1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/log2.h>
60 #include <linux/slab.h>
61 #include <linux/glob.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
69 #include <linux/pm_runtime.h>
70 #include <linux/platform_device.h>
71
72 #define CREATE_TRACE_POINTS
73 #include <trace/events/libata.h>
74
75 #include "libata.h"
76 #include "libata-transport.h"
77
78 /* debounce timing parameters in msecs { interval, duration, timeout } */
79 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
80 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
81 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
82
83 const struct ata_port_operations ata_base_port_ops = {
84 .prereset = ata_std_prereset,
85 .postreset = ata_std_postreset,
86 .error_handler = ata_std_error_handler,
87 .sched_eh = ata_std_sched_eh,
88 .end_eh = ata_std_end_eh,
89 };
90
91 const struct ata_port_operations sata_port_ops = {
92 .inherits = &ata_base_port_ops,
93
94 .qc_defer = ata_std_qc_defer,
95 .hardreset = sata_std_hardreset,
96 };
97
98 static unsigned int ata_dev_init_params(struct ata_device *dev,
99 u16 heads, u16 sectors);
100 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
101 static void ata_dev_xfermask(struct ata_device *dev);
102 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
103
104 atomic_t ata_print_id = ATOMIC_INIT(0);
105
106 struct ata_force_param {
107 const char *name;
108 unsigned int cbl;
109 int spd_limit;
110 unsigned long xfer_mask;
111 unsigned int horkage_on;
112 unsigned int horkage_off;
113 unsigned int lflags;
114 };
115
116 struct ata_force_ent {
117 int port;
118 int device;
119 struct ata_force_param param;
120 };
121
122 static struct ata_force_ent *ata_force_tbl;
123 static int ata_force_tbl_size;
124
125 static char ata_force_param_buf[PAGE_SIZE] __initdata;
126 /* param_buf is thrown away after initialization, disallow read */
127 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
128 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
129
130 static int atapi_enabled = 1;
131 module_param(atapi_enabled, int, 0444);
132 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
133
134 static int atapi_dmadir = 0;
135 module_param(atapi_dmadir, int, 0444);
136 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
137
138 int atapi_passthru16 = 1;
139 module_param(atapi_passthru16, int, 0444);
140 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
141
142 int libata_fua = 0;
143 module_param_named(fua, libata_fua, int, 0444);
144 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
145
146 static int ata_ignore_hpa;
147 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
148 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
149
150 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
151 module_param_named(dma, libata_dma_mask, int, 0444);
152 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
153
154 static int ata_probe_timeout;
155 module_param(ata_probe_timeout, int, 0444);
156 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
157
158 int libata_noacpi = 0;
159 module_param_named(noacpi, libata_noacpi, int, 0444);
160 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
161
162 int libata_allow_tpm = 0;
163 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
164 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
165
166 static int atapi_an;
167 module_param(atapi_an, int, 0444);
168 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
169
170 MODULE_AUTHOR("Jeff Garzik");
171 MODULE_DESCRIPTION("Library module for ATA devices");
172 MODULE_LICENSE("GPL");
173 MODULE_VERSION(DRV_VERSION);
174
175
ata_sstatus_online(u32 sstatus)176 static bool ata_sstatus_online(u32 sstatus)
177 {
178 return (sstatus & 0xf) == 0x3;
179 }
180
181 /**
182 * ata_link_next - link iteration helper
183 * @link: the previous link, NULL to start
184 * @ap: ATA port containing links to iterate
185 * @mode: iteration mode, one of ATA_LITER_*
186 *
187 * LOCKING:
188 * Host lock or EH context.
189 *
190 * RETURNS:
191 * Pointer to the next link.
192 */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)193 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
194 enum ata_link_iter_mode mode)
195 {
196 BUG_ON(mode != ATA_LITER_EDGE &&
197 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
198
199 /* NULL link indicates start of iteration */
200 if (!link)
201 switch (mode) {
202 case ATA_LITER_EDGE:
203 case ATA_LITER_PMP_FIRST:
204 if (sata_pmp_attached(ap))
205 return ap->pmp_link;
206 /* fall through */
207 case ATA_LITER_HOST_FIRST:
208 return &ap->link;
209 }
210
211 /* we just iterated over the host link, what's next? */
212 if (link == &ap->link)
213 switch (mode) {
214 case ATA_LITER_HOST_FIRST:
215 if (sata_pmp_attached(ap))
216 return ap->pmp_link;
217 /* fall through */
218 case ATA_LITER_PMP_FIRST:
219 if (unlikely(ap->slave_link))
220 return ap->slave_link;
221 /* fall through */
222 case ATA_LITER_EDGE:
223 return NULL;
224 }
225
226 /* slave_link excludes PMP */
227 if (unlikely(link == ap->slave_link))
228 return NULL;
229
230 /* we were over a PMP link */
231 if (++link < ap->pmp_link + ap->nr_pmp_links)
232 return link;
233
234 if (mode == ATA_LITER_PMP_FIRST)
235 return &ap->link;
236
237 return NULL;
238 }
239
240 /**
241 * ata_dev_next - device iteration helper
242 * @dev: the previous device, NULL to start
243 * @link: ATA link containing devices to iterate
244 * @mode: iteration mode, one of ATA_DITER_*
245 *
246 * LOCKING:
247 * Host lock or EH context.
248 *
249 * RETURNS:
250 * Pointer to the next device.
251 */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)252 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
253 enum ata_dev_iter_mode mode)
254 {
255 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
256 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
257
258 /* NULL dev indicates start of iteration */
259 if (!dev)
260 switch (mode) {
261 case ATA_DITER_ENABLED:
262 case ATA_DITER_ALL:
263 dev = link->device;
264 goto check;
265 case ATA_DITER_ENABLED_REVERSE:
266 case ATA_DITER_ALL_REVERSE:
267 dev = link->device + ata_link_max_devices(link) - 1;
268 goto check;
269 }
270
271 next:
272 /* move to the next one */
273 switch (mode) {
274 case ATA_DITER_ENABLED:
275 case ATA_DITER_ALL:
276 if (++dev < link->device + ata_link_max_devices(link))
277 goto check;
278 return NULL;
279 case ATA_DITER_ENABLED_REVERSE:
280 case ATA_DITER_ALL_REVERSE:
281 if (--dev >= link->device)
282 goto check;
283 return NULL;
284 }
285
286 check:
287 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
288 !ata_dev_enabled(dev))
289 goto next;
290 return dev;
291 }
292
293 /**
294 * ata_dev_phys_link - find physical link for a device
295 * @dev: ATA device to look up physical link for
296 *
297 * Look up physical link which @dev is attached to. Note that
298 * this is different from @dev->link only when @dev is on slave
299 * link. For all other cases, it's the same as @dev->link.
300 *
301 * LOCKING:
302 * Don't care.
303 *
304 * RETURNS:
305 * Pointer to the found physical link.
306 */
ata_dev_phys_link(struct ata_device * dev)307 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
308 {
309 struct ata_port *ap = dev->link->ap;
310
311 if (!ap->slave_link)
312 return dev->link;
313 if (!dev->devno)
314 return &ap->link;
315 return ap->slave_link;
316 }
317
318 /**
319 * ata_force_cbl - force cable type according to libata.force
320 * @ap: ATA port of interest
321 *
322 * Force cable type according to libata.force and whine about it.
323 * The last entry which has matching port number is used, so it
324 * can be specified as part of device force parameters. For
325 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
326 * same effect.
327 *
328 * LOCKING:
329 * EH context.
330 */
ata_force_cbl(struct ata_port * ap)331 void ata_force_cbl(struct ata_port *ap)
332 {
333 int i;
334
335 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
336 const struct ata_force_ent *fe = &ata_force_tbl[i];
337
338 if (fe->port != -1 && fe->port != ap->print_id)
339 continue;
340
341 if (fe->param.cbl == ATA_CBL_NONE)
342 continue;
343
344 ap->cbl = fe->param.cbl;
345 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
346 return;
347 }
348 }
349
350 /**
351 * ata_force_link_limits - force link limits according to libata.force
352 * @link: ATA link of interest
353 *
354 * Force link flags and SATA spd limit according to libata.force
355 * and whine about it. When only the port part is specified
356 * (e.g. 1:), the limit applies to all links connected to both
357 * the host link and all fan-out ports connected via PMP. If the
358 * device part is specified as 0 (e.g. 1.00:), it specifies the
359 * first fan-out link not the host link. Device number 15 always
360 * points to the host link whether PMP is attached or not. If the
361 * controller has slave link, device number 16 points to it.
362 *
363 * LOCKING:
364 * EH context.
365 */
ata_force_link_limits(struct ata_link * link)366 static void ata_force_link_limits(struct ata_link *link)
367 {
368 bool did_spd = false;
369 int linkno = link->pmp;
370 int i;
371
372 if (ata_is_host_link(link))
373 linkno += 15;
374
375 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
376 const struct ata_force_ent *fe = &ata_force_tbl[i];
377
378 if (fe->port != -1 && fe->port != link->ap->print_id)
379 continue;
380
381 if (fe->device != -1 && fe->device != linkno)
382 continue;
383
384 /* only honor the first spd limit */
385 if (!did_spd && fe->param.spd_limit) {
386 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
387 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
388 fe->param.name);
389 did_spd = true;
390 }
391
392 /* let lflags stack */
393 if (fe->param.lflags) {
394 link->flags |= fe->param.lflags;
395 ata_link_notice(link,
396 "FORCE: link flag 0x%x forced -> 0x%x\n",
397 fe->param.lflags, link->flags);
398 }
399 }
400 }
401
402 /**
403 * ata_force_xfermask - force xfermask according to libata.force
404 * @dev: ATA device of interest
405 *
406 * Force xfer_mask according to libata.force and whine about it.
407 * For consistency with link selection, device number 15 selects
408 * the first device connected to the host link.
409 *
410 * LOCKING:
411 * EH context.
412 */
ata_force_xfermask(struct ata_device * dev)413 static void ata_force_xfermask(struct ata_device *dev)
414 {
415 int devno = dev->link->pmp + dev->devno;
416 int alt_devno = devno;
417 int i;
418
419 /* allow n.15/16 for devices attached to host port */
420 if (ata_is_host_link(dev->link))
421 alt_devno += 15;
422
423 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
424 const struct ata_force_ent *fe = &ata_force_tbl[i];
425 unsigned long pio_mask, mwdma_mask, udma_mask;
426
427 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
428 continue;
429
430 if (fe->device != -1 && fe->device != devno &&
431 fe->device != alt_devno)
432 continue;
433
434 if (!fe->param.xfer_mask)
435 continue;
436
437 ata_unpack_xfermask(fe->param.xfer_mask,
438 &pio_mask, &mwdma_mask, &udma_mask);
439 if (udma_mask)
440 dev->udma_mask = udma_mask;
441 else if (mwdma_mask) {
442 dev->udma_mask = 0;
443 dev->mwdma_mask = mwdma_mask;
444 } else {
445 dev->udma_mask = 0;
446 dev->mwdma_mask = 0;
447 dev->pio_mask = pio_mask;
448 }
449
450 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
451 fe->param.name);
452 return;
453 }
454 }
455
456 /**
457 * ata_force_horkage - force horkage according to libata.force
458 * @dev: ATA device of interest
459 *
460 * Force horkage according to libata.force and whine about it.
461 * For consistency with link selection, device number 15 selects
462 * the first device connected to the host link.
463 *
464 * LOCKING:
465 * EH context.
466 */
ata_force_horkage(struct ata_device * dev)467 static void ata_force_horkage(struct ata_device *dev)
468 {
469 int devno = dev->link->pmp + dev->devno;
470 int alt_devno = devno;
471 int i;
472
473 /* allow n.15/16 for devices attached to host port */
474 if (ata_is_host_link(dev->link))
475 alt_devno += 15;
476
477 for (i = 0; i < ata_force_tbl_size; i++) {
478 const struct ata_force_ent *fe = &ata_force_tbl[i];
479
480 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
481 continue;
482
483 if (fe->device != -1 && fe->device != devno &&
484 fe->device != alt_devno)
485 continue;
486
487 if (!(~dev->horkage & fe->param.horkage_on) &&
488 !(dev->horkage & fe->param.horkage_off))
489 continue;
490
491 dev->horkage |= fe->param.horkage_on;
492 dev->horkage &= ~fe->param.horkage_off;
493
494 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
495 fe->param.name);
496 }
497 }
498
499 /**
500 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
501 * @opcode: SCSI opcode
502 *
503 * Determine ATAPI command type from @opcode.
504 *
505 * LOCKING:
506 * None.
507 *
508 * RETURNS:
509 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
510 */
atapi_cmd_type(u8 opcode)511 int atapi_cmd_type(u8 opcode)
512 {
513 switch (opcode) {
514 case GPCMD_READ_10:
515 case GPCMD_READ_12:
516 return ATAPI_READ;
517
518 case GPCMD_WRITE_10:
519 case GPCMD_WRITE_12:
520 case GPCMD_WRITE_AND_VERIFY_10:
521 return ATAPI_WRITE;
522
523 case GPCMD_READ_CD:
524 case GPCMD_READ_CD_MSF:
525 return ATAPI_READ_CD;
526
527 case ATA_16:
528 case ATA_12:
529 if (atapi_passthru16)
530 return ATAPI_PASS_THRU;
531 /* fall thru */
532 default:
533 return ATAPI_MISC;
534 }
535 }
536
537 /**
538 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
539 * @tf: Taskfile to convert
540 * @pmp: Port multiplier port
541 * @is_cmd: This FIS is for command
542 * @fis: Buffer into which data will output
543 *
544 * Converts a standard ATA taskfile to a Serial ATA
545 * FIS structure (Register - Host to Device).
546 *
547 * LOCKING:
548 * Inherited from caller.
549 */
ata_tf_to_fis(const struct ata_taskfile * tf,u8 pmp,int is_cmd,u8 * fis)550 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
551 {
552 fis[0] = 0x27; /* Register - Host to Device FIS */
553 fis[1] = pmp & 0xf; /* Port multiplier number*/
554 if (is_cmd)
555 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
556
557 fis[2] = tf->command;
558 fis[3] = tf->feature;
559
560 fis[4] = tf->lbal;
561 fis[5] = tf->lbam;
562 fis[6] = tf->lbah;
563 fis[7] = tf->device;
564
565 fis[8] = tf->hob_lbal;
566 fis[9] = tf->hob_lbam;
567 fis[10] = tf->hob_lbah;
568 fis[11] = tf->hob_feature;
569
570 fis[12] = tf->nsect;
571 fis[13] = tf->hob_nsect;
572 fis[14] = 0;
573 fis[15] = tf->ctl;
574
575 fis[16] = tf->auxiliary & 0xff;
576 fis[17] = (tf->auxiliary >> 8) & 0xff;
577 fis[18] = (tf->auxiliary >> 16) & 0xff;
578 fis[19] = (tf->auxiliary >> 24) & 0xff;
579 }
580
581 /**
582 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
583 * @fis: Buffer from which data will be input
584 * @tf: Taskfile to output
585 *
586 * Converts a serial ATA FIS structure to a standard ATA taskfile.
587 *
588 * LOCKING:
589 * Inherited from caller.
590 */
591
ata_tf_from_fis(const u8 * fis,struct ata_taskfile * tf)592 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
593 {
594 tf->command = fis[2]; /* status */
595 tf->feature = fis[3]; /* error */
596
597 tf->lbal = fis[4];
598 tf->lbam = fis[5];
599 tf->lbah = fis[6];
600 tf->device = fis[7];
601
602 tf->hob_lbal = fis[8];
603 tf->hob_lbam = fis[9];
604 tf->hob_lbah = fis[10];
605
606 tf->nsect = fis[12];
607 tf->hob_nsect = fis[13];
608 }
609
610 static const u8 ata_rw_cmds[] = {
611 /* pio multi */
612 ATA_CMD_READ_MULTI,
613 ATA_CMD_WRITE_MULTI,
614 ATA_CMD_READ_MULTI_EXT,
615 ATA_CMD_WRITE_MULTI_EXT,
616 0,
617 0,
618 0,
619 ATA_CMD_WRITE_MULTI_FUA_EXT,
620 /* pio */
621 ATA_CMD_PIO_READ,
622 ATA_CMD_PIO_WRITE,
623 ATA_CMD_PIO_READ_EXT,
624 ATA_CMD_PIO_WRITE_EXT,
625 0,
626 0,
627 0,
628 0,
629 /* dma */
630 ATA_CMD_READ,
631 ATA_CMD_WRITE,
632 ATA_CMD_READ_EXT,
633 ATA_CMD_WRITE_EXT,
634 0,
635 0,
636 0,
637 ATA_CMD_WRITE_FUA_EXT
638 };
639
640 /**
641 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
642 * @tf: command to examine and configure
643 * @dev: device tf belongs to
644 *
645 * Examine the device configuration and tf->flags to calculate
646 * the proper read/write commands and protocol to use.
647 *
648 * LOCKING:
649 * caller.
650 */
ata_rwcmd_protocol(struct ata_taskfile * tf,struct ata_device * dev)651 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
652 {
653 u8 cmd;
654
655 int index, fua, lba48, write;
656
657 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
658 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
659 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
660
661 if (dev->flags & ATA_DFLAG_PIO) {
662 tf->protocol = ATA_PROT_PIO;
663 index = dev->multi_count ? 0 : 8;
664 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
665 /* Unable to use DMA due to host limitation */
666 tf->protocol = ATA_PROT_PIO;
667 index = dev->multi_count ? 0 : 8;
668 } else {
669 tf->protocol = ATA_PROT_DMA;
670 index = 16;
671 }
672
673 cmd = ata_rw_cmds[index + fua + lba48 + write];
674 if (cmd) {
675 tf->command = cmd;
676 return 0;
677 }
678 return -1;
679 }
680
681 /**
682 * ata_tf_read_block - Read block address from ATA taskfile
683 * @tf: ATA taskfile of interest
684 * @dev: ATA device @tf belongs to
685 *
686 * LOCKING:
687 * None.
688 *
689 * Read block address from @tf. This function can handle all
690 * three address formats - LBA, LBA48 and CHS. tf->protocol and
691 * flags select the address format to use.
692 *
693 * RETURNS:
694 * Block address read from @tf.
695 */
ata_tf_read_block(struct ata_taskfile * tf,struct ata_device * dev)696 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
697 {
698 u64 block = 0;
699
700 if (tf->flags & ATA_TFLAG_LBA) {
701 if (tf->flags & ATA_TFLAG_LBA48) {
702 block |= (u64)tf->hob_lbah << 40;
703 block |= (u64)tf->hob_lbam << 32;
704 block |= (u64)tf->hob_lbal << 24;
705 } else
706 block |= (tf->device & 0xf) << 24;
707
708 block |= tf->lbah << 16;
709 block |= tf->lbam << 8;
710 block |= tf->lbal;
711 } else {
712 u32 cyl, head, sect;
713
714 cyl = tf->lbam | (tf->lbah << 8);
715 head = tf->device & 0xf;
716 sect = tf->lbal;
717
718 if (!sect) {
719 ata_dev_warn(dev,
720 "device reported invalid CHS sector 0\n");
721 sect = 1; /* oh well */
722 }
723
724 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
725 }
726
727 return block;
728 }
729
730 /**
731 * ata_build_rw_tf - Build ATA taskfile for given read/write request
732 * @tf: Target ATA taskfile
733 * @dev: ATA device @tf belongs to
734 * @block: Block address
735 * @n_block: Number of blocks
736 * @tf_flags: RW/FUA etc...
737 * @tag: tag
738 *
739 * LOCKING:
740 * None.
741 *
742 * Build ATA taskfile @tf for read/write request described by
743 * @block, @n_block, @tf_flags and @tag on @dev.
744 *
745 * RETURNS:
746 *
747 * 0 on success, -ERANGE if the request is too large for @dev,
748 * -EINVAL if the request is invalid.
749 */
ata_build_rw_tf(struct ata_taskfile * tf,struct ata_device * dev,u64 block,u32 n_block,unsigned int tf_flags,unsigned int tag)750 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
751 u64 block, u32 n_block, unsigned int tf_flags,
752 unsigned int tag)
753 {
754 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
755 tf->flags |= tf_flags;
756
757 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
758 /* yay, NCQ */
759 if (!lba_48_ok(block, n_block))
760 return -ERANGE;
761
762 tf->protocol = ATA_PROT_NCQ;
763 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
764
765 if (tf->flags & ATA_TFLAG_WRITE)
766 tf->command = ATA_CMD_FPDMA_WRITE;
767 else
768 tf->command = ATA_CMD_FPDMA_READ;
769
770 tf->nsect = tag << 3;
771 tf->hob_feature = (n_block >> 8) & 0xff;
772 tf->feature = n_block & 0xff;
773
774 tf->hob_lbah = (block >> 40) & 0xff;
775 tf->hob_lbam = (block >> 32) & 0xff;
776 tf->hob_lbal = (block >> 24) & 0xff;
777 tf->lbah = (block >> 16) & 0xff;
778 tf->lbam = (block >> 8) & 0xff;
779 tf->lbal = block & 0xff;
780
781 tf->device = ATA_LBA;
782 if (tf->flags & ATA_TFLAG_FUA)
783 tf->device |= 1 << 7;
784 } else if (dev->flags & ATA_DFLAG_LBA) {
785 tf->flags |= ATA_TFLAG_LBA;
786
787 if (lba_28_ok(block, n_block)) {
788 /* use LBA28 */
789 tf->device |= (block >> 24) & 0xf;
790 } else if (lba_48_ok(block, n_block)) {
791 if (!(dev->flags & ATA_DFLAG_LBA48))
792 return -ERANGE;
793
794 /* use LBA48 */
795 tf->flags |= ATA_TFLAG_LBA48;
796
797 tf->hob_nsect = (n_block >> 8) & 0xff;
798
799 tf->hob_lbah = (block >> 40) & 0xff;
800 tf->hob_lbam = (block >> 32) & 0xff;
801 tf->hob_lbal = (block >> 24) & 0xff;
802 } else
803 /* request too large even for LBA48 */
804 return -ERANGE;
805
806 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
807 return -EINVAL;
808
809 tf->nsect = n_block & 0xff;
810
811 tf->lbah = (block >> 16) & 0xff;
812 tf->lbam = (block >> 8) & 0xff;
813 tf->lbal = block & 0xff;
814
815 tf->device |= ATA_LBA;
816 } else {
817 /* CHS */
818 u32 sect, head, cyl, track;
819
820 /* The request -may- be too large for CHS addressing. */
821 if (!lba_28_ok(block, n_block))
822 return -ERANGE;
823
824 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
825 return -EINVAL;
826
827 /* Convert LBA to CHS */
828 track = (u32)block / dev->sectors;
829 cyl = track / dev->heads;
830 head = track % dev->heads;
831 sect = (u32)block % dev->sectors + 1;
832
833 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
834 (u32)block, track, cyl, head, sect);
835
836 /* Check whether the converted CHS can fit.
837 Cylinder: 0-65535
838 Head: 0-15
839 Sector: 1-255*/
840 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
841 return -ERANGE;
842
843 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
844 tf->lbal = sect;
845 tf->lbam = cyl;
846 tf->lbah = cyl >> 8;
847 tf->device |= head;
848 }
849
850 return 0;
851 }
852
853 /**
854 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
855 * @pio_mask: pio_mask
856 * @mwdma_mask: mwdma_mask
857 * @udma_mask: udma_mask
858 *
859 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
860 * unsigned int xfer_mask.
861 *
862 * LOCKING:
863 * None.
864 *
865 * RETURNS:
866 * Packed xfer_mask.
867 */
ata_pack_xfermask(unsigned long pio_mask,unsigned long mwdma_mask,unsigned long udma_mask)868 unsigned long ata_pack_xfermask(unsigned long pio_mask,
869 unsigned long mwdma_mask,
870 unsigned long udma_mask)
871 {
872 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
873 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
874 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
875 }
876
877 /**
878 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
879 * @xfer_mask: xfer_mask to unpack
880 * @pio_mask: resulting pio_mask
881 * @mwdma_mask: resulting mwdma_mask
882 * @udma_mask: resulting udma_mask
883 *
884 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
885 * Any NULL distination masks will be ignored.
886 */
ata_unpack_xfermask(unsigned long xfer_mask,unsigned long * pio_mask,unsigned long * mwdma_mask,unsigned long * udma_mask)887 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
888 unsigned long *mwdma_mask, unsigned long *udma_mask)
889 {
890 if (pio_mask)
891 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
892 if (mwdma_mask)
893 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
894 if (udma_mask)
895 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
896 }
897
898 static const struct ata_xfer_ent {
899 int shift, bits;
900 u8 base;
901 } ata_xfer_tbl[] = {
902 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
903 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
904 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
905 { -1, },
906 };
907
908 /**
909 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
910 * @xfer_mask: xfer_mask of interest
911 *
912 * Return matching XFER_* value for @xfer_mask. Only the highest
913 * bit of @xfer_mask is considered.
914 *
915 * LOCKING:
916 * None.
917 *
918 * RETURNS:
919 * Matching XFER_* value, 0xff if no match found.
920 */
ata_xfer_mask2mode(unsigned long xfer_mask)921 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
922 {
923 int highbit = fls(xfer_mask) - 1;
924 const struct ata_xfer_ent *ent;
925
926 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
927 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
928 return ent->base + highbit - ent->shift;
929 return 0xff;
930 }
931
932 /**
933 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
934 * @xfer_mode: XFER_* of interest
935 *
936 * Return matching xfer_mask for @xfer_mode.
937 *
938 * LOCKING:
939 * None.
940 *
941 * RETURNS:
942 * Matching xfer_mask, 0 if no match found.
943 */
ata_xfer_mode2mask(u8 xfer_mode)944 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
945 {
946 const struct ata_xfer_ent *ent;
947
948 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
949 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
950 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
951 & ~((1 << ent->shift) - 1);
952 return 0;
953 }
954
955 /**
956 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
957 * @xfer_mode: XFER_* of interest
958 *
959 * Return matching xfer_shift for @xfer_mode.
960 *
961 * LOCKING:
962 * None.
963 *
964 * RETURNS:
965 * Matching xfer_shift, -1 if no match found.
966 */
ata_xfer_mode2shift(unsigned long xfer_mode)967 int ata_xfer_mode2shift(unsigned long xfer_mode)
968 {
969 const struct ata_xfer_ent *ent;
970
971 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
972 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
973 return ent->shift;
974 return -1;
975 }
976
977 /**
978 * ata_mode_string - convert xfer_mask to string
979 * @xfer_mask: mask of bits supported; only highest bit counts.
