• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  libata-sff.c - helper library for PCI IDE BMDMA
3  *
4  *  Maintained by:  Tejun Heo <tj@kernel.org>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2006 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/module.h>
39 #include <linux/libata.h>
40 #include <linux/highmem.h>
41 
42 #include "libata.h"
43 
44 static struct workqueue_struct *ata_sff_wq;
45 
46 const struct ata_port_operations ata_sff_port_ops = {
47 	.inherits		= &ata_base_port_ops,
48 
49 	.qc_prep		= ata_noop_qc_prep,
50 	.qc_issue		= ata_sff_qc_issue,
51 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
52 
53 	.freeze			= ata_sff_freeze,
54 	.thaw			= ata_sff_thaw,
55 	.prereset		= ata_sff_prereset,
56 	.softreset		= ata_sff_softreset,
57 	.hardreset		= sata_sff_hardreset,
58 	.postreset		= ata_sff_postreset,
59 	.error_handler		= ata_sff_error_handler,
60 
61 	.sff_dev_select		= ata_sff_dev_select,
62 	.sff_check_status	= ata_sff_check_status,
63 	.sff_tf_load		= ata_sff_tf_load,
64 	.sff_tf_read		= ata_sff_tf_read,
65 	.sff_exec_command	= ata_sff_exec_command,
66 	.sff_data_xfer		= ata_sff_data_xfer,
67 	.sff_drain_fifo		= ata_sff_drain_fifo,
68 
69 	.lost_interrupt		= ata_sff_lost_interrupt,
70 };
71 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
72 
73 /**
74  *	ata_sff_check_status - Read device status reg & clear interrupt
75  *	@ap: port where the device is
76  *
77  *	Reads ATA taskfile status register for currently-selected device
78  *	and return its value. This also clears pending interrupts
79  *      from this device
80  *
81  *	LOCKING:
82  *	Inherited from caller.
83  */
ata_sff_check_status(struct ata_port * ap)84 u8 ata_sff_check_status(struct ata_port *ap)
85 {
86 	return ioread8(ap->ioaddr.status_addr);
87 }
88 EXPORT_SYMBOL_GPL(ata_sff_check_status);
89 
90 /**
91  *	ata_sff_altstatus - Read device alternate status reg
92  *	@ap: port where the device is
93  *
94  *	Reads ATA taskfile alternate status register for
95  *	currently-selected device and return its value.
96  *
97  *	Note: may NOT be used as the check_altstatus() entry in
98  *	ata_port_operations.
99  *
100  *	LOCKING:
101  *	Inherited from caller.
102  */
ata_sff_altstatus(struct ata_port * ap)103 static u8 ata_sff_altstatus(struct ata_port *ap)
104 {
105 	if (ap->ops->sff_check_altstatus)
106 		return ap->ops->sff_check_altstatus(ap);
107 
108 	return ioread8(ap->ioaddr.altstatus_addr);
109 }
110 
111 /**
112  *	ata_sff_irq_status - Check if the device is busy
113  *	@ap: port where the device is
114  *
115  *	Determine if the port is currently busy. Uses altstatus
116  *	if available in order to avoid clearing shared IRQ status
117  *	when finding an IRQ source. Non ctl capable devices don't
118  *	share interrupt lines fortunately for us.
119  *
120  *	LOCKING:
121  *	Inherited from caller.
122  */
ata_sff_irq_status(struct ata_port * ap)123 static u8 ata_sff_irq_status(struct ata_port *ap)
124 {
125 	u8 status;
126 
127 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
128 		status = ata_sff_altstatus(ap);
129 		/* Not us: We are busy */
130 		if (status & ATA_BUSY)
131 			return status;
132 	}
133 	/* Clear INTRQ latch */
134 	status = ap->ops->sff_check_status(ap);
135 	return status;
136 }
137 
138 /**
139  *	ata_sff_sync - Flush writes
140  *	@ap: Port to wait for.
141  *
142  *	CAUTION:
143  *	If we have an mmio device with no ctl and no altstatus
144  *	method this will fail. No such devices are known to exist.
145  *
146  *	LOCKING:
147  *	Inherited from caller.
148  */
149 
ata_sff_sync(struct ata_port * ap)150 static void ata_sff_sync(struct ata_port *ap)
151 {
152 	if (ap->ops->sff_check_altstatus)
153 		ap->ops->sff_check_altstatus(ap);
154 	else if (ap->ioaddr.altstatus_addr)
155 		ioread8(ap->ioaddr.altstatus_addr);
156 }
157 
158 /**
159  *	ata_sff_pause		-	Flush writes and wait 400nS
160  *	@ap: Port to pause for.
161  *
162  *	CAUTION:
163  *	If we have an mmio device with no ctl and no altstatus
164  *	method this will fail. No such devices are known to exist.
165  *
166  *	LOCKING:
167  *	Inherited from caller.
168  */
169 
ata_sff_pause(struct ata_port * ap)170 void ata_sff_pause(struct ata_port *ap)
171 {
172 	ata_sff_sync(ap);
173 	ndelay(400);
174 }
175 EXPORT_SYMBOL_GPL(ata_sff_pause);
176 
177 /**
178  *	ata_sff_dma_pause	-	Pause before commencing DMA
179  *	@ap: Port to pause for.
180  *
181  *	Perform I/O fencing and ensure sufficient cycle delays occur
182  *	for the HDMA1:0 transition
183  */
184 
ata_sff_dma_pause(struct ata_port * ap)185 void ata_sff_dma_pause(struct ata_port *ap)
186 {
187 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
188 		/* An altstatus read will cause the needed delay without
189 		   messing up the IRQ status */
190 		ata_sff_altstatus(ap);
191 		return;
192 	}
193 	/* There are no DMA controllers without ctl. BUG here to ensure
194 	   we never violate the HDMA1:0 transition timing and risk
195 	   corruption. */
196 	BUG();
197 }
198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
199 
200 /**
201  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
202  *	@ap: port containing status register to be polled
203  *	@tmout_pat: impatience timeout in msecs
204  *	@tmout: overall timeout in msecs
205  *
206  *	Sleep until ATA Status register bit BSY clears,
207  *	or a timeout occurs.
208  *
209  *	LOCKING:
210  *	Kernel thread context (may sleep).
211  *
212  *	RETURNS:
213  *	0 on success, -errno otherwise.
214  */
ata_sff_busy_sleep(struct ata_port * ap,unsigned long tmout_pat,unsigned long tmout)215 int ata_sff_busy_sleep(struct ata_port *ap,
216 		       unsigned long tmout_pat, unsigned long tmout)
217 {
218 	unsigned long timer_start, timeout;
219 	u8 status;
220 
221 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
222 	timer_start = jiffies;
223 	timeout = ata_deadline(timer_start, tmout_pat);
224 	while (status != 0xff && (status & ATA_BUSY) &&
225 	       time_before(jiffies, timeout)) {
226 		ata_msleep(ap, 50);
227 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
228 	}
229 
230 	if (status != 0xff && (status & ATA_BUSY))
231 		ata_port_warn(ap,
232 			      "port is slow to respond, please be patient (Status 0x%x)\n",
233 			      status);
234 
235 	timeout = ata_deadline(timer_start, tmout);
236 	while (status != 0xff && (status & ATA_BUSY) &&
237 	       time_before(jiffies, timeout)) {
238 		ata_msleep(ap, 50);
239 		status = ap->ops->sff_check_status(ap);
240 	}
241 
242 	if (status == 0xff)
243 		return -ENODEV;
244 
245 	if (status & ATA_BUSY) {
246 		ata_port_err(ap,
247 			     "port failed to respond (%lu secs, Status 0x%x)\n",
248 			     DIV_ROUND_UP(tmout, 1000), status);
249 		return -EBUSY;
250 	}
251 
252 	return 0;
253 }
254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
255 
ata_sff_check_ready(struct ata_link * link)256 static int ata_sff_check_ready(struct ata_link *link)
257 {
258 	u8 status = link->ap->ops->sff_check_status(link->ap);
259 
260 	return ata_check_ready(status);
261 }
262 
263 /**
264  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
265  *	@link: SFF link to wait ready status for
266  *	@deadline: deadline jiffies for the operation
267  *
268  *	Sleep until ATA Status register bit BSY clears, or timeout
269  *	occurs.
270  *
271  *	LOCKING:
272  *	Kernel thread context (may sleep).
273  *
274  *	RETURNS:
275  *	0 on success, -errno otherwise.
276  */
ata_sff_wait_ready(struct ata_link * link,unsigned long deadline)277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
278 {
279 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
280 }
281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
282 
283 /**
284  *	ata_sff_set_devctl - Write device control reg
285  *	@ap: port where the device is
286  *	@ctl: value to write
287  *
288  *	Writes ATA taskfile device control register.
289  *
290  *	Note: may NOT be used as the sff_set_devctl() entry in
291  *	ata_port_operations.
292  *
293  *	LOCKING:
294  *	Inherited from caller.
295  */
ata_sff_set_devctl(struct ata_port * ap,u8 ctl)296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
297 {
298 	if (ap->ops->sff_set_devctl)
299 		ap->ops->sff_set_devctl(ap, ctl);
300 	else
301 		iowrite8(ctl, ap->ioaddr.ctl_addr);
302 }
303 
304 /**
305  *	ata_sff_dev_select - Select device 0/1 on ATA bus
306  *	@ap: ATA channel to manipulate
307  *	@device: ATA device (numbered from zero) to select
308  *
309  *	Use the method defined in the ATA specification to
310  *	make either device 0, or device 1, active on the
311  *	ATA channel.  Works with both PIO and MMIO.
312  *
313  *	May be used as the dev_select() entry in ata_port_operations.
314  *
315  *	LOCKING:
316  *	caller.
317  */
ata_sff_dev_select(struct ata_port * ap,unsigned int device)318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
319 {
320 	u8 tmp;
321 
322 	if (device == 0)
323 		tmp = ATA_DEVICE_OBS;
324 	else
325 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
326 
327 	iowrite8(tmp, ap->ioaddr.device_addr);
328 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
329 }
330 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
331 
332 /**
333  *	ata_dev_select - Select device 0/1 on ATA bus
334  *	@ap: ATA channel to manipulate
335  *	@device: ATA device (numbered from zero) to select
336  *	@wait: non-zero to wait for Status register BSY bit to clear
337  *	@can_sleep: non-zero if context allows sleeping
338  *
339  *	Use the method defined in the ATA specification to
340  *	make either device 0, or device 1, active on the
341  *	ATA channel.
342  *
343  *	This is a high-level version of ata_sff_dev_select(), which
344  *	additionally provides the services of inserting the proper
345  *	pauses and status polling, where needed.
346  *
347  *	LOCKING:
348  *	caller.
349  */
ata_dev_select(struct ata_port * ap,unsigned int device,unsigned int wait,unsigned int can_sleep)350 static void ata_dev_select(struct ata_port *ap, unsigned int device,
351 			   unsigned int wait, unsigned int can_sleep)
352 {
353 	if (ata_msg_probe(ap))
354 		ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
355 			      device, wait);
356 
357 	if (wait)
358 		ata_wait_idle(ap);
359 
360 	ap->ops->sff_dev_select(ap, device);
361 
362 	if (wait) {
363 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
364 			ata_msleep(ap, 150);
365 		ata_wait_idle(ap);
366 	}
367 }
368 
369 /**
370  *	ata_sff_irq_on - Enable interrupts on a port.
371  *	@ap: Port on which interrupts are enabled.
372  *
373  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
374  *	wait for idle, clear any pending interrupts.
375  *
376  *	Note: may NOT be used as the sff_irq_on() entry in
377  *	ata_port_operations.
378  *
379  *	LOCKING:
380  *	Inherited from caller.
381  */
ata_sff_irq_on(struct ata_port * ap)382 void ata_sff_irq_on(struct ata_port *ap)
383 {
384 	struct ata_ioports *ioaddr = &ap->ioaddr;
385 
386 	if (ap->ops->sff_irq_on) {
387 		ap->ops->sff_irq_on(ap);
388 		return;
389 	}
390 
391 	ap->ctl &= ~ATA_NIEN;
392 	ap->last_ctl = ap->ctl;
393 
394 	if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
395 		ata_sff_set_devctl(ap, ap->ctl);
396 	ata_wait_idle(ap);
397 
398 	if (ap->ops->sff_irq_clear)
399 		ap->ops->sff_irq_clear(ap);
400 }
401 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
402 
403 /**
404  *	ata_sff_tf_load - send taskfile registers to host controller
405  *	@ap: Port to which output is sent
406  *	@tf: ATA taskfile register set
407  *
408  *	Outputs ATA taskfile to standard ATA host controller.
409  *
410  *	LOCKING:
411  *	Inherited from caller.
412  */
ata_sff_tf_load(struct ata_port * ap,const struct ata_taskfile * tf)413 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
414 {
415 	struct ata_ioports *ioaddr = &ap->ioaddr;
416 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
417 
418 	if (tf->ctl != ap->last_ctl) {
419 		if (ioaddr->ctl_addr)
420 			iowrite8(tf->ctl, ioaddr->ctl_addr);
421 		ap->last_ctl = tf->ctl;
422 		ata_wait_idle(ap);
423 	}
424 
425 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
426 		WARN_ON_ONCE(!ioaddr->ctl_addr);
427 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
428 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
429 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
430 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
431 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
432 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
433 			tf->hob_feature,
434 			tf->hob_nsect,
435 			tf->hob_lbal,
436 			tf->hob_lbam,
437 			tf->hob_lbah);
438 	}
439 
440 	if (is_addr) {
441 		iowrite8(tf->feature, ioaddr->feature_addr);
442 		iowrite8(tf->nsect, ioaddr->nsect_addr);
443 		iowrite8(tf->lbal, ioaddr->lbal_addr);
444 		iowrite8(tf->lbam, ioaddr->lbam_addr);
445 		iowrite8(tf->lbah, ioaddr->lbah_addr);
446 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
447 			tf->feature,
448 			tf->nsect,
449 			tf->lbal,
450 			tf->lbam,
451 			tf->lbah);
452 	}
453 
454 	if (tf->flags & ATA_TFLAG_DEVICE) {
455 		iowrite8(tf->device, ioaddr->device_addr);
456 		VPRINTK("device 0x%X\n", tf->device);
457 	}
458 
459 	ata_wait_idle(ap);
460 }
461 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
462 
463 /**
464  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
465  *	@ap: Port from which input is read
466  *	@tf: ATA taskfile register set for storing input
467  *
468  *	Reads ATA taskfile registers for currently-selected device
469  *	into @tf. Assumes the device has a fully SFF compliant task file
470  *	layout and behaviour. If you device does not (eg has a different
471  *	status method) then you will need to provide a replacement tf_read
472  *
473  *	LOCKING:
474  *	Inherited from caller.
