1 /*
2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
5 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 */
20
21 /***********************\
22 * PHY related functions *
23 \***********************/
24
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <asm/unaligned.h>
30
31 #include "ath5k.h"
32 #include "reg.h"
33 #include "rfbuffer.h"
34 #include "rfgain.h"
35 #include "../regd.h"
36
37
38 /**
39 * DOC: PHY related functions
40 *
41 * Here we handle the low-level functions related to baseband
42 * and analog frontend (RF) parts. This is by far the most complex
43 * part of the hw code so make sure you know what you are doing.
44 *
45 * Here is a list of what this is all about:
46 *
47 * - Channel setting/switching
48 *
49 * - Automatic Gain Control (AGC) calibration
50 *
51 * - Noise Floor calibration
52 *
53 * - I/Q imbalance calibration (QAM correction)
54 *
55 * - Calibration due to thermal changes (gain_F)
56 *
57 * - Spur noise mitigation
58 *
59 * - RF/PHY initialization for the various operating modes and bwmodes
60 *
61 * - Antenna control
62 *
63 * - TX power control per channel/rate/packet type
64 *
65 * Also have in mind we never got documentation for most of these
66 * functions, what we have comes mostly from Atheros's code, reverse
67 * engineering and patent docs/presentations etc.
68 */
69
70
71 /******************\
72 * Helper functions *
73 \******************/
74
75 /**
76 * ath5k_hw_radio_revision() - Get the PHY Chip revision
77 * @ah: The &struct ath5k_hw
78 * @band: One of enum ieee80211_band
79 *
80 * Returns the revision number of a 2GHz, 5GHz or single chip
81 * radio.
82 */
83 u16
ath5k_hw_radio_revision(struct ath5k_hw * ah,enum ieee80211_band band)84 ath5k_hw_radio_revision(struct ath5k_hw *ah, enum ieee80211_band band)
85 {
86 unsigned int i;
87 u32 srev;
88 u16 ret;
89
90 /*
91 * Set the radio chip access register
92 */
93 switch (band) {
94 case IEEE80211_BAND_2GHZ:
95 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
96 break;
97 case IEEE80211_BAND_5GHZ:
98 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
99 break;
100 default:
101 return 0;
102 }
103
104 usleep_range(2000, 2500);
105
106 /* ...wait until PHY is ready and read the selected radio revision */
107 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
108
109 for (i = 0; i < 8; i++)
110 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
111
112 if (ah->ah_version == AR5K_AR5210) {
113 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(256)) >> 28) & 0xf;
114 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
115 } else {
116 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
117 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
118 ((srev & 0x0f) << 4), 8);
119 }
120
121 /* Reset to the 5GHz mode */
122 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
123
124 return ret;
125 }
126
127 /**
128 * ath5k_channel_ok() - Check if a channel is supported by the hw
129 * @ah: The &struct ath5k_hw
130 * @channel: The &struct ieee80211_channel
131 *
132 * Note: We don't do any regulatory domain checks here, it's just
133 * a sanity check.
134 */
135 bool
ath5k_channel_ok(struct ath5k_hw * ah,struct ieee80211_channel * channel)136 ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
137 {
138 u16 freq = channel->center_freq;
139
140 /* Check if the channel is in our supported range */
141 if (channel->band == IEEE80211_BAND_2GHZ) {
142 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
143 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
144 return true;
145 } else if (channel->band == IEEE80211_BAND_5GHZ)
146 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
147 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
148 return true;
149
150 return false;
151 }
152
153 /**
154 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
155 * @ah: The &struct ath5k_hw
156 * @channel: The &struct ieee80211_channel
157 */
158 bool
ath5k_hw_chan_has_spur_noise(struct ath5k_hw * ah,struct ieee80211_channel * channel)159 ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
160 struct ieee80211_channel *channel)
161 {
162 u8 refclk_freq;
163
164 if ((ah->ah_radio == AR5K_RF5112) ||
165 (ah->ah_radio == AR5K_RF5413) ||
166 (ah->ah_radio == AR5K_RF2413) ||
167 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
168 refclk_freq = 40;
169 else
170 refclk_freq = 32;
171
172 if ((channel->center_freq % refclk_freq != 0) &&
173 ((channel->center_freq % refclk_freq < 10) ||
174 (channel->center_freq % refclk_freq > 22)))
175 return true;
176 else
177 return false;
178 }
179
180 /**
181 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
182 * @ah: The &struct ath5k_hw
183 * @rf_regs: The struct ath5k_rf_reg
184 * @val: New value
185 * @reg_id: RF register ID
186 * @set: Indicate we need to swap data
187 *
188 * This is an internal function used to modify RF Banks before
189 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
190 * infos.
191 */
192 static unsigned int
ath5k_hw_rfb_op(struct ath5k_hw * ah,const struct ath5k_rf_reg * rf_regs,u32 val,u8 reg_id,bool set)193 ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
194 u32 val, u8 reg_id, bool set)
195 {
196 const struct ath5k_rf_reg *rfreg = NULL;
197 u8 offset, bank, num_bits, col, position;
198 u16 entry;
199 u32 mask, data, last_bit, bits_shifted, first_bit;
200 u32 *rfb;
201 s32 bits_left;
202 int i;
203
204 data = 0;
205 rfb = ah->ah_rf_banks;
206
207 for (i = 0; i < ah->ah_rf_regs_count; i++) {
208 if (rf_regs[i].index == reg_id) {
209 rfreg = &rf_regs[i];
210 break;
211 }
212 }
213
214 if (rfb == NULL || rfreg == NULL) {
215 ATH5K_PRINTF("Rf register not found!\n");
216 /* should not happen */
217 return 0;
218 }
219
220 bank = rfreg->bank;
221 num_bits = rfreg->field.len;
222 first_bit = rfreg->field.pos;
223 col = rfreg->field.col;
224
225 /* first_bit is an offset from bank's
226 * start. Since we have all banks on
227 * the same array, we use this offset
228 * to mark each bank's start */
229 offset = ah->ah_offset[bank];
230
231 /* Boundary check */
232 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
233 ATH5K_PRINTF("invalid values at offset %u\n", offset);
234 return 0;
235 }
236
237 entry = ((first_bit - 1) / 8) + offset;
238 position = (first_bit - 1) % 8;
239
240 if (set)
241 data = ath5k_hw_bitswap(val, num_bits);
242
243 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
244 position = 0, entry++) {
245
246 last_bit = (position + bits_left > 8) ? 8 :
247 position + bits_left;
248
249 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
250 (col * 8);
251
252 if (set) {
253 rfb[entry] &= ~mask;
254 rfb[entry] |= ((data << position) << (col * 8)) & mask;
255 data >>= (8 - position);
256 } else {
257 data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
258 << bits_shifted;
259 bits_shifted += last_bit - position;
260 }
261
262 bits_left -= 8 - position;
263 }
264
265 data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
266
267 return data;
268 }
269
270 /**
271 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
272 * @ah: the &struct ath5k_hw
273 * @channel: the currently set channel upon reset
274 *
275 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
276 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
277 *
278 * Since delta slope is floating point we split it on its exponent and
279 * mantissa and provide these values on hw.
280 *
281 * For more infos i think this patent is related
282 * "http://www.freepatentsonline.com/7184495.html"
283 */
284 static inline int
ath5k_hw_write_ofdm_timings(struct ath5k_hw * ah,struct ieee80211_channel * channel)285 ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
286 struct ieee80211_channel *channel)
287 {
288 /* Get exponent and mantissa and set it */
289 u32 coef_scaled, coef_exp, coef_man,
290 ds_coef_exp, ds_coef_man, clock;
291
292 BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
293 (channel->hw_value == AR5K_MODE_11B));
294
295 /* Get coefficient
296 * ALGO: coef = (5 * clock / carrier_freq) / 2
297 * we scale coef by shifting clock value by 24 for
298 * better precision since we use integers */
299 switch (ah->ah_bwmode) {
300 case AR5K_BWMODE_40MHZ:
301 clock = 40 * 2;
302 break;
303 case AR5K_BWMODE_10MHZ:
304 clock = 40 / 2;
305 break;
306 case AR5K_BWMODE_5MHZ:
307 clock = 40 / 4;
308 break;
309 default:
310 clock = 40;
311 break;
312 }
313 coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
314
315 /* Get exponent
316 * ALGO: coef_exp = 14 - highest set bit position */
317 coef_exp = ilog2(coef_scaled);
318
319 /* Doesn't make sense if it's zero*/
320 if (!coef_scaled || !coef_exp)
321 return -EINVAL;
322
323 /* Note: we've shifted coef_scaled by 24 */
324 coef_exp = 14 - (coef_exp - 24);
325
326
327 /* Get mantissa (significant digits)
328 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
329 coef_man = coef_scaled +
330 (1 << (24 - coef_exp - 1));
331
332 /* Calculate delta slope coefficient exponent
333 * and mantissa (remove scaling) and set them on hw */
334 ds_coef_man = coef_man >> (24 - coef_exp);
335 ds_coef_exp = coef_exp - 16;
336
337 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
338 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
339 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
340 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
341
342 return 0;
343 }
344
345 /**
346 * ath5k_hw_phy_disable() - Disable PHY
347 * @ah: The &struct ath5k_hw
348 */
ath5k_hw_phy_disable(struct ath5k_hw * ah)349 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
350 {
351 /*Just a try M.F.*/
352 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
353
354 return 0;
355 }
356
357 /**
358 * ath5k_hw_wait_for_synth() - Wait for synth to settle
359 * @ah: The &struct ath5k_hw
360 * @channel: The &struct ieee80211_channel
361 */
362 static void
ath5k_hw_wait_for_synth(struct ath5k_hw * ah,struct ieee80211_channel * channel)363 ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
364 struct ieee80211_channel *channel)
365 {
366 /*
367 * On 5211+ read activation -> rx delay
368 * and use it (100ns steps).
369 */
370 if (ah->ah_version != AR5K_AR5210) {
371 u32 delay;
372 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
373 AR5K_PHY_RX_DELAY_M;
374 delay = (channel->hw_value == AR5K_MODE_11B) ?