980 *
981 * Determine string which represents the highest speed
982 * (highest bit in @modemask).
983 *
984 * LOCKING:
985 * None.
986 *
987 * RETURNS:
988 * Constant C string representing highest speed listed in
989 * @mode_mask, or the constant C string "<n/a>".
990 */
ata_mode_string(unsigned long xfer_mask)991 const char *ata_mode_string(unsigned long xfer_mask)
992 {
993 static const char * const xfer_mode_str[] = {
994 "PIO0",
995 "PIO1",
996 "PIO2",
997 "PIO3",
998 "PIO4",
999 "PIO5",
1000 "PIO6",
1001 "MWDMA0",
1002 "MWDMA1",
1003 "MWDMA2",
1004 "MWDMA3",
1005 "MWDMA4",
1006 "UDMA/16",
1007 "UDMA/25",
1008 "UDMA/33",
1009 "UDMA/44",
1010 "UDMA/66",
1011 "UDMA/100",
1012 "UDMA/133",
1013 "UDMA7",
1014 };
1015 int highbit;
1016
1017 highbit = fls(xfer_mask) - 1;
1018 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1019 return xfer_mode_str[highbit];
1020 return "<n/a>";
1021 }
1022
sata_spd_string(unsigned int spd)1023 const char *sata_spd_string(unsigned int spd)
1024 {
1025 static const char * const spd_str[] = {
1026 "1.5 Gbps",
1027 "3.0 Gbps",
1028 "6.0 Gbps",
1029 };
1030
1031 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1032 return "<unknown>";
1033 return spd_str[spd - 1];
1034 }
1035
1036 /**
1037 * ata_dev_classify - determine device type based on ATA-spec signature
1038 * @tf: ATA taskfile register set for device to be identified
1039 *
1040 * Determine from taskfile register contents whether a device is
1041 * ATA or ATAPI, as per "Signature and persistence" section
1042 * of ATA/PI spec (volume 1, sect 5.14).
1043 *
1044 * LOCKING:
1045 * None.
1046 *
1047 * RETURNS:
1048 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1049 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1050 */
ata_dev_classify(const struct ata_taskfile * tf)1051 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1052 {
1053 /* Apple's open source Darwin code hints that some devices only
1054 * put a proper signature into the LBA mid/high registers,
1055 * So, we only check those. It's sufficient for uniqueness.
1056 *
1057 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1058 * signatures for ATA and ATAPI devices attached on SerialATA,
1059 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1060 * spec has never mentioned about using different signatures
1061 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1062 * Multiplier specification began to use 0x69/0x96 to identify
1063 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1064 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1065 * 0x69/0x96 shortly and described them as reserved for
1066 * SerialATA.
1067 *
1068 * We follow the current spec and consider that 0x69/0x96
1069 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1070 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1071 * SEMB signature. This is worked around in
1072 * ata_dev_read_id().
1073 */
1074 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1075 DPRINTK("found ATA device by sig\n");
1076 return ATA_DEV_ATA;
1077 }
1078
1079 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1080 DPRINTK("found ATAPI device by sig\n");
1081 return ATA_DEV_ATAPI;
1082 }
1083
1084 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1085 DPRINTK("found PMP device by sig\n");
1086 return ATA_DEV_PMP;
1087 }
1088
1089 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1090 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1091 return ATA_DEV_SEMB;
1092 }
1093
1094 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1095 DPRINTK("found ZAC device by sig\n");
1096 return ATA_DEV_ZAC;
1097 }
1098
1099 DPRINTK("unknown device\n");
1100 return ATA_DEV_UNKNOWN;
1101 }
1102
1103 /**
1104 * ata_id_string - Convert IDENTIFY DEVICE page into string
1105 * @id: IDENTIFY DEVICE results we will examine
1106 * @s: string into which data is output
1107 * @ofs: offset into identify device page
1108 * @len: length of string to return. must be an even number.
1109 *
1110 * The strings in the IDENTIFY DEVICE page are broken up into
1111 * 16-bit chunks. Run through the string, and output each
1112 * 8-bit chunk linearly, regardless of platform.
1113 *
1114 * LOCKING:
1115 * caller.
1116 */
1117
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1118 void ata_id_string(const u16 *id, unsigned char *s,
1119 unsigned int ofs, unsigned int len)
1120 {
1121 unsigned int c;
1122
1123 BUG_ON(len & 1);
1124
1125 while (len > 0) {
1126 c = id[ofs] >> 8;
1127 *s = c;
1128 s++;
1129
1130 c = id[ofs] & 0xff;
1131 *s = c;
1132 s++;
1133
1134 ofs++;
1135 len -= 2;
1136 }
1137 }
1138
1139 /**
1140 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1141 * @id: IDENTIFY DEVICE results we will examine
1142 * @s: string into which data is output
1143 * @ofs: offset into identify device page
1144 * @len: length of string to return. must be an odd number.
1145 *
1146 * This function is identical to ata_id_string except that it
1147 * trims trailing spaces and terminates the resulting string with
1148 * null. @len must be actual maximum length (even number) + 1.
1149 *
1150 * LOCKING:
1151 * caller.
1152 */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1153 void ata_id_c_string(const u16 *id, unsigned char *s,
1154 unsigned int ofs, unsigned int len)
1155 {
1156 unsigned char *p;
1157
1158 ata_id_string(id, s, ofs, len - 1);
1159
1160 p = s + strnlen(s, len - 1);
1161 while (p > s && p[-1] == ' ')
1162 p--;
1163 *p = '\0';
1164 }
1165
ata_id_n_sectors(const u16 * id)1166 static u64 ata_id_n_sectors(const u16 *id)
1167 {
1168 if (ata_id_has_lba(id)) {
1169 if (ata_id_has_lba48(id))
1170 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1171 else
1172 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1173 } else {
1174 if (ata_id_current_chs_valid(id))
1175 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1176 id[ATA_ID_CUR_SECTORS];
1177 else
1178 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1179 id[ATA_ID_SECTORS];
1180 }
1181 }
1182
ata_tf_to_lba48(const struct ata_taskfile * tf)1183 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1184 {
1185 u64 sectors = 0;
1186
1187 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1188 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1189 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1190 sectors |= (tf->lbah & 0xff) << 16;
1191 sectors |= (tf->lbam & 0xff) << 8;
1192 sectors |= (tf->lbal & 0xff);
1193
1194 return sectors;
1195 }
1196
ata_tf_to_lba(const struct ata_taskfile * tf)1197 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1198 {
1199 u64 sectors = 0;
1200
1201 sectors |= (tf->device & 0x0f) << 24;
1202 sectors |= (tf->lbah & 0xff) << 16;
1203 sectors |= (tf->lbam & 0xff) << 8;
1204 sectors |= (tf->lbal & 0xff);
1205
1206 return sectors;
1207 }
1208
1209 /**
1210 * ata_read_native_max_address - Read native max address
1211 * @dev: target device
1212 * @max_sectors: out parameter for the result native max address
1213 *
1214 * Perform an LBA48 or LBA28 native size query upon the device in
1215 * question.
1216 *
1217 * RETURNS:
1218 * 0 on success, -EACCES if command is aborted by the drive.
1219 * -EIO on other errors.
1220 */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1221 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1222 {
1223 unsigned int err_mask;
1224 struct ata_taskfile tf;
1225 int lba48 = ata_id_has_lba48(dev->id);
1226
1227 ata_tf_init(dev, &tf);
1228
1229 /* always clear all address registers */
1230 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1231
1232 if (lba48) {
1233 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1234 tf.flags |= ATA_TFLAG_LBA48;
1235 } else
1236 tf.command = ATA_CMD_READ_NATIVE_MAX;
1237
1238 tf.protocol |= ATA_PROT_NODATA;
1239 tf.device |= ATA_LBA;
1240
1241 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1242 if (err_mask) {
1243 ata_dev_warn(dev,
1244 "failed to read native max address (err_mask=0x%x)\n",
1245 err_mask);
1246 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1247 return -EACCES;
1248 return -EIO;
1249 }
1250
1251 if (lba48)
1252 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1253 else
1254 *max_sectors = ata_tf_to_lba(&tf) + 1;
1255 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1256 (*max_sectors)--;
1257 return 0;
1258 }
1259
1260 /**
1261 * ata_set_max_sectors - Set max sectors
1262 * @dev: target device
1263 * @new_sectors: new max sectors value to set for the device
1264 *
1265 * Set max sectors of @dev to @new_sectors.
1266 *
1267 * RETURNS:
1268 * 0 on success, -EACCES if command is aborted or denied (due to
1269 * previous non-volatile SET_MAX) by the drive. -EIO on other
1270 * errors.
1271 */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1272 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1273 {
1274 unsigned int err_mask;
1275 struct ata_taskfile tf;
1276 int lba48 = ata_id_has_lba48(dev->id);
1277
1278 new_sectors--;
1279
1280 ata_tf_init(dev, &tf);
1281
1282 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1283
1284 if (lba48) {
1285 tf.command = ATA_CMD_SET_MAX_EXT;
1286 tf.flags |= ATA_TFLAG_LBA48;
1287
1288 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1289 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1290 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1291 } else {
1292 tf.command = ATA_CMD_SET_MAX;
1293
1294 tf.device |= (new_sectors >> 24) & 0xf;
1295 }
1296
1297 tf.protocol |= ATA_PROT_NODATA;
1298 tf.device |= ATA_LBA;
1299
1300 tf.lbal = (new_sectors >> 0) & 0xff;
1301 tf.lbam = (new_sectors >> 8) & 0xff;
1302 tf.lbah = (new_sectors >> 16) & 0xff;
1303
1304 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1305 if (err_mask) {
1306 ata_dev_warn(dev,
1307 "failed to set max address (err_mask=0x%x)\n",
1308 err_mask);
1309 if (err_mask == AC_ERR_DEV &&
1310 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1311 return -EACCES;
1312 return -EIO;
1313 }
1314
1315 return 0;
1316 }
1317
1318 /**
1319 * ata_hpa_resize - Resize a device with an HPA set
1320 * @dev: Device to resize
1321 *
1322 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1323 * it if required to the full size of the media. The caller must check
1324 * the drive has the HPA feature set enabled.
1325 *
1326 * RETURNS:
1327 * 0 on success, -errno on failure.
1328 */
ata_hpa_resize(struct ata_device * dev)1329 static int ata_hpa_resize(struct ata_device *dev)
1330 {
1331 struct ata_eh_context *ehc = &dev->link->eh_context;
1332 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1333 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1334 u64 sectors = ata_id_n_sectors(dev->id);
1335 u64 native_sectors;
1336 int rc;
1337
1338 /* do we need to do it? */
1339 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1340 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1341 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1342 return 0;
1343
1344 /* read native max address */
1345 rc = ata_read_native_max_address(dev, &native_sectors);
1346 if (rc) {
1347 /* If device aborted the command or HPA isn't going to
1348 * be unlocked, skip HPA resizing.
1349 */
1350 if (rc == -EACCES || !unlock_hpa) {
1351 ata_dev_warn(dev,
1352 "HPA support seems broken, skipping HPA handling\n");
1353 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1354
1355 /* we can continue if device aborted the command */
1356 if (rc == -EACCES)
1357 rc = 0;
1358 }
1359
1360 return rc;
1361 }
1362 dev->n_native_sectors = native_sectors;
1363
1364 /* nothing to do? */
1365 if (native_sectors <= sectors || !unlock_hpa) {
1366 if (!print_info || native_sectors == sectors)
1367 return 0;
1368
1369 if (native_sectors > sectors)
1370 ata_dev_info(dev,
1371 "HPA detected: current %llu, native %llu\n",
1372 (unsigned long long)sectors,
1373 (unsigned long long)native_sectors);
1374 else if (native_sectors < sectors)
1375 ata_dev_warn(dev,
1376 "native sectors (%llu) is smaller than sectors (%llu)\n",
1377 (unsigned long long)native_sectors,
1378 (unsigned long long)sectors);
1379 return 0;
1380 }
1381
1382 /* let's unlock HPA */
1383 rc = ata_set_max_sectors(dev, native_sectors);
1384 if (rc == -EACCES) {
1385 /* if device aborted the command, skip HPA resizing */
1386 ata_dev_warn(dev,
1387 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1388 (unsigned long long)sectors,
1389 (unsigned long long)native_sectors);
1390 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1391 return 0;
1392 } else if (rc)
1393 return rc;
1394
1395 /* re-read IDENTIFY data */
1396 rc = ata_dev_reread_id(dev, 0);
1397 if (rc) {
1398 ata_dev_err(dev,
1399 "failed to re-read IDENTIFY data after HPA resizing\n");
1400 return rc;
1401 }
1402
1403 if (print_info) {
1404 u64 new_sectors = ata_id_n_sectors(dev->id);
1405 ata_dev_info(dev,
1406 "HPA unlocked: %llu -> %llu, native %llu\n",
1407 (unsigned long long)sectors,
1408 (unsigned long long)new_sectors,
1409 (unsigned long long)native_sectors);
1410 }
1411
1412 return 0;
1413 }
1414
1415 /**
1416 * ata_dump_id - IDENTIFY DEVICE info debugging output
1417 * @id: IDENTIFY DEVICE page to dump
1418 *
1419 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1420 * page.
1421 *
1422 * LOCKING:
1423 * caller.
1424 */
1425
ata_dump_id(const u16 * id)1426 static inline void ata_dump_id(const u16 *id)
1427 {
1428 DPRINTK("49==0x%04x "
1429 "53==0x%04x "
1430 "63==0x%04x "
1431 "64==0x%04x "
1432 "75==0x%04x \n",
1433 id[49],
1434 id[53],
1435 id[63],
1436 id[64],
1437 id[75]);
1438 DPRINTK("80==0x%04x "
1439 "81==0x%04x "
1440 "82==0x%04x "
1441 "83==0x%04x "
1442 "84==0x%04x \n",
1443 id[80],
1444 id[81],
1445 id[82],
1446 id[83],
1447 id[84]);
1448 DPRINTK("88==0x%04x "
1449 "93==0x%04x\n",
1450 id[88],
1451 id[93]);
1452 }
1453
1454 /**
1455 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1456 * @id: IDENTIFY data to compute xfer mask from
1457 *
1458 * Compute the xfermask for this device. This is not as trivial
1459 * as it seems if we must consider early devices correctly.
1460 *
1461 * FIXME: pre IDE drive timing (do we care ?).
1462 *
1463 * LOCKING:
1464 * None.
1465 *
1466 * RETURNS:
1467 * Computed xfermask
1468 */
ata_id_xfermask(const u16 * id)1469 unsigned long ata_id_xfermask(const u16 *id)
1470 {
1471 unsigned long pio_mask, mwdma_mask, udma_mask;
1472
1473 /* Usual case. Word 53 indicates word 64 is valid */
1474 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1475 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1476 pio_mask <<= 3;
1477 pio_mask |= 0x7;
1478 } else {
1479 /* If word 64 isn't valid then Word 51 high byte holds
1480 * the PIO timing number for the maximum. Turn it into
1481 * a mask.
1482 */
1483 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1484 if (mode < 5) /* Valid PIO range */
1485 pio_mask = (2 << mode) - 1;
1486 else
1487 pio_mask = 1;
1488
1489 /* But wait.. there's more. Design your standards by
1490 * committee and you too can get a free iordy field to
1491 * process. However its the speeds not the modes that
1492 * are supported... Note drivers using the timing API
1493 * will get this right anyway
1494 */
1495 }
1496
1497 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1498
1499 if (ata_id_is_cfa(id)) {
1500 /*
1501 * Process compact flash extended modes
1502 */
1503 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1504 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1505
1506 if (pio)
1507 pio_mask |= (1 << 5);
1508 if (pio > 1)
1509 pio_mask |= (1 << 6);
1510 if (dma)
1511 mwdma_mask |= (1 << 3);
1512 if (dma > 1)
1513 mwdma_mask |= (1 << 4);
1514 }
1515
1516 udma_mask = 0;
1517 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1518 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1519
1520 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1521 }
1522
ata_qc_complete_internal(struct ata_queued_cmd * qc)1523 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1524 {
1525 struct completion *waiting = qc->private_data;
1526
1527 complete(waiting);
1528 }
1529
1530 /**
1531 * ata_exec_internal_sg - execute libata internal command
1532 * @dev: Device to which the command is sent
1533 * @tf: Taskfile registers for the command and the result
1534 * @cdb: CDB for packet command
1535 * @dma_dir: Data transfer direction of the command
1536 * @sgl: sg list for the data buffer of the command
1537 * @n_elem: Number of sg entries
1538 * @timeout: Timeout in msecs (0 for default)
1539 *
1540 * Executes libata internal command with timeout. @tf contains
1541 * command on entry and result on return. Timeout and error
1542 * conditions are reported via return value. No recovery action
1543 * is taken after a command times out. It's caller's duty to
1544 * clean up after timeout.
1545 *
1546 * LOCKING:
1547 * None. Should be called with kernel context, might sleep.
1548 *
1549 * RETURNS:
1550 * Zero on success, AC_ERR_* mask on failure
1551 */
ata_exec_internal_sg(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,struct scatterlist * sgl,unsigned int n_elem,unsigned long timeout)1552 unsigned ata_exec_internal_sg(struct ata_device *dev,
1553 struct ata_taskfile *tf, const u8 *cdb,
1554 int dma_dir, struct scatterlist *sgl,
1555 unsigned int n_elem, unsigned long timeout)
1556 {
1557 struct ata_link *link = dev->link;
1558 struct ata_port *ap = link->ap;
1559 u8 command = tf->command;
1560 int auto_timeout = 0;
1561 struct ata_queued_cmd *qc;
1562 unsigned int tag, preempted_tag;
1563 u32 preempted_sactive, preempted_qc_active;
1564 int preempted_nr_active_links;
1565 DECLARE_COMPLETION_ONSTACK(wait);
1566 unsigned long flags;
1567 unsigned int err_mask;
1568 int rc;
1569
1570 spin_lock_irqsave(ap->lock, flags);
1571
1572 /* no internal command while frozen */
1573 if (ap->pflags & ATA_PFLAG_FROZEN) {
1574 spin_unlock_irqrestore(ap->lock, flags);
1575 return AC_ERR_SYSTEM;
1576 }
1577
1578 /* initialize internal qc */
1579
1580 /* XXX: Tag 0 is used for drivers with legacy EH as some
1581 * drivers choke if any other tag is given. This breaks
1582 * ata_tag_internal() test for those drivers. Don't use new
1583 * EH stuff without converting to it.
1584 */
1585 if (ap->ops->error_handler)
1586 tag = ATA_TAG_INTERNAL;
1587 else
1588 tag = 0;
1589
1590 qc = __ata_qc_from_tag(ap, tag);
1591
1592 qc->tag = tag;
1593 qc->scsicmd = NULL;
1594 qc->ap = ap;
1595 qc->dev = dev;
1596 ata_qc_reinit(qc);
1597
1598 preempted_tag = link->active_tag;
1599 preempted_sactive = link->sactive;
1600 preempted_qc_active = ap->qc_active;
1601 preempted_nr_active_links = ap->nr_active_links;
1602 link->active_tag = ATA_TAG_POISON;
1603 link->sactive = 0;
1604 ap->qc_active = 0;
1605 ap->nr_active_links = 0;
1606
1607 /* prepare & issue qc */
1608 qc->tf = *tf;
1609 if (cdb)
1610 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1611
1612 /* some SATA bridges need us to indicate data xfer direction */
1613 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1614 dma_dir == DMA_FROM_DEVICE)
1615 qc->tf.feature |= ATAPI_DMADIR;
1616
1617 qc->flags |= ATA_QCFLAG_RESULT_TF;
1618 qc->dma_dir = dma_dir;
1619 if (dma_dir != DMA_NONE) {
1620 unsigned int i, buflen = 0;
1621 struct scatterlist *sg;
1622
1623 for_each_sg(sgl, sg, n_elem, i)
1624 buflen += sg->length;
1625
1626 ata_sg_init(qc, sgl, n_elem);
1627 qc->nbytes = buflen;
1628 }
1629
1630 qc->private_data = &wait;
1631 qc->complete_fn = ata_qc_complete_internal;
1632
1633 ata_qc_issue(qc);
1634
1635 spin_unlock_irqrestore(ap->lock, flags);
1636
1637 if (!timeout) {
1638 if (ata_probe_timeout)
1639 timeout = ata_probe_timeout * 1000;
1640 else {
1641 timeout = ata_internal_cmd_timeout(dev, command);
1642 auto_timeout = 1;
1643 }
1644 }
1645
1646 if (ap->ops->error_handler)
1647 ata_eh_release(ap);
1648
1649 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1650
1651 if (ap->ops->error_handler)
1652 ata_eh_acquire(ap);
1653
1654 ata_sff_flush_pio_task(ap);
1655
1656 if (!rc) {
1657 spin_lock_irqsave(ap->lock, flags);
1658
1659 /* We're racing with irq here. If we lose, the
1660 * following test prevents us from completing the qc
1661 * twice. If we win, the port is frozen and will be
1662 * cleaned up by ->post_internal_cmd().
1663 */
1664 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1665 qc->err_mask |= AC_ERR_TIMEOUT;
1666
1667 if (ap->ops->error_handler)
1668 ata_port_freeze(ap);
1669 else
1670 ata_qc_complete(qc);
1671
1672 if (ata_msg_warn(ap))
1673 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1674 command);
1675 }
1676
1677 spin_unlock_irqrestore(ap->lock, flags);
1678 }
1679
1680 /* do post_internal_cmd */
1681 if (ap->ops->post_internal_cmd)
1682 ap->ops->post_internal_cmd(qc);
1683
1684 /* perform minimal error analysis */
1685 if (qc->flags & ATA_QCFLAG_FAILED) {
1686 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1687 qc->err_mask |= AC_ERR_DEV;
1688
1689 if (!qc->err_mask)
1690 qc->err_mask |= AC_ERR_OTHER;
1691
1692 if (qc->err_mask & ~AC_ERR_OTHER)
1693 qc->err_mask &= ~AC_ERR_OTHER;
1694 }
1695
1696 /* finish up */
1697 spin_lock_irqsave(ap->lock, flags);
1698
1699 *tf = qc->result_tf;
1700 err_mask = qc->err_mask;
1701
1702 ata_qc_free(qc);
1703 link->active_tag = preempted_tag;
1704 link->sactive = preempted_sactive;
1705 ap->qc_active = preempted_qc_active;
1706 ap->nr_active_links = preempted_nr_active_links;
1707
1708 spin_unlock_irqrestore(ap->lock, flags);
1709
1710 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1711 ata_internal_cmd_timed_out(dev, command);
1712
1713 return err_mask;
1714 }
1715
1716 /**
1717 * ata_exec_internal - execute libata internal command
1718 * @dev: Device to which the command is sent
1719 * @tf: Taskfile registers for the command and the result
1720 * @cdb: CDB for packet command
1721 * @dma_dir: Data transfer direction of the command
1722 * @buf: Data buffer of the command
1723 * @buflen: Length of data buffer
1724 * @timeout: Timeout in msecs (0 for default)
1725 *
1726 * Wrapper around ata_exec_internal_sg() which takes simple
1727 * buffer instead of sg list.
1728 *
1729 * LOCKING:
1730 * None. Should be called with kernel context, might sleep.
1731 *
1732 * RETURNS:
1733 * Zero on success, AC_ERR_* mask on failure
1734 */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,void * buf,unsigned int buflen,unsigned long timeout)1735 unsigned ata_exec_internal(struct ata_device *dev,
1736 struct ata_taskfile *tf, const u8 *cdb,
1737 int dma_dir, void *buf, unsigned int buflen,
1738 unsigned long timeout)
1739 {
1740 struct scatterlist *psg = NULL, sg;
1741 unsigned int n_elem = 0;
1742
1743 if (dma_dir != DMA_NONE) {
1744 WARN_ON(!buf);
1745 sg_init_one(&sg, buf, buflen);
1746 psg = &sg;
1747 n_elem++;
1748 }
1749
1750 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1751 timeout);
1752 }
1753
1754 /**
1755 * ata_pio_need_iordy - check if iordy needed
1756 * @adev: ATA device
1757 *
1758 * Check if the current speed of the device requires IORDY. Used
1759 * by various controllers for chip configuration.
1760 */
ata_pio_need_iordy(const struct ata_device * adev)1761 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1762 {
1763 /* Don't set IORDY if we're preparing for reset. IORDY may
1764 * lead to controller lock up on certain controllers if the
1765 * port is not occupied. See bko#11703 for details.
1766 */
1767 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1768 return 0;
1769 /* Controller doesn't support IORDY. Probably a pointless
1770 * check as the caller should know this.
1771 */
1772 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1773 return 0;
1774 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1775 if (ata_id_is_cfa(adev->id)
1776 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1777 return 0;
1778 /* PIO3 and higher it is mandatory */
1779 if (adev->pio_mode > XFER_PIO_2)
1780 return 1;
1781 /* We turn it on when possible */
1782 if (ata_id_has_iordy(adev->id))
1783 return 1;
1784 return 0;
1785 }
1786
1787 /**
1788 * ata_pio_mask_no_iordy - Return the non IORDY mask
1789 * @adev: ATA device
1790 *
1791 * Compute the highest mode possible if we are not using iordy. Return
1792 * -1 if no iordy mode is available.
1793 */
ata_pio_mask_no_iordy(const struct ata_device * adev)1794 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1795 {
1796 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1797 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1798 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1799 /* Is the speed faster than the drive allows non IORDY ? */
1800 if (pio) {
1801 /* This is cycle times not frequency - watch the logic! */
1802 if (pio > 240) /* PIO2 is 240nS per cycle */
1803 return 3 << ATA_SHIFT_PIO;
1804 return 7 << ATA_SHIFT_PIO;
1805 }
1806 }
1807 return 3 << ATA_SHIFT_PIO;
1808 }
1809
1810 /**
1811 * ata_do_dev_read_id - default ID read method
1812 * @dev: device
1813 * @tf: proposed taskfile
1814 * @id: data buffer
1815 *
1816 * Issue the identify taskfile and hand back the buffer containing
1817 * identify data. For some RAID controllers and for pre ATA devices
1818 * this function is wrapped or replaced by the driver
1819 */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,u16 * id)1820 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1821 struct ata_taskfile *tf, u16 *id)
1822 {
1823 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1824 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1825 }
1826
1827 /**
1828 * ata_dev_read_id - Read ID data from the specified device
1829 * @dev: target device
1830 * @p_class: pointer to class of the target device (may be changed)
1831 * @flags: ATA_READID_* flags
1832 * @id: buffer to read IDENTIFY data into
1833 *
1834 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1835 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1836 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1837 * for pre-ATA4 drives.