475  */
ata_sff_tf_read(struct ata_port * ap,struct ata_taskfile * tf)476 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
477 {
478 	struct ata_ioports *ioaddr = &ap->ioaddr;
479 
480 	tf->command = ata_sff_check_status(ap);
481 	tf->feature = ioread8(ioaddr->error_addr);
482 	tf->nsect = ioread8(ioaddr->nsect_addr);
483 	tf->lbal = ioread8(ioaddr->lbal_addr);
484 	tf->lbam = ioread8(ioaddr->lbam_addr);
485 	tf->lbah = ioread8(ioaddr->lbah_addr);
486 	tf->device = ioread8(ioaddr->device_addr);
487 
488 	if (tf->flags & ATA_TFLAG_LBA48) {
489 		if (likely(ioaddr->ctl_addr)) {
490 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
491 			tf->hob_feature = ioread8(ioaddr->error_addr);
492 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
493 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
494 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
495 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
496 			iowrite8(tf->ctl, ioaddr->ctl_addr);
497 			ap->last_ctl = tf->ctl;
498 		} else
499 			WARN_ON_ONCE(1);
500 	}
501 }
502 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
503 
504 /**
505  *	ata_sff_exec_command - issue ATA command to host controller
506  *	@ap: port to which command is being issued
507  *	@tf: ATA taskfile register set
508  *
509  *	Issues ATA command, with proper synchronization with interrupt
510  *	handler / other threads.
511  *
512  *	LOCKING:
513  *	spin_lock_irqsave(host lock)
514  */
ata_sff_exec_command(struct ata_port * ap,const struct ata_taskfile * tf)515 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
516 {
517 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
518 
519 	iowrite8(tf->command, ap->ioaddr.command_addr);
520 	ata_sff_pause(ap);
521 }
522 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
523 
524 /**
525  *	ata_tf_to_host - issue ATA taskfile to host controller
526  *	@ap: port to which command is being issued
527  *	@tf: ATA taskfile register set
528  *
529  *	Issues ATA taskfile register set to ATA host controller,
530  *	with proper synchronization with interrupt handler and
531  *	other threads.
532  *
533  *	LOCKING:
534  *	spin_lock_irqsave(host lock)
535  */
ata_tf_to_host(struct ata_port * ap,const struct ata_taskfile * tf)536 static inline void ata_tf_to_host(struct ata_port *ap,
537 				  const struct ata_taskfile *tf)
538 {
539 	ap->ops->sff_tf_load(ap, tf);
540 	ap->ops->sff_exec_command(ap, tf);
541 }
542 
543 /**
544  *	ata_sff_data_xfer - Transfer data by PIO
545  *	@dev: device to target
546  *	@buf: data buffer
547  *	@buflen: buffer length
548  *	@rw: read/write
549  *
550  *	Transfer data from/to the device data register by PIO.
551  *
552  *	LOCKING:
553  *	Inherited from caller.
554  *
555  *	RETURNS:
556  *	Bytes consumed.
557  */
ata_sff_data_xfer(struct ata_device * dev,unsigned char * buf,unsigned int buflen,int rw)558 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
559 			       unsigned int buflen, int rw)
560 {
561 	struct ata_port *ap = dev->link->ap;
562 	void __iomem *data_addr = ap->ioaddr.data_addr;
563 	unsigned int words = buflen >> 1;
564 
565 	/* Transfer multiple of 2 bytes */
566 	if (rw == READ)
567 		ioread16_rep(data_addr, buf, words);
568 	else
569 		iowrite16_rep(data_addr, buf, words);
570 
571 	/* Transfer trailing byte, if any. */
572 	if (unlikely(buflen & 0x01)) {
573 		unsigned char pad[2] = { };
574 
575 		/* Point buf to the tail of buffer */
576 		buf += buflen - 1;
577 
578 		/*
579 		 * Use io*16_rep() accessors here as well to avoid pointlessly
580 		 * swapping bytes to and from on the big endian machines...
581 		 */
582 		if (rw == READ) {
583 			ioread16_rep(data_addr, pad, 1);
584 			*buf = pad[0];
585 		} else {
586 			pad[0] = *buf;
587 			iowrite16_rep(data_addr, pad, 1);
588 		}
589 		words++;
590 	}
591 
592 	return words << 1;
593 }
594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
595 
596 /**
597  *	ata_sff_data_xfer32 - Transfer data by PIO
598  *	@dev: device to target
599  *	@buf: data buffer
600  *	@buflen: buffer length
601  *	@rw: read/write
602  *
603  *	Transfer data from/to the device data register by PIO using 32bit
604  *	I/O operations.
605  *
606  *	LOCKING:
607  *	Inherited from caller.
608  *
609  *	RETURNS:
610  *	Bytes consumed.
611  */
612 
ata_sff_data_xfer32(struct ata_device * dev,unsigned char * buf,unsigned int buflen,int rw)613 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
614 			       unsigned int buflen, int rw)
615 {
616 	struct ata_port *ap = dev->link->ap;
617 	void __iomem *data_addr = ap->ioaddr.data_addr;
618 	unsigned int words = buflen >> 2;
619 	int slop = buflen & 3;
620 
621 	if (!(ap->pflags & ATA_PFLAG_PIO32))
622 		return ata_sff_data_xfer(dev, buf, buflen, rw);
623 
624 	/* Transfer multiple of 4 bytes */
625 	if (rw == READ)
626 		ioread32_rep(data_addr, buf, words);
627 	else
628 		iowrite32_rep(data_addr, buf, words);
629 
630 	/* Transfer trailing bytes, if any */
631 	if (unlikely(slop)) {
632 		unsigned char pad[4] = { };
633 
634 		/* Point buf to the tail of buffer */
635 		buf += buflen - slop;
636 
637 		/*
638 		 * Use io*_rep() accessors here as well to avoid pointlessly
639 		 * swapping bytes to and from on the big endian machines...
640 		 */
641 		if (rw == READ) {
642 			if (slop < 3)
643 				ioread16_rep(data_addr, pad, 1);
644 			else
645 				ioread32_rep(data_addr, pad, 1);
646 			memcpy(buf, pad, slop);
647 		} else {
648 			memcpy(pad, buf, slop);
649 			if (slop < 3)
650 				iowrite16_rep(data_addr, pad, 1);
651 			else
652 				iowrite32_rep(data_addr, pad, 1);
653 		}
654 	}
655 	return (buflen + 1) & ~1;
656 }
657 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
658 
659 /**
660  *	ata_sff_data_xfer_noirq - Transfer data by PIO
661  *	@dev: device to target
662  *	@buf: data buffer
663  *	@buflen: buffer length
664  *	@rw: read/write
665  *
666  *	Transfer data from/to the device data register by PIO. Do the
667  *	transfer with interrupts disabled.
668  *
669  *	LOCKING:
670  *	Inherited from caller.
671  *
672  *	RETURNS:
673  *	Bytes consumed.
674  */
ata_sff_data_xfer_noirq(struct ata_device * dev,unsigned char * buf,unsigned int buflen,int rw)675 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
676 				     unsigned int buflen, int rw)
677 {
678 	unsigned long flags;
679 	unsigned int consumed;
680 
681 	local_irq_save(flags);
682 	consumed = ata_sff_data_xfer32(dev, buf, buflen, rw);
683 	local_irq_restore(flags);
684 
685 	return consumed;
686 }
687 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
688 
689 /**
690  *	ata_pio_sector - Transfer a sector of data.
691  *	@qc: Command on going
692  *
693  *	Transfer qc->sect_size bytes of data from/to the ATA device.
694  *
695  *	LOCKING:
696  *	Inherited from caller.
697  */
ata_pio_sector(struct ata_queued_cmd * qc)698 static void ata_pio_sector(struct ata_queued_cmd *qc)
699 {
700 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
701 	struct ata_port *ap = qc->ap;
702 	struct page *page;
703 	unsigned int offset;
704 	unsigned char *buf;
705 
706 	if (!qc->cursg) {
707 		qc->curbytes = qc->nbytes;
708 		return;
709 	}
710 	if (qc->curbytes == qc->nbytes - qc->sect_size)
711 		ap->hsm_task_state = HSM_ST_LAST;
712 
713 	page = sg_page(qc->cursg);
714 	offset = qc->cursg->offset + qc->cursg_ofs;
715 
716 	/* get the current page and offset */
717 	page = nth_page(page, (offset >> PAGE_SHIFT));
718 	offset %= PAGE_SIZE;
719 
720 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
721 
722 	if (PageHighMem(page)) {
723 		unsigned long flags;
724 
725 		/* FIXME: use a bounce buffer */
726 		local_irq_save(flags);
727 		buf = kmap_atomic(page);
728 
729 		/* do the actual data transfer */
730 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
731 				       do_write);
732 
733 		kunmap_atomic(buf);
734 		local_irq_restore(flags);
735 	} else {
736 		buf = page_address(page);
737 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
738 				       do_write);
739 	}
740 
741 	if (!do_write && !PageSlab(page))
742 		flush_dcache_page(page);
743 
744 	qc->curbytes += qc->sect_size;
745 	qc->cursg_ofs += qc->sect_size;
746 
747 	if (qc->cursg_ofs == qc->cursg->length) {
748 		qc->cursg = sg_next(qc->cursg);
749 		if (!qc->cursg)
750 			ap->hsm_task_state = HSM_ST_LAST;
751 		qc->cursg_ofs = 0;
752 	}
753 }
754 
755 /**
756  *	ata_pio_sectors - Transfer one or many sectors.
757  *	@qc: Command on going
758  *
759  *	Transfer one or many sectors of data from/to the
760  *	ATA device for the DRQ request.
761  *
762  *	LOCKING:
763  *	Inherited from caller.
764  */
ata_pio_sectors(struct ata_queued_cmd * qc)765 static void ata_pio_sectors(struct ata_queued_cmd *qc)
766 {
767 	if (is_multi_taskfile(&qc->tf)) {
768 		/* READ/WRITE MULTIPLE */
769 		unsigned int nsect;
770 
771 		WARN_ON_ONCE(qc->dev->multi_count == 0);
772 
773 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
774 			    qc->dev->multi_count);
775 		while (nsect--)
776 			ata_pio_sector(qc);
777 	} else
778 		ata_pio_sector(qc);
779 
780 	ata_sff_sync(qc->ap); /* flush */
781 }
782 
783 /**
784  *	atapi_send_cdb - Write CDB bytes to hardware
785  *	@ap: Port to which ATAPI device is attached.
786  *	@qc: Taskfile currently active
787  *
788  *	When device has indicated its readiness to accept
789  *	a CDB, this function is called.  Send the CDB.
790  *
791  *	LOCKING:
792  *	caller.
793  */
atapi_send_cdb(struct ata_port * ap,struct ata_queued_cmd * qc)794 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
795 {
796 	/* send SCSI cdb */
797 	DPRINTK("send cdb\n");
798 	WARN_ON_ONCE(qc->dev->cdb_len < 12);
799 
800 	ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
801 	ata_sff_sync(ap);
802 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
803 	   or is bmdma_start guaranteed to do it ? */
804 	switch (qc->tf.protocol) {
805 	case ATAPI_PROT_PIO:
806 		ap->hsm_task_state = HSM_ST;
807 		break;
808 	case ATAPI_PROT_NODATA:
809 		ap->hsm_task_state = HSM_ST_LAST;
810 		break;
811 #ifdef CONFIG_ATA_BMDMA
812 	case ATAPI_PROT_DMA:
813 		ap->hsm_task_state = HSM_ST_LAST;
814 		/* initiate bmdma */
815 		ap->ops->bmdma_start(qc);
816 		break;
817 #endif /* CONFIG_ATA_BMDMA */
818 	default:
819 		BUG();
820 	}
821 }
822 
823 /**
824  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
825  *	@qc: Command on going
826  *	@bytes: number of bytes
827  *
828  *	Transfer Transfer data from/to the ATAPI device.
829  *
830  *	LOCKING:
831  *	Inherited from caller.