375 ((delay << 2) / 22) : (delay / 10);
376 if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
377 delay = delay << 1;
378 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
379 delay = delay << 2;
380 /* XXX: /2 on turbo ? Let's be safe
381 * for now */
382 usleep_range(100 + delay, 100 + (2 * delay));
383 } else {
384 usleep_range(1000, 1500);
385 }
386 }
387
388
389 /**********************\
390 * RF Gain optimization *
391 \**********************/
392
393 /**
394 * DOC: RF Gain optimization
395 *
396 * This code is used to optimize RF gain on different environments
397 * (temperature mostly) based on feedback from a power detector.
398 *
399 * It's only used on RF5111 and RF5112, later RF chips seem to have
400 * auto adjustment on hw -notice they have a much smaller BANK 7 and
401 * no gain optimization ladder-.
402 *
403 * For more infos check out this patent doc
404 * "http://www.freepatentsonline.com/7400691.html"
405 *
406 * This paper describes power drops as seen on the receiver due to
407 * probe packets
408 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
409 * %20of%20Power%20Control.pdf"
410 *
411 * And this is the MadWiFi bug entry related to the above
412 * "http://madwifi-project.org/ticket/1659"
413 * with various measurements and diagrams
414 */
415
416 /**
417 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
418 * @ah: The &struct ath5k_hw
419 */
ath5k_hw_rfgain_opt_init(struct ath5k_hw * ah)420 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
421 {
422 /* Initialize the gain optimization values */
423 switch (ah->ah_radio) {
424 case AR5K_RF5111:
425 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
426 ah->ah_gain.g_low = 20;
427 ah->ah_gain.g_high = 35;
428 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
429 break;
430 case AR5K_RF5112:
431 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
432 ah->ah_gain.g_low = 20;
433 ah->ah_gain.g_high = 85;
434 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
435 break;
436 default:
437 return -EINVAL;
438 }
439
440 return 0;
441 }
442
443 /**
444 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
445 * @ah: The &struct ath5k_hw
446 *
447 * Schedules a gain probe check on the next transmitted packet.
448 * That means our next packet is going to be sent with lower
449 * tx power and a Peak to Average Power Detector (PAPD) will try
450 * to measure the gain.
451 *
452 * TODO: Force a tx packet (bypassing PCU arbitrator etc)
453 * just after we enable the probe so that we don't mess with
454 * standard traffic.
455 */
456 static void
ath5k_hw_request_rfgain_probe(struct ath5k_hw * ah)457 ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
458 {
459
460 /* Skip if gain calibration is inactive or
461 * we already handle a probe request */
462 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
463 return;
464
465 /* Send the packet with 2dB below max power as
466 * patent doc suggest */
467 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
468 AR5K_PHY_PAPD_PROBE_TXPOWER) |
469 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
470
471 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
472
473 }
474
475 /**
476 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
477 * @ah: The &struct ath5k_hw
478 *
479 * Calculate Gain_F measurement correction
480 * based on the current step for RF5112 rev. 2
481 */
482 static u32
ath5k_hw_rf_gainf_corr(struct ath5k_hw * ah)483 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
484 {
485 u32 mix, step;
486 u32 *rf;
487 const struct ath5k_gain_opt *go;
488 const struct ath5k_gain_opt_step *g_step;
489 const struct ath5k_rf_reg *rf_regs;
490
491 /* Only RF5112 Rev. 2 supports it */
492 if ((ah->ah_radio != AR5K_RF5112) ||
493 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
494 return 0;
495
496 go = &rfgain_opt_5112;
497 rf_regs = rf_regs_5112a;
498 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
499
500 g_step = &go->go_step[ah->ah_gain.g_step_idx];
501
502 if (ah->ah_rf_banks == NULL)
503 return 0;
504
505 rf = ah->ah_rf_banks;
506 ah->ah_gain.g_f_corr = 0;
507
508 /* No VGA (Variable Gain Amplifier) override, skip */
509 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
510 return 0;
511
512 /* Mix gain stepping */
513 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
514
515 /* Mix gain override */
516 mix = g_step->gos_param[0];
517
518 switch (mix) {
519 case 3:
520 ah->ah_gain.g_f_corr = step * 2;
521 break;
522 case 2:
523 ah->ah_gain.g_f_corr = (step - 5) * 2;
524 break;
525 case 1:
526 ah->ah_gain.g_f_corr = step;
527 break;
528 default:
529 ah->ah_gain.g_f_corr = 0;
530 break;
531 }
532
533 return ah->ah_gain.g_f_corr;
534 }
535
536 /**
537 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
538 * @ah: The &struct ath5k_hw
539 *
540 * Check if current gain_F measurement is in the range of our
541 * power detector windows. If we get a measurement outside range
542 * we know it's not accurate (detectors can't measure anything outside
543 * their detection window) so we must ignore it.
544 *
545 * Returns true if readback was O.K. or false on failure
546 */
547 static bool
ath5k_hw_rf_check_gainf_readback(struct ath5k_hw * ah)548 ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
549 {
550 const struct ath5k_rf_reg *rf_regs;
551 u32 step, mix_ovr, level[4];
552 u32 *rf;
553
554 if (ah->ah_rf_banks == NULL)
555 return false;
556
557 rf = ah->ah_rf_banks;
558
559 if (ah->ah_radio == AR5K_RF5111) {
560
561 rf_regs = rf_regs_5111;
562 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
563
564 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
565 false);
566
567 level[0] = 0;
568 level[1] = (step == 63) ? 50 : step + 4;
569 level[2] = (step != 63) ? 64 : level[0];
570 level[3] = level[2] + 50;
571
572 ah->ah_gain.g_high = level[3] -
573 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
574 ah->ah_gain.g_low = level[0] +
575 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
576 } else {
577
578 rf_regs = rf_regs_5112;
579 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
580
581 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
582 false);
583
584 level[0] = level[2] = 0;
585
586 if (mix_ovr == 1) {
587 level[1] = level[3] = 83;
588 } else {
589 level[1] = level[3] = 107;
590 ah->ah_gain.g_high = 55;
591 }
592 }
593
594 return (ah->ah_gain.g_current >= level[0] &&
595 ah->ah_gain.g_current <= level[1]) ||
596 (ah->ah_gain.g_current >= level[2] &&
597 ah->ah_gain.g_current <= level[3]);
598 }
599
600 /**
601 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
602 * @ah: The &struct ath5k_hw
603 *
604 * Choose the right target gain based on current gain
605 * and RF gain optimization ladder
606 */
607 static s8
ath5k_hw_rf_gainf_adjust(struct ath5k_hw * ah)608 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
609 {
610 const struct ath5k_gain_opt *go;
611 const struct ath5k_gain_opt_step *g_step;
612 int ret = 0;
613
614 switch (ah->ah_radio) {
615 case AR5K_RF5111:
616 go = &rfgain_opt_5111;
617 break;
618 case AR5K_RF5112:
619 go = &rfgain_opt_5112;
620 break;
621 default:
622 return 0;
623 }
624
625 g_step = &go->go_step[ah->ah_gain.g_step_idx];
626
627 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
628
629 /* Reached maximum */
630 if (ah->ah_gain.g_step_idx == 0)
631 return -1;
632
633 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
634 ah->ah_gain.g_target >= ah->ah_gain.g_high &&
635 ah->ah_gain.g_step_idx > 0;
636 g_step = &go->go_step[ah->ah_gain.g_step_idx])
637 ah->ah_gain.g_target -= 2 *
638 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
639 g_step->gos_gain);
640
641 ret = 1;
642 goto done;
643 }
644
645 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
646
647 /* Reached minimum */
648 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
649 return -2;
650
651 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
652 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
653 ah->ah_gain.g_step_idx < go->go_steps_count - 1;
654 g_step = &go->go_step[ah->ah_gain.g_step_idx])
655 ah->ah_gain.g_target -= 2 *
656 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
657 g_step->gos_gain);
658
659 ret = 2;
660 goto done;
661 }
662
663 done:
664 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
665 "ret %d, gain step %u, current gain %u, target gain %u\n",
666 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
667 ah->ah_gain.g_target);
668
669 return ret;
670 }
671
672 /**
673 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
674 * @ah: The &struct ath5k_hw
675 *
676 * Main callback for thermal RF gain calibration engine
677 * Check for a new gain reading and schedule an adjustment
678 * if needed.
679 *
680 * Returns one of enum ath5k_rfgain codes
681 */
682 enum ath5k_rfgain
ath5k_hw_gainf_calibrate(struct ath5k_hw * ah)683 ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
684 {
685 u32 data, type;
686 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
687
688 if (ah->ah_rf_banks == NULL ||
689 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
690 return AR5K_RFGAIN_INACTIVE;
691
692 /* No check requested, either engine is inactive
693 * or an adjustment is already requested */
694 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
695 goto done;
696
697 /* Read the PAPD (Peak to Average Power Detector)
698 * register */
699 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
700
701 /* No probe is scheduled, read gain_F measurement */
702 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
703 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
704 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
705
706 /* If tx packet is CCK correct the gain_F measurement
707 * by cck ofdm gain delta */
708 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
709 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
710 ah->ah_gain.g_current +=
711 ee->ee_cck_ofdm_gain_delta;
712 else
713 ah->ah_gain.g_current +=
714 AR5K_GAIN_CCK_PROBE_CORR;
715 }
716
717 /* Further correct gain_F measurement for
718 * RF5112A radios */
719 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
720 ath5k_hw_rf_gainf_corr(ah);
721 ah->ah_gain.g_current =
722 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
723 (ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
724 0;
725 }
726
727 /* Check if measurement is ok and if we need
728 * to adjust gain, schedule a gain adjustment,
729 * else switch back to the active state */
730 if (ath5k_hw_rf_check_gainf_readback(ah) &&
731 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
732 ath5k_hw_rf_gainf_adjust(ah)) {
733 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
734 } else {
735 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
736 }
737 }
738
739 done:
740 return ah->ah_gain.g_state;
741 }
742
743 /**
744 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
745 * @ah: The &struct ath5k_hw
746 * @band: One of enum ieee80211_band
747 *
748 * Write initial RF gain table to set the RF sensitivity.
