1 /*
2 * libata-sff.c - helper library for PCI IDE BMDMA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/module.h>
39 #include <linux/libata.h>
40 #include <linux/highmem.h>
41
42 #include "libata.h"
43
44 static struct workqueue_struct *ata_sff_wq;
45
46 const struct ata_port_operations ata_sff_port_ops = {
47 .inherits = &ata_base_port_ops,
48
49 .qc_prep = ata_noop_qc_prep,
50 .qc_issue = ata_sff_qc_issue,
51 .qc_fill_rtf = ata_sff_qc_fill_rtf,
52
53 .freeze = ata_sff_freeze,
54 .thaw = ata_sff_thaw,
55 .prereset = ata_sff_prereset,
56 .softreset = ata_sff_softreset,
57 .hardreset = sata_sff_hardreset,
58 .postreset = ata_sff_postreset,
59 .error_handler = ata_sff_error_handler,
60
61 .sff_dev_select = ata_sff_dev_select,
62 .sff_check_status = ata_sff_check_status,
63 .sff_tf_load = ata_sff_tf_load,
64 .sff_tf_read = ata_sff_tf_read,
65 .sff_exec_command = ata_sff_exec_command,
66 .sff_data_xfer = ata_sff_data_xfer,
67 .sff_drain_fifo = ata_sff_drain_fifo,
68
69 .lost_interrupt = ata_sff_lost_interrupt,
70 };
71 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
72
73 /**
74 * ata_sff_check_status - Read device status reg & clear interrupt
75 * @ap: port where the device is
76 *
77 * Reads ATA taskfile status register for currently-selected device
78 * and return its value. This also clears pending interrupts
79 * from this device
80 *
81 * LOCKING:
82 * Inherited from caller.
83 */
ata_sff_check_status(struct ata_port * ap)84 u8 ata_sff_check_status(struct ata_port *ap)
85 {
86 return ioread8(ap->ioaddr.status_addr);
87 }
88 EXPORT_SYMBOL_GPL(ata_sff_check_status);
89
90 /**
91 * ata_sff_altstatus - Read device alternate status reg
92 * @ap: port where the device is
93 *
94 * Reads ATA taskfile alternate status register for
95 * currently-selected device and return its value.
96 *
97 * Note: may NOT be used as the check_altstatus() entry in
98 * ata_port_operations.
99 *
100 * LOCKING:
101 * Inherited from caller.
102 */
ata_sff_altstatus(struct ata_port * ap)103 static u8 ata_sff_altstatus(struct ata_port *ap)
104 {
105 if (ap->ops->sff_check_altstatus)
106 return ap->ops->sff_check_altstatus(ap);
107
108 return ioread8(ap->ioaddr.altstatus_addr);
109 }
110
111 /**
112 * ata_sff_irq_status - Check if the device is busy
113 * @ap: port where the device is
114 *
115 * Determine if the port is currently busy. Uses altstatus
116 * if available in order to avoid clearing shared IRQ status
117 * when finding an IRQ source. Non ctl capable devices don't
118 * share interrupt lines fortunately for us.
119 *
120 * LOCKING:
121 * Inherited from caller.
122 */
ata_sff_irq_status(struct ata_port * ap)123 static u8 ata_sff_irq_status(struct ata_port *ap)
124 {
125 u8 status;
126
127 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
128 status = ata_sff_altstatus(ap);
129 /* Not us: We are busy */
130 if (status & ATA_BUSY)
131 return status;
132 }
133 /* Clear INTRQ latch */
134 status = ap->ops->sff_check_status(ap);
135 return status;
136 }
137
138 /**
139 * ata_sff_sync - Flush writes
140 * @ap: Port to wait for.
141 *
142 * CAUTION:
143 * If we have an mmio device with no ctl and no altstatus
144 * method this will fail. No such devices are known to exist.
145 *
146 * LOCKING:
147 * Inherited from caller.
148 */
149
ata_sff_sync(struct ata_port * ap)150 static void ata_sff_sync(struct ata_port *ap)
151 {
152 if (ap->ops->sff_check_altstatus)
153 ap->ops->sff_check_altstatus(ap);
154 else if (ap->ioaddr.altstatus_addr)
155 ioread8(ap->ioaddr.altstatus_addr);
156 }
157
158 /**
159 * ata_sff_pause - Flush writes and wait 400nS
160 * @ap: Port to pause for.
161 *
162 * CAUTION:
163 * If we have an mmio device with no ctl and no altstatus
164 * method this will fail. No such devices are known to exist.
165 *
166 * LOCKING:
167 * Inherited from caller.
168 */
169
ata_sff_pause(struct ata_port * ap)170 void ata_sff_pause(struct ata_port *ap)
171 {
172 ata_sff_sync(ap);
173 ndelay(400);
174 }
175 EXPORT_SYMBOL_GPL(ata_sff_pause);
176
177 /**
178 * ata_sff_dma_pause - Pause before commencing DMA
179 * @ap: Port to pause for.
180 *
181 * Perform I/O fencing and ensure sufficient cycle delays occur
182 * for the HDMA1:0 transition
183 */
184
ata_sff_dma_pause(struct ata_port * ap)185 void ata_sff_dma_pause(struct ata_port *ap)
186 {
187 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
188 /* An altstatus read will cause the needed delay without
189 messing up the IRQ status */
190 ata_sff_altstatus(ap);
191 return;
192 }
193 /* There are no DMA controllers without ctl. BUG here to ensure
194 we never violate the HDMA1:0 transition timing and risk
195 corruption. */
196 BUG();
197 }
198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
199
200 /**
201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
202 * @ap: port containing status register to be polled
203 * @tmout_pat: impatience timeout in msecs
204 * @tmout: overall timeout in msecs
205 *
206 * Sleep until ATA Status register bit BSY clears,
207 * or a timeout occurs.
208 *
209 * LOCKING:
210 * Kernel thread context (may sleep).
211 *
212 * RETURNS:
213 * 0 on success, -errno otherwise.
214 */
ata_sff_busy_sleep(struct ata_port * ap,unsigned long tmout_pat,unsigned long tmout)215 int ata_sff_busy_sleep(struct ata_port *ap,
216 unsigned long tmout_pat, unsigned long tmout)
217 {
218 unsigned long timer_start, timeout;
219 u8 status;
220
221 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
222 timer_start = jiffies;
223 timeout = ata_deadline(timer_start, tmout_pat);
224 while (status != 0xff && (status & ATA_BUSY) &&
225 time_before(jiffies, timeout)) {
226 ata_msleep(ap, 50);
227 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
228 }
229
230 if (status != 0xff && (status & ATA_BUSY))
231 ata_port_warn(ap,
232 "port is slow to respond, please be patient (Status 0x%x)\n",
233 status);
234
235 timeout = ata_deadline(timer_start, tmout);
236 while (status != 0xff && (status & ATA_BUSY) &&
237 time_before(jiffies, timeout)) {
238 ata_msleep(ap, 50);
239 status = ap->ops->sff_check_status(ap);
240 }
241
242 if (status == 0xff)
243 return -ENODEV;
244
245 if (status & ATA_BUSY) {
246 ata_port_err(ap,
247 "port failed to respond (%lu secs, Status 0x%x)\n",
248 DIV_ROUND_UP(tmout, 1000), status);
249 return -EBUSY;
250 }
251
252 return 0;
253 }
254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
255
ata_sff_check_ready(struct ata_link * link)256 static int ata_sff_check_ready(struct ata_link *link)
257 {
258 u8 status = link->ap->ops->sff_check_status(link->ap);
259
260 return ata_check_ready(status);
261 }
262
263 /**
264 * ata_sff_wait_ready - sleep until BSY clears, or timeout
265 * @link: SFF link to wait ready status for
266 * @deadline: deadline jiffies for the operation
267 *
268 * Sleep until ATA Status register bit BSY clears, or timeout
269 * occurs.
270 *
271 * LOCKING:
272 * Kernel thread context (may sleep).
273 *
274 * RETURNS:
275 * 0 on success, -errno otherwise.
276 */
ata_sff_wait_ready(struct ata_link * link,unsigned long deadline)277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
278 {
279 return ata_wait_ready(link, deadline, ata_sff_check_ready);
280 }
281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
282
283 /**
284 * ata_sff_set_devctl - Write device control reg
285 * @ap: port where the device is
286 * @ctl: value to write
287 *
288 * Writes ATA taskfile device control register.
289 *
290 * Note: may NOT be used as the sff_set_devctl() entry in
291 * ata_port_operations.
292 *
293 * LOCKING:
294 * Inherited from caller.
295 */
ata_sff_set_devctl(struct ata_port * ap,u8 ctl)296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
297 {
298 if (ap->ops->sff_set_devctl)
299 ap->ops->sff_set_devctl(ap, ctl);
300 else
301 iowrite8(ctl, ap->ioaddr.ctl_addr);
302 }
303
304 /**
305 * ata_sff_dev_select - Select device 0/1 on ATA bus
306 * @ap: ATA channel to manipulate
307 * @device: ATA device (numbered from zero) to select
308 *
309 * Use the method defined in the ATA specification to
310 * make either device 0, or device 1, active on the
311 * ATA channel. Works with both PIO and MMIO.
312 *
313 * May be used as the dev_select() entry in ata_port_operations.
314 *
315 * LOCKING:
316 * caller.
317 */
ata_sff_dev_select(struct ata_port * ap,unsigned int device)318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
319 {
320 u8 tmp;
321
322 if (device == 0)
323 tmp = ATA_DEVICE_OBS;
324 else
325 tmp = ATA_DEVICE_OBS | ATA_DEV1;
326
327 iowrite8(tmp, ap->ioaddr.device_addr);
328 ata_sff_pause(ap); /* needed; also flushes, for mmio */
329 }
330 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
331
332 /**
333 * ata_dev_select - Select device 0/1 on ATA bus
334 * @ap: ATA channel to manipulate
335 * @device: ATA device (numbered from zero) to select
336 * @wait: non-zero to wait for Status register BSY bit to clear
337 * @can_sleep: non-zero if context allows sleeping
338 *
339 * Use the method defined in the ATA specification to
340 * make either device 0, or device 1, active on the
341 * ATA channel.
342 *
343 * This is a high-level version of ata_sff_dev_select(), which
344 * additionally provides the services of inserting the proper
345 * pauses and status polling, where needed.
346 *
347 * LOCKING:
348 * caller.
349 */
ata_dev_select(struct ata_port * ap,unsigned int device,unsigned int wait,unsigned int can_sleep)350 static void ata_dev_select(struct ata_port *ap, unsigned int device,
351 unsigned int wait, unsigned int can_sleep)
352 {
353 if (ata_msg_probe(ap))
354 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
355 device, wait);
356
357 if (wait)
358 ata_wait_idle(ap);
359
360 ap->ops->sff_dev_select(ap, device);
361
362 if (wait) {
363 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
364 ata_msleep(ap, 150);
365 ata_wait_idle(ap);
366 }
367 }
368
369 /**
370 * ata_sff_irq_on - Enable interrupts on a port.
371 * @ap: Port on which interrupts are enabled.
372 *
373 * Enable interrupts on a legacy IDE device using MMIO or PIO,
374 * wait for idle, clear any pending interrupts.
375 *
376 * Note: may NOT be used as the sff_irq_on() entry in
377 * ata_port_operations.
378 *
379 * LOCKING:
380 * Inherited from caller.
381 */
ata_sff_irq_on(struct ata_port * ap)382 void ata_sff_irq_on(struct ata_port *ap)
383 {
384 struct ata_ioports *ioaddr = &ap->ioaddr;
385
386 if (ap->ops->sff_irq_on) {
387 ap->ops->sff_irq_on(ap);
388 return;
389 }
390
391 ap->ctl &= ~ATA_NIEN;
392 ap->last_ctl = ap->ctl;
393
394 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
395 ata_sff_set_devctl(ap, ap->ctl);
396 ata_wait_idle(ap);
397
398 if (ap->ops->sff_irq_clear)
399 ap->ops->sff_irq_clear(ap);
400 }
401 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
402
403 /**
404 * ata_sff_tf_load - send taskfile registers to host controller
405 * @ap: Port to which output is sent
406 * @tf: ATA taskfile register set
407 *
408 * Outputs ATA taskfile to standard ATA host controller.
409 *
410 * LOCKING:
411 * Inherited from caller.