832  *
833  */
__atapi_pio_bytes(struct ata_queued_cmd * qc,unsigned int bytes)834 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
835 {
836 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
837 	struct ata_port *ap = qc->ap;
838 	struct ata_device *dev = qc->dev;
839 	struct ata_eh_info *ehi = &dev->link->eh_info;
840 	struct scatterlist *sg;
841 	struct page *page;
842 	unsigned char *buf;
843 	unsigned int offset, count, consumed;
844 
845 next_sg:
846 	sg = qc->cursg;
847 	if (unlikely(!sg)) {
848 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
849 				  "buf=%u cur=%u bytes=%u",
850 				  qc->nbytes, qc->curbytes, bytes);
851 		return -1;
852 	}
853 
854 	page = sg_page(sg);
855 	offset = sg->offset + qc->cursg_ofs;
856 
857 	/* get the current page and offset */
858 	page = nth_page(page, (offset >> PAGE_SHIFT));
859 	offset %= PAGE_SIZE;
860 
861 	/* don't overrun current sg */
862 	count = min(sg->length - qc->cursg_ofs, bytes);
863 
864 	/* don't cross page boundaries */
865 	count = min(count, (unsigned int)PAGE_SIZE - offset);
866 
867 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
868 
869 	if (PageHighMem(page)) {
870 		unsigned long flags;
871 
872 		/* FIXME: use bounce buffer */
873 		local_irq_save(flags);
874 		buf = kmap_atomic(page);
875 
876 		/* do the actual data transfer */
877 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
878 								count, rw);
879 
880 		kunmap_atomic(buf);
881 		local_irq_restore(flags);
882 	} else {
883 		buf = page_address(page);
884 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
885 								count, rw);
886 	}
887 
888 	bytes -= min(bytes, consumed);
889 	qc->curbytes += count;
890 	qc->cursg_ofs += count;
891 
892 	if (qc->cursg_ofs == sg->length) {
893 		qc->cursg = sg_next(qc->cursg);
894 		qc->cursg_ofs = 0;
895 	}
896 
897 	/*
898 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
899 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
900 	 * check correctly as it doesn't know if it is the last request being
901 	 * made. Somebody should implement a proper sanity check.
902 	 */
903 	if (bytes)
904 		goto next_sg;
905 	return 0;
906 }
907 
908 /**
909  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
910  *	@qc: Command on going
911  *
912  *	Transfer Transfer data from/to the ATAPI device.
913  *
914  *	LOCKING:
915  *	Inherited from caller.
916  */
atapi_pio_bytes(struct ata_queued_cmd * qc)917 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
918 {
919 	struct ata_port *ap = qc->ap;
920 	struct ata_device *dev = qc->dev;
921 	struct ata_eh_info *ehi = &dev->link->eh_info;
922 	unsigned int ireason, bc_lo, bc_hi, bytes;
923 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
924 
925 	/* Abuse qc->result_tf for temp storage of intermediate TF
926 	 * here to save some kernel stack usage.
927 	 * For normal completion, qc->result_tf is not relevant. For
928 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
929 	 * So, the correctness of qc->result_tf is not affected.
930 	 */
931 	ap->ops->sff_tf_read(ap, &qc->result_tf);
932 	ireason = qc->result_tf.nsect;
933 	bc_lo = qc->result_tf.lbam;
934 	bc_hi = qc->result_tf.lbah;
935 	bytes = (bc_hi << 8) | bc_lo;
936 
937 	/* shall be cleared to zero, indicating xfer of data */
938 	if (unlikely(ireason & ATAPI_COD))
939 		goto atapi_check;
940 
941 	/* make sure transfer direction matches expected */
942 	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
943 	if (unlikely(do_write != i_write))
944 		goto atapi_check;
945 
946 	if (unlikely(!bytes))
947 		goto atapi_check;
948 
949 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
950 
951 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
952 		goto err_out;
953 	ata_sff_sync(ap); /* flush */
954 
955 	return;
956 
957  atapi_check:
958 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
959 			  ireason, bytes);
960  err_out:
961 	qc->err_mask |= AC_ERR_HSM;
962 	ap->hsm_task_state = HSM_ST_ERR;
963 }
964 
965 /**
966  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
967  *	@ap: the target ata_port
968  *	@qc: qc on going
969  *
970  *	RETURNS:
971  *	1 if ok in workqueue, 0 otherwise.
972  */
ata_hsm_ok_in_wq(struct ata_port * ap,struct ata_queued_cmd * qc)973 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
974 						struct ata_queued_cmd *qc)
975 {
976 	if (qc->tf.flags & ATA_TFLAG_POLLING)
977 		return 1;
978 
979 	if (ap->hsm_task_state == HSM_ST_FIRST) {
980 		if (qc->tf.protocol == ATA_PROT_PIO &&
981 		   (qc->tf.flags & ATA_TFLAG_WRITE))
982 		    return 1;
983 
984 		if (ata_is_atapi(qc->tf.protocol) &&
985 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
986 			return 1;
987 	}
988 
989 	return 0;
990 }
991 
992 /**
993  *	ata_hsm_qc_complete - finish a qc running on standard HSM
994  *	@qc: Command to complete
995  *	@in_wq: 1 if called from workqueue, 0 otherwise
996  *
997  *	Finish @qc which is running on standard HSM.
998  *
999  *	LOCKING:
1000  *	If @in_wq is zero, spin_lock_irqsave(host lock).
1001  *	Otherwise, none on entry and grabs host lock.
1002  */
ata_hsm_qc_complete(struct ata_queued_cmd * qc,int in_wq)1003 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
1004 {
1005 	struct ata_port *ap = qc->ap;
1006 
1007 	if (ap->ops->error_handler) {
1008 		if (in_wq) {
1009 			/* EH might have kicked in while host lock is
1010 			 * released.
1011 			 */
1012 			qc = ata_qc_from_tag(ap, qc->tag);
1013 			if (qc) {
1014 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1015 					ata_sff_irq_on(ap);
1016 					ata_qc_complete(qc);
1017 				} else
1018 					ata_port_freeze(ap);
1019 			}
1020 		} else {
1021 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
1022 				ata_qc_complete(qc);
1023 			else
1024 				ata_port_freeze(ap);
1025 		}
1026 	} else {
1027 		if (in_wq) {
1028 			ata_sff_irq_on(ap);
1029 			ata_qc_complete(qc);
1030 		} else
1031 			ata_qc_complete(qc);
1032 	}
1033 }
1034 
1035 /**
1036  *	ata_sff_hsm_move - move the HSM to the next state.
1037  *	@ap: the target ata_port
1038  *	@qc: qc on going
1039  *	@status: current device status
1040  *	@in_wq: 1 if called from workqueue, 0 otherwise
1041  *
1042  *	RETURNS:
1043  *	1 when poll next status needed, 0 otherwise.
1044  */
ata_sff_hsm_move(struct ata_port * ap,struct ata_queued_cmd * qc,u8 status,int in_wq)1045 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1046 		     u8 status, int in_wq)
1047 {
1048 	struct ata_link *link = qc->dev->link;
1049 	struct ata_eh_info *ehi = &link->eh_info;
1050 	int poll_next;
1051 
1052 	lockdep_assert_held(ap->lock);
1053 
1054 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1055 
1056 	/* Make sure ata_sff_qc_issue() does not throw things
1057 	 * like DMA polling into the workqueue. Notice that
1058 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1059 	 */
1060 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1061 
1062 fsm_start:
1063 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1064 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1065 
1066 	switch (ap->hsm_task_state) {
1067 	case HSM_ST_FIRST:
1068 		/* Send first data block or PACKET CDB */
1069 
1070 		/* If polling, we will stay in the work queue after
1071 		 * sending the data. Otherwise, interrupt handler
1072 		 * takes over after sending the data.
1073 		 */
1074 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1075 
1076 		/* check device status */
1077 		if (unlikely((status & ATA_DRQ) == 0)) {
1078 			/* handle BSY=0, DRQ=0 as error */
1079 			if (likely(status & (ATA_ERR | ATA_DF)))
1080 				/* device stops HSM for abort/error */
1081 				qc->err_mask |= AC_ERR_DEV;
1082 			else {
1083 				/* HSM violation. Let EH handle this */
1084 				ata_ehi_push_desc(ehi,
1085 					"ST_FIRST: !(DRQ|ERR|DF)");
1086 				qc->err_mask |= AC_ERR_HSM;
1087 			}
1088 
1089 			ap->hsm_task_state = HSM_ST_ERR;
1090 			goto fsm_start;
1091 		}
1092 
1093 		/* Device should not ask for data transfer (DRQ=1)
1094 		 * when it finds something wrong.
1095 		 * We ignore DRQ here and stop the HSM by
1096 		 * changing hsm_task_state to HSM_ST_ERR and
1097 		 * let the EH abort the command or reset the device.
1098 		 */
1099 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1100 			/* Some ATAPI tape drives forget to clear the ERR bit
1101 			 * when doing the next command (mostly request sense).
1102 			 * We ignore ERR here to workaround and proceed sending
1103 			 * the CDB.
1104 			 */
1105 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1106 				ata_ehi_push_desc(ehi, "ST_FIRST: "
1107 					"DRQ=1 with device error, "
1108 					"dev_stat 0x%X", status);
1109 				qc->err_mask |= AC_ERR_HSM;
1110 				ap->hsm_task_state = HSM_ST_ERR;
1111 				goto fsm_start;
1112 			}
1113 		}
1114 
1115 		if (qc->tf.protocol == ATA_PROT_PIO) {
1116 			/* PIO data out protocol.
1117 			 * send first data block.
1118 			 */
1119 
1120 			/* ata_pio_sectors() might change the state
1121 			 * to HSM_ST_LAST. so, the state is changed here
1122 			 * before ata_pio_sectors().
1123 			 */
1124 			ap->hsm_task_state = HSM_ST;
1125 			ata_pio_sectors(qc);
1126 		} else
1127 			/* send CDB */
1128 			atapi_send_cdb(ap, qc);
1129 
1130 		/* if polling, ata_sff_pio_task() handles the rest.
1131 		 * otherwise, interrupt handler takes over from here.
1132 		 */
1133 		break;
1134 
1135 	case HSM_ST:
1136 		/* complete command or read/write the data register */
1137 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1138 			/* ATAPI PIO protocol */
1139 			if ((status & ATA_DRQ) == 0) {
1140 				/* No more data to transfer or device error.
1141 				 * Device error will be tagged in HSM_ST_LAST.
1142 				 */
1143 				ap->hsm_task_state = HSM_ST_LAST;
1144 				goto fsm_start;
1145 			}
1146 
1147 			/* Device should not ask for data transfer (DRQ=1)
1148 			 * when it finds something wrong.
1149 			 * We ignore DRQ here and stop the HSM by
1150 			 * changing hsm_task_state to HSM_ST_ERR and
1151 			 * let the EH abort the command or reset the device.
1152 			 */
1153 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1154 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1155 					"DRQ=1 with device error, "
1156 					"dev_stat 0x%X", status);
1157 				qc->err_mask |= AC_ERR_HSM;
1158 				ap->hsm_task_state = HSM_ST_ERR;
1159 				goto fsm_start;
1160 			}
1161 
1162 			atapi_pio_bytes(qc);
1163 
1164 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1165 				/* bad ireason reported by device */
1166 				goto fsm_start;
1167 
1168 		} else {
1169 			/* ATA PIO protocol */
1170 			if (unlikely((status & ATA_DRQ) == 0)) {
1171 				/* handle BSY=0, DRQ=0 as error */
1172 				if (likely(status & (ATA_ERR | ATA_DF))) {
1173 					/* device stops HSM for abort/error */
1174 					qc->err_mask |= AC_ERR_DEV;
1175 
1176 					/* If diagnostic failed and this is
1177 					 * IDENTIFY, it's likely a phantom
1178 					 * device.  Mark hint.
1179 					 */
1180 					if (qc->dev->horkage &
1181 					    ATA_HORKAGE_DIAGNOSTIC)
1182 						qc->err_mask |=
1183 							AC_ERR_NODEV_HINT;
1184 				} else {
1185 					/* HSM violation. Let EH handle this.
1186 					 * Phantom devices also trigger this
1187 					 * condition.  Mark hint.
1188 					 */
1189 					ata_ehi_push_desc(ehi, "ST-ATA: "
1190 						"DRQ=0 without device error, "
1191 						"dev_stat 0x%X", status);
1192 					qc->err_mask |= AC_ERR_HSM |
1193 							AC_ERR_NODEV_HINT;
1194 				}
1195 
1196 				ap->hsm_task_state = HSM_ST_ERR;
1197 				goto fsm_start;
1198 			}
1199 
1200 			/* For PIO reads, some devices may ask for
1201 			 * data transfer (DRQ=1) alone with ERR=1.
1202 			 * We respect DRQ here and transfer one
1203 			 * block of junk data before changing the
1204 			 * hsm_task_state to HSM_ST_ERR.
1205 			 *
1206 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1207 			 * sense since the data block has been
1208 			 * transferred to the device.
1209 			 */
1210 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1211 				/* data might be corrputed */
1212 				qc->err_mask |= AC_ERR_DEV;
1213 
1214 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1215 					ata_pio_sectors(qc);
1216 					status = ata_wait_idle(ap);
1217 				}
1218 
1219 				if (status & (ATA_BUSY | ATA_DRQ)) {
1220 					ata_ehi_push_desc(ehi, "ST-ATA: "
1221 						"BUSY|DRQ persists on ERR|DF, "
1222 						"dev_stat 0x%X", status);
1223 					qc->err_mask |= AC_ERR_HSM;
1224 				}
1225 
1226 				/* There are oddball controllers with
1227 				 * status register stuck at 0x7f and
1228 				 * lbal/m/h at zero which makes it
1229 				 * pass all other presence detection
1230 				 * mechanisms we have.  Set NODEV_HINT
1231 				 * for it.  Kernel bz#7241.
1232 				 */
1233 				if (status == 0x7f)
1234 					qc->err_mask |= AC_ERR_NODEV_HINT;
1235 
1236 				/* ata_pio_sectors() might change the
1237 				 * state to HSM_ST_LAST. so, the state
1238 				 * is changed after ata_pio_sectors().