749 *
750 * NOTE: This one works on all RF chips and has nothing to do
751 * with Gain_F calibration
752 */
753 static int
ath5k_hw_rfgain_init(struct ath5k_hw * ah,enum ieee80211_band band)754 ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
755 {
756 const struct ath5k_ini_rfgain *ath5k_rfg;
757 unsigned int i, size, index;
758
759 switch (ah->ah_radio) {
760 case AR5K_RF5111:
761 ath5k_rfg = rfgain_5111;
762 size = ARRAY_SIZE(rfgain_5111);
763 break;
764 case AR5K_RF5112:
765 ath5k_rfg = rfgain_5112;
766 size = ARRAY_SIZE(rfgain_5112);
767 break;
768 case AR5K_RF2413:
769 ath5k_rfg = rfgain_2413;
770 size = ARRAY_SIZE(rfgain_2413);
771 break;
772 case AR5K_RF2316:
773 ath5k_rfg = rfgain_2316;
774 size = ARRAY_SIZE(rfgain_2316);
775 break;
776 case AR5K_RF5413:
777 ath5k_rfg = rfgain_5413;
778 size = ARRAY_SIZE(rfgain_5413);
779 break;
780 case AR5K_RF2317:
781 case AR5K_RF2425:
782 ath5k_rfg = rfgain_2425;
783 size = ARRAY_SIZE(rfgain_2425);
784 break;
785 default:
786 return -EINVAL;
787 }
788
789 index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
790
791 for (i = 0; i < size; i++) {
792 AR5K_REG_WAIT(i);
793 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
794 (u32)ath5k_rfg[i].rfg_register);
795 }
796
797 return 0;
798 }
799
800
801 /********************\
802 * RF Registers setup *
803 \********************/
804
805 /**
806 * ath5k_hw_rfregs_init() - Initialize RF register settings
807 * @ah: The &struct ath5k_hw
808 * @channel: The &struct ieee80211_channel
809 * @mode: One of enum ath5k_driver_mode
810 *
811 * Setup RF registers by writing RF buffer on hw. For
812 * more infos on this, check out rfbuffer.h
813 */
814 static int
ath5k_hw_rfregs_init(struct ath5k_hw * ah,struct ieee80211_channel * channel,unsigned int mode)815 ath5k_hw_rfregs_init(struct ath5k_hw *ah,
816 struct ieee80211_channel *channel,
817 unsigned int mode)
818 {
819 const struct ath5k_rf_reg *rf_regs;
820 const struct ath5k_ini_rfbuffer *ini_rfb;
821 const struct ath5k_gain_opt *go = NULL;
822 const struct ath5k_gain_opt_step *g_step;
823 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
824 u8 ee_mode = 0;
825 u32 *rfb;
826 int i, obdb = -1, bank = -1;
827
828 switch (ah->ah_radio) {
829 case AR5K_RF5111:
830 rf_regs = rf_regs_5111;
831 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
832 ini_rfb = rfb_5111;
833 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
834 go = &rfgain_opt_5111;
835 break;
836 case AR5K_RF5112:
837 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
838 rf_regs = rf_regs_5112a;
839 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
840 ini_rfb = rfb_5112a;
841 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
842 } else {
843 rf_regs = rf_regs_5112;
844 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
845 ini_rfb = rfb_5112;
846 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
847 }
848 go = &rfgain_opt_5112;
849 break;
850 case AR5K_RF2413:
851 rf_regs = rf_regs_2413;
852 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
853 ini_rfb = rfb_2413;
854 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
855 break;
856 case AR5K_RF2316:
857 rf_regs = rf_regs_2316;
858 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
859 ini_rfb = rfb_2316;
860 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
861 break;
862 case AR5K_RF5413:
863 rf_regs = rf_regs_5413;
864 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
865 ini_rfb = rfb_5413;
866 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
867 break;
868 case AR5K_RF2317:
869 rf_regs = rf_regs_2425;
870 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
871 ini_rfb = rfb_2317;
872 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
873 break;
874 case AR5K_RF2425:
875 rf_regs = rf_regs_2425;
876 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
877 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
878 ini_rfb = rfb_2425;
879 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
880 } else {
881 ini_rfb = rfb_2417;
882 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
883 }
884 break;
885 default:
886 return -EINVAL;
887 }
888
889 /* If it's the first time we set RF buffer, allocate
890 * ah->ah_rf_banks based on ah->ah_rf_banks_size
891 * we set above */
892 if (ah->ah_rf_banks == NULL) {
893 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
894 GFP_KERNEL);
895 if (ah->ah_rf_banks == NULL) {
896 ATH5K_ERR(ah, "out of memory\n");
897 return -ENOMEM;
898 }
899 }
900
901 /* Copy values to modify them */
902 rfb = ah->ah_rf_banks;
903
904 for (i = 0; i < ah->ah_rf_banks_size; i++) {
905 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
906 ATH5K_ERR(ah, "invalid bank\n");
907 return -EINVAL;
908 }
909
910 /* Bank changed, write down the offset */
911 if (bank != ini_rfb[i].rfb_bank) {
912 bank = ini_rfb[i].rfb_bank;
913 ah->ah_offset[bank] = i;
914 }
915
916 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
917 }
918
919 /* Set Output and Driver bias current (OB/DB) */
920 if (channel->band == IEEE80211_BAND_2GHZ) {
921
922 if (channel->hw_value == AR5K_MODE_11B)
923 ee_mode = AR5K_EEPROM_MODE_11B;
924 else
925 ee_mode = AR5K_EEPROM_MODE_11G;
926
927 /* For RF511X/RF211X combination we
928 * use b_OB and b_DB parameters stored
929 * in eeprom on ee->ee_ob[ee_mode][0]
930 *
931 * For all other chips we use OB/DB for 2GHz
932 * stored in the b/g modal section just like
933 * 802.11a on ee->ee_ob[ee_mode][1] */
934 if ((ah->ah_radio == AR5K_RF5111) ||
935 (ah->ah_radio == AR5K_RF5112))
936 obdb = 0;
937 else
938 obdb = 1;
939
940 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
941 AR5K_RF_OB_2GHZ, true);
942
943 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
944 AR5K_RF_DB_2GHZ, true);
945
946 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
947 } else if ((channel->band == IEEE80211_BAND_5GHZ) ||
948 (ah->ah_radio == AR5K_RF5111)) {
949
950 /* For 11a, Turbo and XR we need to choose
951 * OB/DB based on frequency range */
952 ee_mode = AR5K_EEPROM_MODE_11A;
953 obdb = channel->center_freq >= 5725 ? 3 :
954 (channel->center_freq >= 5500 ? 2 :
955 (channel->center_freq >= 5260 ? 1 :
956 (channel->center_freq > 4000 ? 0 : -1)));
957
958 if (obdb < 0)
959 return -EINVAL;
960
961 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
962 AR5K_RF_OB_5GHZ, true);
963
964 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
965 AR5K_RF_DB_5GHZ, true);
966 }
967
968 g_step = &go->go_step[ah->ah_gain.g_step_idx];
969
970 /* Set turbo mode (N/A on RF5413) */
971 if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
972 (ah->ah_radio != AR5K_RF5413))
973 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
974
975 /* Bank Modifications (chip-specific) */
976 if (ah->ah_radio == AR5K_RF5111) {
977
978 /* Set gain_F settings according to current step */
979 if (channel->hw_value != AR5K_MODE_11B) {
980
981 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
982 AR5K_PHY_FRAME_CTL_TX_CLIP,
983 g_step->gos_param[0]);
984
985 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
986 AR5K_RF_PWD_90, true);
987
988 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
989 AR5K_RF_PWD_84, true);
990
991 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
992 AR5K_RF_RFGAIN_SEL, true);
993
994 /* We programmed gain_F parameters, switch back
995 * to active state */
996 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
997
998 }
999
1000 /* Bank 6/7 setup */
1001
1002 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
1003 AR5K_RF_PWD_XPD, true);
1004
1005 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
1006 AR5K_RF_XPD_GAIN, true);
1007
1008 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1009 AR5K_RF_GAIN_I, true);
1010
1011 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1012 AR5K_RF_PLO_SEL, true);
1013
1014 /* Tweak power detectors for half/quarter rate support */
1015 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1016 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1017 u8 wait_i;
1018
1019 ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
1020 AR5K_RF_WAIT_S, true);
1021
1022 wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1023 0x1f : 0x10;
1024
1025 ath5k_hw_rfb_op(ah, rf_regs, wait_i,
1026 AR5K_RF_WAIT_I, true);
1027 ath5k_hw_rfb_op(ah, rf_regs, 3,
1028 AR5K_RF_MAX_TIME, true);
1029
1030 }
1031 }
1032
1033 if (ah->ah_radio == AR5K_RF5112) {
1034
1035 /* Set gain_F settings according to current step */
1036 if (channel->hw_value != AR5K_MODE_11B) {
1037
1038 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
1039 AR5K_RF_MIXGAIN_OVR, true);
1040
1041 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
1042 AR5K_RF_PWD_138, true);
1043
1044 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
1045 AR5K_RF_PWD_137, true);
1046
1047 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
1048 AR5K_RF_PWD_136, true);
1049
1050 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
1051 AR5K_RF_PWD_132, true);
1052
1053 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
1054 AR5K_RF_PWD_131, true);
1055
1056 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
1057 AR5K_RF_PWD_130, true);
1058
1059 /* We programmed gain_F parameters, switch back
1060 * to active state */
1061 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
1062 }
1063
1064 /* Bank 6/7 setup */
1065
1066 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1067 AR5K_RF_XPD_SEL, true);
1068
1069 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
1070 /* Rev. 1 supports only one xpd */
1071 ath5k_hw_rfb_op(ah, rf_regs,
1072 ee->ee_x_gain[ee_mode],
1073 AR5K_RF_XPD_GAIN, true);
1074
1075 } else {
1076 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
1077 if (ee->ee_pd_gains[ee_mode] > 1) {
1078 ath5k_hw_rfb_op(ah, rf_regs,
1079 pdg_curve_to_idx[0],
1080 AR5K_RF_PD_GAIN_LO, true);
1081 ath5k_hw_rfb_op(ah, rf_regs,
1082 pdg_curve_to_idx[1],
1083 AR5K_RF_PD_GAIN_HI, true);
1084 } else {
1085 ath5k_hw_rfb_op(ah, rf_regs,
1086 pdg_curve_to_idx[0],
1087 AR5K_RF_PD_GAIN_LO, true);
1088 ath5k_hw_rfb_op(ah, rf_regs,
1089 pdg_curve_to_idx[0],
1090 AR5K_RF_PD_GAIN_HI, true);
1091 }
1092
1093 /* Lower synth voltage on Rev 2 */
1094 if (ah->ah_radio == AR5K_RF5112 &&
1095 (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
1096 ath5k_hw_rfb_op(ah, rf_regs, 2,
1097 AR5K_RF_HIGH_VC_CP, true);
1098
1099 ath5k_hw_rfb_op(ah, rf_regs, 2,
1100 AR5K_RF_MID_VC_CP, true);
1101
1102 ath5k_hw_rfb_op(ah, rf_regs, 2,
1103 AR5K_RF_LOW_VC_CP, true);
1104
1105 ath5k_hw_rfb_op(ah, rf_regs, 2,
1106 AR5K_RF_PUSH_UP, true);
1107 }
1108
1109 /* Decrease power consumption on 5213+ BaseBand */
1110 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1111 ath5k_hw_rfb_op(ah, rf_regs, 1,
1112 AR5K_RF_PAD2GND, true);
1113
1114 ath5k_hw_rfb_op(ah, rf_regs, 1,
1115 AR5K_RF_XB2_LVL, true);
1116
1117 ath5k_hw_rfb_op(ah, rf_regs, 1,
1118 AR5K_RF_XB5_LVL, true);
1119
1120 ath5k_hw_rfb_op(ah, rf_regs, 1,
1121 AR5K_RF_PWD_167, true);
1122
1123 ath5k_hw_rfb_op(ah, rf_regs, 1,
1124 AR5K_RF_PWD_166, true);
1125 }
1126 }
1127
1128 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1129 AR5K_RF_GAIN_I, true);
1130
1131 /* Tweak power detector for half/quarter rates */
1132 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1133 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1134 u8 pd_delay;
1135
1136 pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1137 0xf : 0x8;
1138
1139 ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1140 AR5K_RF_PD_PERIOD_A, true);
1141 ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1142 AR5K_RF_PD_DELAY_A, true);
1143
1144 }
1145 }
1146
1147 if (ah->ah_radio == AR5K_RF5413 &&
1148 channel->band == IEEE80211_BAND_2GHZ) {
1149
1150 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1151 true);
1152
1153 /* Set optimum value for early revisions (on pci-e chips) */
1154 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1155 ah->ah_mac_srev < AR5K_SREV_AR5413)
1156 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1157 AR5K_RF_PWD_ICLOBUF_2G, true);
1158
1159 }
1160
1161 /* Write RF banks on hw */
1162 for (i = 0; i < ah->ah_rf_banks_size; i++) {
1163 AR5K_REG_WAIT(i);
1164 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1165 }
1166
1167 return 0;
1168 }
1169
1170
1171 /**************************\
1172 PHY/RF channel functions
1173 \**************************/
1174
1175 /**
1176 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1177 * @channel: The &struct ieee80211_channel
1178 *
1179 * Map channel frequency to IEEE channel number and convert it
1180 * to an internal channel value used by the RF5110 chipset.