412 */
ata_sff_tf_load(struct ata_port * ap,const struct ata_taskfile * tf)413 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
414 {
415 struct ata_ioports *ioaddr = &ap->ioaddr;
416 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
417
418 if (tf->ctl != ap->last_ctl) {
419 if (ioaddr->ctl_addr)
420 iowrite8(tf->ctl, ioaddr->ctl_addr);
421 ap->last_ctl = tf->ctl;
422 ata_wait_idle(ap);
423 }
424
425 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
426 WARN_ON_ONCE(!ioaddr->ctl_addr);
427 iowrite8(tf->hob_feature, ioaddr->feature_addr);
428 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
429 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
430 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
431 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
432 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
433 tf->hob_feature,
434 tf->hob_nsect,
435 tf->hob_lbal,
436 tf->hob_lbam,
437 tf->hob_lbah);
438 }
439
440 if (is_addr) {
441 iowrite8(tf->feature, ioaddr->feature_addr);
442 iowrite8(tf->nsect, ioaddr->nsect_addr);
443 iowrite8(tf->lbal, ioaddr->lbal_addr);
444 iowrite8(tf->lbam, ioaddr->lbam_addr);
445 iowrite8(tf->lbah, ioaddr->lbah_addr);
446 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
447 tf->feature,
448 tf->nsect,
449 tf->lbal,
450 tf->lbam,
451 tf->lbah);
452 }
453
454 if (tf->flags & ATA_TFLAG_DEVICE) {
455 iowrite8(tf->device, ioaddr->device_addr);
456 VPRINTK("device 0x%X\n", tf->device);
457 }
458
459 ata_wait_idle(ap);
460 }
461 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
462
463 /**
464 * ata_sff_tf_read - input device's ATA taskfile shadow registers
465 * @ap: Port from which input is read
466 * @tf: ATA taskfile register set for storing input
467 *
468 * Reads ATA taskfile registers for currently-selected device
469 * into @tf. Assumes the device has a fully SFF compliant task file
470 * layout and behaviour. If you device does not (eg has a different
471 * status method) then you will need to provide a replacement tf_read
472 *
473 * LOCKING:
474 * Inherited from caller.
475 */
ata_sff_tf_read(struct ata_port * ap,struct ata_taskfile * tf)476 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
477 {
478 struct ata_ioports *ioaddr = &ap->ioaddr;
479
480 tf->command = ata_sff_check_status(ap);
481 tf->feature = ioread8(ioaddr->error_addr);
482 tf->nsect = ioread8(ioaddr->nsect_addr);
483 tf->lbal = ioread8(ioaddr->lbal_addr);
484 tf->lbam = ioread8(ioaddr->lbam_addr);
485 tf->lbah = ioread8(ioaddr->lbah_addr);
486 tf->device = ioread8(ioaddr->device_addr);
487
488 if (tf->flags & ATA_TFLAG_LBA48) {
489 if (likely(ioaddr->ctl_addr)) {
490 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
491 tf->hob_feature = ioread8(ioaddr->error_addr);
492 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
493 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
494 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
495 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
496 iowrite8(tf->ctl, ioaddr->ctl_addr);
497 ap->last_ctl = tf->ctl;
498 } else
499 WARN_ON_ONCE(1);
500 }
501 }
502 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
503
504 /**
505 * ata_sff_exec_command - issue ATA command to host controller
506 * @ap: port to which command is being issued
507 * @tf: ATA taskfile register set
508 *
509 * Issues ATA command, with proper synchronization with interrupt
510 * handler / other threads.
511 *
512 * LOCKING:
513 * spin_lock_irqsave(host lock)
514 */
ata_sff_exec_command(struct ata_port * ap,const struct ata_taskfile * tf)515 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
516 {
517 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
518
519 iowrite8(tf->command, ap->ioaddr.command_addr);
520 ata_sff_pause(ap);
521 }
522 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
523
524 /**
525 * ata_tf_to_host - issue ATA taskfile to host controller
526 * @ap: port to which command is being issued
527 * @tf: ATA taskfile register set
528 *
529 * Issues ATA taskfile register set to ATA host controller,
530 * with proper synchronization with interrupt handler and
531 * other threads.
532 *
533 * LOCKING:
534 * spin_lock_irqsave(host lock)
535 */
ata_tf_to_host(struct ata_port * ap,const struct ata_taskfile * tf)536 static inline void ata_tf_to_host(struct ata_port *ap,
537 const struct ata_taskfile *tf)
538 {
539 ap->ops->sff_tf_load(ap, tf);
540 ap->ops->sff_exec_command(ap, tf);
541 }
542
543 /**
544 * ata_sff_data_xfer - Transfer data by PIO
545 * @dev: device to target
546 * @buf: data buffer
547 * @buflen: buffer length
548 * @rw: read/write
549 *
550 * Transfer data from/to the device data register by PIO.
551 *
552 * LOCKING:
553 * Inherited from caller.
554 *
555 * RETURNS:
556 * Bytes consumed.
557 */
ata_sff_data_xfer(struct ata_device * dev,unsigned char * buf,unsigned int buflen,int rw)558 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
559 unsigned int buflen, int rw)
560 {
561 struct ata_port *ap = dev->link->ap;
562 void __iomem *data_addr = ap->ioaddr.data_addr;
563 unsigned int words = buflen >> 1;
564
565 /* Transfer multiple of 2 bytes */
566 if (rw == READ)
567 ioread16_rep(data_addr, buf, words);
568 else
569 iowrite16_rep(data_addr, buf, words);
570
571 /* Transfer trailing byte, if any. */
572 if (unlikely(buflen & 0x01)) {
573 unsigned char pad[2] = { };
574
575 /* Point buf to the tail of buffer */
576 buf += buflen - 1;
577
578 /*
579 * Use io*16_rep() accessors here as well to avoid pointlessly
580 * swapping bytes to and from on the big endian machines...
581 */
582 if (rw == READ) {
583 ioread16_rep(data_addr, pad, 1);
584 *buf = pad[0];
585 } else {
586 pad[0] = *buf;
587 iowrite16_rep(data_addr, pad, 1);
588 }
589 words++;
590 }
591
592 return words << 1;
593 }
594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
595
596 /**
597 * ata_sff_data_xfer32 - Transfer data by PIO
598 * @dev: device to target
599 * @buf: data buffer
600 * @buflen: buffer length
601 * @rw: read/write
602 *
603 * Transfer data from/to the device data register by PIO using 32bit
604 * I/O operations.
605 *
606 * LOCKING:
607 * Inherited from caller.
608 *
609 * RETURNS:
610 * Bytes consumed.
611 */
612
ata_sff_data_xfer32(struct ata_device * dev,unsigned char * buf,unsigned int buflen,int rw)613 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
614 unsigned int buflen, int rw)
615 {
616 struct ata_port *ap = dev->link->ap;
617 void __iomem *data_addr = ap->ioaddr.data_addr;
618 unsigned int words = buflen >> 2;
619 int slop = buflen & 3;
620
621 if (!(ap->pflags & ATA_PFLAG_PIO32))
622 return ata_sff_data_xfer(dev, buf, buflen, rw);
623
624 /* Transfer multiple of 4 bytes */
625 if (rw == READ)
626 ioread32_rep(data_addr, buf, words);
627 else
628 iowrite32_rep(data_addr, buf, words);
629
630 /* Transfer trailing bytes, if any */
631 if (unlikely(slop)) {
632 unsigned char pad[4] = { };
633
634 /* Point buf to the tail of buffer */
635 buf += buflen - slop;
636
637 /*
638 * Use io*_rep() accessors here as well to avoid pointlessly
639 * swapping bytes to and from on the big endian machines...
640 */
641 if (rw == READ) {
642 if (slop < 3)
643 ioread16_rep(data_addr, pad, 1);
644 else
645 ioread32_rep(data_addr, pad, 1);
646 memcpy(buf, pad, slop);
647 } else {
648 memcpy(pad, buf, slop);
649 if (slop < 3)
650 iowrite16_rep(data_addr, pad, 1);
651 else
652 iowrite32_rep(data_addr, pad, 1);
653 }
654 }
655 return (buflen + 1) & ~1;
656 }
657 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
658
659 /**
660 * ata_sff_data_xfer_noirq - Transfer data by PIO
661 * @dev: device to target
662 * @buf: data buffer
663 * @buflen: buffer length
664 * @rw: read/write
665 *
666 * Transfer data from/to the device data register by PIO. Do the
667 * transfer with interrupts disabled.
668 *
669 * LOCKING:
670 * Inherited from caller.
671 *
672 * RETURNS:
673 * Bytes consumed.
674 */
ata_sff_data_xfer_noirq(struct ata_device * dev,unsigned char * buf,unsigned int buflen,int rw)675 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
676 unsigned int buflen, int rw)
677 {
678 unsigned long flags;
679 unsigned int consumed;
680
681 local_irq_save(flags);
682 consumed = ata_sff_data_xfer32(dev, buf, buflen, rw);
683 local_irq_restore(flags);
684
685 return consumed;
686 }
687 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
688
689 /**
690 * ata_pio_sector - Transfer a sector of data.
691 * @qc: Command on going
692 *
693 * Transfer qc->sect_size bytes of data from/to the ATA device.
694 *
695 * LOCKING:
696 * Inherited from caller.
697 */
ata_pio_sector(struct ata_queued_cmd * qc)698 static void ata_pio_sector(struct ata_queued_cmd *qc)
699 {
700 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
701 struct ata_port *ap = qc->ap;
702 struct page *page;
703 unsigned int offset;
704 unsigned char *buf;
705
706 if (!qc->cursg) {
707 qc->curbytes = qc->nbytes;
708 return;
709 }
710 if (qc->curbytes == qc->nbytes - qc->sect_size)
711 ap->hsm_task_state = HSM_ST_LAST;
712
713 page = sg_page(qc->cursg);
714 offset = qc->cursg->offset + qc->cursg_ofs;
715
716 /* get the current page and offset */
717 page = nth_page(page, (offset >> PAGE_SHIFT));
718 offset %= PAGE_SIZE;
719
720 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
721
722 if (PageHighMem(page)) {
723 unsigned long flags;
724
725 /* FIXME: use a bounce buffer */
726 local_irq_save(flags);
727 buf = kmap_atomic(page);
728
729 /* do the actual data transfer */
730 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
731 do_write);
732
733 kunmap_atomic(buf);
734 local_irq_restore(flags);
735 } else {
736 buf = page_address(page);
737 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
738 do_write);
739 }
740
741 if (!do_write && !PageSlab(page))
742 flush_dcache_page(page);
743
744 qc->curbytes += qc->sect_size;
745 qc->cursg_ofs += qc->sect_size;
746
747 if (qc->cursg_ofs == qc->cursg->length) {
748 qc->cursg = sg_next(qc->cursg);
749 if (!qc->cursg)
750 ap->hsm_task_state = HSM_ST_LAST;
751 qc->cursg_ofs = 0;
752 }
753 }
754
755 /**
756 * ata_pio_sectors - Transfer one or many sectors.
757 * @qc: Command on going
758 *
759 * Transfer one or many sectors of data from/to the
760 * ATA device for the DRQ request.
761 *
762 * LOCKING:
763 * Inherited from caller.
764 */
ata_pio_sectors(struct ata_queued_cmd * qc)765 static void ata_pio_sectors(struct ata_queued_cmd *qc)
766 {
767 if (is_multi_taskfile(&qc->tf)) {
768 /* READ/WRITE MULTIPLE */
769 unsigned int nsect;
770
771 WARN_ON_ONCE(qc->dev->multi_count == 0);
772
773 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
774 qc->dev->multi_count);
775 while (nsect--)
776 ata_pio_sector(qc);
777 } else
778 ata_pio_sector(qc);
779
780 ata_sff_sync(qc->ap); /* flush */
781 }
782
783 /**
784 * atapi_send_cdb - Write CDB bytes to hardware
785 * @ap: Port to which ATAPI device is attached.
786 * @qc: Taskfile currently active
787 *
788 * When device has indicated its readiness to accept
789 * a CDB, this function is called. Send the CDB.
790 *
791 * LOCKING:
792 * caller.
793 */
atapi_send_cdb(struct ata_port * ap,struct ata_queued_cmd * qc)794 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
795 {
796 /* send SCSI cdb */
797 DPRINTK("send cdb\n");
798 WARN_ON_ONCE(qc->dev->cdb_len < 12);
799
800 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
801 ata_sff_sync(ap);
802 /* FIXME: If the CDB is for DMA do we need to do the transition delay
803 or is bmdma_start guaranteed to do it ? */
804 switch (qc->tf.protocol) {
805 case ATAPI_PROT_PIO:
806 ap->hsm_task_state = HSM_ST;
807 break;
808 case ATAPI_PROT_NODATA:
809 ap->hsm_task_state = HSM_ST_LAST;
810 break;
811 #ifdef CONFIG_ATA_BMDMA
812 case ATAPI_PROT_DMA:
813 ap->hsm_task_state = HSM_ST_LAST;
814 /* initiate bmdma */
815 ap->ops->bmdma_start(qc);
816 break;
817 #endif /* CONFIG_ATA_BMDMA */
818 default:
819 BUG();
820 }
821 }
822
823 /**
824 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
825 * @qc: Command on going
826 * @bytes: number of bytes
827 *
828 * Transfer Transfer data from/to the ATAPI device.
829 *
830 * LOCKING:
831 * Inherited from caller.
