33_get_display_clock_speed(struct drm_device * dev)7058 static int g33_get_display_clock_speed(struct drm_device *dev)
7059 {
7060 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7061 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7062 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7063 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7064 const uint8_t *div_table;
7065 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7066 uint16_t tmp = 0;
7067
7068 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7069
7070 cdclk_sel = (tmp >> 4) & 0x7;
7071
7072 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7073 goto fail;
7074
7075 switch (vco) {
7076 case 3200000:
7077 div_table = div_3200;
7078 break;
7079 case 4000000:
7080 div_table = div_4000;
7081 break;
7082 case 4800000:
7083 div_table = div_4800;
7084 break;
7085 case 5333333:
7086 div_table = div_5333;
7087 break;
7088 default:
7089 goto fail;
7090 }
7091
7092 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7093
7094 fail:
7095 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7096 return 190476;
7097 }
7098
7099 static void
intel_reduce_m_n_ratio(uint32_t * num,uint32_t * den)7100 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7101 {
7102 while (*num > DATA_LINK_M_N_MASK ||
7103 *den > DATA_LINK_M_N_MASK) {
7104 *num >>= 1;
7105 *den >>= 1;
7106 }
7107 }
7108
compute_m_n(unsigned int m,unsigned int n,uint32_t * ret_m,uint32_t * ret_n)7109 static void compute_m_n(unsigned int m, unsigned int n,
7110 uint32_t *ret_m, uint32_t *ret_n)
7111 {
7112 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7113 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7114 intel_reduce_m_n_ratio(ret_m, ret_n);
7115 }
7116
7117 void
intel_link_compute_m_n(int bits_per_pixel,int nlanes,int pixel_clock,int link_clock,struct intel_link_m_n * m_n)7118 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7119 int pixel_clock, int link_clock,
7120 struct intel_link_m_n *m_n)
7121 {
7122 m_n->tu = 64;
7123
7124 compute_m_n(bits_per_pixel * pixel_clock,
7125 link_clock * nlanes * 8,
7126 &m_n->gmch_m, &m_n->gmch_n);
7127
7128 compute_m_n(pixel_clock, link_clock,
7129 &m_n->link_m, &m_n->link_n);
7130 }
7131
intel_panel_use_ssc(struct drm_i915_private * dev_priv)7132 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7133 {
7134 if (i915.panel_use_ssc >= 0)
7135 return i915.panel_use_ssc != 0;
7136 return dev_priv->vbt.lvds_use_ssc
7137 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7138 }
7139
i9xx_get_refclk(const struct intel_crtc_state * crtc_state,int num_connectors)7140 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7141 int num_connectors)
7142 {
7143 struct drm_device *dev = crtc_state->base.crtc->dev;
7144 struct drm_i915_private *dev_priv = dev->dev_private;
7145 int refclk;
7146
7147 WARN_ON(!crtc_state->base.state);
7148
7149 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7150 refclk = 100000;
7151 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7152 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7153 refclk = dev_priv->vbt.lvds_ssc_freq;
7154 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7155 } else if (!IS_GEN2(dev)) {
7156 refclk = 96000;
7157 } else {
7158 refclk = 48000;
7159 }
7160
7161 return refclk;
7162 }
7163
pnv_dpll_compute_fp(struct dpll * dpll)7164 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7165 {
7166 return (1 << dpll->n) << 16 | dpll->m2;
7167 }
7168
i9xx_dpll_compute_fp(struct dpll * dpll)7169 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7170 {
7171 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7172 }
7173
i9xx_update_pll_dividers(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,intel_clock_t * reduced_clock)7174 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7175 struct intel_crtc_state *crtc_state,
7176 intel_clock_t *reduced_clock)
7177 {
7178 struct drm_device *dev = crtc->base.dev;
7179 u32 fp, fp2 = 0;
7180
7181 if (IS_PINEVIEW(dev)) {
7182 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7183 if (reduced_clock)
7184 fp2 = pnv_dpll_compute_fp(reduced_clock);
7185 } else {
7186 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7187 if (reduced_clock)
7188 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7189 }
7190
7191 crtc_state->dpll_hw_state.fp0 = fp;
7192
7193 crtc->lowfreq_avail = false;
7194 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7195 reduced_clock) {
7196 crtc_state->dpll_hw_state.fp1 = fp2;
7197 crtc->lowfreq_avail = true;
7198 } else {
7199 crtc_state->dpll_hw_state.fp1 = fp;
7200 }
7201 }
7202
vlv_pllb_recal_opamp(struct drm_i915_private * dev_priv,enum pipe pipe)7203 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7204 pipe)
7205 {
7206 u32 reg_val;
7207
7208 /*
7209 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7210 * and set it to a reasonable value instead.
7211 */
7212 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7213 reg_val &= 0xffffff00;
7214 reg_val |= 0x00000030;
7215 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7216
7217 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7218 reg_val &= 0x8cffffff;
7219 reg_val = 0x8c000000;
7220 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7221
7222 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7223 reg_val &= 0xffffff00;
7224 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7225
7226 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7227 reg_val &= 0x00ffffff;
7228 reg_val |= 0xb0000000;
7229 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7230 }
7231
intel_pch_transcoder_set_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n)7232 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7233 struct intel_link_m_n *m_n)
7234 {
7235 struct drm_device *dev = crtc->base.dev;
7236 struct drm_i915_private *dev_priv = dev->dev_private;
7237 int pipe = crtc->pipe;
7238
7239 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7240 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7241 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7242 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7243 }
7244
intel_cpu_transcoder_set_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n,struct intel_link_m_n * m2_n2)7245 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7246 struct intel_link_m_n *m_n,
7247 struct intel_link_m_n *m2_n2)
7248 {
7249 struct drm_device *dev = crtc->base.dev;
7250 struct drm_i915_private *dev_priv = dev->dev_private;
7251 int pipe = crtc->pipe;
7252 enum transcoder transcoder = crtc->config->cpu_transcoder;
7253
7254 if (INTEL_INFO(dev)->gen >= 5) {
7255 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7256 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7257 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7258 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7259 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7260 * for gen < 8) and if DRRS is supported (to make sure the
7261 * registers are not unnecessarily accessed).
7262 */
7263 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7264 crtc->config->has_drrs) {
7265 I915_WRITE(PIPE_DATA_M2(transcoder),
7266 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7267 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7268 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7269 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7270 }
7271 } else {
7272 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7273 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7274 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7275 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7276 }
7277 }
7278
intel_dp_set_m_n(struct intel_crtc * crtc,enum link_m_n_set m_n)7279 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7280 {
7281 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7282
7283 if (m_n == M1_N1) {
7284 dp_m_n = &crtc->config->dp_m_n;
7285 dp_m2_n2 = &crtc->config->dp_m2_n2;
7286 } else if (m_n == M2_N2) {
7287
7288 /*
7289 * M2_N2 registers are not supported. Hence m2_n2 divider value
7290 * needs to be programmed into M1_N1.
7291 */
7292 dp_m_n = &crtc->config->dp_m2_n2;
7293 } else {
7294 DRM_ERROR("Unsupported divider value\n");
7295 return;
7296 }
7297
7298 if (crtc->config->has_pch_encoder)
7299 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7300 else
7301 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7302 }
7303
vlv_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7304 static void vlv_compute_dpll(struct intel_crtc *crtc,
7305 struct intel_crtc_state *pipe_config)
7306 {
7307 u32 dpll, dpll_md;
7308
7309 /*
7310 * Enable DPIO clock input. We should never disable the reference
7311 * clock for pipe B, since VGA hotplug / manual detection depends
7312 * on it.
7313 */
7314 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7315 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7316 /* We should never disable this, set it here for state tracking */
7317 if (crtc->pipe == PIPE_B)
7318 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7319 dpll |= DPLL_VCO_ENABLE;
7320 pipe_config->dpll_hw_state.dpll = dpll;
7321
7322 dpll_md = (pipe_config->pixel_multiplier - 1)
7323 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7324 pipe_config->dpll_hw_state.dpll_md = dpll_md;
7325 }
7326
vlv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)7327 static void vlv_prepare_pll(struct intel_crtc *crtc,
7328 const struct intel_crtc_state *pipe_config)
7329 {
7330 struct drm_device *dev = crtc->base.dev;
7331 struct drm_i915_private *dev_priv = dev->dev_private;
7332 int pipe = crtc->pipe;
7333 u32 mdiv;
7334 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7335 u32 coreclk, reg_val;
7336
7337 mutex_lock(&dev_priv->sb_lock);
7338
7339 bestn = pipe_config->dpll.n;
7340 bestm1 = pipe_config->dpll.m1;
7341 bestm2 = pipe_config->dpll.m2;
7342 bestp1 = pipe_config->dpll.p1;
7343 bestp2 = pipe_config->dpll.p2;
7344
7345 /* See eDP HDMI DPIO driver vbios notes doc */
7346
7347 /* PLL B needs special handling */
7348 if (pipe == PIPE_B)
7349 vlv_pllb_recal_opamp(dev_priv, pipe);
7350
7351 /* Set up Tx target for periodic Rcomp update */
7352 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7353
7354 /* Disable target IRef on PLL */
7355 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7356 reg_val &= 0x00ffffff;
7357 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7358
7359 /* Disable fast lock */
7360 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7361
7362 /* Set idtafcrecal before PLL is enabled */
7363 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7364 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7365 mdiv |= ((bestn << DPIO_N_SHIFT));
7366 mdiv |= (1 << DPIO_K_SHIFT);
7367
7368 /*
7369 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7370 * but we don't support that).
7371 * Note: don't use the DAC post divider as it seems unstable.
7372 */
7373 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7374 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7375
7376 mdiv |= DPIO_ENABLE_CALIBRATION;
7377 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7378
7379 /* Set HBR and RBR LPF coefficients */
7380 if (pipe_config->port_clock == 162000 ||
7381 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7382 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7383 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7384 0x009f0003);
7385 else
7386 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7387 0x00d0000f);
7388
7389 if (pipe_config->has_dp_encoder) {
7390 /* Use SSC source */
7391 if (pipe == PIPE_A)
7392 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7393 0x0df40000);
7394 else
7395 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7396 0x0df70000);
7397 } else { /* HDMI or VGA */
7398 /* Use bend source */
7399 if (pipe == PIPE_A)
7400 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7401 0x0df70000);
7402 else
7403 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7404 0x0df40000);
7405 }
7406
7407 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7408 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7409 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7410 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7411 coreclk |= 0x01000000;
7412 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7413
7414 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7415 mutex_unlock(&dev_priv->sb_lock);
7416 }
7417
chv_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7418 static void chv_compute_dpll(struct intel_crtc *crtc,
7419 struct intel_crtc_state *pipe_config)
7420 {
7421 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7422 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7423 DPLL_VCO_ENABLE;
7424 if (crtc->pipe != PIPE_A)
7425 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7426
7427 pipe_config->dpll_hw_state.dpll_md =
7428 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7429 }
7430
chv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)7431 static void chv_prepare_pll(struct intel_crtc *crtc,
7432 const struct intel_crtc_state *pipe_config)
7433 {
7434 struct drm_device *dev = crtc->base.dev;
7435 struct drm_i915_private *dev_priv = dev->dev_private;
7436 int pipe = crtc->pipe;
7437 int dpll_reg = DPLL(crtc->pipe);
7438 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7439 u32 loopfilter, tribuf_calcntr;
7440 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7441 u32 dpio_val;
7442 int vco;
7443
7444 bestn = pipe_config->dpll.n;
7445 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7446 bestm1 = pipe_config->dpll.m1;
7447 bestm2 = pipe_config->dpll.m2 >> 22;
7448 bestp1 = pipe_config->dpll.p1;
7449 bestp2 = pipe_config->dpll.p2;
7450 vco = pipe_config->dpll.vco;
7451 dpio_val = 0;
7452 loopfilter = 0;
7453
7454 /*
7455 * Enable Refclk and SSC
7456 */
7457 I915_WRITE(dpll_reg,
7458 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7459
7460 mutex_lock(&dev_priv->sb_lock);
7461
7462 /* p1 and p2 divider */
7463 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7464 5 << DPIO_CHV_S1_DIV_SHIFT |
7465 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7466 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7467 1 << DPIO_CHV_K_DIV_SHIFT);
7468
7469 /* Feedback post-divider - m2 */
7470 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7471
7472 /* Feedback refclk divider - n and m1 */
7473 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7474 DPIO_CHV_M1_DIV_BY_2 |
7475 1 << DPIO_CHV_N_DIV_SHIFT);
7476
7477 /* M2 fraction division */
7478 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7479
7480 /* M2 fraction division enable */
7481 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7482 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7483 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7484 if (bestm2_frac)
7485 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7486 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7487
7488 /* Program digital lock detect threshold */
7489 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7490 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7491 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7492 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7493 if (!bestm2_frac)
7494 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7495 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7496
7497 /* Loop filter */
7498 if (vco == 5400000) {
7499 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7500 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7501 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7502 tribuf_calcntr = 0x9;
7503 } else if (vco <= 6200000) {
7504 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7505 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7506 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7507 tribuf_calcntr = 0x9;
7508 } else if (vco <= 6480000) {
7509 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7510 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7511 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7512 tribuf_calcntr = 0x8;
7513 } else {
7514 /* Not supported. Apply the same limits as in the max case */
7515 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7516 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7517 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7518 tribuf_calcntr = 0;
7519 }
7520 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7521
7522 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7523 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7524 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7525 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7526
7527 /* AFC Recal */
7528 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7529 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7530 DPIO_AFC_RECAL);
7531
7532 mutex_unlock(&dev_priv->sb_lock);
7533 }
7534
7535 /**
7536 * vlv_force_pll_on - forcibly enable just the PLL
7537 * @dev_priv: i915 private structure
7538 * @pipe: pipe PLL to enable
7539 * @dpll: PLL configuration
7540 *
7541 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7542 * in cases where we need the PLL enabled even when @pipe is not going to
7543 * be enabled.
7544 */
vlv_force_pll_on(struct drm_device * dev,enum pipe pipe,const struct dpll * dpll)7545 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7546 const struct dpll *dpll)
7547 {
7548 struct intel_crtc *crtc =
7549 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7550 struct intel_crtc_state pipe_config = {
7551 .base.crtc = &crtc->base,
7552 .pixel_multiplier = 1,
7553 .dpll = *dpll,
7554 };
7555
7556 if (IS_CHERRYVIEW(dev)) {
7557 chv_compute_dpll(crtc, &pipe_config);
7558 chv_prepare_pll(crtc, &pipe_config);
7559 chv_enable_pll(crtc, &pipe_config);
7560 } else {
7561 vlv_compute_dpll(crtc, &pipe_config);
7562 vlv_prepare_pll(crtc, &pipe_config);
7563 vlv_enable_pll(crtc, &pipe_config);
7564 }
7565 }
7566
7567 /**
7568 * vlv_force_pll_off - forcibly disable just the PLL
7569 * @dev_priv: i915 private structure
7570 * @pipe: pipe PLL to disable
7571 *
7572 * Disable the PLL for @pipe. To be used in cases where we need
7573 * the PLL enabled even when @pipe is not going to be enabled.
7574 */
vlv_force_pll_off(struct drm_device * dev,enum pipe pipe)7575 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7576 {
7577 if (IS_CHERRYVIEW(dev))
7578 chv_disable_pll(to_i915(dev), pipe);
7579 else
7580 vlv_disable_pll(to_i915(dev), pipe);
7581 }
7582
i9xx_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,intel_clock_t * reduced_clock,int num_connectors)7583 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7584 struct intel_crtc_state *crtc_state,
7585 intel_clock_t *reduced_clock,
7586 int num_connectors)
7587 {
7588 struct drm_device *dev = crtc->base.dev;
7589 struct drm_i915_private *dev_priv = dev->dev_private;
7590 u32 dpll;
7591 bool is_sdvo;
7592 struct dpll *clock = &crtc_state->dpll;
7593
7594 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7595
7596 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7597 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7598
7599 dpll = DPLL_VGA_MODE_DIS;
7600
7601 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7602 dpll |= DPLLB_MODE_LVDS;
7603 else
7604 dpll |= DPLLB_MODE_DAC_SERIAL;
7605
7606 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7607 dpll |= (crtc_state->pixel_multiplier - 1)
7608 << SDVO_MULTIPLIER_SHIFT_HIRES;
7609 }
7610
7611 if (is_sdvo)
7612 dpll |= DPLL_SDVO_HIGH_SPEED;
7613
7614 if (crtc_state->has_dp_encoder)
7615 dpll |= DPLL_SDVO_HIGH_SPEED;
7616
7617 /* compute bitmask from p1 value */
7618 if (IS_PINEVIEW(dev))
7619 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7620 else {
7621 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7622 if (IS_G4X(dev) && reduced_clock)
7623 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7624 }
7625 switch (clock->p2) {
7626 case 5:
7627 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7628 break;
7629 case 7:
7630 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7631 break;
7632 case 10:
7633 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7634 break;
7635 case 14:
7636 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7637 break;
7638 }
7639 if (INTEL_INFO(dev)->gen >= 4)
7640 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7641
7642 if (crtc_state->sdvo_tv_clock)
7643 dpll |= PLL_REF_INPUT_TVCLKINBC;
7644 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7645 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7646 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7647 else
7648 dpll |= PLL_REF_INPUT_DREFCLK;
7649
7650 dpll |= DPLL_VCO_ENABLE;
7651 crtc_state->dpll_hw_state.dpll = dpll;
7652
7653 if (INTEL_INFO(dev)->gen >= 4) {
7654 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7655 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7656 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7657 }
7658 }
7659
i8xx_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,intel_clock_t * reduced_clock,int num_connectors)7660 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7661 struct intel_crtc_state *crtc_state,
7662 intel_clock_t *reduced_clock,
7663 int num_connectors)
7664 {
7665 struct drm_device *dev = crtc->base.dev;
7666 struct drm_i915_private *dev_priv = dev->dev_private;
7667 u32 dpll;
7668 struct dpll *clock = &crtc_state->dpll;
7669
7670 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7671
7672 dpll = DPLL_VGA_MODE_DIS;
7673
7674 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7675 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7676 } else {
7677 if (clock->p1 == 2)
7678 dpll |= PLL_P1_DIVIDE_BY_TWO;
7679 else
7680 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7681 if (clock->p2 == 4)
7682 dpll |= PLL_P2_DIVIDE_BY_4;
7683 }
7684
7685 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7686 dpll |= DPLL_DVO_2X_MODE;
7687
7688 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7689 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7690 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7691 else
7692 dpll |= PLL_REF_INPUT_DREFCLK;
7693
7694 dpll |= DPLL_VCO_ENABLE;
7695 crtc_state->dpll_hw_state.dpll = dpll;
7696 }
7697
intel_set_pipe_timings(struct intel_crtc * intel_crtc)7698 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7699 {
7700 struct drm_device *dev = intel_crtc->base.dev;
7701 struct drm_i915_private *dev_priv = dev->dev_private;
7702 enum pipe pipe = intel_crtc->pipe;
7703 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7704 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7705 uint32_t crtc_vtotal, crtc_vblank_end;
7706 int vsyncshift = 0;
7707
7708 /* We need to be careful not to changed the adjusted mode, for otherwise
7709 * the hw state checker will get angry at the mismatch. */
7710 crtc_vtotal = adjusted_mode->crtc_vtotal;
7711 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7712
7713 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7714 /* the chip adds 2 halflines automatically */
7715 crtc_vtotal -= 1;
7716 crtc_vblank_end -= 1;
7717
7718 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7719 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7720 else
7721 vsyncshift = adjusted_mode->crtc_hsync_start -
7722 adjusted_mode->crtc_htotal / 2;
7723 if (vsyncshift < 0)
7724 vsyncshift += adjusted_mode->crtc_htotal;
7725 }
7726
7727 if (INTEL_INFO(dev)->gen > 3)
7728 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7729
7730 I915_WRITE(HTOTAL(cpu_transcoder),
7731 (adjusted_mode->crtc_hdisplay - 1) |
7732 ((adjusted_mode->crtc_htotal - 1) << 16));
7733 I915_WRITE(HBLANK(cpu_transcoder),
7734 (adjusted_mode->crtc_hblank_start - 1) |
7735 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7736 I915_WRITE(HSYNC(cpu_transcoder),
7737 (adjusted_mode->crtc_hsync_start - 1) |
7738 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7739
7740 I915_WRITE(VTOTAL(cpu_transcoder),
7741 (adjusted_mode->crtc_vdisplay - 1) |
7742 ((crtc_vtotal - 1) << 16));
7743 I915_WRITE(VBLANK(cpu_transcoder),
7744 (adjusted_mode->crtc_vblank_start - 1) |
7745 ((crtc_vblank_end - 1) << 16));
7746 I915_WRITE(VSYNC(cpu_transcoder),
7747 (adjusted_mode->crtc_vsync_start - 1) |
7748 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7749
7750 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7751 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7752 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7753 * bits. */
7754 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7755 (pipe == PIPE_B || pipe == PIPE_C))
7756 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7757
7758 /* pipesrc controls the size that is scaled from, which should
7759 * always be the user's requested size.
7760 */
7761 I915_WRITE(PIPESRC(pipe),
7762 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7763 (intel_crtc->config->pipe_src_h - 1));
7764 }
7765
intel_get_pipe_timings(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7766 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7767 struct intel_crtc_state *pipe_config)
7768 {
7769 struct drm_device *dev = crtc->base.dev;
7770 struct drm_i915_private *dev_priv = dev->dev_private;
7771 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7772 uint32_t tmp;
7773
7774 tmp = I915_READ(HTOTAL(cpu_transcoder));
7775 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7776 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7777 tmp = I915_READ(HBLANK(cpu_transcoder));
7778 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7779 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7780 tmp = I915_READ(HSYNC(cpu_transcoder));
7781 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7782 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7783
7784 tmp = I915_READ(VTOTAL(cpu_transcoder));
7785 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7786 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7787 tmp = I915_READ(VBLANK(cpu_transcoder));
7788 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7789 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7790 tmp = I915_READ(VSYNC(cpu_transcoder));
7791 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7792 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7793
7794 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7795 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7796 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7797 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7798 }
7799
7800 tmp = I915_READ(PIPESRC(crtc->pipe));
7801 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7802 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7803
7804 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7805 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7806 }
7807
intel_mode_from_pipe_config(struct drm_display_mode * mode,struct intel_crtc_state * pipe_config)7808 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7809 struct intel_crtc_state *pipe_config)
7810 {
7811 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7812 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7813 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7814 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7815
7816 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7817 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7818 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7819 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7820
7821 mode->flags = pipe_config->base.adjusted_mode.flags;
7822 mode->type = DRM_MODE_TYPE_DRIVER;
7823
7824 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7825 mode->flags |= pipe_config->base.adjusted_mode.flags;
7826
7827 mode->hsync = drm_mode_hsync(mode);
7828 mode->vrefresh = drm_mode_vrefresh(mode);
7829 drm_mode_set_name(mode);
7830 }
7831
i9xx_set_pipeconf(struct intel_crtc * intel_crtc)7832 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7833 {
7834 struct drm_device *dev = intel_crtc->base.dev;
7835 struct drm_i915_private *dev_priv = dev->dev_private;
7836 uint32_t pipeconf;
7837
7838 pipeconf = 0;
7839
7840 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7841 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7842 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7843
7844 if (intel_crtc->config->double_wide)
7845 pipeconf |= PIPECONF_DOUBLE_WIDE;
7846
7847 /* only g4x and later have fancy bpc/dither controls */
7848 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7849 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7850 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7851 pipeconf |= PIPECONF_DITHER_EN |
7852 PIPECONF_DITHER_TYPE_SP;
7853
7854 switch (intel_crtc->config->pipe_bpp) {
7855 case 18:
7856 pipeconf |= PIPECONF_6BPC;
7857 break;
7858 case 24:
7859 pipeconf |= PIPECONF_8BPC;
7860 break;
7861 case 30:
7862 pipeconf |= PIPECONF_10BPC;
7863 break;
7864 default:
7865 /* Case prevented by intel_choose_pipe_bpp_dither. */
7866 BUG();
7867 }
7868 }
7869
7870 if (HAS_PIPE_CXSR(dev)) {
7871 if (intel_crtc->lowfreq_avail) {
7872 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7873 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7874 } else {
7875 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7876 }
7877 }
7878
7879 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7880 if (INTEL_INFO(dev)->gen < 4 ||
7881 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7882 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7883 else
7884 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7885 } else
7886 pipeconf |= PIPECONF_PROGRESSIVE;
7887
7888 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7889 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7890
7891 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7892 POSTING_READ(PIPECONF(intel_crtc->pipe));
7893 }
7894
i9xx_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)7895 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7896 struct intel_crtc_state *crtc_state)
7897 {
7898 struct drm_device *dev = crtc->base.dev;
7899 struct drm_i915_private *dev_priv = dev->dev_private;
7900 int refclk, num_connectors = 0;
7901 intel_clock_t clock;
7902 bool ok;
7903 bool is_dsi = false;
7904 struct intel_encoder *encoder;
7905 const intel_limit_t *limit;
7906 struct drm_atomic_state *state = crtc_state->base.state;
7907 struct drm_connector *connector;
7908 struct drm_connector_state *connector_state;
7909 int i;
7910
7911 memset(&crtc_state->dpll_hw_state, 0,
7912 sizeof(crtc_state->dpll_hw_state));
7913
7914 for_each_connector_in_state(state, connector, connector_state, i) {
7915 if (connector_state->crtc != &crtc->base)
7916 continue;
7917
7918 encoder = to_intel_encoder(connector_state->best_encoder);
7919
7920 switch (encoder->type) {
7921 case INTEL_OUTPUT_DSI:
7922 is_dsi = true;
7923 break;
7924 default:
7925 break;
7926 }
7927
7928 num_connectors++;
7929 }
7930
7931 if (is_dsi)
7932 return 0;
7933
7934 if (!crtc_state->clock_set) {
7935 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7936
7937 /*
7938 * Returns a set of divisors for the desired target clock with
7939 * the given refclk, or FALSE. The returned values represent
7940 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7941 * 2) / p1 / p2.
7942 */
7943 limit = intel_limit(crtc_state, refclk);
7944 ok = dev_priv->display.find_dpll(limit, crtc_state,
7945 crtc_state->port_clock,
7946 refclk, NULL, &clock);
7947 if (!ok) {
7948 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7949 return -EINVAL;
7950 }
7951
7952 /* Compat-code for transition, will disappear. */
7953 crtc_state->dpll.n = clock.n;
7954 crtc_state->dpll.m1 = clock.m1;
7955 crtc_state->dpll.m2 = clock.m2;
7956 crtc_state->dpll.p1 = clock.p1;
7957 crtc_state->dpll.p2 = clock.p2;
7958 }
7959
7960 if (IS_GEN2(dev)) {
7961 i8xx_compute_dpll(crtc, crtc_state, NULL,
7962 num_connectors);
7963 } else if (IS_CHERRYVIEW(dev)) {
7964 chv_compute_dpll(crtc, crtc_state);
7965 } else if (IS_VALLEYVIEW(dev)) {
7966 vlv_compute_dpll(crtc, crtc_state);
7967 } else {
7968 i9xx_compute_dpll(crtc, crtc_state, NULL,
7969 num_connectors);
7970 }
7971
7972 return 0;
7973 }
7974
i9xx_get_pfit_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7975 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7976 struct intel_crtc_state *pipe_config)
7977 {
7978 struct drm_device *dev = crtc->base.dev;
7979 struct drm_i915_private *dev_priv = dev->dev_private;
7980 uint32_t tmp;
7981
7982 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7983 return;
7984
7985 tmp = I915_READ(PFIT_CONTROL);
7986 if (!(tmp & PFIT_ENABLE))
7987 return;
7988
7989 /* Check whether the pfit is attached to our pipe. */
7990 if (INTEL_INFO(dev)->gen < 4) {
7991 if (crtc->pipe != PIPE_B)
7992 return;
7993 } else {
7994 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7995 return;
7996 }
7997
7998 pipe_config->gmch_pfit.control = tmp;
7999 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8000 if (INTEL_INFO(dev)->gen < 5)
8001 pipe_config->gmch_pfit.lvds_border_bits =
8002 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
8003 }
8004
vlv_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8005 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8006 struct intel_crtc_state *pipe_config)
8007 {
8008 struct drm_device *dev = crtc->base.dev;
8009 struct drm_i915_private *dev_priv = dev->dev_private;
8010 int pipe = pipe_config->cpu_transcoder;
8011 intel_clock_t clock;
8012 u32 mdiv;
8013 int refclk = 100000;
8014
8015 /* In case of MIPI DPLL will not even be used */
8016 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8017 return;
8018
8019 mutex_lock(&dev_priv->sb_lock);
8020 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8021 mutex_unlock(&dev_priv->sb_lock);
8022
8023 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8024 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8025 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8026 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8027 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8028
8029 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8030 }
8031
8032 static void
i9xx_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)8033 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8034 struct intel_initial_plane_config *plane_config)
8035 {
8036 struct drm_device *dev = crtc->base.dev;
8037 struct drm_i915_private *dev_priv = dev->dev_private;
8038 u32 val, base, offset;
8039 int pipe = crtc->pipe, plane = crtc->plane;
8040 int fourcc, pixel_format;
8041 unsigned int aligned_height;
8042 struct drm_framebuffer *fb;
8043 struct intel_framebuffer *intel_fb;
8044
8045 val = I915_READ(DSPCNTR(plane));
8046 if (!(val & DISPLAY_PLANE_ENABLE))
8047 return;
8048
8049 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8050 if (!intel_fb) {
8051 DRM_DEBUG_KMS("failed to alloc fb\n");
8052 return;
8053 }
8054
8055 fb = &intel_fb->base;
8056
8057 if (INTEL_INFO(dev)->gen >= 4) {
8058 if (val & DISPPLANE_TILED) {
8059 plane_config->tiling = I915_TILING_X;
8060 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8061 }
8062 }
8063
8064 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8065 fourcc = i9xx_format_to_fourcc(pixel_format);
8066 fb->pixel_format = fourcc;
8067 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8068
8069 if (INTEL_INFO(dev)->gen >= 4) {
8070 if (plane_config->tiling)
8071 offset = I915_READ(DSPTILEOFF(plane));
8072 else
8073 offset = I915_READ(DSPLINOFF(plane));
8074 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8075 } else {
8076 base = I915_READ(DSPADDR(plane));
8077 }
8078 plane_config->base = base;
8079
8080 val = I915_READ(PIPESRC(pipe));
8081 fb->width = ((val >> 16) & 0xfff) + 1;
8082 fb->height = ((val >> 0) & 0xfff) + 1;
8083
8084 val = I915_READ(DSPSTRIDE(pipe));
8085 fb->pitches[0] = val & 0xffffffc0;
8086
8087 aligned_height = intel_fb_align_height(dev, fb->height,
8088 fb->pixel_format,
8089 fb->modifier[0]);
8090
8091 plane_config->size = fb->pitches[0] * aligned_height;
8092
8093 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8094 pipe_name(pipe), plane, fb->width, fb->height,
8095 fb->bits_per_pixel, base, fb->pitches[0],
8096 plane_config->size);
8097
8098 plane_config->fb = intel_fb;
8099 }
8100
chv_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8101 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8102 struct intel_crtc_state *pipe_config)
8103 {
8104 struct drm_device *dev = crtc->base.dev;
8105 struct drm_i915_private *dev_priv = dev->dev_private;
8106 int pipe = pipe_config->cpu_transcoder;
8107 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8108 intel_clock_t clock;
8109 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8110 int refclk = 100000;
8111
8112 mutex_lock(&dev_priv->sb_lock);
8113 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8114 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8115 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8116 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8117 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8118 mutex_unlock(&dev_priv->sb_lock);
8119
8120 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8121 clock.m2 = (pll_dw0 & 0xff) << 22;
8122 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8123 clock.m2 |= pll_dw2 & 0x3fffff;
8124 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8125 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8126 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8127
8128 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8129 }
8130
i9xx_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8131 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8132 struct intel_crtc_state *pipe_config)
8133 {
8134 struct drm_device *dev = crtc->base.dev;
8135 struct drm_i915_private *dev_priv = dev->dev_private;
8136 uint32_t tmp;
8137
8138 if (!intel_display_power_is_enabled(dev_priv,
8139 POWER_DOMAIN_PIPE(crtc->pipe)))
8140 return false;
8141
8142 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8143 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8144
8145 tmp = I915_READ(PIPECONF(crtc->pipe));
8146 if (!(tmp & PIPECONF_ENABLE))
8147 return false;
8148
8149 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8150 switch (tmp & PIPECONF_BPC_MASK) {
8151 case PIPECONF_6BPC:
8152 pipe_config->pipe_bpp = 18;
8153 break;
8154 case PIPECONF_8BPC:
8155 pipe_config->pipe_bpp = 24;
8156 break;
8157 case PIPECONF_10BPC:
8158 pipe_config->pipe_bpp = 30;
8159 break;
8160 default:
8161 break;
8162 }
8163 }
8164
8165 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8166 pipe_config->limited_color_range = true;
8167
8168 if (INTEL_INFO(dev)->gen < 4)
8169 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8170
8171 intel_get_pipe_timings(crtc, pipe_config);
8172
8173 i9xx_get_pfit_config(crtc, pipe_config);
8174
8175 if (INTEL_INFO(dev)->gen >= 4) {
8176 tmp = I915_READ(DPLL_MD(crtc->pipe));
8177 pipe_config->pixel_multiplier =
8178 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8179 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8180 pipe_config->dpll_hw_state.dpll_md = tmp;
8181 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8182 tmp = I915_READ(DPLL(crtc->pipe));
8183 pipe_config->pixel_multiplier =
8184 ((tmp & SDVO_MULTIPLIER_MASK)
8185 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8186 } else {
8187 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8188 * port and will be fixed up in the encoder->get_config
8189 * function. */
8190 pipe_config->pixel_multiplier = 1;
8191 }
8192 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8193 if (!IS_VALLEYVIEW(dev)) {
8194 /*
8195 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8196 * on 830. Filter it out here so that we don't
8197 * report errors due to that.
8198 */
8199 if (IS_I830(dev))
8200 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8201
8202 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8203 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8204 } else {
8205 /* Mask out read-only status bits. */
8206 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8207 DPLL_PORTC_READY_MASK |
8208 DPLL_PORTB_READY_MASK);
8209 }
8210
8211 if (IS_CHERRYVIEW(dev))
8212 chv_crtc_clock_get(crtc, pipe_config);
8213 else if (IS_VALLEYVIEW(dev))
8214 vlv_crtc_clock_get(crtc, pipe_config);
8215 else
8216 i9xx_crtc_clock_get(crtc, pipe_config);
8217
8218 /*
8219 * Normally the dotclock is filled in by the encoder .get_config()
8220 * but in case the pipe is enabled w/o any ports we need a sane
8221 * default.