1181 */
1182 static u32
ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel * channel)1183 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1184 {
1185 u32 athchan;
1186
1187 athchan = (ath5k_hw_bitswap(
1188 (ieee80211_frequency_to_channel(
1189 channel->center_freq) - 24) / 2, 5)
1190 << 1) | (1 << 6) | 0x1;
1191 return athchan;
1192 }
1193
1194 /**
1195 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1196 * @ah: The &struct ath5k_hw
1197 * @channel: The &struct ieee80211_channel
1198 */
1199 static int
ath5k_hw_rf5110_channel(struct ath5k_hw * ah,struct ieee80211_channel * channel)1200 ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1201 struct ieee80211_channel *channel)
1202 {
1203 u32 data;
1204
1205 /*
1206 * Set the channel and wait
1207 */
1208 data = ath5k_hw_rf5110_chan2athchan(channel);
1209 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1210 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1211 usleep_range(1000, 1500);
1212
1213 return 0;
1214 }
1215
1216 /**
1217 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1218 * @ieee: IEEE channel number
1219 * @athchan: The &struct ath5k_athchan_2ghz
1220 *
1221 * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1222 * we need to add some offsets and extra flags to the data values we pass
1223 * on to the PHY. So for every 2GHz channel this function gets called
1224 * to do the conversion.
1225 */
1226 static int
ath5k_hw_rf5111_chan2athchan(unsigned int ieee,struct ath5k_athchan_2ghz * athchan)1227 ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1228 struct ath5k_athchan_2ghz *athchan)
1229 {
1230 int channel;
1231
1232 /* Cast this value to catch negative channel numbers (>= -19) */
1233 channel = (int)ieee;
1234
1235 /*
1236 * Map 2GHz IEEE channel to 5GHz Atheros channel
1237 */
1238 if (channel <= 13) {
1239 athchan->a2_athchan = 115 + channel;
1240 athchan->a2_flags = 0x46;
1241 } else if (channel == 14) {
1242 athchan->a2_athchan = 124;
1243 athchan->a2_flags = 0x44;
1244 } else if (channel >= 15 && channel <= 26) {
1245 athchan->a2_athchan = ((channel - 14) * 4) + 132;
1246 athchan->a2_flags = 0x46;
1247 } else
1248 return -EINVAL;
1249
1250 return 0;
1251 }
1252
1253 /**
1254 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1255 * @ah: The &struct ath5k_hw
1256 * @channel: The &struct ieee80211_channel
1257 */
1258 static int
ath5k_hw_rf5111_channel(struct ath5k_hw * ah,struct ieee80211_channel * channel)1259 ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1260 struct ieee80211_channel *channel)
1261 {
1262 struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1263 unsigned int ath5k_channel =
1264 ieee80211_frequency_to_channel(channel->center_freq);
1265 u32 data0, data1, clock;
1266 int ret;
1267
1268 /*
1269 * Set the channel on the RF5111 radio
1270 */
1271 data0 = data1 = 0;
1272
1273 if (channel->band == IEEE80211_BAND_2GHZ) {
1274 /* Map 2GHz channel to 5GHz Atheros channel ID */
1275 ret = ath5k_hw_rf5111_chan2athchan(
1276 ieee80211_frequency_to_channel(channel->center_freq),
1277 &ath5k_channel_2ghz);
1278 if (ret)
1279 return ret;
1280
1281 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1282 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1283 << 5) | (1 << 4);
1284 }
1285
1286 if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1287 clock = 1;
1288 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1289 (clock << 1) | (1 << 10) | 1;
1290 } else {
1291 clock = 0;
1292 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1293 << 2) | (clock << 1) | (1 << 10) | 1;
1294 }
1295
1296 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1297 AR5K_RF_BUFFER);
1298 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1299 AR5K_RF_BUFFER_CONTROL_3);
1300
1301 return 0;
1302 }
1303
1304 /**
1305 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1306 * @ah: The &struct ath5k_hw
1307 * @channel: The &struct ieee80211_channel
1308 *
1309 * On RF5112/2112 and newer we don't need to do any conversion.
1310 * We pass the frequency value after a few modifications to the
1311 * chip directly.
1312 *
1313 * NOTE: Make sure channel frequency given is within our range or else
1314 * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1315 */
1316 static int
ath5k_hw_rf5112_channel(struct ath5k_hw * ah,struct ieee80211_channel * channel)1317 ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1318 struct ieee80211_channel *channel)
1319 {
1320 u32 data, data0, data1, data2;
1321 u16 c;
1322
1323 data = data0 = data1 = data2 = 0;
1324 c = channel->center_freq;
1325
1326 /* My guess based on code:
1327 * 2GHz RF has 2 synth modes, one with a Local Oscillator
1328 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1329 * (3040/2). data0 is used to set the PLL divider and data1
1330 * selects synth mode. */
1331 if (c < 4800) {
1332 /* Channel 14 and all frequencies with 2Hz spacing
1333 * below/above (non-standard channels) */
1334 if (!((c - 2224) % 5)) {
1335 /* Same as (c - 2224) / 5 */
1336 data0 = ((2 * (c - 704)) - 3040) / 10;
1337 data1 = 1;
1338 /* Channel 1 and all frequencies with 5Hz spacing
1339 * below/above (standard channels without channel 14) */
1340 } else if (!((c - 2192) % 5)) {
1341 /* Same as (c - 2192) / 5 */
1342 data0 = ((2 * (c - 672)) - 3040) / 10;
1343 data1 = 0;
1344 } else
1345 return -EINVAL;
1346
1347 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1348 /* This is more complex, we have a single synthesizer with
1349 * 4 reference clock settings (?) based on frequency spacing
1350 * and set using data2. LO is at 4800Hz and data0 is again used
1351 * to set some divider.
1352 *
1353 * NOTE: There is an old atheros presentation at Stanford
1354 * that mentions a method called dual direct conversion
1355 * with 1GHz sliding IF for RF5110. Maybe that's what we
1356 * have here, or an updated version. */
1357 } else if ((c % 5) != 2 || c > 5435) {
1358 if (!(c % 20) && c >= 5120) {
1359 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1360 data2 = ath5k_hw_bitswap(3, 2);
1361 } else if (!(c % 10)) {
1362 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1363 data2 = ath5k_hw_bitswap(2, 2);
1364 } else if (!(c % 5)) {
1365 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1366 data2 = ath5k_hw_bitswap(1, 2);
1367 } else
1368 return -EINVAL;
1369 } else {
1370 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1371 data2 = ath5k_hw_bitswap(0, 2);
1372 }
1373
1374 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1375
1376 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1377 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1378
1379 return 0;
1380 }
1381
1382 /**
1383 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1384 * @ah: The &struct ath5k_hw
1385 * @channel: The &struct ieee80211_channel
1386 *
1387 * AR2425/2417 have a different 2GHz RF so code changes
1388 * a little bit from RF5112.
1389 */
1390 static int
ath5k_hw_rf2425_channel(struct ath5k_hw * ah,struct ieee80211_channel * channel)1391 ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1392 struct ieee80211_channel *channel)
1393 {
1394 u32 data, data0, data2;
1395 u16 c;
1396
1397 data = data0 = data2 = 0;
1398 c = channel->center_freq;
1399
1400 if (c < 4800) {
1401 data0 = ath5k_hw_bitswap((c - 2272), 8);
1402 data2 = 0;
1403 /* ? 5GHz ? */
1404 } else if ((c % 5) != 2 || c > 5435) {
1405 if (!(c % 20) && c < 5120)
1406 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1407 else if (!(c % 10))
1408 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1409 else if (!(c % 5))
1410 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1411 else
1412 return -EINVAL;
1413 data2 = ath5k_hw_bitswap(1, 2);
1414 } else {
1415 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1416 data2 = ath5k_hw_bitswap(0, 2);
1417 }
1418
1419 data = (data0 << 4) | data2 << 2 | 0x1001;
1420
1421 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1422 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1423
1424 return 0;
1425 }
1426
1427 /**
1428 * ath5k_hw_channel() - Set a channel on the radio chip
1429 * @ah: The &struct ath5k_hw
1430 * @channel: The &struct ieee80211_channel
1431 *
1432 * This is the main function called to set a channel on the
1433 * radio chip based on the radio chip version.