1239 				 */
1240 				ap->hsm_task_state = HSM_ST_ERR;
1241 				goto fsm_start;
1242 			}
1243 
1244 			ata_pio_sectors(qc);
1245 
1246 			if (ap->hsm_task_state == HSM_ST_LAST &&
1247 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1248 				/* all data read */
1249 				status = ata_wait_idle(ap);
1250 				goto fsm_start;
1251 			}
1252 		}
1253 
1254 		poll_next = 1;
1255 		break;
1256 
1257 	case HSM_ST_LAST:
1258 		if (unlikely(!ata_ok(status))) {
1259 			qc->err_mask |= __ac_err_mask(status);
1260 			ap->hsm_task_state = HSM_ST_ERR;
1261 			goto fsm_start;
1262 		}
1263 
1264 		/* no more data to transfer */
1265 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1266 			ap->print_id, qc->dev->devno, status);
1267 
1268 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1269 
1270 		ap->hsm_task_state = HSM_ST_IDLE;
1271 
1272 		/* complete taskfile transaction */
1273 		ata_hsm_qc_complete(qc, in_wq);
1274 
1275 		poll_next = 0;
1276 		break;
1277 
1278 	case HSM_ST_ERR:
1279 		ap->hsm_task_state = HSM_ST_IDLE;
1280 
1281 		/* complete taskfile transaction */
1282 		ata_hsm_qc_complete(qc, in_wq);
1283 
1284 		poll_next = 0;
1285 		break;
1286 	default:
1287 		poll_next = 0;
1288 		BUG();
1289 	}
1290 
1291 	return poll_next;
1292 }
1293 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1294 
ata_sff_queue_work(struct work_struct * work)1295 void ata_sff_queue_work(struct work_struct *work)
1296 {
1297 	queue_work(ata_sff_wq, work);
1298 }
1299 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1300 
ata_sff_queue_delayed_work(struct delayed_work * dwork,unsigned long delay)1301 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1302 {
1303 	queue_delayed_work(ata_sff_wq, dwork, delay);
1304 }
1305 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1306 
ata_sff_queue_pio_task(struct ata_link * link,unsigned long delay)1307 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1308 {
1309 	struct ata_port *ap = link->ap;
1310 
1311 	WARN_ON((ap->sff_pio_task_link != NULL) &&
1312 		(ap->sff_pio_task_link != link));
1313 	ap->sff_pio_task_link = link;
1314 
1315 	/* may fail if ata_sff_flush_pio_task() in progress */
1316 	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1317 }
1318 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1319 
ata_sff_flush_pio_task(struct ata_port * ap)1320 void ata_sff_flush_pio_task(struct ata_port *ap)
1321 {
1322 	DPRINTK("ENTER\n");
1323 
1324 	cancel_delayed_work_sync(&ap->sff_pio_task);
1325 
1326 	/*
1327 	 * We wanna reset the HSM state to IDLE.  If we do so without
1328 	 * grabbing the port lock, critical sections protected by it which
1329 	 * expect the HSM state to stay stable may get surprised.  For
1330 	 * example, we may set IDLE in between the time
1331 	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1332 	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1333 	 */
1334 	spin_lock_irq(ap->lock);
1335 	ap->hsm_task_state = HSM_ST_IDLE;
1336 	spin_unlock_irq(ap->lock);
1337 
1338 	ap->sff_pio_task_link = NULL;
1339 
1340 	if (ata_msg_ctl(ap))
1341 		ata_port_dbg(ap, "%s: EXIT\n", __func__);
1342 }
1343 
ata_sff_pio_task(struct work_struct * work)1344 static void ata_sff_pio_task(struct work_struct *work)
1345 {
1346 	struct ata_port *ap =
1347 		container_of(work, struct ata_port, sff_pio_task.work);
1348 	struct ata_link *link = ap->sff_pio_task_link;
1349 	struct ata_queued_cmd *qc;
1350 	u8 status;
1351 	int poll_next;
1352 
1353 	spin_lock_irq(ap->lock);
1354 
1355 	BUG_ON(ap->sff_pio_task_link == NULL);
1356 	/* qc can be NULL if timeout occurred */
1357 	qc = ata_qc_from_tag(ap, link->active_tag);
1358 	if (!qc) {
1359 		ap->sff_pio_task_link = NULL;
1360 		goto out_unlock;
1361 	}
1362 
1363 fsm_start:
1364 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1365 
1366 	/*
1367 	 * This is purely heuristic.  This is a fast path.
1368 	 * Sometimes when we enter, BSY will be cleared in
1369 	 * a chk-status or two.  If not, the drive is probably seeking
1370 	 * or something.  Snooze for a couple msecs, then
1371 	 * chk-status again.  If still busy, queue delayed work.
1372 	 */
1373 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1374 	if (status & ATA_BUSY) {
1375 		spin_unlock_irq(ap->lock);
1376 		ata_msleep(ap, 2);
1377 		spin_lock_irq(ap->lock);
1378 
1379 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1380 		if (status & ATA_BUSY) {
1381 			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1382 			goto out_unlock;
1383 		}
1384 	}
1385 
1386 	/*
1387 	 * hsm_move() may trigger another command to be processed.
1388 	 * clean the link beforehand.
1389 	 */
1390 	ap->sff_pio_task_link = NULL;
1391 	/* move the HSM */
1392 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1393 
1394 	/* another command or interrupt handler
1395 	 * may be running at this point.
1396 	 */
1397 	if (poll_next)
1398 		goto fsm_start;
1399 out_unlock:
1400 	spin_unlock_irq(ap->lock);
1401 }
1402 
1403 /**
1404  *	ata_sff_qc_issue - issue taskfile to a SFF controller
1405  *	@qc: command to issue to device
1406  *
1407  *	This function issues a PIO or NODATA command to a SFF
1408  *	controller.
1409  *
1410  *	LOCKING:
1411  *	spin_lock_irqsave(host lock)
1412  *
1413  *	RETURNS:
1414  *	Zero on success, AC_ERR_* mask on failure
1415  */
ata_sff_qc_issue(struct ata_queued_cmd * qc)1416 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1417 {
1418 	struct ata_port *ap = qc->ap;
1419 	struct ata_link *link = qc->dev->link;
1420 
1421 	/* Use polling pio if the LLD doesn't handle
1422 	 * interrupt driven pio and atapi CDB interrupt.
1423 	 */
1424 	if (ap->flags & ATA_FLAG_PIO_POLLING)
1425 		qc->tf.flags |= ATA_TFLAG_POLLING;
1426 
1427 	/* select the device */
1428 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1429 
1430 	/* start the command */
1431 	switch (qc->tf.protocol) {
1432 	case ATA_PROT_NODATA:
1433 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1434 			ata_qc_set_polling(qc);
1435 
1436 		ata_tf_to_host(ap, &qc->tf);
1437 		ap->hsm_task_state = HSM_ST_LAST;
1438 
1439 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1440 			ata_sff_queue_pio_task(link, 0);
1441 
1442 		break;
1443 
1444 	case ATA_PROT_PIO:
1445 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1446 			ata_qc_set_polling(qc);
1447 
1448 		ata_tf_to_host(ap, &qc->tf);
1449 
1450 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1451 			/* PIO data out protocol */
1452 			ap->hsm_task_state = HSM_ST_FIRST;
1453 			ata_sff_queue_pio_task(link, 0);
1454 
1455 			/* always send first data block using the
1456 			 * ata_sff_pio_task() codepath.
1457 			 */
1458 		} else {
1459 			/* PIO data in protocol */
1460 			ap->hsm_task_state = HSM_ST;
1461 
1462 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1463 				ata_sff_queue_pio_task(link, 0);
1464 
1465 			/* if polling, ata_sff_pio_task() handles the
1466 			 * rest.  otherwise, interrupt handler takes
1467 			 * over from here.
1468 			 */
1469 		}
1470 
1471 		break;
1472 
1473 	case ATAPI_PROT_PIO:
1474 	case ATAPI_PROT_NODATA:
1475 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1476 			ata_qc_set_polling(qc);
1477 
1478 		ata_tf_to_host(ap, &qc->tf);
1479 
1480 		ap->hsm_task_state = HSM_ST_FIRST;
1481 
1482 		/* send cdb by polling if no cdb interrupt */
1483 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1484 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1485 			ata_sff_queue_pio_task(link, 0);
1486 		break;
1487 
1488 	default:
1489 		return AC_ERR_SYSTEM;
1490 	}
1491 
1492 	return 0;
1493 }
1494 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1495 
1496 /**
1497  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1498  *	@qc: qc to fill result TF for
1499  *
1500  *	@qc is finished and result TF needs to be filled.  Fill it
1501  *	using ->sff_tf_read.
1502  *
1503  *	LOCKING:
1504  *	spin_lock_irqsave(host lock)
1505  *
1506  *	RETURNS:
1507  *	true indicating that result TF is successfully filled.
1508  */
ata_sff_qc_fill_rtf(struct ata_queued_cmd * qc)1509 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1510 {
1511 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1512 	return true;
1513 }
1514 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1515 
ata_sff_idle_irq(struct ata_port * ap)1516 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1517 {
1518 	ap->stats.idle_irq++;
1519 
1520 #ifdef ATA_IRQ_TRAP
1521 	if ((ap->stats.idle_irq % 1000) == 0) {
1522 		ap->ops->sff_check_status(ap);
1523 		if (ap->ops->sff_irq_clear)
1524 			ap->ops->sff_irq_clear(ap);
1525 		ata_port_warn(ap, "irq trap\n");
1526 		return 1;
1527 	}
1528 #endif
1529 	return 0;	/* irq not handled */
1530 }
1531 
__ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc,bool hsmv_on_idle)1532 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1533 					struct ata_queued_cmd *qc,
1534 					bool hsmv_on_idle)
1535 {
1536 	u8 status;
1537 
1538 	VPRINTK("ata%u: protocol %d task_state %d\n",
1539 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1540 
1541 	/* Check whether we are expecting interrupt in this state */
1542 	switch (ap->hsm_task_state) {
1543 	case HSM_ST_FIRST:
1544 		/* Some pre-ATAPI-4 devices assert INTRQ
1545 		 * at this state when ready to receive CDB.
1546 		 */
1547 
1548 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1549 		 * The flag was turned on only for atapi devices.  No
1550 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1551 		 */
1552 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1553 			return ata_sff_idle_irq(ap);
1554 		break;
1555 	case HSM_ST_IDLE:
1556 		return ata_sff_idle_irq(ap);
1557 	default:
1558 		break;
1559 	}
1560 
1561 	/* check main status, clearing INTRQ if needed */
1562 	status = ata_sff_irq_status(ap);
1563 	if (status & ATA_BUSY) {
1564 		if (hsmv_on_idle) {
1565 			/* BMDMA engine is already stopped, we're screwed */
1566 			qc->err_mask |= AC_ERR_HSM;
1567 			ap->hsm_task_state = HSM_ST_ERR;
1568 		} else
1569 			return ata_sff_idle_irq(ap);
1570 	}
1571 
1572 	/* clear irq events */
1573 	if (ap->ops->sff_irq_clear)
1574 		ap->ops->sff_irq_clear(ap);
1575 
1576 	ata_sff_hsm_move(ap, qc, status, 0);
1577 
1578 	return 1;	/* irq handled */
1579 }
1580 
1581 /**
1582  *	ata_sff_port_intr - Handle SFF port interrupt
1583  *	@ap: Port on which interrupt arrived (possibly...)
1584  *	@qc: Taskfile currently active in engine
1585  *
1586  *	Handle port interrupt for given queued command.
1587  *
1588  *	LOCKING:
1589  *	spin_lock_irqsave(host lock)
1590  *
1591  *	RETURNS:
1592  *	One if interrupt was handled, zero if not (shared irq).
1593  */
ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)1594 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1595 {
1596 	return __ata_sff_port_intr(ap, qc, false);
1597 }
1598 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1599 
__ata_sff_interrupt(int irq,void * dev_instance,unsigned int (* port_intr)(struct ata_port *,struct ata_queued_cmd *))1600 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1601 	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1602 {
1603 	struct ata_host *host = dev_instance;
1604 	bool retried = false;
1605 	unsigned int i;
1606 	unsigned int handled, idle, polling;
1607 	unsigned long flags;
1608 
1609 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1610 	spin_lock_irqsave(&host->lock, flags);
1611 
1612 retry:
1613 	handled = idle = polling = 0;
1614 	for (i = 0; i < host->n_ports; i++) {
1615 		struct ata_port *ap = host->ports[i];
1616 		struct ata_queued_cmd *qc;
1617 
1618 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1619 		if (qc) {
1620 			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1621 				handled |= port_intr(ap, qc);
1622 			else
1623 				polling |= 1 << i;
1624 		} else
1625 			idle |= 1 << i;
1626 	}
1627 
1628 	/*
1629 	 * If no port was expecting IRQ but the controller is actually
1630 	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1631 	 * pending status if available and clear spurious IRQ.
1632 	 */
1633 	if (!handled && !retried) {
1634 		bool retry = false;
1635 
1636 		for (i = 0; i < host->n_ports; i++) {
1637 			struct ata_port *ap = host->ports[i];
1638 
1639 			if (polling & (1 << i))
1640 				continue;
1641 
1642 			if (!ap->ops->sff_irq_check ||
1643 			    !ap->ops->sff_irq_check(ap))
1644 				continue;
1645 
1646 			if (idle & (1 << i)) {
1647 				ap->ops->sff_check_status(ap);
1648 				if (ap->ops->sff_irq_clear)
1649 					ap->ops->sff_irq_clear(ap);
1650 			} else {
1651 				/* clear INTRQ and check if BUSY cleared */
1652 				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1653 					retry |= true;
1654 				/*
1655 				 * With command in flight, we can't do
1656 				 * sff_irq_clear() w/o racing with completion.