8222 */
8223 pipe_config->base.adjusted_mode.crtc_clock =
8224 pipe_config->port_clock / pipe_config->pixel_multiplier;
8225
8226 return true;
8227 }
8228
ironlake_init_pch_refclk(struct drm_device * dev)8229 static void ironlake_init_pch_refclk(struct drm_device *dev)
8230 {
8231 struct drm_i915_private *dev_priv = dev->dev_private;
8232 struct intel_encoder *encoder;
8233 int i;
8234 u32 val, final;
8235 bool has_lvds = false;
8236 bool has_cpu_edp = false;
8237 bool has_panel = false;
8238 bool has_ck505 = false;
8239 bool can_ssc = false;
8240 bool using_ssc_source = false;
8241
8242 /* We need to take the global config into account */
8243 for_each_intel_encoder(dev, encoder) {
8244 switch (encoder->type) {
8245 case INTEL_OUTPUT_LVDS:
8246 has_panel = true;
8247 has_lvds = true;
8248 break;
8249 case INTEL_OUTPUT_EDP:
8250 has_panel = true;
8251 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8252 has_cpu_edp = true;
8253 break;
8254 default:
8255 break;
8256 }
8257 }
8258
8259 if (HAS_PCH_IBX(dev)) {
8260 has_ck505 = dev_priv->vbt.display_clock_mode;
8261 can_ssc = has_ck505;
8262 } else {
8263 has_ck505 = false;
8264 can_ssc = true;
8265 }
8266
8267 /* Check if any DPLLs are using the SSC source */
8268 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8269 u32 temp = I915_READ(PCH_DPLL(i));
8270
8271 if (!(temp & DPLL_VCO_ENABLE))
8272 continue;
8273
8274 if ((temp & PLL_REF_INPUT_MASK) ==
8275 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8276 using_ssc_source = true;
8277 break;
8278 }
8279 }
8280
8281 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8282 has_panel, has_lvds, has_ck505, using_ssc_source);
8283
8284 /* Ironlake: try to setup display ref clock before DPLL
8285 * enabling. This is only under driver's control after
8286 * PCH B stepping, previous chipset stepping should be
8287 * ignoring this setting.
8288 */
8289 val = I915_READ(PCH_DREF_CONTROL);
8290
8291 /* As we must carefully and slowly disable/enable each source in turn,
8292 * compute the final state we want first and check if we need to
8293 * make any changes at all.
8294 */
8295 final = val;
8296 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8297 if (has_ck505)
8298 final |= DREF_NONSPREAD_CK505_ENABLE;
8299 else
8300 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8301
8302 final &= ~DREF_SSC_SOURCE_MASK;
8303 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8304 final &= ~DREF_SSC1_ENABLE;
8305
8306 if (has_panel) {
8307 final |= DREF_SSC_SOURCE_ENABLE;
8308
8309 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8310 final |= DREF_SSC1_ENABLE;
8311
8312 if (has_cpu_edp) {
8313 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8314 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8315 else
8316 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8317 } else
8318 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8319 } else if (using_ssc_source) {
8320 final |= DREF_SSC_SOURCE_ENABLE;
8321 final |= DREF_SSC1_ENABLE;
8322 }
8323
8324 if (final == val)
8325 return;
8326
8327 /* Always enable nonspread source */
8328 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8329
8330 if (has_ck505)
8331 val |= DREF_NONSPREAD_CK505_ENABLE;
8332 else
8333 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8334
8335 if (has_panel) {
8336 val &= ~DREF_SSC_SOURCE_MASK;
8337 val |= DREF_SSC_SOURCE_ENABLE;
8338
8339 /* SSC must be turned on before enabling the CPU output */
8340 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8341 DRM_DEBUG_KMS("Using SSC on panel\n");
8342 val |= DREF_SSC1_ENABLE;
8343 } else
8344 val &= ~DREF_SSC1_ENABLE;
8345
8346 /* Get SSC going before enabling the outputs */
8347 I915_WRITE(PCH_DREF_CONTROL, val);
8348 POSTING_READ(PCH_DREF_CONTROL);
8349 udelay(200);
8350
8351 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8352
8353 /* Enable CPU source on CPU attached eDP */
8354 if (has_cpu_edp) {
8355 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8356 DRM_DEBUG_KMS("Using SSC on eDP\n");
8357 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8358 } else
8359 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8360 } else
8361 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8362
8363 I915_WRITE(PCH_DREF_CONTROL, val);
8364 POSTING_READ(PCH_DREF_CONTROL);
8365 udelay(200);
8366 } else {
8367 DRM_DEBUG_KMS("Disabling CPU source output\n");
8368
8369 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8370
8371 /* Turn off CPU output */
8372 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8373
8374 I915_WRITE(PCH_DREF_CONTROL, val);
8375 POSTING_READ(PCH_DREF_CONTROL);
8376 udelay(200);
8377
8378 if (!using_ssc_source) {
8379 DRM_DEBUG_KMS("Disabling SSC source\n");
8380
8381 /* Turn off the SSC source */
8382 val &= ~DREF_SSC_SOURCE_MASK;
8383 val |= DREF_SSC_SOURCE_DISABLE;
8384
8385 /* Turn off SSC1 */
8386 val &= ~DREF_SSC1_ENABLE;
8387
8388 I915_WRITE(PCH_DREF_CONTROL, val);
8389 POSTING_READ(PCH_DREF_CONTROL);
8390 udelay(200);
8391 }
8392 }
8393
8394 BUG_ON(val != final);
8395 }
8396
lpt_reset_fdi_mphy(struct drm_i915_private * dev_priv)8397 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8398 {
8399 uint32_t tmp;
8400
8401 tmp = I915_READ(SOUTH_CHICKEN2);
8402 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8403 I915_WRITE(SOUTH_CHICKEN2, tmp);
8404
8405 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8406 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8407 DRM_ERROR("FDI mPHY reset assert timeout\n");
8408
8409 tmp = I915_READ(SOUTH_CHICKEN2);
8410 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8411 I915_WRITE(SOUTH_CHICKEN2, tmp);
8412
8413 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8414 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8415 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8416 }
8417
8418 /* WaMPhyProgramming:hsw */
lpt_program_fdi_mphy(struct drm_i915_private * dev_priv)8419 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8420 {
8421 uint32_t tmp;
8422
8423 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8424 tmp &= ~(0xFF << 24);
8425 tmp |= (0x12 << 24);
8426 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8427
8428 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8429 tmp |= (1 << 11);
8430 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8431
8432 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8433 tmp |= (1 << 11);
8434 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8435
8436 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8437 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8438 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8439
8440 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8441 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8442 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8443
8444 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8445 tmp &= ~(7 << 13);
8446 tmp |= (5 << 13);
8447 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8448
8449 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8450 tmp &= ~(7 << 13);
8451 tmp |= (5 << 13);
8452 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8453
8454 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8455 tmp &= ~0xFF;
8456 tmp |= 0x1C;
8457 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8458
8459 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8460 tmp &= ~0xFF;
8461 tmp |= 0x1C;
8462 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8463
8464 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8465 tmp &= ~(0xFF << 16);
8466 tmp |= (0x1C << 16);
8467 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8468
8469 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8470 tmp &= ~(0xFF << 16);
8471 tmp |= (0x1C << 16);
8472 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8473
8474 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8475 tmp |= (1 << 27);
8476 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8477
8478 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8479 tmp |= (1 << 27);
8480 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8481
8482 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8483 tmp &= ~(0xF << 28);
8484 tmp |= (4 << 28);
8485 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8486
8487 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8488 tmp &= ~(0xF << 28);
8489 tmp |= (4 << 28);
8490 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8491 }
8492
8493 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8494 * Programming" based on the parameters passed:
8495 * - Sequence to enable CLKOUT_DP
8496 * - Sequence to enable CLKOUT_DP without spread
8497 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8498 */
lpt_enable_clkout_dp(struct drm_device * dev,bool with_spread,bool with_fdi)8499 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8500 bool with_fdi)
8501 {
8502 struct drm_i915_private *dev_priv = dev->dev_private;
8503 uint32_t reg, tmp;
8504
8505 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8506 with_spread = true;
8507 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8508 with_fdi = false;
8509
8510 mutex_lock(&dev_priv->sb_lock);
8511
8512 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8513 tmp &= ~SBI_SSCCTL_DISABLE;
8514 tmp |= SBI_SSCCTL_PATHALT;
8515 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8516
8517 udelay(24);
8518
8519 if (with_spread) {
8520 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8521 tmp &= ~SBI_SSCCTL_PATHALT;
8522 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8523
8524 if (with_fdi) {
8525 lpt_reset_fdi_mphy(dev_priv);
8526 lpt_program_fdi_mphy(dev_priv);
8527 }
8528 }
8529
8530 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8531 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8532 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8533 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8534
8535 mutex_unlock(&dev_priv->sb_lock);
8536 }
8537
8538 /* Sequence to disable CLKOUT_DP */
lpt_disable_clkout_dp(struct drm_device * dev)8539 static void lpt_disable_clkout_dp(struct drm_device *dev)
8540 {
8541 struct drm_i915_private *dev_priv = dev->dev_private;
8542 uint32_t reg, tmp;
8543
8544 mutex_lock(&dev_priv->sb_lock);
8545
8546 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8547 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8548 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8549 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8550
8551 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8552 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8553 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8554 tmp |= SBI_SSCCTL_PATHALT;
8555 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8556 udelay(32);
8557 }
8558 tmp |= SBI_SSCCTL_DISABLE;
8559 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8560 }
8561
8562 mutex_unlock(&dev_priv->sb_lock);
8563 }
8564
lpt_init_pch_refclk(struct drm_device * dev)8565 static void lpt_init_pch_refclk(struct drm_device *dev)
8566 {
8567 struct intel_encoder *encoder;
8568 bool has_vga = false;
8569
8570 for_each_intel_encoder(dev, encoder) {
8571 switch (encoder->type) {
8572 case INTEL_OUTPUT_ANALOG:
8573 has_vga = true;
8574 break;
8575 default:
8576 break;
8577 }
8578 }
8579
8580 if (has_vga)
8581 lpt_enable_clkout_dp(dev, true, true);
8582 else
8583 lpt_disable_clkout_dp(dev);
8584 }
8585
8586 /*
8587 * Initialize reference clocks when the driver loads
8588 */
intel_init_pch_refclk(struct drm_device * dev)8589 void intel_init_pch_refclk(struct drm_device *dev)
8590 {
8591 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8592 ironlake_init_pch_refclk(dev);
8593 else if (HAS_PCH_LPT(dev))
8594 lpt_init_pch_refclk(dev);
8595 }
8596
ironlake_get_refclk(struct intel_crtc_state * crtc_state)8597 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8598 {
8599 struct drm_device *dev = crtc_state->base.crtc->dev;
8600 struct drm_i915_private *dev_priv = dev->dev_private;
8601 struct drm_atomic_state *state = crtc_state->base.state;
8602 struct drm_connector *connector;
8603 struct drm_connector_state *connector_state;
8604 struct intel_encoder *encoder;
8605 int num_connectors = 0, i;
8606 bool is_lvds = false;
8607
8608 for_each_connector_in_state(state, connector, connector_state, i) {
8609 if (connector_state->crtc != crtc_state->base.crtc)
8610 continue;
8611
8612 encoder = to_intel_encoder(connector_state->best_encoder);
8613
8614 switch (encoder->type) {
8615 case INTEL_OUTPUT_LVDS:
8616 is_lvds = true;
8617 break;
8618 default:
8619 break;
8620 }
8621 num_connectors++;
8622 }
8623
8624 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8625 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8626 dev_priv->vbt.lvds_ssc_freq);
8627 return dev_priv->vbt.lvds_ssc_freq;
8628 }
8629
8630 return 120000;
8631 }
8632
ironlake_set_pipeconf(struct drm_crtc * crtc)8633 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8634 {
8635 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8636 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8637 int pipe = intel_crtc->pipe;
8638 uint32_t val;
8639
8640 val = 0;
8641
8642 switch (intel_crtc->config->pipe_bpp) {
8643 case 18:
8644 val |= PIPECONF_6BPC;
8645 break;
8646 case 24:
8647 val |= PIPECONF_8BPC;
8648 break;
8649 case 30:
8650 val |= PIPECONF_10BPC;
8651 break;
8652 case 36:
8653 val |= PIPECONF_12BPC;
8654 break;
8655 default:
8656 /* Case prevented by intel_choose_pipe_bpp_dither. */
8657 BUG();
8658 }
8659
8660 if (intel_crtc->config->dither)
8661 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8662
8663 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8664 val |= PIPECONF_INTERLACED_ILK;
8665 else
8666 val |= PIPECONF_PROGRESSIVE;
8667
8668 if (intel_crtc->config->limited_color_range)
8669 val |= PIPECONF_COLOR_RANGE_SELECT;
8670
8671 I915_WRITE(PIPECONF(pipe), val);
8672 POSTING_READ(PIPECONF(pipe));
8673 }
8674
8675 /*
8676 * Set up the pipe CSC unit.
8677 *
8678 * Currently only full range RGB to limited range RGB conversion
8679 * is supported, but eventually this should handle various
8680 * RGB<->YCbCr scenarios as well.
8681 */
intel_set_pipe_csc(struct drm_crtc * crtc)8682 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8683 {
8684 struct drm_device *dev = crtc->dev;
8685 struct drm_i915_private *dev_priv = dev->dev_private;
8686 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8687 int pipe = intel_crtc->pipe;
8688 uint16_t coeff = 0x7800; /* 1.0 */
8689
8690 /*
8691 * TODO: Check what kind of values actually come out of the pipe
8692 * with these coeff/postoff values and adjust to get the best
8693 * accuracy. Perhaps we even need to take the bpc value into
8694 * consideration.
8695 */
8696
8697 if (intel_crtc->config->limited_color_range)
8698 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8699
8700 /*
8701 * GY/GU and RY/RU should be the other way around according
8702 * to BSpec, but reality doesn't agree. Just set them up in
8703 * a way that results in the correct picture.
8704 */
8705 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8706 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8707
8708 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8709 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8710
8711 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8712 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8713
8714 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8715 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8716 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8717
8718 if (INTEL_INFO(dev)->gen > 6) {
8719 uint16_t postoff = 0;
8720
8721 if (intel_crtc->config->limited_color_range)
8722 postoff = (16 * (1 << 12) / 255) & 0x1fff;
8723
8724 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8725 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8726 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8727
8728 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8729 } else {
8730 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8731
8732 if (intel_crtc->config->limited_color_range)
8733 mode |= CSC_BLACK_SCREEN_OFFSET;
8734
8735 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8736 }
8737 }
8738
haswell_set_pipeconf(struct drm_crtc * crtc)8739 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8740 {
8741 struct drm_device *dev = crtc->dev;
8742 struct drm_i915_private *dev_priv = dev->dev_private;
8743 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8744 enum pipe pipe = intel_crtc->pipe;
8745 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8746 uint32_t val;
8747
8748 val = 0;
8749
8750 if (IS_HASWELL(dev) && intel_crtc->config->dither)
8751 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8752
8753 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8754 val |= PIPECONF_INTERLACED_ILK;
8755 else
8756 val |= PIPECONF_PROGRESSIVE;
8757
8758 I915_WRITE(PIPECONF(cpu_transcoder), val);
8759 POSTING_READ(PIPECONF(cpu_transcoder));
8760
8761 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8762 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8763
8764 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8765 val = 0;
8766
8767 switch (intel_crtc->config->pipe_bpp) {
8768 case 18:
8769 val |= PIPEMISC_DITHER_6_BPC;
8770 break;
8771 case 24:
8772 val |= PIPEMISC_DITHER_8_BPC;
8773 break;
8774 case 30:
8775 val |= PIPEMISC_DITHER_10_BPC;
8776 break;
8777 case 36:
8778 val |= PIPEMISC_DITHER_12_BPC;
8779 break;
8780 default:
8781 /* Case prevented by pipe_config_set_bpp. */
8782 BUG();
8783 }
8784
8785 if (intel_crtc->config->dither)
8786 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8787
8788 I915_WRITE(PIPEMISC(pipe), val);
8789 }
8790 }
8791
ironlake_compute_clocks(struct drm_crtc * crtc,struct intel_crtc_state * crtc_state,intel_clock_t * clock,bool * has_reduced_clock,intel_clock_t * reduced_clock)8792 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8793 struct intel_crtc_state *crtc_state,
8794 intel_clock_t *clock,
8795 bool *has_reduced_clock,
8796 intel_clock_t *reduced_clock)
8797 {
8798 struct drm_device *dev = crtc->dev;
8799 struct drm_i915_private *dev_priv = dev->dev_private;
8800 int refclk;
8801 const intel_limit_t *limit;
8802 bool ret;
8803
8804 refclk = ironlake_get_refclk(crtc_state);
8805
8806 /*
8807 * Returns a set of divisors for the desired target clock with the given
8808 * refclk, or FALSE. The returned values represent the clock equation:
8809 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8810 */
8811 limit = intel_limit(crtc_state, refclk);
8812 ret = dev_priv->display.find_dpll(limit, crtc_state,
8813 crtc_state->port_clock,
8814 refclk, NULL, clock);
8815 if (!ret)
8816 return false;
8817
8818 return true;
8819 }
8820
ironlake_get_lanes_required(int target_clock,int link_bw,int bpp)8821 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8822 {
8823 /*
8824 * Account for spread spectrum to avoid
8825 * oversubscribing the link. Max center spread
8826 * is 2.5%; use 5% for safety's sake.
8827 */
8828 u32 bps = target_clock * bpp * 21 / 20;
8829 return DIV_ROUND_UP(bps, link_bw * 8);
8830 }
8831
ironlake_needs_fb_cb_tune(struct dpll * dpll,int factor)8832 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8833 {
8834 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8835 }
8836
ironlake_compute_dpll(struct intel_crtc * intel_crtc,struct intel_crtc_state * crtc_state,u32 * fp,intel_clock_t * reduced_clock,u32 * fp2)8837 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8838 struct intel_crtc_state *crtc_state,
8839 u32 *fp,
8840 intel_clock_t *reduced_clock, u32 *fp2)
8841 {
8842 struct drm_crtc *crtc = &intel_crtc->base;
8843 struct drm_device *dev = crtc->dev;
8844 struct drm_i915_private *dev_priv = dev->dev_private;
8845 struct drm_atomic_state *state = crtc_state->base.state;
8846 struct drm_connector *connector;
8847 struct drm_connector_state *connector_state;
8848 struct intel_encoder *encoder;
8849 uint32_t dpll;
8850 int factor, num_connectors = 0, i;
8851 bool is_lvds = false, is_sdvo = false;
8852
8853 for_each_connector_in_state(state, connector, connector_state, i) {
8854 if (connector_state->crtc != crtc_state->base.crtc)
8855 continue;
8856
8857 encoder = to_intel_encoder(connector_state->best_encoder);
8858
8859 switch (encoder->type) {
8860 case INTEL_OUTPUT_LVDS:
8861 is_lvds = true;
8862 break;
8863 case INTEL_OUTPUT_SDVO:
8864 case INTEL_OUTPUT_HDMI:
8865 is_sdvo = true;
8866 break;
8867 default:
8868 break;
8869 }
8870
8871 num_connectors++;
8872 }
8873
8874 /* Enable autotuning of the PLL clock (if permissible) */
8875 factor = 21;
8876 if (is_lvds) {
8877 if ((intel_panel_use_ssc(dev_priv) &&
8878 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8879 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8880 factor = 25;
8881 } else if (crtc_state->sdvo_tv_clock)
8882 factor = 20;
8883
8884 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8885 *fp |= FP_CB_TUNE;
8886
8887 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8888 *fp2 |= FP_CB_TUNE;
8889
8890 dpll = 0;
8891
8892 if (is_lvds)
8893 dpll |= DPLLB_MODE_LVDS;
8894 else
8895 dpll |= DPLLB_MODE_DAC_SERIAL;
8896
8897 dpll |= (crtc_state->pixel_multiplier - 1)
8898 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8899
8900 if (is_sdvo)
8901 dpll |= DPLL_SDVO_HIGH_SPEED;
8902 if (crtc_state->has_dp_encoder)
8903 dpll |= DPLL_SDVO_HIGH_SPEED;
8904
8905 /* compute bitmask from p1 value */
8906 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8907 /* also FPA1 */
8908 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8909
8910 switch (crtc_state->dpll.p2) {
8911 case 5:
8912 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8913 break;
8914 case 7:
8915 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8916 break;
8917 case 10:
8918 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8919 break;
8920 case 14:
8921 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8922 break;
8923 }
8924
8925 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8926 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8927 else
8928 dpll |= PLL_REF_INPUT_DREFCLK;
8929
8930 return dpll | DPLL_VCO_ENABLE;
8931 }
8932
ironlake_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)8933 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8934 struct intel_crtc_state *crtc_state)
8935 {
8936 struct drm_device *dev = crtc->base.dev;
8937 intel_clock_t clock, reduced_clock;
8938 u32 dpll = 0, fp = 0, fp2 = 0;
8939 bool ok, has_reduced_clock = false;
8940 bool is_lvds = false;
8941 struct intel_shared_dpll *pll;
8942
8943 memset(&crtc_state->dpll_hw_state, 0,
8944 sizeof(crtc_state->dpll_hw_state));
8945
8946 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8947
8948 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8949 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8950
8951 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8952 &has_reduced_clock, &reduced_clock);
8953 if (!ok && !crtc_state->clock_set) {
8954 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8955 return -EINVAL;
8956 }
8957 /* Compat-code for transition, will disappear. */
8958 if (!crtc_state->clock_set) {
8959 crtc_state->dpll.n = clock.n;
8960 crtc_state->dpll.m1 = clock.m1;
8961 crtc_state->dpll.m2 = clock.m2;
8962 crtc_state->dpll.p1 = clock.p1;
8963 crtc_state->dpll.p2 = clock.p2;
8964 }
8965
8966 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8967 if (crtc_state->has_pch_encoder) {
8968 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8969 if (has_reduced_clock)
8970 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8971
8972 dpll = ironlake_compute_dpll(crtc, crtc_state,
8973 &fp, &reduced_clock,
8974 has_reduced_clock ? &fp2 : NULL);
8975
8976 crtc_state->dpll_hw_state.dpll = dpll;
8977 crtc_state->dpll_hw_state.fp0 = fp;
8978 if (has_reduced_clock)
8979 crtc_state->dpll_hw_state.fp1 = fp2;
8980 else
8981 crtc_state->dpll_hw_state.fp1 = fp;
8982
8983 pll = intel_get_shared_dpll(crtc, crtc_state);
8984 if (pll == NULL) {
8985 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8986 pipe_name(crtc->pipe));
8987 return -EINVAL;
8988 }
8989 }
8990
8991 if (is_lvds && has_reduced_clock)
8992 crtc->lowfreq_avail = true;
8993 else
8994 crtc->lowfreq_avail = false;
8995
8996 return 0;
8997 }
8998
intel_pch_transcoder_get_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n)8999 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9000 struct intel_link_m_n *m_n)
9001 {
9002 struct drm_device *dev = crtc->base.dev;
9003 struct drm_i915_private *dev_priv = dev->dev_private;
9004 enum pipe pipe = crtc->pipe;
9005
9006 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9007 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9008 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9009 & ~TU_SIZE_MASK;
9010 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9011 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9012 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9013 }
9014
intel_cpu_transcoder_get_m_n(struct intel_crtc * crtc,enum transcoder transcoder,struct intel_link_m_n * m_n,struct intel_link_m_n * m2_n2)9015 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9016 enum transcoder transcoder,
9017 struct intel_link_m_n *m_n,
9018 struct intel_link_m_n *m2_n2)
9019 {
9020 struct drm_device *dev = crtc->base.dev;
9021 struct drm_i915_private *dev_priv = dev->dev_private;
9022 enum pipe pipe = crtc->pipe;
9023
9024 if (INTEL_INFO(dev)->gen >= 5) {
9025 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9026 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9027 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9028 & ~TU_SIZE_MASK;
9029 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9030 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9031 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9032 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9033 * gen < 8) and if DRRS is supported (to make sure the
9034 * registers are not unnecessarily read).
9035 */
9036 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9037 crtc->config->has_drrs) {
9038 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9039 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9040 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9041 & ~TU_SIZE_MASK;
9042 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9043 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9044 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9045 }
9046 } else {
9047 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9048 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9049 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9050 & ~TU_SIZE_MASK;
9051 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9052 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9053 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9054 }
9055 }
9056
intel_dp_get_m_n(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9057 void intel_dp_get_m_n(struct intel_crtc *crtc,
9058 struct intel_crtc_state *pipe_config)
9059 {
9060 if (pipe_config->has_pch_encoder)
9061 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9062 else
9063 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9064 &pipe_config->dp_m_n,
9065 &pipe_config->dp_m2_n2);
9066 }
9067
ironlake_get_fdi_m_n_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9068 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9069 struct intel_crtc_state *pipe_config)
9070 {
9071 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9072 &pipe_config->fdi_m_n, NULL);
9073 }
9074
skylake_get_pfit_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9075 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9076 struct intel_crtc_state *pipe_config)
9077 {
9078 struct drm_device *dev = crtc->base.dev;
9079 struct drm_i915_private *dev_priv = dev->dev_private;
9080 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9081 uint32_t ps_ctrl = 0;
9082 int id = -1;
9083 int i;
9084
9085 /* find scaler attached to this pipe */
9086 for (i = 0; i < crtc->num_scalers; i++) {
9087 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9088 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9089 id = i;
9090 pipe_config->pch_pfit.enabled = true;
9091 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9092 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9093 break;
9094 }
9095 }
9096
9097 scaler_state->scaler_id = id;
9098 if (id >= 0) {
9099 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9100 } else {
9101 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9102 }
9103 }
9104
9105 static void
skylake_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)9106 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9107 struct intel_initial_plane_config *plane_config)
9108 {
9109 struct drm_device *dev = crtc->base.dev;
9110 struct drm_i915_private *dev_priv = dev->dev_private;
9111 u32 val, base, offset, stride_mult, tiling;
9112 int pipe = crtc->pipe;
9113 int fourcc, pixel_format;
9114 unsigned int aligned_height;
9115 struct drm_framebuffer *fb;
9116 struct intel_framebuffer *intel_fb;
9117
9118 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9119 if (!intel_fb) {
9120 DRM_DEBUG_KMS("failed to alloc fb\n");
9121 return;
9122 }
9123
9124 fb = &intel_fb->base;
9125
9126 val = I915_READ(PLANE_CTL(pipe, 0));
9127 if (!(val & PLANE_CTL_ENABLE))
9128 goto error;
9129
9130 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9131 fourcc = skl_format_to_fourcc(pixel_format,
9132 val & PLANE_CTL_ORDER_RGBX,
9133 val & PLANE_CTL_ALPHA_MASK);
9134 fb->pixel_format = fourcc;
9135 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9136
9137 tiling = val & PLANE_CTL_TILED_MASK;
9138 switch (tiling) {
9139 case PLANE_CTL_TILED_LINEAR:
9140 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9141 break;
9142 case PLANE_CTL_TILED_X:
9143 plane_config->tiling = I915_TILING_X;
9144 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9145 break;
9146 case PLANE_CTL_TILED_Y:
9147 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9148 break;
9149 case PLANE_CTL_TILED_YF:
9150 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9151 break;
9152 default:
9153 MISSING_CASE(tiling);
9154 goto error;
9155 }
9156
9157 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9158 plane_config->base = base;
9159
9160 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9161
9162 val = I915_READ(PLANE_SIZE(pipe, 0));
9163 fb->height = ((val >> 16) & 0xfff) + 1;
9164 fb->width = ((val >> 0) & 0x1fff) + 1;
9165
9166 val = I915_READ(PLANE_STRIDE(pipe, 0));
9167 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9168 fb->pixel_format);
9169 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9170
9171 aligned_height = intel_fb_align_height(dev, fb->height,
9172 fb->pixel_format,
9173 fb->modifier[0]);
9174
9175 plane_config->size = fb->pitches[0] * aligned_height;
9176
9177 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9178 pipe_name(pipe), fb->width, fb->height,
9179 fb->bits_per_pixel, base, fb->pitches[0],
9180 plane_config->size);
9181
9182 plane_config->fb = intel_fb;
9183 return;
9184
9185 error:
9186 kfree(fb);
9187 }
9188
ironlake_get_pfit_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9189 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9190 struct intel_crtc_state *pipe_config)
9191 {
9192 struct drm_device *dev = crtc->base.dev;
9193 struct drm_i915_private *dev_priv = dev->dev_private;
9194 uint32_t tmp;
9195
9196 tmp = I915_READ(PF_CTL(crtc->pipe));
9197
9198 if (tmp & PF_ENABLE) {
9199 pipe_config->pch_pfit.enabled = true;
9200 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9201 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9202
9203 /* We currently do not free assignements of panel fitters on
9204 * ivb/hsw (since we don't use the higher upscaling modes which
9205 * differentiates them) so just WARN about this case for now. */
9206 if (IS_GEN7(dev)) {
9207 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9208 PF_PIPE_SEL_IVB(crtc->pipe));
9209 }
9210 }
9211 }
9212
9213 static void
ironlake_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)9214 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9215 struct intel_initial_plane_config *plane_config)
9216 {
9217 struct drm_device *dev = crtc->base.dev;
9218 struct drm_i915_private *dev_priv = dev->dev_private;
9219 u32 val, base, offset;
9220 int pipe = crtc->pipe;
9221 int fourcc, pixel_format;
9222 unsigned int aligned_height;
9223 struct drm_framebuffer *fb;
9224 struct intel_framebuffer *intel_fb;
9225
9226 val = I915_READ(DSPCNTR(pipe));
9227 if (!(val & DISPLAY_PLANE_ENABLE))
9228 return;
9229
9230 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9231 if (!intel_fb) {
9232 DRM_DEBUG_KMS("failed to alloc fb\n");
9233 return;
9234 }
9235
9236 fb = &intel_fb->base;
9237
9238 if (INTEL_INFO(dev)->gen >= 4) {
9239 if (val & DISPPLANE_TILED) {
9240 plane_config->tiling = I915_TILING_X;
9241 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9242 }
9243 }
9244
9245 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9246 fourcc = i9xx_format_to_fourcc(pixel_format);
9247 fb->pixel_format = fourcc;
9248 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9249
9250 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9251 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9252 offset = I915_READ(DSPOFFSET(pipe));
9253 } else {
9254 if (plane_config->tiling)
9255 offset = I915_READ(DSPTILEOFF(pipe));
9256 else
9257 offset = I915_READ(DSPLINOFF(pipe));
9258 }
9259 plane_config->base = base;
9260
9261 val = I915_READ(PIPESRC(pipe));
9262 fb->width = ((val >> 16) & 0xfff) + 1;
9263 fb->height = ((val >> 0) & 0xfff) + 1;
9264
9265 val = I915_READ(DSPSTRIDE(pipe));
9266 fb->pitches[0] = val & 0xffffffc0;
9267
9268 aligned_height = intel_fb_align_height(dev, fb->height,
9269 fb->pixel_format,
9270 fb->modifier[0]);
9271
9272 plane_config->size = fb->pitches[0] * aligned_height;
9273
9274 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9275 pipe_name(pipe), fb->width, fb->height,
9276 fb->bits_per_pixel, base, fb->pitches[0],
9277 plane_config->size);
9278
9279 plane_config->fb = intel_fb;
9280 }
9281
ironlake_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9282 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9283 struct intel_crtc_state *pipe_config)
9284 {
9285 struct drm_device *dev = crtc->base.dev;
9286 struct drm_i915_private *dev_priv = dev->dev_private;
9287 uint32_t tmp;
9288
9289 if (!intel_display_power_is_enabled(dev_priv,
9290 POWER_DOMAIN_PIPE(crtc->pipe)))
9291 return false;
9292
9293 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9294 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9295
9296 tmp = I915_READ(PIPECONF(crtc->pipe));
9297 if (!(tmp & PIPECONF_ENABLE))
9298 return false;
9299
9300 switch (tmp & PIPECONF_BPC_MASK) {
9301 case PIPECONF_6BPC:
9302 pipe_config->pipe_bpp = 18;
9303 break;
9304 case PIPECONF_8BPC:
9305 pipe_config->pipe_bpp = 24;
9306 break;
9307 case PIPECONF_10BPC:
9308 pipe_config->pipe_bpp = 30;
9309 break;
9310 case PIPECONF_12BPC:
9311 pipe_config->pipe_bpp = 36;
9312 break;
9313 default:
9314 break;
9315 }
9316
9317 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9318 pipe_config->limited_color_range = true;
9319
9320 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9321 struct intel_shared_dpll *pll;
9322
9323 pipe_config->has_pch_encoder = true;
9324
9325 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9326 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9327 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9328
9329 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9330
9331 if (HAS_PCH_IBX(dev_priv->dev)) {
9332 pipe_config->shared_dpll =
9333 (enum intel_dpll_id) crtc->pipe;
9334 } else {
9335 tmp = I915_READ(PCH_DPLL_SEL);
9336 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9337 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9338 else
9339 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9340 }
9341
9342 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9343
9344 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9345 &pipe_config->dpll_hw_state));
9346
9347 tmp = pipe_config->dpll_hw_state.dpll;
9348 pipe_config->pixel_multiplier =
9349 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9350 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9351
9352 ironlake_pch_clock_get(crtc, pipe_config);
9353 } else {
9354 pipe_config->pixel_multiplier = 1;
9355 }
9356
9357 intel_get_pipe_timings(crtc, pipe_config);
9358
9359 ironlake_get_pfit_config(crtc, pipe_config);
9360
9361 return true;
9362 }
9363
assert_can_disable_lcpll(struct drm_i915_private * dev_priv)9364 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9365 {
9366 struct drm_device *dev = dev_priv->dev;
9367 struct intel_crtc *crtc;
9368
9369 for_each_intel_crtc(dev, crtc)
9370 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9371 pipe_name(crtc->pipe));
9372
9373 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9374 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9375 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9376 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9377 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9378 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9379 "CPU PWM1 enabled\n");
9380 if (IS_HASWELL(dev))
9381 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9382 "CPU PWM2 enabled\n");
9383 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9384 "PCH PWM1 enabled\n");
9385 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9386 "Utility pin enabled\n");
9387 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9388
9389 /*
9390 * In theory we can still leave IRQs enabled, as long as only the HPD
9391 * interrupts remain enabled. We used to check for that, but since it's
9392 * gen-specific and since we only disable LCPLL after we fully disable
9393 * the interrupts, the check below should be enough.