832 *
833 */
__atapi_pio_bytes(struct ata_queued_cmd * qc,unsigned int bytes)834 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
835 {
836 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
837 struct ata_port *ap = qc->ap;
838 struct ata_device *dev = qc->dev;
839 struct ata_eh_info *ehi = &dev->link->eh_info;
840 struct scatterlist *sg;
841 struct page *page;
842 unsigned char *buf;
843 unsigned int offset, count, consumed;
844
845 next_sg:
846 sg = qc->cursg;
847 if (unlikely(!sg)) {
848 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
849 "buf=%u cur=%u bytes=%u",
850 qc->nbytes, qc->curbytes, bytes);
851 return -1;
852 }
853
854 page = sg_page(sg);
855 offset = sg->offset + qc->cursg_ofs;
856
857 /* get the current page and offset */
858 page = nth_page(page, (offset >> PAGE_SHIFT));
859 offset %= PAGE_SIZE;
860
861 /* don't overrun current sg */
862 count = min(sg->length - qc->cursg_ofs, bytes);
863
864 /* don't cross page boundaries */
865 count = min(count, (unsigned int)PAGE_SIZE - offset);
866
867 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
868
869 if (PageHighMem(page)) {
870 unsigned long flags;
871
872 /* FIXME: use bounce buffer */
873 local_irq_save(flags);
874 buf = kmap_atomic(page);
875
876 /* do the actual data transfer */
877 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
878 count, rw);
879
880 kunmap_atomic(buf);
881 local_irq_restore(flags);
882 } else {
883 buf = page_address(page);
884 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
885 count, rw);
886 }
887
888 bytes -= min(bytes, consumed);
889 qc->curbytes += count;
890 qc->cursg_ofs += count;
891
892 if (qc->cursg_ofs == sg->length) {
893 qc->cursg = sg_next(qc->cursg);
894 qc->cursg_ofs = 0;
895 }
896
897 /*
898 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
899 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
900 * check correctly as it doesn't know if it is the last request being
901 * made. Somebody should implement a proper sanity check.
902 */
903 if (bytes)
904 goto next_sg;
905 return 0;
906 }
907
908 /**
909 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
910 * @qc: Command on going
911 *
912 * Transfer Transfer data from/to the ATAPI device.
913 *
914 * LOCKING:
915 * Inherited from caller.
916 */
atapi_pio_bytes(struct ata_queued_cmd * qc)917 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
918 {
919 struct ata_port *ap = qc->ap;
920 struct ata_device *dev = qc->dev;
921 struct ata_eh_info *ehi = &dev->link->eh_info;
922 unsigned int ireason, bc_lo, bc_hi, bytes;
923 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
924
925 /* Abuse qc->result_tf for temp storage of intermediate TF
926 * here to save some kernel stack usage.
927 * For normal completion, qc->result_tf is not relevant. For
928 * error, qc->result_tf is later overwritten by ata_qc_complete().
929 * So, the correctness of qc->result_tf is not affected.
930 */
931 ap->ops->sff_tf_read(ap, &qc->result_tf);
932 ireason = qc->result_tf.nsect;
933 bc_lo = qc->result_tf.lbam;
934 bc_hi = qc->result_tf.lbah;
935 bytes = (bc_hi << 8) | bc_lo;
936
937 /* shall be cleared to zero, indicating xfer of data */
938 if (unlikely(ireason & ATAPI_COD))
939 goto atapi_check;
940
941 /* make sure transfer direction matches expected */
942 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
943 if (unlikely(do_write != i_write))
944 goto atapi_check;
945
946 if (unlikely(!bytes))
947 goto atapi_check;
948
949 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
950
951 if (unlikely(__atapi_pio_bytes(qc, bytes)))
952 goto err_out;
953 ata_sff_sync(ap); /* flush */
954
955 return;
956
957 atapi_check:
958 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
959 ireason, bytes);
960 err_out:
961 qc->err_mask |= AC_ERR_HSM;
962 ap->hsm_task_state = HSM_ST_ERR;
963 }
964
965 /**
966 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
967 * @ap: the target ata_port
968 * @qc: qc on going
969 *
970 * RETURNS:
971 * 1 if ok in workqueue, 0 otherwise.
972 */
ata_hsm_ok_in_wq(struct ata_port * ap,struct ata_queued_cmd * qc)973 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
974 struct ata_queued_cmd *qc)
975 {
976 if (qc->tf.flags & ATA_TFLAG_POLLING)
977 return 1;
978
979 if (ap->hsm_task_state == HSM_ST_FIRST) {
980 if (qc->tf.protocol == ATA_PROT_PIO &&
981 (qc->tf.flags & ATA_TFLAG_WRITE))
982 return 1;
983
984 if (ata_is_atapi(qc->tf.protocol) &&
985 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
986 return 1;
987 }
988
989 return 0;
990 }
991
992 /**
993 * ata_hsm_qc_complete - finish a qc running on standard HSM
994 * @qc: Command to complete
995 * @in_wq: 1 if called from workqueue, 0 otherwise
996 *
997 * Finish @qc which is running on standard HSM.
998 *
999 * LOCKING:
1000 * If @in_wq is zero, spin_lock_irqsave(host lock).
1001 * Otherwise, none on entry and grabs host lock.
1002 */
ata_hsm_qc_complete(struct ata_queued_cmd * qc,int in_wq)1003 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
1004 {
1005 struct ata_port *ap = qc->ap;
1006
1007 if (ap->ops->error_handler) {
1008 if (in_wq) {
1009 /* EH might have kicked in while host lock is
1010 * released.
1011 */
1012 qc = ata_qc_from_tag(ap, qc->tag);
1013 if (qc) {
1014 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1015 ata_sff_irq_on(ap);
1016 ata_qc_complete(qc);
1017 } else
1018 ata_port_freeze(ap);
1019 }
1020 } else {
1021 if (likely(!(qc->err_mask & AC_ERR_HSM)))
1022 ata_qc_complete(qc);
1023 else
1024 ata_port_freeze(ap);
1025 }
1026 } else {
1027 if (in_wq) {
1028 ata_sff_irq_on(ap);
1029 ata_qc_complete(qc);
1030 } else
1031 ata_qc_complete(qc);
1032 }
1033 }
1034
1035 /**
1036 * ata_sff_hsm_move - move the HSM to the next state.
1037 * @ap: the target ata_port
1038 * @qc: qc on going
1039 * @status: current device status
1040 * @in_wq: 1 if called from workqueue, 0 otherwise
1041 *
1042 * RETURNS:
1043 * 1 when poll next status needed, 0 otherwise.
1044 */
ata_sff_hsm_move(struct ata_port * ap,struct ata_queued_cmd * qc,u8 status,int in_wq)1045 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1046 u8 status, int in_wq)
1047 {
1048 struct ata_link *link = qc->dev->link;
1049 struct ata_eh_info *ehi = &link->eh_info;
1050 int poll_next;
1051
1052 lockdep_assert_held(ap->lock);
1053
1054 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1055
1056 /* Make sure ata_sff_qc_issue() does not throw things
1057 * like DMA polling into the workqueue. Notice that
1058 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1059 */
1060 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1061
1062 fsm_start:
1063 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1064 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1065
1066 switch (ap->hsm_task_state) {
1067 case HSM_ST_FIRST:
1068 /* Send first data block or PACKET CDB */
1069
1070 /* If polling, we will stay in the work queue after
1071 * sending the data. Otherwise, interrupt handler
1072 * takes over after sending the data.
1073 */
1074 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1075
1076 /* check device status */
1077 if (unlikely((status & ATA_DRQ) == 0)) {
1078 /* handle BSY=0, DRQ=0 as error */
1079 if (likely(status & (ATA_ERR | ATA_DF)))
1080 /* device stops HSM for abort/error */
1081 qc->err_mask |= AC_ERR_DEV;
1082 else {
1083 /* HSM violation. Let EH handle this */
1084 ata_ehi_push_desc(ehi,
1085 "ST_FIRST: !(DRQ|ERR|DF)");
1086 qc->err_mask |= AC_ERR_HSM;
1087 }
1088
1089 ap->hsm_task_state = HSM_ST_ERR;
1090 goto fsm_start;
1091 }
1092
1093 /* Device should not ask for data transfer (DRQ=1)
1094 * when it finds something wrong.
1095 * We ignore DRQ here and stop the HSM by
1096 * changing hsm_task_state to HSM_ST_ERR and
1097 * let the EH abort the command or reset the device.
1098 */
1099 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1100 /* Some ATAPI tape drives forget to clear the ERR bit
1101 * when doing the next command (mostly request sense).
1102 * We ignore ERR here to workaround and proceed sending
1103 * the CDB.
1104 */
1105 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1106 ata_ehi_push_desc(ehi, "ST_FIRST: "
1107 "DRQ=1 with device error, "
1108 "dev_stat 0x%X", status);
1109 qc->err_mask |= AC_ERR_HSM;
1110 ap->hsm_task_state = HSM_ST_ERR;
1111 goto fsm_start;
1112 }
1113 }
1114
1115 if (qc->tf.protocol == ATA_PROT_PIO) {
1116 /* PIO data out protocol.
1117 * send first data block.
1118 */
1119
1120 /* ata_pio_sectors() might change the state
1121 * to HSM_ST_LAST. so, the state is changed here
1122 * before ata_pio_sectors().
1123 */
1124 ap->hsm_task_state = HSM_ST;
1125 ata_pio_sectors(qc);
1126 } else
1127 /* send CDB */
1128 atapi_send_cdb(ap, qc);
1129
1130 /* if polling, ata_sff_pio_task() handles the rest.
1131 * otherwise, interrupt handler takes over from here.
1132 */
1133 break;
1134
1135 case HSM_ST:
1136 /* complete command or read/write the data register */
1137 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1138 /* ATAPI PIO protocol */
1139 if ((status & ATA_DRQ) == 0) {
1140 /* No more data to transfer or device error.
1141 * Device error will be tagged in HSM_ST_LAST.
1142 */
1143 ap->hsm_task_state = HSM_ST_LAST;
1144 goto fsm_start;
1145 }
1146
1147 /* Device should not ask for data transfer (DRQ=1)
1148 * when it finds something wrong.
1149 * We ignore DRQ here and stop the HSM by
1150 * changing hsm_task_state to HSM_ST_ERR and
1151 * let the EH abort the command or reset the device.
1152 */
1153 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1154 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1155 "DRQ=1 with device error, "
1156 "dev_stat 0x%X", status);
1157 qc->err_mask |= AC_ERR_HSM;
1158 ap->hsm_task_state = HSM_ST_ERR;
1159 goto fsm_start;
1160 }
1161
1162 atapi_pio_bytes(qc);
1163
1164 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1165 /* bad ireason reported by device */
1166 goto fsm_start;
1167
1168 } else {
1169 /* ATA PIO protocol */
1170 if (unlikely((status & ATA_DRQ) == 0)) {
1171 /* handle BSY=0, DRQ=0 as error */
1172 if (likely(status & (ATA_ERR | ATA_DF))) {
1173 /* device stops HSM for abort/error */
1174 qc->err_mask |= AC_ERR_DEV;
1175
1176 /* If diagnostic failed and this is
1177 * IDENTIFY, it's likely a phantom
1178 * device. Mark hint.
1179 */
1180 if (qc->dev->horkage &
1181 ATA_HORKAGE_DIAGNOSTIC)
1182 qc->err_mask |=
1183 AC_ERR_NODEV_HINT;
1184 } else {
1185 /* HSM violation. Let EH handle this.
1186 * Phantom devices also trigger this
1187 * condition. Mark hint.
1188 */
1189 ata_ehi_push_desc(ehi, "ST-ATA: "
1190 "DRQ=0 without device error, "
1191 "dev_stat 0x%X", status);
1192 qc->err_mask |= AC_ERR_HSM |
1193 AC_ERR_NODEV_HINT;
1194 }
1195
1196 ap->hsm_task_state = HSM_ST_ERR;
1197 goto fsm_start;
1198 }
1199
1200 /* For PIO reads, some devices may ask for
1201 * data transfer (DRQ=1) alone with ERR=1.
1202 * We respect DRQ here and transfer one
1203 * block of junk data before changing the
1204 * hsm_task_state to HSM_ST_ERR.
1205 *
1206 * For PIO writes, ERR=1 DRQ=1 doesn't make
1207 * sense since the data block has been
1208 * transferred to the device.
1209 */
1210 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1211 /* data might be corrputed */
1212 qc->err_mask |= AC_ERR_DEV;
1213
1214 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1215 ata_pio_sectors(qc);
1216 status = ata_wait_idle(ap);
1217 }
1218
1219 if (status & (ATA_BUSY | ATA_DRQ)) {
1220 ata_ehi_push_desc(ehi, "ST-ATA: "
1221 "BUSY|DRQ persists on ERR|DF, "
1222 "dev_stat 0x%X", status);
1223 qc->err_mask |= AC_ERR_HSM;
1224 }
1225
1226 /* There are oddball controllers with
1227 * status register stuck at 0x7f and
1228 * lbal/m/h at zero which makes it
1229 * pass all other presence detection
1230 * mechanisms we have. Set NODEV_HINT
1231 * for it. Kernel bz#7241.
1232 */
1233 if (status == 0x7f)
1234 qc->err_mask |= AC_ERR_NODEV_HINT;
1235
1236 /* ata_pio_sectors() might change the
1237 * state to HSM_ST_LAST. so, the state
1238 * is changed after ata_pio_sectors().