1657 				 */
1658 			}
1659 		}
1660 
1661 		if (retry) {
1662 			retried = true;
1663 			goto retry;
1664 		}
1665 	}
1666 
1667 	spin_unlock_irqrestore(&host->lock, flags);
1668 
1669 	return IRQ_RETVAL(handled);
1670 }
1671 
1672 /**
1673  *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1674  *	@irq: irq line (unused)
1675  *	@dev_instance: pointer to our ata_host information structure
1676  *
1677  *	Default interrupt handler for PCI IDE devices.  Calls
1678  *	ata_sff_port_intr() for each port that is not disabled.
1679  *
1680  *	LOCKING:
1681  *	Obtains host lock during operation.
1682  *
1683  *	RETURNS:
1684  *	IRQ_NONE or IRQ_HANDLED.
1685  */
ata_sff_interrupt(int irq,void * dev_instance)1686 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1687 {
1688 	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1689 }
1690 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1691 
1692 /**
1693  *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1694  *	@ap: port that appears to have timed out
1695  *
1696  *	Called from the libata error handlers when the core code suspects
1697  *	an interrupt has been lost. If it has complete anything we can and
1698  *	then return. Interface must support altstatus for this faster
1699  *	recovery to occur.
1700  *
1701  *	Locking:
1702  *	Caller holds host lock
1703  */
1704 
ata_sff_lost_interrupt(struct ata_port * ap)1705 void ata_sff_lost_interrupt(struct ata_port *ap)
1706 {
1707 	u8 status;
1708 	struct ata_queued_cmd *qc;
1709 
1710 	/* Only one outstanding command per SFF channel */
1711 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1712 	/* We cannot lose an interrupt on a non-existent or polled command */
1713 	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1714 		return;
1715 	/* See if the controller thinks it is still busy - if so the command
1716 	   isn't a lost IRQ but is still in progress */
1717 	status = ata_sff_altstatus(ap);
1718 	if (status & ATA_BUSY)
1719 		return;
1720 
1721 	/* There was a command running, we are no longer busy and we have
1722 	   no interrupt. */
1723 	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1724 								status);
1725 	/* Run the host interrupt logic as if the interrupt had not been
1726 	   lost */
1727 	ata_sff_port_intr(ap, qc);
1728 }
1729 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1730 
1731 /**
1732  *	ata_sff_freeze - Freeze SFF controller port
1733  *	@ap: port to freeze
1734  *
1735  *	Freeze SFF controller port.
1736  *
1737  *	LOCKING:
1738  *	Inherited from caller.
1739  */
ata_sff_freeze(struct ata_port * ap)1740 void ata_sff_freeze(struct ata_port *ap)
1741 {
1742 	ap->ctl |= ATA_NIEN;
1743 	ap->last_ctl = ap->ctl;
1744 
1745 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1746 		ata_sff_set_devctl(ap, ap->ctl);
1747 
1748 	/* Under certain circumstances, some controllers raise IRQ on
1749 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1750 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1751 	 */
1752 	ap->ops->sff_check_status(ap);
1753 
1754 	if (ap->ops->sff_irq_clear)
1755 		ap->ops->sff_irq_clear(ap);
1756 }
1757 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1758 
1759 /**
1760  *	ata_sff_thaw - Thaw SFF controller port
1761  *	@ap: port to thaw
1762  *
1763  *	Thaw SFF controller port.
1764  *
1765  *	LOCKING:
1766  *	Inherited from caller.
1767  */
ata_sff_thaw(struct ata_port * ap)1768 void ata_sff_thaw(struct ata_port *ap)
1769 {
1770 	/* clear & re-enable interrupts */
1771 	ap->ops->sff_check_status(ap);
1772 	if (ap->ops->sff_irq_clear)
1773 		ap->ops->sff_irq_clear(ap);
1774 	ata_sff_irq_on(ap);
1775 }
1776 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1777 
1778 /**
1779  *	ata_sff_prereset - prepare SFF link for reset
1780  *	@link: SFF link to be reset
1781  *	@deadline: deadline jiffies for the operation
1782  *
1783  *	SFF link @link is about to be reset.  Initialize it.  It first
1784  *	calls ata_std_prereset() and wait for !BSY if the port is
1785  *	being softreset.
1786  *
1787  *	LOCKING:
1788  *	Kernel thread context (may sleep)
1789  *
1790  *	RETURNS:
1791  *	0 on success, -errno otherwise.
1792  */
ata_sff_prereset(struct ata_link * link,unsigned long deadline)1793 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1794 {
1795 	struct ata_eh_context *ehc = &link->eh_context;
1796 	int rc;
1797 
1798 	rc = ata_std_prereset(link, deadline);
1799 	if (rc)
1800 		return rc;
1801 
1802 	/* if we're about to do hardreset, nothing more to do */
1803 	if (ehc->i.action & ATA_EH_HARDRESET)
1804 		return 0;
1805 
1806 	/* wait for !BSY if we don't know that no device is attached */
1807 	if (!ata_link_offline(link)) {
1808 		rc = ata_sff_wait_ready(link, deadline);
1809 		if (rc && rc != -ENODEV) {
1810 			ata_link_warn(link,
1811 				      "device not ready (errno=%d), forcing hardreset\n",
1812 				      rc);
1813 			ehc->i.action |= ATA_EH_HARDRESET;
1814 		}
1815 	}
1816 
1817 	return 0;
1818 }
1819 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1820 
1821 /**
1822  *	ata_devchk - PATA device presence detection
1823  *	@ap: ATA channel to examine
1824  *	@device: Device to examine (starting at zero)
1825  *
1826  *	This technique was originally described in
1827  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1828  *	later found its way into the ATA/ATAPI spec.
1829  *
1830  *	Write a pattern to the ATA shadow registers,
1831  *	and if a device is present, it will respond by
1832  *	correctly storing and echoing back the
1833  *	ATA shadow register contents.
1834  *
1835  *	LOCKING:
1836  *	caller.
1837  */
ata_devchk(struct ata_port * ap,unsigned int device)1838 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1839 {
1840 	struct ata_ioports *ioaddr = &ap->ioaddr;
1841 	u8 nsect, lbal;
1842 
1843 	ap->ops->sff_dev_select(ap, device);
1844 
1845 	iowrite8(0x55, ioaddr->nsect_addr);
1846 	iowrite8(0xaa, ioaddr->lbal_addr);
1847 
1848 	iowrite8(0xaa, ioaddr->nsect_addr);
1849 	iowrite8(0x55, ioaddr->lbal_addr);
1850 
1851 	iowrite8(0x55, ioaddr->nsect_addr);
1852 	iowrite8(0xaa, ioaddr->lbal_addr);
1853 
1854 	nsect = ioread8(ioaddr->nsect_addr);
1855 	lbal = ioread8(ioaddr->lbal_addr);
1856 
1857 	if ((nsect == 0x55) && (lbal == 0xaa))
1858 		return 1;	/* we found a device */
1859 
1860 	return 0;		/* nothing found */
1861 }
1862 
1863 /**
1864  *	ata_sff_dev_classify - Parse returned ATA device signature
1865  *	@dev: ATA device to classify (starting at zero)
1866  *	@present: device seems present
1867  *	@r_err: Value of error register on completion
1868  *
1869  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1870  *	an ATA/ATAPI-defined set of values is placed in the ATA
1871  *	shadow registers, indicating the results of device detection
1872  *	and diagnostics.
1873  *
1874  *	Select the ATA device, and read the values from the ATA shadow
1875  *	registers.  Then parse according to the Error register value,
1876  *	and the spec-defined values examined by ata_dev_classify().
1877  *
1878  *	LOCKING:
1879  *	caller.
1880  *
1881  *	RETURNS:
1882  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1883  */
ata_sff_dev_classify(struct ata_device * dev,int present,u8 * r_err)1884 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1885 				  u8 *r_err)
1886 {
1887 	struct ata_port *ap = dev->link->ap;
1888 	struct ata_taskfile tf;
1889 	unsigned int class;
1890 	u8 err;
1891 
1892 	ap->ops->sff_dev_select(ap, dev->devno);
1893 
1894 	memset(&tf, 0, sizeof(tf));
1895 
1896 	ap->ops->sff_tf_read(ap, &tf);
1897 	err = tf.feature;
1898 	if (r_err)
1899 		*r_err = err;
1900 
1901 	/* see if device passed diags: continue and warn later */
1902 	if (err == 0)
1903 		/* diagnostic fail : do nothing _YET_ */
1904 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1905 	else if (err == 1)
1906 		/* do nothing */ ;
1907 	else if ((dev->devno == 0) && (err == 0x81))
1908 		/* do nothing */ ;
1909 	else
1910 		return ATA_DEV_NONE;
1911 
1912 	/* determine if device is ATA or ATAPI */
1913 	class = ata_dev_classify(&tf);
1914 
1915 	if (class == ATA_DEV_UNKNOWN) {
1916 		/* If the device failed diagnostic, it's likely to
1917 		 * have reported incorrect device signature too.
1918 		 * Assume ATA device if the device seems present but
1919 		 * device signature is invalid with diagnostic
1920 		 * failure.
1921 		 */
1922 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1923 			class = ATA_DEV_ATA;
1924 		else
1925 			class = ATA_DEV_NONE;
1926 	} else if ((class == ATA_DEV_ATA) &&
1927 		   (ap->ops->sff_check_status(ap) == 0))
1928 		class = ATA_DEV_NONE;
1929 
1930 	return class;
1931 }
1932 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1933 
1934 /**
1935  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1936  *	@link: SFF link which is just reset
1937  *	@devmask: mask of present devices
1938  *	@deadline: deadline jiffies for the operation
1939  *
1940  *	Wait devices attached to SFF @link to become ready after
1941  *	reset.  It contains preceding 150ms wait to avoid accessing TF
1942  *	status register too early.
1943  *
1944  *	LOCKING:
1945  *	Kernel thread context (may sleep).
1946  *
1947  *	RETURNS:
1948  *	0 on success, -ENODEV if some or all of devices in @devmask
1949  *	don't seem to exist.  -errno on other errors.
1950  */
ata_sff_wait_after_reset(struct ata_link * link,unsigned int devmask,unsigned long deadline)1951 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1952 			     unsigned long deadline)
1953 {
1954 	struct ata_port *ap = link->ap;
1955 	struct ata_ioports *ioaddr = &ap->ioaddr;
1956 	unsigned int dev0 = devmask & (1 << 0);
1957 	unsigned int dev1 = devmask & (1 << 1);
1958 	int rc, ret = 0;
1959 
1960 	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1961 
1962 	/* always check readiness of the master device */
1963 	rc = ata_sff_wait_ready(link, deadline);
1964 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1965 	 * and TF status is 0xff, bail out on it too.
1966 	 */
1967 	if (rc)
1968 		return rc;
1969 
1970 	/* if device 1 was found in ata_devchk, wait for register
1971 	 * access briefly, then wait for BSY to clear.
1972 	 */
1973 	if (dev1) {
1974 		int i;
1975 
1976 		ap->ops->sff_dev_select(ap, 1);
1977 
1978 		/* Wait for register access.  Some ATAPI devices fail
1979 		 * to set nsect/lbal after reset, so don't waste too
1980 		 * much time on it.  We're gonna wait for !BSY anyway.
1981 		 */
1982 		for (i = 0; i < 2; i++) {
1983 			u8 nsect, lbal;
1984 
1985 			nsect = ioread8(ioaddr->nsect_addr);
1986 			lbal = ioread8(ioaddr->lbal_addr);
1987 			if ((nsect == 1) && (lbal == 1))
1988 				break;
1989 			ata_msleep(ap, 50);	/* give drive a breather */
1990 		}
1991 
1992 		rc = ata_sff_wait_ready(link, deadline);
1993 		if (rc) {
1994 			if (rc != -ENODEV)
1995 				return rc;
1996 			ret = rc;
1997 		}
1998 	}
1999 
2000 	/* is all this really necessary? */
2001 	ap->ops->sff_dev_select(ap, 0);
2002 	if (dev1)
2003 		ap->ops->sff_dev_select(ap, 1);
2004 	if (dev0)
2005 		ap->ops->sff_dev_select(ap, 0);
2006 
2007 	return ret;
2008 }
2009 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2010 
ata_bus_softreset(struct ata_port * ap,unsigned int devmask,unsigned long deadline)2011 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2012 			     unsigned long deadline)
2013 {
2014 	struct ata_ioports *ioaddr = &ap->ioaddr;
2015 
2016 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2017 
2018 	if (ap->ioaddr.ctl_addr) {
2019 		/* software reset.  causes dev0 to be selected */
2020 		iowrite8(ap->ctl, ioaddr->ctl_addr);
2021 		udelay(20);	/* FIXME: flush */
2022 		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2023 		udelay(20);	/* FIXME: flush */
2024 		iowrite8(ap->ctl, ioaddr->ctl_addr);
2025 		ap->last_ctl = ap->ctl;
2026 	}
2027 
2028 	/* wait the port to become ready */
2029 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2030 }
2031 
2032 /**
2033  *	ata_sff_softreset - reset host port via ATA SRST
2034  *	@link: ATA link to reset
2035  *	@classes: resulting classes of attached devices
2036  *	@deadline: deadline jiffies for the operation
2037  *
2038  *	Reset host port using ATA SRST.
2039  *
2040  *	LOCKING:
2041  *	Kernel thread context (may sleep)
2042  *
2043  *	RETURNS:
2044  *	0 on success, -errno otherwise.