9394 */
9395 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9396 }
9397
hsw_read_dcomp(struct drm_i915_private * dev_priv)9398 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9399 {
9400 struct drm_device *dev = dev_priv->dev;
9401
9402 if (IS_HASWELL(dev))
9403 return I915_READ(D_COMP_HSW);
9404 else
9405 return I915_READ(D_COMP_BDW);
9406 }
9407
hsw_write_dcomp(struct drm_i915_private * dev_priv,uint32_t val)9408 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9409 {
9410 struct drm_device *dev = dev_priv->dev;
9411
9412 if (IS_HASWELL(dev)) {
9413 mutex_lock(&dev_priv->rps.hw_lock);
9414 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9415 val))
9416 DRM_ERROR("Failed to write to D_COMP\n");
9417 mutex_unlock(&dev_priv->rps.hw_lock);
9418 } else {
9419 I915_WRITE(D_COMP_BDW, val);
9420 POSTING_READ(D_COMP_BDW);
9421 }
9422 }
9423
9424 /*
9425 * This function implements pieces of two sequences from BSpec:
9426 * - Sequence for display software to disable LCPLL
9427 * - Sequence for display software to allow package C8+
9428 * The steps implemented here are just the steps that actually touch the LCPLL
9429 * register. Callers should take care of disabling all the display engine
9430 * functions, doing the mode unset, fixing interrupts, etc.
9431 */
hsw_disable_lcpll(struct drm_i915_private * dev_priv,bool switch_to_fclk,bool allow_power_down)9432 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9433 bool switch_to_fclk, bool allow_power_down)
9434 {
9435 uint32_t val;
9436
9437 assert_can_disable_lcpll(dev_priv);
9438
9439 val = I915_READ(LCPLL_CTL);
9440
9441 if (switch_to_fclk) {
9442 val |= LCPLL_CD_SOURCE_FCLK;
9443 I915_WRITE(LCPLL_CTL, val);
9444
9445 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9446 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9447 DRM_ERROR("Switching to FCLK failed\n");
9448
9449 val = I915_READ(LCPLL_CTL);
9450 }
9451
9452 val |= LCPLL_PLL_DISABLE;
9453 I915_WRITE(LCPLL_CTL, val);
9454 POSTING_READ(LCPLL_CTL);
9455
9456 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9457 DRM_ERROR("LCPLL still locked\n");
9458
9459 val = hsw_read_dcomp(dev_priv);
9460 val |= D_COMP_COMP_DISABLE;
9461 hsw_write_dcomp(dev_priv, val);
9462 ndelay(100);
9463
9464 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9465 1))
9466 DRM_ERROR("D_COMP RCOMP still in progress\n");
9467
9468 if (allow_power_down) {
9469 val = I915_READ(LCPLL_CTL);
9470 val |= LCPLL_POWER_DOWN_ALLOW;
9471 I915_WRITE(LCPLL_CTL, val);
9472 POSTING_READ(LCPLL_CTL);
9473 }
9474 }
9475
9476 /*
9477 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9478 * source.
9479 */
hsw_restore_lcpll(struct drm_i915_private * dev_priv)9480 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9481 {
9482 uint32_t val;
9483
9484 val = I915_READ(LCPLL_CTL);
9485
9486 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9487 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9488 return;
9489
9490 /*
9491 * Make sure we're not on PC8 state before disabling PC8, otherwise
9492 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9493 */
9494 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9495
9496 if (val & LCPLL_POWER_DOWN_ALLOW) {
9497 val &= ~LCPLL_POWER_DOWN_ALLOW;
9498 I915_WRITE(LCPLL_CTL, val);
9499 POSTING_READ(LCPLL_CTL);
9500 }
9501
9502 val = hsw_read_dcomp(dev_priv);
9503 val |= D_COMP_COMP_FORCE;
9504 val &= ~D_COMP_COMP_DISABLE;
9505 hsw_write_dcomp(dev_priv, val);
9506
9507 val = I915_READ(LCPLL_CTL);
9508 val &= ~LCPLL_PLL_DISABLE;
9509 I915_WRITE(LCPLL_CTL, val);
9510
9511 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9512 DRM_ERROR("LCPLL not locked yet\n");
9513
9514 if (val & LCPLL_CD_SOURCE_FCLK) {
9515 val = I915_READ(LCPLL_CTL);
9516 val &= ~LCPLL_CD_SOURCE_FCLK;
9517 I915_WRITE(LCPLL_CTL, val);
9518
9519 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9520 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9521 DRM_ERROR("Switching back to LCPLL failed\n");
9522 }
9523
9524 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9525 intel_update_cdclk(dev_priv->dev);
9526 }
9527
9528 /*
9529 * Package states C8 and deeper are really deep PC states that can only be
9530 * reached when all the devices on the system allow it, so even if the graphics
9531 * device allows PC8+, it doesn't mean the system will actually get to these
9532 * states. Our driver only allows PC8+ when going into runtime PM.
9533 *
9534 * The requirements for PC8+ are that all the outputs are disabled, the power
9535 * well is disabled and most interrupts are disabled, and these are also
9536 * requirements for runtime PM. When these conditions are met, we manually do
9537 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9538 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9539 * hang the machine.
9540 *
9541 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9542 * the state of some registers, so when we come back from PC8+ we need to
9543 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9544 * need to take care of the registers kept by RC6. Notice that this happens even
9545 * if we don't put the device in PCI D3 state (which is what currently happens
9546 * because of the runtime PM support).
9547 *
9548 * For more, read "Display Sequences for Package C8" on the hardware
9549 * documentation.
9550 */
hsw_enable_pc8(struct drm_i915_private * dev_priv)9551 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9552 {
9553 struct drm_device *dev = dev_priv->dev;
9554 uint32_t val;
9555
9556 DRM_DEBUG_KMS("Enabling package C8+\n");
9557
9558 if (HAS_PCH_LPT_LP(dev)) {
9559 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9560 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9561 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9562 }
9563
9564 lpt_disable_clkout_dp(dev);
9565 hsw_disable_lcpll(dev_priv, true, true);
9566 }
9567
hsw_disable_pc8(struct drm_i915_private * dev_priv)9568 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9569 {
9570 struct drm_device *dev = dev_priv->dev;
9571 uint32_t val;
9572
9573 DRM_DEBUG_KMS("Disabling package C8+\n");
9574
9575 hsw_restore_lcpll(dev_priv);
9576 lpt_init_pch_refclk(dev);
9577
9578 if (HAS_PCH_LPT_LP(dev)) {
9579 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9580 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9581 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9582 }
9583
9584 intel_prepare_ddi(dev);
9585 }
9586
broxton_modeset_commit_cdclk(struct drm_atomic_state * old_state)9587 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9588 {
9589 struct drm_device *dev = old_state->dev;
9590 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9591
9592 broxton_set_cdclk(dev, req_cdclk);
9593 }
9594
9595 /* compute the max rate for new configuration */
ilk_max_pixel_rate(struct drm_atomic_state * state)9596 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9597 {
9598 struct intel_crtc *intel_crtc;
9599 struct intel_crtc_state *crtc_state;
9600 int max_pixel_rate = 0;
9601
9602 for_each_intel_crtc(state->dev, intel_crtc) {
9603 int pixel_rate;
9604
9605 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9606 if (IS_ERR(crtc_state))
9607 return PTR_ERR(crtc_state);
9608
9609 if (!crtc_state->base.enable)
9610 continue;
9611
9612 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9613
9614 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9615 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9616 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9617
9618 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9619 }
9620
9621 return max_pixel_rate;
9622 }
9623
broadwell_set_cdclk(struct drm_device * dev,int cdclk)9624 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9625 {
9626 struct drm_i915_private *dev_priv = dev->dev_private;
9627 uint32_t val, data;
9628 int ret;
9629
9630 if (WARN((I915_READ(LCPLL_CTL) &
9631 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9632 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9633 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9634 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9635 "trying to change cdclk frequency with cdclk not enabled\n"))
9636 return;
9637
9638 mutex_lock(&dev_priv->rps.hw_lock);
9639 ret = sandybridge_pcode_write(dev_priv,
9640 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9641 mutex_unlock(&dev_priv->rps.hw_lock);
9642 if (ret) {
9643 DRM_ERROR("failed to inform pcode about cdclk change\n");
9644 return;
9645 }
9646
9647 val = I915_READ(LCPLL_CTL);
9648 val |= LCPLL_CD_SOURCE_FCLK;
9649 I915_WRITE(LCPLL_CTL, val);
9650
9651 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9652 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9653 DRM_ERROR("Switching to FCLK failed\n");
9654
9655 val = I915_READ(LCPLL_CTL);
9656 val &= ~LCPLL_CLK_FREQ_MASK;
9657
9658 switch (cdclk) {
9659 case 450000:
9660 val |= LCPLL_CLK_FREQ_450;
9661 data = 0;
9662 break;
9663 case 540000:
9664 val |= LCPLL_CLK_FREQ_54O_BDW;
9665 data = 1;
9666 break;
9667 case 337500:
9668 val |= LCPLL_CLK_FREQ_337_5_BDW;
9669 data = 2;
9670 break;
9671 case 675000:
9672 val |= LCPLL_CLK_FREQ_675_BDW;
9673 data = 3;
9674 break;
9675 default:
9676 WARN(1, "invalid cdclk frequency\n");
9677 return;
9678 }
9679
9680 I915_WRITE(LCPLL_CTL, val);
9681
9682 val = I915_READ(LCPLL_CTL);
9683 val &= ~LCPLL_CD_SOURCE_FCLK;
9684 I915_WRITE(LCPLL_CTL, val);
9685
9686 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9687 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9688 DRM_ERROR("Switching back to LCPLL failed\n");
9689
9690 mutex_lock(&dev_priv->rps.hw_lock);
9691 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9692 mutex_unlock(&dev_priv->rps.hw_lock);
9693
9694 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
9695
9696 intel_update_cdclk(dev);
9697
9698 WARN(cdclk != dev_priv->cdclk_freq,
9699 "cdclk requested %d kHz but got %d kHz\n",
9700 cdclk, dev_priv->cdclk_freq);
9701 }
9702
broadwell_modeset_calc_cdclk(struct drm_atomic_state * state)9703 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9704 {
9705 struct drm_i915_private *dev_priv = to_i915(state->dev);
9706 int max_pixclk = ilk_max_pixel_rate(state);
9707 int cdclk;
9708
9709 /*
9710 * FIXME should also account for plane ratio
9711 * once 64bpp pixel formats are supported.
9712 */
9713 if (max_pixclk > 540000)
9714 cdclk = 675000;
9715 else if (max_pixclk > 450000)
9716 cdclk = 540000;
9717 else if (max_pixclk > 337500)
9718 cdclk = 450000;
9719 else
9720 cdclk = 337500;
9721
9722 /*
9723 * FIXME move the cdclk caclulation to
9724 * compute_config() so we can fail gracegully.
9725 */
9726 if (cdclk > dev_priv->max_cdclk_freq) {
9727 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9728 cdclk, dev_priv->max_cdclk_freq);
9729 cdclk = dev_priv->max_cdclk_freq;
9730 }
9731
9732 to_intel_atomic_state(state)->cdclk = cdclk;
9733
9734 return 0;
9735 }
9736
broadwell_modeset_commit_cdclk(struct drm_atomic_state * old_state)9737 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9738 {
9739 struct drm_device *dev = old_state->dev;
9740 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9741
9742 broadwell_set_cdclk(dev, req_cdclk);
9743 }
9744
haswell_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9745 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9746 struct intel_crtc_state *crtc_state)
9747 {
9748 if (!intel_ddi_pll_select(crtc, crtc_state))
9749 return -EINVAL;
9750
9751 crtc->lowfreq_avail = false;
9752
9753 return 0;
9754 }
9755
bxt_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)9756 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9757 enum port port,
9758 struct intel_crtc_state *pipe_config)
9759 {
9760 switch (port) {
9761 case PORT_A:
9762 pipe_config->ddi_pll_sel = SKL_DPLL0;
9763 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9764 break;
9765 case PORT_B:
9766 pipe_config->ddi_pll_sel = SKL_DPLL1;
9767 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9768 break;
9769 case PORT_C:
9770 pipe_config->ddi_pll_sel = SKL_DPLL2;
9771 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9772 break;
9773 default:
9774 DRM_ERROR("Incorrect port type\n");
9775 }
9776 }
9777
skylake_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)9778 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9779 enum port port,
9780 struct intel_crtc_state *pipe_config)
9781 {
9782 u32 temp, dpll_ctl1;
9783
9784 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9785 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9786
9787 switch (pipe_config->ddi_pll_sel) {
9788 case SKL_DPLL0:
9789 /*
9790 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9791 * of the shared DPLL framework and thus needs to be read out
9792 * separately
9793 */
9794 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9795 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9796 break;
9797 case SKL_DPLL1:
9798 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9799 break;
9800 case SKL_DPLL2:
9801 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9802 break;
9803 case SKL_DPLL3:
9804 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9805 break;
9806 }
9807 }
9808
haswell_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)9809 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9810 enum port port,
9811 struct intel_crtc_state *pipe_config)
9812 {
9813 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9814
9815 switch (pipe_config->ddi_pll_sel) {
9816 case PORT_CLK_SEL_WRPLL1:
9817 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9818 break;
9819 case PORT_CLK_SEL_WRPLL2:
9820 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9821 break;
9822 case PORT_CLK_SEL_SPLL:
9823 pipe_config->shared_dpll = DPLL_ID_SPLL;
9824 }
9825 }
9826
haswell_get_ddi_port_state(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9827 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9828 struct intel_crtc_state *pipe_config)
9829 {
9830 struct drm_device *dev = crtc->base.dev;
9831 struct drm_i915_private *dev_priv = dev->dev_private;
9832 struct intel_shared_dpll *pll;
9833 enum port port;
9834 uint32_t tmp;
9835
9836 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9837
9838 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9839
9840 if (IS_SKYLAKE(dev))
9841 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9842 else if (IS_BROXTON(dev))
9843 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9844 else
9845 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9846
9847 if (pipe_config->shared_dpll >= 0) {
9848 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9849
9850 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9851 &pipe_config->dpll_hw_state));
9852 }
9853
9854 /*
9855 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9856 * DDI E. So just check whether this pipe is wired to DDI E and whether
9857 * the PCH transcoder is on.
9858 */
9859 if (INTEL_INFO(dev)->gen < 9 &&
9860 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9861 pipe_config->has_pch_encoder = true;
9862
9863 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9864 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9865 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9866
9867 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9868 }
9869 }
9870
haswell_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9871 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9872 struct intel_crtc_state *pipe_config)
9873 {
9874 struct drm_device *dev = crtc->base.dev;
9875 struct drm_i915_private *dev_priv = dev->dev_private;
9876 enum intel_display_power_domain pfit_domain;
9877 uint32_t tmp;
9878
9879 if (!intel_display_power_is_enabled(dev_priv,
9880 POWER_DOMAIN_PIPE(crtc->pipe)))
9881 return false;
9882
9883 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9884 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9885
9886 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9887 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9888 enum pipe trans_edp_pipe;
9889 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9890 default:
9891 WARN(1, "unknown pipe linked to edp transcoder\n");
9892 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9893 case TRANS_DDI_EDP_INPUT_A_ON:
9894 trans_edp_pipe = PIPE_A;
9895 break;
9896 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9897 trans_edp_pipe = PIPE_B;
9898 break;
9899 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9900 trans_edp_pipe = PIPE_C;
9901 break;
9902 }
9903
9904 if (trans_edp_pipe == crtc->pipe)
9905 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9906 }
9907
9908 if (!intel_display_power_is_enabled(dev_priv,
9909 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9910 return false;
9911
9912 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9913 if (!(tmp & PIPECONF_ENABLE))
9914 return false;
9915
9916 haswell_get_ddi_port_state(crtc, pipe_config);
9917
9918 intel_get_pipe_timings(crtc, pipe_config);
9919
9920 if (INTEL_INFO(dev)->gen >= 9) {
9921 skl_init_scalers(dev, crtc, pipe_config);
9922 }
9923
9924 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9925
9926 if (INTEL_INFO(dev)->gen >= 9) {
9927 pipe_config->scaler_state.scaler_id = -1;
9928 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9929 }
9930
9931 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9932 if (INTEL_INFO(dev)->gen >= 9)
9933 skylake_get_pfit_config(crtc, pipe_config);
9934 else
9935 ironlake_get_pfit_config(crtc, pipe_config);
9936 }
9937
9938 if (IS_HASWELL(dev))
9939 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9940 (I915_READ(IPS_CTL) & IPS_ENABLE);
9941
9942 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9943 pipe_config->pixel_multiplier =
9944 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9945 } else {
9946 pipe_config->pixel_multiplier = 1;
9947 }
9948
9949 return true;
9950 }
9951
i845_update_cursor(struct drm_crtc * crtc,u32 base,bool on)9952 static void i845_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
9953 {
9954 struct drm_device *dev = crtc->dev;
9955 struct drm_i915_private *dev_priv = dev->dev_private;
9956 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9957 uint32_t cntl = 0, size = 0;
9958
9959 if (on) {
9960 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9961 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9962 unsigned int stride = roundup_pow_of_two(width) * 4;
9963
9964 switch (stride) {
9965 default:
9966 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9967 width, stride);
9968 stride = 256;
9969 /* fallthrough */
9970 case 256:
9971 case 512:
9972 case 1024:
9973 case 2048:
9974 break;
9975 }
9976
9977 cntl |= CURSOR_ENABLE |
9978 CURSOR_GAMMA_ENABLE |
9979 CURSOR_FORMAT_ARGB |
9980 CURSOR_STRIDE(stride);
9981
9982 size = (height << 12) | width;
9983 }
9984
9985 if (intel_crtc->cursor_cntl != 0 &&
9986 (intel_crtc->cursor_base != base ||
9987 intel_crtc->cursor_size != size ||
9988 intel_crtc->cursor_cntl != cntl)) {
9989 /* On these chipsets we can only modify the base/size/stride
9990 * whilst the cursor is disabled.
9991 */
9992 I915_WRITE(CURCNTR(PIPE_A), 0);
9993 POSTING_READ(CURCNTR(PIPE_A));
9994 intel_crtc->cursor_cntl = 0;
9995 }
9996
9997 if (intel_crtc->cursor_base != base) {
9998 I915_WRITE(CURBASE(PIPE_A), base);
9999 intel_crtc->cursor_base = base;
10000 }
10001
10002 if (intel_crtc->cursor_size != size) {
10003 I915_WRITE(CURSIZE, size);
10004 intel_crtc->cursor_size = size;
10005 }
10006
10007 if (intel_crtc->cursor_cntl != cntl) {
10008 I915_WRITE(CURCNTR(PIPE_A), cntl);
10009 POSTING_READ(CURCNTR(PIPE_A));
10010 intel_crtc->cursor_cntl = cntl;
10011 }
10012 }
10013
i9xx_update_cursor(struct drm_crtc * crtc,u32 base,bool on)10014 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
10015 {
10016 struct drm_device *dev = crtc->dev;
10017 struct drm_i915_private *dev_priv = dev->dev_private;
10018 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10019 int pipe = intel_crtc->pipe;
10020 uint32_t cntl = 0;
10021
10022 if (on) {
10023 cntl = MCURSOR_GAMMA_ENABLE;
10024 switch (intel_crtc->base.cursor->state->crtc_w) {
10025 case 64:
10026 cntl |= CURSOR_MODE_64_ARGB_AX;
10027 break;
10028 case 128:
10029 cntl |= CURSOR_MODE_128_ARGB_AX;
10030 break;
10031 case 256:
10032 cntl |= CURSOR_MODE_256_ARGB_AX;
10033 break;
10034 default:
10035 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
10036 return;
10037 }
10038 cntl |= pipe << 28; /* Connect to correct pipe */
10039
10040 if (HAS_DDI(dev))
10041 cntl |= CURSOR_PIPE_CSC_ENABLE;
10042 }
10043
10044 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
10045 cntl |= CURSOR_ROTATE_180;
10046
10047 if (intel_crtc->cursor_cntl != cntl) {
10048 I915_WRITE(CURCNTR(pipe), cntl);
10049 POSTING_READ(CURCNTR(pipe));
10050 intel_crtc->cursor_cntl = cntl;
10051 }
10052
10053 /* and commit changes on next vblank */
10054 I915_WRITE(CURBASE(pipe), base);
10055 POSTING_READ(CURBASE(pipe));
10056
10057 intel_crtc->cursor_base = base;
10058 }
10059
10060 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
intel_crtc_update_cursor(struct drm_crtc * crtc,bool on)10061 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10062 bool on)
10063 {
10064 struct drm_device *dev = crtc->dev;
10065 struct drm_i915_private *dev_priv = dev->dev_private;
10066 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10067 int pipe = intel_crtc->pipe;
10068 struct drm_plane_state *cursor_state = crtc->cursor->state;
10069 int x = cursor_state->crtc_x;
10070 int y = cursor_state->crtc_y;
10071 u32 base = 0, pos = 0;
10072
10073 base = intel_crtc->cursor_addr;
10074
10075 if (x >= intel_crtc->config->pipe_src_w)
10076 on = false;
10077
10078 if (y >= intel_crtc->config->pipe_src_h)
10079 on = false;
10080
10081 if (x < 0) {
10082 if (x + cursor_state->crtc_w <= 0)
10083 on = false;
10084
10085 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10086 x = -x;
10087 }
10088 pos |= x << CURSOR_X_SHIFT;
10089
10090 if (y < 0) {
10091 if (y + cursor_state->crtc_h <= 0)
10092 on = false;
10093
10094 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10095 y = -y;
10096 }
10097 pos |= y << CURSOR_Y_SHIFT;
10098
10099 I915_WRITE(CURPOS(pipe), pos);
10100
10101 /* ILK+ do this automagically */
10102 if (HAS_GMCH_DISPLAY(dev) &&
10103 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10104 base += (cursor_state->crtc_h *
10105 cursor_state->crtc_w - 1) * 4;
10106 }
10107
10108 if (IS_845G(dev) || IS_I865G(dev))
10109 i845_update_cursor(crtc, base, on);
10110 else
10111 i9xx_update_cursor(crtc, base, on);
10112 }
10113
cursor_size_ok(struct drm_device * dev,uint32_t width,uint32_t height)10114 static bool cursor_size_ok(struct drm_device *dev,
10115 uint32_t width, uint32_t height)
10116 {
10117 if (width == 0 || height == 0)
10118 return false;
10119
10120 /*
10121 * 845g/865g are special in that they are only limited by
10122 * the width of their cursors, the height is arbitrary up to
10123 * the precision of the register. Everything else requires
10124 * square cursors, limited to a few power-of-two sizes.
10125 */
10126 if (IS_845G(dev) || IS_I865G(dev)) {
10127 if ((width & 63) != 0)
10128 return false;
10129
10130 if (width > (IS_845G(dev) ? 64 : 512))
10131 return false;
10132
10133 if (height > 1023)
10134 return false;
10135 } else {
10136 switch (width | height) {
10137 case 256:
10138 case 128:
10139 if (IS_GEN2(dev))
10140 return false;
10141 case 64:
10142 break;
10143 default:
10144 return false;
10145 }
10146 }
10147
10148 return true;
10149 }
10150
intel_crtc_gamma_set(struct drm_crtc * crtc,u16 * red,u16 * green,u16 * blue,uint32_t start,uint32_t size)10151 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10152 u16 *blue, uint32_t start, uint32_t size)
10153 {
10154 int end = (start + size > 256) ? 256 : start + size, i;
10155 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10156
10157 for (i = start; i < end; i++) {
10158 intel_crtc->lut_r[i] = red[i] >> 8;
10159 intel_crtc->lut_g[i] = green[i] >> 8;
10160 intel_crtc->lut_b[i] = blue[i] >> 8;
10161 }
10162
10163 intel_crtc_load_lut(crtc);
10164 }
10165
10166 /* VESA 640x480x72Hz mode to set on the pipe */
10167 static struct drm_display_mode load_detect_mode = {
10168 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10169 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10170 };
10171
10172 struct drm_framebuffer *
__intel_framebuffer_create(struct drm_device * dev,struct drm_mode_fb_cmd2 * mode_cmd,struct drm_i915_gem_object * obj)10173 __intel_framebuffer_create(struct drm_device *dev,
10174 struct drm_mode_fb_cmd2 *mode_cmd,
10175 struct drm_i915_gem_object *obj)
10176 {
10177 struct intel_framebuffer *intel_fb;
10178 int ret;
10179
10180 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10181 if (!intel_fb) {
10182 drm_gem_object_unreference(&obj->base);
10183 return ERR_PTR(-ENOMEM);
10184 }
10185
10186 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10187 if (ret)
10188 goto err;
10189
10190 return &intel_fb->base;
10191 err:
10192 drm_gem_object_unreference(&obj->base);
10193 kfree(intel_fb);
10194
10195 return ERR_PTR(ret);
10196 }
10197
10198 static struct drm_framebuffer *
intel_framebuffer_create(struct drm_device * dev,struct drm_mode_fb_cmd2 * mode_cmd,struct drm_i915_gem_object * obj)10199 intel_framebuffer_create(struct drm_device *dev,
10200 struct drm_mode_fb_cmd2 *mode_cmd,
10201 struct drm_i915_gem_object *obj)
10202 {
10203 struct drm_framebuffer *fb;
10204 int ret;
10205
10206 ret = i915_mutex_lock_interruptible(dev);
10207 if (ret)
10208 return ERR_PTR(ret);
10209 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10210 mutex_unlock(&dev->struct_mutex);
10211
10212 return fb;
10213 }
10214
10215 static u32
intel_framebuffer_pitch_for_width(int width,int bpp)10216 intel_framebuffer_pitch_for_width(int width, int bpp)
10217 {
10218 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10219 return ALIGN(pitch, 64);
10220 }
10221
10222 static u32
intel_framebuffer_size_for_mode(struct drm_display_mode * mode,int bpp)10223 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10224 {
10225 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10226 return PAGE_ALIGN(pitch * mode->vdisplay);
10227 }
10228
10229 static struct drm_framebuffer *
intel_framebuffer_create_for_mode(struct drm_device * dev,struct drm_display_mode * mode,int depth,int bpp)10230 intel_framebuffer_create_for_mode(struct drm_device *dev,
10231 struct drm_display_mode *mode,
10232 int depth, int bpp)
10233 {
10234 struct drm_i915_gem_object *obj;
10235 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10236
10237 obj = i915_gem_alloc_object(dev,
10238 intel_framebuffer_size_for_mode(mode, bpp));
10239 if (obj == NULL)
10240 return ERR_PTR(-ENOMEM);
10241
10242 mode_cmd.width = mode->hdisplay;
10243 mode_cmd.height = mode->vdisplay;
10244 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10245 bpp);
10246 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10247
10248 return intel_framebuffer_create(dev, &mode_cmd, obj);
10249 }
10250
10251 static struct drm_framebuffer *
mode_fits_in_fbdev(struct drm_device * dev,struct drm_display_mode * mode)10252 mode_fits_in_fbdev(struct drm_device *dev,
10253 struct drm_display_mode *mode)
10254 {
10255 #ifdef CONFIG_DRM_FBDEV_EMULATION
10256 struct drm_i915_private *dev_priv = dev->dev_private;
10257 struct drm_i915_gem_object *obj;
10258 struct drm_framebuffer *fb;
10259
10260 if (!dev_priv->fbdev)
10261 return NULL;
10262
10263 if (!dev_priv->fbdev->fb)
10264 return NULL;
10265
10266 obj = dev_priv->fbdev->fb->obj;
10267 BUG_ON(!obj);
10268
10269 fb = &dev_priv->fbdev->fb->base;
10270 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10271 fb->bits_per_pixel))
10272 return NULL;
10273
10274 if (obj->base.size < mode->vdisplay * fb->pitches[0])
10275 return NULL;
10276
10277 return fb;
10278 #else
10279 return NULL;
10280 #endif
10281 }
10282
intel_modeset_setup_plane_state(struct drm_atomic_state * state,struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_framebuffer * fb,int x,int y)10283 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10284 struct drm_crtc *crtc,
10285 struct drm_display_mode *mode,
10286 struct drm_framebuffer *fb,
10287 int x, int y)
10288 {
10289 struct drm_plane_state *plane_state;
10290 int hdisplay, vdisplay;
10291 int ret;
10292
10293 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10294 if (IS_ERR(plane_state))
10295 return PTR_ERR(plane_state);
10296
10297 if (mode)
10298 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10299 else
10300 hdisplay = vdisplay = 0;
10301
10302 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10303 if (ret)
10304 return ret;
10305 drm_atomic_set_fb_for_plane(plane_state, fb);
10306 plane_state->crtc_x = 0;
10307 plane_state->crtc_y = 0;
10308 plane_state->crtc_w = hdisplay;
10309 plane_state->crtc_h = vdisplay;
10310 plane_state->src_x = x << 16;
10311 plane_state->src_y = y << 16;
10312 plane_state->src_w = hdisplay << 16;
10313 plane_state->src_h = vdisplay << 16;
10314
10315 return 0;
10316 }
10317
intel_get_load_detect_pipe(struct drm_connector * connector,struct drm_display_mode * mode,struct intel_load_detect_pipe * old,struct drm_modeset_acquire_ctx * ctx)10318 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10319 struct drm_display_mode *mode,
10320 struct intel_load_detect_pipe *old,
10321 struct drm_modeset_acquire_ctx *ctx)
10322 {
10323 struct intel_crtc *intel_crtc;
10324 struct intel_encoder *intel_encoder =
10325 intel_attached_encoder(connector);
10326 struct drm_crtc *possible_crtc;
10327 struct drm_encoder *encoder = &intel_encoder->base;
10328 struct drm_crtc *crtc = NULL;
10329 struct drm_device *dev = encoder->dev;
10330 struct drm_framebuffer *fb;
10331 struct drm_mode_config *config = &dev->mode_config;
10332 struct drm_atomic_state *state = NULL;
10333 struct drm_connector_state *connector_state;
10334 struct intel_crtc_state *crtc_state;
10335 int ret, i = -1;
10336
10337 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10338 connector->base.id, connector->name,
10339 encoder->base.id, encoder->name);
10340
10341 retry:
10342 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10343 if (ret)
10344 goto fail;
10345
10346 /*
10347 * Algorithm gets a little messy:
10348 *
10349 * - if the connector already has an assigned crtc, use it (but make
10350 * sure it's on first)
10351 *
10352 * - try to find the first unused crtc that can drive this connector,
10353 * and use that if we find one
10354 */
10355
10356 /* See if we already have a CRTC for this connector */
10357 if (encoder->crtc) {
10358 crtc = encoder->crtc;
10359
10360 ret = drm_modeset_lock(&crtc->mutex, ctx);
10361 if (ret)
10362 goto fail;
10363 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10364 if (ret)
10365 goto fail;
10366
10367 old->dpms_mode = connector->dpms;
10368 old->load_detect_temp = false;
10369
10370 /* Make sure the crtc and connector are running */
10371 if (connector->dpms != DRM_MODE_DPMS_ON)
10372 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10373
10374 return true;
10375 }
10376
10377 /* Find an unused one (if possible) */
10378 for_each_crtc(dev, possible_crtc) {
10379 i++;
10380 if (!(encoder->possible_crtcs & (1 << i)))
10381 continue;
10382 if (possible_crtc->state->enable)
10383 continue;
10384
10385 crtc = possible_crtc;
10386 break;
10387 }
10388
10389 /*
10390 * If we didn't find an unused CRTC, don't use any.
10391 */
10392 if (!crtc) {
10393 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10394 goto fail;
10395 }
10396
10397 ret = drm_modeset_lock(&crtc->mutex, ctx);
10398 if (ret)
10399 goto fail;
10400 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10401 if (ret)
10402 goto fail;
10403
10404 intel_crtc = to_intel_crtc(crtc);
10405 old->dpms_mode = connector->dpms;
10406 old->load_detect_temp = true;
10407 old->release_fb = NULL;
10408
10409 state = drm_atomic_state_alloc(dev);
10410 if (!state)
10411 return false;
10412
10413 state->acquire_ctx = ctx;
10414
10415 connector_state = drm_atomic_get_connector_state(state, connector);
10416 if (IS_ERR(connector_state)) {
10417 ret = PTR_ERR(connector_state);
10418 goto fail;
10419 }
10420
10421 connector_state->crtc = crtc;
10422 connector_state->best_encoder = &intel_encoder->base;
10423
10424 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10425 if (IS_ERR(crtc_state)) {
10426 ret = PTR_ERR(crtc_state);
10427 goto fail;
10428 }
10429
10430 crtc_state->base.active = crtc_state->base.enable = true;
10431
10432 if (!mode)
10433 mode = &load_detect_mode;
10434
10435 /* We need a framebuffer large enough to accommodate all accesses
10436 * that the plane may generate whilst we perform load detection.
10437 * We can not rely on the fbcon either being present (we get called
10438 * during its initialisation to detect all boot displays, or it may
10439 * not even exist) or that it is large enough to satisfy the
10440 * requested mode.