1838 *
1839 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1840 * now we abort if we hit that case.
1841 *
1842 * LOCKING:
1843 * Kernel thread context (may sleep)
1844 *
1845 * RETURNS:
1846 * 0 on success, -errno otherwise.
1847 */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1848 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1849 unsigned int flags, u16 *id)
1850 {
1851 struct ata_port *ap = dev->link->ap;
1852 unsigned int class = *p_class;
1853 struct ata_taskfile tf;
1854 unsigned int err_mask = 0;
1855 const char *reason;
1856 bool is_semb = class == ATA_DEV_SEMB;
1857 int may_fallback = 1, tried_spinup = 0;
1858 int rc;
1859
1860 if (ata_msg_ctl(ap))
1861 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1862
1863 retry:
1864 ata_tf_init(dev, &tf);
1865
1866 switch (class) {
1867 case ATA_DEV_SEMB:
1868 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1869 case ATA_DEV_ATA:
1870 case ATA_DEV_ZAC:
1871 tf.command = ATA_CMD_ID_ATA;
1872 break;
1873 case ATA_DEV_ATAPI:
1874 tf.command = ATA_CMD_ID_ATAPI;
1875 break;
1876 default:
1877 rc = -ENODEV;
1878 reason = "unsupported class";
1879 goto err_out;
1880 }
1881
1882 tf.protocol = ATA_PROT_PIO;
1883
1884 /* Some devices choke if TF registers contain garbage. Make
1885 * sure those are properly initialized.
1886 */
1887 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1888
1889 /* Device presence detection is unreliable on some
1890 * controllers. Always poll IDENTIFY if available.
1891 */
1892 tf.flags |= ATA_TFLAG_POLLING;
1893
1894 if (ap->ops->read_id)
1895 err_mask = ap->ops->read_id(dev, &tf, id);
1896 else
1897 err_mask = ata_do_dev_read_id(dev, &tf, id);
1898
1899 if (err_mask) {
1900 if (err_mask & AC_ERR_NODEV_HINT) {
1901 ata_dev_dbg(dev, "NODEV after polling detection\n");
1902 return -ENOENT;
1903 }
1904
1905 if (is_semb) {
1906 ata_dev_info(dev,
1907 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1908 /* SEMB is not supported yet */
1909 *p_class = ATA_DEV_SEMB_UNSUP;
1910 return 0;
1911 }
1912
1913 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1914 /* Device or controller might have reported
1915 * the wrong device class. Give a shot at the
1916 * other IDENTIFY if the current one is
1917 * aborted by the device.
1918 */
1919 if (may_fallback) {
1920 may_fallback = 0;
1921
1922 if (class == ATA_DEV_ATA)
1923 class = ATA_DEV_ATAPI;
1924 else
1925 class = ATA_DEV_ATA;
1926 goto retry;
1927 }
1928
1929 /* Control reaches here iff the device aborted
1930 * both flavors of IDENTIFYs which happens
1931 * sometimes with phantom devices.
1932 */
1933 ata_dev_dbg(dev,
1934 "both IDENTIFYs aborted, assuming NODEV\n");
1935 return -ENOENT;
1936 }
1937
1938 rc = -EIO;
1939 reason = "I/O error";
1940 goto err_out;
1941 }
1942
1943 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1944 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1945 "class=%d may_fallback=%d tried_spinup=%d\n",
1946 class, may_fallback, tried_spinup);
1947 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1948 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1949 }
1950
1951 /* Falling back doesn't make sense if ID data was read
1952 * successfully at least once.
1953 */
1954 may_fallback = 0;
1955
1956 swap_buf_le16(id, ATA_ID_WORDS);
1957
1958 /* sanity check */
1959 rc = -EINVAL;
1960 reason = "device reports invalid type";
1961
1962 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1963 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1964 goto err_out;
1965 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1966 ata_id_is_ata(id)) {
1967 ata_dev_dbg(dev,
1968 "host indicates ignore ATA devices, ignored\n");
1969 return -ENOENT;
1970 }
1971 } else {
1972 if (ata_id_is_ata(id))
1973 goto err_out;
1974 }
1975
1976 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1977 tried_spinup = 1;
1978 /*
1979 * Drive powered-up in standby mode, and requires a specific
1980 * SET_FEATURES spin-up subcommand before it will accept
1981 * anything other than the original IDENTIFY command.
1982 */
1983 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1984 if (err_mask && id[2] != 0x738c) {
1985 rc = -EIO;
1986 reason = "SPINUP failed";
1987 goto err_out;
1988 }
1989 /*
1990 * If the drive initially returned incomplete IDENTIFY info,
1991 * we now must reissue the IDENTIFY command.
1992 */
1993 if (id[2] == 0x37c8)
1994 goto retry;
1995 }
1996
1997 if ((flags & ATA_READID_POSTRESET) &&
1998 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1999 /*
2000 * The exact sequence expected by certain pre-ATA4 drives is:
2001 * SRST RESET
2002 * IDENTIFY (optional in early ATA)
2003 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2004 * anything else..
2005 * Some drives were very specific about that exact sequence.
2006 *
2007 * Note that ATA4 says lba is mandatory so the second check
2008 * should never trigger.
2009 */
2010 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2011 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2012 if (err_mask) {
2013 rc = -EIO;
2014 reason = "INIT_DEV_PARAMS failed";
2015 goto err_out;
2016 }
2017
2018 /* current CHS translation info (id[53-58]) might be
2019 * changed. reread the identify device info.
2020 */
2021 flags &= ~ATA_READID_POSTRESET;
2022 goto retry;
2023 }
2024 }
2025
2026 *p_class = class;
2027
2028 return 0;
2029
2030 err_out:
2031 if (ata_msg_warn(ap))
2032 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2033 reason, err_mask);
2034 return rc;
2035 }
2036
ata_do_link_spd_horkage(struct ata_device * dev)2037 static int ata_do_link_spd_horkage(struct ata_device *dev)
2038 {
2039 struct ata_link *plink = ata_dev_phys_link(dev);
2040 u32 target, target_limit;
2041
2042 if (!sata_scr_valid(plink))
2043 return 0;
2044
2045 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2046 target = 1;
2047 else
2048 return 0;
2049
2050 target_limit = (1 << target) - 1;
2051
2052 /* if already on stricter limit, no need to push further */
2053 if (plink->sata_spd_limit <= target_limit)
2054 return 0;
2055
2056 plink->sata_spd_limit = target_limit;
2057
2058 /* Request another EH round by returning -EAGAIN if link is
2059 * going faster than the target speed. Forward progress is
2060 * guaranteed by setting sata_spd_limit to target_limit above.
2061 */
2062 if (plink->sata_spd > target) {
2063 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2064 sata_spd_string(target));
2065 return -EAGAIN;
2066 }
2067 return 0;
2068 }
2069
ata_dev_knobble(struct ata_device * dev)2070 static inline u8 ata_dev_knobble(struct ata_device *dev)
2071 {
2072 struct ata_port *ap = dev->link->ap;
2073
2074 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2075 return 0;
2076
2077 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2078 }
2079
ata_dev_check_adapter(struct ata_device * dev,unsigned short vendor_id)2080 static bool ata_dev_check_adapter(struct ata_device *dev,
2081 unsigned short vendor_id)
2082 {
2083 struct pci_dev *pcidev = NULL;
2084 struct device *parent_dev = NULL;
2085
2086 for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2087 parent_dev = parent_dev->parent) {
2088 if (dev_is_pci(parent_dev)) {
2089 pcidev = to_pci_dev(parent_dev);
2090 if (pcidev->vendor == vendor_id)
2091 return true;
2092 break;
2093 }
2094 }
2095
2096 return false;
2097 }
2098
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2099 static int ata_dev_config_ncq(struct ata_device *dev,
2100 char *desc, size_t desc_sz)
2101 {
2102 struct ata_port *ap = dev->link->ap;
2103 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2104 unsigned int err_mask;
2105 char *aa_desc = "";
2106
2107 if (!ata_id_has_ncq(dev->id)) {
2108 desc[0] = '\0';
2109 return 0;
2110 }
2111 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2112 snprintf(desc, desc_sz, "NCQ (not used)");
2113 return 0;
2114 }
2115
2116 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2117 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2118 snprintf(desc, desc_sz, "NCQ (not used)");
2119 return 0;
2120 }
2121
2122 if (ap->flags & ATA_FLAG_NCQ) {
2123 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2124 dev->flags |= ATA_DFLAG_NCQ;
2125 }
2126
2127 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2128 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2129 ata_id_has_fpdma_aa(dev->id)) {
2130 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2131 SATA_FPDMA_AA);
2132 if (err_mask) {
2133 ata_dev_err(dev,
2134 "failed to enable AA (error_mask=0x%x)\n",
2135 err_mask);
2136 if (err_mask != AC_ERR_DEV) {
2137 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2138 return -EIO;
2139 }
2140 } else
2141 aa_desc = ", AA";
2142 }
2143
2144 if (hdepth >= ddepth)
2145 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2146 else
2147 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2148 ddepth, aa_desc);
2149
2150 if ((ap->flags & ATA_FLAG_FPDMA_AUX) &&
2151 ata_id_has_ncq_send_and_recv(dev->id)) {
2152 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2153 0, ap->sector_buf, 1);
2154 if (err_mask) {
2155 ata_dev_dbg(dev,
2156 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2157 err_mask);
2158 } else {
2159 u8 *cmds = dev->ncq_send_recv_cmds;
2160
2161 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2162 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2163
2164 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2165 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2166 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2167 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2168 }
2169 }
2170 }
2171
2172 return 0;
2173 }
2174
2175 /**
2176 * ata_dev_configure - Configure the specified ATA/ATAPI device
2177 * @dev: Target device to configure
2178 *
2179 * Configure @dev according to @dev->id. Generic and low-level
2180 * driver specific fixups are also applied.
2181 *
2182 * LOCKING:
2183 * Kernel thread context (may sleep)
2184 *
2185 * RETURNS:
2186 * 0 on success, -errno otherwise
2187 */
ata_dev_configure(struct ata_device * dev)2188 int ata_dev_configure(struct ata_device *dev)
2189 {
2190 struct ata_port *ap = dev->link->ap;
2191 struct ata_eh_context *ehc = &dev->link->eh_context;
2192 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2193 const u16 *id = dev->id;
2194 unsigned long xfer_mask;
2195 unsigned int err_mask;
2196 char revbuf[7]; /* XYZ-99\0 */
2197 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2198 char modelbuf[ATA_ID_PROD_LEN+1];
2199 int rc;
2200
2201 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2202 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2203 return 0;
2204 }
2205
2206 if (ata_msg_probe(ap))
2207 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2208
2209 /* set horkage */
2210 dev->horkage |= ata_dev_blacklisted(dev);
2211 ata_force_horkage(dev);
2212
2213 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2214 ata_dev_info(dev, "unsupported device, disabling\n");
2215 ata_dev_disable(dev);
2216 return 0;
2217 }
2218
2219 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2220 dev->class == ATA_DEV_ATAPI) {
2221 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2222 atapi_enabled ? "not supported with this driver"
2223 : "disabled");
2224 ata_dev_disable(dev);
2225 return 0;
2226 }
2227
2228 rc = ata_do_link_spd_horkage(dev);
2229 if (rc)
2230 return rc;
2231
2232 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2233 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2234 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2235 dev->horkage |= ATA_HORKAGE_NOLPM;
2236
2237 if (ap->flags & ATA_FLAG_NO_LPM)
2238 dev->horkage |= ATA_HORKAGE_NOLPM;
2239
2240 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2241 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2242 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2243 }
2244
2245 /* let ACPI work its magic */
2246 rc = ata_acpi_on_devcfg(dev);
2247 if (rc)
2248 return rc;
2249
2250 /* massage HPA, do it early as it might change IDENTIFY data */
2251 rc = ata_hpa_resize(dev);
2252 if (rc)
2253 return rc;
2254
2255 /* print device capabilities */
2256 if (ata_msg_probe(ap))
2257 ata_dev_dbg(dev,
2258 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2259 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2260 __func__,
2261 id[49], id[82], id[83], id[84],
2262 id[85], id[86], id[87], id[88]);
2263
2264 /* initialize to-be-configured parameters */
2265 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2266 dev->max_sectors = 0;
2267 dev->cdb_len = 0;
2268 dev->n_sectors = 0;
2269 dev->cylinders = 0;
2270 dev->heads = 0;
2271 dev->sectors = 0;
2272 dev->multi_count = 0;
2273
2274 /*
2275 * common ATA, ATAPI feature tests
2276 */
2277
2278 /* find max transfer mode; for printk only */
2279 xfer_mask = ata_id_xfermask(id);
2280
2281 if (ata_msg_probe(ap))
2282 ata_dump_id(id);
2283
2284 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2285 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2286 sizeof(fwrevbuf));
2287
2288 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2289 sizeof(modelbuf));
2290
2291 /* ATA-specific feature tests */
2292 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2293 if (ata_id_is_cfa(id)) {
2294 /* CPRM may make this media unusable */
2295 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2296 ata_dev_warn(dev,
2297 "supports DRM functions and may not be fully accessible\n");
2298 snprintf(revbuf, 7, "CFA");
2299 } else {
2300 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2301 /* Warn the user if the device has TPM extensions */
2302 if (ata_id_has_tpm(id))
2303 ata_dev_warn(dev,
2304 "supports DRM functions and may not be fully accessible\n");
2305 }
2306
2307 dev->n_sectors = ata_id_n_sectors(id);
2308
2309 /* get current R/W Multiple count setting */
2310 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2311 unsigned int max = dev->id[47] & 0xff;
2312 unsigned int cnt = dev->id[59] & 0xff;
2313 /* only recognize/allow powers of two here */
2314 if (is_power_of_2(max) && is_power_of_2(cnt))
2315 if (cnt <= max)
2316 dev->multi_count = cnt;
2317 }
2318
2319 if (ata_id_has_lba(id)) {
2320 const char *lba_desc;
2321 char ncq_desc[24];
2322
2323 lba_desc = "LBA";
2324 dev->flags |= ATA_DFLAG_LBA;
2325 if (ata_id_has_lba48(id)) {
2326 dev->flags |= ATA_DFLAG_LBA48;
2327 lba_desc = "LBA48";
2328
2329 if (dev->n_sectors >= (1UL << 28) &&
2330 ata_id_has_flush_ext(id))
2331 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2332 }
2333
2334 /* config NCQ */
2335 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2336 if (rc)
2337 return rc;
2338
2339 /* print device info to dmesg */
2340 if (ata_msg_drv(ap) && print_info) {
2341 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2342 revbuf, modelbuf, fwrevbuf,
2343 ata_mode_string(xfer_mask));
2344 ata_dev_info(dev,
2345 "%llu sectors, multi %u: %s %s\n",
2346 (unsigned long long)dev->n_sectors,
2347 dev->multi_count, lba_desc, ncq_desc);
2348 }
2349 } else {
2350 /* CHS */
2351
2352 /* Default translation */
2353 dev->cylinders = id[1];
2354 dev->heads = id[3];
2355 dev->sectors = id[6];
2356
2357 if (ata_id_current_chs_valid(id)) {
2358 /* Current CHS translation is valid. */
2359 dev->cylinders = id[54];
2360 dev->heads = id[55];
2361 dev->sectors = id[56];
2362 }
2363
2364 /* print device info to dmesg */
2365 if (ata_msg_drv(ap) && print_info) {
2366 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2367 revbuf, modelbuf, fwrevbuf,
2368 ata_mode_string(xfer_mask));
2369 ata_dev_info(dev,
2370 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2371 (unsigned long long)dev->n_sectors,
2372 dev->multi_count, dev->cylinders,
2373 dev->heads, dev->sectors);
2374 }
2375 }
2376
2377 /* Check and mark DevSlp capability. Get DevSlp timing variables
2378 * from SATA Settings page of Identify Device Data Log.
2379 */
2380 if (ata_id_has_devslp(dev->id)) {
2381 u8 *sata_setting = ap->sector_buf;
2382 int i, j;
2383
2384 dev->flags |= ATA_DFLAG_DEVSLP;
2385 err_mask = ata_read_log_page(dev,
2386 ATA_LOG_SATA_ID_DEV_DATA,
2387 ATA_LOG_SATA_SETTINGS,
2388 sata_setting,
2389 1);
2390 if (err_mask)
2391 ata_dev_dbg(dev,
2392 "failed to get Identify Device Data, Emask 0x%x\n",
2393 err_mask);
2394 else
2395 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2396 j = ATA_LOG_DEVSLP_OFFSET + i;
2397 dev->devslp_timing[i] = sata_setting[j];
2398 }
2399 }
2400
2401 dev->cdb_len = 16;
2402 }
2403
2404 /* ATAPI-specific feature tests */
2405 else if (dev->class == ATA_DEV_ATAPI) {
2406 const char *cdb_intr_string = "";
2407 const char *atapi_an_string = "";
2408 const char *dma_dir_string = "";
2409 u32 sntf;
2410
2411 rc = atapi_cdb_len(id);
2412 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2413 if (ata_msg_warn(ap))
2414 ata_dev_warn(dev, "unsupported CDB len\n");
2415 rc = -EINVAL;
2416 goto err_out_nosup;
2417 }
2418 dev->cdb_len = (unsigned int) rc;
2419
2420 /* Enable ATAPI AN if both the host and device have
2421 * the support. If PMP is attached, SNTF is required
2422 * to enable ATAPI AN to discern between PHY status
2423 * changed notifications and ATAPI ANs.
2424 */
2425 if (atapi_an &&
2426 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2427 (!sata_pmp_attached(ap) ||
2428 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2429 /* issue SET feature command to turn this on */
2430 err_mask = ata_dev_set_feature(dev,
2431 SETFEATURES_SATA_ENABLE, SATA_AN);
2432 if (err_mask)
2433 ata_dev_err(dev,
2434 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2435 err_mask);
2436 else {
2437 dev->flags |= ATA_DFLAG_AN;
2438 atapi_an_string = ", ATAPI AN";
2439 }
2440 }
2441
2442 if (ata_id_cdb_intr(dev->id)) {
2443 dev->flags |= ATA_DFLAG_CDB_INTR;
2444 cdb_intr_string = ", CDB intr";
2445 }
2446
2447 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2448 dev->flags |= ATA_DFLAG_DMADIR;
2449 dma_dir_string = ", DMADIR";
2450 }
2451
2452 if (ata_id_has_da(dev->id)) {
2453 dev->flags |= ATA_DFLAG_DA;
2454 zpodd_init(dev);
2455 }
2456
2457 /* print device info to dmesg */
2458 if (ata_msg_drv(ap) && print_info)
2459 ata_dev_info(dev,
2460 "ATAPI: %s, %s, max %s%s%s%s\n",
2461 modelbuf, fwrevbuf,
2462 ata_mode_string(xfer_mask),
2463 cdb_intr_string, atapi_an_string,
2464 dma_dir_string);
2465 }
2466
2467 /* determine max_sectors */
2468 dev->max_sectors = ATA_MAX_SECTORS;
2469 if (dev->flags & ATA_DFLAG_LBA48)
2470 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2471
2472 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2473 200 sectors */
2474 if (ata_dev_knobble(dev)) {
2475 if (ata_msg_drv(ap) && print_info)
2476 ata_dev_info(dev, "applying bridge limits\n");
2477 dev->udma_mask &= ATA_UDMA5;
2478 dev->max_sectors = ATA_MAX_SECTORS;
2479 }
2480
2481 if ((dev->class == ATA_DEV_ATAPI) &&
2482 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2483 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2484 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2485 }
2486
2487 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2488 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2489 dev->max_sectors);
2490
2491 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2492 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2493 dev->max_sectors);
2494
2495 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2496 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2497
2498 if (ap->ops->dev_config)
2499 ap->ops->dev_config(dev);
2500
2501 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2502 /* Let the user know. We don't want to disallow opens for
2503 rescue purposes, or in case the vendor is just a blithering
2504 idiot. Do this after the dev_config call as some controllers
2505 with buggy firmware may want to avoid reporting false device
2506 bugs */
2507
2508 if (print_info) {
2509 ata_dev_warn(dev,
2510 "Drive reports diagnostics failure. This may indicate a drive\n");
2511 ata_dev_warn(dev,
2512 "fault or invalid emulation. Contact drive vendor for information.\n");
2513 }
2514 }
2515
2516 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2517 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2518 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2519 }
2520
2521 return 0;
2522
2523 err_out_nosup:
2524 if (ata_msg_probe(ap))
2525 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2526 return rc;
2527 }
2528
2529 /**
2530 * ata_cable_40wire - return 40 wire cable type
2531 * @ap: port
2532 *
2533 * Helper method for drivers which want to hardwire 40 wire cable
2534 * detection.
2535 */
2536
ata_cable_40wire(struct ata_port * ap)2537 int ata_cable_40wire(struct ata_port *ap)
2538 {
2539 return ATA_CBL_PATA40;
2540 }
2541
2542 /**
2543 * ata_cable_80wire - return 80 wire cable type
2544 * @ap: port
2545 *
2546 * Helper method for drivers which want to hardwire 80 wire cable
2547 * detection.
2548 */
2549
ata_cable_80wire(struct ata_port * ap)2550 int ata_cable_80wire(struct ata_port *ap)
2551 {
2552 return ATA_CBL_PATA80;
2553 }
2554
2555 /**
2556 * ata_cable_unknown - return unknown PATA cable.
2557 * @ap: port
2558 *
2559 * Helper method for drivers which have no PATA cable detection.
2560 */
2561
ata_cable_unknown(struct ata_port * ap)2562 int ata_cable_unknown(struct ata_port *ap)
2563 {
2564 return ATA_CBL_PATA_UNK;
2565 }
2566
2567 /**
2568 * ata_cable_ignore - return ignored PATA cable.
2569 * @ap: port
2570 *
2571 * Helper method for drivers which don't use cable type to limit
2572 * transfer mode.
2573 */
ata_cable_ignore(struct ata_port * ap)2574 int ata_cable_ignore(struct ata_port *ap)
2575 {
2576 return ATA_CBL_PATA_IGN;
2577 }
2578
2579 /**
2580 * ata_cable_sata - return SATA cable type
2581 * @ap: port
2582 *
2583 * Helper method for drivers which have SATA cables
2584 */
2585
ata_cable_sata(struct ata_port * ap)2586 int ata_cable_sata(struct ata_port *ap)
2587 {
2588 return ATA_CBL_SATA;
2589 }
2590
2591 /**
2592 * ata_bus_probe - Reset and probe ATA bus
2593 * @ap: Bus to probe
2594 *
2595 * Master ATA bus probing function. Initiates a hardware-dependent
2596 * bus reset, then attempts to identify any devices found on
2597 * the bus.
2598 *
2599 * LOCKING:
2600 * PCI/etc. bus probe sem.
2601 *
2602 * RETURNS:
2603 * Zero on success, negative errno otherwise.
2604 */
2605
ata_bus_probe(struct ata_port * ap)2606 int ata_bus_probe(struct ata_port *ap)
2607 {
2608 unsigned int classes[ATA_MAX_DEVICES];
2609 int tries[ATA_MAX_DEVICES];
2610 int rc;
2611 struct ata_device *dev;
2612
2613 ata_for_each_dev(dev, &ap->link, ALL)
2614 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2615
2616 retry:
2617 ata_for_each_dev(dev, &ap->link, ALL) {
2618 /* If we issue an SRST then an ATA drive (not ATAPI)
2619 * may change configuration and be in PIO0 timing. If
2620 * we do a hard reset (or are coming from power on)
2621 * this is true for ATA or ATAPI. Until we've set a
2622 * suitable controller mode we should not touch the
2623 * bus as we may be talking too fast.
2624 */
2625 dev->pio_mode = XFER_PIO_0;
2626 dev->dma_mode = 0xff;
2627
2628 /* If the controller has a pio mode setup function
2629 * then use it to set the chipset to rights. Don't
2630 * touch the DMA setup as that will be dealt with when
2631 * configuring devices.
2632 */
2633 if (ap->ops->set_piomode)
2634 ap->ops->set_piomode(ap, dev);
2635 }
2636
2637 /* reset and determine device classes */
2638 ap->ops->phy_reset(ap);
2639
2640 ata_for_each_dev(dev, &ap->link, ALL) {
2641 if (dev->class != ATA_DEV_UNKNOWN)
2642 classes[dev->devno] = dev->class;
2643 else
2644 classes[dev->devno] = ATA_DEV_NONE;
2645
2646 dev->class = ATA_DEV_UNKNOWN;
2647 }
2648
2649 /* read IDENTIFY page and configure devices. We have to do the identify
2650 specific sequence bass-ackwards so that PDIAG- is released by
2651 the slave device */
2652
2653 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2654 if (tries[dev->devno])
2655 dev->class = classes[dev->devno];
2656
2657 if (!ata_dev_enabled(dev))
2658 continue;
2659
2660 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2661 dev->id);
2662 if (rc)
2663 goto fail;
2664 }
2665
2666 /* Now ask for the cable type as PDIAG- should have been released */
2667 if (ap->ops->cable_detect)
2668 ap->cbl = ap->ops->cable_detect(ap);
2669
2670 /* We may have SATA bridge glue hiding here irrespective of
2671 * the reported cable types and sensed types. When SATA
2672 * drives indicate we have a bridge, we don't know which end
2673 * of the link the bridge is which is a problem.
2674 */
2675 ata_for_each_dev(dev, &ap->link, ENABLED)
2676 if (ata_id_is_sata(dev->id))
2677 ap->cbl = ATA_CBL_SATA;
2678
2679 /* After the identify sequence we can now set up the devices. We do
2680 this in the normal order so that the user doesn't get confused */
2681
2682 ata_for_each_dev(dev, &ap->link, ENABLED) {
2683 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2684 rc = ata_dev_configure(dev);
2685 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2686 if (rc)
2687 goto fail;
2688 }
2689
2690 /* configure transfer mode */
2691 rc = ata_set_mode(&ap->link, &dev);
2692 if (rc)
2693 goto fail;
2694
2695 ata_for_each_dev(dev, &ap->link, ENABLED)
2696 return 0;
2697
2698 return -ENODEV;
2699
2700 fail:
2701 tries[dev->devno]--;
2702
2703 switch (rc) {
2704 case -EINVAL:
2705 /* eeek, something went very wrong, give up */
2706 tries[dev->devno] = 0;
2707 break;
2708
2709 case -ENODEV:
2710 /* give it just one more chance */
2711 tries[dev->devno] = min(tries[dev->devno], 1);
2712 case -EIO:
2713 if (tries[dev->devno] == 1) {
2714 /* This is the last chance, better to slow
2715 * down than lose it.