1239 */
1240 ap->hsm_task_state = HSM_ST_ERR;
1241 goto fsm_start;
1242 }
1243
1244 ata_pio_sectors(qc);
1245
1246 if (ap->hsm_task_state == HSM_ST_LAST &&
1247 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1248 /* all data read */
1249 status = ata_wait_idle(ap);
1250 goto fsm_start;
1251 }
1252 }
1253
1254 poll_next = 1;
1255 break;
1256
1257 case HSM_ST_LAST:
1258 if (unlikely(!ata_ok(status))) {
1259 qc->err_mask |= __ac_err_mask(status);
1260 ap->hsm_task_state = HSM_ST_ERR;
1261 goto fsm_start;
1262 }
1263
1264 /* no more data to transfer */
1265 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1266 ap->print_id, qc->dev->devno, status);
1267
1268 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1269
1270 ap->hsm_task_state = HSM_ST_IDLE;
1271
1272 /* complete taskfile transaction */
1273 ata_hsm_qc_complete(qc, in_wq);
1274
1275 poll_next = 0;
1276 break;
1277
1278 case HSM_ST_ERR:
1279 ap->hsm_task_state = HSM_ST_IDLE;
1280
1281 /* complete taskfile transaction */
1282 ata_hsm_qc_complete(qc, in_wq);
1283
1284 poll_next = 0;
1285 break;
1286 default:
1287 poll_next = 0;
1288 BUG();
1289 }
1290
1291 return poll_next;
1292 }
1293 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1294
ata_sff_queue_work(struct work_struct * work)1295 void ata_sff_queue_work(struct work_struct *work)
1296 {
1297 queue_work(ata_sff_wq, work);
1298 }
1299 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1300
ata_sff_queue_delayed_work(struct delayed_work * dwork,unsigned long delay)1301 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1302 {
1303 queue_delayed_work(ata_sff_wq, dwork, delay);
1304 }
1305 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1306
ata_sff_queue_pio_task(struct ata_link * link,unsigned long delay)1307 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1308 {
1309 struct ata_port *ap = link->ap;
1310
1311 WARN_ON((ap->sff_pio_task_link != NULL) &&
1312 (ap->sff_pio_task_link != link));
1313 ap->sff_pio_task_link = link;
1314
1315 /* may fail if ata_sff_flush_pio_task() in progress */
1316 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1317 }
1318 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1319
ata_sff_flush_pio_task(struct ata_port * ap)1320 void ata_sff_flush_pio_task(struct ata_port *ap)
1321 {
1322 DPRINTK("ENTER\n");
1323
1324 cancel_delayed_work_sync(&ap->sff_pio_task);
1325
1326 /*
1327 * We wanna reset the HSM state to IDLE. If we do so without
1328 * grabbing the port lock, critical sections protected by it which
1329 * expect the HSM state to stay stable may get surprised. For
1330 * example, we may set IDLE in between the time
1331 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1332 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1333 */
1334 spin_lock_irq(ap->lock);
1335 ap->hsm_task_state = HSM_ST_IDLE;
1336 spin_unlock_irq(ap->lock);
1337
1338 ap->sff_pio_task_link = NULL;
1339
1340 if (ata_msg_ctl(ap))
1341 ata_port_dbg(ap, "%s: EXIT\n", __func__);
1342 }
1343
ata_sff_pio_task(struct work_struct * work)1344 static void ata_sff_pio_task(struct work_struct *work)
1345 {
1346 struct ata_port *ap =
1347 container_of(work, struct ata_port, sff_pio_task.work);
1348 struct ata_link *link = ap->sff_pio_task_link;
1349 struct ata_queued_cmd *qc;
1350 u8 status;
1351 int poll_next;
1352
1353 spin_lock_irq(ap->lock);
1354
1355 BUG_ON(ap->sff_pio_task_link == NULL);
1356 /* qc can be NULL if timeout occurred */
1357 qc = ata_qc_from_tag(ap, link->active_tag);
1358 if (!qc) {
1359 ap->sff_pio_task_link = NULL;
1360 goto out_unlock;
1361 }
1362
1363 fsm_start:
1364 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1365
1366 /*
1367 * This is purely heuristic. This is a fast path.
1368 * Sometimes when we enter, BSY will be cleared in
1369 * a chk-status or two. If not, the drive is probably seeking
1370 * or something. Snooze for a couple msecs, then
1371 * chk-status again. If still busy, queue delayed work.
1372 */
1373 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1374 if (status & ATA_BUSY) {
1375 spin_unlock_irq(ap->lock);
1376 ata_msleep(ap, 2);
1377 spin_lock_irq(ap->lock);
1378
1379 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1380 if (status & ATA_BUSY) {
1381 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1382 goto out_unlock;
1383 }
1384 }
1385
1386 /*
1387 * hsm_move() may trigger another command to be processed.
1388 * clean the link beforehand.
1389 */
1390 ap->sff_pio_task_link = NULL;
1391 /* move the HSM */
1392 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1393
1394 /* another command or interrupt handler
1395 * may be running at this point.
1396 */
1397 if (poll_next)
1398 goto fsm_start;
1399 out_unlock:
1400 spin_unlock_irq(ap->lock);
1401 }
1402
1403 /**
1404 * ata_sff_qc_issue - issue taskfile to a SFF controller
1405 * @qc: command to issue to device
1406 *
1407 * This function issues a PIO or NODATA command to a SFF
1408 * controller.
1409 *
1410 * LOCKING:
1411 * spin_lock_irqsave(host lock)
1412 *
1413 * RETURNS:
1414 * Zero on success, AC_ERR_* mask on failure
1415 */
ata_sff_qc_issue(struct ata_queued_cmd * qc)1416 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1417 {
1418 struct ata_port *ap = qc->ap;
1419 struct ata_link *link = qc->dev->link;
1420
1421 /* Use polling pio if the LLD doesn't handle
1422 * interrupt driven pio and atapi CDB interrupt.
1423 */
1424 if (ap->flags & ATA_FLAG_PIO_POLLING)
1425 qc->tf.flags |= ATA_TFLAG_POLLING;
1426
1427 /* select the device */
1428 ata_dev_select(ap, qc->dev->devno, 1, 0);
1429
1430 /* start the command */
1431 switch (qc->tf.protocol) {
1432 case ATA_PROT_NODATA:
1433 if (qc->tf.flags & ATA_TFLAG_POLLING)
1434 ata_qc_set_polling(qc);
1435
1436 ata_tf_to_host(ap, &qc->tf);
1437 ap->hsm_task_state = HSM_ST_LAST;
1438
1439 if (qc->tf.flags & ATA_TFLAG_POLLING)
1440 ata_sff_queue_pio_task(link, 0);
1441
1442 break;
1443
1444 case ATA_PROT_PIO:
1445 if (qc->tf.flags & ATA_TFLAG_POLLING)
1446 ata_qc_set_polling(qc);
1447
1448 ata_tf_to_host(ap, &qc->tf);
1449
1450 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1451 /* PIO data out protocol */
1452 ap->hsm_task_state = HSM_ST_FIRST;
1453 ata_sff_queue_pio_task(link, 0);
1454
1455 /* always send first data block using the
1456 * ata_sff_pio_task() codepath.
1457 */
1458 } else {
1459 /* PIO data in protocol */
1460 ap->hsm_task_state = HSM_ST;
1461
1462 if (qc->tf.flags & ATA_TFLAG_POLLING)
1463 ata_sff_queue_pio_task(link, 0);
1464
1465 /* if polling, ata_sff_pio_task() handles the
1466 * rest. otherwise, interrupt handler takes
1467 * over from here.
1468 */
1469 }
1470
1471 break;
1472
1473 case ATAPI_PROT_PIO:
1474 case ATAPI_PROT_NODATA:
1475 if (qc->tf.flags & ATA_TFLAG_POLLING)
1476 ata_qc_set_polling(qc);
1477
1478 ata_tf_to_host(ap, &qc->tf);
1479
1480 ap->hsm_task_state = HSM_ST_FIRST;
1481
1482 /* send cdb by polling if no cdb interrupt */
1483 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1484 (qc->tf.flags & ATA_TFLAG_POLLING))
1485 ata_sff_queue_pio_task(link, 0);
1486 break;
1487
1488 default:
1489 return AC_ERR_SYSTEM;
1490 }
1491
1492 return 0;
1493 }
1494 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1495
1496 /**
1497 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1498 * @qc: qc to fill result TF for
1499 *
1500 * @qc is finished and result TF needs to be filled. Fill it
1501 * using ->sff_tf_read.
1502 *
1503 * LOCKING:
1504 * spin_lock_irqsave(host lock)
1505 *
1506 * RETURNS:
1507 * true indicating that result TF is successfully filled.
1508 */
ata_sff_qc_fill_rtf(struct ata_queued_cmd * qc)1509 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1510 {
1511 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1512 return true;
1513 }
1514 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1515
ata_sff_idle_irq(struct ata_port * ap)1516 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1517 {
1518 ap->stats.idle_irq++;
1519
1520 #ifdef ATA_IRQ_TRAP
1521 if ((ap->stats.idle_irq % 1000) == 0) {
1522 ap->ops->sff_check_status(ap);
1523 if (ap->ops->sff_irq_clear)
1524 ap->ops->sff_irq_clear(ap);
1525 ata_port_warn(ap, "irq trap\n");
1526 return 1;
1527 }
1528 #endif
1529 return 0; /* irq not handled */
1530 }
1531
__ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc,bool hsmv_on_idle)1532 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1533 struct ata_queued_cmd *qc,
1534 bool hsmv_on_idle)
1535 {
1536 u8 status;
1537
1538 VPRINTK("ata%u: protocol %d task_state %d\n",
1539 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1540
1541 /* Check whether we are expecting interrupt in this state */
1542 switch (ap->hsm_task_state) {
1543 case HSM_ST_FIRST:
1544 /* Some pre-ATAPI-4 devices assert INTRQ
1545 * at this state when ready to receive CDB.
1546 */
1547
1548 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1549 * The flag was turned on only for atapi devices. No
1550 * need to check ata_is_atapi(qc->tf.protocol) again.
1551 */
1552 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1553 return ata_sff_idle_irq(ap);
1554 break;
1555 case HSM_ST_IDLE:
1556 return ata_sff_idle_irq(ap);
1557 default:
1558 break;
1559 }
1560
1561 /* check main status, clearing INTRQ if needed */
1562 status = ata_sff_irq_status(ap);
1563 if (status & ATA_BUSY) {
1564 if (hsmv_on_idle) {
1565 /* BMDMA engine is already stopped, we're screwed */
1566 qc->err_mask |= AC_ERR_HSM;
1567 ap->hsm_task_state = HSM_ST_ERR;
1568 } else
1569 return ata_sff_idle_irq(ap);
1570 }
1571
1572 /* clear irq events */
1573 if (ap->ops->sff_irq_clear)
1574 ap->ops->sff_irq_clear(ap);
1575
1576 ata_sff_hsm_move(ap, qc, status, 0);
1577
1578 return 1; /* irq handled */
1579 }
1580
1581 /**
1582 * ata_sff_port_intr - Handle SFF port interrupt
1583 * @ap: Port on which interrupt arrived (possibly...)
1584 * @qc: Taskfile currently active in engine
1585 *
1586 * Handle port interrupt for given queued command.
1587 *
1588 * LOCKING:
1589 * spin_lock_irqsave(host lock)
1590 *
1591 * RETURNS:
1592 * One if interrupt was handled, zero if not (shared irq).
1593 */
ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)1594 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1595 {
1596 return __ata_sff_port_intr(ap, qc, false);
1597 }
1598 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1599
__ata_sff_interrupt(int irq,void * dev_instance,unsigned int (* port_intr)(struct ata_port *,struct ata_queued_cmd *))1600 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1601 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1602 {
1603 struct ata_host *host = dev_instance;
1604 bool retried = false;
1605 unsigned int i;
1606 unsigned int handled, idle, polling;
1607 unsigned long flags;
1608
1609 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1610 spin_lock_irqsave(&host->lock, flags);
1611
1612 retry:
1613 handled = idle = polling = 0;
1614 for (i = 0; i < host->n_ports; i++) {
1615 struct ata_port *ap = host->ports[i];
1616 struct ata_queued_cmd *qc;
1617
1618 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1619 if (qc) {
1620 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1621 handled |= port_intr(ap, qc);
1622 else
1623 polling |= 1 << i;
1624 } else
1625 idle |= 1 << i;
1626 }
1627
1628 /*
1629 * If no port was expecting IRQ but the controller is actually
1630 * asserting IRQ line, nobody cared will ensue. Check IRQ
1631 * pending status if available and clear spurious IRQ.
1632 */
1633 if (!handled && !retried) {
1634 bool retry = false;
1635
1636 for (i = 0; i < host->n_ports; i++) {
1637 struct ata_port *ap = host->ports[i];
1638
1639 if (polling & (1 << i))
1640 continue;
1641
1642 if (!ap->ops->sff_irq_check ||
1643 !ap->ops->sff_irq_check(ap))
1644 continue;
1645
1646 if (idle & (1 << i)) {
1647 ap->ops->sff_check_status(ap);
1648 if (ap->ops->sff_irq_clear)
1649 ap->ops->sff_irq_clear(ap);
1650 } else {
1651 /* clear INTRQ and check if BUSY cleared */
1652 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1653 retry |= true;
1654 /*
1655 * With command in flight, we can't do
1656 * sff_irq_clear() w/o racing with completion.