1434 */
1435 static int
ath5k_hw_channel(struct ath5k_hw * ah,struct ieee80211_channel * channel)1436 ath5k_hw_channel(struct ath5k_hw *ah,
1437 struct ieee80211_channel *channel)
1438 {
1439 int ret;
1440 /*
1441 * Check bounds supported by the PHY (we don't care about regulatory
1442 * restrictions at this point).
1443 */
1444 if (!ath5k_channel_ok(ah, channel)) {
1445 ATH5K_ERR(ah,
1446 "channel frequency (%u MHz) out of supported "
1447 "band range\n",
1448 channel->center_freq);
1449 return -EINVAL;
1450 }
1451
1452 /*
1453 * Set the channel and wait
1454 */
1455 switch (ah->ah_radio) {
1456 case AR5K_RF5110:
1457 ret = ath5k_hw_rf5110_channel(ah, channel);
1458 break;
1459 case AR5K_RF5111:
1460 ret = ath5k_hw_rf5111_channel(ah, channel);
1461 break;
1462 case AR5K_RF2317:
1463 case AR5K_RF2425:
1464 ret = ath5k_hw_rf2425_channel(ah, channel);
1465 break;
1466 default:
1467 ret = ath5k_hw_rf5112_channel(ah, channel);
1468 break;
1469 }
1470
1471 if (ret)
1472 return ret;
1473
1474 /* Set JAPAN setting for channel 14 */
1475 if (channel->center_freq == 2484) {
1476 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1477 AR5K_PHY_CCKTXCTL_JAPAN);
1478 } else {
1479 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1480 AR5K_PHY_CCKTXCTL_WORLD);
1481 }
1482
1483 ah->ah_current_channel = channel;
1484
1485 return 0;
1486 }
1487
1488
1489 /*****************\
1490 PHY calibration
1491 \*****************/
1492
1493 /**
1494 * DOC: PHY Calibration routines
1495 *
1496 * Noise floor calibration: When we tell the hardware to
1497 * perform a noise floor calibration by setting the
1498 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1499 * sample-and-hold the minimum noise level seen at the antennas.
1500 * This value is then stored in a ring buffer of recently measured
1501 * noise floor values so we have a moving window of the last few
1502 * samples. The median of the values in the history is then loaded
1503 * into the hardware for its own use for RSSI and CCA measurements.
1504 * This type of calibration doesn't interfere with traffic.
1505 *
1506 * AGC calibration: When we tell the hardware to perform
1507 * an AGC (Automatic Gain Control) calibration by setting the
1508 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1509 * a calibration on the DC offsets of ADCs. During this period
1510 * rx/tx gets disabled so we have to deal with it on the driver
1511 * part.
1512 *
1513 * I/Q calibration: When we tell the hardware to perform
1514 * an I/Q calibration, it tries to correct I/Q imbalance and
1515 * fix QAM constellation by sampling data from rxed frames.
1516 * It doesn't interfere with traffic.
1517 *
1518 * For more infos on AGC and I/Q calibration check out patent doc
1519 * #03/094463.
1520 */
1521
1522 /**
1523 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1524 * @ah: The &struct ath5k_hw
1525 */
1526 static s32
ath5k_hw_read_measured_noise_floor(struct ath5k_hw * ah)1527 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1528 {
1529 s32 val;
1530
1531 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1532 return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1533 }
1534
1535 /**
1536 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1537 * @ah: The &struct ath5k_hw
1538 */
1539 void
ath5k_hw_init_nfcal_hist(struct ath5k_hw * ah)1540 ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1541 {
1542 int i;
1543
1544 ah->ah_nfcal_hist.index = 0;
1545 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1546 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1547 }
1548
1549 /**
1550 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1551 * @ah: The &struct ath5k_hw
1552 * @noise_floor: The NF we got from hw
1553 */
ath5k_hw_update_nfcal_hist(struct ath5k_hw * ah,s16 noise_floor)1554 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1555 {
1556 struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1557 hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1558 hist->nfval[hist->index] = noise_floor;
1559 }
1560
1561 /**
1562 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1563 * @ah: The &struct ath5k_hw
1564 */
1565 static s16
ath5k_hw_get_median_noise_floor(struct ath5k_hw * ah)1566 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1567 {
1568 s16 sort[ATH5K_NF_CAL_HIST_MAX];
1569 s16 tmp;
1570 int i, j;
1571
1572 memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1573 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1574 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1575 if (sort[j] > sort[j - 1]) {
1576 tmp = sort[j];
1577 sort[j] = sort[j - 1];
1578 sort[j - 1] = tmp;
1579 }
1580 }
1581 }
1582 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1583 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1584 "cal %d:%d\n", i, sort[i]);
1585 }
1586 return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1587 }
1588
1589 /**
1590 * ath5k_hw_update_noise_floor() - Update NF on hardware
1591 * @ah: The &struct ath5k_hw
1592 *
1593 * This is the main function we call to perform a NF calibration,
1594 * it reads NF from hardware, calculates the median and updates
1595 * NF on hw.
1596 */
1597 void
ath5k_hw_update_noise_floor(struct ath5k_hw * ah)1598 ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1599 {
1600 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1601 u32 val;
1602 s16 nf, threshold;
1603 u8 ee_mode;
1604
1605 /* keep last value if calibration hasn't completed */
1606 if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1607 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1608 "NF did not complete in calibration window\n");
1609
1610 return;
1611 }
1612
1613 ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
1614
1615 ee_mode = ath5k_eeprom_mode_from_channel(ah, ah->ah_current_channel);
1616
1617 /* completed NF calibration, test threshold */
1618 nf = ath5k_hw_read_measured_noise_floor(ah);
1619 threshold = ee->ee_noise_floor_thr[ee_mode];
1620
1621 if (nf > threshold) {
1622 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1623 "noise floor failure detected; "
1624 "read %d, threshold %d\n",
1625 nf, threshold);
1626
1627 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1628 }
1629
1630 ath5k_hw_update_nfcal_hist(ah, nf);
1631 nf = ath5k_hw_get_median_noise_floor(ah);
1632
1633 /* load noise floor (in .5 dBm) so the hardware will use it */
1634 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1635 val |= (nf * 2) & AR5K_PHY_NF_M;
1636 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1637
1638 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1639 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1640
1641 ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1642 0, false);
1643
1644 /*
1645 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1646 * so that we're not capped by the median we just loaded.
1647 * This will be used as the initial value for the next noise
1648 * floor calibration.
1649 */
1650 val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1651 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1652 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1653 AR5K_PHY_AGCCTL_NF_EN |
1654 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1655 AR5K_PHY_AGCCTL_NF);
1656
1657 ah->ah_noise_floor = nf;
1658
1659 ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1660
1661 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1662 "noise floor calibrated: %d\n", nf);
1663 }
1664
1665 /**
1666 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1667 * @ah: The &struct ath5k_hw
1668 * @channel: The &struct ieee80211_channel
1669 *
1670 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1671 */
1672 static int
ath5k_hw_rf5110_calibrate(struct ath5k_hw * ah,struct ieee80211_channel * channel)1673 ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1674 struct ieee80211_channel *channel)
1675 {
1676 u32 phy_sig, phy_agc, phy_sat, beacon;
1677 int ret;
1678
1679 if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
1680 return 0;
1681
1682 /*
1683 * Disable beacons and RX/TX queues, wait
1684 */
1685 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1686 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1687 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1688 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1689
1690 usleep_range(2000, 2500);
1691
1692 /*
1693 * Set the channel (with AGC turned off)
1694 */
1695 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1696 udelay(10);
1697 ret = ath5k_hw_channel(ah, channel);
1698
1699 /*
1700 * Activate PHY and wait
1701 */
1702 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1703 usleep_range(1000, 1500);
1704
1705 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1706
1707 if (ret)
1708 return ret;
1709
1710 /*
1711 * Calibrate the radio chip
1712 */
1713
1714 /* Remember normal state */
1715 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1716 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1717 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1718
1719 /* Update radio registers */
1720 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1721 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1722
1723 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1724 AR5K_PHY_AGCCOARSE_LO)) |
1725 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1726 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1727
1728 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1729 AR5K_PHY_ADCSAT_THR)) |
1730 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1731 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1732
1733 udelay(20);
1734
1735 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1736 udelay(10);
1737 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1738 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1739
1740 usleep_range(1000, 1500);
1741
1742 /*
1743 * Enable calibration and wait until completion
1744 */
1745 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1746
1747 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1748 AR5K_PHY_AGCCTL_CAL, 0, false);
1749
1750 /* Reset to normal state */
1751 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1752 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1753 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1754
1755 if (ret) {
1756 ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1757 channel->center_freq);
1758 return ret;
1759 }
1760
1761 /*
1762 * Re-enable RX/TX and beacons
1763 */
1764 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1765 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1766 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1767
1768 return 0;
1769 }
1770
1771 /**
1772 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1773 * @ah: The &struct ath5k_hw
1774 */
1775 static int
ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw * ah)1776 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1777 {
1778 u32 i_pwr, q_pwr;
1779 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1780 int i;
1781
1782 /* Skip if I/Q calibration is not needed or if it's still running */
1783 if (!ah->ah_iq_cal_needed)
1784 return -EINVAL;
1785 else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
1786 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1787 "I/Q calibration still running");
1788 return -EBUSY;
1789 }
1790
1791 /* Calibration has finished, get the results and re-run */
1792
1793 /* Work around for empty results which can apparently happen on 5212:
1794 * Read registers up to 10 times until we get both i_pr and q_pwr */
1795 for (i = 0; i <= 10; i++) {
1796 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1797 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1798 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1799 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1800 "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1801 if (i_pwr && q_pwr)
1802 break;
1803 }
1804
1805 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1806
1807 if (ah->ah_version == AR5K_AR5211)
1808 q_coffd = q_pwr >> 6;
1809 else
1810 q_coffd = q_pwr >> 7;
1811
1812 /* In case i_coffd became zero, cancel calibration
1813 * not only it's too small, it'll also result a divide
1814 * by zero later on. */
1815 if (i_coffd == 0 || q_coffd < 2)