2716 */
2717 sata_down_spd_limit(&ap->link, 0);
2718 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2719 }
2720 }
2721
2722 if (!tries[dev->devno])
2723 ata_dev_disable(dev);
2724
2725 goto retry;
2726 }
2727
2728 /**
2729 * sata_print_link_status - Print SATA link status
2730 * @link: SATA link to printk link status about
2731 *
2732 * This function prints link speed and status of a SATA link.
2733 *
2734 * LOCKING:
2735 * None.
2736 */
sata_print_link_status(struct ata_link * link)2737 static void sata_print_link_status(struct ata_link *link)
2738 {
2739 u32 sstatus, scontrol, tmp;
2740
2741 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2742 return;
2743 sata_scr_read(link, SCR_CONTROL, &scontrol);
2744
2745 if (ata_phys_link_online(link)) {
2746 tmp = (sstatus >> 4) & 0xf;
2747 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2748 sata_spd_string(tmp), sstatus, scontrol);
2749 } else {
2750 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2751 sstatus, scontrol);
2752 }
2753 }
2754
2755 /**
2756 * ata_dev_pair - return other device on cable
2757 * @adev: device
2758 *
2759 * Obtain the other device on the same cable, or if none is
2760 * present NULL is returned
2761 */
2762
ata_dev_pair(struct ata_device * adev)2763 struct ata_device *ata_dev_pair(struct ata_device *adev)
2764 {
2765 struct ata_link *link = adev->link;
2766 struct ata_device *pair = &link->device[1 - adev->devno];
2767 if (!ata_dev_enabled(pair))
2768 return NULL;
2769 return pair;
2770 }
2771
2772 /**
2773 * sata_down_spd_limit - adjust SATA spd limit downward
2774 * @link: Link to adjust SATA spd limit for
2775 * @spd_limit: Additional limit
2776 *
2777 * Adjust SATA spd limit of @link downward. Note that this
2778 * function only adjusts the limit. The change must be applied
2779 * using sata_set_spd().
2780 *
2781 * If @spd_limit is non-zero, the speed is limited to equal to or
2782 * lower than @spd_limit if such speed is supported. If
2783 * @spd_limit is slower than any supported speed, only the lowest
2784 * supported speed is allowed.
2785 *
2786 * LOCKING:
2787 * Inherited from caller.
2788 *
2789 * RETURNS:
2790 * 0 on success, negative errno on failure
2791 */
sata_down_spd_limit(struct ata_link * link,u32 spd_limit)2792 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2793 {
2794 u32 sstatus, spd, mask;
2795 int rc, bit;
2796
2797 if (!sata_scr_valid(link))
2798 return -EOPNOTSUPP;
2799
2800 /* If SCR can be read, use it to determine the current SPD.
2801 * If not, use cached value in link->sata_spd.
2802 */
2803 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2804 if (rc == 0 && ata_sstatus_online(sstatus))
2805 spd = (sstatus >> 4) & 0xf;
2806 else
2807 spd = link->sata_spd;
2808
2809 mask = link->sata_spd_limit;
2810 if (mask <= 1)
2811 return -EINVAL;
2812
2813 /* unconditionally mask off the highest bit */
2814 bit = fls(mask) - 1;
2815 mask &= ~(1 << bit);
2816
2817 /* Mask off all speeds higher than or equal to the current
2818 * one. Force 1.5Gbps if current SPD is not available.
2819 */
2820 if (spd > 1)
2821 mask &= (1 << (spd - 1)) - 1;
2822 else
2823 mask &= 1;
2824
2825 /* were we already at the bottom? */
2826 if (!mask)
2827 return -EINVAL;
2828
2829 if (spd_limit) {
2830 if (mask & ((1 << spd_limit) - 1))
2831 mask &= (1 << spd_limit) - 1;
2832 else {
2833 bit = ffs(mask) - 1;
2834 mask = 1 << bit;
2835 }
2836 }
2837
2838 link->sata_spd_limit = mask;
2839
2840 ata_link_warn(link, "limiting SATA link speed to %s\n",
2841 sata_spd_string(fls(mask)));
2842
2843 return 0;
2844 }
2845
__sata_set_spd_needed(struct ata_link * link,u32 * scontrol)2846 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2847 {
2848 struct ata_link *host_link = &link->ap->link;
2849 u32 limit, target, spd;
2850
2851 limit = link->sata_spd_limit;
2852
2853 /* Don't configure downstream link faster than upstream link.
2854 * It doesn't speed up anything and some PMPs choke on such
2855 * configuration.
2856 */
2857 if (!ata_is_host_link(link) && host_link->sata_spd)
2858 limit &= (1 << host_link->sata_spd) - 1;
2859
2860 if (limit == UINT_MAX)
2861 target = 0;
2862 else
2863 target = fls(limit);
2864
2865 spd = (*scontrol >> 4) & 0xf;
2866 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2867
2868 return spd != target;
2869 }
2870
2871 /**
2872 * sata_set_spd_needed - is SATA spd configuration needed
2873 * @link: Link in question
2874 *
2875 * Test whether the spd limit in SControl matches
2876 * @link->sata_spd_limit. This function is used to determine
2877 * whether hardreset is necessary to apply SATA spd
2878 * configuration.
2879 *
2880 * LOCKING:
2881 * Inherited from caller.
2882 *
2883 * RETURNS:
2884 * 1 if SATA spd configuration is needed, 0 otherwise.
2885 */
sata_set_spd_needed(struct ata_link * link)2886 static int sata_set_spd_needed(struct ata_link *link)
2887 {
2888 u32 scontrol;
2889
2890 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2891 return 1;
2892
2893 return __sata_set_spd_needed(link, &scontrol);
2894 }
2895
2896 /**
2897 * sata_set_spd - set SATA spd according to spd limit
2898 * @link: Link to set SATA spd for
2899 *
2900 * Set SATA spd of @link according to sata_spd_limit.
2901 *
2902 * LOCKING:
2903 * Inherited from caller.
2904 *
2905 * RETURNS:
2906 * 0 if spd doesn't need to be changed, 1 if spd has been
2907 * changed. Negative errno if SCR registers are inaccessible.
2908 */
sata_set_spd(struct ata_link * link)2909 int sata_set_spd(struct ata_link *link)
2910 {
2911 u32 scontrol;
2912 int rc;
2913
2914 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2915 return rc;
2916
2917 if (!__sata_set_spd_needed(link, &scontrol))
2918 return 0;
2919
2920 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2921 return rc;
2922
2923 return 1;
2924 }
2925
2926 /*
2927 * This mode timing computation functionality is ported over from
2928 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2929 */
2930 /*
2931 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2932 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2933 * for UDMA6, which is currently supported only by Maxtor drives.
2934 *
2935 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2936 */
2937
2938 static const struct ata_timing ata_timing[] = {
2939 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2940 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2941 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2942 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2943 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2944 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2945 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2946 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2947
2948 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2949 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2950 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2951
2952 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2953 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2954 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2955 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2956 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2957
2958 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2959 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2960 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2961 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2962 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2963 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2964 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2965 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2966
2967 { 0xFF }
2968 };
2969
2970 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2971 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2972
ata_timing_quantize(const struct ata_timing * t,struct ata_timing * q,int T,int UT)2973 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2974 {
2975 q->setup = EZ(t->setup * 1000, T);
2976 q->act8b = EZ(t->act8b * 1000, T);
2977 q->rec8b = EZ(t->rec8b * 1000, T);
2978 q->cyc8b = EZ(t->cyc8b * 1000, T);
2979 q->active = EZ(t->active * 1000, T);
2980 q->recover = EZ(t->recover * 1000, T);
2981 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2982 q->cycle = EZ(t->cycle * 1000, T);
2983 q->udma = EZ(t->udma * 1000, UT);
2984 }
2985
ata_timing_merge(const struct ata_timing * a,const struct ata_timing * b,struct ata_timing * m,unsigned int what)2986 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2987 struct ata_timing *m, unsigned int what)
2988 {
2989 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2990 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2991 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2992 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2993 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2994 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2995 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2996 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2997 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2998 }
2999
ata_timing_find_mode(u8 xfer_mode)3000 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3001 {
3002 const struct ata_timing *t = ata_timing;
3003
3004 while (xfer_mode > t->mode)
3005 t++;
3006
3007 if (xfer_mode == t->mode)
3008 return t;
3009
3010 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3011 __func__, xfer_mode);
3012
3013 return NULL;
3014 }
3015
ata_timing_compute(struct ata_device * adev,unsigned short speed,struct ata_timing * t,int T,int UT)3016 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3017 struct ata_timing *t, int T, int UT)
3018 {
3019 const u16 *id = adev->id;
3020 const struct ata_timing *s;
3021 struct ata_timing p;
3022
3023 /*
3024 * Find the mode.
3025 */
3026
3027 if (!(s = ata_timing_find_mode(speed)))
3028 return -EINVAL;
3029
3030 memcpy(t, s, sizeof(*s));
3031
3032 /*
3033 * If the drive is an EIDE drive, it can tell us it needs extended
3034 * PIO/MW_DMA cycle timing.
3035 */
3036
3037 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3038 memset(&p, 0, sizeof(p));
3039
3040 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3041 if (speed <= XFER_PIO_2)
3042 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3043 else if ((speed <= XFER_PIO_4) ||
3044 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3045 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3046 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3047 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3048
3049 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3050 }
3051
3052 /*
3053 * Convert the timing to bus clock counts.
3054 */
3055
3056 ata_timing_quantize(t, t, T, UT);
3057
3058 /*
3059 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3060 * S.M.A.R.T * and some other commands. We have to ensure that the
3061 * DMA cycle timing is slower/equal than the fastest PIO timing.
3062 */
3063
3064 if (speed > XFER_PIO_6) {
3065 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3066 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3067 }
3068
3069 /*
3070 * Lengthen active & recovery time so that cycle time is correct.
3071 */
3072
3073 if (t->act8b + t->rec8b < t->cyc8b) {
3074 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3075 t->rec8b = t->cyc8b - t->act8b;
3076 }
3077
3078 if (t->active + t->recover < t->cycle) {
3079 t->active += (t->cycle - (t->active + t->recover)) / 2;
3080 t->recover = t->cycle - t->active;
3081 }
3082
3083 /* In a few cases quantisation may produce enough errors to
3084 leave t->cycle too low for the sum of active and recovery
3085 if so we must correct this */
3086 if (t->active + t->recover > t->cycle)
3087 t->cycle = t->active + t->recover;
3088
3089 return 0;
3090 }
3091
3092 /**
3093 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3094 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3095 * @cycle: cycle duration in ns
3096 *
3097 * Return matching xfer mode for @cycle. The returned mode is of
3098 * the transfer type specified by @xfer_shift. If @cycle is too
3099 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3100 * than the fastest known mode, the fasted mode is returned.
3101 *
3102 * LOCKING:
3103 * None.
3104 *
3105 * RETURNS:
3106 * Matching xfer_mode, 0xff if no match found.
3107 */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3108 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3109 {
3110 u8 base_mode = 0xff, last_mode = 0xff;
3111 const struct ata_xfer_ent *ent;
3112 const struct ata_timing *t;
3113
3114 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3115 if (ent->shift == xfer_shift)
3116 base_mode = ent->base;
3117
3118 for (t = ata_timing_find_mode(base_mode);
3119 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3120 unsigned short this_cycle;
3121
3122 switch (xfer_shift) {
3123 case ATA_SHIFT_PIO:
3124 case ATA_SHIFT_MWDMA:
3125 this_cycle = t->cycle;
3126 break;
3127 case ATA_SHIFT_UDMA:
3128 this_cycle = t->udma;
3129 break;
3130 default:
3131 return 0xff;
3132 }
3133
3134 if (cycle > this_cycle)
3135 break;
3136
3137 last_mode = t->mode;
3138 }
3139
3140 return last_mode;
3141 }
3142
3143 /**
3144 * ata_down_xfermask_limit - adjust dev xfer masks downward
3145 * @dev: Device to adjust xfer masks
3146 * @sel: ATA_DNXFER_* selector
3147 *
3148 * Adjust xfer masks of @dev downward. Note that this function
3149 * does not apply the change. Invoking ata_set_mode() afterwards
3150 * will apply the limit.
3151 *
3152 * LOCKING:
3153 * Inherited from caller.
3154 *
3155 * RETURNS:
3156 * 0 on success, negative errno on failure
3157 */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3158 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3159 {
3160 char buf[32];
3161 unsigned long orig_mask, xfer_mask;
3162 unsigned long pio_mask, mwdma_mask, udma_mask;
3163 int quiet, highbit;
3164
3165 quiet = !!(sel & ATA_DNXFER_QUIET);
3166 sel &= ~ATA_DNXFER_QUIET;
3167
3168 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3169 dev->mwdma_mask,
3170 dev->udma_mask);
3171 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3172
3173 switch (sel) {
3174 case ATA_DNXFER_PIO:
3175 highbit = fls(pio_mask) - 1;
3176 pio_mask &= ~(1 << highbit);
3177 break;
3178
3179 case ATA_DNXFER_DMA:
3180 if (udma_mask) {
3181 highbit = fls(udma_mask) - 1;
3182 udma_mask &= ~(1 << highbit);
3183 if (!udma_mask)
3184 return -ENOENT;
3185 } else if (mwdma_mask) {
3186 highbit = fls(mwdma_mask) - 1;
3187 mwdma_mask &= ~(1 << highbit);
3188 if (!mwdma_mask)
3189 return -ENOENT;
3190 }
3191 break;
3192
3193 case ATA_DNXFER_40C:
3194 udma_mask &= ATA_UDMA_MASK_40C;
3195 break;
3196
3197 case ATA_DNXFER_FORCE_PIO0:
3198 pio_mask &= 1;
3199 case ATA_DNXFER_FORCE_PIO:
3200 mwdma_mask = 0;
3201 udma_mask = 0;
3202 break;
3203
3204 default:
3205 BUG();
3206 }
3207
3208 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3209
3210 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3211 return -ENOENT;
3212
3213 if (!quiet) {
3214 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3215 snprintf(buf, sizeof(buf), "%s:%s",
3216 ata_mode_string(xfer_mask),
3217 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3218 else
3219 snprintf(buf, sizeof(buf), "%s",
3220 ata_mode_string(xfer_mask));
3221
3222 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3223 }
3224
3225 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3226 &dev->udma_mask);
3227
3228 return 0;
3229 }
3230
ata_dev_set_mode(struct ata_device * dev)3231 static int ata_dev_set_mode(struct ata_device *dev)
3232 {
3233 struct ata_port *ap = dev->link->ap;
3234 struct ata_eh_context *ehc = &dev->link->eh_context;
3235 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3236 const char *dev_err_whine = "";
3237 int ign_dev_err = 0;
3238 unsigned int err_mask = 0;
3239 int rc;
3240
3241 dev->flags &= ~ATA_DFLAG_PIO;
3242 if (dev->xfer_shift == ATA_SHIFT_PIO)
3243 dev->flags |= ATA_DFLAG_PIO;
3244
3245 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3246 dev_err_whine = " (SET_XFERMODE skipped)";
3247 else {
3248 if (nosetxfer)
3249 ata_dev_warn(dev,
3250 "NOSETXFER but PATA detected - can't "
3251 "skip SETXFER, might malfunction\n");
3252 err_mask = ata_dev_set_xfermode(dev);
3253 }
3254
3255 if (err_mask & ~AC_ERR_DEV)
3256 goto fail;
3257
3258 /* revalidate */
3259 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3260 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3261 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3262 if (rc)
3263 return rc;
3264
3265 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3266 /* Old CFA may refuse this command, which is just fine */
3267 if (ata_id_is_cfa(dev->id))
3268 ign_dev_err = 1;
3269 /* Catch several broken garbage emulations plus some pre
3270 ATA devices */
3271 if (ata_id_major_version(dev->id) == 0 &&
3272 dev->pio_mode <= XFER_PIO_2)
3273 ign_dev_err = 1;
3274 /* Some very old devices and some bad newer ones fail
3275 any kind of SET_XFERMODE request but support PIO0-2
3276 timings and no IORDY */
3277 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3278 ign_dev_err = 1;
3279 }
3280 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3281 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3282 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3283 dev->dma_mode == XFER_MW_DMA_0 &&
3284 (dev->id[63] >> 8) & 1)
3285 ign_dev_err = 1;
3286
3287 /* if the device is actually configured correctly, ignore dev err */
3288 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3289 ign_dev_err = 1;
3290
3291 if (err_mask & AC_ERR_DEV) {
3292 if (!ign_dev_err)
3293 goto fail;
3294 else
3295 dev_err_whine = " (device error ignored)";
3296 }
3297
3298 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3299 dev->xfer_shift, (int)dev->xfer_mode);
3300
3301 ata_dev_info(dev, "configured for %s%s\n",
3302 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3303 dev_err_whine);
3304
3305 return 0;
3306
3307 fail:
3308 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3309 return -EIO;
3310 }
3311
3312 /**
3313 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3314 * @link: link on which timings will be programmed
3315 * @r_failed_dev: out parameter for failed device
3316 *
3317 * Standard implementation of the function used to tune and set
3318 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3319 * ata_dev_set_mode() fails, pointer to the failing device is
3320 * returned in @r_failed_dev.
3321 *
3322 * LOCKING:
3323 * PCI/etc. bus probe sem.
3324 *
3325 * RETURNS:
3326 * 0 on success, negative errno otherwise
3327 */
3328
ata_do_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3329 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3330 {
3331 struct ata_port *ap = link->ap;
3332 struct ata_device *dev;
3333 int rc = 0, used_dma = 0, found = 0;
3334
3335 /* step 1: calculate xfer_mask */
3336 ata_for_each_dev(dev, link, ENABLED) {
3337 unsigned long pio_mask, dma_mask;
3338 unsigned int mode_mask;
3339
3340 mode_mask = ATA_DMA_MASK_ATA;
3341 if (dev->class == ATA_DEV_ATAPI)
3342 mode_mask = ATA_DMA_MASK_ATAPI;
3343 else if (ata_id_is_cfa(dev->id))
3344 mode_mask = ATA_DMA_MASK_CFA;
3345
3346 ata_dev_xfermask(dev);
3347 ata_force_xfermask(dev);
3348
3349 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3350
3351 if (libata_dma_mask & mode_mask)
3352 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3353 dev->udma_mask);
3354 else
3355 dma_mask = 0;
3356
3357 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3358 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3359
3360 found = 1;
3361 if (ata_dma_enabled(dev))
3362 used_dma = 1;
3363 }
3364 if (!found)
3365 goto out;
3366
3367 /* step 2: always set host PIO timings */
3368 ata_for_each_dev(dev, link, ENABLED) {
3369 if (dev->pio_mode == 0xff) {
3370 ata_dev_warn(dev, "no PIO support\n");
3371 rc = -EINVAL;
3372 goto out;
3373 }
3374
3375 dev->xfer_mode = dev->pio_mode;
3376 dev->xfer_shift = ATA_SHIFT_PIO;
3377 if (ap->ops->set_piomode)
3378 ap->ops->set_piomode(ap, dev);
3379 }
3380
3381 /* step 3: set host DMA timings */
3382 ata_for_each_dev(dev, link, ENABLED) {
3383 if (!ata_dma_enabled(dev))
3384 continue;
3385
3386 dev->xfer_mode = dev->dma_mode;
3387 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3388 if (ap->ops->set_dmamode)
3389 ap->ops->set_dmamode(ap, dev);
3390 }
3391
3392 /* step 4: update devices' xfer mode */
3393 ata_for_each_dev(dev, link, ENABLED) {
3394 rc = ata_dev_set_mode(dev);
3395 if (rc)
3396 goto out;
3397 }
3398
3399 /* Record simplex status. If we selected DMA then the other
3400 * host channels are not permitted to do so.
3401 */
3402 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3403 ap->host->simplex_claimed = ap;
3404
3405 out:
3406 if (rc)
3407 *r_failed_dev = dev;
3408 return rc;
3409 }
3410
3411 /**
3412 * ata_wait_ready - wait for link to become ready
3413 * @link: link to be waited on
3414 * @deadline: deadline jiffies for the operation
3415 * @check_ready: callback to check link readiness
3416 *
3417 * Wait for @link to become ready. @check_ready should return
3418 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3419 * link doesn't seem to be occupied, other errno for other error
3420 * conditions.
3421 *
3422 * Transient -ENODEV conditions are allowed for
3423 * ATA_TMOUT_FF_WAIT.
3424 *
3425 * LOCKING:
3426 * EH context.
3427 *
3428 * RETURNS:
3429 * 0 if @linke is ready before @deadline; otherwise, -errno.
3430 */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3431 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3432 int (*check_ready)(struct ata_link *link))
3433 {
3434 unsigned long start = jiffies;
3435 unsigned long nodev_deadline;
3436 int warned = 0;
3437
3438 /* choose which 0xff timeout to use, read comment in libata.h */
3439 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3440 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3441 else
3442 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3443
3444 /* Slave readiness can't be tested separately from master. On
3445 * M/S emulation configuration, this function should be called
3446 * only on the master and it will handle both master and slave.
3447 */
3448 WARN_ON(link == link->ap->slave_link);
3449
3450 if (time_after(nodev_deadline, deadline))
3451 nodev_deadline = deadline;
3452
3453 while (1) {
3454 unsigned long now = jiffies;
3455 int ready, tmp;
3456
3457 ready = tmp = check_ready(link);
3458 if (ready > 0)
3459 return 0;
3460
3461 /*
3462 * -ENODEV could be transient. Ignore -ENODEV if link
3463 * is online. Also, some SATA devices take a long
3464 * time to clear 0xff after reset. Wait for
3465 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3466 * offline.
3467 *
3468 * Note that some PATA controllers (pata_ali) explode
3469 * if status register is read more than once when
3470 * there's no device attached.
3471 */
3472 if (ready == -ENODEV) {
3473 if (ata_link_online(link))
3474 ready = 0;
3475 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3476 !ata_link_offline(link) &&
3477 time_before(now, nodev_deadline))
3478 ready = 0;
3479 }
3480
3481 if (ready)
3482 return ready;
3483 if (time_after(now, deadline))
3484 return -EBUSY;
3485
3486 if (!warned && time_after(now, start + 5 * HZ) &&
3487 (deadline - now > 3 * HZ)) {
3488 ata_link_warn(link,
3489 "link is slow to respond, please be patient "
3490 "(ready=%d)\n", tmp);
3491 warned = 1;
3492 }
3493
3494 ata_msleep(link->ap, 50);
3495 }
3496 }
3497
3498 /**
3499 * ata_wait_after_reset - wait for link to become ready after reset
3500 * @link: link to be waited on
3501 * @deadline: deadline jiffies for the operation
3502 * @check_ready: callback to check link readiness
3503 *
3504 * Wait for @link to become ready after reset.
3505 *
3506 * LOCKING:
3507 * EH context.
3508 *
3509 * RETURNS:
3510 * 0 if @linke is ready before @deadline; otherwise, -errno.
3511 */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3512 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3513 int (*check_ready)(struct ata_link *link))
3514 {
3515 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3516
3517 return ata_wait_ready(link, deadline, check_ready);
3518 }
3519
3520 /**
3521 * sata_link_debounce - debounce SATA phy status
3522 * @link: ATA link to debounce SATA phy status for
3523 * @params: timing parameters { interval, duratinon, timeout } in msec
3524 * @deadline: deadline jiffies for the operation
3525 *
3526 * Make sure SStatus of @link reaches stable state, determined by
3527 * holding the same value where DET is not 1 for @duration polled
3528 * every @interval, before @timeout. Timeout constraints the
3529 * beginning of the stable state. Because DET gets stuck at 1 on
3530 * some controllers after hot unplugging, this functions waits
3531 * until timeout then returns 0 if DET is stable at 1.
3532 *
3533 * @timeout is further limited by @deadline. The sooner of the
3534 * two is used.
3535 *
3536 * LOCKING:
3537 * Kernel thread context (may sleep)
3538 *
3539 * RETURNS:
3540 * 0 on success, -errno on failure.
3541 */
sata_link_debounce(struct ata_link * link,const unsigned long * params,unsigned long deadline)3542 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3543 unsigned long deadline)
3544 {
3545 unsigned long interval = params[0];
3546 unsigned long duration = params[1];
3547 unsigned long last_jiffies, t;
3548 u32 last, cur;
3549 int rc;
3550
3551 t = ata_deadline(jiffies, params[2]);
3552 if (time_before(t, deadline))
3553 deadline = t;
3554
3555 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3556 return rc;
3557 cur &= 0xf;
3558
3559 last = cur;
3560 last_jiffies = jiffies;
3561
3562 while (1) {
3563 ata_msleep(link->ap, interval);
3564 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3565 return rc;
3566 cur &= 0xf;
3567
3568 /* DET stable? */
3569 if (cur == last) {
3570 if (cur == 1 && time_before(jiffies, deadline))
3571 continue;
3572 if (time_after(jiffies,
3573 ata_deadline(last_jiffies, duration)))
3574 return 0;
3575 continue;
3576 }
3577
3578 /* unstable, start over */
3579 last = cur;
3580 last_jiffies = jiffies;
3581
3582 /* Check deadline. If debouncing failed, return
3583 * -EPIPE to tell upper layer to lower link speed.
3584 */
3585 if (time_after(jiffies, deadline))
3586 return -EPIPE;
3587 }
3588 }
3589
3590 /**
3591 * sata_link_resume - resume SATA link
3592 * @link: ATA link to resume SATA
3593 * @params: timing parameters { interval, duratinon, timeout } in msec
3594 * @deadline: deadline jiffies for the operation
3595 *
3596 * Resume SATA phy @link and debounce it.
3597 *
3598 * LOCKING:
3599 * Kernel thread context (may sleep)
3600 *
3601 * RETURNS:
3602 * 0 on success, -errno on failure.