10441 */
10442 fb = mode_fits_in_fbdev(dev, mode);
10443 if (fb == NULL) {
10444 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10445 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10446 old->release_fb = fb;
10447 } else
10448 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10449 if (IS_ERR(fb)) {
10450 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10451 goto fail;
10452 }
10453
10454 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10455 if (ret)
10456 goto fail;
10457
10458 drm_mode_copy(&crtc_state->base.mode, mode);
10459
10460 if (drm_atomic_commit(state)) {
10461 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10462 if (old->release_fb)
10463 old->release_fb->funcs->destroy(old->release_fb);
10464 goto fail;
10465 }
10466 crtc->primary->crtc = crtc;
10467
10468 /* let the connector get through one full cycle before testing */
10469 intel_wait_for_vblank(dev, intel_crtc->pipe);
10470 return true;
10471
10472 fail:
10473 drm_atomic_state_free(state);
10474 state = NULL;
10475
10476 if (ret == -EDEADLK) {
10477 drm_modeset_backoff(ctx);
10478 goto retry;
10479 }
10480
10481 return false;
10482 }
10483
intel_release_load_detect_pipe(struct drm_connector * connector,struct intel_load_detect_pipe * old,struct drm_modeset_acquire_ctx * ctx)10484 void intel_release_load_detect_pipe(struct drm_connector *connector,
10485 struct intel_load_detect_pipe *old,
10486 struct drm_modeset_acquire_ctx *ctx)
10487 {
10488 struct drm_device *dev = connector->dev;
10489 struct intel_encoder *intel_encoder =
10490 intel_attached_encoder(connector);
10491 struct drm_encoder *encoder = &intel_encoder->base;
10492 struct drm_crtc *crtc = encoder->crtc;
10493 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10494 struct drm_atomic_state *state;
10495 struct drm_connector_state *connector_state;
10496 struct intel_crtc_state *crtc_state;
10497 int ret;
10498
10499 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10500 connector->base.id, connector->name,
10501 encoder->base.id, encoder->name);
10502
10503 if (old->load_detect_temp) {
10504 state = drm_atomic_state_alloc(dev);
10505 if (!state)
10506 goto fail;
10507
10508 state->acquire_ctx = ctx;
10509
10510 connector_state = drm_atomic_get_connector_state(state, connector);
10511 if (IS_ERR(connector_state))
10512 goto fail;
10513
10514 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10515 if (IS_ERR(crtc_state))
10516 goto fail;
10517
10518 connector_state->best_encoder = NULL;
10519 connector_state->crtc = NULL;
10520
10521 crtc_state->base.enable = crtc_state->base.active = false;
10522
10523 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10524 0, 0);
10525 if (ret)
10526 goto fail;
10527
10528 ret = drm_atomic_commit(state);
10529 if (ret)
10530 goto fail;
10531
10532 if (old->release_fb) {
10533 drm_framebuffer_unregister_private(old->release_fb);
10534 drm_framebuffer_unreference(old->release_fb);
10535 }
10536
10537 return;
10538 }
10539
10540 /* Switch crtc and encoder back off if necessary */
10541 if (old->dpms_mode != DRM_MODE_DPMS_ON)
10542 connector->funcs->dpms(connector, old->dpms_mode);
10543
10544 return;
10545 fail:
10546 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10547 drm_atomic_state_free(state);
10548 }
10549
i9xx_pll_refclk(struct drm_device * dev,const struct intel_crtc_state * pipe_config)10550 static int i9xx_pll_refclk(struct drm_device *dev,
10551 const struct intel_crtc_state *pipe_config)
10552 {
10553 struct drm_i915_private *dev_priv = dev->dev_private;
10554 u32 dpll = pipe_config->dpll_hw_state.dpll;
10555
10556 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10557 return dev_priv->vbt.lvds_ssc_freq;
10558 else if (HAS_PCH_SPLIT(dev))
10559 return 120000;
10560 else if (!IS_GEN2(dev))
10561 return 96000;
10562 else
10563 return 48000;
10564 }
10565
10566 /* Returns the clock of the currently programmed mode of the given pipe. */
i9xx_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)10567 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10568 struct intel_crtc_state *pipe_config)
10569 {
10570 struct drm_device *dev = crtc->base.dev;
10571 struct drm_i915_private *dev_priv = dev->dev_private;
10572 int pipe = pipe_config->cpu_transcoder;
10573 u32 dpll = pipe_config->dpll_hw_state.dpll;
10574 u32 fp;
10575 intel_clock_t clock;
10576 int port_clock;
10577 int refclk = i9xx_pll_refclk(dev, pipe_config);
10578
10579 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10580 fp = pipe_config->dpll_hw_state.fp0;
10581 else
10582 fp = pipe_config->dpll_hw_state.fp1;
10583
10584 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10585 if (IS_PINEVIEW(dev)) {
10586 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10587 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10588 } else {
10589 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10590 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10591 }
10592
10593 if (!IS_GEN2(dev)) {
10594 if (IS_PINEVIEW(dev))
10595 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10596 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10597 else
10598 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10599 DPLL_FPA01_P1_POST_DIV_SHIFT);
10600
10601 switch (dpll & DPLL_MODE_MASK) {
10602 case DPLLB_MODE_DAC_SERIAL:
10603 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10604 5 : 10;
10605 break;
10606 case DPLLB_MODE_LVDS:
10607 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10608 7 : 14;
10609 break;
10610 default:
10611 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10612 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10613 return;
10614 }
10615
10616 if (IS_PINEVIEW(dev))
10617 port_clock = pnv_calc_dpll_params(refclk, &clock);
10618 else
10619 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10620 } else {
10621 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10622 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10623
10624 if (is_lvds) {
10625 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10626 DPLL_FPA01_P1_POST_DIV_SHIFT);
10627
10628 if (lvds & LVDS_CLKB_POWER_UP)
10629 clock.p2 = 7;
10630 else
10631 clock.p2 = 14;
10632 } else {
10633 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10634 clock.p1 = 2;
10635 else {
10636 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10637 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10638 }
10639 if (dpll & PLL_P2_DIVIDE_BY_4)
10640 clock.p2 = 4;
10641 else
10642 clock.p2 = 2;
10643 }
10644
10645 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10646 }
10647
10648 /*
10649 * This value includes pixel_multiplier. We will use
10650 * port_clock to compute adjusted_mode.crtc_clock in the
10651 * encoder's get_config() function.
10652 */
10653 pipe_config->port_clock = port_clock;
10654 }
10655
intel_dotclock_calculate(int link_freq,const struct intel_link_m_n * m_n)10656 int intel_dotclock_calculate(int link_freq,
10657 const struct intel_link_m_n *m_n)
10658 {
10659 /*
10660 * The calculation for the data clock is:
10661 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10662 * But we want to avoid losing precison if possible, so:
10663 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10664 *
10665 * and the link clock is simpler:
10666 * link_clock = (m * link_clock) / n
10667 */
10668
10669 if (!m_n->link_n)
10670 return 0;
10671
10672 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10673 }
10674
ironlake_pch_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)10675 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10676 struct intel_crtc_state *pipe_config)
10677 {
10678 struct drm_device *dev = crtc->base.dev;
10679
10680 /* read out port_clock from the DPLL */
10681 i9xx_crtc_clock_get(crtc, pipe_config);
10682
10683 /*
10684 * This value does not include pixel_multiplier.
10685 * We will check that port_clock and adjusted_mode.crtc_clock
10686 * agree once we know their relationship in the encoder's
10687 * get_config() function.
10688 */
10689 pipe_config->base.adjusted_mode.crtc_clock =
10690 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10691 &pipe_config->fdi_m_n);
10692 }
10693
10694 /** Returns the currently programmed mode of the given pipe. */
intel_crtc_mode_get(struct drm_device * dev,struct drm_crtc * crtc)10695 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10696 struct drm_crtc *crtc)
10697 {
10698 struct drm_i915_private *dev_priv = dev->dev_private;
10699 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10700 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10701 struct drm_display_mode *mode;
10702 struct intel_crtc_state pipe_config;
10703 int htot = I915_READ(HTOTAL(cpu_transcoder));
10704 int hsync = I915_READ(HSYNC(cpu_transcoder));
10705 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10706 int vsync = I915_READ(VSYNC(cpu_transcoder));
10707 enum pipe pipe = intel_crtc->pipe;
10708
10709 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10710 if (!mode)
10711 return NULL;
10712
10713 /*
10714 * Construct a pipe_config sufficient for getting the clock info
10715 * back out of crtc_clock_get.
10716 *
10717 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10718 * to use a real value here instead.
10719 */
10720 pipe_config.cpu_transcoder = (enum transcoder) pipe;
10721 pipe_config.pixel_multiplier = 1;
10722 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10723 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10724 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10725 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10726
10727 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10728 mode->hdisplay = (htot & 0xffff) + 1;
10729 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10730 mode->hsync_start = (hsync & 0xffff) + 1;
10731 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10732 mode->vdisplay = (vtot & 0xffff) + 1;
10733 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10734 mode->vsync_start = (vsync & 0xffff) + 1;
10735 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10736
10737 drm_mode_set_name(mode);
10738
10739 return mode;
10740 }
10741
intel_mark_busy(struct drm_device * dev)10742 void intel_mark_busy(struct drm_device *dev)
10743 {
10744 struct drm_i915_private *dev_priv = dev->dev_private;
10745
10746 if (dev_priv->mm.busy)
10747 return;
10748
10749 intel_runtime_pm_get(dev_priv);
10750
10751 if (NEEDS_RC6_CTX_CORRUPTION_WA(dev_priv))
10752 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
10753
10754 i915_update_gfx_val(dev_priv);
10755 if (INTEL_INFO(dev)->gen >= 6)
10756 gen6_rps_busy(dev_priv);
10757 dev_priv->mm.busy = true;
10758 }
10759
intel_mark_idle(struct drm_device * dev)10760 void intel_mark_idle(struct drm_device *dev)
10761 {
10762 struct drm_i915_private *dev_priv = dev->dev_private;
10763
10764 if (!dev_priv->mm.busy)
10765 return;
10766
10767 dev_priv->mm.busy = false;
10768
10769 if (INTEL_INFO(dev)->gen >= 6)
10770 gen6_rps_idle(dev->dev_private);
10771
10772 if (NEEDS_RC6_CTX_CORRUPTION_WA(dev_priv)) {
10773 i915_rc6_ctx_wa_check(dev_priv);
10774 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
10775 }
10776
10777 intel_runtime_pm_put(dev_priv);
10778 }
10779
intel_crtc_destroy(struct drm_crtc * crtc)10780 static void intel_crtc_destroy(struct drm_crtc *crtc)
10781 {
10782 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10783 struct drm_device *dev = crtc->dev;
10784 struct intel_unpin_work *work;
10785
10786 spin_lock_irq(&dev->event_lock);
10787 work = intel_crtc->unpin_work;
10788 intel_crtc->unpin_work = NULL;
10789 spin_unlock_irq(&dev->event_lock);
10790
10791 if (work) {
10792 cancel_work_sync(&work->work);
10793 kfree(work);
10794 }
10795
10796 drm_crtc_cleanup(crtc);
10797
10798 kfree(intel_crtc);
10799 }
10800
intel_unpin_work_fn(struct work_struct * __work)10801 static void intel_unpin_work_fn(struct work_struct *__work)
10802 {
10803 struct intel_unpin_work *work =
10804 container_of(__work, struct intel_unpin_work, work);
10805 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10806 struct drm_device *dev = crtc->base.dev;
10807 struct drm_plane *primary = crtc->base.primary;
10808
10809 mutex_lock(&dev->struct_mutex);
10810 intel_unpin_fb_obj(work->old_fb, primary->state);
10811 drm_gem_object_unreference(&work->pending_flip_obj->base);
10812
10813 if (work->flip_queued_req)
10814 i915_gem_request_assign(&work->flip_queued_req, NULL);
10815 mutex_unlock(&dev->struct_mutex);
10816
10817 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10818 drm_framebuffer_unreference(work->old_fb);
10819
10820 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10821 atomic_dec(&crtc->unpin_work_count);
10822
10823 kfree(work);
10824 }
10825
do_intel_finish_page_flip(struct drm_device * dev,struct drm_crtc * crtc)10826 static void do_intel_finish_page_flip(struct drm_device *dev,
10827 struct drm_crtc *crtc)
10828 {
10829 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10830 struct intel_unpin_work *work;
10831 unsigned long flags;
10832
10833 /* Ignore early vblank irqs */
10834 if (intel_crtc == NULL)
10835 return;
10836
10837 /*
10838 * This is called both by irq handlers and the reset code (to complete
10839 * lost pageflips) so needs the full irqsave spinlocks.
10840 */
10841 spin_lock_irqsave(&dev->event_lock, flags);
10842 work = intel_crtc->unpin_work;
10843
10844 /* Ensure we don't miss a work->pending update ... */
10845 smp_rmb();
10846
10847 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10848 spin_unlock_irqrestore(&dev->event_lock, flags);
10849 return;
10850 }
10851
10852 page_flip_completed(intel_crtc);
10853
10854 spin_unlock_irqrestore(&dev->event_lock, flags);
10855 }
10856
intel_finish_page_flip(struct drm_device * dev,int pipe)10857 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10858 {
10859 struct drm_i915_private *dev_priv = dev->dev_private;
10860 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10861
10862 do_intel_finish_page_flip(dev, crtc);
10863 }
10864
intel_finish_page_flip_plane(struct drm_device * dev,int plane)10865 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10866 {
10867 struct drm_i915_private *dev_priv = dev->dev_private;
10868 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10869
10870 do_intel_finish_page_flip(dev, crtc);
10871 }
10872
10873 /* Is 'a' after or equal to 'b'? */
g4x_flip_count_after_eq(u32 a,u32 b)10874 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10875 {
10876 return !((a - b) & 0x80000000);
10877 }
10878
page_flip_finished(struct intel_crtc * crtc)10879 static bool page_flip_finished(struct intel_crtc *crtc)
10880 {
10881 struct drm_device *dev = crtc->base.dev;
10882 struct drm_i915_private *dev_priv = dev->dev_private;
10883
10884 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10885 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10886 return true;
10887
10888 /*
10889 * The relevant registers doen't exist on pre-ctg.
10890 * As the flip done interrupt doesn't trigger for mmio
10891 * flips on gmch platforms, a flip count check isn't
10892 * really needed there. But since ctg has the registers,
10893 * include it in the check anyway.
10894 */
10895 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10896 return true;
10897
10898 /*
10899 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10900 * used the same base address. In that case the mmio flip might
10901 * have completed, but the CS hasn't even executed the flip yet.
10902 *
10903 * A flip count check isn't enough as the CS might have updated
10904 * the base address just after start of vblank, but before we
10905 * managed to process the interrupt. This means we'd complete the
10906 * CS flip too soon.
10907 *
10908 * Combining both checks should get us a good enough result. It may
10909 * still happen that the CS flip has been executed, but has not
10910 * yet actually completed. But in case the base address is the same
10911 * anyway, we don't really care.
10912 */
10913 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10914 crtc->unpin_work->gtt_offset &&
10915 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10916 crtc->unpin_work->flip_count);
10917 }
10918
intel_prepare_page_flip(struct drm_device * dev,int plane)10919 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10920 {
10921 struct drm_i915_private *dev_priv = dev->dev_private;
10922 struct intel_crtc *intel_crtc =
10923 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10924 unsigned long flags;
10925
10926
10927 /*
10928 * This is called both by irq handlers and the reset code (to complete
10929 * lost pageflips) so needs the full irqsave spinlocks.
10930 *
10931 * NB: An MMIO update of the plane base pointer will also
10932 * generate a page-flip completion irq, i.e. every modeset
10933 * is also accompanied by a spurious intel_prepare_page_flip().
10934 */
10935 spin_lock_irqsave(&dev->event_lock, flags);
10936 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10937 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10938 spin_unlock_irqrestore(&dev->event_lock, flags);
10939 }
10940
intel_mark_page_flip_active(struct intel_unpin_work * work)10941 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
10942 {
10943 /* Ensure that the work item is consistent when activating it ... */
10944 smp_wmb();
10945 atomic_set(&work->pending, INTEL_FLIP_PENDING);
10946 /* and that it is marked active as soon as the irq could fire. */
10947 smp_wmb();
10948 }
10949
intel_gen2_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)10950 static int intel_gen2_queue_flip(struct drm_device *dev,
10951 struct drm_crtc *crtc,
10952 struct drm_framebuffer *fb,
10953 struct drm_i915_gem_object *obj,
10954 struct drm_i915_gem_request *req,
10955 uint32_t flags)
10956 {
10957 struct intel_engine_cs *ring = req->ring;
10958 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10959 u32 flip_mask;
10960 int ret;
10961
10962 ret = intel_ring_begin(req, 6);
10963 if (ret)
10964 return ret;
10965
10966 /* Can't queue multiple flips, so wait for the previous
10967 * one to finish before executing the next.
10968 */
10969 if (intel_crtc->plane)
10970 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10971 else
10972 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10973 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10974 intel_ring_emit(ring, MI_NOOP);
10975 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10976 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10977 intel_ring_emit(ring, fb->pitches[0]);
10978 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10979 intel_ring_emit(ring, 0); /* aux display base address, unused */
10980
10981 intel_mark_page_flip_active(intel_crtc->unpin_work);
10982 return 0;
10983 }
10984
intel_gen3_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)10985 static int intel_gen3_queue_flip(struct drm_device *dev,
10986 struct drm_crtc *crtc,
10987 struct drm_framebuffer *fb,
10988 struct drm_i915_gem_object *obj,
10989 struct drm_i915_gem_request *req,
10990 uint32_t flags)
10991 {
10992 struct intel_engine_cs *ring = req->ring;
10993 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10994 u32 flip_mask;
10995 int ret;
10996
10997 ret = intel_ring_begin(req, 6);
10998 if (ret)
10999 return ret;
11000
11001 if (intel_crtc->plane)
11002 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11003 else
11004 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11005 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11006 intel_ring_emit(ring, MI_NOOP);
11007 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11008 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11009 intel_ring_emit(ring, fb->pitches[0]);
11010 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11011 intel_ring_emit(ring, MI_NOOP);
11012
11013 intel_mark_page_flip_active(intel_crtc->unpin_work);
11014 return 0;
11015 }
11016
intel_gen4_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)11017 static int intel_gen4_queue_flip(struct drm_device *dev,
11018 struct drm_crtc *crtc,
11019 struct drm_framebuffer *fb,
11020 struct drm_i915_gem_object *obj,
11021 struct drm_i915_gem_request *req,
11022 uint32_t flags)
11023 {
11024 struct intel_engine_cs *ring = req->ring;
11025 struct drm_i915_private *dev_priv = dev->dev_private;
11026 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11027 uint32_t pf, pipesrc;
11028 int ret;
11029
11030 ret = intel_ring_begin(req, 4);
11031 if (ret)
11032 return ret;
11033
11034 /* i965+ uses the linear or tiled offsets from the
11035 * Display Registers (which do not change across a page-flip)
11036 * so we need only reprogram the base address.
11037 */
11038 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11039 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11040 intel_ring_emit(ring, fb->pitches[0]);
11041 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11042 obj->tiling_mode);
11043
11044 /* XXX Enabling the panel-fitter across page-flip is so far
11045 * untested on non-native modes, so ignore it for now.
11046 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11047 */
11048 pf = 0;
11049 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11050 intel_ring_emit(ring, pf | pipesrc);
11051
11052 intel_mark_page_flip_active(intel_crtc->unpin_work);
11053 return 0;
11054 }
11055
intel_gen6_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)11056 static int intel_gen6_queue_flip(struct drm_device *dev,
11057 struct drm_crtc *crtc,
11058 struct drm_framebuffer *fb,
11059 struct drm_i915_gem_object *obj,
11060 struct drm_i915_gem_request *req,
11061 uint32_t flags)
11062 {
11063 struct intel_engine_cs *ring = req->ring;
11064 struct drm_i915_private *dev_priv = dev->dev_private;
11065 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11066 uint32_t pf, pipesrc;
11067 int ret;
11068
11069 ret = intel_ring_begin(req, 4);
11070 if (ret)
11071 return ret;
11072
11073 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11074 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11075 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11076 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11077
11078 /* Contrary to the suggestions in the documentation,
11079 * "Enable Panel Fitter" does not seem to be required when page
11080 * flipping with a non-native mode, and worse causes a normal
11081 * modeset to fail.
11082 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11083 */
11084 pf = 0;
11085 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11086 intel_ring_emit(ring, pf | pipesrc);
11087
11088 intel_mark_page_flip_active(intel_crtc->unpin_work);
11089 return 0;
11090 }
11091
intel_gen7_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)11092 static int intel_gen7_queue_flip(struct drm_device *dev,
11093 struct drm_crtc *crtc,
11094 struct drm_framebuffer *fb,
11095 struct drm_i915_gem_object *obj,
11096 struct drm_i915_gem_request *req,
11097 uint32_t flags)
11098 {
11099 struct intel_engine_cs *ring = req->ring;
11100 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11101 uint32_t plane_bit = 0;
11102 int len, ret;
11103
11104 switch (intel_crtc->plane) {
11105 case PLANE_A:
11106 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11107 break;
11108 case PLANE_B:
11109 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11110 break;
11111 case PLANE_C:
11112 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11113 break;
11114 default:
11115 WARN_ONCE(1, "unknown plane in flip command\n");
11116 return -ENODEV;
11117 }
11118
11119 len = 4;
11120 if (ring->id == RCS) {
11121 len += 6;
11122 /*
11123 * On Gen 8, SRM is now taking an extra dword to accommodate
11124 * 48bits addresses, and we need a NOOP for the batch size to
11125 * stay even.
11126 */
11127 if (IS_GEN8(dev))
11128 len += 2;
11129 }
11130
11131 /*
11132 * BSpec MI_DISPLAY_FLIP for IVB:
11133 * "The full packet must be contained within the same cache line."
11134 *
11135 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11136 * cacheline, if we ever start emitting more commands before
11137 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11138 * then do the cacheline alignment, and finally emit the
11139 * MI_DISPLAY_FLIP.
11140 */
11141 ret = intel_ring_cacheline_align(req);
11142 if (ret)
11143 return ret;
11144
11145 ret = intel_ring_begin(req, len);
11146 if (ret)
11147 return ret;
11148
11149 /* Unmask the flip-done completion message. Note that the bspec says that
11150 * we should do this for both the BCS and RCS, and that we must not unmask
11151 * more than one flip event at any time (or ensure that one flip message
11152 * can be sent by waiting for flip-done prior to queueing new flips).
11153 * Experimentation says that BCS works despite DERRMR masking all
11154 * flip-done completion events and that unmasking all planes at once
11155 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11156 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11157 */
11158 if (ring->id == RCS) {
11159 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11160 intel_ring_emit(ring, DERRMR);
11161 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11162 DERRMR_PIPEB_PRI_FLIP_DONE |
11163 DERRMR_PIPEC_PRI_FLIP_DONE));
11164 if (IS_GEN8(dev))
11165 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11166 MI_SRM_LRM_GLOBAL_GTT);
11167 else
11168 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11169 MI_SRM_LRM_GLOBAL_GTT);
11170 intel_ring_emit(ring, DERRMR);
11171 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11172 if (IS_GEN8(dev)) {
11173 intel_ring_emit(ring, 0);
11174 intel_ring_emit(ring, MI_NOOP);
11175 }
11176 }
11177
11178 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11179 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11180 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11181 intel_ring_emit(ring, (MI_NOOP));
11182
11183 intel_mark_page_flip_active(intel_crtc->unpin_work);
11184 return 0;
11185 }
11186
use_mmio_flip(struct intel_engine_cs * ring,struct drm_i915_gem_object * obj)11187 static bool use_mmio_flip(struct intel_engine_cs *ring,
11188 struct drm_i915_gem_object *obj)
11189 {
11190 /*
11191 * This is not being used for older platforms, because
11192 * non-availability of flip done interrupt forces us to use
11193 * CS flips. Older platforms derive flip done using some clever
11194 * tricks involving the flip_pending status bits and vblank irqs.
11195 * So using MMIO flips there would disrupt this mechanism.
11196 */
11197
11198 if (ring == NULL)
11199 return true;
11200
11201 if (INTEL_INFO(ring->dev)->gen < 5)
11202 return false;
11203
11204 if (i915.use_mmio_flip < 0)
11205 return false;
11206 else if (i915.use_mmio_flip > 0)
11207 return true;
11208 else if (i915.enable_execlists)
11209 return true;
11210 else
11211 return ring != i915_gem_request_get_ring(obj->last_write_req);
11212 }
11213
skl_do_mmio_flip(struct intel_crtc * intel_crtc,struct intel_unpin_work * work)11214 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11215 struct intel_unpin_work *work)
11216 {
11217 struct drm_device *dev = intel_crtc->base.dev;
11218 struct drm_i915_private *dev_priv = dev->dev_private;
11219 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11220 const enum pipe pipe = intel_crtc->pipe;
11221 u32 ctl, stride;
11222
11223 ctl = I915_READ(PLANE_CTL(pipe, 0));
11224 ctl &= ~PLANE_CTL_TILED_MASK;
11225 switch (fb->modifier[0]) {
11226 case DRM_FORMAT_MOD_NONE:
11227 break;
11228 case I915_FORMAT_MOD_X_TILED:
11229 ctl |= PLANE_CTL_TILED_X;
11230 break;
11231 case I915_FORMAT_MOD_Y_TILED:
11232 ctl |= PLANE_CTL_TILED_Y;
11233 break;
11234 case I915_FORMAT_MOD_Yf_TILED:
11235 ctl |= PLANE_CTL_TILED_YF;
11236 break;
11237 default:
11238 MISSING_CASE(fb->modifier[0]);
11239 }
11240
11241 /*
11242 * The stride is either expressed as a multiple of 64 bytes chunks for
11243 * linear buffers or in number of tiles for tiled buffers.
11244 */
11245 stride = fb->pitches[0] /
11246 intel_fb_stride_alignment(dev, fb->modifier[0],
11247 fb->pixel_format);
11248
11249 /*
11250 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11251 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11252 */
11253 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11254 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11255
11256 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11257 POSTING_READ(PLANE_SURF(pipe, 0));
11258 }
11259
ilk_do_mmio_flip(struct intel_crtc * intel_crtc,struct intel_unpin_work * work)11260 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11261 struct intel_unpin_work *work)
11262 {
11263 struct drm_device *dev = intel_crtc->base.dev;
11264 struct drm_i915_private *dev_priv = dev->dev_private;
11265 struct intel_framebuffer *intel_fb =
11266 to_intel_framebuffer(intel_crtc->base.primary->fb);
11267 struct drm_i915_gem_object *obj = intel_fb->obj;
11268 u32 dspcntr;
11269 u32 reg;
11270
11271 reg = DSPCNTR(intel_crtc->plane);
11272 dspcntr = I915_READ(reg);
11273
11274 if (obj->tiling_mode != I915_TILING_NONE)
11275 dspcntr |= DISPPLANE_TILED;
11276 else
11277 dspcntr &= ~DISPPLANE_TILED;
11278
11279 I915_WRITE(reg, dspcntr);
11280
11281 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11282 POSTING_READ(DSPSURF(intel_crtc->plane));
11283 }
11284
11285 /*
11286 * XXX: This is the temporary way to update the plane registers until we get
11287 * around to using the usual plane update functions for MMIO flips
11288 */
intel_do_mmio_flip(struct intel_mmio_flip * mmio_flip)11289 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11290 {
11291 struct intel_crtc *crtc = mmio_flip->crtc;
11292 struct intel_unpin_work *work;
11293
11294 spin_lock_irq(&crtc->base.dev->event_lock);
11295 work = crtc->unpin_work;
11296 spin_unlock_irq(&crtc->base.dev->event_lock);
11297 if (work == NULL)
11298 return;
11299
11300 intel_mark_page_flip_active(work);
11301
11302 intel_pipe_update_start(crtc);
11303
11304 if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11305 skl_do_mmio_flip(crtc, work);
11306 else
11307 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11308 ilk_do_mmio_flip(crtc, work);
11309
11310 intel_pipe_update_end(crtc);
11311 }
11312
intel_mmio_flip_work_func(struct work_struct * work)11313 static void intel_mmio_flip_work_func(struct work_struct *work)
11314 {
11315 struct intel_mmio_flip *mmio_flip =
11316 container_of(work, struct intel_mmio_flip, work);
11317
11318 if (mmio_flip->req) {
11319 WARN_ON(__i915_wait_request(mmio_flip->req,
11320 mmio_flip->crtc->reset_counter,
11321 false, NULL,
11322 &mmio_flip->i915->rps.mmioflips));
11323 i915_gem_request_unreference__unlocked(mmio_flip->req);
11324 }
11325
11326 intel_do_mmio_flip(mmio_flip);
11327 kfree(mmio_flip);
11328 }
11329
intel_queue_mmio_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct intel_engine_cs * ring,uint32_t flags)11330 static int intel_queue_mmio_flip(struct drm_device *dev,
11331 struct drm_crtc *crtc,
11332 struct drm_framebuffer *fb,
11333 struct drm_i915_gem_object *obj,
11334 struct intel_engine_cs *ring,
11335 uint32_t flags)
11336 {
11337 struct intel_mmio_flip *mmio_flip;
11338
11339 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11340 if (mmio_flip == NULL)
11341 return -ENOMEM;
11342
11343 mmio_flip->i915 = to_i915(dev);
11344 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11345 mmio_flip->crtc = to_intel_crtc(crtc);
11346
11347 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11348 schedule_work(&mmio_flip->work);
11349
11350 return 0;
11351 }
11352
intel_default_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)11353 static int intel_default_queue_flip(struct drm_device *dev,
11354 struct drm_crtc *crtc,
11355 struct drm_framebuffer *fb,
11356 struct drm_i915_gem_object *obj,
11357 struct drm_i915_gem_request *req,
11358 uint32_t flags)
11359 {
11360 return -ENODEV;
11361 }
11362
__intel_pageflip_stall_check(struct drm_device * dev,struct drm_crtc * crtc)11363 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11364 struct drm_crtc *crtc)
11365 {
11366 struct drm_i915_private *dev_priv = dev->dev_private;
11367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11368 struct intel_unpin_work *work = intel_crtc->unpin_work;
11369 u32 addr;
11370
11371 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11372 return true;
11373
11374 if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11375 return false;
11376
11377 if (!work->enable_stall_check)
11378 return false;
11379
11380 if (work->flip_ready_vblank == 0) {
11381 if (work->flip_queued_req &&
11382 !i915_gem_request_completed(work->flip_queued_req, true))
11383 return false;
11384
11385 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11386 }
11387
11388 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11389 return false;
11390
11391 /* Potential stall - if we see that the flip has happened,
11392 * assume a missed interrupt. */
11393 if (INTEL_INFO(dev)->gen >= 4)
11394 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11395 else
11396 addr = I915_READ(DSPADDR(intel_crtc->plane));
11397
11398 /* There is a potential issue here with a false positive after a flip
11399 * to the same address. We could address this by checking for a
11400 * non-incrementing frame counter.
11401 */
11402 return addr == work->gtt_offset;
11403 }
11404
intel_check_page_flip(struct drm_device * dev,int pipe)11405 void intel_check_page_flip(struct drm_device *dev, int pipe)
11406 {
11407 struct drm_i915_private *dev_priv = dev->dev_private;
11408 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11409 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11410 struct intel_unpin_work *work;
11411
11412 WARN_ON(!in_interrupt());
11413
11414 if (crtc == NULL)
11415 return;
11416
11417 spin_lock(&dev->event_lock);
11418 work = intel_crtc->unpin_work;
11419 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11420 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11421 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11422 page_flip_completed(intel_crtc);
11423 work = NULL;
11424 }
11425 if (work != NULL &&
11426 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11427 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11428 spin_unlock(&dev->event_lock);
11429 }
11430
intel_crtc_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t page_flip_flags)11431 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11432 struct drm_framebuffer *fb,
11433 struct drm_pending_vblank_event *event,
11434 uint32_t page_flip_flags)
11435 {
11436 struct drm_device *dev = crtc->dev;
11437 struct drm_i915_private *dev_priv = dev->dev_private;
11438 struct drm_framebuffer *old_fb = crtc->primary->fb;
11439 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11440 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11441 struct drm_plane *primary = crtc->primary;
11442 enum pipe pipe = intel_crtc->pipe;
11443 struct intel_unpin_work *work;
11444 struct intel_engine_cs *ring;
11445 bool mmio_flip;
11446 struct drm_i915_gem_request *request = NULL;
11447 int ret;
11448
11449 /*
11450 * drm_mode_page_flip_ioctl() should already catch this, but double
11451 * check to be safe. In the future we may enable pageflipping from
11452 * a disabled primary plane.
11453 */
11454 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11455 return -EBUSY;
11456
11457 /* Can't change pixel format via MI display flips. */
11458 if (fb->pixel_format != crtc->primary->fb->pixel_format)
11459 return -EINVAL;
11460
11461 /*
11462 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11463 * Note that pitch changes could also affect these register.
11464 */
11465 if (INTEL_INFO(dev)->gen > 3 &&
11466 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11467 fb->pitches[0] != crtc->primary->fb->pitches[0]))
11468 return -EINVAL;
11469
11470 if (i915_terminally_wedged(&dev_priv->gpu_error))
11471 goto out_hang;
11472
11473 work = kzalloc(sizeof(*work), GFP_KERNEL);
11474 if (work == NULL)
11475 return -ENOMEM;
11476
11477 work->event = event;
11478 work->crtc = crtc;
11479 work->old_fb = old_fb;
11480 INIT_WORK(&work->work, intel_unpin_work_fn);
11481
11482 ret = drm_crtc_vblank_get(crtc);
11483 if (ret)
11484 goto free_work;
11485
11486 /* We borrow the event spin lock for protecting unpin_work */
11487 spin_lock_irq(&dev->event_lock);
11488 if (intel_crtc->unpin_work) {
11489 /* Before declaring the flip queue wedged, check if
11490 * the hardware completed the operation behind our backs.
11491 */
11492 if (__intel_pageflip_stall_check(dev, crtc)) {
11493 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11494 page_flip_completed(intel_crtc);
11495 } else {
11496 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11497 spin_unlock_irq(&dev->event_lock);
11498
11499 drm_crtc_vblank_put(crtc);
11500 kfree(work);
11501 return -EBUSY;
11502 }
11503 }
11504 intel_crtc->unpin_work = work;
11505 spin_unlock_irq(&dev->event_lock);
11506
11507 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11508 flush_workqueue(dev_priv->wq);
11509
11510 /* Reference the objects for the scheduled work. */
11511 drm_framebuffer_reference(work->old_fb);
11512 drm_gem_object_reference(&obj->base);
11513
11514 crtc->primary->fb = fb;
11515 update_state_fb(crtc->primary);
11516
11517 work->pending_flip_obj = obj;
11518
11519 ret = i915_mutex_lock_interruptible(dev);
11520 if (ret)
11521 goto cleanup;
11522
11523 atomic_inc(&intel_crtc->unpin_work_count);
11524 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11525
11526 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11527 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11528
11529 if (IS_VALLEYVIEW(dev)) {
11530 ring = &dev_priv->ring[BCS];
11531 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11532 /* vlv: DISPLAY_FLIP fails to change tiling */
11533 ring = NULL;
11534 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11535 ring = &dev_priv->ring[BCS];
11536 } else if (INTEL_INFO(dev)->gen >= 7) {
11537 ring = i915_gem_request_get_ring(obj->last_write_req);
11538 if (ring == NULL || ring->id != RCS)
11539 ring = &dev_priv->ring[BCS];
11540 } else {
11541 ring = &dev_priv->ring[RCS];
11542 }
11543
11544 mmio_flip = use_mmio_flip(ring, obj);
11545
11546 /* When using CS flips, we want to emit semaphores between rings.
11547 * However, when using mmio flips we will create a task to do the
11548 * synchronisation, so all we want here is to pin the framebuffer
11549 * into the display plane and skip any waits.