1657 */
1658 }
1659 }
1660
1661 if (retry) {
1662 retried = true;
1663 goto retry;
1664 }
1665 }
1666
1667 spin_unlock_irqrestore(&host->lock, flags);
1668
1669 return IRQ_RETVAL(handled);
1670 }
1671
1672 /**
1673 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1674 * @irq: irq line (unused)
1675 * @dev_instance: pointer to our ata_host information structure
1676 *
1677 * Default interrupt handler for PCI IDE devices. Calls
1678 * ata_sff_port_intr() for each port that is not disabled.
1679 *
1680 * LOCKING:
1681 * Obtains host lock during operation.
1682 *
1683 * RETURNS:
1684 * IRQ_NONE or IRQ_HANDLED.
1685 */
ata_sff_interrupt(int irq,void * dev_instance)1686 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1687 {
1688 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1689 }
1690 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1691
1692 /**
1693 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1694 * @ap: port that appears to have timed out
1695 *
1696 * Called from the libata error handlers when the core code suspects
1697 * an interrupt has been lost. If it has complete anything we can and
1698 * then return. Interface must support altstatus for this faster
1699 * recovery to occur.
1700 *
1701 * Locking:
1702 * Caller holds host lock
1703 */
1704
ata_sff_lost_interrupt(struct ata_port * ap)1705 void ata_sff_lost_interrupt(struct ata_port *ap)
1706 {
1707 u8 status;
1708 struct ata_queued_cmd *qc;
1709
1710 /* Only one outstanding command per SFF channel */
1711 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1712 /* We cannot lose an interrupt on a non-existent or polled command */
1713 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1714 return;
1715 /* See if the controller thinks it is still busy - if so the command
1716 isn't a lost IRQ but is still in progress */
1717 status = ata_sff_altstatus(ap);
1718 if (status & ATA_BUSY)
1719 return;
1720
1721 /* There was a command running, we are no longer busy and we have
1722 no interrupt. */
1723 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1724 status);
1725 /* Run the host interrupt logic as if the interrupt had not been
1726 lost */
1727 ata_sff_port_intr(ap, qc);
1728 }
1729 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1730
1731 /**
1732 * ata_sff_freeze - Freeze SFF controller port
1733 * @ap: port to freeze
1734 *
1735 * Freeze SFF controller port.
1736 *
1737 * LOCKING:
1738 * Inherited from caller.
1739 */
ata_sff_freeze(struct ata_port * ap)1740 void ata_sff_freeze(struct ata_port *ap)
1741 {
1742 ap->ctl |= ATA_NIEN;
1743 ap->last_ctl = ap->ctl;
1744
1745 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1746 ata_sff_set_devctl(ap, ap->ctl);
1747
1748 /* Under certain circumstances, some controllers raise IRQ on
1749 * ATA_NIEN manipulation. Also, many controllers fail to mask
1750 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1751 */
1752 ap->ops->sff_check_status(ap);
1753
1754 if (ap->ops->sff_irq_clear)
1755 ap->ops->sff_irq_clear(ap);
1756 }
1757 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1758
1759 /**
1760 * ata_sff_thaw - Thaw SFF controller port
1761 * @ap: port to thaw
1762 *
1763 * Thaw SFF controller port.
1764 *
1765 * LOCKING:
1766 * Inherited from caller.
1767 */
ata_sff_thaw(struct ata_port * ap)1768 void ata_sff_thaw(struct ata_port *ap)
1769 {
1770 /* clear & re-enable interrupts */
1771 ap->ops->sff_check_status(ap);
1772 if (ap->ops->sff_irq_clear)
1773 ap->ops->sff_irq_clear(ap);
1774 ata_sff_irq_on(ap);
1775 }
1776 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1777
1778 /**
1779 * ata_sff_prereset - prepare SFF link for reset
1780 * @link: SFF link to be reset
1781 * @deadline: deadline jiffies for the operation
1782 *
1783 * SFF link @link is about to be reset. Initialize it. It first
1784 * calls ata_std_prereset() and wait for !BSY if the port is
1785 * being softreset.
1786 *
1787 * LOCKING:
1788 * Kernel thread context (may sleep)
1789 *
1790 * RETURNS:
1791 * 0 on success, -errno otherwise.
1792 */
ata_sff_prereset(struct ata_link * link,unsigned long deadline)1793 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1794 {
1795 struct ata_eh_context *ehc = &link->eh_context;
1796 int rc;
1797
1798 rc = ata_std_prereset(link, deadline);
1799 if (rc)
1800 return rc;
1801
1802 /* if we're about to do hardreset, nothing more to do */
1803 if (ehc->i.action & ATA_EH_HARDRESET)
1804 return 0;
1805
1806 /* wait for !BSY if we don't know that no device is attached */
1807 if (!ata_link_offline(link)) {
1808 rc = ata_sff_wait_ready(link, deadline);
1809 if (rc && rc != -ENODEV) {
1810 ata_link_warn(link,
1811 "device not ready (errno=%d), forcing hardreset\n",
1812 rc);
1813 ehc->i.action |= ATA_EH_HARDRESET;
1814 }
1815 }
1816
1817 return 0;
1818 }
1819 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1820
1821 /**
1822 * ata_devchk - PATA device presence detection
1823 * @ap: ATA channel to examine
1824 * @device: Device to examine (starting at zero)
1825 *
1826 * This technique was originally described in
1827 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1828 * later found its way into the ATA/ATAPI spec.
1829 *
1830 * Write a pattern to the ATA shadow registers,
1831 * and if a device is present, it will respond by
1832 * correctly storing and echoing back the
1833 * ATA shadow register contents.
1834 *
1835 * LOCKING:
1836 * caller.
1837 */
ata_devchk(struct ata_port * ap,unsigned int device)1838 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1839 {
1840 struct ata_ioports *ioaddr = &ap->ioaddr;
1841 u8 nsect, lbal;
1842
1843 ap->ops->sff_dev_select(ap, device);
1844
1845 iowrite8(0x55, ioaddr->nsect_addr);
1846 iowrite8(0xaa, ioaddr->lbal_addr);
1847
1848 iowrite8(0xaa, ioaddr->nsect_addr);
1849 iowrite8(0x55, ioaddr->lbal_addr);
1850
1851 iowrite8(0x55, ioaddr->nsect_addr);
1852 iowrite8(0xaa, ioaddr->lbal_addr);
1853
1854 nsect = ioread8(ioaddr->nsect_addr);
1855 lbal = ioread8(ioaddr->lbal_addr);
1856
1857 if ((nsect == 0x55) && (lbal == 0xaa))
1858 return 1; /* we found a device */
1859
1860 return 0; /* nothing found */
1861 }
1862
1863 /**
1864 * ata_sff_dev_classify - Parse returned ATA device signature
1865 * @dev: ATA device to classify (starting at zero)
1866 * @present: device seems present
1867 * @r_err: Value of error register on completion
1868 *
1869 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1870 * an ATA/ATAPI-defined set of values is placed in the ATA
1871 * shadow registers, indicating the results of device detection
1872 * and diagnostics.
1873 *
1874 * Select the ATA device, and read the values from the ATA shadow
1875 * registers. Then parse according to the Error register value,
1876 * and the spec-defined values examined by ata_dev_classify().
1877 *
1878 * LOCKING:
1879 * caller.
1880 *
1881 * RETURNS:
1882 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1883 */
ata_sff_dev_classify(struct ata_device * dev,int present,u8 * r_err)1884 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1885 u8 *r_err)
1886 {
1887 struct ata_port *ap = dev->link->ap;
1888 struct ata_taskfile tf;
1889 unsigned int class;
1890 u8 err;
1891
1892 ap->ops->sff_dev_select(ap, dev->devno);
1893
1894 memset(&tf, 0, sizeof(tf));
1895
1896 ap->ops->sff_tf_read(ap, &tf);
1897 err = tf.feature;
1898 if (r_err)
1899 *r_err = err;
1900
1901 /* see if device passed diags: continue and warn later */
1902 if (err == 0)
1903 /* diagnostic fail : do nothing _YET_ */
1904 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1905 else if (err == 1)
1906 /* do nothing */ ;
1907 else if ((dev->devno == 0) && (err == 0x81))
1908 /* do nothing */ ;
1909 else
1910 return ATA_DEV_NONE;
1911
1912 /* determine if device is ATA or ATAPI */
1913 class = ata_dev_classify(&tf);
1914
1915 if (class == ATA_DEV_UNKNOWN) {
1916 /* If the device failed diagnostic, it's likely to
1917 * have reported incorrect device signature too.
1918 * Assume ATA device if the device seems present but
1919 * device signature is invalid with diagnostic
1920 * failure.
1921 */
1922 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1923 class = ATA_DEV_ATA;
1924 else
1925 class = ATA_DEV_NONE;
1926 } else if ((class == ATA_DEV_ATA) &&
1927 (ap->ops->sff_check_status(ap) == 0))
1928 class = ATA_DEV_NONE;
1929
1930 return class;
1931 }
1932 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1933
1934 /**
1935 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1936 * @link: SFF link which is just reset
1937 * @devmask: mask of present devices
1938 * @deadline: deadline jiffies for the operation
1939 *
1940 * Wait devices attached to SFF @link to become ready after
1941 * reset. It contains preceding 150ms wait to avoid accessing TF
1942 * status register too early.
1943 *
1944 * LOCKING:
1945 * Kernel thread context (may sleep).
1946 *
1947 * RETURNS:
1948 * 0 on success, -ENODEV if some or all of devices in @devmask
1949 * don't seem to exist. -errno on other errors.
1950 */
ata_sff_wait_after_reset(struct ata_link * link,unsigned int devmask,unsigned long deadline)1951 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1952 unsigned long deadline)
1953 {
1954 struct ata_port *ap = link->ap;
1955 struct ata_ioports *ioaddr = &ap->ioaddr;
1956 unsigned int dev0 = devmask & (1 << 0);
1957 unsigned int dev1 = devmask & (1 << 1);
1958 int rc, ret = 0;
1959
1960 ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1961
1962 /* always check readiness of the master device */
1963 rc = ata_sff_wait_ready(link, deadline);
1964 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1965 * and TF status is 0xff, bail out on it too.
1966 */
1967 if (rc)
1968 return rc;
1969
1970 /* if device 1 was found in ata_devchk, wait for register
1971 * access briefly, then wait for BSY to clear.
1972 */
1973 if (dev1) {
1974 int i;
1975
1976 ap->ops->sff_dev_select(ap, 1);
1977
1978 /* Wait for register access. Some ATAPI devices fail
1979 * to set nsect/lbal after reset, so don't waste too
1980 * much time on it. We're gonna wait for !BSY anyway.
1981 */
1982 for (i = 0; i < 2; i++) {
1983 u8 nsect, lbal;
1984
1985 nsect = ioread8(ioaddr->nsect_addr);
1986 lbal = ioread8(ioaddr->lbal_addr);
1987 if ((nsect == 1) && (lbal == 1))
1988 break;
1989 ata_msleep(ap, 50); /* give drive a breather */
1990 }
1991
1992 rc = ata_sff_wait_ready(link, deadline);
1993 if (rc) {
1994 if (rc != -ENODEV)
1995 return rc;
1996 ret = rc;
1997 }
1998 }
1999
2000 /* is all this really necessary? */
2001 ap->ops->sff_dev_select(ap, 0);
2002 if (dev1)
2003 ap->ops->sff_dev_select(ap, 1);
2004 if (dev0)
2005 ap->ops->sff_dev_select(ap, 0);
2006
2007 return ret;
2008 }
2009 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2010
ata_bus_softreset(struct ata_port * ap,unsigned int devmask,unsigned long deadline)2011 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2012 unsigned long deadline)
2013 {
2014 struct ata_ioports *ioaddr = &ap->ioaddr;
2015
2016 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2017
2018 if (ap->ioaddr.ctl_addr) {
2019 /* software reset. causes dev0 to be selected */
2020 iowrite8(ap->ctl, ioaddr->ctl_addr);
2021 udelay(20); /* FIXME: flush */
2022 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2023 udelay(20); /* FIXME: flush */
2024 iowrite8(ap->ctl, ioaddr->ctl_addr);
2025 ap->last_ctl = ap->ctl;
2026 }
2027
2028 /* wait the port to become ready */
2029 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2030 }
2031
2032 /**
2033 * ata_sff_softreset - reset host port via ATA SRST
2034 * @link: ATA link to reset
2035 * @classes: resulting classes of attached devices
2036 * @deadline: deadline jiffies for the operation
2037 *
2038 * Reset host port using ATA SRST.
2039 *
2040 * LOCKING:
2041 * Kernel thread context (may sleep)
2042 *
2043 * RETURNS:
2044 * 0 on success, -errno otherwise.