1816 return -ECANCELED;
1817
1818 /* Protect against loss of sign bits */
1819
1820 i_coff = (-iq_corr) / i_coffd;
1821 i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1822
1823 if (ah->ah_version == AR5K_AR5211)
1824 q_coff = (i_pwr / q_coffd) - 64;
1825 else
1826 q_coff = (i_pwr / q_coffd) - 128;
1827 q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1828
1829 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1830 "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1831 i_coff, q_coff, i_coffd, q_coffd);
1832
1833 /* Commit new I/Q values (set enable bit last to match HAL sources) */
1834 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1835 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1836 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1837
1838 /* Re-enable calibration -if we don't we'll commit
1839 * the same values again and again */
1840 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1841 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1842 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1843
1844 return 0;
1845 }
1846
1847 /**
1848 * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1849 * @ah: The &struct ath5k_hw
1850 * @channel: The &struct ieee80211_channel
1851 *
1852 * The main function we call from above to perform
1853 * a short or full PHY calibration based on RF chip
1854 * and current channel
1855 */
1856 int
ath5k_hw_phy_calibrate(struct ath5k_hw * ah,struct ieee80211_channel * channel)1857 ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1858 struct ieee80211_channel *channel)
1859 {
1860 int ret;
1861
1862 if (ah->ah_radio == AR5K_RF5110)
1863 return ath5k_hw_rf5110_calibrate(ah, channel);
1864
1865 ret = ath5k_hw_rf511x_iq_calibrate(ah);
1866 if (ret) {
1867 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1868 "No I/Q correction performed (%uMHz)\n",
1869 channel->center_freq);
1870
1871 /* Happens all the time if there is not much
1872 * traffic, consider it normal behaviour. */
1873 ret = 0;
1874 }
1875
1876 /* On full calibration request a PAPD probe for
1877 * gainf calibration if needed */
1878 if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
1879 (ah->ah_radio == AR5K_RF5111 ||
1880 ah->ah_radio == AR5K_RF5112) &&
1881 channel->hw_value != AR5K_MODE_11B)
1882 ath5k_hw_request_rfgain_probe(ah);
1883
1884 /* Update noise floor */
1885 if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
1886 ath5k_hw_update_noise_floor(ah);
1887
1888 return ret;
1889 }
1890
1891
1892 /***************************\
1893 * Spur mitigation functions *
1894 \***************************/
1895
1896 /**
1897 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1898 * @ah: The &struct ath5k_hw
1899 * @channel: The &struct ieee80211_channel
1900 *
1901 * This function gets called during PHY initialization to
1902 * configure the spur filter for the given channel. Spur is noise
1903 * generated due to "reflection" effects, for more information on this
1904 * method check out patent US7643810
1905 */
1906 static void
ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw * ah,struct ieee80211_channel * channel)1907 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1908 struct ieee80211_channel *channel)
1909 {
1910 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1911 u32 mag_mask[4] = {0, 0, 0, 0};
1912 u32 pilot_mask[2] = {0, 0};
1913 /* Note: fbin values are scaled up by 2 */
1914 u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1915 s32 spur_delta_phase, spur_freq_sigma_delta;
1916 s32 spur_offset, num_symbols_x16;
1917 u8 num_symbol_offsets, i, freq_band;
1918
1919 /* Convert current frequency to fbin value (the same way channels
1920 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1921 * up by 2 so we can compare it later */
1922 if (channel->band == IEEE80211_BAND_2GHZ) {
1923 chan_fbin = (channel->center_freq - 2300) * 10;
1924 freq_band = AR5K_EEPROM_BAND_2GHZ;
1925 } else {
1926 chan_fbin = (channel->center_freq - 4900) * 10;
1927 freq_band = AR5K_EEPROM_BAND_5GHZ;
1928 }
1929
1930 /* Check if any spur_chan_fbin from EEPROM is
1931 * within our current channel's spur detection range */
1932 spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1933 spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1934 /* XXX: Half/Quarter channels ?*/
1935 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1936 spur_detection_window *= 2;
1937
1938 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1939 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1940
1941 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1942 * so it's zero if we got nothing from EEPROM */
1943 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1944 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1945 break;
1946 }
1947
1948 if ((chan_fbin - spur_detection_window <=
1949 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1950 (chan_fbin + spur_detection_window >=
1951 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1952 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1953 break;
1954 }
1955 }
1956
1957 /* We need to enable spur filter for this channel */
1958 if (spur_chan_fbin) {
1959 spur_offset = spur_chan_fbin - chan_fbin;
1960 /*
1961 * Calculate deltas:
1962 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1963 * spur_delta_phase -> spur_offset / chip_freq << 11
1964 * Note: Both values have 100Hz resolution
1965 */
1966 switch (ah->ah_bwmode) {
1967 case AR5K_BWMODE_40MHZ:
1968 /* Both sample_freq and chip_freq are 80MHz */
1969 spur_delta_phase = (spur_offset << 16) / 25;
1970 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1971 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1972 break;
1973 case AR5K_BWMODE_10MHZ:
1974 /* Both sample_freq and chip_freq are 20MHz (?) */
1975 spur_delta_phase = (spur_offset << 18) / 25;
1976 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1977 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1978 break;
1979 case AR5K_BWMODE_5MHZ:
1980 /* Both sample_freq and chip_freq are 10MHz (?) */
1981 spur_delta_phase = (spur_offset << 19) / 25;
1982 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1983 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1984 break;
1985 default:
1986 if (channel->band == IEEE80211_BAND_5GHZ) {
1987 /* Both sample_freq and chip_freq are 40MHz */
1988 spur_delta_phase = (spur_offset << 17) / 25;
1989 spur_freq_sigma_delta =
1990 (spur_delta_phase >> 10);
1991 symbol_width =
1992 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1993 } else {
1994 /* sample_freq -> 40MHz chip_freq -> 44MHz
1995 * (for b compatibility) */
1996 spur_delta_phase = (spur_offset << 17) / 25;
1997 spur_freq_sigma_delta =
1998 (spur_offset << 8) / 55;
1999 symbol_width =
2000 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
2001 }
2002 break;
2003 }
2004
2005 /* Calculate pilot and magnitude masks */
2006
2007 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
2008 * and divide by symbol_width to find how many symbols we have
2009 * Note: number of symbols is scaled up by 16 */
2010 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
2011
2012 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2013 if (!(num_symbols_x16 & 0xF))
2014 /* _X_ */
2015 num_symbol_offsets = 3;
2016 else
2017 /* _xx_ */
2018 num_symbol_offsets = 4;
2019
2020 for (i = 0; i < num_symbol_offsets; i++) {
2021
2022 /* Calculate pilot mask */
2023 s32 curr_sym_off =
2024 (num_symbols_x16 / 16) + i + 25;
2025
2026 /* Pilot magnitude mask seems to be a way to
2027 * declare the boundaries for our detection
2028 * window or something, it's 2 for the middle
2029 * value(s) where the symbol is expected to be
2030 * and 1 on the boundary values */
2031 u8 plt_mag_map =
2032 (i == 0 || i == (num_symbol_offsets - 1))
2033 ? 1 : 2;
2034
2035 if (curr_sym_off >= 0 && curr_sym_off <= 32) {
2036 if (curr_sym_off <= 25)
2037 pilot_mask[0] |= 1 << curr_sym_off;
2038 else if (curr_sym_off >= 27)
2039 pilot_mask[0] |= 1 << (curr_sym_off - 1);
2040 } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
2041 pilot_mask[1] |= 1 << (curr_sym_off - 33);
2042
2043 /* Calculate magnitude mask (for viterbi decoder) */
2044 if (curr_sym_off >= -1 && curr_sym_off <= 14)
2045 mag_mask[0] |=
2046 plt_mag_map << (curr_sym_off + 1) * 2;
2047 else if (curr_sym_off >= 15 && curr_sym_off <= 30)
2048 mag_mask[1] |=
2049 plt_mag_map << (curr_sym_off - 15) * 2;
2050 else if (curr_sym_off >= 31 && curr_sym_off <= 46)
2051 mag_mask[2] |=
2052 plt_mag_map << (curr_sym_off - 31) * 2;
2053 else if (curr_sym_off >= 47 && curr_sym_off <= 53)
2054 mag_mask[3] |=
2055 plt_mag_map << (curr_sym_off - 47) * 2;
2056
2057 }
2058
2059 /* Write settings on hw to enable spur filter */
2060 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2061 AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
2062 /* XXX: Self correlator also ? */
2063 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
2064 AR5K_PHY_IQ_PILOT_MASK_EN |
2065 AR5K_PHY_IQ_CHAN_MASK_EN |
2066 AR5K_PHY_IQ_SPUR_FILT_EN);
2067
2068 /* Set delta phase and freq sigma delta */
2069 ath5k_hw_reg_write(ah,
2070 AR5K_REG_SM(spur_delta_phase,
2071 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
2072 AR5K_REG_SM(spur_freq_sigma_delta,
2073 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
2074 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
2075 AR5K_PHY_TIMING_11);
2076
2077 /* Write pilot masks */
2078 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
2079 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2080 AR5K_PHY_TIMING_8_PILOT_MASK_2,
2081 pilot_mask[1]);
2082
2083 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
2084 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2085 AR5K_PHY_TIMING_10_PILOT_MASK_2,
2086 pilot_mask[1]);
2087
2088 /* Write magnitude masks */
2089 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
2090 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
2091 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
2092 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2093 AR5K_PHY_BIN_MASK_CTL_MASK_4,
2094 mag_mask[3]);
2095
2096 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
2097 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
2098 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
2099 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2100 AR5K_PHY_BIN_MASK2_4_MASK_4,
2101 mag_mask[3]);
2102
2103 } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
2104 AR5K_PHY_IQ_SPUR_FILT_EN) {
2105 /* Clean up spur mitigation settings and disable filter */
2106 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2107 AR5K_PHY_BIN_MASK_CTL_RATE, 0);
2108 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
2109 AR5K_PHY_IQ_PILOT_MASK_EN |
2110 AR5K_PHY_IQ_CHAN_MASK_EN |
2111 AR5K_PHY_IQ_SPUR_FILT_EN);
2112 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
2113
2114 /* Clear pilot masks */
2115 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
2116 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2117 AR5K_PHY_TIMING_8_PILOT_MASK_2,
2118 0);
2119
2120 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
2121 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2122 AR5K_PHY_TIMING_10_PILOT_MASK_2,
2123 0);
2124
2125 /* Clear magnitude masks */
2126 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
2127 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
2128 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
2129 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2130 AR5K_PHY_BIN_MASK_CTL_MASK_4,
2131 0);
2132
2133 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
2134 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
2135 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
2136 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2137 AR5K_PHY_BIN_MASK2_4_MASK_4,
2138 0);
2139 }
2140 }
2141
2142
2143 /*****************\
2144 * Antenna control *
2145 \*****************/
2146
2147 /**
2148 * DOC: Antenna control
2149 *
2150 * Hw supports up to 14 antennas ! I haven't found any card that implements
2151 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2152 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2153 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2154 *
2155 * We can have a single antenna for RX and multiple antennas for TX.