11550 */
11551 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11552 crtc->primary->state,
11553 mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
11554 if (ret)
11555 goto cleanup_pending;
11556
11557 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11558 obj, 0);
11559 work->gtt_offset += intel_crtc->dspaddr_offset;
11560
11561 if (mmio_flip) {
11562 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11563 page_flip_flags);
11564 if (ret)
11565 goto cleanup_unpin;
11566
11567 i915_gem_request_assign(&work->flip_queued_req,
11568 obj->last_write_req);
11569 } else {
11570 if (!request) {
11571 ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11572 if (ret)
11573 goto cleanup_unpin;
11574 }
11575
11576 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11577 page_flip_flags);
11578 if (ret)
11579 goto cleanup_unpin;
11580
11581 i915_gem_request_assign(&work->flip_queued_req, request);
11582 }
11583
11584 if (request)
11585 i915_add_request_no_flush(request);
11586
11587 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11588 work->enable_stall_check = true;
11589
11590 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11591 to_intel_plane(primary)->frontbuffer_bit);
11592 mutex_unlock(&dev->struct_mutex);
11593
11594 intel_fbc_disable_crtc(intel_crtc);
11595 intel_frontbuffer_flip_prepare(dev,
11596 to_intel_plane(primary)->frontbuffer_bit);
11597
11598 trace_i915_flip_request(intel_crtc->plane, obj);
11599
11600 return 0;
11601
11602 cleanup_unpin:
11603 intel_unpin_fb_obj(fb, crtc->primary->state);
11604 cleanup_pending:
11605 if (request)
11606 i915_gem_request_cancel(request);
11607 atomic_dec(&intel_crtc->unpin_work_count);
11608 mutex_unlock(&dev->struct_mutex);
11609 cleanup:
11610 crtc->primary->fb = old_fb;
11611 update_state_fb(crtc->primary);
11612
11613 drm_gem_object_unreference_unlocked(&obj->base);
11614 drm_framebuffer_unreference(work->old_fb);
11615
11616 spin_lock_irq(&dev->event_lock);
11617 intel_crtc->unpin_work = NULL;
11618 spin_unlock_irq(&dev->event_lock);
11619
11620 drm_crtc_vblank_put(crtc);
11621 free_work:
11622 kfree(work);
11623
11624 if (ret == -EIO) {
11625 struct drm_atomic_state *state;
11626 struct drm_plane_state *plane_state;
11627
11628 out_hang:
11629 state = drm_atomic_state_alloc(dev);
11630 if (!state)
11631 return -ENOMEM;
11632 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11633
11634 retry:
11635 plane_state = drm_atomic_get_plane_state(state, primary);
11636 ret = PTR_ERR_OR_ZERO(plane_state);
11637 if (!ret) {
11638 drm_atomic_set_fb_for_plane(plane_state, fb);
11639
11640 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11641 if (!ret)
11642 ret = drm_atomic_commit(state);
11643 }
11644
11645 if (ret == -EDEADLK) {
11646 drm_modeset_backoff(state->acquire_ctx);
11647 drm_atomic_state_clear(state);
11648 goto retry;
11649 }
11650
11651 if (ret)
11652 drm_atomic_state_free(state);
11653
11654 if (ret == 0 && event) {
11655 spin_lock_irq(&dev->event_lock);
11656 drm_send_vblank_event(dev, pipe, event);
11657 spin_unlock_irq(&dev->event_lock);
11658 }
11659 }
11660 return ret;
11661 }
11662
11663
11664 /**
11665 * intel_wm_need_update - Check whether watermarks need updating
11666 * @plane: drm plane
11667 * @state: new plane state
11668 *
11669 * Check current plane state versus the new one to determine whether
11670 * watermarks need to be recalculated.
11671 *
11672 * Returns true or false.
11673 */
intel_wm_need_update(struct drm_plane * plane,struct drm_plane_state * state)11674 static bool intel_wm_need_update(struct drm_plane *plane,
11675 struct drm_plane_state *state)
11676 {
11677 /* Update watermarks on tiling changes. */
11678 if (!plane->state->fb || !state->fb ||
11679 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11680 plane->state->rotation != state->rotation)
11681 return true;
11682
11683 if (plane->state->crtc_w != state->crtc_w)
11684 return true;
11685
11686 return false;
11687 }
11688
intel_plane_atomic_calc_changes(struct drm_crtc_state * crtc_state,struct drm_plane_state * plane_state)11689 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11690 struct drm_plane_state *plane_state)
11691 {
11692 struct drm_crtc *crtc = crtc_state->crtc;
11693 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11694 struct drm_plane *plane = plane_state->plane;
11695 struct drm_device *dev = crtc->dev;
11696 struct drm_i915_private *dev_priv = dev->dev_private;
11697 struct intel_plane_state *old_plane_state =
11698 to_intel_plane_state(plane->state);
11699 int idx = intel_crtc->base.base.id, ret;
11700 int i = drm_plane_index(plane);
11701 bool mode_changed = needs_modeset(crtc_state);
11702 bool was_crtc_enabled = crtc->state->active;
11703 bool is_crtc_enabled = crtc_state->active;
11704
11705 bool turn_off, turn_on, visible, was_visible;
11706 struct drm_framebuffer *fb = plane_state->fb;
11707
11708 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11709 plane->type != DRM_PLANE_TYPE_CURSOR) {
11710 ret = skl_update_scaler_plane(
11711 to_intel_crtc_state(crtc_state),
11712 to_intel_plane_state(plane_state));
11713 if (ret)
11714 return ret;
11715 }
11716
11717 /*
11718 * Disabling a plane is always okay; we just need to update
11719 * fb tracking in a special way since cleanup_fb() won't
11720 * get called by the plane helpers.
11721 */
11722 if (old_plane_state->base.fb && !fb)
11723 intel_crtc->atomic.disabled_planes |= 1 << i;
11724
11725 was_visible = old_plane_state->visible;
11726 visible = to_intel_plane_state(plane_state)->visible;
11727
11728 if (!was_crtc_enabled && WARN_ON(was_visible))
11729 was_visible = false;
11730
11731 if (!is_crtc_enabled && WARN_ON(visible))
11732 visible = false;
11733
11734 if (!was_visible && !visible)
11735 return 0;
11736
11737 turn_off = was_visible && (!visible || mode_changed);
11738 turn_on = visible && (!was_visible || mode_changed);
11739
11740 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11741 plane->base.id, fb ? fb->base.id : -1);
11742
11743 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11744 plane->base.id, was_visible, visible,
11745 turn_off, turn_on, mode_changed);
11746
11747 if (turn_on) {
11748 intel_crtc->atomic.update_wm_pre = true;
11749 /* must disable cxsr around plane enable/disable */
11750 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11751 intel_crtc->atomic.disable_cxsr = true;
11752 /* to potentially re-enable cxsr */
11753 intel_crtc->atomic.wait_vblank = true;
11754 intel_crtc->atomic.update_wm_post = true;
11755 }
11756 } else if (turn_off) {
11757 intel_crtc->atomic.update_wm_post = true;
11758 /* must disable cxsr around plane enable/disable */
11759 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11760 if (is_crtc_enabled)
11761 intel_crtc->atomic.wait_vblank = true;
11762 intel_crtc->atomic.disable_cxsr = true;
11763 }
11764 } else if (intel_wm_need_update(plane, plane_state)) {
11765 intel_crtc->atomic.update_wm_pre = true;
11766 }
11767
11768 if (visible || was_visible)
11769 intel_crtc->atomic.fb_bits |=
11770 to_intel_plane(plane)->frontbuffer_bit;
11771
11772 switch (plane->type) {
11773 case DRM_PLANE_TYPE_PRIMARY:
11774 intel_crtc->atomic.wait_for_flips = true;
11775 intel_crtc->atomic.pre_disable_primary = turn_off;
11776 intel_crtc->atomic.post_enable_primary = turn_on;
11777
11778 if (turn_off) {
11779 /*
11780 * FIXME: Actually if we will still have any other
11781 * plane enabled on the pipe we could let IPS enabled
11782 * still, but for now lets consider that when we make
11783 * primary invisible by setting DSPCNTR to 0 on
11784 * update_primary_plane function IPS needs to be
11785 * disable.
11786 */
11787 intel_crtc->atomic.disable_ips = true;
11788
11789 intel_crtc->atomic.disable_fbc = true;
11790 }
11791
11792 /*
11793 * FBC does not work on some platforms for rotated
11794 * planes, so disable it when rotation is not 0 and
11795 * update it when rotation is set back to 0.
11796 *
11797 * FIXME: This is redundant with the fbc update done in
11798 * the primary plane enable function except that that
11799 * one is done too late. We eventually need to unify
11800 * this.
11801 */
11802
11803 if (visible &&
11804 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11805 dev_priv->fbc.crtc == intel_crtc &&
11806 plane_state->rotation != BIT(DRM_ROTATE_0))
11807 intel_crtc->atomic.disable_fbc = true;
11808
11809 /*
11810 * BDW signals flip done immediately if the plane
11811 * is disabled, even if the plane enable is already
11812 * armed to occur at the next vblank :(
11813 */
11814 if (turn_on && IS_BROADWELL(dev))
11815 intel_crtc->atomic.wait_vblank = true;
11816
11817 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11818 break;
11819 case DRM_PLANE_TYPE_CURSOR:
11820 break;
11821 case DRM_PLANE_TYPE_OVERLAY:
11822 if (turn_off && !mode_changed) {
11823 intel_crtc->atomic.wait_vblank = true;
11824 intel_crtc->atomic.update_sprite_watermarks |=
11825 1 << i;
11826 }
11827 }
11828 return 0;
11829 }
11830
encoders_cloneable(const struct intel_encoder * a,const struct intel_encoder * b)11831 static bool encoders_cloneable(const struct intel_encoder *a,
11832 const struct intel_encoder *b)
11833 {
11834 /* masks could be asymmetric, so check both ways */
11835 return a == b || (a->cloneable & (1 << b->type) &&
11836 b->cloneable & (1 << a->type));
11837 }
11838
check_single_encoder_cloning(struct drm_atomic_state * state,struct intel_crtc * crtc,struct intel_encoder * encoder)11839 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11840 struct intel_crtc *crtc,
11841 struct intel_encoder *encoder)
11842 {
11843 struct intel_encoder *source_encoder;
11844 struct drm_connector *connector;
11845 struct drm_connector_state *connector_state;
11846 int i;
11847
11848 for_each_connector_in_state(state, connector, connector_state, i) {
11849 if (connector_state->crtc != &crtc->base)
11850 continue;
11851
11852 source_encoder =
11853 to_intel_encoder(connector_state->best_encoder);
11854 if (!encoders_cloneable(encoder, source_encoder))
11855 return false;
11856 }
11857
11858 return true;
11859 }
11860
check_encoder_cloning(struct drm_atomic_state * state,struct intel_crtc * crtc)11861 static bool check_encoder_cloning(struct drm_atomic_state *state,
11862 struct intel_crtc *crtc)
11863 {
11864 struct intel_encoder *encoder;
11865 struct drm_connector *connector;
11866 struct drm_connector_state *connector_state;
11867 int i;
11868
11869 for_each_connector_in_state(state, connector, connector_state, i) {
11870 if (connector_state->crtc != &crtc->base)
11871 continue;
11872
11873 encoder = to_intel_encoder(connector_state->best_encoder);
11874 if (!check_single_encoder_cloning(state, crtc, encoder))
11875 return false;
11876 }
11877
11878 return true;
11879 }
11880
intel_crtc_atomic_check(struct drm_crtc * crtc,struct drm_crtc_state * crtc_state)11881 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11882 struct drm_crtc_state *crtc_state)
11883 {
11884 struct drm_device *dev = crtc->dev;
11885 struct drm_i915_private *dev_priv = dev->dev_private;
11886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11887 struct intel_crtc_state *pipe_config =
11888 to_intel_crtc_state(crtc_state);
11889 struct drm_atomic_state *state = crtc_state->state;
11890 int ret;
11891 bool mode_changed = needs_modeset(crtc_state);
11892
11893 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11894 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11895 return -EINVAL;
11896 }
11897
11898 if (mode_changed && !crtc_state->active)
11899 intel_crtc->atomic.update_wm_post = true;
11900
11901 if (mode_changed && crtc_state->enable &&
11902 dev_priv->display.crtc_compute_clock &&
11903 !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11904 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11905 pipe_config);
11906 if (ret)
11907 return ret;
11908 }
11909
11910 ret = 0;
11911 if (INTEL_INFO(dev)->gen >= 9) {
11912 if (mode_changed)
11913 ret = skl_update_scaler_crtc(pipe_config);
11914
11915 if (!ret)
11916 ret = intel_atomic_setup_scalers(dev, intel_crtc,
11917 pipe_config);
11918 }
11919
11920 return ret;
11921 }
11922
11923 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11924 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11925 .load_lut = intel_crtc_load_lut,
11926 .atomic_begin = intel_begin_crtc_commit,
11927 .atomic_flush = intel_finish_crtc_commit,
11928 .atomic_check = intel_crtc_atomic_check,
11929 };
11930
intel_modeset_update_connector_atomic_state(struct drm_device * dev)11931 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11932 {
11933 struct intel_connector *connector;
11934
11935 for_each_intel_connector(dev, connector) {
11936 if (connector->base.encoder) {
11937 connector->base.state->best_encoder =
11938 connector->base.encoder;
11939 connector->base.state->crtc =
11940 connector->base.encoder->crtc;
11941 } else {
11942 connector->base.state->best_encoder = NULL;
11943 connector->base.state->crtc = NULL;
11944 }
11945 }
11946 }
11947
11948 static void
connected_sink_compute_bpp(struct intel_connector * connector,struct intel_crtc_state * pipe_config)11949 connected_sink_compute_bpp(struct intel_connector *connector,
11950 struct intel_crtc_state *pipe_config)
11951 {
11952 int bpp = pipe_config->pipe_bpp;
11953
11954 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11955 connector->base.base.id,
11956 connector->base.name);
11957
11958 /* Don't use an invalid EDID bpc value */
11959 if (connector->base.display_info.bpc &&
11960 connector->base.display_info.bpc * 3 < bpp) {
11961 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11962 bpp, connector->base.display_info.bpc*3);
11963 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11964 }
11965
11966 /* Clamp bpp to 8 on screens without EDID 1.4 */
11967 if (connector->base.display_info.bpc == 0 && bpp > 24) {
11968 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11969 bpp);
11970 pipe_config->pipe_bpp = 24;
11971 }
11972 }
11973
11974 static int
compute_baseline_pipe_bpp(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)11975 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11976 struct intel_crtc_state *pipe_config)
11977 {
11978 struct drm_device *dev = crtc->base.dev;
11979 struct drm_atomic_state *state;
11980 struct drm_connector *connector;
11981 struct drm_connector_state *connector_state;
11982 int bpp, i;
11983
11984 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11985 bpp = 10*3;
11986 else if (INTEL_INFO(dev)->gen >= 5)
11987 bpp = 12*3;
11988 else
11989 bpp = 8*3;
11990
11991
11992 pipe_config->pipe_bpp = bpp;
11993
11994 state = pipe_config->base.state;
11995
11996 /* Clamp display bpp to EDID value */
11997 for_each_connector_in_state(state, connector, connector_state, i) {
11998 if (connector_state->crtc != &crtc->base)
11999 continue;
12000
12001 connected_sink_compute_bpp(to_intel_connector(connector),
12002 pipe_config);
12003 }
12004
12005 return bpp;
12006 }
12007
intel_dump_crtc_timings(const struct drm_display_mode * mode)12008 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12009 {
12010 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12011 "type: 0x%x flags: 0x%x\n",
12012 mode->crtc_clock,
12013 mode->crtc_hdisplay, mode->crtc_hsync_start,
12014 mode->crtc_hsync_end, mode->crtc_htotal,
12015 mode->crtc_vdisplay, mode->crtc_vsync_start,
12016 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12017 }
12018
intel_dump_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config,const char * context)12019 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12020 struct intel_crtc_state *pipe_config,
12021 const char *context)
12022 {
12023 struct drm_device *dev = crtc->base.dev;
12024 struct drm_plane *plane;
12025 struct intel_plane *intel_plane;
12026 struct intel_plane_state *state;
12027 struct drm_framebuffer *fb;
12028
12029 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12030 context, pipe_config, pipe_name(crtc->pipe));
12031
12032 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
12033 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12034 pipe_config->pipe_bpp, pipe_config->dither);
12035 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12036 pipe_config->has_pch_encoder,
12037 pipe_config->fdi_lanes,
12038 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12039 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12040 pipe_config->fdi_m_n.tu);
12041 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12042 pipe_config->has_dp_encoder,
12043 pipe_config->lane_count,
12044 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12045 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12046 pipe_config->dp_m_n.tu);
12047
12048 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12049 pipe_config->has_dp_encoder,
12050 pipe_config->lane_count,
12051 pipe_config->dp_m2_n2.gmch_m,
12052 pipe_config->dp_m2_n2.gmch_n,
12053 pipe_config->dp_m2_n2.link_m,
12054 pipe_config->dp_m2_n2.link_n,
12055 pipe_config->dp_m2_n2.tu);
12056
12057 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12058 pipe_config->has_audio,
12059 pipe_config->has_infoframe);
12060
12061 DRM_DEBUG_KMS("requested mode:\n");
12062 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12063 DRM_DEBUG_KMS("adjusted mode:\n");
12064 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12065 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12066 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12067 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12068 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12069 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12070 crtc->num_scalers,
12071 pipe_config->scaler_state.scaler_users,
12072 pipe_config->scaler_state.scaler_id);
12073 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12074 pipe_config->gmch_pfit.control,
12075 pipe_config->gmch_pfit.pgm_ratios,
12076 pipe_config->gmch_pfit.lvds_border_bits);
12077 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12078 pipe_config->pch_pfit.pos,
12079 pipe_config->pch_pfit.size,
12080 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12081 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12082 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12083
12084 if (IS_BROXTON(dev)) {
12085 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12086 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12087 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12088 pipe_config->ddi_pll_sel,
12089 pipe_config->dpll_hw_state.ebb0,
12090 pipe_config->dpll_hw_state.ebb4,
12091 pipe_config->dpll_hw_state.pll0,
12092 pipe_config->dpll_hw_state.pll1,
12093 pipe_config->dpll_hw_state.pll2,
12094 pipe_config->dpll_hw_state.pll3,
12095 pipe_config->dpll_hw_state.pll6,
12096 pipe_config->dpll_hw_state.pll8,
12097 pipe_config->dpll_hw_state.pll9,
12098 pipe_config->dpll_hw_state.pll10,
12099 pipe_config->dpll_hw_state.pcsdw12);
12100 } else if (IS_SKYLAKE(dev)) {
12101 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12102 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12103 pipe_config->ddi_pll_sel,
12104 pipe_config->dpll_hw_state.ctrl1,
12105 pipe_config->dpll_hw_state.cfgcr1,
12106 pipe_config->dpll_hw_state.cfgcr2);
12107 } else if (HAS_DDI(dev)) {
12108 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12109 pipe_config->ddi_pll_sel,
12110 pipe_config->dpll_hw_state.wrpll,
12111 pipe_config->dpll_hw_state.spll);
12112 } else {
12113 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12114 "fp0: 0x%x, fp1: 0x%x\n",
12115 pipe_config->dpll_hw_state.dpll,
12116 pipe_config->dpll_hw_state.dpll_md,
12117 pipe_config->dpll_hw_state.fp0,
12118 pipe_config->dpll_hw_state.fp1);
12119 }
12120
12121 DRM_DEBUG_KMS("planes on this crtc\n");
12122 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12123 intel_plane = to_intel_plane(plane);
12124 if (intel_plane->pipe != crtc->pipe)
12125 continue;
12126
12127 state = to_intel_plane_state(plane->state);
12128 fb = state->base.fb;
12129 if (!fb) {
12130 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12131 "disabled, scaler_id = %d\n",
12132 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12133 plane->base.id, intel_plane->pipe,
12134 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12135 drm_plane_index(plane), state->scaler_id);
12136 continue;
12137 }
12138
12139 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12140 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12141 plane->base.id, intel_plane->pipe,
12142 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12143 drm_plane_index(plane));
12144 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12145 fb->base.id, fb->width, fb->height, fb->pixel_format);
12146 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12147 state->scaler_id,
12148 state->src.x1 >> 16, state->src.y1 >> 16,
12149 drm_rect_width(&state->src) >> 16,
12150 drm_rect_height(&state->src) >> 16,
12151 state->dst.x1, state->dst.y1,
12152 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12153 }
12154 }
12155
check_digital_port_conflicts(struct drm_atomic_state * state)12156 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12157 {
12158 struct drm_device *dev = state->dev;
12159 struct drm_connector *connector;
12160 unsigned int used_ports = 0;
12161
12162 /*
12163 * Walk the connector list instead of the encoder
12164 * list to detect the problem on ddi platforms
12165 * where there's just one encoder per digital port.
12166 */
12167 drm_for_each_connector(connector, dev) {
12168 struct drm_connector_state *connector_state;
12169 struct intel_encoder *encoder;
12170
12171 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12172 if (!connector_state)
12173 connector_state = connector->state;
12174
12175 if (!connector_state->best_encoder)
12176 continue;
12177
12178 encoder = to_intel_encoder(connector_state->best_encoder);
12179
12180 WARN_ON(!connector_state->crtc);
12181
12182 switch (encoder->type) {
12183 unsigned int port_mask;
12184 case INTEL_OUTPUT_UNKNOWN:
12185 if (WARN_ON(!HAS_DDI(dev)))
12186 break;
12187 case INTEL_OUTPUT_DISPLAYPORT:
12188 case INTEL_OUTPUT_HDMI:
12189 case INTEL_OUTPUT_EDP:
12190 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12191
12192 /* the same port mustn't appear more than once */
12193 if (used_ports & port_mask)
12194 return false;
12195
12196 used_ports |= port_mask;
12197 default:
12198 break;
12199 }
12200 }
12201
12202 return true;
12203 }
12204
12205 static void
clear_intel_crtc_state(struct intel_crtc_state * crtc_state)12206 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12207 {
12208 struct drm_crtc_state tmp_state;
12209 struct intel_crtc_scaler_state scaler_state;
12210 struct intel_dpll_hw_state dpll_hw_state;
12211 enum intel_dpll_id shared_dpll;
12212 uint32_t ddi_pll_sel;
12213 bool force_thru;
12214
12215 /* FIXME: before the switch to atomic started, a new pipe_config was
12216 * kzalloc'd. Code that depends on any field being zero should be
12217 * fixed, so that the crtc_state can be safely duplicated. For now,
12218 * only fields that are know to not cause problems are preserved. */
12219
12220 tmp_state = crtc_state->base;
12221 scaler_state = crtc_state->scaler_state;
12222 shared_dpll = crtc_state->shared_dpll;
12223 dpll_hw_state = crtc_state->dpll_hw_state;
12224 ddi_pll_sel = crtc_state->ddi_pll_sel;
12225 force_thru = crtc_state->pch_pfit.force_thru;
12226
12227 memset(crtc_state, 0, sizeof *crtc_state);
12228
12229 crtc_state->base = tmp_state;
12230 crtc_state->scaler_state = scaler_state;
12231 crtc_state->shared_dpll = shared_dpll;
12232 crtc_state->dpll_hw_state = dpll_hw_state;
12233 crtc_state->ddi_pll_sel = ddi_pll_sel;
12234 crtc_state->pch_pfit.force_thru = force_thru;
12235 }
12236
12237 static int
intel_modeset_pipe_config(struct drm_crtc * crtc,struct intel_crtc_state * pipe_config)12238 intel_modeset_pipe_config(struct drm_crtc *crtc,
12239 struct intel_crtc_state *pipe_config)
12240 {
12241 struct drm_atomic_state *state = pipe_config->base.state;
12242 struct intel_encoder *encoder;
12243 struct drm_connector *connector;
12244 struct drm_connector_state *connector_state;
12245 int base_bpp, ret = -EINVAL;
12246 int i;
12247 bool retry = true;
12248
12249 clear_intel_crtc_state(pipe_config);
12250
12251 pipe_config->cpu_transcoder =
12252 (enum transcoder) to_intel_crtc(crtc)->pipe;
12253
12254 /*
12255 * Sanitize sync polarity flags based on requested ones. If neither
12256 * positive or negative polarity is requested, treat this as meaning
12257 * negative polarity.
12258 */
12259 if (!(pipe_config->base.adjusted_mode.flags &
12260 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12261 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12262
12263 if (!(pipe_config->base.adjusted_mode.flags &
12264 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12265 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12266
12267 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12268 pipe_config);
12269 if (base_bpp < 0)
12270 goto fail;
12271
12272 /*
12273 * Determine the real pipe dimensions. Note that stereo modes can
12274 * increase the actual pipe size due to the frame doubling and
12275 * insertion of additional space for blanks between the frame. This
12276 * is stored in the crtc timings. We use the requested mode to do this
12277 * computation to clearly distinguish it from the adjusted mode, which
12278 * can be changed by the connectors in the below retry loop.
12279 */
12280 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12281 &pipe_config->pipe_src_w,
12282 &pipe_config->pipe_src_h);
12283
12284 encoder_retry:
12285 /* Ensure the port clock defaults are reset when retrying. */
12286 pipe_config->port_clock = 0;
12287 pipe_config->pixel_multiplier = 1;
12288
12289 /* Fill in default crtc timings, allow encoders to overwrite them. */
12290 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12291 CRTC_STEREO_DOUBLE);
12292
12293 /* Pass our mode to the connectors and the CRTC to give them a chance to
12294 * adjust it according to limitations or connector properties, and also
12295 * a chance to reject the mode entirely.
12296 */
12297 for_each_connector_in_state(state, connector, connector_state, i) {
12298 if (connector_state->crtc != crtc)
12299 continue;
12300
12301 encoder = to_intel_encoder(connector_state->best_encoder);
12302
12303 if (!(encoder->compute_config(encoder, pipe_config))) {
12304 DRM_DEBUG_KMS("Encoder config failure\n");
12305 goto fail;
12306 }
12307 }
12308
12309 /* Set default port clock if not overwritten by the encoder. Needs to be
12310 * done afterwards in case the encoder adjusts the mode. */
12311 if (!pipe_config->port_clock)
12312 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12313 * pipe_config->pixel_multiplier;
12314
12315 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12316 if (ret < 0) {
12317 DRM_DEBUG_KMS("CRTC fixup failed\n");
12318 goto fail;
12319 }
12320
12321 if (ret == RETRY) {
12322 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12323 ret = -EINVAL;
12324 goto fail;
12325 }
12326
12327 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12328 retry = false;
12329 goto encoder_retry;
12330 }
12331
12332 /* Dithering seems to not pass-through bits correctly when it should, so
12333 * only enable it on 6bpc panels. */
12334 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12335 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12336 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12337
12338 fail:
12339 return ret;
12340 }
12341
12342 static void
intel_modeset_update_crtc_state(struct drm_atomic_state * state)12343 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12344 {
12345 struct drm_crtc *crtc;
12346 struct drm_crtc_state *crtc_state;
12347 int i;
12348
12349 /* Double check state. */
12350 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12351 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12352
12353 /* Update hwmode for vblank functions */
12354 if (crtc->state->active)
12355 crtc->hwmode = crtc->state->adjusted_mode;
12356 else
12357 crtc->hwmode.crtc_clock = 0;
12358 }
12359 }
12360
intel_fuzzy_clock_check(int clock1,int clock2)12361 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12362 {
12363 int diff;
12364
12365 if (clock1 == clock2)
12366 return true;
12367
12368 if (!clock1 || !clock2)
12369 return false;
12370
12371 diff = abs(clock1 - clock2);
12372
12373 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12374 return true;
12375
12376 return false;
12377 }
12378
12379 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12380 list_for_each_entry((intel_crtc), \
12381 &(dev)->mode_config.crtc_list, \
12382 base.head) \
12383 if (mask & (1 <<(intel_crtc)->pipe))
12384
12385 static bool
intel_compare_m_n(unsigned int m,unsigned int n,unsigned int m2,unsigned int n2,bool exact)12386 intel_compare_m_n(unsigned int m, unsigned int n,
12387 unsigned int m2, unsigned int n2,
12388 bool exact)
12389 {
12390 if (m == m2 && n == n2)
12391 return true;
12392
12393 if (exact || !m || !n || !m2 || !n2)
12394 return false;
12395
12396 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12397
12398 if (m > m2) {
12399 while (m > m2) {
12400 m2 <<= 1;
12401 n2 <<= 1;
12402 }
12403 } else if (m < m2) {
12404 while (m < m2) {
12405 m <<= 1;
12406 n <<= 1;
12407 }
12408 }
12409
12410 return m == m2 && n == n2;
12411 }
12412
12413 static bool
intel_compare_link_m_n(const struct intel_link_m_n * m_n,struct intel_link_m_n * m2_n2,bool adjust)12414 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12415 struct intel_link_m_n *m2_n2,
12416 bool adjust)
12417 {
12418 if (m_n->tu == m2_n2->tu &&
12419 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12420 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12421 intel_compare_m_n(m_n->link_m, m_n->link_n,
12422 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12423 if (adjust)
12424 *m2_n2 = *m_n;
12425
12426 return true;
12427 }
12428
12429 return false;
12430 }
12431
12432 static bool
intel_pipe_config_compare(struct drm_device * dev,struct intel_crtc_state * current_config,struct intel_crtc_state * pipe_config,bool adjust)12433 intel_pipe_config_compare(struct drm_device *dev,
12434 struct intel_crtc_state *current_config,
12435 struct intel_crtc_state *pipe_config,
12436 bool adjust)
12437 {
12438 bool ret = true;
12439
12440 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12441 do { \
12442 if (!adjust) \
12443 DRM_ERROR(fmt, ##__VA_ARGS__); \
12444 else \
12445 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12446 } while (0)
12447
12448 #define PIPE_CONF_CHECK_X(name) \
12449 if (current_config->name != pipe_config->name) { \
12450 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12451 "(expected 0x%08x, found 0x%08x)\n", \
12452 current_config->name, \
12453 pipe_config->name); \
12454 ret = false; \
12455 }
12456
12457 #define PIPE_CONF_CHECK_I(name) \
12458 if (current_config->name != pipe_config->name) { \
12459 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12460 "(expected %i, found %i)\n", \
12461 current_config->name, \
12462 pipe_config->name); \
12463 ret = false; \
12464 }
12465
12466 #define PIPE_CONF_CHECK_M_N(name) \
12467 if (!intel_compare_link_m_n(¤t_config->name, \
12468 &pipe_config->name,\
12469 adjust)) { \
12470 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12471 "(expected tu %i gmch %i/%i link %i/%i, " \
12472 "found tu %i, gmch %i/%i link %i/%i)\n", \
12473 current_config->name.tu, \
12474 current_config->name.gmch_m, \
12475 current_config->name.gmch_n, \
12476 current_config->name.link_m, \
12477 current_config->name.link_n, \
12478 pipe_config->name.tu, \
12479 pipe_config->name.gmch_m, \
12480 pipe_config->name.gmch_n, \
12481 pipe_config->name.link_m, \
12482 pipe_config->name.link_n); \
12483 ret = false; \
12484 }
12485
12486 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12487 if (!intel_compare_link_m_n(¤t_config->name, \
12488 &pipe_config->name, adjust) && \
12489 !intel_compare_link_m_n(¤t_config->alt_name, \
12490 &pipe_config->name, adjust)) { \
12491 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12492 "(expected tu %i gmch %i/%i link %i/%i, " \
12493 "or tu %i gmch %i/%i link %i/%i, " \
12494 "found tu %i, gmch %i/%i link %i/%i)\n", \
12495 current_config->name.tu, \
12496 current_config->name.gmch_m, \
12497 current_config->name.gmch_n, \
12498 current_config->name.link_m, \
12499 current_config->name.link_n, \
12500 current_config->alt_name.tu, \
12501 current_config->alt_name.gmch_m, \
12502 current_config->alt_name.gmch_n, \
12503 current_config->alt_name.link_m, \
12504 current_config->alt_name.link_n, \
12505 pipe_config->name.tu, \
12506 pipe_config->name.gmch_m, \
12507 pipe_config->name.gmch_n, \
12508 pipe_config->name.link_m, \
12509 pipe_config->name.link_n); \
12510 ret = false; \
12511 }
12512
12513 /* This is required for BDW+ where there is only one set of registers for
12514 * switching between high and low RR.
12515 * This macro can be used whenever a comparison has to be made between one
12516 * hw state and multiple sw state variables.