2045  */
ata_sff_softreset(struct ata_link * link,unsigned int * classes,unsigned long deadline)2046 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2047 		      unsigned long deadline)
2048 {
2049 	struct ata_port *ap = link->ap;
2050 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2051 	unsigned int devmask = 0;
2052 	int rc;
2053 	u8 err;
2054 
2055 	DPRINTK("ENTER\n");
2056 
2057 	/* determine if device 0/1 are present */
2058 	if (ata_devchk(ap, 0))
2059 		devmask |= (1 << 0);
2060 	if (slave_possible && ata_devchk(ap, 1))
2061 		devmask |= (1 << 1);
2062 
2063 	/* select device 0 again */
2064 	ap->ops->sff_dev_select(ap, 0);
2065 
2066 	/* issue bus reset */
2067 	DPRINTK("about to softreset, devmask=%x\n", devmask);
2068 	rc = ata_bus_softreset(ap, devmask, deadline);
2069 	/* if link is occupied, -ENODEV too is an error */
2070 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2071 		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2072 		return rc;
2073 	}
2074 
2075 	/* determine by signature whether we have ATA or ATAPI devices */
2076 	classes[0] = ata_sff_dev_classify(&link->device[0],
2077 					  devmask & (1 << 0), &err);
2078 	if (slave_possible && err != 0x81)
2079 		classes[1] = ata_sff_dev_classify(&link->device[1],
2080 						  devmask & (1 << 1), &err);
2081 
2082 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2083 	return 0;
2084 }
2085 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2086 
2087 /**
2088  *	sata_sff_hardreset - reset host port via SATA phy reset
2089  *	@link: link to reset
2090  *	@class: resulting class of attached device
2091  *	@deadline: deadline jiffies for the operation
2092  *
2093  *	SATA phy-reset host port using DET bits of SControl register,
2094  *	wait for !BSY and classify the attached device.
2095  *
2096  *	LOCKING:
2097  *	Kernel thread context (may sleep)
2098  *
2099  *	RETURNS:
2100  *	0 on success, -errno otherwise.
2101  */
sata_sff_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)2102 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2103 		       unsigned long deadline)
2104 {
2105 	struct ata_eh_context *ehc = &link->eh_context;
2106 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2107 	bool online;
2108 	int rc;
2109 
2110 	rc = sata_link_hardreset(link, timing, deadline, &online,
2111 				 ata_sff_check_ready);
2112 	if (online)
2113 		*class = ata_sff_dev_classify(link->device, 1, NULL);
2114 
2115 	DPRINTK("EXIT, class=%u\n", *class);
2116 	return rc;
2117 }
2118 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2119 
2120 /**
2121  *	ata_sff_postreset - SFF postreset callback
2122  *	@link: the target SFF ata_link
2123  *	@classes: classes of attached devices
2124  *
2125  *	This function is invoked after a successful reset.  It first
2126  *	calls ata_std_postreset() and performs SFF specific postreset
2127  *	processing.
2128  *
2129  *	LOCKING:
2130  *	Kernel thread context (may sleep)
2131  */
ata_sff_postreset(struct ata_link * link,unsigned int * classes)2132 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2133 {
2134 	struct ata_port *ap = link->ap;
2135 
2136 	ata_std_postreset(link, classes);
2137 
2138 	/* is double-select really necessary? */
2139 	if (classes[0] != ATA_DEV_NONE)
2140 		ap->ops->sff_dev_select(ap, 1);
2141 	if (classes[1] != ATA_DEV_NONE)
2142 		ap->ops->sff_dev_select(ap, 0);
2143 
2144 	/* bail out if no device is present */
2145 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2146 		DPRINTK("EXIT, no device\n");
2147 		return;
2148 	}
2149 
2150 	/* set up device control */
2151 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2152 		ata_sff_set_devctl(ap, ap->ctl);
2153 		ap->last_ctl = ap->ctl;
2154 	}
2155 }
2156 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2157 
2158 /**
2159  *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2160  *	@qc: command
2161  *
2162  *	Drain the FIFO and device of any stuck data following a command
2163  *	failing to complete. In some cases this is necessary before a
2164  *	reset will recover the device.
2165  *
2166  */
2167 
ata_sff_drain_fifo(struct ata_queued_cmd * qc)2168 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2169 {
2170 	int count;
2171 	struct ata_port *ap;
2172 
2173 	/* We only need to flush incoming data when a command was running */
2174 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2175 		return;
2176 
2177 	ap = qc->ap;
2178 	/* Drain up to 64K of data before we give up this recovery method */
2179 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2180 						&& count < 65536; count += 2)
2181 		ioread16(ap->ioaddr.data_addr);
2182 
2183 	/* Can become DEBUG later */
2184 	if (count)
2185 		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2186 
2187 }
2188 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2189 
2190 /**
2191  *	ata_sff_error_handler - Stock error handler for SFF controller
2192  *	@ap: port to handle error for
2193  *
2194  *	Stock error handler for SFF controller.  It can handle both
2195  *	PATA and SATA controllers.  Many controllers should be able to
2196  *	use this EH as-is or with some added handling before and
2197  *	after.
2198  *
2199  *	LOCKING:
2200  *	Kernel thread context (may sleep)
2201  */
ata_sff_error_handler(struct ata_port * ap)2202 void ata_sff_error_handler(struct ata_port *ap)
2203 {
2204 	ata_reset_fn_t softreset = ap->ops->softreset;
2205 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2206 	struct ata_queued_cmd *qc;
2207 	unsigned long flags;
2208 
2209 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2210 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2211 		qc = NULL;
2212 
2213 	spin_lock_irqsave(ap->lock, flags);
2214 
2215 	/*
2216 	 * We *MUST* do FIFO draining before we issue a reset as
2217 	 * several devices helpfully clear their internal state and
2218 	 * will lock solid if we touch the data port post reset. Pass
2219 	 * qc in case anyone wants to do different PIO/DMA recovery or
2220 	 * has per command fixups
2221 	 */
2222 	if (ap->ops->sff_drain_fifo)
2223 		ap->ops->sff_drain_fifo(qc);
2224 
2225 	spin_unlock_irqrestore(ap->lock, flags);
2226 
2227 	/* ignore built-in hardresets if SCR access is not available */
2228 	if ((hardreset == sata_std_hardreset ||
2229 	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2230 		hardreset = NULL;
2231 
2232 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2233 		  ap->ops->postreset);
2234 }
2235 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2236 
2237 /**
2238  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2239  *	@ioaddr: IO address structure to be initialized
2240  *
2241  *	Utility function which initializes data_addr, error_addr,
2242  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2243  *	device_addr, status_addr, and command_addr to standard offsets
2244  *	relative to cmd_addr.
2245  *
2246  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2247  */
ata_sff_std_ports(struct ata_ioports * ioaddr)2248 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2249 {
2250 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2251 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2252 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2253 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2254 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2255 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2256 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2257 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2258 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2259 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2260 }
2261 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2262 
2263 #ifdef CONFIG_PCI
2264 
ata_resources_present(struct pci_dev * pdev,int port)2265 static int ata_resources_present(struct pci_dev *pdev, int port)
2266 {
2267 	int i;
2268 
2269 	/* Check the PCI resources for this channel are enabled */
2270 	port = port * 2;
2271 	for (i = 0; i < 2; i++) {
2272 		if (pci_resource_start(pdev, port + i) == 0 ||
2273 		    pci_resource_len(pdev, port + i) == 0)
2274 			return 0;
2275 	}
2276 	return 1;
2277 }
2278 
2279 /**
2280  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2281  *	@host: target ATA host
2282  *
2283  *	Acquire native PCI ATA resources for @host and initialize the
2284  *	first two ports of @host accordingly.  Ports marked dummy are
2285  *	skipped and allocation failure makes the port dummy.
2286  *
2287  *	Note that native PCI resources are valid even for legacy hosts
2288  *	as we fix up pdev resources array early in boot, so this
2289  *	function can be used for both native and legacy SFF hosts.
2290  *
2291  *	LOCKING:
2292  *	Inherited from calling layer (may sleep).
2293  *
2294  *	RETURNS:
2295  *	0 if at least one port is initialized, -ENODEV if no port is
2296  *	available.
2297  */
ata_pci_sff_init_host(struct ata_host * host)2298 int ata_pci_sff_init_host(struct ata_host *host)
2299 {
2300 	struct device *gdev = host->dev;
2301 	struct pci_dev *pdev = to_pci_dev(gdev);
2302 	unsigned int mask = 0;
2303 	int i, rc;
2304 
2305 	/* request, iomap BARs and init port addresses accordingly */
2306 	for (i = 0; i < 2; i++) {
2307 		struct ata_port *ap = host->ports[i];
2308 		int base = i * 2;
2309 		void __iomem * const *iomap;
2310 
2311 		if (ata_port_is_dummy(ap))
2312 			continue;
2313 
2314 		/* Discard disabled ports.  Some controllers show
2315 		 * their unused channels this way.  Disabled ports are
2316 		 * made dummy.
2317 		 */
2318 		if (!ata_resources_present(pdev, i)) {
2319 			ap->ops = &ata_dummy_port_ops;
2320 			continue;
2321 		}
2322 
2323 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2324 					dev_driver_string(gdev));
2325 		if (rc) {
2326 			dev_warn(gdev,
2327 				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2328 				 i, rc);
2329 			if (rc == -EBUSY)
2330 				pcim_pin_device(pdev);
2331 			ap->ops = &ata_dummy_port_ops;
2332 			continue;
2333 		}
2334 		host->iomap = iomap = pcim_iomap_table(pdev);
2335 
2336 		ap->ioaddr.cmd_addr = iomap[base];
2337 		ap->ioaddr.altstatus_addr =
2338 		ap->ioaddr.ctl_addr = (void __iomem *)
2339 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2340 		ata_sff_std_ports(&ap->ioaddr);
2341 
2342 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2343 			(unsigned long long)pci_resource_start(pdev, base),
2344 			(unsigned long long)pci_resource_start(pdev, base + 1));
2345 
2346 		mask |= 1 << i;
2347 	}
2348 
2349 	if (!mask) {
2350 		dev_err(gdev, "no available native port\n");
2351 		return -ENODEV;
2352 	}
2353 
2354 	return 0;
2355 }
2356 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2357 
2358 /**
2359  *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2360  *	@pdev: target PCI device
2361  *	@ppi: array of port_info, must be enough for two ports
2362  *	@r_host: out argument for the initialized ATA host
2363  *
2364  *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2365  *	all PCI resources and initialize it accordingly in one go.
2366  *
2367  *	LOCKING:
2368  *	Inherited from calling layer (may sleep).
2369  *
2370  *	RETURNS:
2371  *	0 on success, -errno otherwise.
2372  */
ata_pci_sff_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)2373 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2374 			     const struct ata_port_info * const *ppi,
2375 			     struct ata_host **r_host)
2376 {
2377 	struct ata_host *host;
2378 	int rc;
2379 
2380 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2381 		return -ENOMEM;
2382 
2383 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2384 	if (!host) {
2385 		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2386 		rc = -ENOMEM;
2387 		goto err_out;
2388 	}
2389 
2390 	rc = ata_pci_sff_init_host(host);
2391 	if (rc)
2392 		goto err_out;
2393 
2394 	devres_remove_group(&pdev->dev, NULL);
2395 	*r_host = host;
2396 	return 0;
2397 
2398 err_out:
2399 	devres_release_group(&pdev->dev, NULL);
2400 	return rc;
2401 }
2402 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2403 
2404 /**
2405  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2406  *	@host: target SFF ATA host
2407  *	@irq_handler: irq_handler used when requesting IRQ(s)
2408  *	@sht: scsi_host_template to use when registering the host
2409  *
2410  *	This is the counterpart of ata_host_activate() for SFF ATA
2411  *	hosts.  This separate helper is necessary because SFF hosts
2412  *	use two separate interrupts in legacy mode.
2413  *
2414  *	LOCKING:
2415  *	Inherited from calling layer (may sleep).
2416  *
2417  *	RETURNS:
2418  *	0 on success, -errno otherwise.