2156 * RX antenna is our "default" antenna (usually antenna 1) set on
2157 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2158 * (0 for automatic selection, 1 - 14 antenna number).
2159 *
2160 * We can let hw do all the work doing fast antenna diversity for both
2161 * tx and rx or we can do things manually. Here are the options we have
2162 * (all are bits of STA_ID1 register):
2163 *
2164 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2165 * control descriptor, use the default antenna to transmit or else use the last
2166 * antenna on which we received an ACK.
2167 *
2168 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2169 * the antenna on which we got the ACK for that frame.
2170 *
2171 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2172 * one on the TX descriptor.
2173 *
2174 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2175 * (ACKs etc), or else use current antenna (the one we just used for TX).
2176 *
2177 * Using the above we support the following scenarios:
2178 *
2179 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2180 *
2181 * AR5K_ANTMODE_FIXED_A -> Only antenna A (MAIN) is present
2182 *
2183 * AR5K_ANTMODE_FIXED_B -> Only antenna B (AUX) is present
2184 *
2185 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2186 *
2187 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2188 *
2189 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2190 *
2191 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2192 *
2193 * Also note that when setting antenna to F on tx descriptor card inverts
2194 * current tx antenna.
2195 */
2196
2197 /**
2198 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2199 * @ah: The &struct ath5k_hw
2200 * @ant: Antenna number
2201 */
2202 static void
ath5k_hw_set_def_antenna(struct ath5k_hw * ah,u8 ant)2203 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
2204 {
2205 if (ah->ah_version != AR5K_AR5210)
2206 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
2207 }
2208
2209 /**
2210 * ath5k_hw_set_fast_div() - Enable/disable fast rx antenna diversity
2211 * @ah: The &struct ath5k_hw
2212 * @ee_mode: One of enum ath5k_driver_mode
2213 * @enable: True to enable, false to disable
2214 */
2215 static void
ath5k_hw_set_fast_div(struct ath5k_hw * ah,u8 ee_mode,bool enable)2216 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
2217 {
2218 switch (ee_mode) {
2219 case AR5K_EEPROM_MODE_11G:
2220 /* XXX: This is set to
2221 * disabled on initvals !!! */
2222 case AR5K_EEPROM_MODE_11A:
2223 if (enable)
2224 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
2225 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2226 else
2227 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2228 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2229 break;
2230 case AR5K_EEPROM_MODE_11B:
2231 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2232 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2233 break;
2234 default:
2235 return;
2236 }
2237
2238 if (enable) {
2239 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2240 AR5K_PHY_RESTART_DIV_GC, 4);
2241
2242 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2243 AR5K_PHY_FAST_ANT_DIV_EN);
2244 } else {
2245 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2246 AR5K_PHY_RESTART_DIV_GC, 0);
2247
2248 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2249 AR5K_PHY_FAST_ANT_DIV_EN);
2250 }
2251 }
2252
2253 /**
2254 * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2255 * @ah: The &struct ath5k_hw
2256 * @ee_mode: One of enum ath5k_driver_mode
2257 *
2258 * Switch table comes from EEPROM and includes information on controlling
2259 * the 2 antenna RX attenuators
2260 */
2261 void
ath5k_hw_set_antenna_switch(struct ath5k_hw * ah,u8 ee_mode)2262 ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
2263 {
2264 u8 ant0, ant1;
2265
2266 /*
2267 * In case a fixed antenna was set as default
2268 * use the same switch table twice.
2269 */
2270 if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
2271 ant0 = ant1 = AR5K_ANT_SWTABLE_A;
2272 else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
2273 ant0 = ant1 = AR5K_ANT_SWTABLE_B;
2274 else {
2275 ant0 = AR5K_ANT_SWTABLE_A;
2276 ant1 = AR5K_ANT_SWTABLE_B;
2277 }
2278
2279 /* Set antenna idle switch table */
2280 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
2281 AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
2282 (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
2283 AR5K_PHY_ANT_CTL_TXRX_EN));
2284
2285 /* Set antenna switch tables */
2286 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
2287 AR5K_PHY_ANT_SWITCH_TABLE_0);
2288 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
2289 AR5K_PHY_ANT_SWITCH_TABLE_1);
2290 }
2291
2292 /**
2293 * ath5k_hw_set_antenna_mode() - Set antenna operating mode
2294 * @ah: The &struct ath5k_hw
2295 * @ant_mode: One of enum ath5k_ant_mode
2296 */
2297 void
ath5k_hw_set_antenna_mode(struct ath5k_hw * ah,u8 ant_mode)2298 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
2299 {
2300 struct ieee80211_channel *channel = ah->ah_current_channel;
2301 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
2302 bool use_def_for_sg;
2303 int ee_mode;
2304 u8 def_ant, tx_ant;
2305 u32 sta_id1 = 0;
2306
2307 /* if channel is not initialized yet we can't set the antennas
2308 * so just store the mode. it will be set on the next reset */
2309 if (channel == NULL) {
2310 ah->ah_ant_mode = ant_mode;
2311 return;
2312 }
2313
2314 def_ant = ah->ah_def_ant;
2315
2316 ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
2317
2318 switch (ant_mode) {
2319 case AR5K_ANTMODE_DEFAULT:
2320 tx_ant = 0;
2321 use_def_for_tx = false;
2322 update_def_on_tx = false;
2323 use_def_for_rts = false;
2324 use_def_for_sg = false;
2325 fast_div = true;
2326 break;
2327 case AR5K_ANTMODE_FIXED_A:
2328 def_ant = 1;
2329 tx_ant = 1;
2330 use_def_for_tx = true;
2331 update_def_on_tx = false;
2332 use_def_for_rts = true;
2333 use_def_for_sg = true;
2334 fast_div = false;
2335 break;
2336 case AR5K_ANTMODE_FIXED_B:
2337 def_ant = 2;
2338 tx_ant = 2;
2339 use_def_for_tx = true;
2340 update_def_on_tx = false;
2341 use_def_for_rts = true;
2342 use_def_for_sg = true;
2343 fast_div = false;
2344 break;
2345 case AR5K_ANTMODE_SINGLE_AP:
2346 def_ant = 1; /* updated on tx */
2347 tx_ant = 0;
2348 use_def_for_tx = true;
2349 update_def_on_tx = true;
2350 use_def_for_rts = true;
2351 use_def_for_sg = true;
2352 fast_div = true;
2353 break;
2354 case AR5K_ANTMODE_SECTOR_AP:
2355 tx_ant = 1; /* variable */
2356 use_def_for_tx = false;
2357 update_def_on_tx = false;
2358 use_def_for_rts = true;
2359 use_def_for_sg = false;
2360 fast_div = false;
2361 break;
2362 case AR5K_ANTMODE_SECTOR_STA:
2363 tx_ant = 1; /* variable */
2364 use_def_for_tx = true;
2365 update_def_on_tx = false;
2366 use_def_for_rts = true;
2367 use_def_for_sg = false;
2368 fast_div = true;
2369 break;
2370 case AR5K_ANTMODE_DEBUG:
2371 def_ant = 1;
2372 tx_ant = 2;
2373 use_def_for_tx = false;
2374 update_def_on_tx = false;
2375 use_def_for_rts = false;
2376 use_def_for_sg = false;
2377 fast_div = false;
2378 break;
2379 default:
2380 return;
2381 }
2382
2383 ah->ah_tx_ant = tx_ant;
2384 ah->ah_ant_mode = ant_mode;
2385 ah->ah_def_ant = def_ant;
2386
2387 sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2388 sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2389 sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2390 sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2391
2392 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2393
2394 if (sta_id1)
2395 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2396
2397 ath5k_hw_set_antenna_switch(ah, ee_mode);
2398 /* Note: set diversity before default antenna
2399 * because it won't work correctly */
2400 ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2401 ath5k_hw_set_def_antenna(ah, def_ant);
2402 }
2403
2404
2405 /****************\
2406 * TX power setup *
2407 \****************/
2408
2409 /*
2410 * Helper functions
2411 */
2412
2413 /**
2414 * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2415 * @target: X value of the middle point
2416 * @x_left: X value of the left point
2417 * @x_right: X value of the right point
2418 * @y_left: Y value of the left point
2419 * @y_right: Y value of the right point
2420 */
2421 static s16
ath5k_get_interpolated_value(s16 target,s16 x_left,s16 x_right,s16 y_left,s16 y_right)2422 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2423 s16 y_left, s16 y_right)
2424 {
2425 s16 ratio, result;
2426
2427 /* Avoid divide by zero and skip interpolation
2428 * if we have the same point */
2429 if ((x_left == x_right) || (y_left == y_right))
2430 return y_left;
2431
2432 /*
2433 * Since we use ints and not fps, we need to scale up in
2434 * order to get a sane ratio value (or else we 'll eg. get
2435 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2436 * to have some accuracy both for 0.5 and 0.25 steps.