12517 */
12518 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12519 if ((current_config->name != pipe_config->name) && \
12520 (current_config->alt_name != pipe_config->name)) { \
12521 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12522 "(expected %i or %i, found %i)\n", \
12523 current_config->name, \
12524 current_config->alt_name, \
12525 pipe_config->name); \
12526 ret = false; \
12527 }
12528
12529 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
12530 if ((current_config->name ^ pipe_config->name) & (mask)) { \
12531 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12532 "(expected %i, found %i)\n", \
12533 current_config->name & (mask), \
12534 pipe_config->name & (mask)); \
12535 ret = false; \
12536 }
12537
12538 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12539 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12540 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12541 "(expected %i, found %i)\n", \
12542 current_config->name, \
12543 pipe_config->name); \
12544 ret = false; \
12545 }
12546
12547 #define PIPE_CONF_QUIRK(quirk) \
12548 ((current_config->quirks | pipe_config->quirks) & (quirk))
12549
12550 PIPE_CONF_CHECK_I(cpu_transcoder);
12551
12552 PIPE_CONF_CHECK_I(has_pch_encoder);
12553 PIPE_CONF_CHECK_I(fdi_lanes);
12554 PIPE_CONF_CHECK_M_N(fdi_m_n);
12555
12556 PIPE_CONF_CHECK_I(has_dp_encoder);
12557 PIPE_CONF_CHECK_I(lane_count);
12558
12559 if (INTEL_INFO(dev)->gen < 8) {
12560 PIPE_CONF_CHECK_M_N(dp_m_n);
12561
12562 if (current_config->has_drrs)
12563 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12564 } else
12565 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12566
12567 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12568 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12569 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12570 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12571 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12572 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12573
12574 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12575 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12576 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12577 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12578 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12579 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12580
12581 PIPE_CONF_CHECK_I(pixel_multiplier);
12582 PIPE_CONF_CHECK_I(has_hdmi_sink);
12583 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12584 IS_VALLEYVIEW(dev))
12585 PIPE_CONF_CHECK_I(limited_color_range);
12586 PIPE_CONF_CHECK_I(has_infoframe);
12587
12588 PIPE_CONF_CHECK_I(has_audio);
12589
12590 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12591 DRM_MODE_FLAG_INTERLACE);
12592
12593 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12594 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12595 DRM_MODE_FLAG_PHSYNC);
12596 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12597 DRM_MODE_FLAG_NHSYNC);
12598 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12599 DRM_MODE_FLAG_PVSYNC);
12600 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12601 DRM_MODE_FLAG_NVSYNC);
12602 }
12603
12604 PIPE_CONF_CHECK_X(gmch_pfit.control);
12605 /* pfit ratios are autocomputed by the hw on gen4+ */
12606 if (INTEL_INFO(dev)->gen < 4)
12607 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12608 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12609
12610 if (!adjust) {
12611 PIPE_CONF_CHECK_I(pipe_src_w);
12612 PIPE_CONF_CHECK_I(pipe_src_h);
12613
12614 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12615 if (current_config->pch_pfit.enabled) {
12616 PIPE_CONF_CHECK_X(pch_pfit.pos);
12617 PIPE_CONF_CHECK_X(pch_pfit.size);
12618 }
12619
12620 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12621 }
12622
12623 /* BDW+ don't expose a synchronous way to read the state */
12624 if (IS_HASWELL(dev))
12625 PIPE_CONF_CHECK_I(ips_enabled);
12626
12627 PIPE_CONF_CHECK_I(double_wide);
12628
12629 PIPE_CONF_CHECK_X(ddi_pll_sel);
12630
12631 PIPE_CONF_CHECK_I(shared_dpll);
12632 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12633 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12634 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12635 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12636 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12637 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12638 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12639 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12640 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12641
12642 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12643 PIPE_CONF_CHECK_I(pipe_bpp);
12644
12645 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12646 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12647
12648 #undef PIPE_CONF_CHECK_X
12649 #undef PIPE_CONF_CHECK_I
12650 #undef PIPE_CONF_CHECK_I_ALT
12651 #undef PIPE_CONF_CHECK_FLAGS
12652 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12653 #undef PIPE_CONF_QUIRK
12654 #undef INTEL_ERR_OR_DBG_KMS
12655
12656 return ret;
12657 }
12658
check_wm_state(struct drm_device * dev)12659 static void check_wm_state(struct drm_device *dev)
12660 {
12661 struct drm_i915_private *dev_priv = dev->dev_private;
12662 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12663 struct intel_crtc *intel_crtc;
12664 int plane;
12665
12666 if (INTEL_INFO(dev)->gen < 9)
12667 return;
12668
12669 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12670 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12671
12672 for_each_intel_crtc(dev, intel_crtc) {
12673 struct skl_ddb_entry *hw_entry, *sw_entry;
12674 const enum pipe pipe = intel_crtc->pipe;
12675
12676 if (!intel_crtc->active)
12677 continue;
12678
12679 /* planes */
12680 for_each_plane(dev_priv, pipe, plane) {
12681 hw_entry = &hw_ddb.plane[pipe][plane];
12682 sw_entry = &sw_ddb->plane[pipe][plane];
12683
12684 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12685 continue;
12686
12687 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12688 "(expected (%u,%u), found (%u,%u))\n",
12689 pipe_name(pipe), plane + 1,
12690 sw_entry->start, sw_entry->end,
12691 hw_entry->start, hw_entry->end);
12692 }
12693
12694 /* cursor */
12695 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12696 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12697
12698 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12699 continue;
12700
12701 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12702 "(expected (%u,%u), found (%u,%u))\n",
12703 pipe_name(pipe),
12704 sw_entry->start, sw_entry->end,
12705 hw_entry->start, hw_entry->end);
12706 }
12707 }
12708
12709 static void
check_connector_state(struct drm_device * dev,struct drm_atomic_state * old_state)12710 check_connector_state(struct drm_device *dev,
12711 struct drm_atomic_state *old_state)
12712 {
12713 struct drm_connector_state *old_conn_state;
12714 struct drm_connector *connector;
12715 int i;
12716
12717 for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12718 struct drm_encoder *encoder = connector->encoder;
12719 struct drm_connector_state *state = connector->state;
12720
12721 /* This also checks the encoder/connector hw state with the
12722 * ->get_hw_state callbacks. */
12723 intel_connector_check_state(to_intel_connector(connector));
12724
12725 I915_STATE_WARN(state->best_encoder != encoder,
12726 "connector's atomic encoder doesn't match legacy encoder\n");
12727 }
12728 }
12729
12730 static void
check_encoder_state(struct drm_device * dev)12731 check_encoder_state(struct drm_device *dev)
12732 {
12733 struct intel_encoder *encoder;
12734 struct intel_connector *connector;
12735
12736 for_each_intel_encoder(dev, encoder) {
12737 bool enabled = false;
12738 enum pipe pipe;
12739
12740 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12741 encoder->base.base.id,
12742 encoder->base.name);
12743
12744 for_each_intel_connector(dev, connector) {
12745 if (connector->base.state->best_encoder != &encoder->base)
12746 continue;
12747 enabled = true;
12748
12749 I915_STATE_WARN(connector->base.state->crtc !=
12750 encoder->base.crtc,
12751 "connector's crtc doesn't match encoder crtc\n");
12752 }
12753
12754 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12755 "encoder's enabled state mismatch "
12756 "(expected %i, found %i)\n",
12757 !!encoder->base.crtc, enabled);
12758
12759 if (!encoder->base.crtc) {
12760 bool active;
12761
12762 active = encoder->get_hw_state(encoder, &pipe);
12763 I915_STATE_WARN(active,
12764 "encoder detached but still enabled on pipe %c.\n",
12765 pipe_name(pipe));
12766 }
12767 }
12768 }
12769
12770 static void
check_crtc_state(struct drm_device * dev,struct drm_atomic_state * old_state)12771 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12772 {
12773 struct drm_i915_private *dev_priv = dev->dev_private;
12774 struct intel_encoder *encoder;
12775 struct drm_crtc_state *old_crtc_state;
12776 struct drm_crtc *crtc;
12777 int i;
12778
12779 for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12780 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12781 struct intel_crtc_state *pipe_config, *sw_config;
12782 bool active;
12783
12784 if (!needs_modeset(crtc->state) &&
12785 !to_intel_crtc_state(crtc->state)->update_pipe)
12786 continue;
12787
12788 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12789 pipe_config = to_intel_crtc_state(old_crtc_state);
12790 memset(pipe_config, 0, sizeof(*pipe_config));
12791 pipe_config->base.crtc = crtc;
12792 pipe_config->base.state = old_state;
12793
12794 DRM_DEBUG_KMS("[CRTC:%d]\n",
12795 crtc->base.id);
12796
12797 active = dev_priv->display.get_pipe_config(intel_crtc,
12798 pipe_config);
12799
12800 /* hw state is inconsistent with the pipe quirk */
12801 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12802 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12803 active = crtc->state->active;
12804
12805 I915_STATE_WARN(crtc->state->active != active,
12806 "crtc active state doesn't match with hw state "
12807 "(expected %i, found %i)\n", crtc->state->active, active);
12808
12809 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12810 "transitional active state does not match atomic hw state "
12811 "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12812
12813 for_each_encoder_on_crtc(dev, crtc, encoder) {
12814 enum pipe pipe;
12815
12816 active = encoder->get_hw_state(encoder, &pipe);
12817 I915_STATE_WARN(active != crtc->state->active,
12818 "[ENCODER:%i] active %i with crtc active %i\n",
12819 encoder->base.base.id, active, crtc->state->active);
12820
12821 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12822 "Encoder connected to wrong pipe %c\n",
12823 pipe_name(pipe));
12824
12825 if (active)
12826 encoder->get_config(encoder, pipe_config);
12827 }
12828
12829 if (!crtc->state->active)
12830 continue;
12831
12832 sw_config = to_intel_crtc_state(crtc->state);
12833 if (!intel_pipe_config_compare(dev, sw_config,
12834 pipe_config, false)) {
12835 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12836 intel_dump_pipe_config(intel_crtc, pipe_config,
12837 "[hw state]");
12838 intel_dump_pipe_config(intel_crtc, sw_config,
12839 "[sw state]");
12840 }
12841 }
12842 }
12843
12844 static void
check_shared_dpll_state(struct drm_device * dev)12845 check_shared_dpll_state(struct drm_device *dev)
12846 {
12847 struct drm_i915_private *dev_priv = dev->dev_private;
12848 struct intel_crtc *crtc;
12849 struct intel_dpll_hw_state dpll_hw_state;
12850 int i;
12851
12852 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12853 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12854 int enabled_crtcs = 0, active_crtcs = 0;
12855 bool active;
12856
12857 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12858
12859 DRM_DEBUG_KMS("%s\n", pll->name);
12860
12861 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12862
12863 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12864 "more active pll users than references: %i vs %i\n",
12865 pll->active, hweight32(pll->config.crtc_mask));
12866 I915_STATE_WARN(pll->active && !pll->on,
12867 "pll in active use but not on in sw tracking\n");
12868 I915_STATE_WARN(pll->on && !pll->active,
12869 "pll in on but not on in use in sw tracking\n");
12870 I915_STATE_WARN(pll->on != active,
12871 "pll on state mismatch (expected %i, found %i)\n",
12872 pll->on, active);
12873
12874 for_each_intel_crtc(dev, crtc) {
12875 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12876 enabled_crtcs++;
12877 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12878 active_crtcs++;
12879 }
12880 I915_STATE_WARN(pll->active != active_crtcs,
12881 "pll active crtcs mismatch (expected %i, found %i)\n",
12882 pll->active, active_crtcs);
12883 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12884 "pll enabled crtcs mismatch (expected %i, found %i)\n",
12885 hweight32(pll->config.crtc_mask), enabled_crtcs);
12886
12887 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12888 sizeof(dpll_hw_state)),
12889 "pll hw state mismatch\n");
12890 }
12891 }
12892
12893 static void
intel_modeset_check_state(struct drm_device * dev,struct drm_atomic_state * old_state)12894 intel_modeset_check_state(struct drm_device *dev,
12895 struct drm_atomic_state *old_state)
12896 {
12897 check_wm_state(dev);
12898 check_connector_state(dev, old_state);
12899 check_encoder_state(dev);
12900 check_crtc_state(dev, old_state);
12901 check_shared_dpll_state(dev);
12902 }
12903
ironlake_check_encoder_dotclock(const struct intel_crtc_state * pipe_config,int dotclock)12904 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12905 int dotclock)
12906 {
12907 /*
12908 * FDI already provided one idea for the dotclock.
12909 * Yell if the encoder disagrees.
12910 */
12911 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12912 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12913 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12914 }
12915
update_scanline_offset(struct intel_crtc * crtc)12916 static void update_scanline_offset(struct intel_crtc *crtc)
12917 {
12918 struct drm_device *dev = crtc->base.dev;
12919
12920 /*
12921 * The scanline counter increments at the leading edge of hsync.
12922 *
12923 * On most platforms it starts counting from vtotal-1 on the
12924 * first active line. That means the scanline counter value is
12925 * always one less than what we would expect. Ie. just after
12926 * start of vblank, which also occurs at start of hsync (on the
12927 * last active line), the scanline counter will read vblank_start-1.
12928 *
12929 * On gen2 the scanline counter starts counting from 1 instead
12930 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12931 * to keep the value positive), instead of adding one.
12932 *
12933 * On HSW+ the behaviour of the scanline counter depends on the output
12934 * type. For DP ports it behaves like most other platforms, but on HDMI
12935 * there's an extra 1 line difference. So we need to add two instead of
12936 * one to the value.
12937 */
12938 if (IS_GEN2(dev)) {
12939 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
12940 int vtotal;
12941
12942 vtotal = adjusted_mode->crtc_vtotal;
12943 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
12944 vtotal /= 2;
12945
12946 crtc->scanline_offset = vtotal - 1;
12947 } else if (HAS_DDI(dev) &&
12948 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12949 crtc->scanline_offset = 2;
12950 } else
12951 crtc->scanline_offset = 1;
12952 }
12953
intel_modeset_clear_plls(struct drm_atomic_state * state)12954 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12955 {
12956 struct drm_device *dev = state->dev;
12957 struct drm_i915_private *dev_priv = to_i915(dev);
12958 struct intel_shared_dpll_config *shared_dpll = NULL;
12959 struct intel_crtc *intel_crtc;
12960 struct intel_crtc_state *intel_crtc_state;
12961 struct drm_crtc *crtc;
12962 struct drm_crtc_state *crtc_state;
12963 int i;
12964
12965 if (!dev_priv->display.crtc_compute_clock)
12966 return;
12967
12968 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12969 int dpll;
12970
12971 intel_crtc = to_intel_crtc(crtc);
12972 intel_crtc_state = to_intel_crtc_state(crtc_state);
12973 dpll = intel_crtc_state->shared_dpll;
12974
12975 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12976 continue;
12977
12978 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12979
12980 if (!shared_dpll)
12981 shared_dpll = intel_atomic_get_shared_dpll_state(state);
12982
12983 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
12984 }
12985 }
12986
12987 /*
12988 * This implements the workaround described in the "notes" section of the mode
12989 * set sequence documentation. When going from no pipes or single pipe to
12990 * multiple pipes, and planes are enabled after the pipe, we need to wait at
12991 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12992 */
haswell_mode_set_planes_workaround(struct drm_atomic_state * state)12993 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12994 {
12995 struct drm_crtc_state *crtc_state;
12996 struct intel_crtc *intel_crtc;
12997 struct drm_crtc *crtc;
12998 struct intel_crtc_state *first_crtc_state = NULL;
12999 struct intel_crtc_state *other_crtc_state = NULL;
13000 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13001 int i;
13002
13003 /* look at all crtc's that are going to be enabled in during modeset */
13004 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13005 intel_crtc = to_intel_crtc(crtc);
13006
13007 if (!crtc_state->active || !needs_modeset(crtc_state))
13008 continue;
13009
13010 if (first_crtc_state) {
13011 other_crtc_state = to_intel_crtc_state(crtc_state);
13012 break;
13013 } else {
13014 first_crtc_state = to_intel_crtc_state(crtc_state);
13015 first_pipe = intel_crtc->pipe;
13016 }
13017 }
13018
13019 /* No workaround needed? */
13020 if (!first_crtc_state)
13021 return 0;
13022
13023 /* w/a possibly needed, check how many crtc's are already enabled. */
13024 for_each_intel_crtc(state->dev, intel_crtc) {
13025 struct intel_crtc_state *pipe_config;
13026
13027 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13028 if (IS_ERR(pipe_config))
13029 return PTR_ERR(pipe_config);
13030
13031 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13032
13033 if (!pipe_config->base.active ||
13034 needs_modeset(&pipe_config->base))
13035 continue;
13036
13037 /* 2 or more enabled crtcs means no need for w/a */
13038 if (enabled_pipe != INVALID_PIPE)
13039 return 0;
13040
13041 enabled_pipe = intel_crtc->pipe;
13042 }
13043
13044 if (enabled_pipe != INVALID_PIPE)
13045 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13046 else if (other_crtc_state)
13047 other_crtc_state->hsw_workaround_pipe = first_pipe;
13048
13049 return 0;
13050 }
13051
intel_modeset_all_pipes(struct drm_atomic_state * state)13052 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13053 {
13054 struct drm_crtc *crtc;
13055 struct drm_crtc_state *crtc_state;
13056 int ret = 0;
13057
13058 /* add all active pipes to the state */
13059 for_each_crtc(state->dev, crtc) {
13060 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13061 if (IS_ERR(crtc_state))
13062 return PTR_ERR(crtc_state);
13063
13064 if (!crtc_state->active || needs_modeset(crtc_state))
13065 continue;
13066
13067 crtc_state->mode_changed = true;
13068
13069 ret = drm_atomic_add_affected_connectors(state, crtc);
13070 if (ret)
13071 break;
13072
13073 ret = drm_atomic_add_affected_planes(state, crtc);
13074 if (ret)
13075 break;
13076 }
13077
13078 return ret;
13079 }
13080
intel_modeset_checks(struct drm_atomic_state * state)13081 static int intel_modeset_checks(struct drm_atomic_state *state)
13082 {
13083 struct drm_device *dev = state->dev;
13084 struct drm_i915_private *dev_priv = dev->dev_private;
13085 int ret;
13086
13087 if (!check_digital_port_conflicts(state)) {
13088 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13089 return -EINVAL;
13090 }
13091
13092 /*
13093 * See if the config requires any additional preparation, e.g.
13094 * to adjust global state with pipes off. We need to do this
13095 * here so we can get the modeset_pipe updated config for the new
13096 * mode set on this crtc. For other crtcs we need to use the
13097 * adjusted_mode bits in the crtc directly.
13098 */
13099 if (dev_priv->display.modeset_calc_cdclk) {
13100 unsigned int cdclk;
13101
13102 ret = dev_priv->display.modeset_calc_cdclk(state);
13103
13104 cdclk = to_intel_atomic_state(state)->cdclk;
13105 if (!ret && cdclk != dev_priv->cdclk_freq)
13106 ret = intel_modeset_all_pipes(state);
13107
13108 if (ret < 0)
13109 return ret;
13110 } else
13111 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
13112
13113 intel_modeset_clear_plls(state);
13114
13115 if (IS_HASWELL(dev))
13116 return haswell_mode_set_planes_workaround(state);
13117
13118 return 0;
13119 }
13120
13121 /**
13122 * intel_atomic_check - validate state object
13123 * @dev: drm device
13124 * @state: state to validate
13125 */
intel_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)13126 static int intel_atomic_check(struct drm_device *dev,
13127 struct drm_atomic_state *state)
13128 {
13129 struct drm_crtc *crtc;
13130 struct drm_crtc_state *crtc_state;
13131 int ret, i;
13132 bool any_ms = false;
13133
13134 ret = drm_atomic_helper_check_modeset(dev, state);
13135 if (ret)
13136 return ret;
13137
13138 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13139 struct intel_crtc_state *pipe_config =
13140 to_intel_crtc_state(crtc_state);
13141
13142 memset(&to_intel_crtc(crtc)->atomic, 0,
13143 sizeof(struct intel_crtc_atomic_commit));
13144
13145 /* Catch I915_MODE_FLAG_INHERITED */
13146 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13147 crtc_state->mode_changed = true;
13148
13149 if (!crtc_state->enable) {
13150 if (needs_modeset(crtc_state))
13151 any_ms = true;
13152 continue;
13153 }
13154
13155 if (!needs_modeset(crtc_state))
13156 continue;
13157
13158 /* FIXME: For only active_changed we shouldn't need to do any
13159 * state recomputation at all. */
13160
13161 ret = drm_atomic_add_affected_connectors(state, crtc);
13162 if (ret)
13163 return ret;
13164
13165 ret = intel_modeset_pipe_config(crtc, pipe_config);
13166 if (ret)
13167 return ret;
13168
13169 if (i915.fastboot &&
13170 intel_pipe_config_compare(state->dev,
13171 to_intel_crtc_state(crtc->state),
13172 pipe_config, true)) {
13173 crtc_state->mode_changed = false;
13174 to_intel_crtc_state(crtc_state)->update_pipe = true;
13175 }
13176
13177 if (needs_modeset(crtc_state)) {
13178 any_ms = true;
13179
13180 ret = drm_atomic_add_affected_planes(state, crtc);
13181 if (ret)
13182 return ret;
13183 }
13184
13185 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13186 needs_modeset(crtc_state) ?
13187 "[modeset]" : "[fastset]");
13188 }
13189
13190 if (any_ms) {
13191 ret = intel_modeset_checks(state);
13192
13193 if (ret)
13194 return ret;
13195 } else
13196 to_intel_atomic_state(state)->cdclk =
13197 to_i915(state->dev)->cdclk_freq;
13198
13199 return drm_atomic_helper_check_planes(state->dev, state);
13200 }
13201
13202 /**
13203 * intel_atomic_commit - commit validated state object
13204 * @dev: DRM device
13205 * @state: the top-level driver state object
13206 * @async: asynchronous commit
13207 *
13208 * This function commits a top-level state object that has been validated
13209 * with drm_atomic_helper_check().
13210 *
13211 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13212 * we can only handle plane-related operations and do not yet support
13213 * asynchronous commit.
13214 *
13215 * RETURNS
13216 * Zero for success or -errno.
13217 */
intel_atomic_commit(struct drm_device * dev,struct drm_atomic_state * state,bool async)13218 static int intel_atomic_commit(struct drm_device *dev,
13219 struct drm_atomic_state *state,
13220 bool async)
13221 {
13222 struct drm_i915_private *dev_priv = dev->dev_private;
13223 struct drm_crtc *crtc;
13224 struct drm_crtc_state *crtc_state;
13225 int ret = 0;
13226 int i;
13227 bool any_ms = false;
13228
13229 if (async) {
13230 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13231 return -EINVAL;
13232 }
13233
13234 ret = drm_atomic_helper_prepare_planes(dev, state);
13235 if (ret)
13236 return ret;
13237
13238 drm_atomic_helper_swap_state(dev, state);
13239
13240 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13241 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13242
13243 if (!needs_modeset(crtc->state))
13244 continue;
13245
13246 any_ms = true;
13247 intel_pre_plane_update(intel_crtc);
13248
13249 if (crtc_state->active) {
13250 intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13251 dev_priv->display.crtc_disable(crtc);
13252 intel_crtc->active = false;
13253 intel_disable_shared_dpll(intel_crtc);
13254 }
13255 }
13256
13257 /* Only after disabling all output pipelines that will be changed can we
13258 * update the the output configuration. */
13259 intel_modeset_update_crtc_state(state);
13260
13261 if (any_ms) {
13262 intel_shared_dpll_commit(state);
13263
13264 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13265 modeset_update_crtc_power_domains(state);
13266 }
13267
13268 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13269 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13270 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13271 bool modeset = needs_modeset(crtc->state);
13272 bool update_pipe = !modeset &&
13273 to_intel_crtc_state(crtc->state)->update_pipe;
13274 unsigned long put_domains = 0;
13275
13276 if (modeset && crtc->state->active) {
13277 update_scanline_offset(to_intel_crtc(crtc));
13278 dev_priv->display.crtc_enable(crtc);
13279 }
13280
13281 if (update_pipe) {
13282 put_domains = modeset_get_crtc_power_domains(crtc);
13283
13284 /* make sure intel_modeset_check_state runs */
13285 any_ms = true;
13286 }
13287
13288 if (!modeset)
13289 intel_pre_plane_update(intel_crtc);
13290
13291 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13292
13293 if (put_domains)
13294 modeset_put_power_domains(dev_priv, put_domains);
13295
13296 intel_post_plane_update(intel_crtc);
13297 }
13298
13299 /* FIXME: add subpixel order */
13300
13301 drm_atomic_helper_wait_for_vblanks(dev, state);
13302 drm_atomic_helper_cleanup_planes(dev, state);
13303
13304 if (any_ms)
13305 intel_modeset_check_state(dev, state);
13306
13307 drm_atomic_state_free(state);
13308
13309 return 0;
13310 }
13311
intel_crtc_restore_mode(struct drm_crtc * crtc)13312 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13313 {
13314 struct drm_device *dev = crtc->dev;
13315 struct drm_atomic_state *state;
13316 struct drm_crtc_state *crtc_state;
13317 int ret;
13318
13319 state = drm_atomic_state_alloc(dev);
13320 if (!state) {
13321 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13322 crtc->base.id);
13323 return;
13324 }
13325
13326 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13327
13328 retry:
13329 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13330 ret = PTR_ERR_OR_ZERO(crtc_state);
13331 if (!ret) {
13332 if (!crtc_state->active)
13333 goto out;
13334
13335 crtc_state->mode_changed = true;
13336 ret = drm_atomic_commit(state);
13337 }
13338
13339 if (ret == -EDEADLK) {
13340 drm_atomic_state_clear(state);
13341 drm_modeset_backoff(state->acquire_ctx);
13342 goto retry;
13343 }
13344
13345 if (ret)
13346 out:
13347 drm_atomic_state_free(state);
13348 }
13349
13350 #undef for_each_intel_crtc_masked
13351
13352 static const struct drm_crtc_funcs intel_crtc_funcs = {
13353 .gamma_set = intel_crtc_gamma_set,
13354 .set_config = drm_atomic_helper_set_config,
13355 .destroy = intel_crtc_destroy,
13356 .page_flip = intel_crtc_page_flip,
13357 .atomic_duplicate_state = intel_crtc_duplicate_state,
13358 .atomic_destroy_state = intel_crtc_destroy_state,
13359 };
13360
ibx_pch_dpll_get_hw_state(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll,struct intel_dpll_hw_state * hw_state)13361 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13362 struct intel_shared_dpll *pll,
13363 struct intel_dpll_hw_state *hw_state)
13364 {
13365 uint32_t val;
13366
13367 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13368 return false;
13369
13370 val = I915_READ(PCH_DPLL(pll->id));
13371 hw_state->dpll = val;
13372 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13373 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13374
13375 return val & DPLL_VCO_ENABLE;
13376 }
13377
ibx_pch_dpll_mode_set(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll)13378 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13379 struct intel_shared_dpll *pll)
13380 {
13381 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13382 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13383 }
13384
ibx_pch_dpll_enable(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll)13385 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13386 struct intel_shared_dpll *pll)
13387 {
13388 /* PCH refclock must be enabled first */
13389 ibx_assert_pch_refclk_enabled(dev_priv);
13390
13391 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13392
13393 /* Wait for the clocks to stabilize. */
13394 POSTING_READ(PCH_DPLL(pll->id));
13395 udelay(150);
13396
13397 /* The pixel multiplier can only be updated once the
13398 * DPLL is enabled and the clocks are stable.
13399 *
13400 * So write it again.
13401 */
13402 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13403 POSTING_READ(PCH_DPLL(pll->id));
13404 udelay(200);
13405 }
13406
ibx_pch_dpll_disable(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll)13407 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13408 struct intel_shared_dpll *pll)
13409 {
13410 struct drm_device *dev = dev_priv->dev;
13411 struct intel_crtc *crtc;
13412
13413 /* Make sure no transcoder isn't still depending on us. */
13414 for_each_intel_crtc(dev, crtc) {
13415 if (intel_crtc_to_shared_dpll(crtc) == pll)
13416 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13417 }
13418
13419 I915_WRITE(PCH_DPLL(pll->id), 0);
13420 POSTING_READ(PCH_DPLL(pll->id));
13421 udelay(200);
13422 }
13423
13424 static char *ibx_pch_dpll_names[] = {
13425 "PCH DPLL A",
13426 "PCH DPLL B",
13427 };
13428
ibx_pch_dpll_init(struct drm_device * dev)13429 static void ibx_pch_dpll_init(struct drm_device *dev)
13430 {
13431 struct drm_i915_private *dev_priv = dev->dev_private;
13432 int i;
13433
13434 dev_priv->num_shared_dpll = 2;
13435
13436 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13437 dev_priv->shared_dplls[i].id = i;
13438 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13439 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13440 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13441 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13442 dev_priv->shared_dplls[i].get_hw_state =
13443 ibx_pch_dpll_get_hw_state;
13444 }
13445 }
13446
intel_shared_dpll_init(struct drm_device * dev)13447 static void intel_shared_dpll_init(struct drm_device *dev)
13448 {
13449 struct drm_i915_private *dev_priv = dev->dev_private;
13450
13451 if (HAS_DDI(dev))
13452 intel_ddi_pll_init(dev);
13453 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13454 ibx_pch_dpll_init(dev);
13455 else
13456 dev_priv->num_shared_dpll = 0;
13457
13458 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13459 }
13460
13461 /**
13462 * intel_prepare_plane_fb - Prepare fb for usage on plane
13463 * @plane: drm plane to prepare for
13464 * @fb: framebuffer to prepare for presentation
13465 *
13466 * Prepares a framebuffer for usage on a display plane. Generally this
13467 * involves pinning the underlying object and updating the frontbuffer tracking
13468 * bits. Some older platforms need special physical address handling for
13469 * cursor planes.
13470 *
13471 * Returns 0 on success, negative error code on failure.
13472 */
13473 int
intel_prepare_plane_fb(struct drm_plane * plane,const struct drm_plane_state * new_state)13474 intel_prepare_plane_fb(struct drm_plane *plane,
13475 const struct drm_plane_state *new_state)
13476 {
13477 struct drm_device *dev = plane->dev;
13478 struct drm_framebuffer *fb = new_state->fb;
13479 struct intel_plane *intel_plane = to_intel_plane(plane);
13480 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13481 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13482 int ret = 0;
13483
13484 if (!obj)
13485 return 0;
13486
13487 mutex_lock(&dev->struct_mutex);
13488
13489 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13490 INTEL_INFO(dev)->cursor_needs_physical) {
13491 int align = IS_I830(dev) ? 16 * 1024 : 256;
13492 ret = i915_gem_object_attach_phys(obj, align);
13493 if (ret)
13494 DRM_DEBUG_KMS("failed to attach phys object\n");
13495 } else {
13496 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13497 }
13498
13499 if (ret == 0)
13500 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13501
13502 mutex_unlock(&dev->struct_mutex);
13503
13504 return ret;
13505 }
13506
13507 /**
13508 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13509 * @plane: drm plane to clean up for
13510 * @fb: old framebuffer that was on plane
13511 *
13512 * Cleans up a framebuffer that has just been removed from a plane.
13513 */
13514 void
intel_cleanup_plane_fb(struct drm_plane * plane,const struct drm_plane_state * old_state)13515 intel_cleanup_plane_fb(struct drm_plane *plane,
13516 const struct drm_plane_state *old_state)
13517 {
13518 struct drm_device *dev = plane->dev;
13519 struct drm_i915_gem_object *obj = intel_fb_obj(old_state->fb);
13520
13521 if (!obj)
13522 return;
13523
13524 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13525 !INTEL_INFO(dev)->cursor_needs_physical) {
13526 mutex_lock(&dev->struct_mutex);
13527 intel_unpin_fb_obj(old_state->fb, old_state);
13528 mutex_unlock(&dev->struct_mutex);
13529 }
13530 }
13531
13532 int
skl_max_scale(struct intel_crtc * intel_crtc,struct intel_crtc_state * crtc_state)13533 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13534 {
13535 int max_scale;
13536 struct drm_device *dev;
13537 struct drm_i915_private *dev_priv;
13538 int crtc_clock, cdclk;
13539
13540 if (!intel_crtc || !crtc_state)
13541 return DRM_PLANE_HELPER_NO_SCALING;
13542
13543 dev = intel_crtc->base.dev;
13544 dev_priv = dev->dev_private;
13545 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13546 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13547
13548 if (!crtc_clock || !cdclk)
13549 return DRM_PLANE_HELPER_NO_SCALING;
13550
13551 /*
13552 * skl max scale is lower of:
13553 * close to 3 but not 3, -1 is for that purpose
13554 * or
13555 * cdclk/crtc_clock
13556 */
13557 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13558
13559 return max_scale;
13560 }
13561
13562 static int
intel_check_primary_plane(struct drm_plane * plane,struct intel_crtc_state * crtc_state,struct intel_plane_state * state)13563 intel_check_primary_plane(struct drm_plane *plane,
13564 struct intel_crtc_state *crtc_state,
13565 struct intel_plane_state *state)
13566 {
13567 struct drm_crtc *crtc = state->base.crtc;
13568 struct drm_framebuffer *fb = state->base.fb;
13569 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13570 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13571 bool can_position = false;
13572
13573 if (INTEL_INFO(plane->dev)->gen >= 9) {
13574 /* use scaler when colorkey is not required */
13575 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13576 min_scale = 1;
13577 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13578 }
13579 can_position = true;
13580 }
13581
13582 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13583 &state->dst, &state->clip,
13584 min_scale, max_scale,
13585 can_position, true,
13586 &state->visible);
13587 }
13588
13589 static void
intel_commit_primary_plane(struct drm_plane * plane,struct intel_plane_state * state)13590 intel_commit_primary_plane(struct drm_plane *plane,
13591 struct intel_plane_state *state)
13592 {
13593 struct drm_crtc *crtc = state->base.crtc;
13594 struct drm_framebuffer *fb = state->base.fb;
13595 struct drm_device *dev = plane->dev;
13596 struct drm_i915_private *dev_priv = dev->dev_private;
13597 struct intel_crtc *intel_crtc;
13598 struct drm_rect *src = &state->src;
13599
13600 crtc = crtc ? crtc : plane->crtc;
13601 intel_crtc = to_intel_crtc(crtc);
13602
13603 plane->fb = fb;
13604 crtc->x = src->x1 >> 16;
13605 crtc->y = src->y1 >> 16;
13606
13607 if (!crtc->state->active)
13608 return;
13609
13610 dev_priv->display.update_primary_plane(crtc, fb,
13611 state->src.x1 >> 16,
13612 state->src.y1 >> 16);
13613 }
13614
13615 static void
intel_disable_primary_plane(struct drm_plane * plane,struct drm_crtc * crtc)13616 intel_disable_primary_plane(struct drm_plane *plane,
13617 struct drm_crtc *crtc)
13618 {
13619 struct drm_device *dev = plane->dev;
13620 struct drm_i915_private *dev_priv = dev->dev_private;
13621
13622 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13623 }
13624
intel_begin_crtc_commit(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)13625 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13626 struct drm_crtc_state *old_crtc_state)
13627 {
13628 struct drm_device *dev = crtc->dev;
13629 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13630 struct intel_crtc_state *old_intel_state =
13631 to_intel_crtc_state(old_crtc_state);
13632 bool modeset = needs_modeset(crtc->state);
13633
13634 if (intel_crtc->atomic.update_wm_pre)
13635 intel_update_watermarks(crtc);
13636
13637 /* Perform vblank evasion around commit operation */
13638 if (crtc->state->active)
13639 intel_pipe_update_start(intel_crtc);
13640
13641 if (modeset)
13642 return;
13643
13644 if (to_intel_crtc_state(crtc->state)->update_pipe)
13645 intel_update_pipe_config(intel_crtc, old_intel_state);
13646 else if (INTEL_INFO(dev)->gen >= 9)
13647 skl_detach_scalers(intel_crtc);
13648 }
13649
intel_finish_crtc_commit(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)13650 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13651 struct drm_crtc_state *old_crtc_state)
13652 {
13653 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13654
13655 if (crtc->state->active)
13656 intel_pipe_update_end(intel_crtc);
13657 }
13658
13659 /**
13660 * intel_plane_destroy - destroy a plane
13661 * @plane: plane to destroy
13662 *
13663 * Common destruction function for all types of planes (primary, cursor,
13664 * sprite).