3603 */
sata_link_resume(struct ata_link * link,const unsigned long * params,unsigned long deadline)3604 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3605 unsigned long deadline)
3606 {
3607 int tries = ATA_LINK_RESUME_TRIES;
3608 u32 scontrol, serror;
3609 int rc;
3610
3611 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3612 return rc;
3613
3614 /*
3615 * Writes to SControl sometimes get ignored under certain
3616 * controllers (ata_piix SIDPR). Make sure DET actually is
3617 * cleared.
3618 */
3619 do {
3620 scontrol = (scontrol & 0x0f0) | 0x300;
3621 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3622 return rc;
3623 /*
3624 * Some PHYs react badly if SStatus is pounded
3625 * immediately after resuming. Delay 200ms before
3626 * debouncing.
3627 */
3628 ata_msleep(link->ap, 200);
3629
3630 /* is SControl restored correctly? */
3631 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3632 return rc;
3633 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3634
3635 if ((scontrol & 0xf0f) != 0x300) {
3636 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3637 scontrol);
3638 return 0;
3639 }
3640
3641 if (tries < ATA_LINK_RESUME_TRIES)
3642 ata_link_warn(link, "link resume succeeded after %d retries\n",
3643 ATA_LINK_RESUME_TRIES - tries);
3644
3645 if ((rc = sata_link_debounce(link, params, deadline)))
3646 return rc;
3647
3648 /* clear SError, some PHYs require this even for SRST to work */
3649 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3650 rc = sata_scr_write(link, SCR_ERROR, serror);
3651
3652 return rc != -EINVAL ? rc : 0;
3653 }
3654
3655 /**
3656 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3657 * @link: ATA link to manipulate SControl for
3658 * @policy: LPM policy to configure
3659 * @spm_wakeup: initiate LPM transition to active state
3660 *
3661 * Manipulate the IPM field of the SControl register of @link
3662 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3663 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3664 * the link. This function also clears PHYRDY_CHG before
3665 * returning.
3666 *
3667 * LOCKING:
3668 * EH context.
3669 *
3670 * RETURNS:
3671 * 0 on success, -errno otherwise.
3672 */
sata_link_scr_lpm(struct ata_link * link,enum ata_lpm_policy policy,bool spm_wakeup)3673 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3674 bool spm_wakeup)
3675 {
3676 struct ata_eh_context *ehc = &link->eh_context;
3677 bool woken_up = false;
3678 u32 scontrol;
3679 int rc;
3680
3681 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3682 if (rc)
3683 return rc;
3684
3685 switch (policy) {
3686 case ATA_LPM_MAX_POWER:
3687 /* disable all LPM transitions */
3688 scontrol |= (0x7 << 8);
3689 /* initiate transition to active state */
3690 if (spm_wakeup) {
3691 scontrol |= (0x4 << 12);
3692 woken_up = true;
3693 }
3694 break;
3695 case ATA_LPM_MED_POWER:
3696 /* allow LPM to PARTIAL */
3697 scontrol &= ~(0x1 << 8);
3698 scontrol |= (0x6 << 8);
3699 break;
3700 case ATA_LPM_MIN_POWER:
3701 if (ata_link_nr_enabled(link) > 0)
3702 /* no restrictions on LPM transitions */
3703 scontrol &= ~(0x7 << 8);
3704 else {
3705 /* empty port, power off */
3706 scontrol &= ~0xf;
3707 scontrol |= (0x1 << 2);
3708 }
3709 break;
3710 default:
3711 WARN_ON(1);
3712 }
3713
3714 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3715 if (rc)
3716 return rc;
3717
3718 /* give the link time to transit out of LPM state */
3719 if (woken_up)
3720 msleep(10);
3721
3722 /* clear PHYRDY_CHG from SError */
3723 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3724 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3725 }
3726
3727 /**
3728 * ata_std_prereset - prepare for reset
3729 * @link: ATA link to be reset
3730 * @deadline: deadline jiffies for the operation
3731 *
3732 * @link is about to be reset. Initialize it. Failure from
3733 * prereset makes libata abort whole reset sequence and give up
3734 * that port, so prereset should be best-effort. It does its
3735 * best to prepare for reset sequence but if things go wrong, it
3736 * should just whine, not fail.
3737 *
3738 * LOCKING:
3739 * Kernel thread context (may sleep)
3740 *
3741 * RETURNS:
3742 * 0 on success, -errno otherwise.
3743 */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3744 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3745 {
3746 struct ata_port *ap = link->ap;
3747 struct ata_eh_context *ehc = &link->eh_context;
3748 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3749 int rc;
3750
3751 /* if we're about to do hardreset, nothing more to do */
3752 if (ehc->i.action & ATA_EH_HARDRESET)
3753 return 0;
3754
3755 /* if SATA, resume link */
3756 if (ap->flags & ATA_FLAG_SATA) {
3757 rc = sata_link_resume(link, timing, deadline);
3758 /* whine about phy resume failure but proceed */
3759 if (rc && rc != -EOPNOTSUPP)
3760 ata_link_warn(link,
3761 "failed to resume link for reset (errno=%d)\n",
3762 rc);
3763 }
3764
3765 /* no point in trying softreset on offline link */
3766 if (ata_phys_link_offline(link))
3767 ehc->i.action &= ~ATA_EH_SOFTRESET;
3768
3769 return 0;
3770 }
3771
3772 /**
3773 * sata_link_hardreset - reset link via SATA phy reset
3774 * @link: link to reset
3775 * @timing: timing parameters { interval, duratinon, timeout } in msec
3776 * @deadline: deadline jiffies for the operation
3777 * @online: optional out parameter indicating link onlineness
3778 * @check_ready: optional callback to check link readiness
3779 *
3780 * SATA phy-reset @link using DET bits of SControl register.
3781 * After hardreset, link readiness is waited upon using
3782 * ata_wait_ready() if @check_ready is specified. LLDs are
3783 * allowed to not specify @check_ready and wait itself after this
3784 * function returns. Device classification is LLD's
3785 * responsibility.
3786 *
3787 * *@online is set to one iff reset succeeded and @link is online
3788 * after reset.
3789 *
3790 * LOCKING:
3791 * Kernel thread context (may sleep)
3792 *
3793 * RETURNS:
3794 * 0 on success, -errno otherwise.
3795 */
sata_link_hardreset(struct ata_link * link,const unsigned long * timing,unsigned long deadline,bool * online,int (* check_ready)(struct ata_link *))3796 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3797 unsigned long deadline,
3798 bool *online, int (*check_ready)(struct ata_link *))
3799 {
3800 u32 scontrol;
3801 int rc;
3802
3803 DPRINTK("ENTER\n");
3804
3805 if (online)
3806 *online = false;
3807
3808 if (sata_set_spd_needed(link)) {
3809 /* SATA spec says nothing about how to reconfigure
3810 * spd. To be on the safe side, turn off phy during
3811 * reconfiguration. This works for at least ICH7 AHCI
3812 * and Sil3124.
3813 */
3814 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3815 goto out;
3816
3817 scontrol = (scontrol & 0x0f0) | 0x304;
3818
3819 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3820 goto out;
3821
3822 sata_set_spd(link);
3823 }
3824
3825 /* issue phy wake/reset */
3826 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3827 goto out;
3828
3829 scontrol = (scontrol & 0x0f0) | 0x301;
3830
3831 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3832 goto out;
3833
3834 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3835 * 10.4.2 says at least 1 ms.
3836 */
3837 ata_msleep(link->ap, 1);
3838
3839 /* bring link back */
3840 rc = sata_link_resume(link, timing, deadline);
3841 if (rc)
3842 goto out;
3843 /* if link is offline nothing more to do */
3844 if (ata_phys_link_offline(link))
3845 goto out;
3846
3847 /* Link is online. From this point, -ENODEV too is an error. */
3848 if (online)
3849 *online = true;
3850
3851 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3852 /* If PMP is supported, we have to do follow-up SRST.
3853 * Some PMPs don't send D2H Reg FIS after hardreset if
3854 * the first port is empty. Wait only for
3855 * ATA_TMOUT_PMP_SRST_WAIT.
3856 */
3857 if (check_ready) {
3858 unsigned long pmp_deadline;
3859
3860 pmp_deadline = ata_deadline(jiffies,
3861 ATA_TMOUT_PMP_SRST_WAIT);
3862 if (time_after(pmp_deadline, deadline))
3863 pmp_deadline = deadline;
3864 ata_wait_ready(link, pmp_deadline, check_ready);
3865 }
3866 rc = -EAGAIN;
3867 goto out;
3868 }
3869
3870 rc = 0;
3871 if (check_ready)
3872 rc = ata_wait_ready(link, deadline, check_ready);
3873 out:
3874 if (rc && rc != -EAGAIN) {
3875 /* online is set iff link is online && reset succeeded */
3876 if (online)
3877 *online = false;
3878 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3879 }
3880 DPRINTK("EXIT, rc=%d\n", rc);
3881 return rc;
3882 }
3883
3884 /**
3885 * sata_std_hardreset - COMRESET w/o waiting or classification
3886 * @link: link to reset
3887 * @class: resulting class of attached device
3888 * @deadline: deadline jiffies for the operation
3889 *
3890 * Standard SATA COMRESET w/o waiting or classification.
3891 *
3892 * LOCKING:
3893 * Kernel thread context (may sleep)
3894 *
3895 * RETURNS:
3896 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3897 */
sata_std_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3898 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3899 unsigned long deadline)
3900 {
3901 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3902 bool online;
3903 int rc;
3904
3905 /* do hardreset */
3906 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3907 return online ? -EAGAIN : rc;
3908 }
3909
3910 /**
3911 * ata_std_postreset - standard postreset callback
3912 * @link: the target ata_link
3913 * @classes: classes of attached devices
3914 *
3915 * This function is invoked after a successful reset. Note that
3916 * the device might have been reset more than once using
3917 * different reset methods before postreset is invoked.
3918 *
3919 * LOCKING:
3920 * Kernel thread context (may sleep)
3921 */
ata_std_postreset(struct ata_link * link,unsigned int * classes)3922 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3923 {
3924 u32 serror;
3925
3926 DPRINTK("ENTER\n");
3927
3928 /* reset complete, clear SError */
3929 if (!sata_scr_read(link, SCR_ERROR, &serror))
3930 sata_scr_write(link, SCR_ERROR, serror);
3931
3932 /* print link status */
3933 sata_print_link_status(link);
3934
3935 DPRINTK("EXIT\n");
3936 }
3937
3938 /**
3939 * ata_dev_same_device - Determine whether new ID matches configured device
3940 * @dev: device to compare against
3941 * @new_class: class of the new device
3942 * @new_id: IDENTIFY page of the new device
3943 *
3944 * Compare @new_class and @new_id against @dev and determine
3945 * whether @dev is the device indicated by @new_class and
3946 * @new_id.
3947 *
3948 * LOCKING:
3949 * None.
3950 *
3951 * RETURNS:
3952 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3953 */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3954 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3955 const u16 *new_id)
3956 {
3957 const u16 *old_id = dev->id;
3958 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3959 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3960
3961 if (dev->class != new_class) {
3962 ata_dev_info(dev, "class mismatch %d != %d\n",
3963 dev->class, new_class);
3964 return 0;
3965 }
3966
3967 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3968 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3969 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3970 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3971
3972 if (strcmp(model[0], model[1])) {
3973 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3974 model[0], model[1]);
3975 return 0;
3976 }
3977
3978 if (strcmp(serial[0], serial[1])) {
3979 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3980 serial[0], serial[1]);
3981 return 0;
3982 }
3983
3984 return 1;
3985 }
3986
3987 /**
3988 * ata_dev_reread_id - Re-read IDENTIFY data
3989 * @dev: target ATA device
3990 * @readid_flags: read ID flags
3991 *
3992 * Re-read IDENTIFY page and make sure @dev is still attached to
3993 * the port.
3994 *
3995 * LOCKING:
3996 * Kernel thread context (may sleep)
3997 *
3998 * RETURNS:
3999 * 0 on success, negative errno otherwise
4000 */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)4001 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4002 {
4003 unsigned int class = dev->class;
4004 u16 *id = (void *)dev->link->ap->sector_buf;
4005 int rc;
4006
4007 /* read ID data */
4008 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4009 if (rc)
4010 return rc;
4011
4012 /* is the device still there? */
4013 if (!ata_dev_same_device(dev, class, id))
4014 return -ENODEV;
4015
4016 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4017 return 0;
4018 }
4019
4020 /**
4021 * ata_dev_revalidate - Revalidate ATA device
4022 * @dev: device to revalidate
4023 * @new_class: new class code
4024 * @readid_flags: read ID flags
4025 *
4026 * Re-read IDENTIFY page, make sure @dev is still attached to the
4027 * port and reconfigure it according to the new IDENTIFY page.
4028 *
4029 * LOCKING:
4030 * Kernel thread context (may sleep)
4031 *
4032 * RETURNS:
4033 * 0 on success, negative errno otherwise
4034 */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)4035 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4036 unsigned int readid_flags)
4037 {
4038 u64 n_sectors = dev->n_sectors;
4039 u64 n_native_sectors = dev->n_native_sectors;
4040 int rc;
4041
4042 if (!ata_dev_enabled(dev))
4043 return -ENODEV;
4044
4045 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4046 if (ata_class_enabled(new_class) &&
4047 new_class != ATA_DEV_ATA &&
4048 new_class != ATA_DEV_ATAPI &&
4049 new_class != ATA_DEV_ZAC &&
4050 new_class != ATA_DEV_SEMB) {
4051 ata_dev_info(dev, "class mismatch %u != %u\n",
4052 dev->class, new_class);
4053 rc = -ENODEV;
4054 goto fail;
4055 }
4056
4057 /* re-read ID */
4058 rc = ata_dev_reread_id(dev, readid_flags);
4059 if (rc)
4060 goto fail;
4061
4062 /* configure device according to the new ID */
4063 rc = ata_dev_configure(dev);
4064 if (rc)
4065 goto fail;
4066
4067 /* verify n_sectors hasn't changed */
4068 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4069 dev->n_sectors == n_sectors)
4070 return 0;
4071
4072 /* n_sectors has changed */
4073 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4074 (unsigned long long)n_sectors,
4075 (unsigned long long)dev->n_sectors);
4076
4077 /*
4078 * Something could have caused HPA to be unlocked
4079 * involuntarily. If n_native_sectors hasn't changed and the
4080 * new size matches it, keep the device.
4081 */
4082 if (dev->n_native_sectors == n_native_sectors &&
4083 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4084 ata_dev_warn(dev,
4085 "new n_sectors matches native, probably "
4086 "late HPA unlock, n_sectors updated\n");
4087 /* use the larger n_sectors */
4088 return 0;
4089 }
4090
4091 /*
4092 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4093 * unlocking HPA in those cases.
4094 *
4095 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4096 */
4097 if (dev->n_native_sectors == n_native_sectors &&
4098 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4099 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4100 ata_dev_warn(dev,
4101 "old n_sectors matches native, probably "
4102 "late HPA lock, will try to unlock HPA\n");
4103 /* try unlocking HPA */
4104 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4105 rc = -EIO;
4106 } else
4107 rc = -ENODEV;
4108
4109 /* restore original n_[native_]sectors and fail */
4110 dev->n_native_sectors = n_native_sectors;
4111 dev->n_sectors = n_sectors;
4112 fail:
4113 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4114 return rc;
4115 }
4116
4117 struct ata_blacklist_entry {
4118 const char *model_num;
4119 const char *model_rev;
4120 unsigned long horkage;
4121 };
4122
4123 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4124 /* Devices with DMA related problems under Linux */
4125 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4126 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4127 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4128 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4129 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4130 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4131 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4132 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4133 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4134 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4135 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4136 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4137 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4138 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4139 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4140 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4141 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4142 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4143 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4144 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4145 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4146 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4147 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4148 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4149 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4150 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4151 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4152 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4153 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4154 /* Odd clown on sil3726/4726 PMPs */
4155 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4156 /* Similar story with ASMedia 1092 */
4157 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE },
4158
4159 /* Weird ATAPI devices */
4160 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4161 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4162 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4163 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4164
4165 /*
4166 * Causes silent data corruption with higher max sects.
4167 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4168 */
4169 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4170
4171 /*
4172 * These devices time out with higher max sects.
4173 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4174 */
4175 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4176 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4177
4178 /* Devices we expect to fail diagnostics */
4179
4180 /* Devices where NCQ should be avoided */
4181 /* NCQ is slow */
4182 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4183 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4184 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4185 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4186 /* NCQ is broken */
4187 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4188 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4189 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4190 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4191 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4192
4193 /* Seagate NCQ + FLUSH CACHE firmware bug */
4194 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4195 ATA_HORKAGE_FIRMWARE_WARN },
4196
4197 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4198 ATA_HORKAGE_FIRMWARE_WARN },
4199
4200 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4201 ATA_HORKAGE_FIRMWARE_WARN },
4202
4203 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4204 ATA_HORKAGE_FIRMWARE_WARN },
4205
4206 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
4207 the ST disks also have LPM issues */
4208 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA |
4209 ATA_HORKAGE_NOLPM, },
4210 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA |
4211 ATA_HORKAGE_NOLPM, },
4212 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
4213
4214 /* Blacklist entries taken from Silicon Image 3124/3132
4215 Windows driver .inf file - also several Linux problem reports */
4216 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4217 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4218 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4219
4220 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4221 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4222
4223 /* Some Sandisk SSDs lock up hard with NCQ enabled. Reported on
4224 SD7SN6S256G and SD8SN8U256G */
4225 { "SanDisk SD[78]SN*G", NULL, ATA_HORKAGE_NONCQ, },
4226
4227 /* devices which puke on READ_NATIVE_MAX */
4228 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4229 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4230 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4231 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4232
4233 /* this one allows HPA unlocking but fails IOs on the area */
4234 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4235
4236 /* Devices which report 1 sector over size HPA */
4237 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4238 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4239 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4240
4241 /* Devices which get the IVB wrong */
4242 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4243 /* Maybe we should just blacklist TSSTcorp... */
4244 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4245
4246 /* Devices that do not need bridging limits applied */
4247 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4248 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4249
4250 /* Devices which aren't very happy with higher link speeds */
4251 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4252 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4253
4254 /*
4255 * Devices which choke on SETXFER. Applies only if both the
4256 * device and controller are SATA.
4257 */
4258 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4259 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4260 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4261 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4262 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4263
4264 /* Crucial BX100 SSD 500GB has broken LPM support */
4265 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
4266
4267 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4268 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4269 ATA_HORKAGE_ZERO_AFTER_TRIM |
4270 ATA_HORKAGE_NOLPM, },
4271 /* 512GB MX100 with newer firmware has only LPM issues */
4272 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
4273 ATA_HORKAGE_NOLPM, },
4274
4275 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4276 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4277 ATA_HORKAGE_ZERO_AFTER_TRIM |
4278 ATA_HORKAGE_NOLPM, },
4279 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4280 ATA_HORKAGE_ZERO_AFTER_TRIM |
4281 ATA_HORKAGE_NOLPM, },
4282
4283 /* devices that don't properly handle queued TRIM commands */
4284 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4285 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4286 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4287 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4288 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4289 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4290 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4291 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4292 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4293 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4294 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4295 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4296 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4297 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4298 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4299 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4300 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4301 ATA_HORKAGE_ZERO_AFTER_TRIM |
4302 ATA_HORKAGE_NO_NCQ_ON_ATI, },
4303 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4304 ATA_HORKAGE_ZERO_AFTER_TRIM |
4305 ATA_HORKAGE_NO_NCQ_ON_ATI, },
4306 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4307 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4308
4309 /* devices that don't properly handle TRIM commands */
4310 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4311
4312 /*
4313 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4314 * (Return Zero After Trim) flags in the ATA Command Set are
4315 * unreliable in the sense that they only define what happens if
4316 * the device successfully executed the DSM TRIM command. TRIM
4317 * is only advisory, however, and the device is free to silently
4318 * ignore all or parts of the request.
4319 *
4320 * Whitelist drives that are known to reliably return zeroes
4321 * after TRIM.
4322 */
4323
4324 /*
4325 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4326 * that model before whitelisting all other intel SSDs.
4327 */
4328 { "INTEL*SSDSC2MH*", NULL, 0, },
4329
4330 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4331 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4332 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4333 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4334 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4335 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4336 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4337 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4338
4339 /*
4340 * Some WD SATA-I drives spin up and down erratically when the link
4341 * is put into the slumber mode. We don't have full list of the
4342 * affected devices. Disable LPM if the device matches one of the
4343 * known prefixes and is SATA-1. As a side effect LPM partial is
4344 * lost too.
4345 *
4346 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4347 */
4348 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4349 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4350 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4351 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4352 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4353 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4354 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4355
4356 /* End Marker */
4357 { }
4358 };
4359
ata_dev_blacklisted(const struct ata_device * dev)4360 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4361 {
4362 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4363 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4364 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4365
4366 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4367 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4368
4369 while (ad->model_num) {
4370 if (glob_match(ad->model_num, model_num)) {
4371 if (ad->model_rev == NULL)
4372 return ad->horkage;
4373 if (glob_match(ad->model_rev, model_rev))
4374 return ad->horkage;
4375 }
4376 ad++;
4377 }
4378 return 0;
4379 }
4380
ata_dma_blacklisted(const struct ata_device * dev)4381 static int ata_dma_blacklisted(const struct ata_device *dev)
4382 {
4383 /* We don't support polling DMA.
4384 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4385 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4386 */
4387 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4388 (dev->flags & ATA_DFLAG_CDB_INTR))
4389 return 1;
4390 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4391 }
4392
4393 /**
4394 * ata_is_40wire - check drive side detection
4395 * @dev: device
4396 *
4397 * Perform drive side detection decoding, allowing for device vendors
4398 * who can't follow the documentation.
4399 */
4400
ata_is_40wire(struct ata_device * dev)4401 static int ata_is_40wire(struct ata_device *dev)
4402 {
4403 if (dev->horkage & ATA_HORKAGE_IVB)
4404 return ata_drive_40wire_relaxed(dev->id);
4405 return ata_drive_40wire(dev->id);
4406 }
4407
4408 /**
4409 * cable_is_40wire - 40/80/SATA decider
4410 * @ap: port to consider
4411 *
4412 * This function encapsulates the policy for speed management
4413 * in one place. At the moment we don't cache the result but
4414 * there is a good case for setting ap->cbl to the result when
4415 * we are called with unknown cables (and figuring out if it
4416 * impacts hotplug at all).
4417 *
4418 * Return 1 if the cable appears to be 40 wire.
4419 */
4420
cable_is_40wire(struct ata_port * ap)4421 static int cable_is_40wire(struct ata_port *ap)
4422 {
4423 struct ata_link *link;
4424 struct ata_device *dev;
4425
4426 /* If the controller thinks we are 40 wire, we are. */
4427 if (ap->cbl == ATA_CBL_PATA40)
4428 return 1;
4429
4430 /* If the controller thinks we are 80 wire, we are. */
4431 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4432 return 0;
4433
4434 /* If the system is known to be 40 wire short cable (eg
4435 * laptop), then we allow 80 wire modes even if the drive
4436 * isn't sure.
4437 */
4438 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4439 return 0;
4440
4441 /* If the controller doesn't know, we scan.
4442 *
4443 * Note: We look for all 40 wire detects at this point. Any
4444 * 80 wire detect is taken to be 80 wire cable because
4445 * - in many setups only the one drive (slave if present) will
4446 * give a valid detect
4447 * - if you have a non detect capable drive you don't want it
4448 * to colour the choice
4449 */
4450 ata_for_each_link(link, ap, EDGE) {
4451 ata_for_each_dev(dev, link, ENABLED) {
4452 if (!ata_is_40wire(dev))
4453 return 0;
4454 }
4455 }
4456 return 1;
4457 }
4458
4459 /**
4460 * ata_dev_xfermask - Compute supported xfermask of the given device
4461 * @dev: Device to compute xfermask for
4462 *
4463 * Compute supported xfermask of @dev and store it in
4464 * dev->*_mask. This function is responsible for applying all
4465 * known limits including host controller limits, device
4466 * blacklist, etc...
4467 *
4468 * LOCKING:
4469 * None.
4470 */
ata_dev_xfermask(struct ata_device * dev)4471 static void ata_dev_xfermask(struct ata_device *dev)
4472 {
4473 struct ata_link *link = dev->link;
4474 struct ata_port *ap = link->ap;
4475 struct ata_host *host = ap->host;
4476 unsigned long xfer_mask;
4477
4478 /* controller modes available */
4479 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4480 ap->mwdma_mask, ap->udma_mask);
4481
4482 /* drive modes available */
4483 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4484 dev->mwdma_mask, dev->udma_mask);
4485 xfer_mask &= ata_id_xfermask(dev->id);
4486
4487 /*
4488 * CFA Advanced TrueIDE timings are not allowed on a shared
4489 * cable
4490 */
4491 if (ata_dev_pair(dev)) {
4492 /* No PIO5 or PIO6 */
4493 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4494 /* No MWDMA3 or MWDMA 4 */
4495 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4496 }
4497
4498 if (ata_dma_blacklisted(dev)) {
4499 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4500 ata_dev_warn(dev,
4501 "device is on DMA blacklist, disabling DMA\n");
4502 }
4503
4504 if ((host->flags & ATA_HOST_SIMPLEX) &&
4505 host->simplex_claimed && host->simplex_claimed != ap) {
4506 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4507 ata_dev_warn(dev,
4508 "simplex DMA is claimed by other device, disabling DMA\n");
4509 }
4510
4511 if (ap->flags & ATA_FLAG_NO_IORDY)
4512 xfer_mask &= ata_pio_mask_no_iordy(dev);
4513
4514 if (ap->ops->mode_filter)
4515 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4516
4517 /* Apply cable rule here. Don't apply it early because when
4518 * we handle hot plug the cable type can itself change.
4519 * Check this last so that we know if the transfer rate was
4520 * solely limited by the cable.
4521 * Unknown or 80 wire cables reported host side are checked
4522 * drive side as well. Cases where we know a 40wire cable
4523 * is used safely for 80 are not checked here.
4524 */
4525 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4526 /* UDMA/44 or higher would be available */
4527 if (cable_is_40wire(ap)) {
4528 ata_dev_warn(dev,
4529 "limited to UDMA/33 due to 40-wire cable\n");
4530 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4531 }
4532
4533 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4534 &dev->mwdma_mask, &dev->udma_mask);
4535 }
4536
4537 /**
4538 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4539 * @dev: Device to which command will be sent
4540 *
4541 * Issue SET FEATURES - XFER MODE command to device @dev
4542 * on port @ap.
4543 *
4544 * LOCKING:
4545 * PCI/etc. bus probe sem.