2045 */
ata_sff_softreset(struct ata_link * link,unsigned int * classes,unsigned long deadline)2046 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2047 unsigned long deadline)
2048 {
2049 struct ata_port *ap = link->ap;
2050 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2051 unsigned int devmask = 0;
2052 int rc;
2053 u8 err;
2054
2055 DPRINTK("ENTER\n");
2056
2057 /* determine if device 0/1 are present */
2058 if (ata_devchk(ap, 0))
2059 devmask |= (1 << 0);
2060 if (slave_possible && ata_devchk(ap, 1))
2061 devmask |= (1 << 1);
2062
2063 /* select device 0 again */
2064 ap->ops->sff_dev_select(ap, 0);
2065
2066 /* issue bus reset */
2067 DPRINTK("about to softreset, devmask=%x\n", devmask);
2068 rc = ata_bus_softreset(ap, devmask, deadline);
2069 /* if link is occupied, -ENODEV too is an error */
2070 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2071 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2072 return rc;
2073 }
2074
2075 /* determine by signature whether we have ATA or ATAPI devices */
2076 classes[0] = ata_sff_dev_classify(&link->device[0],
2077 devmask & (1 << 0), &err);
2078 if (slave_possible && err != 0x81)
2079 classes[1] = ata_sff_dev_classify(&link->device[1],
2080 devmask & (1 << 1), &err);
2081
2082 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2083 return 0;
2084 }
2085 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2086
2087 /**
2088 * sata_sff_hardreset - reset host port via SATA phy reset
2089 * @link: link to reset
2090 * @class: resulting class of attached device
2091 * @deadline: deadline jiffies for the operation
2092 *
2093 * SATA phy-reset host port using DET bits of SControl register,
2094 * wait for !BSY and classify the attached device.
2095 *
2096 * LOCKING:
2097 * Kernel thread context (may sleep)
2098 *
2099 * RETURNS:
2100 * 0 on success, -errno otherwise.
2101 */
sata_sff_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)2102 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2103 unsigned long deadline)
2104 {
2105 struct ata_eh_context *ehc = &link->eh_context;
2106 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2107 bool online;
2108 int rc;
2109
2110 rc = sata_link_hardreset(link, timing, deadline, &online,
2111 ata_sff_check_ready);
2112 if (online)
2113 *class = ata_sff_dev_classify(link->device, 1, NULL);
2114
2115 DPRINTK("EXIT, class=%u\n", *class);
2116 return rc;
2117 }
2118 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2119
2120 /**
2121 * ata_sff_postreset - SFF postreset callback
2122 * @link: the target SFF ata_link
2123 * @classes: classes of attached devices
2124 *
2125 * This function is invoked after a successful reset. It first
2126 * calls ata_std_postreset() and performs SFF specific postreset
2127 * processing.
2128 *
2129 * LOCKING:
2130 * Kernel thread context (may sleep)
2131 */
ata_sff_postreset(struct ata_link * link,unsigned int * classes)2132 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2133 {
2134 struct ata_port *ap = link->ap;
2135
2136 ata_std_postreset(link, classes);
2137
2138 /* is double-select really necessary? */
2139 if (classes[0] != ATA_DEV_NONE)
2140 ap->ops->sff_dev_select(ap, 1);
2141 if (classes[1] != ATA_DEV_NONE)
2142 ap->ops->sff_dev_select(ap, 0);
2143
2144 /* bail out if no device is present */
2145 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2146 DPRINTK("EXIT, no device\n");
2147 return;
2148 }
2149
2150 /* set up device control */
2151 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2152 ata_sff_set_devctl(ap, ap->ctl);
2153 ap->last_ctl = ap->ctl;
2154 }
2155 }
2156 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2157
2158 /**
2159 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2160 * @qc: command
2161 *
2162 * Drain the FIFO and device of any stuck data following a command
2163 * failing to complete. In some cases this is necessary before a
2164 * reset will recover the device.
2165 *
2166 */
2167
ata_sff_drain_fifo(struct ata_queued_cmd * qc)2168 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2169 {
2170 int count;
2171 struct ata_port *ap;
2172
2173 /* We only need to flush incoming data when a command was running */
2174 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2175 return;
2176
2177 ap = qc->ap;
2178 /* Drain up to 64K of data before we give up this recovery method */
2179 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2180 && count < 65536; count += 2)
2181 ioread16(ap->ioaddr.data_addr);
2182
2183 /* Can become DEBUG later */
2184 if (count)
2185 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2186
2187 }
2188 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2189
2190 /**
2191 * ata_sff_error_handler - Stock error handler for SFF controller
2192 * @ap: port to handle error for
2193 *
2194 * Stock error handler for SFF controller. It can handle both
2195 * PATA and SATA controllers. Many controllers should be able to
2196 * use this EH as-is or with some added handling before and
2197 * after.
2198 *
2199 * LOCKING:
2200 * Kernel thread context (may sleep)
2201 */
ata_sff_error_handler(struct ata_port * ap)2202 void ata_sff_error_handler(struct ata_port *ap)
2203 {
2204 ata_reset_fn_t softreset = ap->ops->softreset;
2205 ata_reset_fn_t hardreset = ap->ops->hardreset;
2206 struct ata_queued_cmd *qc;
2207 unsigned long flags;
2208
2209 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2210 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2211 qc = NULL;
2212
2213 spin_lock_irqsave(ap->lock, flags);
2214
2215 /*
2216 * We *MUST* do FIFO draining before we issue a reset as
2217 * several devices helpfully clear their internal state and
2218 * will lock solid if we touch the data port post reset. Pass
2219 * qc in case anyone wants to do different PIO/DMA recovery or
2220 * has per command fixups
2221 */
2222 if (ap->ops->sff_drain_fifo)
2223 ap->ops->sff_drain_fifo(qc);
2224
2225 spin_unlock_irqrestore(ap->lock, flags);
2226
2227 /* ignore built-in hardresets if SCR access is not available */
2228 if ((hardreset == sata_std_hardreset ||
2229 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2230 hardreset = NULL;
2231
2232 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2233 ap->ops->postreset);
2234 }
2235 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2236
2237 /**
2238 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2239 * @ioaddr: IO address structure to be initialized
2240 *
2241 * Utility function which initializes data_addr, error_addr,
2242 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2243 * device_addr, status_addr, and command_addr to standard offsets
2244 * relative to cmd_addr.
2245 *
2246 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2247 */
ata_sff_std_ports(struct ata_ioports * ioaddr)2248 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2249 {
2250 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2251 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2252 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2253 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2254 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2255 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2256 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2257 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2258 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2259 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2260 }
2261 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2262
2263 #ifdef CONFIG_PCI
2264
ata_resources_present(struct pci_dev * pdev,int port)2265 static int ata_resources_present(struct pci_dev *pdev, int port)
2266 {
2267 int i;
2268
2269 /* Check the PCI resources for this channel are enabled */
2270 port = port * 2;
2271 for (i = 0; i < 2; i++) {
2272 if (pci_resource_start(pdev, port + i) == 0 ||
2273 pci_resource_len(pdev, port + i) == 0)
2274 return 0;
2275 }
2276 return 1;
2277 }
2278
2279 /**
2280 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2281 * @host: target ATA host
2282 *
2283 * Acquire native PCI ATA resources for @host and initialize the
2284 * first two ports of @host accordingly. Ports marked dummy are
2285 * skipped and allocation failure makes the port dummy.
2286 *
2287 * Note that native PCI resources are valid even for legacy hosts
2288 * as we fix up pdev resources array early in boot, so this
2289 * function can be used for both native and legacy SFF hosts.
2290 *
2291 * LOCKING:
2292 * Inherited from calling layer (may sleep).
2293 *
2294 * RETURNS:
2295 * 0 if at least one port is initialized, -ENODEV if no port is
2296 * available.
2297 */
ata_pci_sff_init_host(struct ata_host * host)2298 int ata_pci_sff_init_host(struct ata_host *host)
2299 {
2300 struct device *gdev = host->dev;
2301 struct pci_dev *pdev = to_pci_dev(gdev);
2302 unsigned int mask = 0;
2303 int i, rc;
2304
2305 /* request, iomap BARs and init port addresses accordingly */
2306 for (i = 0; i < 2; i++) {
2307 struct ata_port *ap = host->ports[i];
2308 int base = i * 2;
2309 void __iomem * const *iomap;
2310
2311 if (ata_port_is_dummy(ap))
2312 continue;
2313
2314 /* Discard disabled ports. Some controllers show
2315 * their unused channels this way. Disabled ports are
2316 * made dummy.
2317 */
2318 if (!ata_resources_present(pdev, i)) {
2319 ap->ops = &ata_dummy_port_ops;
2320 continue;
2321 }
2322
2323 rc = pcim_iomap_regions(pdev, 0x3 << base,
2324 dev_driver_string(gdev));
2325 if (rc) {
2326 dev_warn(gdev,
2327 "failed to request/iomap BARs for port %d (errno=%d)\n",
2328 i, rc);
2329 if (rc == -EBUSY)
2330 pcim_pin_device(pdev);
2331 ap->ops = &ata_dummy_port_ops;
2332 continue;
2333 }
2334 host->iomap = iomap = pcim_iomap_table(pdev);
2335
2336 ap->ioaddr.cmd_addr = iomap[base];
2337 ap->ioaddr.altstatus_addr =
2338 ap->ioaddr.ctl_addr = (void __iomem *)
2339 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2340 ata_sff_std_ports(&ap->ioaddr);
2341
2342 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2343 (unsigned long long)pci_resource_start(pdev, base),
2344 (unsigned long long)pci_resource_start(pdev, base + 1));
2345
2346 mask |= 1 << i;
2347 }
2348
2349 if (!mask) {
2350 dev_err(gdev, "no available native port\n");
2351 return -ENODEV;
2352 }
2353
2354 return 0;
2355 }
2356 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2357
2358 /**
2359 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2360 * @pdev: target PCI device
2361 * @ppi: array of port_info, must be enough for two ports
2362 * @r_host: out argument for the initialized ATA host
2363 *
2364 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2365 * all PCI resources and initialize it accordingly in one go.
2366 *
2367 * LOCKING:
2368 * Inherited from calling layer (may sleep).
2369 *
2370 * RETURNS:
2371 * 0 on success, -errno otherwise.
2372 */
ata_pci_sff_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)2373 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2374 const struct ata_port_info * const *ppi,
2375 struct ata_host **r_host)
2376 {
2377 struct ata_host *host;
2378 int rc;
2379
2380 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2381 return -ENOMEM;
2382
2383 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2384 if (!host) {
2385 dev_err(&pdev->dev, "failed to allocate ATA host\n");
2386 rc = -ENOMEM;
2387 goto err_out;
2388 }
2389
2390 rc = ata_pci_sff_init_host(host);
2391 if (rc)
2392 goto err_out;
2393
2394 devres_remove_group(&pdev->dev, NULL);
2395 *r_host = host;
2396 return 0;
2397
2398 err_out:
2399 devres_release_group(&pdev->dev, NULL);
2400 return rc;
2401 }
2402 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2403
2404 /**
2405 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2406 * @host: target SFF ATA host
2407 * @irq_handler: irq_handler used when requesting IRQ(s)
2408 * @sht: scsi_host_template to use when registering the host
2409 *
2410 * This is the counterpart of ata_host_activate() for SFF ATA
2411 * hosts. This separate helper is necessary because SFF hosts
2412 * use two separate interrupts in legacy mode.
2413 *
2414 * LOCKING:
2415 * Inherited from calling layer (may sleep).
2416 *
2417 * RETURNS:
2418 * 0 on success, -errno otherwise.