13665 */
intel_plane_destroy(struct drm_plane * plane)13666 void intel_plane_destroy(struct drm_plane *plane)
13667 {
13668 struct intel_plane *intel_plane = to_intel_plane(plane);
13669 drm_plane_cleanup(plane);
13670 kfree(intel_plane);
13671 }
13672
13673 const struct drm_plane_funcs intel_plane_funcs = {
13674 .update_plane = drm_atomic_helper_update_plane,
13675 .disable_plane = drm_atomic_helper_disable_plane,
13676 .destroy = intel_plane_destroy,
13677 .set_property = drm_atomic_helper_plane_set_property,
13678 .atomic_get_property = intel_plane_atomic_get_property,
13679 .atomic_set_property = intel_plane_atomic_set_property,
13680 .atomic_duplicate_state = intel_plane_duplicate_state,
13681 .atomic_destroy_state = intel_plane_destroy_state,
13682
13683 };
13684
intel_primary_plane_create(struct drm_device * dev,int pipe)13685 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13686 int pipe)
13687 {
13688 struct intel_plane *primary;
13689 struct intel_plane_state *state;
13690 const uint32_t *intel_primary_formats;
13691 unsigned int num_formats;
13692
13693 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13694 if (primary == NULL)
13695 return NULL;
13696
13697 state = intel_create_plane_state(&primary->base);
13698 if (!state) {
13699 kfree(primary);
13700 return NULL;
13701 }
13702 primary->base.state = &state->base;
13703
13704 primary->can_scale = false;
13705 primary->max_downscale = 1;
13706 if (INTEL_INFO(dev)->gen >= 9) {
13707 primary->can_scale = true;
13708 state->scaler_id = -1;
13709 }
13710 primary->pipe = pipe;
13711 primary->plane = pipe;
13712 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13713 primary->check_plane = intel_check_primary_plane;
13714 primary->commit_plane = intel_commit_primary_plane;
13715 primary->disable_plane = intel_disable_primary_plane;
13716 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13717 primary->plane = !pipe;
13718
13719 if (INTEL_INFO(dev)->gen >= 9) {
13720 intel_primary_formats = skl_primary_formats;
13721 num_formats = ARRAY_SIZE(skl_primary_formats);
13722 } else if (INTEL_INFO(dev)->gen >= 4) {
13723 intel_primary_formats = i965_primary_formats;
13724 num_formats = ARRAY_SIZE(i965_primary_formats);
13725 } else {
13726 intel_primary_formats = i8xx_primary_formats;
13727 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13728 }
13729
13730 drm_universal_plane_init(dev, &primary->base, 0,
13731 &intel_plane_funcs,
13732 intel_primary_formats, num_formats,
13733 DRM_PLANE_TYPE_PRIMARY);
13734
13735 if (INTEL_INFO(dev)->gen >= 4)
13736 intel_create_rotation_property(dev, primary);
13737
13738 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13739
13740 return &primary->base;
13741 }
13742
intel_create_rotation_property(struct drm_device * dev,struct intel_plane * plane)13743 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13744 {
13745 if (!dev->mode_config.rotation_property) {
13746 unsigned long flags = BIT(DRM_ROTATE_0) |
13747 BIT(DRM_ROTATE_180);
13748
13749 if (INTEL_INFO(dev)->gen >= 9)
13750 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13751
13752 dev->mode_config.rotation_property =
13753 drm_mode_create_rotation_property(dev, flags);
13754 }
13755 if (dev->mode_config.rotation_property)
13756 drm_object_attach_property(&plane->base.base,
13757 dev->mode_config.rotation_property,
13758 plane->base.state->rotation);
13759 }
13760
13761 static int
intel_check_cursor_plane(struct drm_plane * plane,struct intel_crtc_state * crtc_state,struct intel_plane_state * state)13762 intel_check_cursor_plane(struct drm_plane *plane,
13763 struct intel_crtc_state *crtc_state,
13764 struct intel_plane_state *state)
13765 {
13766 struct drm_crtc *crtc = crtc_state->base.crtc;
13767 struct drm_framebuffer *fb = state->base.fb;
13768 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13769 enum pipe pipe = to_intel_plane(plane)->pipe;
13770 unsigned stride;
13771 int ret;
13772
13773 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13774 &state->dst, &state->clip,
13775 DRM_PLANE_HELPER_NO_SCALING,
13776 DRM_PLANE_HELPER_NO_SCALING,
13777 true, true, &state->visible);
13778 if (ret)
13779 return ret;
13780
13781 /* if we want to turn off the cursor ignore width and height */
13782 if (!obj)
13783 return 0;
13784
13785 /* Check for which cursor types we support */
13786 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13787 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13788 state->base.crtc_w, state->base.crtc_h);
13789 return -EINVAL;
13790 }
13791
13792 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13793 if (obj->base.size < stride * state->base.crtc_h) {
13794 DRM_DEBUG_KMS("buffer is too small\n");
13795 return -ENOMEM;
13796 }
13797
13798 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13799 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13800 return -EINVAL;
13801 }
13802
13803 /*
13804 * There's something wrong with the cursor on CHV pipe C.
13805 * If it straddles the left edge of the screen then
13806 * moving it away from the edge or disabling it often
13807 * results in a pipe underrun, and often that can lead to
13808 * dead pipe (constant underrun reported, and it scans
13809 * out just a solid color). To recover from that, the
13810 * display power well must be turned off and on again.
13811 * Refuse the put the cursor into that compromised position.
13812 */
13813 if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
13814 state->visible && state->base.crtc_x < 0) {
13815 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
13816 return -EINVAL;
13817 }
13818
13819 return 0;
13820 }
13821
13822 static void
intel_disable_cursor_plane(struct drm_plane * plane,struct drm_crtc * crtc)13823 intel_disable_cursor_plane(struct drm_plane *plane,
13824 struct drm_crtc *crtc)
13825 {
13826 intel_crtc_update_cursor(crtc, false);
13827 }
13828
13829 static void
intel_commit_cursor_plane(struct drm_plane * plane,struct intel_plane_state * state)13830 intel_commit_cursor_plane(struct drm_plane *plane,
13831 struct intel_plane_state *state)
13832 {
13833 struct drm_crtc *crtc = state->base.crtc;
13834 struct drm_device *dev = plane->dev;
13835 struct intel_crtc *intel_crtc;
13836 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13837 uint32_t addr;
13838
13839 crtc = crtc ? crtc : plane->crtc;
13840 intel_crtc = to_intel_crtc(crtc);
13841
13842 if (!obj)
13843 addr = 0;
13844 else if (!INTEL_INFO(dev)->cursor_needs_physical)
13845 addr = i915_gem_obj_ggtt_offset(obj);
13846 else
13847 addr = obj->phys_handle->busaddr;
13848
13849 intel_crtc->cursor_addr = addr;
13850
13851 if (crtc->state->active)
13852 intel_crtc_update_cursor(crtc, state->visible);
13853 }
13854
intel_cursor_plane_create(struct drm_device * dev,int pipe)13855 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13856 int pipe)
13857 {
13858 struct intel_plane *cursor;
13859 struct intel_plane_state *state;
13860
13861 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13862 if (cursor == NULL)
13863 return NULL;
13864
13865 state = intel_create_plane_state(&cursor->base);
13866 if (!state) {
13867 kfree(cursor);
13868 return NULL;
13869 }
13870 cursor->base.state = &state->base;
13871
13872 cursor->can_scale = false;
13873 cursor->max_downscale = 1;
13874 cursor->pipe = pipe;
13875 cursor->plane = pipe;
13876 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13877 cursor->check_plane = intel_check_cursor_plane;
13878 cursor->commit_plane = intel_commit_cursor_plane;
13879 cursor->disable_plane = intel_disable_cursor_plane;
13880
13881 drm_universal_plane_init(dev, &cursor->base, 0,
13882 &intel_plane_funcs,
13883 intel_cursor_formats,
13884 ARRAY_SIZE(intel_cursor_formats),
13885 DRM_PLANE_TYPE_CURSOR);
13886
13887 if (INTEL_INFO(dev)->gen >= 4) {
13888 if (!dev->mode_config.rotation_property)
13889 dev->mode_config.rotation_property =
13890 drm_mode_create_rotation_property(dev,
13891 BIT(DRM_ROTATE_0) |
13892 BIT(DRM_ROTATE_180));
13893 if (dev->mode_config.rotation_property)
13894 drm_object_attach_property(&cursor->base.base,
13895 dev->mode_config.rotation_property,
13896 state->base.rotation);
13897 }
13898
13899 if (INTEL_INFO(dev)->gen >=9)
13900 state->scaler_id = -1;
13901
13902 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13903
13904 return &cursor->base;
13905 }
13906
skl_init_scalers(struct drm_device * dev,struct intel_crtc * intel_crtc,struct intel_crtc_state * crtc_state)13907 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13908 struct intel_crtc_state *crtc_state)
13909 {
13910 int i;
13911 struct intel_scaler *intel_scaler;
13912 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13913
13914 for (i = 0; i < intel_crtc->num_scalers; i++) {
13915 intel_scaler = &scaler_state->scalers[i];
13916 intel_scaler->in_use = 0;
13917 intel_scaler->mode = PS_SCALER_MODE_DYN;
13918 }
13919
13920 scaler_state->scaler_id = -1;
13921 }
13922
intel_crtc_init(struct drm_device * dev,int pipe)13923 static void intel_crtc_init(struct drm_device *dev, int pipe)
13924 {
13925 struct drm_i915_private *dev_priv = dev->dev_private;
13926 struct intel_crtc *intel_crtc;
13927 struct intel_crtc_state *crtc_state = NULL;
13928 struct drm_plane *primary = NULL;
13929 struct drm_plane *cursor = NULL;
13930 int i, ret;
13931
13932 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13933 if (intel_crtc == NULL)
13934 return;
13935
13936 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13937 if (!crtc_state)
13938 goto fail;
13939 intel_crtc->config = crtc_state;
13940 intel_crtc->base.state = &crtc_state->base;
13941 crtc_state->base.crtc = &intel_crtc->base;
13942
13943 /* initialize shared scalers */
13944 if (INTEL_INFO(dev)->gen >= 9) {
13945 if (pipe == PIPE_C)
13946 intel_crtc->num_scalers = 1;
13947 else
13948 intel_crtc->num_scalers = SKL_NUM_SCALERS;
13949
13950 skl_init_scalers(dev, intel_crtc, crtc_state);
13951 }
13952
13953 primary = intel_primary_plane_create(dev, pipe);
13954 if (!primary)
13955 goto fail;
13956
13957 cursor = intel_cursor_plane_create(dev, pipe);
13958 if (!cursor)
13959 goto fail;
13960
13961 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13962 cursor, &intel_crtc_funcs);
13963 if (ret)
13964 goto fail;
13965
13966 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13967 for (i = 0; i < 256; i++) {
13968 intel_crtc->lut_r[i] = i;
13969 intel_crtc->lut_g[i] = i;
13970 intel_crtc->lut_b[i] = i;
13971 }
13972
13973 /*
13974 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13975 * is hooked to pipe B. Hence we want plane A feeding pipe B.
13976 */
13977 intel_crtc->pipe = pipe;
13978 intel_crtc->plane = pipe;
13979 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13980 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13981 intel_crtc->plane = !pipe;
13982 }
13983
13984 intel_crtc->cursor_base = ~0;
13985 intel_crtc->cursor_cntl = ~0;
13986 intel_crtc->cursor_size = ~0;
13987
13988 intel_crtc->wm.cxsr_allowed = true;
13989
13990 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13991 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13992 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13993 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13994
13995 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13996
13997 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13998 return;
13999
14000 fail:
14001 if (primary)
14002 drm_plane_cleanup(primary);
14003 if (cursor)
14004 drm_plane_cleanup(cursor);
14005 kfree(crtc_state);
14006 kfree(intel_crtc);
14007 }
14008
intel_get_pipe_from_connector(struct intel_connector * connector)14009 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14010 {
14011 struct drm_encoder *encoder = connector->base.encoder;
14012 struct drm_device *dev = connector->base.dev;
14013
14014 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14015
14016 if (!encoder || WARN_ON(!encoder->crtc))
14017 return INVALID_PIPE;
14018
14019 return to_intel_crtc(encoder->crtc)->pipe;
14020 }
14021
intel_get_pipe_from_crtc_id(struct drm_device * dev,void * data,struct drm_file * file)14022 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14023 struct drm_file *file)
14024 {
14025 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14026 struct drm_crtc *drmmode_crtc;
14027 struct intel_crtc *crtc;
14028
14029 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14030
14031 if (!drmmode_crtc) {
14032 DRM_ERROR("no such CRTC id\n");
14033 return -ENOENT;
14034 }
14035
14036 crtc = to_intel_crtc(drmmode_crtc);
14037 pipe_from_crtc_id->pipe = crtc->pipe;
14038
14039 return 0;
14040 }
14041
intel_encoder_clones(struct intel_encoder * encoder)14042 static int intel_encoder_clones(struct intel_encoder *encoder)
14043 {
14044 struct drm_device *dev = encoder->base.dev;
14045 struct intel_encoder *source_encoder;
14046 int index_mask = 0;
14047 int entry = 0;
14048
14049 for_each_intel_encoder(dev, source_encoder) {
14050 if (encoders_cloneable(encoder, source_encoder))
14051 index_mask |= (1 << entry);
14052
14053 entry++;
14054 }
14055
14056 return index_mask;
14057 }
14058
has_edp_a(struct drm_device * dev)14059 static bool has_edp_a(struct drm_device *dev)
14060 {
14061 struct drm_i915_private *dev_priv = dev->dev_private;
14062
14063 if (!IS_MOBILE(dev))
14064 return false;
14065
14066 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14067 return false;
14068
14069 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14070 return false;
14071
14072 return true;
14073 }
14074
intel_crt_present(struct drm_device * dev)14075 static bool intel_crt_present(struct drm_device *dev)
14076 {
14077 struct drm_i915_private *dev_priv = dev->dev_private;
14078
14079 if (INTEL_INFO(dev)->gen >= 9)
14080 return false;
14081
14082 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14083 return false;
14084
14085 if (IS_CHERRYVIEW(dev))
14086 return false;
14087
14088 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
14089 return false;
14090
14091 return true;
14092 }
14093
intel_setup_outputs(struct drm_device * dev)14094 static void intel_setup_outputs(struct drm_device *dev)
14095 {
14096 struct drm_i915_private *dev_priv = dev->dev_private;
14097 struct intel_encoder *encoder;
14098 bool dpd_is_edp = false;
14099
14100 intel_lvds_init(dev);
14101
14102 if (intel_crt_present(dev))
14103 intel_crt_init(dev);
14104
14105 if (IS_BROXTON(dev)) {
14106 /*
14107 * FIXME: Broxton doesn't support port detection via the
14108 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14109 * detect the ports.
14110 */
14111 intel_ddi_init(dev, PORT_A);
14112 intel_ddi_init(dev, PORT_B);
14113 intel_ddi_init(dev, PORT_C);
14114 } else if (HAS_DDI(dev)) {
14115 int found;
14116
14117 /*
14118 * Haswell uses DDI functions to detect digital outputs.
14119 * On SKL pre-D0 the strap isn't connected, so we assume
14120 * it's there.
14121 */
14122 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14123 /* WaIgnoreDDIAStrap: skl */
14124 if (found || IS_SKYLAKE(dev))
14125 intel_ddi_init(dev, PORT_A);
14126
14127 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14128 * register */
14129 found = I915_READ(SFUSE_STRAP);
14130
14131 if (found & SFUSE_STRAP_DDIB_DETECTED)
14132 intel_ddi_init(dev, PORT_B);
14133 if (found & SFUSE_STRAP_DDIC_DETECTED)
14134 intel_ddi_init(dev, PORT_C);
14135 if (found & SFUSE_STRAP_DDID_DETECTED)
14136 intel_ddi_init(dev, PORT_D);
14137 /*
14138 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14139 */
14140 if (IS_SKYLAKE(dev) &&
14141 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14142 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14143 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14144 intel_ddi_init(dev, PORT_E);
14145
14146 } else if (HAS_PCH_SPLIT(dev)) {
14147 int found;
14148 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14149
14150 if (has_edp_a(dev))
14151 intel_dp_init(dev, DP_A, PORT_A);
14152
14153 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14154 /* PCH SDVOB multiplex with HDMIB */
14155 found = intel_sdvo_init(dev, PCH_SDVOB, true);
14156 if (!found)
14157 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14158 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14159 intel_dp_init(dev, PCH_DP_B, PORT_B);
14160 }
14161
14162 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14163 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14164
14165 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14166 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14167
14168 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14169 intel_dp_init(dev, PCH_DP_C, PORT_C);
14170
14171 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14172 intel_dp_init(dev, PCH_DP_D, PORT_D);
14173 } else if (IS_VALLEYVIEW(dev)) {
14174 bool has_edp, has_port;
14175
14176 /*
14177 * The DP_DETECTED bit is the latched state of the DDC
14178 * SDA pin at boot. However since eDP doesn't require DDC
14179 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14180 * eDP ports may have been muxed to an alternate function.
14181 * Thus we can't rely on the DP_DETECTED bit alone to detect
14182 * eDP ports. Consult the VBT as well as DP_DETECTED to
14183 * detect eDP ports.
14184 *
14185 * Sadly the straps seem to be missing sometimes even for HDMI
14186 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14187 * and VBT for the presence of the port. Additionally we can't
14188 * trust the port type the VBT declares as we've seen at least
14189 * HDMI ports that the VBT claim are DP or eDP.
14190 */
14191 has_edp = intel_dp_is_edp(dev, PORT_B);
14192 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14193 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
14194 has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
14195 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
14196 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14197
14198 has_edp = intel_dp_is_edp(dev, PORT_C);
14199 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14200 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
14201 has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
14202 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
14203 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14204
14205 if (IS_CHERRYVIEW(dev)) {
14206 /*
14207 * eDP not supported on port D,
14208 * so no need to worry about it
14209 */
14210 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14211 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
14212 intel_dp_init(dev, CHV_DP_D, PORT_D);
14213 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14214 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14215 }
14216
14217 intel_dsi_init(dev);
14218 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14219 bool found = false;
14220
14221 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14222 DRM_DEBUG_KMS("probing SDVOB\n");
14223 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14224 if (!found && IS_G4X(dev)) {
14225 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14226 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14227 }
14228
14229 if (!found && IS_G4X(dev))
14230 intel_dp_init(dev, DP_B, PORT_B);
14231 }
14232
14233 /* Before G4X SDVOC doesn't have its own detect register */
14234
14235 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14236 DRM_DEBUG_KMS("probing SDVOC\n");
14237 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14238 }
14239
14240 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14241
14242 if (IS_G4X(dev)) {
14243 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14244 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14245 }
14246 if (IS_G4X(dev))
14247 intel_dp_init(dev, DP_C, PORT_C);
14248 }
14249
14250 if (IS_G4X(dev) &&
14251 (I915_READ(DP_D) & DP_DETECTED))
14252 intel_dp_init(dev, DP_D, PORT_D);
14253 } else if (IS_GEN2(dev))
14254 intel_dvo_init(dev);
14255
14256 if (SUPPORTS_TV(dev))
14257 intel_tv_init(dev);
14258
14259 intel_psr_init(dev);
14260
14261 for_each_intel_encoder(dev, encoder) {
14262 encoder->base.possible_crtcs = encoder->crtc_mask;
14263 encoder->base.possible_clones =
14264 intel_encoder_clones(encoder);
14265 }
14266
14267 intel_init_pch_refclk(dev);
14268
14269 drm_helper_move_panel_connectors_to_head(dev);
14270 }
14271
intel_user_framebuffer_destroy(struct drm_framebuffer * fb)14272 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14273 {
14274 struct drm_device *dev = fb->dev;
14275 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14276
14277 drm_framebuffer_cleanup(fb);
14278 mutex_lock(&dev->struct_mutex);
14279 WARN_ON(!intel_fb->obj->framebuffer_references--);
14280 drm_gem_object_unreference(&intel_fb->obj->base);
14281 mutex_unlock(&dev->struct_mutex);
14282 kfree(intel_fb);
14283 }
14284
intel_user_framebuffer_create_handle(struct drm_framebuffer * fb,struct drm_file * file,unsigned int * handle)14285 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14286 struct drm_file *file,
14287 unsigned int *handle)
14288 {
14289 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14290 struct drm_i915_gem_object *obj = intel_fb->obj;
14291
14292 if (obj->userptr.mm) {
14293 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14294 return -EINVAL;
14295 }
14296
14297 return drm_gem_handle_create(file, &obj->base, handle);
14298 }
14299
intel_user_framebuffer_dirty(struct drm_framebuffer * fb,struct drm_file * file,unsigned flags,unsigned color,struct drm_clip_rect * clips,unsigned num_clips)14300 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14301 struct drm_file *file,
14302 unsigned flags, unsigned color,
14303 struct drm_clip_rect *clips,
14304 unsigned num_clips)
14305 {
14306 struct drm_device *dev = fb->dev;
14307 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14308 struct drm_i915_gem_object *obj = intel_fb->obj;
14309
14310 mutex_lock(&dev->struct_mutex);
14311 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14312 mutex_unlock(&dev->struct_mutex);
14313
14314 return 0;
14315 }
14316
14317 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14318 .destroy = intel_user_framebuffer_destroy,
14319 .create_handle = intel_user_framebuffer_create_handle,
14320 .dirty = intel_user_framebuffer_dirty,
14321 };
14322
14323 static
intel_fb_pitch_limit(struct drm_device * dev,uint64_t fb_modifier,uint32_t pixel_format)14324 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14325 uint32_t pixel_format)
14326 {
14327 u32 gen = INTEL_INFO(dev)->gen;
14328
14329 if (gen >= 9) {
14330 /* "The stride in bytes must not exceed the of the size of 8K
14331 * pixels and 32K bytes."
14332 */
14333 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14334 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14335 return 32*1024;
14336 } else if (gen >= 4) {
14337 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14338 return 16*1024;
14339 else
14340 return 32*1024;
14341 } else if (gen >= 3) {
14342 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14343 return 8*1024;
14344 else
14345 return 16*1024;
14346 } else {
14347 /* XXX DSPC is limited to 4k tiled */
14348 return 8*1024;
14349 }
14350 }
14351
intel_framebuffer_init(struct drm_device * dev,struct intel_framebuffer * intel_fb,struct drm_mode_fb_cmd2 * mode_cmd,struct drm_i915_gem_object * obj)14352 static int intel_framebuffer_init(struct drm_device *dev,
14353 struct intel_framebuffer *intel_fb,
14354 struct drm_mode_fb_cmd2 *mode_cmd,
14355 struct drm_i915_gem_object *obj)
14356 {
14357 unsigned int aligned_height;
14358 int ret;
14359 u32 pitch_limit, stride_alignment;
14360
14361 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14362
14363 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14364 /* Enforce that fb modifier and tiling mode match, but only for
14365 * X-tiled. This is needed for FBC. */
14366 if (!!(obj->tiling_mode == I915_TILING_X) !=
14367 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14368 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14369 return -EINVAL;
14370 }
14371 } else {
14372 if (obj->tiling_mode == I915_TILING_X)
14373 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14374 else if (obj->tiling_mode == I915_TILING_Y) {
14375 DRM_DEBUG("No Y tiling for legacy addfb\n");
14376 return -EINVAL;
14377 }
14378 }
14379
14380 /* Passed in modifier sanity checking. */
14381 switch (mode_cmd->modifier[0]) {
14382 case I915_FORMAT_MOD_Y_TILED:
14383 case I915_FORMAT_MOD_Yf_TILED:
14384 if (INTEL_INFO(dev)->gen < 9) {
14385 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14386 mode_cmd->modifier[0]);
14387 return -EINVAL;
14388 }
14389 case DRM_FORMAT_MOD_NONE:
14390 case I915_FORMAT_MOD_X_TILED:
14391 break;
14392 default:
14393 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14394 mode_cmd->modifier[0]);
14395 return -EINVAL;
14396 }
14397
14398 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14399 mode_cmd->pixel_format);
14400 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14401 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14402 mode_cmd->pitches[0], stride_alignment);
14403 return -EINVAL;
14404 }
14405
14406 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14407 mode_cmd->pixel_format);
14408 if (mode_cmd->pitches[0] > pitch_limit) {
14409 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14410 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14411 "tiled" : "linear",
14412 mode_cmd->pitches[0], pitch_limit);
14413 return -EINVAL;
14414 }
14415
14416 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14417 mode_cmd->pitches[0] != obj->stride) {
14418 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14419 mode_cmd->pitches[0], obj->stride);
14420 return -EINVAL;
14421 }
14422
14423 /* Reject formats not supported by any plane early. */
14424 switch (mode_cmd->pixel_format) {
14425 case DRM_FORMAT_C8:
14426 case DRM_FORMAT_RGB565:
14427 case DRM_FORMAT_XRGB8888:
14428 case DRM_FORMAT_ARGB8888:
14429 break;
14430 case DRM_FORMAT_XRGB1555:
14431 if (INTEL_INFO(dev)->gen > 3) {
14432 DRM_DEBUG("unsupported pixel format: %s\n",
14433 drm_get_format_name(mode_cmd->pixel_format));
14434 return -EINVAL;
14435 }
14436 break;
14437 case DRM_FORMAT_ABGR8888:
14438 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14439 DRM_DEBUG("unsupported pixel format: %s\n",
14440 drm_get_format_name(mode_cmd->pixel_format));
14441 return -EINVAL;
14442 }
14443 break;
14444 case DRM_FORMAT_XBGR8888:
14445 case DRM_FORMAT_XRGB2101010:
14446 case DRM_FORMAT_XBGR2101010:
14447 if (INTEL_INFO(dev)->gen < 4) {
14448 DRM_DEBUG("unsupported pixel format: %s\n",
14449 drm_get_format_name(mode_cmd->pixel_format));
14450 return -EINVAL;
14451 }
14452 break;
14453 case DRM_FORMAT_ABGR2101010:
14454 if (!IS_VALLEYVIEW(dev)) {
14455 DRM_DEBUG("unsupported pixel format: %s\n",
14456 drm_get_format_name(mode_cmd->pixel_format));
14457 return -EINVAL;
14458 }
14459 break;
14460 case DRM_FORMAT_YUYV:
14461 case DRM_FORMAT_UYVY:
14462 case DRM_FORMAT_YVYU:
14463 case DRM_FORMAT_VYUY:
14464 if (INTEL_INFO(dev)->gen < 5) {
14465 DRM_DEBUG("unsupported pixel format: %s\n",
14466 drm_get_format_name(mode_cmd->pixel_format));
14467 return -EINVAL;
14468 }
14469 break;
14470 default:
14471 DRM_DEBUG("unsupported pixel format: %s\n",
14472 drm_get_format_name(mode_cmd->pixel_format));
14473 return -EINVAL;
14474 }
14475
14476 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14477 if (mode_cmd->offsets[0] != 0)
14478 return -EINVAL;
14479
14480 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14481 mode_cmd->pixel_format,
14482 mode_cmd->modifier[0]);
14483 /* FIXME drm helper for size checks (especially planar formats)? */
14484 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14485 return -EINVAL;
14486
14487 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14488 intel_fb->obj = obj;
14489 intel_fb->obj->framebuffer_references++;
14490
14491 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14492 if (ret) {
14493 DRM_ERROR("framebuffer init failed %d\n", ret);
14494 return ret;
14495 }
14496
14497 return 0;
14498 }
14499
14500 static struct drm_framebuffer *
intel_user_framebuffer_create(struct drm_device * dev,struct drm_file * filp,struct drm_mode_fb_cmd2 * user_mode_cmd)14501 intel_user_framebuffer_create(struct drm_device *dev,
14502 struct drm_file *filp,
14503 struct drm_mode_fb_cmd2 *user_mode_cmd)
14504 {
14505 struct drm_i915_gem_object *obj;
14506 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14507
14508 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14509 mode_cmd.handles[0]));
14510 if (&obj->base == NULL)
14511 return ERR_PTR(-ENOENT);
14512
14513 return intel_framebuffer_create(dev, &mode_cmd, obj);
14514 }
14515
14516 #ifndef CONFIG_DRM_FBDEV_EMULATION
intel_fbdev_output_poll_changed(struct drm_device * dev)14517 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14518 {
14519 }
14520 #endif
14521
14522 static const struct drm_mode_config_funcs intel_mode_funcs = {
14523 .fb_create = intel_user_framebuffer_create,
14524 .output_poll_changed = intel_fbdev_output_poll_changed,
14525 .atomic_check = intel_atomic_check,
14526 .atomic_commit = intel_atomic_commit,
14527 .atomic_state_alloc = intel_atomic_state_alloc,
14528 .atomic_state_clear = intel_atomic_state_clear,
14529 };
14530
14531 /* Set up chip specific display functions */
intel_init_display(struct drm_device * dev)14532 static void intel_init_display(struct drm_device *dev)
14533 {
14534 struct drm_i915_private *dev_priv = dev->dev_private;
14535
14536 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14537 dev_priv->display.find_dpll = g4x_find_best_dpll;
14538 else if (IS_CHERRYVIEW(dev))
14539 dev_priv->display.find_dpll = chv_find_best_dpll;
14540 else if (IS_VALLEYVIEW(dev))
14541 dev_priv->display.find_dpll = vlv_find_best_dpll;
14542 else if (IS_PINEVIEW(dev))
14543 dev_priv->display.find_dpll = pnv_find_best_dpll;
14544 else
14545 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14546
14547 if (INTEL_INFO(dev)->gen >= 9) {
14548 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14549 dev_priv->display.get_initial_plane_config =
14550 skylake_get_initial_plane_config;
14551 dev_priv->display.crtc_compute_clock =
14552 haswell_crtc_compute_clock;
14553 dev_priv->display.crtc_enable = haswell_crtc_enable;
14554 dev_priv->display.crtc_disable = haswell_crtc_disable;
14555 dev_priv->display.update_primary_plane =
14556 skylake_update_primary_plane;
14557 } else if (HAS_DDI(dev)) {
14558 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14559 dev_priv->display.get_initial_plane_config =
14560 ironlake_get_initial_plane_config;
14561 dev_priv->display.crtc_compute_clock =
14562 haswell_crtc_compute_clock;
14563 dev_priv->display.crtc_enable = haswell_crtc_enable;
14564 dev_priv->display.crtc_disable = haswell_crtc_disable;
14565 dev_priv->display.update_primary_plane =
14566 ironlake_update_primary_plane;
14567 } else if (HAS_PCH_SPLIT(dev)) {
14568 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14569 dev_priv->display.get_initial_plane_config =
14570 ironlake_get_initial_plane_config;
14571 dev_priv->display.crtc_compute_clock =
14572 ironlake_crtc_compute_clock;
14573 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14574 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14575 dev_priv->display.update_primary_plane =
14576 ironlake_update_primary_plane;
14577 } else if (IS_VALLEYVIEW(dev)) {
14578 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14579 dev_priv->display.get_initial_plane_config =
14580 i9xx_get_initial_plane_config;
14581 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14582 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14583 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14584 dev_priv->display.update_primary_plane =
14585 i9xx_update_primary_plane;
14586 } else {
14587 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14588 dev_priv->display.get_initial_plane_config =
14589 i9xx_get_initial_plane_config;
14590 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14591 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14592 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14593 dev_priv->display.update_primary_plane =
14594 i9xx_update_primary_plane;
14595 }
14596
14597 /* Returns the core display clock speed */
14598 if (IS_SKYLAKE(dev))
14599 dev_priv->display.get_display_clock_speed =
14600 skylake_get_display_clock_speed;
14601 else if (IS_BROXTON(dev))
14602 dev_priv->display.get_display_clock_speed =
14603 broxton_get_display_clock_speed;
14604 else if (IS_BROADWELL(dev))
14605 dev_priv->display.get_display_clock_speed =
14606 broadwell_get_display_clock_speed;
14607 else if (IS_HASWELL(dev))
14608 dev_priv->display.get_display_clock_speed =
14609 haswell_get_display_clock_speed;
14610 else if (IS_VALLEYVIEW(dev))
14611 dev_priv->display.get_display_clock_speed =
14612 valleyview_get_display_clock_speed;
14613 else if (IS_GEN5(dev))
14614 dev_priv->display.get_display_clock_speed =
14615 ilk_get_display_clock_speed;
14616 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14617 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14618 dev_priv->display.get_display_clock_speed =
14619 i945_get_display_clock_speed;
14620 else if (IS_GM45(dev))
14621 dev_priv->display.get_display_clock_speed =
14622 gm45_get_display_clock_speed;
14623 else if (IS_CRESTLINE(dev))
14624 dev_priv->display.get_display_clock_speed =
14625 i965gm_get_display_clock_speed;
14626 else if (IS_PINEVIEW(dev))
14627 dev_priv->display.get_display_clock_speed =
14628 pnv_get_display_clock_speed;
14629 else if (IS_G33(dev) || IS_G4X(dev))
14630 dev_priv->display.get_display_clock_speed =
14631 g33_get_display_clock_speed;
14632 else if (IS_I915G(dev))
14633 dev_priv->display.get_display_clock_speed =
14634 i915_get_display_clock_speed;
14635 else if (IS_I945GM(dev) || IS_845G(dev))
14636 dev_priv->display.get_display_clock_speed =
14637 i9xx_misc_get_display_clock_speed;
14638 else if (IS_PINEVIEW(dev))
14639 dev_priv->display.get_display_clock_speed =
14640 pnv_get_display_clock_speed;
14641 else if (IS_I915GM(dev))
14642 dev_priv->display.get_display_clock_speed =
14643 i915gm_get_display_clock_speed;
14644 else if (IS_I865G(dev))
14645 dev_priv->display.get_display_clock_speed =
14646 i865_get_display_clock_speed;
14647 else if (IS_I85X(dev))
14648 dev_priv->display.get_display_clock_speed =
14649 i85x_get_display_clock_speed;
14650 else { /* 830 */
14651 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14652 dev_priv->display.get_display_clock_speed =
14653 i830_get_display_clock_speed;
14654 }
14655
14656 if (IS_GEN5(dev)) {
14657 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14658 } else if (IS_GEN6(dev)) {
14659 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14660 } else if (IS_IVYBRIDGE(dev)) {
14661 /* FIXME: detect B0+ stepping and use auto training */
14662 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14663 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14664 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14665 if (IS_BROADWELL(dev)) {
14666 dev_priv->display.modeset_commit_cdclk =
14667 broadwell_modeset_commit_cdclk;
14668 dev_priv->display.modeset_calc_cdclk =
14669 broadwell_modeset_calc_cdclk;
14670 }
14671 } else if (IS_VALLEYVIEW(dev)) {
14672 dev_priv->display.modeset_commit_cdclk =
14673 valleyview_modeset_commit_cdclk;
14674 dev_priv->display.modeset_calc_cdclk =
14675 valleyview_modeset_calc_cdclk;
14676 } else if (IS_BROXTON(dev)) {
14677 dev_priv->display.modeset_commit_cdclk =
14678 broxton_modeset_commit_cdclk;
14679 dev_priv->display.modeset_calc_cdclk =
14680 broxton_modeset_calc_cdclk;
14681 }
14682
14683 switch (INTEL_INFO(dev)->gen) {
14684 case 2:
14685 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14686 break;
14687
14688 case 3:
14689 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14690 break;
14691
14692 case 4:
14693 case 5:
14694 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14695 break;
14696
14697 case 6:
14698 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14699 break;
14700 case 7:
14701 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14702 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14703 break;
14704 case 9:
14705 /* Drop through - unsupported since execlist only. */
14706 default:
14707 /* Default just returns -ENODEV to indicate unsupported */
14708 dev_priv->display.queue_flip = intel_default_queue_flip;
14709 }
14710
14711 mutex_init(&dev_priv->pps_mutex);
14712 }
14713
14714 /*
14715 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14716 * resume, or other times. This quirk makes sure that's the case for
14717 * affected systems.