4546 *
4547 * RETURNS:
4548 * 0 on success, AC_ERR_* mask otherwise.
4549 */
4550
ata_dev_set_xfermode(struct ata_device * dev)4551 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4552 {
4553 struct ata_taskfile tf;
4554 unsigned int err_mask;
4555
4556 /* set up set-features taskfile */
4557 DPRINTK("set features - xfer mode\n");
4558
4559 /* Some controllers and ATAPI devices show flaky interrupt
4560 * behavior after setting xfer mode. Use polling instead.
4561 */
4562 ata_tf_init(dev, &tf);
4563 tf.command = ATA_CMD_SET_FEATURES;
4564 tf.feature = SETFEATURES_XFER;
4565 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4566 tf.protocol = ATA_PROT_NODATA;
4567 /* If we are using IORDY we must send the mode setting command */
4568 if (ata_pio_need_iordy(dev))
4569 tf.nsect = dev->xfer_mode;
4570 /* If the device has IORDY and the controller does not - turn it off */
4571 else if (ata_id_has_iordy(dev->id))
4572 tf.nsect = 0x01;
4573 else /* In the ancient relic department - skip all of this */
4574 return 0;
4575
4576 /* On some disks, this command causes spin-up, so we need longer timeout */
4577 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4578
4579 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4580 return err_mask;
4581 }
4582
4583 /**
4584 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4585 * @dev: Device to which command will be sent
4586 * @enable: Whether to enable or disable the feature
4587 * @feature: The sector count represents the feature to set
4588 *
4589 * Issue SET FEATURES - SATA FEATURES command to device @dev
4590 * on port @ap with sector count
4591 *
4592 * LOCKING:
4593 * PCI/etc. bus probe sem.
4594 *
4595 * RETURNS:
4596 * 0 on success, AC_ERR_* mask otherwise.
4597 */
ata_dev_set_feature(struct ata_device * dev,u8 enable,u8 feature)4598 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4599 {
4600 struct ata_taskfile tf;
4601 unsigned int err_mask;
4602
4603 /* set up set-features taskfile */
4604 DPRINTK("set features - SATA features\n");
4605
4606 ata_tf_init(dev, &tf);
4607 tf.command = ATA_CMD_SET_FEATURES;
4608 tf.feature = enable;
4609 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4610 tf.protocol = ATA_PROT_NODATA;
4611 tf.nsect = feature;
4612
4613 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4614
4615 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4616 return err_mask;
4617 }
4618 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4619
4620 /**
4621 * ata_dev_init_params - Issue INIT DEV PARAMS command
4622 * @dev: Device to which command will be sent
4623 * @heads: Number of heads (taskfile parameter)
4624 * @sectors: Number of sectors (taskfile parameter)
4625 *
4626 * LOCKING:
4627 * Kernel thread context (may sleep)
4628 *
4629 * RETURNS:
4630 * 0 on success, AC_ERR_* mask otherwise.
4631 */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4632 static unsigned int ata_dev_init_params(struct ata_device *dev,
4633 u16 heads, u16 sectors)
4634 {
4635 struct ata_taskfile tf;
4636 unsigned int err_mask;
4637
4638 /* Number of sectors per track 1-255. Number of heads 1-16 */
4639 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4640 return AC_ERR_INVALID;
4641
4642 /* set up init dev params taskfile */
4643 DPRINTK("init dev params \n");
4644
4645 ata_tf_init(dev, &tf);
4646 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4647 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4648 tf.protocol = ATA_PROT_NODATA;
4649 tf.nsect = sectors;
4650 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4651
4652 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4653 /* A clean abort indicates an original or just out of spec drive
4654 and we should continue as we issue the setup based on the
4655 drive reported working geometry */
4656 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4657 err_mask = 0;
4658
4659 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4660 return err_mask;
4661 }
4662
4663 /**
4664 * ata_sg_clean - Unmap DMA memory associated with command
4665 * @qc: Command containing DMA memory to be released
4666 *
4667 * Unmap all mapped DMA memory associated with this command.
4668 *
4669 * LOCKING:
4670 * spin_lock_irqsave(host lock)
4671 */
ata_sg_clean(struct ata_queued_cmd * qc)4672 void ata_sg_clean(struct ata_queued_cmd *qc)
4673 {
4674 struct ata_port *ap = qc->ap;
4675 struct scatterlist *sg = qc->sg;
4676 int dir = qc->dma_dir;
4677
4678 WARN_ON_ONCE(sg == NULL);
4679
4680 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4681
4682 if (qc->n_elem)
4683 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4684
4685 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4686 qc->sg = NULL;
4687 }
4688
4689 /**
4690 * atapi_check_dma - Check whether ATAPI DMA can be supported
4691 * @qc: Metadata associated with taskfile to check
4692 *
4693 * Allow low-level driver to filter ATA PACKET commands, returning
4694 * a status indicating whether or not it is OK to use DMA for the
4695 * supplied PACKET command.
4696 *
4697 * LOCKING:
4698 * spin_lock_irqsave(host lock)
4699 *
4700 * RETURNS: 0 when ATAPI DMA can be used
4701 * nonzero otherwise
4702 */
atapi_check_dma(struct ata_queued_cmd * qc)4703 int atapi_check_dma(struct ata_queued_cmd *qc)
4704 {
4705 struct ata_port *ap = qc->ap;
4706
4707 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4708 * few ATAPI devices choke on such DMA requests.
4709 */
4710 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4711 unlikely(qc->nbytes & 15))
4712 return 1;
4713
4714 if (ap->ops->check_atapi_dma)
4715 return ap->ops->check_atapi_dma(qc);
4716
4717 return 0;
4718 }
4719
4720 /**
4721 * ata_std_qc_defer - Check whether a qc needs to be deferred
4722 * @qc: ATA command in question
4723 *
4724 * Non-NCQ commands cannot run with any other command, NCQ or
4725 * not. As upper layer only knows the queue depth, we are
4726 * responsible for maintaining exclusion. This function checks
4727 * whether a new command @qc can be issued.
4728 *
4729 * LOCKING:
4730 * spin_lock_irqsave(host lock)
4731 *
4732 * RETURNS:
4733 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4734 */
ata_std_qc_defer(struct ata_queued_cmd * qc)4735 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4736 {
4737 struct ata_link *link = qc->dev->link;
4738
4739 if (qc->tf.protocol == ATA_PROT_NCQ) {
4740 if (!ata_tag_valid(link->active_tag))
4741 return 0;
4742 } else {
4743 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4744 return 0;
4745 }
4746
4747 return ATA_DEFER_LINK;
4748 }
4749
ata_noop_qc_prep(struct ata_queued_cmd * qc)4750 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4751 {
4752 return AC_ERR_OK;
4753 }
4754
4755 /**
4756 * ata_sg_init - Associate command with scatter-gather table.
4757 * @qc: Command to be associated
4758 * @sg: Scatter-gather table.
4759 * @n_elem: Number of elements in s/g table.
4760 *
4761 * Initialize the data-related elements of queued_cmd @qc
4762 * to point to a scatter-gather table @sg, containing @n_elem
4763 * elements.
4764 *
4765 * LOCKING:
4766 * spin_lock_irqsave(host lock)
4767 */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4768 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4769 unsigned int n_elem)
4770 {
4771 qc->sg = sg;
4772 qc->n_elem = n_elem;
4773 qc->cursg = qc->sg;
4774 }
4775
4776 /**
4777 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4778 * @qc: Command with scatter-gather table to be mapped.
4779 *
4780 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4781 *
4782 * LOCKING:
4783 * spin_lock_irqsave(host lock)
4784 *
4785 * RETURNS:
4786 * Zero on success, negative on error.
4787 *
4788 */
ata_sg_setup(struct ata_queued_cmd * qc)4789 static int ata_sg_setup(struct ata_queued_cmd *qc)
4790 {
4791 struct ata_port *ap = qc->ap;
4792 unsigned int n_elem;
4793
4794 VPRINTK("ENTER, ata%u\n", ap->print_id);
4795
4796 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4797 if (n_elem < 1)
4798 return -1;
4799
4800 DPRINTK("%d sg elements mapped\n", n_elem);
4801 qc->orig_n_elem = qc->n_elem;
4802 qc->n_elem = n_elem;
4803 qc->flags |= ATA_QCFLAG_DMAMAP;
4804
4805 return 0;
4806 }
4807
4808 /**
4809 * swap_buf_le16 - swap halves of 16-bit words in place
4810 * @buf: Buffer to swap
4811 * @buf_words: Number of 16-bit words in buffer.
4812 *
4813 * Swap halves of 16-bit words if needed to convert from
4814 * little-endian byte order to native cpu byte order, or
4815 * vice-versa.
4816 *
4817 * LOCKING:
4818 * Inherited from caller.
4819 */
swap_buf_le16(u16 * buf,unsigned int buf_words)4820 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4821 {
4822 #ifdef __BIG_ENDIAN
4823 unsigned int i;
4824
4825 for (i = 0; i < buf_words; i++)
4826 buf[i] = le16_to_cpu(buf[i]);
4827 #endif /* __BIG_ENDIAN */
4828 }
4829
4830 /**
4831 * ata_qc_new_init - Request an available ATA command, and initialize it
4832 * @dev: Device from whom we request an available command structure
4833 * @tag: tag
4834 *
4835 * LOCKING:
4836 * None.
4837 */
4838
ata_qc_new_init(struct ata_device * dev,int tag)4839 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4840 {
4841 struct ata_port *ap = dev->link->ap;
4842 struct ata_queued_cmd *qc;
4843
4844 /* no command while frozen */
4845 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4846 return NULL;
4847
4848 /* libsas case */
4849 if (ap->flags & ATA_FLAG_SAS_HOST) {
4850 tag = ata_sas_allocate_tag(ap);
4851 if (tag < 0)
4852 return NULL;
4853 }
4854
4855 qc = __ata_qc_from_tag(ap, tag);
4856 qc->tag = tag;
4857 qc->scsicmd = NULL;
4858 qc->ap = ap;
4859 qc->dev = dev;
4860
4861 ata_qc_reinit(qc);
4862
4863 return qc;
4864 }
4865
4866 /**
4867 * ata_qc_free - free unused ata_queued_cmd
4868 * @qc: Command to complete
4869 *
4870 * Designed to free unused ata_queued_cmd object
4871 * in case something prevents using it.
4872 *
4873 * LOCKING:
4874 * spin_lock_irqsave(host lock)
4875 */
ata_qc_free(struct ata_queued_cmd * qc)4876 void ata_qc_free(struct ata_queued_cmd *qc)
4877 {
4878 struct ata_port *ap;
4879 unsigned int tag;
4880
4881 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4882 ap = qc->ap;
4883
4884 qc->flags = 0;
4885 tag = qc->tag;
4886 if (likely(ata_tag_valid(tag))) {
4887 qc->tag = ATA_TAG_POISON;
4888 if (ap->flags & ATA_FLAG_SAS_HOST)
4889 ata_sas_free_tag(tag, ap);
4890 }
4891 }
4892
__ata_qc_complete(struct ata_queued_cmd * qc)4893 void __ata_qc_complete(struct ata_queued_cmd *qc)
4894 {
4895 struct ata_port *ap;
4896 struct ata_link *link;
4897
4898 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4899 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4900 ap = qc->ap;
4901 link = qc->dev->link;
4902
4903 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4904 ata_sg_clean(qc);
4905
4906 /* command should be marked inactive atomically with qc completion */
4907 if (qc->tf.protocol == ATA_PROT_NCQ) {
4908 link->sactive &= ~(1 << qc->tag);
4909 if (!link->sactive)
4910 ap->nr_active_links--;
4911 } else {
4912 link->active_tag = ATA_TAG_POISON;
4913 ap->nr_active_links--;
4914 }
4915
4916 /* clear exclusive status */
4917 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4918 ap->excl_link == link))
4919 ap->excl_link = NULL;
4920
4921 /* atapi: mark qc as inactive to prevent the interrupt handler
4922 * from completing the command twice later, before the error handler
4923 * is called. (when rc != 0 and atapi request sense is needed)
4924 */
4925 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4926 ap->qc_active &= ~(1 << qc->tag);
4927
4928 /* call completion callback */
4929 qc->complete_fn(qc);
4930 }
4931
fill_result_tf(struct ata_queued_cmd * qc)4932 static void fill_result_tf(struct ata_queued_cmd *qc)
4933 {
4934 struct ata_port *ap = qc->ap;
4935
4936 qc->result_tf.flags = qc->tf.flags;
4937 ap->ops->qc_fill_rtf(qc);
4938 }
4939
ata_verify_xfer(struct ata_queued_cmd * qc)4940 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4941 {
4942 struct ata_device *dev = qc->dev;
4943
4944 if (ata_is_nodata(qc->tf.protocol))
4945 return;
4946
4947 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4948 return;
4949
4950 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4951 }
4952
4953 /**
4954 * ata_qc_complete - Complete an active ATA command
4955 * @qc: Command to complete
4956 *
4957 * Indicate to the mid and upper layers that an ATA command has
4958 * completed, with either an ok or not-ok status.
4959 *
4960 * Refrain from calling this function multiple times when
4961 * successfully completing multiple NCQ commands.
4962 * ata_qc_complete_multiple() should be used instead, which will
4963 * properly update IRQ expect state.
4964 *
4965 * LOCKING:
4966 * spin_lock_irqsave(host lock)
4967 */
ata_qc_complete(struct ata_queued_cmd * qc)4968 void ata_qc_complete(struct ata_queued_cmd *qc)
4969 {
4970 struct ata_port *ap = qc->ap;
4971
4972 /* XXX: New EH and old EH use different mechanisms to
4973 * synchronize EH with regular execution path.
4974 *
4975 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4976 * Normal execution path is responsible for not accessing a
4977 * failed qc. libata core enforces the rule by returning NULL
4978 * from ata_qc_from_tag() for failed qcs.
4979 *
4980 * Old EH depends on ata_qc_complete() nullifying completion
4981 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4982 * not synchronize with interrupt handler. Only PIO task is
4983 * taken care of.
4984 */
4985 if (ap->ops->error_handler) {
4986 struct ata_device *dev = qc->dev;
4987 struct ata_eh_info *ehi = &dev->link->eh_info;
4988
4989 if (unlikely(qc->err_mask))
4990 qc->flags |= ATA_QCFLAG_FAILED;
4991
4992 /*
4993 * Finish internal commands without any further processing
4994 * and always with the result TF filled.
4995 */
4996 if (unlikely(ata_tag_internal(qc->tag))) {
4997 fill_result_tf(qc);
4998 trace_ata_qc_complete_internal(qc);
4999 __ata_qc_complete(qc);
5000 return;
5001 }
5002
5003 /*
5004 * Non-internal qc has failed. Fill the result TF and
5005 * summon EH.
5006 */
5007 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5008 fill_result_tf(qc);
5009 trace_ata_qc_complete_failed(qc);
5010 ata_qc_schedule_eh(qc);
5011 return;
5012 }
5013
5014 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5015
5016 /* read result TF if requested */
5017 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5018 fill_result_tf(qc);
5019
5020 trace_ata_qc_complete_done(qc);
5021 /* Some commands need post-processing after successful
5022 * completion.
5023 */
5024 switch (qc->tf.command) {
5025 case ATA_CMD_SET_FEATURES:
5026 if (qc->tf.feature != SETFEATURES_WC_ON &&
5027 qc->tf.feature != SETFEATURES_WC_OFF)
5028 break;
5029 /* fall through */
5030 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5031 case ATA_CMD_SET_MULTI: /* multi_count changed */
5032 /* revalidate device */
5033 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5034 ata_port_schedule_eh(ap);
5035 break;
5036
5037 case ATA_CMD_SLEEP:
5038 dev->flags |= ATA_DFLAG_SLEEPING;
5039 break;
5040 }
5041
5042 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5043 ata_verify_xfer(qc);
5044
5045 __ata_qc_complete(qc);
5046 } else {
5047 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5048 return;
5049
5050 /* read result TF if failed or requested */
5051 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5052 fill_result_tf(qc);
5053
5054 __ata_qc_complete(qc);
5055 }
5056 }
5057
5058 /**
5059 * ata_qc_complete_multiple - Complete multiple qcs successfully
5060 * @ap: port in question
5061 * @qc_active: new qc_active mask
5062 *
5063 * Complete in-flight commands. This functions is meant to be
5064 * called from low-level driver's interrupt routine to complete
5065 * requests normally. ap->qc_active and @qc_active is compared
5066 * and commands are completed accordingly.
5067 *
5068 * Always use this function when completing multiple NCQ commands
5069 * from IRQ handlers instead of calling ata_qc_complete()
5070 * multiple times to keep IRQ expect status properly in sync.
5071 *
5072 * LOCKING:
5073 * spin_lock_irqsave(host lock)
5074 *
5075 * RETURNS:
5076 * Number of completed commands on success, -errno otherwise.
5077 */
ata_qc_complete_multiple(struct ata_port * ap,u32 qc_active)5078 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5079 {
5080 int nr_done = 0;
5081 u32 done_mask;
5082
5083 done_mask = ap->qc_active ^ qc_active;
5084
5085 if (unlikely(done_mask & qc_active)) {
5086 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5087 ap->qc_active, qc_active);
5088 return -EINVAL;
5089 }
5090
5091 while (done_mask) {
5092 struct ata_queued_cmd *qc;
5093 unsigned int tag = __ffs(done_mask);
5094
5095 qc = ata_qc_from_tag(ap, tag);
5096 if (qc) {
5097 ata_qc_complete(qc);
5098 nr_done++;
5099 }
5100 done_mask &= ~(1 << tag);
5101 }
5102
5103 return nr_done;
5104 }
5105
5106 /**
5107 * ata_qc_issue - issue taskfile to device
5108 * @qc: command to issue to device
5109 *
5110 * Prepare an ATA command to submission to device.
5111 * This includes mapping the data into a DMA-able
5112 * area, filling in the S/G table, and finally
5113 * writing the taskfile to hardware, starting the command.
5114 *
5115 * LOCKING:
5116 * spin_lock_irqsave(host lock)
5117 */
ata_qc_issue(struct ata_queued_cmd * qc)5118 void ata_qc_issue(struct ata_queued_cmd *qc)
5119 {
5120 struct ata_port *ap = qc->ap;
5121 struct ata_link *link = qc->dev->link;
5122 u8 prot = qc->tf.protocol;
5123
5124 /* Make sure only one non-NCQ command is outstanding. The
5125 * check is skipped for old EH because it reuses active qc to
5126 * request ATAPI sense.
5127 */
5128 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5129
5130 if (ata_is_ncq(prot)) {
5131 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5132
5133 if (!link->sactive)
5134 ap->nr_active_links++;
5135 link->sactive |= 1 << qc->tag;
5136 } else {
5137 WARN_ON_ONCE(link->sactive);
5138
5139 ap->nr_active_links++;
5140 link->active_tag = qc->tag;
5141 }
5142
5143 qc->flags |= ATA_QCFLAG_ACTIVE;
5144 ap->qc_active |= 1 << qc->tag;
5145
5146 /*
5147 * We guarantee to LLDs that they will have at least one
5148 * non-zero sg if the command is a data command.
5149 */
5150 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5151 goto sys_err;
5152
5153 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5154 (ap->flags & ATA_FLAG_PIO_DMA)))
5155 if (ata_sg_setup(qc))
5156 goto sys_err;
5157
5158 /* if device is sleeping, schedule reset and abort the link */
5159 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5160 link->eh_info.action |= ATA_EH_RESET;
5161 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5162 ata_link_abort(link);
5163 return;
5164 }
5165
5166 qc->err_mask |= ap->ops->qc_prep(qc);
5167 if (unlikely(qc->err_mask))
5168 goto err;
5169 trace_ata_qc_issue(qc);
5170 qc->err_mask |= ap->ops->qc_issue(qc);
5171 if (unlikely(qc->err_mask))
5172 goto err;
5173 return;
5174
5175 sys_err:
5176 qc->err_mask |= AC_ERR_SYSTEM;
5177 err:
5178 ata_qc_complete(qc);
5179 }
5180
5181 /**
5182 * sata_scr_valid - test whether SCRs are accessible
5183 * @link: ATA link to test SCR accessibility for
5184 *
5185 * Test whether SCRs are accessible for @link.
5186 *
5187 * LOCKING:
5188 * None.
5189 *
5190 * RETURNS:
5191 * 1 if SCRs are accessible, 0 otherwise.
5192 */
sata_scr_valid(struct ata_link * link)5193 int sata_scr_valid(struct ata_link *link)
5194 {
5195 struct ata_port *ap = link->ap;
5196
5197 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5198 }
5199
5200 /**
5201 * sata_scr_read - read SCR register of the specified port
5202 * @link: ATA link to read SCR for
5203 * @reg: SCR to read
5204 * @val: Place to store read value
5205 *
5206 * Read SCR register @reg of @link into *@val. This function is
5207 * guaranteed to succeed if @link is ap->link, the cable type of
5208 * the port is SATA and the port implements ->scr_read.
5209 *
5210 * LOCKING:
5211 * None if @link is ap->link. Kernel thread context otherwise.
5212 *
5213 * RETURNS:
5214 * 0 on success, negative errno on failure.
5215 */
sata_scr_read(struct ata_link * link,int reg,u32 * val)5216 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5217 {
5218 if (ata_is_host_link(link)) {
5219 if (sata_scr_valid(link))
5220 return link->ap->ops->scr_read(link, reg, val);
5221 return -EOPNOTSUPP;
5222 }
5223
5224 return sata_pmp_scr_read(link, reg, val);
5225 }
5226
5227 /**
5228 * sata_scr_write - write SCR register of the specified port
5229 * @link: ATA link to write SCR for
5230 * @reg: SCR to write
5231 * @val: value to write
5232 *
5233 * Write @val to SCR register @reg of @link. This function is
5234 * guaranteed to succeed if @link is ap->link, the cable type of
5235 * the port is SATA and the port implements ->scr_read.
5236 *
5237 * LOCKING:
5238 * None if @link is ap->link. Kernel thread context otherwise.
5239 *
5240 * RETURNS:
5241 * 0 on success, negative errno on failure.
5242 */
sata_scr_write(struct ata_link * link,int reg,u32 val)5243 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5244 {
5245 if (ata_is_host_link(link)) {
5246 if (sata_scr_valid(link))
5247 return link->ap->ops->scr_write(link, reg, val);
5248 return -EOPNOTSUPP;
5249 }
5250
5251 return sata_pmp_scr_write(link, reg, val);
5252 }
5253
5254 /**
5255 * sata_scr_write_flush - write SCR register of the specified port and flush
5256 * @link: ATA link to write SCR for
5257 * @reg: SCR to write
5258 * @val: value to write
5259 *
5260 * This function is identical to sata_scr_write() except that this
5261 * function performs flush after writing to the register.
5262 *
5263 * LOCKING:
5264 * None if @link is ap->link. Kernel thread context otherwise.
5265 *
5266 * RETURNS:
5267 * 0 on success, negative errno on failure.
5268 */
sata_scr_write_flush(struct ata_link * link,int reg,u32 val)5269 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5270 {
5271 if (ata_is_host_link(link)) {
5272 int rc;
5273
5274 if (sata_scr_valid(link)) {
5275 rc = link->ap->ops->scr_write(link, reg, val);
5276 if (rc == 0)
5277 rc = link->ap->ops->scr_read(link, reg, &val);
5278 return rc;
5279 }
5280 return -EOPNOTSUPP;
5281 }
5282
5283 return sata_pmp_scr_write(link, reg, val);
5284 }
5285
5286 /**
5287 * ata_phys_link_online - test whether the given link is online
5288 * @link: ATA link to test
5289 *
5290 * Test whether @link is online. Note that this function returns
5291 * 0 if online status of @link cannot be obtained, so
5292 * ata_link_online(link) != !ata_link_offline(link).
5293 *
5294 * LOCKING:
5295 * None.
5296 *
5297 * RETURNS:
5298 * True if the port online status is available and online.
5299 */
ata_phys_link_online(struct ata_link * link)5300 bool ata_phys_link_online(struct ata_link *link)
5301 {
5302 u32 sstatus;
5303
5304 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5305 ata_sstatus_online(sstatus))
5306 return true;
5307 return false;
5308 }
5309
5310 /**
5311 * ata_phys_link_offline - test whether the given link is offline
5312 * @link: ATA link to test
5313 *
5314 * Test whether @link is offline. Note that this function
5315 * returns 0 if offline status of @link cannot be obtained, so
5316 * ata_link_online(link) != !ata_link_offline(link).
5317 *
5318 * LOCKING:
5319 * None.
5320 *
5321 * RETURNS:
5322 * True if the port offline status is available and offline.
5323 */
ata_phys_link_offline(struct ata_link * link)5324 bool ata_phys_link_offline(struct ata_link *link)
5325 {
5326 u32 sstatus;
5327
5328 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5329 !ata_sstatus_online(sstatus))
5330 return true;
5331 return false;
5332 }
5333
5334 /**
5335 * ata_link_online - test whether the given link is online
5336 * @link: ATA link to test
5337 *
5338 * Test whether @link is online. This is identical to
5339 * ata_phys_link_online() when there's no slave link. When
5340 * there's a slave link, this function should only be called on
5341 * the master link and will return true if any of M/S links is
5342 * online.
5343 *
5344 * LOCKING:
5345 * None.
5346 *
5347 * RETURNS:
5348 * True if the port online status is available and online.
5349 */
ata_link_online(struct ata_link * link)5350 bool ata_link_online(struct ata_link *link)
5351 {
5352 struct ata_link *slave = link->ap->slave_link;
5353
5354 WARN_ON(link == slave); /* shouldn't be called on slave link */
5355
5356 return ata_phys_link_online(link) ||
5357 (slave && ata_phys_link_online(slave));
5358 }
5359
5360 /**
5361 * ata_link_offline - test whether the given link is offline
5362 * @link: ATA link to test
5363 *
5364 * Test whether @link is offline. This is identical to
5365 * ata_phys_link_offline() when there's no slave link. When
5366 * there's a slave link, this function should only be called on
5367 * the master link and will return true if both M/S links are
5368 * offline.
5369 *
5370 * LOCKING:
5371 * None.
5372 *
5373 * RETURNS:
5374 * True if the port offline status is available and offline.