2419 */
ata_pci_sff_activate_host(struct ata_host * host,irq_handler_t irq_handler,struct scsi_host_template * sht)2420 int ata_pci_sff_activate_host(struct ata_host *host,
2421 irq_handler_t irq_handler,
2422 struct scsi_host_template *sht)
2423 {
2424 struct device *dev = host->dev;
2425 struct pci_dev *pdev = to_pci_dev(dev);
2426 const char *drv_name = dev_driver_string(host->dev);
2427 int legacy_mode = 0, rc;
2428
2429 rc = ata_host_start(host);
2430 if (rc)
2431 return rc;
2432
2433 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2434 u8 tmp8, mask;
2435
2436 /* TODO: What if one channel is in native mode ... */
2437 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2438 mask = (1 << 2) | (1 << 0);
2439 if ((tmp8 & mask) != mask)
2440 legacy_mode = 1;
2441 }
2442
2443 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2444 return -ENOMEM;
2445
2446 if (!legacy_mode && pdev->irq) {
2447 int i;
2448
2449 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2450 IRQF_SHARED, drv_name, host);
2451 if (rc)
2452 goto out;
2453
2454 for (i = 0; i < 2; i++) {
2455 if (ata_port_is_dummy(host->ports[i]))
2456 continue;
2457 ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2458 }
2459 } else if (legacy_mode) {
2460 if (!ata_port_is_dummy(host->ports[0])) {
2461 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2462 irq_handler, IRQF_SHARED,
2463 drv_name, host);
2464 if (rc)
2465 goto out;
2466
2467 ata_port_desc(host->ports[0], "irq %d",
2468 ATA_PRIMARY_IRQ(pdev));
2469 }
2470
2471 if (!ata_port_is_dummy(host->ports[1])) {
2472 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2473 irq_handler, IRQF_SHARED,
2474 drv_name, host);
2475 if (rc)
2476 goto out;
2477
2478 ata_port_desc(host->ports[1], "irq %d",
2479 ATA_SECONDARY_IRQ(pdev));
2480 }
2481 }
2482
2483 rc = ata_host_register(host, sht);
2484 out:
2485 if (rc == 0)
2486 devres_remove_group(dev, NULL);
2487 else
2488 devres_release_group(dev, NULL);
2489
2490 return rc;
2491 }
2492 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2493
ata_sff_find_valid_pi(const struct ata_port_info * const * ppi)2494 static const struct ata_port_info *ata_sff_find_valid_pi(
2495 const struct ata_port_info * const *ppi)
2496 {
2497 int i;
2498
2499 /* look up the first valid port_info */
2500 for (i = 0; i < 2 && ppi[i]; i++)
2501 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2502 return ppi[i];
2503
2504 return NULL;
2505 }
2506
ata_pci_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags,bool bmdma)2507 static int ata_pci_init_one(struct pci_dev *pdev,
2508 const struct ata_port_info * const *ppi,
2509 struct scsi_host_template *sht, void *host_priv,
2510 int hflags, bool bmdma)
2511 {
2512 struct device *dev = &pdev->dev;
2513 const struct ata_port_info *pi;
2514 struct ata_host *host = NULL;
2515 int rc;
2516
2517 DPRINTK("ENTER\n");
2518
2519 pi = ata_sff_find_valid_pi(ppi);
2520 if (!pi) {
2521 dev_err(&pdev->dev, "no valid port_info specified\n");
2522 return -EINVAL;
2523 }
2524
2525 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2526 return -ENOMEM;
2527
2528 rc = pcim_enable_device(pdev);
2529 if (rc)
2530 goto out;
2531
2532 #ifdef CONFIG_ATA_BMDMA
2533 if (bmdma)
2534 /* prepare and activate BMDMA host */
2535 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2536 else
2537 #endif
2538 /* prepare and activate SFF host */
2539 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2540 if (rc)
2541 goto out;
2542 host->private_data = host_priv;
2543 host->flags |= hflags;
2544
2545 #ifdef CONFIG_ATA_BMDMA
2546 if (bmdma) {
2547 pci_set_master(pdev);
2548 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2549 } else
2550 #endif
2551 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2552 out:
2553 if (rc == 0)
2554 devres_remove_group(&pdev->dev, NULL);
2555 else
2556 devres_release_group(&pdev->dev, NULL);
2557
2558 return rc;
2559 }
2560
2561 /**
2562 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2563 * @pdev: Controller to be initialized
2564 * @ppi: array of port_info, must be enough for two ports
2565 * @sht: scsi_host_template to use when registering the host
2566 * @host_priv: host private_data
2567 * @hflag: host flags
2568 *
2569 * This is a helper function which can be called from a driver's
2570 * xxx_init_one() probe function if the hardware uses traditional
2571 * IDE taskfile registers and is PIO only.
2572 *
2573 * ASSUMPTION:
2574 * Nobody makes a single channel controller that appears solely as
2575 * the secondary legacy port on PCI.
2576 *
2577 * LOCKING:
2578 * Inherited from PCI layer (may sleep).
2579 *
2580 * RETURNS:
2581 * Zero on success, negative on errno-based value on error.
2582 */
ata_pci_sff_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflag)2583 int ata_pci_sff_init_one(struct pci_dev *pdev,
2584 const struct ata_port_info * const *ppi,
2585 struct scsi_host_template *sht, void *host_priv, int hflag)
2586 {
2587 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2588 }
2589 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2590
2591 #endif /* CONFIG_PCI */
2592
2593 /*
2594 * BMDMA support
2595 */
2596
2597 #ifdef CONFIG_ATA_BMDMA
2598
2599 const struct ata_port_operations ata_bmdma_port_ops = {
2600 .inherits = &ata_sff_port_ops,
2601
2602 .error_handler = ata_bmdma_error_handler,
2603 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2604
2605 .qc_prep = ata_bmdma_qc_prep,
2606 .qc_issue = ata_bmdma_qc_issue,
2607
2608 .sff_irq_clear = ata_bmdma_irq_clear,
2609 .bmdma_setup = ata_bmdma_setup,
2610 .bmdma_start = ata_bmdma_start,
2611 .bmdma_stop = ata_bmdma_stop,
2612 .bmdma_status = ata_bmdma_status,
2613
2614 .port_start = ata_bmdma_port_start,
2615 };
2616 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2617
2618 const struct ata_port_operations ata_bmdma32_port_ops = {
2619 .inherits = &ata_bmdma_port_ops,
2620
2621 .sff_data_xfer = ata_sff_data_xfer32,
2622 .port_start = ata_bmdma_port_start32,
2623 };
2624 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2625
2626 /**
2627 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2628 * @qc: Metadata associated with taskfile to be transferred
2629 *
2630 * Fill PCI IDE PRD (scatter-gather) table with segments
2631 * associated with the current disk command.
2632 *
2633 * LOCKING:
2634 * spin_lock_irqsave(host lock)
2635 *
2636 */
ata_bmdma_fill_sg(struct ata_queued_cmd * qc)2637 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2638 {
2639 struct ata_port *ap = qc->ap;
2640 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2641 struct scatterlist *sg;
2642 unsigned int si, pi;
2643
2644 pi = 0;
2645 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2646 u32 addr, offset;
2647 u32 sg_len, len;
2648
2649 /* determine if physical DMA addr spans 64K boundary.
2650 * Note h/w doesn't support 64-bit, so we unconditionally
2651 * truncate dma_addr_t to u32.
2652 */
2653 addr = (u32) sg_dma_address(sg);
2654 sg_len = sg_dma_len(sg);
2655
2656 while (sg_len) {
2657 offset = addr & 0xffff;
2658 len = sg_len;
2659 if ((offset + sg_len) > 0x10000)
2660 len = 0x10000 - offset;
2661
2662 prd[pi].addr = cpu_to_le32(addr);
2663 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2664 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2665
2666 pi++;
2667 sg_len -= len;
2668 addr += len;
2669 }
2670 }
2671
2672 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2673 }
2674
2675 /**
2676 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2677 * @qc: Metadata associated with taskfile to be transferred
2678 *
2679 * Fill PCI IDE PRD (scatter-gather) table with segments
2680 * associated with the current disk command. Perform the fill
2681 * so that we avoid writing any length 64K records for
2682 * controllers that don't follow the spec.
2683 *
2684 * LOCKING:
2685 * spin_lock_irqsave(host lock)
2686 *
2687 */
ata_bmdma_fill_sg_dumb(struct ata_queued_cmd * qc)2688 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2689 {
2690 struct ata_port *ap = qc->ap;
2691 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2692 struct scatterlist *sg;
2693 unsigned int si, pi;
2694
2695 pi = 0;
2696 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2697 u32 addr, offset;
2698 u32 sg_len, len, blen;
2699
2700 /* determine if physical DMA addr spans 64K boundary.
2701 * Note h/w doesn't support 64-bit, so we unconditionally
2702 * truncate dma_addr_t to u32.
2703 */
2704 addr = (u32) sg_dma_address(sg);
2705 sg_len = sg_dma_len(sg);
2706
2707 while (sg_len) {
2708 offset = addr & 0xffff;
2709 len = sg_len;
2710 if ((offset + sg_len) > 0x10000)
2711 len = 0x10000 - offset;
2712
2713 blen = len & 0xffff;
2714 prd[pi].addr = cpu_to_le32(addr);
2715 if (blen == 0) {
2716 /* Some PATA chipsets like the CS5530 can't
2717 cope with 0x0000 meaning 64K as the spec
2718 says */
2719 prd[pi].flags_len = cpu_to_le32(0x8000);
2720 blen = 0x8000;
2721 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2722 }
2723 prd[pi].flags_len = cpu_to_le32(blen);
2724 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2725
2726 pi++;
2727 sg_len -= len;
2728 addr += len;
2729 }
2730 }
2731
2732 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2733 }
2734
2735 /**
2736 * ata_bmdma_qc_prep - Prepare taskfile for submission
2737 * @qc: Metadata associated with taskfile to be prepared
2738 *
2739 * Prepare ATA taskfile for submission.
2740 *
2741 * LOCKING:
2742 * spin_lock_irqsave(host lock)
2743 */
ata_bmdma_qc_prep(struct ata_queued_cmd * qc)2744 enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2745 {
2746 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2747 return AC_ERR_OK;
2748
2749 ata_bmdma_fill_sg(qc);
2750
2751 return AC_ERR_OK;
2752 }
2753 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2754
2755 /**
2756 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2757 * @qc: Metadata associated with taskfile to be prepared
2758 *
2759 * Prepare ATA taskfile for submission.
2760 *
2761 * LOCKING:
2762 * spin_lock_irqsave(host lock)
2763 */
ata_bmdma_dumb_qc_prep(struct ata_queued_cmd * qc)2764 enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2765 {
2766 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2767 return AC_ERR_OK;
2768
2769 ata_bmdma_fill_sg_dumb(qc);
2770
2771 return AC_ERR_OK;
2772 }
2773 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2774
2775 /**
2776 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2777 * @qc: command to issue to device
2778 *
2779 * This function issues a PIO, NODATA or DMA command to a
2780 * SFF/BMDMA controller. PIO and NODATA are handled by
2781 * ata_sff_qc_issue().
2782 *
2783 * LOCKING:
2784 * spin_lock_irqsave(host lock)
2785 *
2786 * RETURNS:
2787 * Zero on success, AC_ERR_* mask on failure
2788 */
ata_bmdma_qc_issue(struct ata_queued_cmd * qc)2789 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2790 {
2791 struct ata_port *ap = qc->ap;
2792 struct ata_link *link = qc->dev->link;
2793
2794 /* defer PIO handling to sff_qc_issue */
2795 if (!ata_is_dma(qc->tf.protocol))
2796 return ata_sff_qc_issue(qc);
2797
2798 /* select the device */
2799 ata_dev_select(ap, qc->dev->devno, 1, 0);
2800
2801 /* start the command */
2802 switch (qc->tf.protocol) {
2803 case ATA_PROT_DMA:
2804 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2805
2806 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2807 ap->ops->bmdma_setup(qc); /* set up bmdma */
2808 ap->ops->bmdma_start(qc); /* initiate bmdma */
2809 ap->hsm_task_state = HSM_ST_LAST;
2810 break;
2811
2812 case ATAPI_PROT_DMA:
2813 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2814
2815 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2816 ap->ops->bmdma_setup(qc); /* set up bmdma */
2817 ap->hsm_task_state = HSM_ST_FIRST;
2818
2819 /* send cdb by polling if no cdb interrupt */
2820 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2821 ata_sff_queue_pio_task(link, 0);
2822 break;
2823
2824 default:
2825 WARN_ON(1);
2826 return AC_ERR_SYSTEM;
2827 }
2828
2829 return 0;
2830 }
2831 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2832
2833 /**
2834 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2835 * @ap: Port on which interrupt arrived (possibly...)
2836 * @qc: Taskfile currently active in engine
2837 *
2838 * Handle port interrupt for given queued command.
2839 *
2840 * LOCKING:
2841 * spin_lock_irqsave(host lock)
2842 *
2843 * RETURNS:
2844 * One if interrupt was handled, zero if not (shared irq).
2845 */
ata_bmdma_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)2846 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2847 {
2848 struct ata_eh_info *ehi = &ap->link.eh_info;
2849 u8 host_stat = 0;
2850 bool bmdma_stopped = false;
2851 unsigned int handled;
2852
2853 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2854 /* check status of DMA engine */
2855 host_stat = ap->ops->bmdma_status(ap);
2856 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2857
2858 /* if it's not our irq... */
2859 if (!(host_stat & ATA_DMA_INTR))
2860 return ata_sff_idle_irq(ap);
2861
2862 /* before we do anything else, clear DMA-Start bit */
2863 ap->ops->bmdma_stop(qc);
2864 bmdma_stopped = true;
2865
2866 if (unlikely(host_stat & ATA_DMA_ERR)) {
2867 /* error when transferring data to/from memory */
2868 qc->err_mask |= AC_ERR_HOST_BUS;
2869 ap->hsm_task_state = HSM_ST_ERR;
2870 }
2871 }
2872
2873 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2874
2875 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2876 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2877
2878 return handled;
2879 }
2880 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2881
2882 /**
2883 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2884 * @irq: irq line (unused)
2885 * @dev_instance: pointer to our ata_host information structure
2886 *
2887 * Default interrupt handler for PCI IDE devices. Calls
2888 * ata_bmdma_port_intr() for each port that is not disabled.
2889 *
2890 * LOCKING:
2891 * Obtains host lock during operation.
2892 *
2893 * RETURNS:
2894 * IRQ_NONE or IRQ_HANDLED.
2895 */
ata_bmdma_interrupt(int irq,void * dev_instance)2896 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2897 {
2898 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2899 }
2900 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2901
2902 /**
2903 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2904 * @ap: port to handle error for
2905 *
2906 * Stock error handler for BMDMA controller. It can handle both
2907 * PATA and SATA controllers. Most BMDMA controllers should be
2908 * able to use this EH as-is or with some added handling before
2909 * and after.