14718 */
quirk_pipea_force(struct drm_device * dev)14719 static void quirk_pipea_force(struct drm_device *dev)
14720 {
14721 struct drm_i915_private *dev_priv = dev->dev_private;
14722
14723 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14724 DRM_INFO("applying pipe a force quirk\n");
14725 }
14726
quirk_pipeb_force(struct drm_device * dev)14727 static void quirk_pipeb_force(struct drm_device *dev)
14728 {
14729 struct drm_i915_private *dev_priv = dev->dev_private;
14730
14731 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14732 DRM_INFO("applying pipe b force quirk\n");
14733 }
14734
14735 /*
14736 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14737 */
quirk_ssc_force_disable(struct drm_device * dev)14738 static void quirk_ssc_force_disable(struct drm_device *dev)
14739 {
14740 struct drm_i915_private *dev_priv = dev->dev_private;
14741 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14742 DRM_INFO("applying lvds SSC disable quirk\n");
14743 }
14744
14745 /*
14746 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14747 * brightness value
14748 */
quirk_invert_brightness(struct drm_device * dev)14749 static void quirk_invert_brightness(struct drm_device *dev)
14750 {
14751 struct drm_i915_private *dev_priv = dev->dev_private;
14752 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14753 DRM_INFO("applying inverted panel brightness quirk\n");
14754 }
14755
14756 /* Some VBT's incorrectly indicate no backlight is present */
quirk_backlight_present(struct drm_device * dev)14757 static void quirk_backlight_present(struct drm_device *dev)
14758 {
14759 struct drm_i915_private *dev_priv = dev->dev_private;
14760 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14761 DRM_INFO("applying backlight present quirk\n");
14762 }
14763
14764 struct intel_quirk {
14765 int device;
14766 int subsystem_vendor;
14767 int subsystem_device;
14768 void (*hook)(struct drm_device *dev);
14769 };
14770
14771 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14772 struct intel_dmi_quirk {
14773 void (*hook)(struct drm_device *dev);
14774 const struct dmi_system_id (*dmi_id_list)[];
14775 };
14776
intel_dmi_reverse_brightness(const struct dmi_system_id * id)14777 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14778 {
14779 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14780 return 1;
14781 }
14782
14783 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14784 {
14785 .dmi_id_list = &(const struct dmi_system_id[]) {
14786 {
14787 .callback = intel_dmi_reverse_brightness,
14788 .ident = "NCR Corporation",
14789 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14790 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14791 },
14792 },
14793 { } /* terminating entry */
14794 },
14795 .hook = quirk_invert_brightness,
14796 },
14797 };
14798
14799 static struct intel_quirk intel_quirks[] = {
14800 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14801 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14802
14803 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14804 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14805
14806 /* 830 needs to leave pipe A & dpll A up */
14807 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14808
14809 /* 830 needs to leave pipe B & dpll B up */
14810 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14811
14812 /* Lenovo U160 cannot use SSC on LVDS */
14813 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14814
14815 /* Sony Vaio Y cannot use SSC on LVDS */
14816 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14817
14818 /* Acer Aspire 5734Z must invert backlight brightness */
14819 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14820
14821 /* Acer/eMachines G725 */
14822 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14823
14824 /* Acer/eMachines e725 */
14825 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14826
14827 /* Acer/Packard Bell NCL20 */
14828 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14829
14830 /* Acer Aspire 4736Z */
14831 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14832
14833 /* Acer Aspire 5336 */
14834 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14835
14836 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14837 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14838
14839 /* Acer C720 Chromebook (Core i3 4005U) */
14840 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14841
14842 /* Apple Macbook 2,1 (Core 2 T7400) */
14843 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14844
14845 /* Apple Macbook 4,1 */
14846 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14847
14848 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14849 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14850
14851 /* HP Chromebook 14 (Celeron 2955U) */
14852 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14853
14854 /* Dell Chromebook 11 */
14855 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14856
14857 /* Dell Chromebook 11 (2015 version) */
14858 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14859 };
14860
intel_init_quirks(struct drm_device * dev)14861 static void intel_init_quirks(struct drm_device *dev)
14862 {
14863 struct pci_dev *d = dev->pdev;
14864 int i;
14865
14866 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14867 struct intel_quirk *q = &intel_quirks[i];
14868
14869 if (d->device == q->device &&
14870 (d->subsystem_vendor == q->subsystem_vendor ||
14871 q->subsystem_vendor == PCI_ANY_ID) &&
14872 (d->subsystem_device == q->subsystem_device ||
14873 q->subsystem_device == PCI_ANY_ID))
14874 q->hook(dev);
14875 }
14876 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14877 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14878 intel_dmi_quirks[i].hook(dev);
14879 }
14880 }
14881
14882 /* Disable the VGA plane that we never use */
i915_disable_vga(struct drm_device * dev)14883 static void i915_disable_vga(struct drm_device *dev)
14884 {
14885 struct drm_i915_private *dev_priv = dev->dev_private;
14886 u8 sr1;
14887 u32 vga_reg = i915_vgacntrl_reg(dev);
14888
14889 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14890 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14891 outb(SR01, VGA_SR_INDEX);
14892 sr1 = inb(VGA_SR_DATA);
14893 outb(sr1 | 1<<5, VGA_SR_DATA);
14894 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14895 udelay(300);
14896
14897 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14898 POSTING_READ(vga_reg);
14899 }
14900
intel_modeset_init_hw(struct drm_device * dev)14901 void intel_modeset_init_hw(struct drm_device *dev)
14902 {
14903 intel_update_cdclk(dev);
14904 intel_prepare_ddi(dev);
14905 intel_init_clock_gating(dev);
14906 intel_enable_gt_powersave(dev);
14907 }
14908
intel_modeset_init(struct drm_device * dev)14909 void intel_modeset_init(struct drm_device *dev)
14910 {
14911 struct drm_i915_private *dev_priv = dev->dev_private;
14912 int sprite, ret;
14913 enum pipe pipe;
14914 struct intel_crtc *crtc;
14915
14916 drm_mode_config_init(dev);
14917
14918 dev->mode_config.min_width = 0;
14919 dev->mode_config.min_height = 0;
14920
14921 dev->mode_config.preferred_depth = 24;
14922 dev->mode_config.prefer_shadow = 1;
14923
14924 dev->mode_config.allow_fb_modifiers = true;
14925
14926 dev->mode_config.funcs = &intel_mode_funcs;
14927
14928 intel_init_quirks(dev);
14929
14930 intel_init_pm(dev);
14931
14932 if (INTEL_INFO(dev)->num_pipes == 0)
14933 return;
14934
14935 /*
14936 * There may be no VBT; and if the BIOS enabled SSC we can
14937 * just keep using it to avoid unnecessary flicker. Whereas if the
14938 * BIOS isn't using it, don't assume it will work even if the VBT
14939 * indicates as much.
14940 */
14941 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
14942 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14943 DREF_SSC1_ENABLE);
14944
14945 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14946 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14947 bios_lvds_use_ssc ? "en" : "dis",
14948 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14949 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14950 }
14951 }
14952
14953 intel_init_display(dev);
14954 intel_init_audio(dev);
14955
14956 if (IS_GEN2(dev)) {
14957 dev->mode_config.max_width = 2048;
14958 dev->mode_config.max_height = 2048;
14959 } else if (IS_GEN3(dev)) {
14960 dev->mode_config.max_width = 4096;
14961 dev->mode_config.max_height = 4096;
14962 } else {
14963 dev->mode_config.max_width = 8192;
14964 dev->mode_config.max_height = 8192;
14965 }
14966
14967 if (IS_845G(dev) || IS_I865G(dev)) {
14968 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14969 dev->mode_config.cursor_height = 1023;
14970 } else if (IS_GEN2(dev)) {
14971 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14972 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14973 } else {
14974 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14975 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14976 }
14977
14978 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14979
14980 DRM_DEBUG_KMS("%d display pipe%s available.\n",
14981 INTEL_INFO(dev)->num_pipes,
14982 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14983
14984 for_each_pipe(dev_priv, pipe) {
14985 intel_crtc_init(dev, pipe);
14986 for_each_sprite(dev_priv, pipe, sprite) {
14987 ret = intel_plane_init(dev, pipe, sprite);
14988 if (ret)
14989 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14990 pipe_name(pipe), sprite_name(pipe, sprite), ret);
14991 }
14992 }
14993
14994 intel_update_czclk(dev_priv);
14995 intel_update_cdclk(dev);
14996
14997 intel_shared_dpll_init(dev);
14998
14999 /* Just disable it once at startup */
15000 i915_disable_vga(dev);
15001 intel_setup_outputs(dev);
15002
15003 /* Just in case the BIOS is doing something questionable. */
15004 intel_fbc_disable(dev_priv);
15005
15006 drm_modeset_lock_all(dev);
15007 intel_modeset_setup_hw_state(dev);
15008 drm_modeset_unlock_all(dev);
15009
15010 for_each_intel_crtc(dev, crtc) {
15011 struct intel_initial_plane_config plane_config = {};
15012
15013 if (!crtc->active)
15014 continue;
15015
15016 /*
15017 * Note that reserving the BIOS fb up front prevents us
15018 * from stuffing other stolen allocations like the ring
15019 * on top. This prevents some ugliness at boot time, and
15020 * can even allow for smooth boot transitions if the BIOS
15021 * fb is large enough for the active pipe configuration.
15022 */
15023 dev_priv->display.get_initial_plane_config(crtc,
15024 &plane_config);
15025
15026 /*
15027 * If the fb is shared between multiple heads, we'll
15028 * just get the first one.
15029 */
15030 intel_find_initial_plane_obj(crtc, &plane_config);
15031 }
15032 }
15033
intel_enable_pipe_a(struct drm_device * dev)15034 static void intel_enable_pipe_a(struct drm_device *dev)
15035 {
15036 struct intel_connector *connector;
15037 struct drm_connector *crt = NULL;
15038 struct intel_load_detect_pipe load_detect_temp;
15039 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15040
15041 /* We can't just switch on the pipe A, we need to set things up with a
15042 * proper mode and output configuration. As a gross hack, enable pipe A
15043 * by enabling the load detect pipe once. */
15044 for_each_intel_connector(dev, connector) {
15045 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15046 crt = &connector->base;
15047 break;
15048 }
15049 }
15050
15051 if (!crt)
15052 return;
15053
15054 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15055 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15056 }
15057
15058 static bool
intel_check_plane_mapping(struct intel_crtc * crtc)15059 intel_check_plane_mapping(struct intel_crtc *crtc)
15060 {
15061 struct drm_device *dev = crtc->base.dev;
15062 struct drm_i915_private *dev_priv = dev->dev_private;
15063 u32 val;
15064
15065 if (INTEL_INFO(dev)->num_pipes == 1)
15066 return true;
15067
15068 val = I915_READ(DSPCNTR(!crtc->plane));
15069
15070 if ((val & DISPLAY_PLANE_ENABLE) &&
15071 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15072 return false;
15073
15074 return true;
15075 }
15076
intel_crtc_has_encoders(struct intel_crtc * crtc)15077 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15078 {
15079 struct drm_device *dev = crtc->base.dev;
15080 struct intel_encoder *encoder;
15081
15082 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15083 return true;
15084
15085 return false;
15086 }
15087
intel_sanitize_crtc(struct intel_crtc * crtc)15088 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15089 {
15090 struct drm_device *dev = crtc->base.dev;
15091 struct drm_i915_private *dev_priv = dev->dev_private;
15092 u32 reg;
15093
15094 /* Clear any frame start delays used for debugging left by the BIOS */
15095 reg = PIPECONF(crtc->config->cpu_transcoder);
15096 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15097
15098 /* restore vblank interrupts to correct state */
15099 drm_crtc_vblank_reset(&crtc->base);
15100 if (crtc->active) {
15101 struct intel_plane *plane;
15102
15103 drm_crtc_vblank_on(&crtc->base);
15104
15105 /* Disable everything but the primary plane */
15106 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15107 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15108 continue;
15109
15110 plane->disable_plane(&plane->base, &crtc->base);
15111 }
15112 }
15113
15114 /* We need to sanitize the plane -> pipe mapping first because this will
15115 * disable the crtc (and hence change the state) if it is wrong. Note
15116 * that gen4+ has a fixed plane -> pipe mapping. */
15117 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15118 bool plane;
15119
15120 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15121 crtc->base.base.id);
15122
15123 /* Pipe has the wrong plane attached and the plane is active.
15124 * Temporarily change the plane mapping and disable everything
15125 * ... */
15126 plane = crtc->plane;
15127 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15128 crtc->plane = !plane;
15129 intel_crtc_disable_noatomic(&crtc->base);
15130 crtc->plane = plane;
15131 }
15132
15133 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15134 crtc->pipe == PIPE_A && !crtc->active) {
15135 /* BIOS forgot to enable pipe A, this mostly happens after
15136 * resume. Force-enable the pipe to fix this, the update_dpms
15137 * call below we restore the pipe to the right state, but leave
15138 * the required bits on. */
15139 intel_enable_pipe_a(dev);
15140 }
15141
15142 /* Adjust the state of the output pipe according to whether we
15143 * have active connectors/encoders. */
15144 if (!intel_crtc_has_encoders(crtc))
15145 intel_crtc_disable_noatomic(&crtc->base);
15146
15147 if (crtc->active != crtc->base.state->active) {
15148 struct intel_encoder *encoder;
15149
15150 /* This can happen either due to bugs in the get_hw_state
15151 * functions or because of calls to intel_crtc_disable_noatomic,
15152 * or because the pipe is force-enabled due to the
15153 * pipe A quirk. */
15154 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15155 crtc->base.base.id,
15156 crtc->base.state->enable ? "enabled" : "disabled",
15157 crtc->active ? "enabled" : "disabled");
15158
15159 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15160 crtc->base.state->active = crtc->active;
15161 crtc->base.enabled = crtc->active;
15162
15163 /* Because we only establish the connector -> encoder ->
15164 * crtc links if something is active, this means the
15165 * crtc is now deactivated. Break the links. connector
15166 * -> encoder links are only establish when things are
15167 * actually up, hence no need to break them. */
15168 WARN_ON(crtc->active);
15169
15170 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15171 encoder->base.crtc = NULL;
15172 }
15173
15174 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15175 /*
15176 * We start out with underrun reporting disabled to avoid races.
15177 * For correct bookkeeping mark this on active crtcs.
15178 *
15179 * Also on gmch platforms we dont have any hardware bits to
15180 * disable the underrun reporting. Which means we need to start
15181 * out with underrun reporting disabled also on inactive pipes,
15182 * since otherwise we'll complain about the garbage we read when
15183 * e.g. coming up after runtime pm.
15184 *
15185 * No protection against concurrent access is required - at
15186 * worst a fifo underrun happens which also sets this to false.
15187 */
15188 crtc->cpu_fifo_underrun_disabled = true;
15189 crtc->pch_fifo_underrun_disabled = true;
15190 }
15191 }
15192
intel_sanitize_encoder(struct intel_encoder * encoder)15193 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15194 {
15195 struct intel_connector *connector;
15196 struct drm_device *dev = encoder->base.dev;
15197 bool active = false;
15198
15199 /* We need to check both for a crtc link (meaning that the
15200 * encoder is active and trying to read from a pipe) and the
15201 * pipe itself being active. */
15202 bool has_active_crtc = encoder->base.crtc &&
15203 to_intel_crtc(encoder->base.crtc)->active;
15204
15205 for_each_intel_connector(dev, connector) {
15206 if (connector->base.encoder != &encoder->base)
15207 continue;
15208
15209 active = true;
15210 break;
15211 }
15212
15213 if (active && !has_active_crtc) {
15214 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15215 encoder->base.base.id,
15216 encoder->base.name);
15217
15218 /* Connector is active, but has no active pipe. This is
15219 * fallout from our resume register restoring. Disable
15220 * the encoder manually again. */
15221 if (encoder->base.crtc) {
15222 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15223 encoder->base.base.id,
15224 encoder->base.name);
15225 encoder->disable(encoder);
15226 if (encoder->post_disable)
15227 encoder->post_disable(encoder);
15228 }
15229 encoder->base.crtc = NULL;
15230
15231 /* Inconsistent output/port/pipe state happens presumably due to
15232 * a bug in one of the get_hw_state functions. Or someplace else
15233 * in our code, like the register restore mess on resume. Clamp
15234 * things to off as a safer default. */
15235 for_each_intel_connector(dev, connector) {
15236 if (connector->encoder != encoder)
15237 continue;
15238 connector->base.dpms = DRM_MODE_DPMS_OFF;
15239 connector->base.encoder = NULL;
15240 }
15241 }
15242 /* Enabled encoders without active connectors will be fixed in
15243 * the crtc fixup. */
15244 }
15245
i915_redisable_vga_power_on(struct drm_device * dev)15246 void i915_redisable_vga_power_on(struct drm_device *dev)
15247 {
15248 struct drm_i915_private *dev_priv = dev->dev_private;
15249 u32 vga_reg = i915_vgacntrl_reg(dev);
15250
15251 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15252 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15253 i915_disable_vga(dev);
15254 }
15255 }
15256
i915_redisable_vga(struct drm_device * dev)15257 void i915_redisable_vga(struct drm_device *dev)
15258 {
15259 struct drm_i915_private *dev_priv = dev->dev_private;
15260
15261 /* This function can be called both from intel_modeset_setup_hw_state or
15262 * at a very early point in our resume sequence, where the power well
15263 * structures are not yet restored. Since this function is at a very
15264 * paranoid "someone might have enabled VGA while we were not looking"
15265 * level, just check if the power well is enabled instead of trying to
15266 * follow the "don't touch the power well if we don't need it" policy
15267 * the rest of the driver uses. */
15268 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15269 return;
15270
15271 i915_redisable_vga_power_on(dev);
15272 }
15273
primary_get_hw_state(struct intel_plane * plane)15274 static bool primary_get_hw_state(struct intel_plane *plane)
15275 {
15276 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15277
15278 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15279 }
15280
15281 /* FIXME read out full plane state for all planes */
readout_plane_state(struct intel_crtc * crtc)15282 static void readout_plane_state(struct intel_crtc *crtc)
15283 {
15284 struct drm_plane *primary = crtc->base.primary;
15285 struct intel_plane_state *plane_state =
15286 to_intel_plane_state(primary->state);
15287
15288 plane_state->visible =
15289 primary_get_hw_state(to_intel_plane(primary));
15290
15291 if (plane_state->visible)
15292 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15293 }
15294
intel_modeset_readout_hw_state(struct drm_device * dev)15295 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15296 {
15297 struct drm_i915_private *dev_priv = dev->dev_private;
15298 enum pipe pipe;
15299 struct intel_crtc *crtc;
15300 struct intel_encoder *encoder;
15301 struct intel_connector *connector;
15302 int i;
15303
15304 for_each_intel_crtc(dev, crtc) {
15305 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15306 memset(crtc->config, 0, sizeof(*crtc->config));
15307 crtc->config->base.crtc = &crtc->base;
15308
15309 crtc->active = dev_priv->display.get_pipe_config(crtc,
15310 crtc->config);
15311
15312 crtc->base.state->active = crtc->active;
15313 crtc->base.enabled = crtc->active;
15314
15315 readout_plane_state(crtc);
15316
15317 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15318 crtc->base.base.id,
15319 crtc->active ? "enabled" : "disabled");
15320 }
15321
15322 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15323 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15324
15325 pll->on = pll->get_hw_state(dev_priv, pll,
15326 &pll->config.hw_state);
15327 pll->active = 0;
15328 pll->config.crtc_mask = 0;
15329 for_each_intel_crtc(dev, crtc) {
15330 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15331 pll->active++;
15332 pll->config.crtc_mask |= 1 << crtc->pipe;
15333 }
15334 }
15335
15336 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15337 pll->name, pll->config.crtc_mask, pll->on);
15338
15339 if (pll->config.crtc_mask)
15340 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15341 }
15342
15343 for_each_intel_encoder(dev, encoder) {
15344 pipe = 0;
15345
15346 if (encoder->get_hw_state(encoder, &pipe)) {
15347 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15348 encoder->base.crtc = &crtc->base;
15349 encoder->get_config(encoder, crtc->config);
15350 } else {
15351 encoder->base.crtc = NULL;
15352 }
15353
15354 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15355 encoder->base.base.id,
15356 encoder->base.name,
15357 encoder->base.crtc ? "enabled" : "disabled",
15358 pipe_name(pipe));
15359 }
15360
15361 for_each_intel_connector(dev, connector) {
15362 if (connector->get_hw_state(connector)) {
15363 connector->base.dpms = DRM_MODE_DPMS_ON;
15364 connector->base.encoder = &connector->encoder->base;
15365 } else {
15366 connector->base.dpms = DRM_MODE_DPMS_OFF;
15367 connector->base.encoder = NULL;
15368 }
15369 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15370 connector->base.base.id,
15371 connector->base.name,
15372 connector->base.encoder ? "enabled" : "disabled");
15373 }
15374
15375 for_each_intel_crtc(dev, crtc) {
15376 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15377
15378 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15379 if (crtc->base.state->active) {
15380 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15381 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15382 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15383
15384 /*
15385 * The initial mode needs to be set in order to keep
15386 * the atomic core happy. It wants a valid mode if the
15387 * crtc's enabled, so we do the above call.
15388 *
15389 * At this point some state updated by the connectors
15390 * in their ->detect() callback has not run yet, so
15391 * no recalculation can be done yet.
15392 *
15393 * Even if we could do a recalculation and modeset
15394 * right now it would cause a double modeset if
15395 * fbdev or userspace chooses a different initial mode.
15396 *
15397 * If that happens, someone indicated they wanted a
15398 * mode change, which means it's safe to do a full
15399 * recalculation.
15400 */
15401 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15402
15403 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15404 update_scanline_offset(crtc);
15405 }
15406 }
15407 }
15408
15409 /* Scan out the current hw modeset state,
15410 * and sanitizes it to the current state
15411 */
15412 static void
intel_modeset_setup_hw_state(struct drm_device * dev)15413 intel_modeset_setup_hw_state(struct drm_device *dev)
15414 {
15415 struct drm_i915_private *dev_priv = dev->dev_private;
15416 enum pipe pipe;
15417 struct intel_crtc *crtc;
15418 struct intel_encoder *encoder;
15419 int i;
15420
15421 intel_modeset_readout_hw_state(dev);
15422
15423 /* HW state is read out, now we need to sanitize this mess. */
15424 for_each_intel_encoder(dev, encoder) {
15425 intel_sanitize_encoder(encoder);
15426 }
15427
15428 for_each_pipe(dev_priv, pipe) {
15429 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15430 intel_sanitize_crtc(crtc);
15431 intel_dump_pipe_config(crtc, crtc->config,
15432 "[setup_hw_state]");
15433 }
15434
15435 intel_modeset_update_connector_atomic_state(dev);
15436
15437 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15438 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15439
15440 if (!pll->on || pll->active)
15441 continue;
15442
15443 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15444
15445 pll->disable(dev_priv, pll);
15446 pll->on = false;
15447 }
15448
15449 if (IS_VALLEYVIEW(dev))
15450 vlv_wm_get_hw_state(dev);
15451 else if (IS_GEN9(dev))
15452 skl_wm_get_hw_state(dev);
15453 else if (HAS_PCH_SPLIT(dev))
15454 ilk_wm_get_hw_state(dev);
15455
15456 for_each_intel_crtc(dev, crtc) {
15457 unsigned long put_domains;
15458
15459 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15460 if (WARN_ON(put_domains))
15461 modeset_put_power_domains(dev_priv, put_domains);
15462 }
15463 intel_display_set_init_power(dev_priv, false);
15464 }
15465
intel_display_resume(struct drm_device * dev)15466 void intel_display_resume(struct drm_device *dev)
15467 {
15468 struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15469 struct intel_connector *conn;
15470 struct intel_plane *plane;
15471 struct drm_crtc *crtc;
15472 int ret;
15473
15474 if (!state)
15475 return;
15476
15477 state->acquire_ctx = dev->mode_config.acquire_ctx;
15478
15479 /* preserve complete old state, including dpll */
15480 intel_atomic_get_shared_dpll_state(state);
15481
15482 for_each_crtc(dev, crtc) {
15483 struct drm_crtc_state *crtc_state =
15484 drm_atomic_get_crtc_state(state, crtc);
15485
15486 ret = PTR_ERR_OR_ZERO(crtc_state);
15487 if (ret)
15488 goto err;
15489
15490 /* force a restore */
15491 crtc_state->mode_changed = true;
15492 }
15493
15494 for_each_intel_plane(dev, plane) {
15495 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15496 if (ret)
15497 goto err;
15498 }
15499
15500 for_each_intel_connector(dev, conn) {
15501 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15502 if (ret)
15503 goto err;
15504 }
15505
15506 intel_modeset_setup_hw_state(dev);
15507
15508 i915_redisable_vga(dev);
15509 ret = drm_atomic_commit(state);
15510 if (!ret)
15511 return;
15512
15513 err:
15514 DRM_ERROR("Restoring old state failed with %i\n", ret);
15515 drm_atomic_state_free(state);
15516 }
15517
intel_modeset_gem_init(struct drm_device * dev)15518 void intel_modeset_gem_init(struct drm_device *dev)
15519 {
15520 struct drm_crtc *c;
15521 struct drm_i915_gem_object *obj;
15522 int ret;
15523
15524 mutex_lock(&dev->struct_mutex);
15525 intel_init_gt_powersave(dev);
15526 mutex_unlock(&dev->struct_mutex);
15527
15528 intel_modeset_init_hw(dev);
15529
15530 intel_setup_overlay(dev);
15531
15532 /*
15533 * Make sure any fbs we allocated at startup are properly
15534 * pinned & fenced. When we do the allocation it's too early
15535 * for this.
15536 */
15537 for_each_crtc(dev, c) {
15538 obj = intel_fb_obj(c->primary->fb);
15539 if (obj == NULL)
15540 continue;
15541
15542 mutex_lock(&dev->struct_mutex);
15543 ret = intel_pin_and_fence_fb_obj(c->primary,
15544 c->primary->fb,
15545 c->primary->state,
15546 NULL, NULL);
15547 mutex_unlock(&dev->struct_mutex);
15548 if (ret) {
15549 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15550 to_intel_crtc(c)->pipe);
15551 drm_framebuffer_unreference(c->primary->fb);
15552 c->primary->fb = NULL;
15553 c->primary->crtc = c->primary->state->crtc = NULL;
15554 update_state_fb(c->primary);
15555 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15556 }
15557 }
15558
15559 intel_backlight_register(dev);
15560 }
15561
intel_connector_unregister(struct intel_connector * intel_connector)15562 void intel_connector_unregister(struct intel_connector *intel_connector)
15563 {
15564 struct drm_connector *connector = &intel_connector->base;
15565
15566 intel_panel_destroy_backlight(connector);
15567 drm_connector_unregister(connector);
15568 }
15569
intel_modeset_cleanup(struct drm_device * dev)15570 void intel_modeset_cleanup(struct drm_device *dev)
15571 {
15572 struct drm_i915_private *dev_priv = dev->dev_private;
15573 struct drm_connector *connector;
15574
15575 intel_disable_gt_powersave(dev);
15576
15577 intel_backlight_unregister(dev);
15578
15579 /*
15580 * Interrupts and polling as the first thing to avoid creating havoc.
15581 * Too much stuff here (turning of connectors, ...) would
15582 * experience fancy races otherwise.
15583 */
15584 intel_irq_uninstall(dev_priv);
15585
15586 /*
15587 * Due to the hpd irq storm handling the hotplug work can re-arm the
15588 * poll handlers. Hence disable polling after hpd handling is shut down.
15589 */
15590 drm_kms_helper_poll_fini(dev);
15591
15592 intel_unregister_dsm_handler();
15593
15594 intel_fbc_disable(dev_priv);
15595
15596 /* flush any delayed tasks or pending work */
15597 flush_scheduled_work();
15598
15599 /* destroy the backlight and sysfs files before encoders/connectors */
15600 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15601 struct intel_connector *intel_connector;
15602
15603 intel_connector = to_intel_connector(connector);
15604 intel_connector->unregister(intel_connector);
15605 }
15606
15607 drm_mode_config_cleanup(dev);
15608
15609 intel_cleanup_overlay(dev);
15610
15611 mutex_lock(&dev->struct_mutex);
15612 intel_cleanup_gt_powersave(dev);
15613 mutex_unlock(&dev->struct_mutex);
15614
15615 intel_teardown_gmbus(dev);
15616 }
15617
15618 /*
15619 * Return which encoder is currently attached for connector.
15620 */
intel_best_encoder(struct drm_connector * connector)15621 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15622 {
15623 return &intel_attached_encoder(connector)->base;
15624 }
15625
intel_connector_attach_encoder(struct intel_connector * connector,struct intel_encoder * encoder)15626 void intel_connector_attach_encoder(struct intel_connector *connector,
15627 struct intel_encoder *encoder)
15628 {
15629 connector->encoder = encoder;
15630 drm_mode_connector_attach_encoder(&connector->base,
15631 &encoder->base);
15632 }
15633
15634 /*
15635 * set vga decode state - true == enable VGA decode
15636 */
intel_modeset_vga_set_state(struct drm_device * dev,bool state)15637 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15638 {
15639 struct drm_i915_private *dev_priv = dev->dev_private;
15640 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15641 u16 gmch_ctrl;
15642
15643 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15644 DRM_ERROR("failed to read control word\n");
15645 return -EIO;
15646 }
15647
15648 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15649 return 0;
15650
15651 if (state)
15652 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15653 else
15654 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15655
15656 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15657 DRM_ERROR("failed to write control word\n");
15658 return -EIO;
15659 }
15660
15661 return 0;
15662 }
15663
15664 struct intel_display_error_state {
15665
15666 u32 power_well_driver;
15667
15668 int num_transcoders;
15669
15670 struct intel_cursor_error_state {
15671 u32 control;
15672 u32 position;
15673 u32 base;
15674 u32 size;
15675 } cursor[I915_MAX_PIPES];
15676
15677 struct intel_pipe_error_state {
15678 bool power_domain_on;
15679 u32 source;
15680 u32 stat;
15681 } pipe[I915_MAX_PIPES];
15682
15683 struct intel_plane_error_state {
15684 u32 control;
15685 u32 stride;
15686 u32 size;
15687 u32 pos;
15688 u32 addr;
15689 u32 surface;
15690 u32 tile_offset;
15691 } plane[I915_MAX_PIPES];
15692
15693 struct intel_transcoder_error_state {
15694 bool power_domain_on;
15695 enum transcoder cpu_transcoder;
15696
15697 u32 conf;
15698
15699 u32 htotal;
15700 u32 hblank;
15701 u32 hsync;
15702 u32 vtotal;
15703 u32 vblank;
15704 u32 vsync;
15705 } transcoder[4];
15706 };
15707
15708 struct intel_display_error_state *
intel_display_capture_error_state(struct drm_device * dev)15709 intel_display_capture_error_state(struct drm_device *dev)
15710 {
15711 struct drm_i915_private *dev_priv = dev->dev_private;
15712 struct intel_display_error_state *error;
15713 int transcoders[] = {
15714 TRANSCODER_A,
15715 TRANSCODER_B,
15716 TRANSCODER_C,
15717 TRANSCODER_EDP,
15718 };
15719 int i;
15720
15721 if (INTEL_INFO(dev)->num_pipes == 0)
15722 return NULL;
15723
15724 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15725 if (error == NULL)
15726 return NULL;
15727
15728 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15729 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15730
15731 for_each_pipe(dev_priv, i) {
15732 error->pipe[i].power_domain_on =
15733 __intel_display_power_is_enabled(dev_priv,
15734 POWER_DOMAIN_PIPE(i));
15735 if (!error->pipe[i].power_domain_on)
15736 continue;
15737
15738 error->cursor[i].control = I915_READ(CURCNTR(i));
15739 error->cursor[i].position = I915_READ(CURPOS(i));
15740 error->cursor[i].base = I915_READ(CURBASE(i));
15741
15742 error->plane[i].control = I915_READ(DSPCNTR(i));
15743 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15744 if (INTEL_INFO(dev)->gen <= 3) {
15745 error->plane[i].size = I915_READ(DSPSIZE(i));
15746 error->plane[i].pos = I915_READ(DSPPOS(i));
15747 }
15748 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15749 error->plane[i].addr = I915_READ(DSPADDR(i));
15750 if (INTEL_INFO(dev)->gen >= 4) {
15751 error->plane[i].surface = I915_READ(DSPSURF(i));
15752 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15753 }
15754
15755 error->pipe[i].source = I915_READ(PIPESRC(i));
15756
15757 if (HAS_GMCH_DISPLAY(dev))
15758 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15759 }
15760
15761 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15762 if (HAS_DDI(dev_priv->dev))
15763 error->num_transcoders++; /* Account for eDP. */
15764
15765 for (i = 0; i < error->num_transcoders; i++) {
15766 enum transcoder cpu_transcoder = transcoders[i];
15767
15768 error->transcoder[i].power_domain_on =
15769 __intel_display_power_is_enabled(dev_priv,
15770 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15771 if (!error->transcoder[i].power_domain_on)
15772 continue;
15773
15774 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15775
15776 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15777 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15778 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15779 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15780 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15781 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15782 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15783 }
15784
15785 return error;
15786 }
15787
15788 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15789
15790 void
intel_display_print_error_state(struct drm_i915_error_state_buf * m,struct drm_device * dev,struct intel_display_error_state * error)15791 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15792 struct drm_device *dev,
15793 struct intel_display_error_state *error)
15794 {
15795 struct drm_i915_private *dev_priv = dev->dev_private;
15796 int i;
15797
15798 if (!error)
15799 return;
15800
15801 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15802 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15803 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15804 error->power_well_driver);
15805 for_each_pipe(dev_priv, i) {
15806 err_printf(m, "Pipe [%d]:\n", i);
15807 err_printf(m, " Power: %s\n",
15808 error->pipe[i].power_domain_on ? "on" : "off");
15809 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15810 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15811
15812 err_printf(m, "Plane [%d]:\n", i);
15813 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15814 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15815 if (INTEL_INFO(dev)->gen <= 3) {
15816 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15817 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15818 }
15819 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15820 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15821 if (INTEL_INFO(dev)->gen >= 4) {
15822 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15823 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15824 }
15825
15826 err_printf(m, "Cursor [%d]:\n", i);
15827 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15828 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15829 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15830 }
15831
15832 for (i = 0; i < error->num_transcoders; i++) {
15833 err_printf(m, "CPU transcoder: %c\n",
15834 transcoder_name(error->transcoder[i].cpu_transcoder));
15835 err_printf(m, " Power: %s\n",
15836 error->transcoder[i].power_domain_on ? "on" : "off");
15837 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15838 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15839 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15840 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15841 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15842 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15843 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15844 }
15845 }
15846
intel_modeset_preclose(struct drm_device * dev,struct drm_file * file)15847 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15848 {
15849 struct intel_crtc *crtc;
15850
15851 for_each_intel_crtc(dev, crtc) {
15852 struct intel_unpin_work *work;
15853
15854 spin_lock_irq(&dev->event_lock);
15855
15856 work = crtc->unpin_work;
15857
15858 if (work && work->event &&
15859 work->event->base.file_priv == file) {
15860 kfree(work->event);
15861 work->event = NULL;
15862 }
15863
15864 spin_unlock_irq(&dev->event_lock);
15865 }
15866 }
15867