5375 */
ata_link_offline(struct ata_link * link)5376 bool ata_link_offline(struct ata_link *link)
5377 {
5378 struct ata_link *slave = link->ap->slave_link;
5379
5380 WARN_ON(link == slave); /* shouldn't be called on slave link */
5381
5382 return ata_phys_link_offline(link) &&
5383 (!slave || ata_phys_link_offline(slave));
5384 }
5385
5386 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)5387 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5388 unsigned int action, unsigned int ehi_flags,
5389 bool async)
5390 {
5391 struct ata_link *link;
5392 unsigned long flags;
5393
5394 /* Previous resume operation might still be in
5395 * progress. Wait for PM_PENDING to clear.
5396 */
5397 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5398 ata_port_wait_eh(ap);
5399 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5400 }
5401
5402 /* request PM ops to EH */
5403 spin_lock_irqsave(ap->lock, flags);
5404
5405 ap->pm_mesg = mesg;
5406 ap->pflags |= ATA_PFLAG_PM_PENDING;
5407 ata_for_each_link(link, ap, HOST_FIRST) {
5408 link->eh_info.action |= action;
5409 link->eh_info.flags |= ehi_flags;
5410 }
5411
5412 ata_port_schedule_eh(ap);
5413
5414 spin_unlock_irqrestore(ap->lock, flags);
5415
5416 if (!async) {
5417 ata_port_wait_eh(ap);
5418 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5419 }
5420 }
5421
5422 /*
5423 * On some hardware, device fails to respond after spun down for suspend. As
5424 * the device won't be used before being resumed, we don't need to touch the
5425 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5426 *
5427 * http://thread.gmane.org/gmane.linux.ide/46764
5428 */
5429 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5430 | ATA_EHI_NO_AUTOPSY
5431 | ATA_EHI_NO_RECOVERY;
5432
ata_port_suspend(struct ata_port * ap,pm_message_t mesg)5433 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5434 {
5435 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5436 }
5437
ata_port_suspend_async(struct ata_port * ap,pm_message_t mesg)5438 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5439 {
5440 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5441 }
5442
ata_port_pm_suspend(struct device * dev)5443 static int ata_port_pm_suspend(struct device *dev)
5444 {
5445 struct ata_port *ap = to_ata_port(dev);
5446
5447 if (pm_runtime_suspended(dev))
5448 return 0;
5449
5450 ata_port_suspend(ap, PMSG_SUSPEND);
5451 return 0;
5452 }
5453
ata_port_pm_freeze(struct device * dev)5454 static int ata_port_pm_freeze(struct device *dev)
5455 {
5456 struct ata_port *ap = to_ata_port(dev);
5457
5458 if (pm_runtime_suspended(dev))
5459 return 0;
5460
5461 ata_port_suspend(ap, PMSG_FREEZE);
5462 return 0;
5463 }
5464
ata_port_pm_poweroff(struct device * dev)5465 static int ata_port_pm_poweroff(struct device *dev)
5466 {
5467 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5468 return 0;
5469 }
5470
5471 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5472 | ATA_EHI_QUIET;
5473
ata_port_resume(struct ata_port * ap,pm_message_t mesg)5474 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5475 {
5476 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5477 }
5478
ata_port_resume_async(struct ata_port * ap,pm_message_t mesg)5479 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5480 {
5481 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5482 }
5483
ata_port_pm_resume(struct device * dev)5484 static int ata_port_pm_resume(struct device *dev)
5485 {
5486 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5487 pm_runtime_disable(dev);
5488 pm_runtime_set_active(dev);
5489 pm_runtime_enable(dev);
5490 return 0;
5491 }
5492
5493 /*
5494 * For ODDs, the upper layer will poll for media change every few seconds,
5495 * which will make it enter and leave suspend state every few seconds. And
5496 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5497 * is very little and the ODD may malfunction after constantly being reset.
5498 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5499 * ODD is attached to the port.
5500 */
ata_port_runtime_idle(struct device * dev)5501 static int ata_port_runtime_idle(struct device *dev)
5502 {
5503 struct ata_port *ap = to_ata_port(dev);
5504 struct ata_link *link;
5505 struct ata_device *adev;
5506
5507 ata_for_each_link(link, ap, HOST_FIRST) {
5508 ata_for_each_dev(adev, link, ENABLED)
5509 if (adev->class == ATA_DEV_ATAPI &&
5510 !zpodd_dev_enabled(adev))
5511 return -EBUSY;
5512 }
5513
5514 return 0;
5515 }
5516
ata_port_runtime_suspend(struct device * dev)5517 static int ata_port_runtime_suspend(struct device *dev)
5518 {
5519 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5520 return 0;
5521 }
5522
ata_port_runtime_resume(struct device * dev)5523 static int ata_port_runtime_resume(struct device *dev)
5524 {
5525 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5526 return 0;
5527 }
5528
5529 static const struct dev_pm_ops ata_port_pm_ops = {
5530 .suspend = ata_port_pm_suspend,
5531 .resume = ata_port_pm_resume,
5532 .freeze = ata_port_pm_freeze,
5533 .thaw = ata_port_pm_resume,
5534 .poweroff = ata_port_pm_poweroff,
5535 .restore = ata_port_pm_resume,
5536
5537 .runtime_suspend = ata_port_runtime_suspend,
5538 .runtime_resume = ata_port_runtime_resume,
5539 .runtime_idle = ata_port_runtime_idle,
5540 };
5541
5542 /* sas ports don't participate in pm runtime management of ata_ports,
5543 * and need to resume ata devices at the domain level, not the per-port
5544 * level. sas suspend/resume is async to allow parallel port recovery
5545 * since sas has multiple ata_port instances per Scsi_Host.
5546 */
ata_sas_port_suspend(struct ata_port * ap)5547 void ata_sas_port_suspend(struct ata_port *ap)
5548 {
5549 ata_port_suspend_async(ap, PMSG_SUSPEND);
5550 }
5551 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5552
ata_sas_port_resume(struct ata_port * ap)5553 void ata_sas_port_resume(struct ata_port *ap)
5554 {
5555 ata_port_resume_async(ap, PMSG_RESUME);
5556 }
5557 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5558
5559 /**
5560 * ata_host_suspend - suspend host
5561 * @host: host to suspend
5562 * @mesg: PM message
5563 *
5564 * Suspend @host. Actual operation is performed by port suspend.
5565 */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5566 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5567 {
5568 host->dev->power.power_state = mesg;
5569 return 0;
5570 }
5571
5572 /**
5573 * ata_host_resume - resume host
5574 * @host: host to resume
5575 *
5576 * Resume @host. Actual operation is performed by port resume.
5577 */
ata_host_resume(struct ata_host * host)5578 void ata_host_resume(struct ata_host *host)
5579 {
5580 host->dev->power.power_state = PMSG_ON;
5581 }
5582 #endif
5583
5584 struct device_type ata_port_type = {
5585 .name = "ata_port",
5586 #ifdef CONFIG_PM
5587 .pm = &ata_port_pm_ops,
5588 #endif
5589 };
5590
5591 /**
5592 * ata_dev_init - Initialize an ata_device structure
5593 * @dev: Device structure to initialize
5594 *
5595 * Initialize @dev in preparation for probing.
5596 *
5597 * LOCKING:
5598 * Inherited from caller.
5599 */
ata_dev_init(struct ata_device * dev)5600 void ata_dev_init(struct ata_device *dev)
5601 {
5602 struct ata_link *link = ata_dev_phys_link(dev);
5603 struct ata_port *ap = link->ap;
5604 unsigned long flags;
5605
5606 /* SATA spd limit is bound to the attached device, reset together */
5607 link->sata_spd_limit = link->hw_sata_spd_limit;
5608 link->sata_spd = 0;
5609
5610 /* High bits of dev->flags are used to record warm plug
5611 * requests which occur asynchronously. Synchronize using
5612 * host lock.
5613 */
5614 spin_lock_irqsave(ap->lock, flags);
5615 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5616 dev->horkage = 0;
5617 spin_unlock_irqrestore(ap->lock, flags);
5618
5619 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5620 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5621 dev->pio_mask = UINT_MAX;
5622 dev->mwdma_mask = UINT_MAX;
5623 dev->udma_mask = UINT_MAX;
5624 }
5625
5626 /**
5627 * ata_link_init - Initialize an ata_link structure
5628 * @ap: ATA port link is attached to
5629 * @link: Link structure to initialize
5630 * @pmp: Port multiplier port number
5631 *
5632 * Initialize @link.
5633 *
5634 * LOCKING:
5635 * Kernel thread context (may sleep)
5636 */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5637 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5638 {
5639 int i;
5640
5641 /* clear everything except for devices */
5642 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5643 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5644
5645 link->ap = ap;
5646 link->pmp = pmp;
5647 link->active_tag = ATA_TAG_POISON;
5648 link->hw_sata_spd_limit = UINT_MAX;
5649
5650 /* can't use iterator, ap isn't initialized yet */
5651 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5652 struct ata_device *dev = &link->device[i];
5653
5654 dev->link = link;
5655 dev->devno = dev - link->device;
5656 #ifdef CONFIG_ATA_ACPI
5657 dev->gtf_filter = ata_acpi_gtf_filter;
5658 #endif
5659 ata_dev_init(dev);
5660 }
5661 }
5662
5663 /**
5664 * sata_link_init_spd - Initialize link->sata_spd_limit
5665 * @link: Link to configure sata_spd_limit for
5666 *
5667 * Initialize @link->[hw_]sata_spd_limit to the currently
5668 * configured value.
5669 *
5670 * LOCKING:
5671 * Kernel thread context (may sleep).
5672 *
5673 * RETURNS:
5674 * 0 on success, -errno on failure.
5675 */
sata_link_init_spd(struct ata_link * link)5676 int sata_link_init_spd(struct ata_link *link)
5677 {
5678 u8 spd;
5679 int rc;
5680
5681 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5682 if (rc)
5683 return rc;
5684
5685 spd = (link->saved_scontrol >> 4) & 0xf;
5686 if (spd)
5687 link->hw_sata_spd_limit &= (1 << spd) - 1;
5688
5689 ata_force_link_limits(link);
5690
5691 link->sata_spd_limit = link->hw_sata_spd_limit;
5692
5693 return 0;
5694 }
5695
5696 /**
5697 * ata_port_alloc - allocate and initialize basic ATA port resources
5698 * @host: ATA host this allocated port belongs to
5699 *
5700 * Allocate and initialize basic ATA port resources.
5701 *
5702 * RETURNS:
5703 * Allocate ATA port on success, NULL on failure.
5704 *
5705 * LOCKING:
5706 * Inherited from calling layer (may sleep).
5707 */
ata_port_alloc(struct ata_host * host)5708 struct ata_port *ata_port_alloc(struct ata_host *host)
5709 {
5710 struct ata_port *ap;
5711
5712 DPRINTK("ENTER\n");
5713
5714 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5715 if (!ap)
5716 return NULL;
5717
5718 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5719 ap->lock = &host->lock;
5720 ap->print_id = -1;
5721 ap->local_port_no = -1;
5722 ap->host = host;
5723 ap->dev = host->dev;
5724
5725 #if defined(ATA_VERBOSE_DEBUG)
5726 /* turn on all debugging levels */
5727 ap->msg_enable = 0x00FF;
5728 #elif defined(ATA_DEBUG)
5729 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5730 #else
5731 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5732 #endif
5733
5734 mutex_init(&ap->scsi_scan_mutex);
5735 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5736 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5737 INIT_LIST_HEAD(&ap->eh_done_q);
5738 init_waitqueue_head(&ap->eh_wait_q);
5739 init_completion(&ap->park_req_pending);
5740 init_timer_deferrable(&ap->fastdrain_timer);
5741 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5742 ap->fastdrain_timer.data = (unsigned long)ap;
5743
5744 ap->cbl = ATA_CBL_NONE;
5745
5746 ata_link_init(ap, &ap->link, 0);
5747
5748 #ifdef ATA_IRQ_TRAP
5749 ap->stats.unhandled_irq = 1;
5750 ap->stats.idle_irq = 1;
5751 #endif
5752 ata_sff_port_init(ap);
5753
5754 return ap;
5755 }
5756
ata_host_release(struct device * gendev,void * res)5757 static void ata_host_release(struct device *gendev, void *res)
5758 {
5759 struct ata_host *host = dev_get_drvdata(gendev);
5760 int i;
5761
5762 for (i = 0; i < host->n_ports; i++) {
5763 struct ata_port *ap = host->ports[i];
5764
5765 if (!ap)
5766 continue;
5767
5768 if (ap->scsi_host)
5769 scsi_host_put(ap->scsi_host);
5770
5771 kfree(ap->pmp_link);
5772 kfree(ap->slave_link);
5773 kfree(ap);
5774 host->ports[i] = NULL;
5775 }
5776
5777 dev_set_drvdata(gendev, NULL);
5778 }
5779
5780 /**
5781 * ata_host_alloc - allocate and init basic ATA host resources
5782 * @dev: generic device this host is associated with
5783 * @max_ports: maximum number of ATA ports associated with this host
5784 *
5785 * Allocate and initialize basic ATA host resources. LLD calls
5786 * this function to allocate a host, initializes it fully and
5787 * attaches it using ata_host_register().
5788 *
5789 * @max_ports ports are allocated and host->n_ports is
5790 * initialized to @max_ports. The caller is allowed to decrease
5791 * host->n_ports before calling ata_host_register(). The unused
5792 * ports will be automatically freed on registration.
5793 *
5794 * RETURNS:
5795 * Allocate ATA host on success, NULL on failure.
5796 *
5797 * LOCKING:
5798 * Inherited from calling layer (may sleep).
5799 */
ata_host_alloc(struct device * dev,int max_ports)5800 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5801 {
5802 struct ata_host *host;
5803 size_t sz;
5804 int i;
5805
5806 DPRINTK("ENTER\n");
5807
5808 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5809 return NULL;
5810
5811 /* alloc a container for our list of ATA ports (buses) */
5812 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5813 /* alloc a container for our list of ATA ports (buses) */
5814 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5815 if (!host)
5816 goto err_out;
5817
5818 devres_add(dev, host);
5819 dev_set_drvdata(dev, host);
5820
5821 spin_lock_init(&host->lock);
5822 mutex_init(&host->eh_mutex);
5823 host->dev = dev;
5824 host->n_ports = max_ports;
5825
5826 /* allocate ports bound to this host */
5827 for (i = 0; i < max_ports; i++) {
5828 struct ata_port *ap;
5829
5830 ap = ata_port_alloc(host);
5831 if (!ap)
5832 goto err_out;
5833
5834 ap->port_no = i;
5835 host->ports[i] = ap;
5836 }
5837
5838 devres_remove_group(dev, NULL);
5839 return host;
5840
5841 err_out:
5842 devres_release_group(dev, NULL);
5843 return NULL;
5844 }
5845
5846 /**
5847 * ata_host_alloc_pinfo - alloc host and init with port_info array
5848 * @dev: generic device this host is associated with
5849 * @ppi: array of ATA port_info to initialize host with
5850 * @n_ports: number of ATA ports attached to this host
5851 *
5852 * Allocate ATA host and initialize with info from @ppi. If NULL
5853 * terminated, @ppi may contain fewer entries than @n_ports. The
5854 * last entry will be used for the remaining ports.
5855 *
5856 * RETURNS:
5857 * Allocate ATA host on success, NULL on failure.
5858 *
5859 * LOCKING:
5860 * Inherited from calling layer (may sleep).
5861 */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5862 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5863 const struct ata_port_info * const * ppi,
5864 int n_ports)
5865 {
5866 const struct ata_port_info *pi;
5867 struct ata_host *host;
5868 int i, j;
5869
5870 host = ata_host_alloc(dev, n_ports);
5871 if (!host)
5872 return NULL;
5873
5874 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5875 struct ata_port *ap = host->ports[i];
5876
5877 if (ppi[j])
5878 pi = ppi[j++];
5879
5880 ap->pio_mask = pi->pio_mask;
5881 ap->mwdma_mask = pi->mwdma_mask;
5882 ap->udma_mask = pi->udma_mask;
5883 ap->flags |= pi->flags;
5884 ap->link.flags |= pi->link_flags;
5885 ap->ops = pi->port_ops;
5886
5887 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5888 host->ops = pi->port_ops;
5889 }
5890
5891 return host;
5892 }
5893
5894 /**
5895 * ata_slave_link_init - initialize slave link
5896 * @ap: port to initialize slave link for
5897 *
5898 * Create and initialize slave link for @ap. This enables slave
5899 * link handling on the port.
5900 *
5901 * In libata, a port contains links and a link contains devices.
5902 * There is single host link but if a PMP is attached to it,
5903 * there can be multiple fan-out links. On SATA, there's usually
5904 * a single device connected to a link but PATA and SATA
5905 * controllers emulating TF based interface can have two - master
5906 * and slave.
5907 *
5908 * However, there are a few controllers which don't fit into this
5909 * abstraction too well - SATA controllers which emulate TF
5910 * interface with both master and slave devices but also have
5911 * separate SCR register sets for each device. These controllers
5912 * need separate links for physical link handling
5913 * (e.g. onlineness, link speed) but should be treated like a
5914 * traditional M/S controller for everything else (e.g. command
5915 * issue, softreset).
5916 *
5917 * slave_link is libata's way of handling this class of
5918 * controllers without impacting core layer too much. For
5919 * anything other than physical link handling, the default host
5920 * link is used for both master and slave. For physical link
5921 * handling, separate @ap->slave_link is used. All dirty details
5922 * are implemented inside libata core layer. From LLD's POV, the
5923 * only difference is that prereset, hardreset and postreset are
5924 * called once more for the slave link, so the reset sequence
5925 * looks like the following.
5926 *
5927 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5928 * softreset(M) -> postreset(M) -> postreset(S)
5929 *
5930 * Note that softreset is called only for the master. Softreset
5931 * resets both M/S by definition, so SRST on master should handle
5932 * both (the standard method will work just fine).
5933 *
5934 * LOCKING:
5935 * Should be called before host is registered.
5936 *
5937 * RETURNS:
5938 * 0 on success, -errno on failure.
5939 */
ata_slave_link_init(struct ata_port * ap)5940 int ata_slave_link_init(struct ata_port *ap)
5941 {
5942 struct ata_link *link;
5943
5944 WARN_ON(ap->slave_link);
5945 WARN_ON(ap->flags & ATA_FLAG_PMP);
5946
5947 link = kzalloc(sizeof(*link), GFP_KERNEL);
5948 if (!link)
5949 return -ENOMEM;
5950
5951 ata_link_init(ap, link, 1);
5952 ap->slave_link = link;
5953 return 0;
5954 }
5955
ata_host_stop(struct device * gendev,void * res)5956 static void ata_host_stop(struct device *gendev, void *res)
5957 {
5958 struct ata_host *host = dev_get_drvdata(gendev);
5959 int i;
5960
5961 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5962
5963 for (i = 0; i < host->n_ports; i++) {
5964 struct ata_port *ap = host->ports[i];
5965
5966 if (ap->ops->port_stop)
5967 ap->ops->port_stop(ap);
5968 }
5969
5970 if (host->ops->host_stop)
5971 host->ops->host_stop(host);
5972 }
5973
5974 /**
5975 * ata_finalize_port_ops - finalize ata_port_operations
5976 * @ops: ata_port_operations to finalize
5977 *
5978 * An ata_port_operations can inherit from another ops and that
5979 * ops can again inherit from another. This can go on as many
5980 * times as necessary as long as there is no loop in the
5981 * inheritance chain.
5982 *
5983 * Ops tables are finalized when the host is started. NULL or
5984 * unspecified entries are inherited from the closet ancestor
5985 * which has the method and the entry is populated with it.
5986 * After finalization, the ops table directly points to all the
5987 * methods and ->inherits is no longer necessary and cleared.
5988 *
5989 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5990 *
5991 * LOCKING:
5992 * None.
5993 */
ata_finalize_port_ops(struct ata_port_operations * ops)5994 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5995 {
5996 static DEFINE_SPINLOCK(lock);
5997 const struct ata_port_operations *cur;
5998 void **begin = (void **)ops;
5999 void **end = (void **)&ops->inherits;
6000 void **pp;
6001
6002 if (!ops || !ops->inherits)
6003 return;
6004
6005 spin_lock(&lock);
6006
6007 for (cur = ops->inherits; cur; cur = cur->inherits) {
6008 void **inherit = (void **)cur;
6009
6010 for (pp = begin; pp < end; pp++, inherit++)
6011 if (!*pp)
6012 *pp = *inherit;
6013 }
6014
6015 for (pp = begin; pp < end; pp++)
6016 if (IS_ERR(*pp))
6017 *pp = NULL;
6018
6019 ops->inherits = NULL;
6020
6021 spin_unlock(&lock);
6022 }
6023
6024 /**
6025 * ata_host_start - start and freeze ports of an ATA host
6026 * @host: ATA host to start ports for
6027 *
6028 * Start and then freeze ports of @host. Started status is
6029 * recorded in host->flags, so this function can be called
6030 * multiple times. Ports are guaranteed to get started only
6031 * once. If host->ops isn't initialized yet, its set to the
6032 * first non-dummy port ops.
6033 *
6034 * LOCKING:
6035 * Inherited from calling layer (may sleep).
6036 *
6037 * RETURNS:
6038 * 0 if all ports are started successfully, -errno otherwise.
6039 */
ata_host_start(struct ata_host * host)6040 int ata_host_start(struct ata_host *host)
6041 {
6042 int have_stop = 0;
6043 void *start_dr = NULL;
6044 int i, rc;
6045
6046 if (host->flags & ATA_HOST_STARTED)
6047 return 0;
6048
6049 ata_finalize_port_ops(host->ops);
6050
6051 for (i = 0; i < host->n_ports; i++) {
6052 struct ata_port *ap = host->ports[i];
6053
6054 ata_finalize_port_ops(ap->ops);
6055
6056 if (!host->ops && !ata_port_is_dummy(ap))
6057 host->ops = ap->ops;
6058
6059 if (ap->ops->port_stop)
6060 have_stop = 1;
6061 }
6062
6063 if (host->ops && host->ops->host_stop)
6064 have_stop = 1;
6065
6066 if (have_stop) {
6067 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6068 if (!start_dr)
6069 return -ENOMEM;
6070 }
6071
6072 for (i = 0; i < host->n_ports; i++) {
6073 struct ata_port *ap = host->ports[i];
6074
6075 if (ap->ops->port_start) {
6076 rc = ap->ops->port_start(ap);
6077 if (rc) {
6078 if (rc != -ENODEV)
6079 dev_err(host->dev,
6080 "failed to start port %d (errno=%d)\n",
6081 i, rc);
6082 goto err_out;
6083 }
6084 }
6085 ata_eh_freeze_port(ap);
6086 }
6087
6088 if (start_dr)
6089 devres_add(host->dev, start_dr);
6090 host->flags |= ATA_HOST_STARTED;
6091 return 0;
6092
6093 err_out:
6094 while (--i >= 0) {
6095 struct ata_port *ap = host->ports[i];
6096
6097 if (ap->ops->port_stop)
6098 ap->ops->port_stop(ap);
6099 }
6100 devres_free(start_dr);
6101 return rc;
6102 }
6103
6104 /**
6105 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6106 * @host: host to initialize
6107 * @dev: device host is attached to
6108 * @ops: port_ops
6109 *
6110 */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)6111 void ata_host_init(struct ata_host *host, struct device *dev,
6112 struct ata_port_operations *ops)
6113 {
6114 spin_lock_init(&host->lock);
6115 mutex_init(&host->eh_mutex);
6116 host->n_tags = ATA_MAX_QUEUE - 1;
6117 host->dev = dev;
6118 host->ops = ops;
6119 }
6120
__ata_port_probe(struct ata_port * ap)6121 void __ata_port_probe(struct ata_port *ap)
6122 {
6123 struct ata_eh_info *ehi = &ap->link.eh_info;
6124 unsigned long flags;
6125
6126 /* kick EH for boot probing */
6127 spin_lock_irqsave(ap->lock, flags);
6128
6129 ehi->probe_mask |= ATA_ALL_DEVICES;
6130 ehi->action |= ATA_EH_RESET;
6131 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6132
6133 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6134 ap->pflags |= ATA_PFLAG_LOADING;
6135 ata_port_schedule_eh(ap);
6136
6137 spin_unlock_irqrestore(ap->lock, flags);
6138 }
6139
ata_port_probe(struct ata_port * ap)6140 int ata_port_probe(struct ata_port *ap)
6141 {
6142 int rc = 0;
6143
6144 if (ap->ops->error_handler) {
6145 __ata_port_probe(ap);
6146 ata_port_wait_eh(ap);
6147 } else {
6148 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6149 rc = ata_bus_probe(ap);
6150 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6151 }
6152 return rc;
6153 }
6154
6155
async_port_probe(void * data,async_cookie_t cookie)6156 static void async_port_probe(void *data, async_cookie_t cookie)
6157 {
6158 struct ata_port *ap = data;
6159
6160 /*
6161 * If we're not allowed to scan this host in parallel,
6162 * we need to wait until all previous scans have completed
6163 * before going further.
6164 * Jeff Garzik says this is only within a controller, so we
6165 * don't need to wait for port 0, only for later ports.
6166 */
6167 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6168 async_synchronize_cookie(cookie);
6169
6170 (void)ata_port_probe(ap);
6171
6172 /* in order to keep device order, we need to synchronize at this point */
6173 async_synchronize_cookie(cookie);
6174
6175 ata_scsi_scan_host(ap, 1);
6176 }
6177
6178 /**
6179 * ata_host_register - register initialized ATA host
6180 * @host: ATA host to register
6181 * @sht: template for SCSI host
6182 *
6183 * Register initialized ATA host. @host is allocated using
6184 * ata_host_alloc() and fully initialized by LLD. This function
6185 * starts ports, registers @host with ATA and SCSI layers and
6186 * probe registered devices.
6187 *
6188 * LOCKING:
6189 * Inherited from calling layer (may sleep).
6190 *
6191 * RETURNS:
6192 * 0 on success, -errno otherwise.
6193 */
ata_host_register(struct ata_host * host,struct scsi_host_template * sht)6194 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6195 {
6196 int i, rc;
6197
6198 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6199
6200 /* host must have been started */
6201 if (!(host->flags & ATA_HOST_STARTED)) {
6202 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6203 WARN_ON(1);
6204 return -EINVAL;
6205 }
6206
6207 /* Blow away unused ports. This happens when LLD can't
6208 * determine the exact number of ports to allocate at
6209 * allocation time.