2419  */
ata_pci_sff_activate_host(struct ata_host * host,irq_handler_t irq_handler,struct scsi_host_template * sht)2420 int ata_pci_sff_activate_host(struct ata_host *host,
2421 			      irq_handler_t irq_handler,
2422 			      struct scsi_host_template *sht)
2423 {
2424 	struct device *dev = host->dev;
2425 	struct pci_dev *pdev = to_pci_dev(dev);
2426 	const char *drv_name = dev_driver_string(host->dev);
2427 	int legacy_mode = 0, rc;
2428 
2429 	rc = ata_host_start(host);
2430 	if (rc)
2431 		return rc;
2432 
2433 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2434 		u8 tmp8, mask;
2435 
2436 		/* TODO: What if one channel is in native mode ... */
2437 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2438 		mask = (1 << 2) | (1 << 0);
2439 		if ((tmp8 & mask) != mask)
2440 			legacy_mode = 1;
2441 	}
2442 
2443 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2444 		return -ENOMEM;
2445 
2446 	if (!legacy_mode && pdev->irq) {
2447 		int i;
2448 
2449 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2450 				      IRQF_SHARED, drv_name, host);
2451 		if (rc)
2452 			goto out;
2453 
2454 		for (i = 0; i < 2; i++) {
2455 			if (ata_port_is_dummy(host->ports[i]))
2456 				continue;
2457 			ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2458 		}
2459 	} else if (legacy_mode) {
2460 		if (!ata_port_is_dummy(host->ports[0])) {
2461 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2462 					      irq_handler, IRQF_SHARED,
2463 					      drv_name, host);
2464 			if (rc)
2465 				goto out;
2466 
2467 			ata_port_desc(host->ports[0], "irq %d",
2468 				      ATA_PRIMARY_IRQ(pdev));
2469 		}
2470 
2471 		if (!ata_port_is_dummy(host->ports[1])) {
2472 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2473 					      irq_handler, IRQF_SHARED,
2474 					      drv_name, host);
2475 			if (rc)
2476 				goto out;
2477 
2478 			ata_port_desc(host->ports[1], "irq %d",
2479 				      ATA_SECONDARY_IRQ(pdev));
2480 		}
2481 	}
2482 
2483 	rc = ata_host_register(host, sht);
2484 out:
2485 	if (rc == 0)
2486 		devres_remove_group(dev, NULL);
2487 	else
2488 		devres_release_group(dev, NULL);
2489 
2490 	return rc;
2491 }
2492 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2493 
ata_sff_find_valid_pi(const struct ata_port_info * const * ppi)2494 static const struct ata_port_info *ata_sff_find_valid_pi(
2495 					const struct ata_port_info * const *ppi)
2496 {
2497 	int i;
2498 
2499 	/* look up the first valid port_info */
2500 	for (i = 0; i < 2 && ppi[i]; i++)
2501 		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2502 			return ppi[i];
2503 
2504 	return NULL;
2505 }
2506 
ata_pci_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags,bool bmdma)2507 static int ata_pci_init_one(struct pci_dev *pdev,
2508 		const struct ata_port_info * const *ppi,
2509 		struct scsi_host_template *sht, void *host_priv,
2510 		int hflags, bool bmdma)
2511 {
2512 	struct device *dev = &pdev->dev;
2513 	const struct ata_port_info *pi;
2514 	struct ata_host *host = NULL;
2515 	int rc;
2516 
2517 	DPRINTK("ENTER\n");
2518 
2519 	pi = ata_sff_find_valid_pi(ppi);
2520 	if (!pi) {
2521 		dev_err(&pdev->dev, "no valid port_info specified\n");
2522 		return -EINVAL;
2523 	}
2524 
2525 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2526 		return -ENOMEM;
2527 
2528 	rc = pcim_enable_device(pdev);
2529 	if (rc)
2530 		goto out;
2531 
2532 #ifdef CONFIG_ATA_BMDMA
2533 	if (bmdma)
2534 		/* prepare and activate BMDMA host */
2535 		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2536 	else
2537 #endif
2538 		/* prepare and activate SFF host */
2539 		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2540 	if (rc)
2541 		goto out;
2542 	host->private_data = host_priv;
2543 	host->flags |= hflags;
2544 
2545 #ifdef CONFIG_ATA_BMDMA
2546 	if (bmdma) {
2547 		pci_set_master(pdev);
2548 		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2549 	} else
2550 #endif
2551 		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2552 out:
2553 	if (rc == 0)
2554 		devres_remove_group(&pdev->dev, NULL);
2555 	else
2556 		devres_release_group(&pdev->dev, NULL);
2557 
2558 	return rc;
2559 }
2560 
2561 /**
2562  *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2563  *	@pdev: Controller to be initialized
2564  *	@ppi: array of port_info, must be enough for two ports
2565  *	@sht: scsi_host_template to use when registering the host
2566  *	@host_priv: host private_data
2567  *	@hflag: host flags
2568  *
2569  *	This is a helper function which can be called from a driver's
2570  *	xxx_init_one() probe function if the hardware uses traditional
2571  *	IDE taskfile registers and is PIO only.
2572  *
2573  *	ASSUMPTION:
2574  *	Nobody makes a single channel controller that appears solely as
2575  *	the secondary legacy port on PCI.
2576  *
2577  *	LOCKING:
2578  *	Inherited from PCI layer (may sleep).
2579  *
2580  *	RETURNS:
2581  *	Zero on success, negative on errno-based value on error.
2582  */
ata_pci_sff_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflag)2583 int ata_pci_sff_init_one(struct pci_dev *pdev,
2584 		 const struct ata_port_info * const *ppi,
2585 		 struct scsi_host_template *sht, void *host_priv, int hflag)
2586 {
2587 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2588 }
2589 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2590 
2591 #endif /* CONFIG_PCI */
2592 
2593 /*
2594  *	BMDMA support
2595  */
2596 
2597 #ifdef CONFIG_ATA_BMDMA
2598 
2599 const struct ata_port_operations ata_bmdma_port_ops = {
2600 	.inherits		= &ata_sff_port_ops,
2601 
2602 	.error_handler		= ata_bmdma_error_handler,
2603 	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2604 
2605 	.qc_prep		= ata_bmdma_qc_prep,
2606 	.qc_issue		= ata_bmdma_qc_issue,
2607 
2608 	.sff_irq_clear		= ata_bmdma_irq_clear,
2609 	.bmdma_setup		= ata_bmdma_setup,
2610 	.bmdma_start		= ata_bmdma_start,
2611 	.bmdma_stop		= ata_bmdma_stop,
2612 	.bmdma_status		= ata_bmdma_status,
2613 
2614 	.port_start		= ata_bmdma_port_start,
2615 };
2616 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2617 
2618 const struct ata_port_operations ata_bmdma32_port_ops = {
2619 	.inherits		= &ata_bmdma_port_ops,
2620 
2621 	.sff_data_xfer		= ata_sff_data_xfer32,
2622 	.port_start		= ata_bmdma_port_start32,
2623 };
2624 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2625 
2626 /**
2627  *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2628  *	@qc: Metadata associated with taskfile to be transferred
2629  *
2630  *	Fill PCI IDE PRD (scatter-gather) table with segments
2631  *	associated with the current disk command.
2632  *
2633  *	LOCKING:
2634  *	spin_lock_irqsave(host lock)
2635  *
2636  */
ata_bmdma_fill_sg(struct ata_queued_cmd * qc)2637 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2638 {
2639 	struct ata_port *ap = qc->ap;
2640 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2641 	struct scatterlist *sg;
2642 	unsigned int si, pi;
2643 
2644 	pi = 0;
2645 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2646 		u32 addr, offset;
2647 		u32 sg_len, len;
2648 
2649 		/* determine if physical DMA addr spans 64K boundary.
2650 		 * Note h/w doesn't support 64-bit, so we unconditionally
2651 		 * truncate dma_addr_t to u32.
2652 		 */
2653 		addr = (u32) sg_dma_address(sg);
2654 		sg_len = sg_dma_len(sg);
2655 
2656 		while (sg_len) {
2657 			offset = addr & 0xffff;
2658 			len = sg_len;
2659 			if ((offset + sg_len) > 0x10000)
2660 				len = 0x10000 - offset;
2661 
2662 			prd[pi].addr = cpu_to_le32(addr);
2663 			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2664 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2665 
2666 			pi++;
2667 			sg_len -= len;
2668 			addr += len;
2669 		}
2670 	}
2671 
2672 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2673 }
2674 
2675 /**
2676  *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2677  *	@qc: Metadata associated with taskfile to be transferred
2678  *
2679  *	Fill PCI IDE PRD (scatter-gather) table with segments
2680  *	associated with the current disk command. Perform the fill
2681  *	so that we avoid writing any length 64K records for
2682  *	controllers that don't follow the spec.
2683  *
2684  *	LOCKING:
2685  *	spin_lock_irqsave(host lock)
2686  *
2687  */
ata_bmdma_fill_sg_dumb(struct ata_queued_cmd * qc)2688 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2689 {
2690 	struct ata_port *ap = qc->ap;
2691 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2692 	struct scatterlist *sg;
2693 	unsigned int si, pi;
2694 
2695 	pi = 0;
2696 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2697 		u32 addr, offset;
2698 		u32 sg_len, len, blen;
2699 
2700 		/* determine if physical DMA addr spans 64K boundary.
2701 		 * Note h/w doesn't support 64-bit, so we unconditionally
2702 		 * truncate dma_addr_t to u32.
2703 		 */
2704 		addr = (u32) sg_dma_address(sg);
2705 		sg_len = sg_dma_len(sg);
2706 
2707 		while (sg_len) {
2708 			offset = addr & 0xffff;
2709 			len = sg_len;
2710 			if ((offset + sg_len) > 0x10000)
2711 				len = 0x10000 - offset;
2712 
2713 			blen = len & 0xffff;
2714 			prd[pi].addr = cpu_to_le32(addr);
2715 			if (blen == 0) {
2716 				/* Some PATA chipsets like the CS5530 can't
2717 				   cope with 0x0000 meaning 64K as the spec
2718 				   says */
2719 				prd[pi].flags_len = cpu_to_le32(0x8000);
2720 				blen = 0x8000;
2721 				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2722 			}
2723 			prd[pi].flags_len = cpu_to_le32(blen);
2724 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2725 
2726 			pi++;
2727 			sg_len -= len;
2728 			addr += len;
2729 		}
2730 	}
2731 
2732 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2733 }
2734 
2735 /**
2736  *	ata_bmdma_qc_prep - Prepare taskfile for submission
2737  *	@qc: Metadata associated with taskfile to be prepared
2738  *
2739  *	Prepare ATA taskfile for submission.
2740  *
2741  *	LOCKING:
2742  *	spin_lock_irqsave(host lock)
2743  */
ata_bmdma_qc_prep(struct ata_queued_cmd * qc)2744 enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2745 {
2746 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2747 		return AC_ERR_OK;
2748 
2749 	ata_bmdma_fill_sg(qc);
2750 
2751 	return AC_ERR_OK;
2752 }
2753 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2754 
2755 /**
2756  *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2757  *	@qc: Metadata associated with taskfile to be prepared
2758  *
2759  *	Prepare ATA taskfile for submission.
2760  *
2761  *	LOCKING:
2762  *	spin_lock_irqsave(host lock)
2763  */
ata_bmdma_dumb_qc_prep(struct ata_queued_cmd * qc)2764 enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2765 {
2766 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2767 		return AC_ERR_OK;
2768 
2769 	ata_bmdma_fill_sg_dumb(qc);
2770 
2771 	return AC_ERR_OK;
2772 }
2773 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2774 
2775 /**
2776  *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2777  *	@qc: command to issue to device
2778  *
2779  *	This function issues a PIO, NODATA or DMA command to a
2780  *	SFF/BMDMA controller.  PIO and NODATA are handled by
2781  *	ata_sff_qc_issue().
2782  *
2783  *	LOCKING:
2784  *	spin_lock_irqsave(host lock)
2785  *
2786  *	RETURNS:
2787  *	Zero on success, AC_ERR_* mask on failure
2788  */
ata_bmdma_qc_issue(struct ata_queued_cmd * qc)2789 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2790 {
2791 	struct ata_port *ap = qc->ap;
2792 	struct ata_link *link = qc->dev->link;
2793 
2794 	/* defer PIO handling to sff_qc_issue */
2795 	if (!ata_is_dma(qc->tf.protocol))
2796 		return ata_sff_qc_issue(qc);
2797 
2798 	/* select the device */
2799 	ata_dev_select(ap, qc->dev->devno, 1, 0);
2800 
2801 	/* start the command */
2802 	switch (qc->tf.protocol) {
2803 	case ATA_PROT_DMA:
2804 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2805 
2806 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2807 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2808 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2809 		ap->hsm_task_state = HSM_ST_LAST;
2810 		break;
2811 
2812 	case ATAPI_PROT_DMA:
2813 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2814 
2815 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2816 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2817 		ap->hsm_task_state = HSM_ST_FIRST;
2818 
2819 		/* send cdb by polling if no cdb interrupt */
2820 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2821 			ata_sff_queue_pio_task(link, 0);
2822 		break;
2823 
2824 	default:
2825 		WARN_ON(1);
2826 		return AC_ERR_SYSTEM;
2827 	}
2828 
2829 	return 0;
2830 }
2831 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2832 
2833 /**
2834  *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2835  *	@ap: Port on which interrupt arrived (possibly...)
2836  *	@qc: Taskfile currently active in engine
2837  *
2838  *	Handle port interrupt for given queued command.
2839  *
2840  *	LOCKING:
2841  *	spin_lock_irqsave(host lock)
2842  *
2843  *	RETURNS:
2844  *	One if interrupt was handled, zero if not (shared irq).
2845  */
ata_bmdma_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)2846 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2847 {
2848 	struct ata_eh_info *ehi = &ap->link.eh_info;
2849 	u8 host_stat = 0;
2850 	bool bmdma_stopped = false;
2851 	unsigned int handled;
2852 
2853 	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2854 		/* check status of DMA engine */
2855 		host_stat = ap->ops->bmdma_status(ap);
2856 		VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2857 
2858 		/* if it's not our irq... */
2859 		if (!(host_stat & ATA_DMA_INTR))
2860 			return ata_sff_idle_irq(ap);
2861 
2862 		/* before we do anything else, clear DMA-Start bit */
2863 		ap->ops->bmdma_stop(qc);
2864 		bmdma_stopped = true;
2865 
2866 		if (unlikely(host_stat & ATA_DMA_ERR)) {
2867 			/* error when transferring data to/from memory */
2868 			qc->err_mask |= AC_ERR_HOST_BUS;
2869 			ap->hsm_task_state = HSM_ST_ERR;
2870 		}
2871 	}
2872 
2873 	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2874 
2875 	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2876 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2877 
2878 	return handled;
2879 }
2880 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2881 
2882 /**
2883  *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2884  *	@irq: irq line (unused)
2885  *	@dev_instance: pointer to our ata_host information structure
2886  *
2887  *	Default interrupt handler for PCI IDE devices.  Calls
2888  *	ata_bmdma_port_intr() for each port that is not disabled.
2889  *
2890  *	LOCKING:
2891  *	Obtains host lock during operation.
2892  *
2893  *	RETURNS:
2894  *	IRQ_NONE or IRQ_HANDLED.
2895  */
ata_bmdma_interrupt(int irq,void * dev_instance)2896 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2897 {
2898 	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2899 }
2900 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2901 
2902 /**
2903  *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2904  *	@ap: port to handle error for
2905  *
2906  *	Stock error handler for BMDMA controller.  It can handle both
2907  *	PATA and SATA controllers.  Most BMDMA controllers should be
2908  *	able to use this EH as-is or with some added handling before
2909  *	and after.