2910 *
2911 * LOCKING:
2912 * Kernel thread context (may sleep)
2913 */
ata_bmdma_error_handler(struct ata_port * ap)2914 void ata_bmdma_error_handler(struct ata_port *ap)
2915 {
2916 struct ata_queued_cmd *qc;
2917 unsigned long flags;
2918 bool thaw = false;
2919
2920 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2921 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2922 qc = NULL;
2923
2924 /* reset PIO HSM and stop DMA engine */
2925 spin_lock_irqsave(ap->lock, flags);
2926
2927 if (qc && ata_is_dma(qc->tf.protocol)) {
2928 u8 host_stat;
2929
2930 host_stat = ap->ops->bmdma_status(ap);
2931
2932 /* BMDMA controllers indicate host bus error by
2933 * setting DMA_ERR bit and timing out. As it wasn't
2934 * really a timeout event, adjust error mask and
2935 * cancel frozen state.
2936 */
2937 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2938 qc->err_mask = AC_ERR_HOST_BUS;
2939 thaw = true;
2940 }
2941
2942 ap->ops->bmdma_stop(qc);
2943
2944 /* if we're gonna thaw, make sure IRQ is clear */
2945 if (thaw) {
2946 ap->ops->sff_check_status(ap);
2947 if (ap->ops->sff_irq_clear)
2948 ap->ops->sff_irq_clear(ap);
2949 }
2950 }
2951
2952 spin_unlock_irqrestore(ap->lock, flags);
2953
2954 if (thaw)
2955 ata_eh_thaw_port(ap);
2956
2957 ata_sff_error_handler(ap);
2958 }
2959 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2960
2961 /**
2962 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2963 * @qc: internal command to clean up
2964 *
2965 * LOCKING:
2966 * Kernel thread context (may sleep)
2967 */
ata_bmdma_post_internal_cmd(struct ata_queued_cmd * qc)2968 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2969 {
2970 struct ata_port *ap = qc->ap;
2971 unsigned long flags;
2972
2973 if (ata_is_dma(qc->tf.protocol)) {
2974 spin_lock_irqsave(ap->lock, flags);
2975 ap->ops->bmdma_stop(qc);
2976 spin_unlock_irqrestore(ap->lock, flags);
2977 }
2978 }
2979 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2980
2981 /**
2982 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2983 * @ap: Port associated with this ATA transaction.
2984 *
2985 * Clear interrupt and error flags in DMA status register.
2986 *
2987 * May be used as the irq_clear() entry in ata_port_operations.
2988 *
2989 * LOCKING:
2990 * spin_lock_irqsave(host lock)
2991 */
ata_bmdma_irq_clear(struct ata_port * ap)2992 void ata_bmdma_irq_clear(struct ata_port *ap)
2993 {
2994 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2995
2996 if (!mmio)
2997 return;
2998
2999 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
3000 }
3001 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
3002
3003 /**
3004 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3005 * @qc: Info associated with this ATA transaction.
3006 *
3007 * LOCKING:
3008 * spin_lock_irqsave(host lock)
3009 */
ata_bmdma_setup(struct ata_queued_cmd * qc)3010 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3011 {
3012 struct ata_port *ap = qc->ap;
3013 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3014 u8 dmactl;
3015
3016 /* load PRD table addr. */
3017 mb(); /* make sure PRD table writes are visible to controller */
3018 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3019
3020 /* specify data direction, triple-check start bit is clear */
3021 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3022 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3023 if (!rw)
3024 dmactl |= ATA_DMA_WR;
3025 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3026
3027 /* issue r/w command */
3028 ap->ops->sff_exec_command(ap, &qc->tf);
3029 }
3030 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3031
3032 /**
3033 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3034 * @qc: Info associated with this ATA transaction.
3035 *
3036 * LOCKING:
3037 * spin_lock_irqsave(host lock)
3038 */
ata_bmdma_start(struct ata_queued_cmd * qc)3039 void ata_bmdma_start(struct ata_queued_cmd *qc)
3040 {
3041 struct ata_port *ap = qc->ap;
3042 u8 dmactl;
3043
3044 /* start host DMA transaction */
3045 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3046 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3047
3048 /* Strictly, one may wish to issue an ioread8() here, to
3049 * flush the mmio write. However, control also passes
3050 * to the hardware at this point, and it will interrupt
3051 * us when we are to resume control. So, in effect,
3052 * we don't care when the mmio write flushes.
3053 * Further, a read of the DMA status register _immediately_
3054 * following the write may not be what certain flaky hardware
3055 * is expected, so I think it is best to not add a readb()
3056 * without first all the MMIO ATA cards/mobos.
3057 * Or maybe I'm just being paranoid.
3058 *
3059 * FIXME: The posting of this write means I/O starts are
3060 * unnecessarily delayed for MMIO
3061 */
3062 }
3063 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3064
3065 /**
3066 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3067 * @qc: Command we are ending DMA for
3068 *
3069 * Clears the ATA_DMA_START flag in the dma control register
3070 *
3071 * May be used as the bmdma_stop() entry in ata_port_operations.
3072 *
3073 * LOCKING:
3074 * spin_lock_irqsave(host lock)
3075 */
ata_bmdma_stop(struct ata_queued_cmd * qc)3076 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3077 {
3078 struct ata_port *ap = qc->ap;
3079 void __iomem *mmio = ap->ioaddr.bmdma_addr;
3080
3081 /* clear start/stop bit */
3082 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3083 mmio + ATA_DMA_CMD);
3084
3085 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3086 ata_sff_dma_pause(ap);
3087 }
3088 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3089
3090 /**
3091 * ata_bmdma_status - Read PCI IDE BMDMA status
3092 * @ap: Port associated with this ATA transaction.
3093 *
3094 * Read and return BMDMA status register.
3095 *
3096 * May be used as the bmdma_status() entry in ata_port_operations.
3097 *
3098 * LOCKING:
3099 * spin_lock_irqsave(host lock)
3100 */
ata_bmdma_status(struct ata_port * ap)3101 u8 ata_bmdma_status(struct ata_port *ap)
3102 {
3103 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3104 }
3105 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3106
3107
3108 /**
3109 * ata_bmdma_port_start - Set port up for bmdma.
3110 * @ap: Port to initialize
3111 *
3112 * Called just after data structures for each port are
3113 * initialized. Allocates space for PRD table.
3114 *
3115 * May be used as the port_start() entry in ata_port_operations.
3116 *
3117 * LOCKING:
3118 * Inherited from caller.
3119 */
ata_bmdma_port_start(struct ata_port * ap)3120 int ata_bmdma_port_start(struct ata_port *ap)
3121 {
3122 if (ap->mwdma_mask || ap->udma_mask) {
3123 ap->bmdma_prd =
3124 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3125 &ap->bmdma_prd_dma, GFP_KERNEL);
3126 if (!ap->bmdma_prd)
3127 return -ENOMEM;
3128 }
3129
3130 return 0;
3131 }
3132 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3133
3134 /**
3135 * ata_bmdma_port_start32 - Set port up for dma.
3136 * @ap: Port to initialize
3137 *
3138 * Called just after data structures for each port are
3139 * initialized. Enables 32bit PIO and allocates space for PRD
3140 * table.
3141 *
3142 * May be used as the port_start() entry in ata_port_operations for
3143 * devices that are capable of 32bit PIO.
3144 *
3145 * LOCKING:
3146 * Inherited from caller.
3147 */
ata_bmdma_port_start32(struct ata_port * ap)3148 int ata_bmdma_port_start32(struct ata_port *ap)
3149 {
3150 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3151 return ata_bmdma_port_start(ap);
3152 }
3153 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3154
3155 #ifdef CONFIG_PCI
3156
3157 /**
3158 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3159 * @pdev: PCI device
3160 *
3161 * Some PCI ATA devices report simplex mode but in fact can be told to
3162 * enter non simplex mode. This implements the necessary logic to
3163 * perform the task on such devices. Calling it on other devices will
3164 * have -undefined- behaviour.
3165 */
ata_pci_bmdma_clear_simplex(struct pci_dev * pdev)3166 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3167 {
3168 unsigned long bmdma = pci_resource_start(pdev, 4);
3169 u8 simplex;
3170
3171 if (bmdma == 0)
3172 return -ENOENT;
3173
3174 simplex = inb(bmdma + 0x02);
3175 outb(simplex & 0x60, bmdma + 0x02);
3176 simplex = inb(bmdma + 0x02);
3177 if (simplex & 0x80)
3178 return -EOPNOTSUPP;
3179 return 0;
3180 }
3181 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3182
ata_bmdma_nodma(struct ata_host * host,const char * reason)3183 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3184 {
3185 int i;
3186
3187 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3188
3189 for (i = 0; i < 2; i++) {
3190 host->ports[i]->mwdma_mask = 0;
3191 host->ports[i]->udma_mask = 0;
3192 }
3193 }
3194
3195 /**
3196 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3197 * @host: target ATA host
3198 *
3199 * Acquire PCI BMDMA resources and initialize @host accordingly.
3200 *
3201 * LOCKING:
3202 * Inherited from calling layer (may sleep).
3203 */
ata_pci_bmdma_init(struct ata_host * host)3204 void ata_pci_bmdma_init(struct ata_host *host)
3205 {
3206 struct device *gdev = host->dev;
3207 struct pci_dev *pdev = to_pci_dev(gdev);
3208 int i, rc;
3209
3210 /* No BAR4 allocation: No DMA */
3211 if (pci_resource_start(pdev, 4) == 0) {
3212 ata_bmdma_nodma(host, "BAR4 is zero");
3213 return;
3214 }
3215
3216 /*
3217 * Some controllers require BMDMA region to be initialized
3218 * even if DMA is not in use to clear IRQ status via
3219 * ->sff_irq_clear method. Try to initialize bmdma_addr
3220 * regardless of dma masks.
3221 */
3222 rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3223 if (rc)
3224 ata_bmdma_nodma(host, "failed to set dma mask");
3225 if (!rc) {
3226 rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3227 if (rc)
3228 ata_bmdma_nodma(host,
3229 "failed to set consistent dma mask");
3230 }
3231
3232 /* request and iomap DMA region */
3233 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3234 if (rc) {
3235 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3236 return;
3237 }
3238 host->iomap = pcim_iomap_table(pdev);
3239
3240 for (i = 0; i < 2; i++) {
3241 struct ata_port *ap = host->ports[i];
3242 void __iomem *bmdma = host->iomap[4] + 8 * i;
3243
3244 if (ata_port_is_dummy(ap))
3245 continue;
3246
3247 ap->ioaddr.bmdma_addr = bmdma;
3248 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3249 (ioread8(bmdma + 2) & 0x80))
3250 host->flags |= ATA_HOST_SIMPLEX;
3251
3252 ata_port_desc(ap, "bmdma 0x%llx",
3253 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3254 }
3255 }
3256 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3257
3258 /**
3259 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3260 * @pdev: target PCI device
3261 * @ppi: array of port_info, must be enough for two ports
3262 * @r_host: out argument for the initialized ATA host
3263 *
3264 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3265 * resources and initialize it accordingly in one go.
3266 *
3267 * LOCKING:
3268 * Inherited from calling layer (may sleep).
3269 *
3270 * RETURNS:
3271 * 0 on success, -errno otherwise.
3272 */
ata_pci_bmdma_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)3273 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3274 const struct ata_port_info * const * ppi,
3275 struct ata_host **r_host)
3276 {
3277 int rc;
3278
3279 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3280 if (rc)
3281 return rc;
3282
3283 ata_pci_bmdma_init(*r_host);
3284 return 0;
3285 }
3286 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3287
3288 /**
3289 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3290 * @pdev: Controller to be initialized
3291 * @ppi: array of port_info, must be enough for two ports
3292 * @sht: scsi_host_template to use when registering the host
3293 * @host_priv: host private_data
3294 * @hflags: host flags
3295 *
3296 * This function is similar to ata_pci_sff_init_one() but also
3297 * takes care of BMDMA initialization.
3298 *
3299 * LOCKING:
3300 * Inherited from PCI layer (may sleep).
3301 *
3302 * RETURNS:
3303 * Zero on success, negative on errno-based value on error.
3304 */
ata_pci_bmdma_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags)3305 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3306 const struct ata_port_info * const * ppi,
3307 struct scsi_host_template *sht, void *host_priv,
3308 int hflags)
3309 {
3310 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3311 }
3312 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3313
3314 #endif /* CONFIG_PCI */
3315 #endif /* CONFIG_ATA_BMDMA */
3316
3317 /**
3318 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3319 * @ap: Port to initialize
3320 *
3321 * Called on port allocation to initialize SFF/BMDMA specific
3322 * fields.
3323 *
3324 * LOCKING:
3325 * None.
3326 */
ata_sff_port_init(struct ata_port * ap)3327 void ata_sff_port_init(struct ata_port *ap)
3328 {
3329 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3330 ap->ctl = ATA_DEVCTL_OBS;
3331 ap->last_ctl = 0xFF;
3332 }
3333
ata_sff_init(void)3334 int __init ata_sff_init(void)
3335 {
3336 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3337 if (!ata_sff_wq)
3338 return -ENOMEM;
3339
3340 return 0;
3341 }
3342
ata_sff_exit(void)3343 void ata_sff_exit(void)
3344 {
3345 destroy_workqueue(ata_sff_wq);
3346 }
3347