6210 */
6211 for (i = host->n_ports; host->ports[i]; i++)
6212 kfree(host->ports[i]);
6213
6214 /* give ports names and add SCSI hosts */
6215 for (i = 0; i < host->n_ports; i++) {
6216 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6217 host->ports[i]->local_port_no = i + 1;
6218 }
6219
6220 /* Create associated sysfs transport objects */
6221 for (i = 0; i < host->n_ports; i++) {
6222 rc = ata_tport_add(host->dev,host->ports[i]);
6223 if (rc) {
6224 goto err_tadd;
6225 }
6226 }
6227
6228 rc = ata_scsi_add_hosts(host, sht);
6229 if (rc)
6230 goto err_tadd;
6231
6232 /* set cable, sata_spd_limit and report */
6233 for (i = 0; i < host->n_ports; i++) {
6234 struct ata_port *ap = host->ports[i];
6235 unsigned long xfer_mask;
6236
6237 /* set SATA cable type if still unset */
6238 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6239 ap->cbl = ATA_CBL_SATA;
6240
6241 /* init sata_spd_limit to the current value */
6242 sata_link_init_spd(&ap->link);
6243 if (ap->slave_link)
6244 sata_link_init_spd(ap->slave_link);
6245
6246 /* print per-port info to dmesg */
6247 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6248 ap->udma_mask);
6249
6250 if (!ata_port_is_dummy(ap)) {
6251 ata_port_info(ap, "%cATA max %s %s\n",
6252 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6253 ata_mode_string(xfer_mask),
6254 ap->link.eh_info.desc);
6255 ata_ehi_clear_desc(&ap->link.eh_info);
6256 } else
6257 ata_port_info(ap, "DUMMY\n");
6258 }
6259
6260 /* perform each probe asynchronously */
6261 for (i = 0; i < host->n_ports; i++) {
6262 struct ata_port *ap = host->ports[i];
6263 ap->cookie = async_schedule(async_port_probe, ap);
6264 }
6265
6266 return 0;
6267
6268 err_tadd:
6269 while (--i >= 0) {
6270 ata_tport_delete(host->ports[i]);
6271 }
6272 return rc;
6273
6274 }
6275
6276 /**
6277 * ata_host_activate - start host, request IRQ and register it
6278 * @host: target ATA host
6279 * @irq: IRQ to request
6280 * @irq_handler: irq_handler used when requesting IRQ
6281 * @irq_flags: irq_flags used when requesting IRQ
6282 * @sht: scsi_host_template to use when registering the host
6283 *
6284 * After allocating an ATA host and initializing it, most libata
6285 * LLDs perform three steps to activate the host - start host,
6286 * request IRQ and register it. This helper takes necessasry
6287 * arguments and performs the three steps in one go.
6288 *
6289 * An invalid IRQ skips the IRQ registration and expects the host to
6290 * have set polling mode on the port. In this case, @irq_handler
6291 * should be NULL.
6292 *
6293 * LOCKING:
6294 * Inherited from calling layer (may sleep).
6295 *
6296 * RETURNS:
6297 * 0 on success, -errno otherwise.
6298 */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,struct scsi_host_template * sht)6299 int ata_host_activate(struct ata_host *host, int irq,
6300 irq_handler_t irq_handler, unsigned long irq_flags,
6301 struct scsi_host_template *sht)
6302 {
6303 int i, rc;
6304
6305 rc = ata_host_start(host);
6306 if (rc)
6307 return rc;
6308
6309 /* Special case for polling mode */
6310 if (!irq) {
6311 WARN_ON(irq_handler);
6312 return ata_host_register(host, sht);
6313 }
6314
6315 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6316 dev_name(host->dev), host);
6317 if (rc)
6318 return rc;
6319
6320 for (i = 0; i < host->n_ports; i++)
6321 ata_port_desc(host->ports[i], "irq %d", irq);
6322
6323 rc = ata_host_register(host, sht);
6324 /* if failed, just free the IRQ and leave ports alone */
6325 if (rc)
6326 devm_free_irq(host->dev, irq, host);
6327
6328 return rc;
6329 }
6330
6331 /**
6332 * ata_port_detach - Detach ATA port in prepration of device removal
6333 * @ap: ATA port to be detached
6334 *
6335 * Detach all ATA devices and the associated SCSI devices of @ap;
6336 * then, remove the associated SCSI host. @ap is guaranteed to
6337 * be quiescent on return from this function.
6338 *
6339 * LOCKING:
6340 * Kernel thread context (may sleep).
6341 */
ata_port_detach(struct ata_port * ap)6342 static void ata_port_detach(struct ata_port *ap)
6343 {
6344 unsigned long flags;
6345 struct ata_link *link;
6346 struct ata_device *dev;
6347
6348 if (!ap->ops->error_handler)
6349 goto skip_eh;
6350
6351 /* tell EH we're leaving & flush EH */
6352 spin_lock_irqsave(ap->lock, flags);
6353 ap->pflags |= ATA_PFLAG_UNLOADING;
6354 ata_port_schedule_eh(ap);
6355 spin_unlock_irqrestore(ap->lock, flags);
6356
6357 /* wait till EH commits suicide */
6358 ata_port_wait_eh(ap);
6359
6360 /* it better be dead now */
6361 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6362
6363 cancel_delayed_work_sync(&ap->hotplug_task);
6364
6365 skip_eh:
6366 /* clean up zpodd on port removal */
6367 ata_for_each_link(link, ap, HOST_FIRST) {
6368 ata_for_each_dev(dev, link, ALL) {
6369 if (zpodd_dev_enabled(dev))
6370 zpodd_exit(dev);
6371 }
6372 }
6373 if (ap->pmp_link) {
6374 int i;
6375 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6376 ata_tlink_delete(&ap->pmp_link[i]);
6377 }
6378 /* remove the associated SCSI host */
6379 scsi_remove_host(ap->scsi_host);
6380 ata_tport_delete(ap);
6381 }
6382
6383 /**
6384 * ata_host_detach - Detach all ports of an ATA host
6385 * @host: Host to detach
6386 *
6387 * Detach all ports of @host.
6388 *
6389 * LOCKING:
6390 * Kernel thread context (may sleep).
6391 */
ata_host_detach(struct ata_host * host)6392 void ata_host_detach(struct ata_host *host)
6393 {
6394 int i;
6395
6396 for (i = 0; i < host->n_ports; i++) {
6397 /* Ensure ata_port probe has completed */
6398 async_synchronize_cookie(host->ports[i]->cookie + 1);
6399 ata_port_detach(host->ports[i]);
6400 }
6401
6402 /* the host is dead now, dissociate ACPI */
6403 ata_acpi_dissociate(host);
6404 }
6405
6406 #ifdef CONFIG_PCI
6407
6408 /**
6409 * ata_pci_remove_one - PCI layer callback for device removal
6410 * @pdev: PCI device that was removed
6411 *
6412 * PCI layer indicates to libata via this hook that hot-unplug or
6413 * module unload event has occurred. Detach all ports. Resource
6414 * release is handled via devres.
6415 *
6416 * LOCKING:
6417 * Inherited from PCI layer (may sleep).
6418 */
ata_pci_remove_one(struct pci_dev * pdev)6419 void ata_pci_remove_one(struct pci_dev *pdev)
6420 {
6421 struct ata_host *host = pci_get_drvdata(pdev);
6422
6423 ata_host_detach(host);
6424 }
6425
6426 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6427 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6428 {
6429 unsigned long tmp = 0;
6430
6431 switch (bits->width) {
6432 case 1: {
6433 u8 tmp8 = 0;
6434 pci_read_config_byte(pdev, bits->reg, &tmp8);
6435 tmp = tmp8;
6436 break;
6437 }
6438 case 2: {
6439 u16 tmp16 = 0;
6440 pci_read_config_word(pdev, bits->reg, &tmp16);
6441 tmp = tmp16;
6442 break;
6443 }
6444 case 4: {
6445 u32 tmp32 = 0;
6446 pci_read_config_dword(pdev, bits->reg, &tmp32);
6447 tmp = tmp32;
6448 break;
6449 }
6450
6451 default:
6452 return -EINVAL;
6453 }
6454
6455 tmp &= bits->mask;
6456
6457 return (tmp == bits->val) ? 1 : 0;
6458 }
6459
6460 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6461 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6462 {
6463 pci_save_state(pdev);
6464 pci_disable_device(pdev);
6465
6466 if (mesg.event & PM_EVENT_SLEEP)
6467 pci_set_power_state(pdev, PCI_D3hot);
6468 }
6469
ata_pci_device_do_resume(struct pci_dev * pdev)6470 int ata_pci_device_do_resume(struct pci_dev *pdev)
6471 {
6472 int rc;
6473
6474 pci_set_power_state(pdev, PCI_D0);
6475 pci_restore_state(pdev);
6476
6477 rc = pcim_enable_device(pdev);
6478 if (rc) {
6479 dev_err(&pdev->dev,
6480 "failed to enable device after resume (%d)\n", rc);
6481 return rc;
6482 }
6483
6484 pci_set_master(pdev);
6485 return 0;
6486 }
6487
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6488 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6489 {
6490 struct ata_host *host = pci_get_drvdata(pdev);
6491 int rc = 0;
6492
6493 rc = ata_host_suspend(host, mesg);
6494 if (rc)
6495 return rc;
6496
6497 ata_pci_device_do_suspend(pdev, mesg);
6498
6499 return 0;
6500 }
6501
ata_pci_device_resume(struct pci_dev * pdev)6502 int ata_pci_device_resume(struct pci_dev *pdev)
6503 {
6504 struct ata_host *host = pci_get_drvdata(pdev);
6505 int rc;
6506
6507 rc = ata_pci_device_do_resume(pdev);
6508 if (rc == 0)
6509 ata_host_resume(host);
6510 return rc;
6511 }
6512 #endif /* CONFIG_PM */
6513
6514 #endif /* CONFIG_PCI */
6515
6516 /**
6517 * ata_platform_remove_one - Platform layer callback for device removal
6518 * @pdev: Platform device that was removed
6519 *
6520 * Platform layer indicates to libata via this hook that hot-unplug or
6521 * module unload event has occurred. Detach all ports. Resource
6522 * release is handled via devres.
6523 *
6524 * LOCKING:
6525 * Inherited from platform layer (may sleep).
6526 */
ata_platform_remove_one(struct platform_device * pdev)6527 int ata_platform_remove_one(struct platform_device *pdev)
6528 {
6529 struct ata_host *host = platform_get_drvdata(pdev);
6530
6531 ata_host_detach(host);
6532
6533 return 0;
6534 }
6535
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6536 static int __init ata_parse_force_one(char **cur,
6537 struct ata_force_ent *force_ent,
6538 const char **reason)
6539 {
6540 static const struct ata_force_param force_tbl[] __initconst = {
6541 { "40c", .cbl = ATA_CBL_PATA40 },
6542 { "80c", .cbl = ATA_CBL_PATA80 },
6543 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6544 { "unk", .cbl = ATA_CBL_PATA_UNK },
6545 { "ign", .cbl = ATA_CBL_PATA_IGN },
6546 { "sata", .cbl = ATA_CBL_SATA },
6547 { "1.5Gbps", .spd_limit = 1 },
6548 { "3.0Gbps", .spd_limit = 2 },
6549 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6550 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6551 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6552 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
6553 { "noncqati", .horkage_on = ATA_HORKAGE_NO_NCQ_ON_ATI },
6554 { "ncqati", .horkage_off = ATA_HORKAGE_NO_NCQ_ON_ATI },
6555 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6556 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6557 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6558 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6559 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6560 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6561 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6562 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6563 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6564 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6565 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6566 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6567 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6568 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6569 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6570 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6571 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6572 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6573 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6574 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6575 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6576 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6577 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6578 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6579 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6580 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6581 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6582 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6583 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6584 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6585 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6586 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6587 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6588 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6589 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6590 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6591 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6592 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6593 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6594 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6595 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6596 };
6597 char *start = *cur, *p = *cur;
6598 char *id, *val, *endp;
6599 const struct ata_force_param *match_fp = NULL;
6600 int nr_matches = 0, i;
6601
6602 /* find where this param ends and update *cur */
6603 while (*p != '\0' && *p != ',')
6604 p++;
6605
6606 if (*p == '\0')
6607 *cur = p;
6608 else
6609 *cur = p + 1;
6610
6611 *p = '\0';
6612
6613 /* parse */
6614 p = strchr(start, ':');
6615 if (!p) {
6616 val = strstrip(start);
6617 goto parse_val;
6618 }
6619 *p = '\0';
6620
6621 id = strstrip(start);
6622 val = strstrip(p + 1);
6623
6624 /* parse id */
6625 p = strchr(id, '.');
6626 if (p) {
6627 *p++ = '\0';
6628 force_ent->device = simple_strtoul(p, &endp, 10);
6629 if (p == endp || *endp != '\0') {
6630 *reason = "invalid device";
6631 return -EINVAL;
6632 }
6633 }
6634
6635 force_ent->port = simple_strtoul(id, &endp, 10);
6636 if (p == endp || *endp != '\0') {
6637 *reason = "invalid port/link";
6638 return -EINVAL;
6639 }
6640
6641 parse_val:
6642 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6643 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6644 const struct ata_force_param *fp = &force_tbl[i];
6645
6646 if (strncasecmp(val, fp->name, strlen(val)))
6647 continue;
6648
6649 nr_matches++;
6650 match_fp = fp;
6651
6652 if (strcasecmp(val, fp->name) == 0) {
6653 nr_matches = 1;
6654 break;
6655 }
6656 }
6657
6658 if (!nr_matches) {
6659 *reason = "unknown value";
6660 return -EINVAL;
6661 }
6662 if (nr_matches > 1) {
6663 *reason = "ambigious value";
6664 return -EINVAL;
6665 }
6666
6667 force_ent->param = *match_fp;
6668
6669 return 0;
6670 }
6671
ata_parse_force_param(void)6672 static void __init ata_parse_force_param(void)
6673 {
6674 int idx = 0, size = 1;
6675 int last_port = -1, last_device = -1;
6676 char *p, *cur, *next;
6677
6678 /* calculate maximum number of params and allocate force_tbl */
6679 for (p = ata_force_param_buf; *p; p++)
6680 if (*p == ',')
6681 size++;
6682
6683 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6684 if (!ata_force_tbl) {
6685 printk(KERN_WARNING "ata: failed to extend force table, "
6686 "libata.force ignored\n");
6687 return;
6688 }
6689
6690 /* parse and populate the table */
6691 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6692 const char *reason = "";
6693 struct ata_force_ent te = { .port = -1, .device = -1 };
6694
6695 next = cur;
6696 if (ata_parse_force_one(&next, &te, &reason)) {
6697 printk(KERN_WARNING "ata: failed to parse force "
6698 "parameter \"%s\" (%s)\n",
6699 cur, reason);
6700 continue;
6701 }
6702
6703 if (te.port == -1) {
6704 te.port = last_port;
6705 te.device = last_device;
6706 }
6707
6708 ata_force_tbl[idx++] = te;
6709
6710 last_port = te.port;
6711 last_device = te.device;
6712 }
6713
6714 ata_force_tbl_size = idx;
6715 }
6716
ata_init(void)6717 static int __init ata_init(void)
6718 {
6719 int rc;
6720
6721 ata_parse_force_param();
6722
6723 rc = ata_sff_init();
6724 if (rc) {
6725 kfree(ata_force_tbl);
6726 return rc;
6727 }
6728
6729 libata_transport_init();
6730 ata_scsi_transport_template = ata_attach_transport();
6731 if (!ata_scsi_transport_template) {
6732 ata_sff_exit();
6733 rc = -ENOMEM;
6734 goto err_out;
6735 }
6736
6737 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6738 return 0;
6739
6740 err_out:
6741 return rc;
6742 }
6743
ata_exit(void)6744 static void __exit ata_exit(void)
6745 {
6746 ata_release_transport(ata_scsi_transport_template);
6747 libata_transport_exit();
6748 ata_sff_exit();
6749 kfree(ata_force_tbl);
6750 }
6751
6752 subsys_initcall(ata_init);
6753 module_exit(ata_exit);
6754
6755 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6756
ata_ratelimit(void)6757 int ata_ratelimit(void)
6758 {
6759 return __ratelimit(&ratelimit);
6760 }
6761
6762 /**
6763 * ata_msleep - ATA EH owner aware msleep
6764 * @ap: ATA port to attribute the sleep to
6765 * @msecs: duration to sleep in milliseconds
6766 *
6767 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6768 * ownership is released before going to sleep and reacquired
6769 * after the sleep is complete. IOW, other ports sharing the
6770 * @ap->host will be allowed to own the EH while this task is
6771 * sleeping.
6772 *
6773 * LOCKING:
6774 * Might sleep.
6775 */
ata_msleep(struct ata_port * ap,unsigned int msecs)6776 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6777 {
6778 bool owns_eh = ap && ap->host->eh_owner == current;
6779
6780 if (owns_eh)
6781 ata_eh_release(ap);
6782
6783 msleep(msecs);
6784
6785 if (owns_eh)
6786 ata_eh_acquire(ap);
6787 }
6788
6789 /**
6790 * ata_wait_register - wait until register value changes
6791 * @ap: ATA port to wait register for, can be NULL
6792 * @reg: IO-mapped register
6793 * @mask: Mask to apply to read register value
6794 * @val: Wait condition
6795 * @interval: polling interval in milliseconds
6796 * @timeout: timeout in milliseconds
6797 *
6798 * Waiting for some bits of register to change is a common
6799 * operation for ATA controllers. This function reads 32bit LE
6800 * IO-mapped register @reg and tests for the following condition.
6801 *
6802 * (*@reg & mask) != val
6803 *
6804 * If the condition is met, it returns; otherwise, the process is
6805 * repeated after @interval_msec until timeout.
6806 *
6807 * LOCKING:
6808 * Kernel thread context (may sleep)
6809 *
6810 * RETURNS:
6811 * The final register value.
6812 */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned long interval,unsigned long timeout)6813 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6814 unsigned long interval, unsigned long timeout)
6815 {
6816 unsigned long deadline;
6817 u32 tmp;
6818
6819 tmp = ioread32(reg);
6820
6821 /* Calculate timeout _after_ the first read to make sure
6822 * preceding writes reach the controller before starting to
6823 * eat away the timeout.
6824 */
6825 deadline = ata_deadline(jiffies, timeout);
6826
6827 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6828 ata_msleep(ap, interval);
6829 tmp = ioread32(reg);
6830 }
6831
6832 return tmp;
6833 }
6834
6835 /**
6836 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
6837 * @link: Link receiving the event
6838 *
6839 * Test whether the received PHY event has to be ignored or not.
6840 *
6841 * LOCKING:
6842 * None:
6843 *
6844 * RETURNS:
6845 * True if the event has to be ignored.
6846 */
sata_lpm_ignore_phy_events(struct ata_link * link)6847 bool sata_lpm_ignore_phy_events(struct ata_link *link)
6848 {
6849 unsigned long lpm_timeout = link->last_lpm_change +
6850 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
6851
6852 /* if LPM is enabled, PHYRDY doesn't mean anything */
6853 if (link->lpm_policy > ATA_LPM_MAX_POWER)
6854 return true;
6855
6856 /* ignore the first PHY event after the LPM policy changed
6857 * as it is might be spurious
6858 */
6859 if ((link->flags & ATA_LFLAG_CHANGED) &&
6860 time_before(jiffies, lpm_timeout))
6861 return true;
6862
6863 return false;
6864 }
6865 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
6866
6867 /*
6868 * Dummy port_ops
6869 */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)6870 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6871 {
6872 return AC_ERR_SYSTEM;
6873 }
6874
ata_dummy_error_handler(struct ata_port * ap)6875 static void ata_dummy_error_handler(struct ata_port *ap)
6876 {
6877 /* truly dummy */
6878 }
6879
6880 struct ata_port_operations ata_dummy_port_ops = {
6881 .qc_prep = ata_noop_qc_prep,
6882 .qc_issue = ata_dummy_qc_issue,
6883 .error_handler = ata_dummy_error_handler,
6884 .sched_eh = ata_std_sched_eh,
6885 .end_eh = ata_std_end_eh,
6886 };
6887
6888 const struct ata_port_info ata_dummy_port_info = {
6889 .port_ops = &ata_dummy_port_ops,
6890 };
6891
6892 /*
6893 * Utility print functions
6894 */
ata_port_printk(const struct ata_port * ap,const char * level,const char * fmt,...)6895 void ata_port_printk(const struct ata_port *ap, const char *level,
6896 const char *fmt, ...)
6897 {
6898 struct va_format vaf;
6899 va_list args;
6900
6901 va_start(args, fmt);
6902
6903 vaf.fmt = fmt;
6904 vaf.va = &args;
6905
6906 printk("%sata%u: %pV", level, ap->print_id, &vaf);
6907
6908 va_end(args);
6909 }
6910 EXPORT_SYMBOL(ata_port_printk);
6911
ata_link_printk(const struct ata_link * link,const char * level,const char * fmt,...)6912 void ata_link_printk(const struct ata_link *link, const char *level,
6913 const char *fmt, ...)
6914 {
6915 struct va_format vaf;
6916 va_list args;
6917
6918 va_start(args, fmt);
6919
6920 vaf.fmt = fmt;
6921 vaf.va = &args;
6922
6923 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6924 printk("%sata%u.%02u: %pV",
6925 level, link->ap->print_id, link->pmp, &vaf);
6926 else
6927 printk("%sata%u: %pV",
6928 level, link->ap->print_id, &vaf);
6929
6930 va_end(args);
6931 }
6932 EXPORT_SYMBOL(ata_link_printk);
6933
ata_dev_printk(const struct ata_device * dev,const char * level,const char * fmt,...)6934 void ata_dev_printk(const struct ata_device *dev, const char *level,
6935 const char *fmt, ...)
6936 {
6937 struct va_format vaf;
6938 va_list args;
6939
6940 va_start(args, fmt);
6941
6942 vaf.fmt = fmt;
6943 vaf.va = &args;
6944
6945 printk("%sata%u.%02u: %pV",
6946 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6947 &vaf);
6948
6949 va_end(args);
6950 }
6951 EXPORT_SYMBOL(ata_dev_printk);
6952
ata_print_version(const struct device * dev,const char * version)6953 void ata_print_version(const struct device *dev, const char *version)
6954 {
6955 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6956 }
6957 EXPORT_SYMBOL(ata_print_version);
6958
6959 /*
6960 * libata is essentially a library of internal helper functions for
6961 * low-level ATA host controller drivers. As such, the API/ABI is
6962 * likely to change as new drivers are added and updated.
6963 * Do not depend on ABI/API stability.
6964 */
6965 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6966 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6967 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6968 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6969 EXPORT_SYMBOL_GPL(sata_port_ops);
6970 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6971 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6972 EXPORT_SYMBOL_GPL(ata_link_next);
6973 EXPORT_SYMBOL_GPL(ata_dev_next);
6974 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6975 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6976 EXPORT_SYMBOL_GPL(ata_host_init);
6977 EXPORT_SYMBOL_GPL(ata_host_alloc);
6978 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6979 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6980 EXPORT_SYMBOL_GPL(ata_host_start);
6981 EXPORT_SYMBOL_GPL(ata_host_register);
6982 EXPORT_SYMBOL_GPL(ata_host_activate);
6983 EXPORT_SYMBOL_GPL(ata_host_detach);
6984 EXPORT_SYMBOL_GPL(ata_sg_init);
6985 EXPORT_SYMBOL_GPL(ata_qc_complete);
6986 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6987 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6988 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6989 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6990 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6991 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6992 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6993 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6994 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6995 EXPORT_SYMBOL_GPL(ata_mode_string);
6996 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6997 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6998 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6999 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7000 EXPORT_SYMBOL_GPL(ata_dev_disable);
7001 EXPORT_SYMBOL_GPL(sata_set_spd);
7002 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7003 EXPORT_SYMBOL_GPL(sata_link_debounce);
7004 EXPORT_SYMBOL_GPL(sata_link_resume);
7005 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7006 EXPORT_SYMBOL_GPL(ata_std_prereset);
7007 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7008 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7009 EXPORT_SYMBOL_GPL(ata_std_postreset);
7010 EXPORT_SYMBOL_GPL(ata_dev_classify);
7011 EXPORT_SYMBOL_GPL(ata_dev_pair);
7012 EXPORT_SYMBOL_GPL(ata_ratelimit);
7013 EXPORT_SYMBOL_GPL(ata_msleep);
7014 EXPORT_SYMBOL_GPL(ata_wait_register);
7015 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7016 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7017 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7018 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7019 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7020 EXPORT_SYMBOL_GPL(sata_scr_valid);
7021 EXPORT_SYMBOL_GPL(sata_scr_read);
7022 EXPORT_SYMBOL_GPL(sata_scr_write);
7023 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7024 EXPORT_SYMBOL_GPL(ata_link_online);
7025 EXPORT_SYMBOL_GPL(ata_link_offline);
7026 #ifdef CONFIG_PM
7027 EXPORT_SYMBOL_GPL(ata_host_suspend);
7028 EXPORT_SYMBOL_GPL(ata_host_resume);
7029 #endif /* CONFIG_PM */
7030 EXPORT_SYMBOL_GPL(ata_id_string);
7031 EXPORT_SYMBOL_GPL(ata_id_c_string);
7032 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7033 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7034
7035 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7036 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7037 EXPORT_SYMBOL_GPL(ata_timing_compute);
7038 EXPORT_SYMBOL_GPL(ata_timing_merge);
7039 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7040
7041 #ifdef CONFIG_PCI
7042 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7043 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7044 #ifdef CONFIG_PM
7045 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7046 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7047 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7048 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7049 #endif /* CONFIG_PM */
7050 #endif /* CONFIG_PCI */
7051
7052 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7053
7054 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7055 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7056 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7057 EXPORT_SYMBOL_GPL(ata_port_desc);
7058 #ifdef CONFIG_PCI
7059 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7060 #endif /* CONFIG_PCI */
7061 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7062 EXPORT_SYMBOL_GPL(ata_link_abort);
7063 EXPORT_SYMBOL_GPL(ata_port_abort);
7064 EXPORT_SYMBOL_GPL(ata_port_freeze);
7065 EXPORT_SYMBOL_GPL(sata_async_notification);
7066 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7067 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7068 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7069 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7070 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7071 EXPORT_SYMBOL_GPL(ata_do_eh);
7072 EXPORT_SYMBOL_GPL(ata_std_error_handler);
7073
7074 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7075 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7076 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7077 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7078 EXPORT_SYMBOL_GPL(ata_cable_sata);
7079