2910  *
2911  *	LOCKING:
2912  *	Kernel thread context (may sleep)
2913  */
ata_bmdma_error_handler(struct ata_port * ap)2914 void ata_bmdma_error_handler(struct ata_port *ap)
2915 {
2916 	struct ata_queued_cmd *qc;
2917 	unsigned long flags;
2918 	bool thaw = false;
2919 
2920 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2921 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2922 		qc = NULL;
2923 
2924 	/* reset PIO HSM and stop DMA engine */
2925 	spin_lock_irqsave(ap->lock, flags);
2926 
2927 	if (qc && ata_is_dma(qc->tf.protocol)) {
2928 		u8 host_stat;
2929 
2930 		host_stat = ap->ops->bmdma_status(ap);
2931 
2932 		/* BMDMA controllers indicate host bus error by
2933 		 * setting DMA_ERR bit and timing out.  As it wasn't
2934 		 * really a timeout event, adjust error mask and
2935 		 * cancel frozen state.
2936 		 */
2937 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2938 			qc->err_mask = AC_ERR_HOST_BUS;
2939 			thaw = true;
2940 		}
2941 
2942 		ap->ops->bmdma_stop(qc);
2943 
2944 		/* if we're gonna thaw, make sure IRQ is clear */
2945 		if (thaw) {
2946 			ap->ops->sff_check_status(ap);
2947 			if (ap->ops->sff_irq_clear)
2948 				ap->ops->sff_irq_clear(ap);
2949 		}
2950 	}
2951 
2952 	spin_unlock_irqrestore(ap->lock, flags);
2953 
2954 	if (thaw)
2955 		ata_eh_thaw_port(ap);
2956 
2957 	ata_sff_error_handler(ap);
2958 }
2959 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2960 
2961 /**
2962  *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2963  *	@qc: internal command to clean up
2964  *
2965  *	LOCKING:
2966  *	Kernel thread context (may sleep)
2967  */
ata_bmdma_post_internal_cmd(struct ata_queued_cmd * qc)2968 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2969 {
2970 	struct ata_port *ap = qc->ap;
2971 	unsigned long flags;
2972 
2973 	if (ata_is_dma(qc->tf.protocol)) {
2974 		spin_lock_irqsave(ap->lock, flags);
2975 		ap->ops->bmdma_stop(qc);
2976 		spin_unlock_irqrestore(ap->lock, flags);
2977 	}
2978 }
2979 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2980 
2981 /**
2982  *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2983  *	@ap: Port associated with this ATA transaction.
2984  *
2985  *	Clear interrupt and error flags in DMA status register.
2986  *
2987  *	May be used as the irq_clear() entry in ata_port_operations.
2988  *
2989  *	LOCKING:
2990  *	spin_lock_irqsave(host lock)
2991  */
ata_bmdma_irq_clear(struct ata_port * ap)2992 void ata_bmdma_irq_clear(struct ata_port *ap)
2993 {
2994 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2995 
2996 	if (!mmio)
2997 		return;
2998 
2999 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
3000 }
3001 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
3002 
3003 /**
3004  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3005  *	@qc: Info associated with this ATA transaction.
3006  *
3007  *	LOCKING:
3008  *	spin_lock_irqsave(host lock)
3009  */
ata_bmdma_setup(struct ata_queued_cmd * qc)3010 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3011 {
3012 	struct ata_port *ap = qc->ap;
3013 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3014 	u8 dmactl;
3015 
3016 	/* load PRD table addr. */
3017 	mb();	/* make sure PRD table writes are visible to controller */
3018 	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3019 
3020 	/* specify data direction, triple-check start bit is clear */
3021 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3022 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3023 	if (!rw)
3024 		dmactl |= ATA_DMA_WR;
3025 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3026 
3027 	/* issue r/w command */
3028 	ap->ops->sff_exec_command(ap, &qc->tf);
3029 }
3030 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3031 
3032 /**
3033  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
3034  *	@qc: Info associated with this ATA transaction.
3035  *
3036  *	LOCKING:
3037  *	spin_lock_irqsave(host lock)
3038  */
ata_bmdma_start(struct ata_queued_cmd * qc)3039 void ata_bmdma_start(struct ata_queued_cmd *qc)
3040 {
3041 	struct ata_port *ap = qc->ap;
3042 	u8 dmactl;
3043 
3044 	/* start host DMA transaction */
3045 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3046 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3047 
3048 	/* Strictly, one may wish to issue an ioread8() here, to
3049 	 * flush the mmio write.  However, control also passes
3050 	 * to the hardware at this point, and it will interrupt
3051 	 * us when we are to resume control.  So, in effect,
3052 	 * we don't care when the mmio write flushes.
3053 	 * Further, a read of the DMA status register _immediately_
3054 	 * following the write may not be what certain flaky hardware
3055 	 * is expected, so I think it is best to not add a readb()
3056 	 * without first all the MMIO ATA cards/mobos.
3057 	 * Or maybe I'm just being paranoid.
3058 	 *
3059 	 * FIXME: The posting of this write means I/O starts are
3060 	 * unnecessarily delayed for MMIO
3061 	 */
3062 }
3063 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3064 
3065 /**
3066  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3067  *	@qc: Command we are ending DMA for
3068  *
3069  *	Clears the ATA_DMA_START flag in the dma control register
3070  *
3071  *	May be used as the bmdma_stop() entry in ata_port_operations.
3072  *
3073  *	LOCKING:
3074  *	spin_lock_irqsave(host lock)
3075  */
ata_bmdma_stop(struct ata_queued_cmd * qc)3076 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3077 {
3078 	struct ata_port *ap = qc->ap;
3079 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
3080 
3081 	/* clear start/stop bit */
3082 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3083 		 mmio + ATA_DMA_CMD);
3084 
3085 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3086 	ata_sff_dma_pause(ap);
3087 }
3088 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3089 
3090 /**
3091  *	ata_bmdma_status - Read PCI IDE BMDMA status
3092  *	@ap: Port associated with this ATA transaction.
3093  *
3094  *	Read and return BMDMA status register.
3095  *
3096  *	May be used as the bmdma_status() entry in ata_port_operations.
3097  *
3098  *	LOCKING:
3099  *	spin_lock_irqsave(host lock)
3100  */
ata_bmdma_status(struct ata_port * ap)3101 u8 ata_bmdma_status(struct ata_port *ap)
3102 {
3103 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3104 }
3105 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3106 
3107 
3108 /**
3109  *	ata_bmdma_port_start - Set port up for bmdma.
3110  *	@ap: Port to initialize
3111  *
3112  *	Called just after data structures for each port are
3113  *	initialized.  Allocates space for PRD table.
3114  *
3115  *	May be used as the port_start() entry in ata_port_operations.
3116  *
3117  *	LOCKING:
3118  *	Inherited from caller.
3119  */
ata_bmdma_port_start(struct ata_port * ap)3120 int ata_bmdma_port_start(struct ata_port *ap)
3121 {
3122 	if (ap->mwdma_mask || ap->udma_mask) {
3123 		ap->bmdma_prd =
3124 			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3125 					    &ap->bmdma_prd_dma, GFP_KERNEL);
3126 		if (!ap->bmdma_prd)
3127 			return -ENOMEM;
3128 	}
3129 
3130 	return 0;
3131 }
3132 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3133 
3134 /**
3135  *	ata_bmdma_port_start32 - Set port up for dma.
3136  *	@ap: Port to initialize
3137  *
3138  *	Called just after data structures for each port are
3139  *	initialized.  Enables 32bit PIO and allocates space for PRD
3140  *	table.
3141  *
3142  *	May be used as the port_start() entry in ata_port_operations for
3143  *	devices that are capable of 32bit PIO.
3144  *
3145  *	LOCKING:
3146  *	Inherited from caller.
3147  */
ata_bmdma_port_start32(struct ata_port * ap)3148 int ata_bmdma_port_start32(struct ata_port *ap)
3149 {
3150 	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3151 	return ata_bmdma_port_start(ap);
3152 }
3153 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3154 
3155 #ifdef CONFIG_PCI
3156 
3157 /**
3158  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3159  *	@pdev: PCI device
3160  *
3161  *	Some PCI ATA devices report simplex mode but in fact can be told to
3162  *	enter non simplex mode. This implements the necessary logic to
3163  *	perform the task on such devices. Calling it on other devices will
3164  *	have -undefined- behaviour.
3165  */
ata_pci_bmdma_clear_simplex(struct pci_dev * pdev)3166 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3167 {
3168 	unsigned long bmdma = pci_resource_start(pdev, 4);
3169 	u8 simplex;
3170 
3171 	if (bmdma == 0)
3172 		return -ENOENT;
3173 
3174 	simplex = inb(bmdma + 0x02);
3175 	outb(simplex & 0x60, bmdma + 0x02);
3176 	simplex = inb(bmdma + 0x02);
3177 	if (simplex & 0x80)
3178 		return -EOPNOTSUPP;
3179 	return 0;
3180 }
3181 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3182 
ata_bmdma_nodma(struct ata_host * host,const char * reason)3183 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3184 {
3185 	int i;
3186 
3187 	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3188 
3189 	for (i = 0; i < 2; i++) {
3190 		host->ports[i]->mwdma_mask = 0;
3191 		host->ports[i]->udma_mask = 0;
3192 	}
3193 }
3194 
3195 /**
3196  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3197  *	@host: target ATA host
3198  *
3199  *	Acquire PCI BMDMA resources and initialize @host accordingly.
3200  *
3201  *	LOCKING:
3202  *	Inherited from calling layer (may sleep).
3203  */
ata_pci_bmdma_init(struct ata_host * host)3204 void ata_pci_bmdma_init(struct ata_host *host)
3205 {
3206 	struct device *gdev = host->dev;
3207 	struct pci_dev *pdev = to_pci_dev(gdev);
3208 	int i, rc;
3209 
3210 	/* No BAR4 allocation: No DMA */
3211 	if (pci_resource_start(pdev, 4) == 0) {
3212 		ata_bmdma_nodma(host, "BAR4 is zero");
3213 		return;
3214 	}
3215 
3216 	/*
3217 	 * Some controllers require BMDMA region to be initialized
3218 	 * even if DMA is not in use to clear IRQ status via
3219 	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3220 	 * regardless of dma masks.
3221 	 */
3222 	rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3223 	if (rc)
3224 		ata_bmdma_nodma(host, "failed to set dma mask");
3225 	if (!rc) {
3226 		rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3227 		if (rc)
3228 			ata_bmdma_nodma(host,
3229 					"failed to set consistent dma mask");
3230 	}
3231 
3232 	/* request and iomap DMA region */
3233 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3234 	if (rc) {
3235 		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3236 		return;
3237 	}
3238 	host->iomap = pcim_iomap_table(pdev);
3239 
3240 	for (i = 0; i < 2; i++) {
3241 		struct ata_port *ap = host->ports[i];
3242 		void __iomem *bmdma = host->iomap[4] + 8 * i;
3243 
3244 		if (ata_port_is_dummy(ap))
3245 			continue;
3246 
3247 		ap->ioaddr.bmdma_addr = bmdma;
3248 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3249 		    (ioread8(bmdma + 2) & 0x80))
3250 			host->flags |= ATA_HOST_SIMPLEX;
3251 
3252 		ata_port_desc(ap, "bmdma 0x%llx",
3253 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3254 	}
3255 }
3256 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3257 
3258 /**
3259  *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3260  *	@pdev: target PCI device
3261  *	@ppi: array of port_info, must be enough for two ports
3262  *	@r_host: out argument for the initialized ATA host
3263  *
3264  *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3265  *	resources and initialize it accordingly in one go.
3266  *
3267  *	LOCKING:
3268  *	Inherited from calling layer (may sleep).
3269  *
3270  *	RETURNS:
3271  *	0 on success, -errno otherwise.
3272  */
ata_pci_bmdma_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)3273 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3274 			       const struct ata_port_info * const * ppi,
3275 			       struct ata_host **r_host)
3276 {
3277 	int rc;
3278 
3279 	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3280 	if (rc)
3281 		return rc;
3282 
3283 	ata_pci_bmdma_init(*r_host);
3284 	return 0;
3285 }
3286 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3287 
3288 /**
3289  *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3290  *	@pdev: Controller to be initialized
3291  *	@ppi: array of port_info, must be enough for two ports
3292  *	@sht: scsi_host_template to use when registering the host
3293  *	@host_priv: host private_data
3294  *	@hflags: host flags
3295  *
3296  *	This function is similar to ata_pci_sff_init_one() but also
3297  *	takes care of BMDMA initialization.
3298  *
3299  *	LOCKING:
3300  *	Inherited from PCI layer (may sleep).
3301  *
3302  *	RETURNS:
3303  *	Zero on success, negative on errno-based value on error.
3304  */
ata_pci_bmdma_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags)3305 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3306 			   const struct ata_port_info * const * ppi,
3307 			   struct scsi_host_template *sht, void *host_priv,
3308 			   int hflags)
3309 {
3310 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3311 }
3312 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3313 
3314 #endif /* CONFIG_PCI */
3315 #endif /* CONFIG_ATA_BMDMA */
3316 
3317 /**
3318  *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3319  *	@ap: Port to initialize
3320  *
3321  *	Called on port allocation to initialize SFF/BMDMA specific
3322  *	fields.
3323  *
3324  *	LOCKING:
3325  *	None.
3326  */
ata_sff_port_init(struct ata_port * ap)3327 void ata_sff_port_init(struct ata_port *ap)
3328 {
3329 	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3330 	ap->ctl = ATA_DEVCTL_OBS;
3331 	ap->last_ctl = 0xFF;
3332 }
3333 
ata_sff_init(void)3334 int __init ata_sff_init(void)
3335 {
3336 	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3337 	if (!ata_sff_wq)
3338 		return -ENOMEM;
3339 
3340 	return 0;
3341 }
3342 
ata_sff_exit(void)3343 void ata_sff_exit(void)
3344 {
3345 	destroy_workqueue(ata_sff_wq);
3346 }
3347