2437 */
2438 ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2439
2440 /* Now scale down to be in range */
2441 result = y_left + (ratio * (target - x_left) / 100);
2442
2443 return result;
2444 }
2445
2446 /**
2447 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2448 * linear PCDAC curve
2449 * @stepL: Left array with y values (pcdac steps)
2450 * @stepR: Right array with y values (pcdac steps)
2451 * @pwrL: Left array with x values (power steps)
2452 * @pwrR: Right array with x values (power steps)
2453 *
2454 * Since we have the top of the curve and we draw the line below
2455 * until we reach 1 (1 pcdac step) we need to know which point
2456 * (x value) that is so that we don't go below x axis and have negative
2457 * pcdac values when creating the curve, or fill the table with zeros.
2458 */
2459 static s16
ath5k_get_linear_pcdac_min(const u8 * stepL,const u8 * stepR,const s16 * pwrL,const s16 * pwrR)2460 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2461 const s16 *pwrL, const s16 *pwrR)
2462 {
2463 s8 tmp;
2464 s16 min_pwrL, min_pwrR;
2465 s16 pwr_i;
2466
2467 /* Some vendors write the same pcdac value twice !!! */
2468 if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2469 return max(pwrL[0], pwrR[0]);
2470
2471 if (pwrL[0] == pwrL[1])
2472 min_pwrL = pwrL[0];
2473 else {
2474 pwr_i = pwrL[0];
2475 do {
2476 pwr_i--;
2477 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2478 pwrL[0], pwrL[1],
2479 stepL[0], stepL[1]);
2480 } while (tmp > 1);
2481
2482 min_pwrL = pwr_i;
2483 }
2484
2485 if (pwrR[0] == pwrR[1])
2486 min_pwrR = pwrR[0];
2487 else {
2488 pwr_i = pwrR[0];
2489 do {
2490 pwr_i--;
2491 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2492 pwrR[0], pwrR[1],
2493 stepR[0], stepR[1]);
2494 } while (tmp > 1);
2495
2496 min_pwrR = pwr_i;
2497 }
2498
2499 /* Keep the right boundary so that it works for both curves */
2500 return max(min_pwrL, min_pwrR);
2501 }
2502
2503 /**
2504 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2505 * @pmin: Minimum power value (xmin)
2506 * @pmax: Maximum power value (xmax)
2507 * @pwr: Array of power steps (x values)
2508 * @vpd: Array of matching PCDAC/PDADC steps (y values)
2509 * @num_points: Number of provided points
2510 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2511 * @type: One of enum ath5k_powertable_type (eeprom.h)
2512 *
2513 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2514 * Power to PCDAC curve.
2515 *
2516 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2517 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2518 * PCDAC/PDADC step for each curve is 64 but we can write more than
2519 * one curves on hw so we can go up to 128 (which is the max step we
2520 * can write on the final table).
2521 *
2522 * We write y values (PCDAC/PDADC steps) on hw.
2523 */
2524 static void
ath5k_create_power_curve(s16 pmin,s16 pmax,const s16 * pwr,const u8 * vpd,u8 num_points,u8 * vpd_table,u8 type)2525 ath5k_create_power_curve(s16 pmin, s16 pmax,
2526 const s16 *pwr, const u8 *vpd,
2527 u8 num_points,
2528 u8 *vpd_table, u8 type)
2529 {
2530 u8 idx[2] = { 0, 1 };
2531 s16 pwr_i = 2 * pmin;
2532 int i;
2533
2534 if (num_points < 2)
2535 return;
2536
2537 /* We want the whole line, so adjust boundaries
2538 * to cover the entire power range. Note that
2539 * power values are already 0.25dB so no need
2540 * to multiply pwr_i by 2 */
2541 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2542 pwr_i = pmin;
2543 pmin = 0;
2544 pmax = 63;
2545 }
2546
2547 /* Find surrounding turning points (TPs)
2548 * and interpolate between them */
2549 for (i = 0; (i <= (u16) (pmax - pmin)) &&
2550 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2551
2552 /* We passed the right TP, move to the next set of TPs
2553 * if we pass the last TP, extrapolate above using the last
2554 * two TPs for ratio */
2555 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2556 idx[0]++;
2557 idx[1]++;
2558 }
2559
2560 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2561 pwr[idx[0]], pwr[idx[1]],
2562 vpd[idx[0]], vpd[idx[1]]);
2563
2564 /* Increase by 0.5dB
2565 * (0.25 dB units) */
2566 pwr_i += 2;
2567 }
2568 }
2569
2570 /**
2571 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2572 * for a given channel.
2573 * @ah: The &struct ath5k_hw
2574 * @channel: The &struct ieee80211_channel
2575 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2576 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2577 *
2578 * Get the surrounding per-channel power calibration piers
2579 * for a given frequency so that we can interpolate between
2580 * them and come up with an appropriate dataset for our current
2581 * channel.
2582 */
2583 static void
ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw * ah,struct ieee80211_channel * channel,struct ath5k_chan_pcal_info ** pcinfo_l,struct ath5k_chan_pcal_info ** pcinfo_r)2584 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2585 struct ieee80211_channel *channel,
2586 struct ath5k_chan_pcal_info **pcinfo_l,
2587 struct ath5k_chan_pcal_info **pcinfo_r)
2588 {
2589 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2590 struct ath5k_chan_pcal_info *pcinfo;
2591 u8 idx_l, idx_r;
2592 u8 mode, max, i;
2593 u32 target = channel->center_freq;
2594
2595 idx_l = 0;
2596 idx_r = 0;
2597
2598 switch (channel->hw_value) {
2599 case AR5K_EEPROM_MODE_11A:
2600 pcinfo = ee->ee_pwr_cal_a;
2601 mode = AR5K_EEPROM_MODE_11A;
2602 break;
2603 case AR5K_EEPROM_MODE_11B:
2604 pcinfo = ee->ee_pwr_cal_b;
2605 mode = AR5K_EEPROM_MODE_11B;
2606 break;
2607 case AR5K_EEPROM_MODE_11G:
2608 default:
2609 pcinfo = ee->ee_pwr_cal_g;
2610 mode = AR5K_EEPROM_MODE_11G;
2611 break;
2612 }
2613 max = ee->ee_n_piers[mode] - 1;
2614
2615 /* Frequency is below our calibrated
2616 * range. Use the lowest power curve
2617 * we have */
2618 if (target < pcinfo[0].freq) {
2619 idx_l = idx_r = 0;
2620 goto done;
2621 }
2622
2623 /* Frequency is above our calibrated
2624 * range. Use the highest power curve
2625 * we have */
2626 if (target > pcinfo[max].freq) {
2627 idx_l = idx_r = max;
2628 goto done;
2629 }
2630
2631 /* Frequency is inside our calibrated
2632 * channel range. Pick the surrounding
2633 * calibration piers so that we can
2634 * interpolate */
2635 for (i = 0; i <= max; i++) {
2636
2637 /* Frequency matches one of our calibration
2638 * piers, no need to interpolate, just use
2639 * that calibration pier */
2640 if (pcinfo[i].freq == target) {
2641 idx_l = idx_r = i;
2642 goto done;
2643 }
2644
2645 /* We found a calibration pier that's above
2646 * frequency, use this pier and the previous
2647 * one to interpolate */
2648 if (target < pcinfo[i].freq) {
2649 idx_r = i;
2650 idx_l = idx_r - 1;
2651 goto done;
2652 }
2653 }
2654
2655 done:
2656 *pcinfo_l = &pcinfo[idx_l];
2657 *pcinfo_r = &pcinfo[idx_r];
2658 }
2659
2660 /**
2661 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2662 * calibration data
2663 * @ah: The &struct ath5k_hw *ah,
2664 * @channel: The &struct ieee80211_channel
2665 * @rates: The &struct ath5k_rate_pcal_info to fill
2666 *
2667 * Get the surrounding per-rate power calibration data
2668 * for a given frequency and interpolate between power
2669 * values to set max target power supported by hw for
2670 * each rate on this frequency.
2671 */
2672 static void
ath5k_get_rate_pcal_data(struct ath5k_hw * ah,struct ieee80211_channel * channel,struct ath5k_rate_pcal_info * rates)2673 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2674 struct ieee80211_channel *channel,
2675 struct ath5k_rate_pcal_info *rates)
2676 {
2677 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2678 struct ath5k_rate_pcal_info *rpinfo;
2679 u8 idx_l, idx_r;
2680 u8 mode, max, i;
2681 u32 target = channel->center_freq;
2682
2683 idx_l = 0;
2684 idx_r = 0;
2685
2686 switch (channel->hw_value) {
2687 case AR5K_MODE_11A:
2688 rpinfo = ee->ee_rate_tpwr_a;
2689 mode = AR5K_EEPROM_MODE_11A;
2690 break;
2691 case AR5K_MODE_11B:
2692 rpinfo = ee->ee_rate_tpwr_b;
2693 mode = AR5K_EEPROM_MODE_11B;
2694 break;
2695 case AR5K_MODE_11G:
2696 default:
2697 rpinfo = ee->ee_rate_tpwr_g;
2698 mode = AR5K_EEPROM_MODE_11G;
2699 break;
2700 }
2701 max = ee->ee_rate_target_pwr_num[mode] - 1;
2702
2703 /* Get the surrounding calibration
2704 * piers - same as above */
2705 if (target < rpinfo[0].freq) {
2706 idx_l = idx_r = 0;
2707 goto done;
2708 }
2709
2710 if (target > rpinfo[max].freq) {
2711 idx_l = idx_r = max;
2712 goto done;
2713 }
2714
2715 for (i = 0; i <= max; i++) {
2716
2717 if (rpinfo[i].freq == target) {
2718 idx_l = idx_r = i;
2719 goto done;
2720 }
2721
2722 if (target < rpinfo[i].freq) {
2723 idx_r = i;
2724 idx_l = idx_r - 1;
2725 goto done;
2726 }
2727 }
2728
2729 done:
2730 /* Now interpolate power value, based on the frequency */
2731 rates->freq = target;
2732
2733 rates->target_power_6to24 =
2734 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2735 rpinfo[idx_r].freq,
2736 rpinfo[idx_l].target_power_6to24,
2737 rpinfo[idx_r].target_power_6to24);
2738
2739 rates->target_power_36 =
2740 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2741 rpinfo[idx_r].freq,
2742 rpinfo[idx_l].target_power_36,
2743 rpinfo[idx_r].target_power_36);
2744
2745 rates->target_power_48 =
2746 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2747 rpinfo[idx_r].freq,
2748 rpinfo[idx_l].target_power_48,
2749 rpinfo[idx_r].target_power_48);
2750
2751 rates->target_power_54 =
2752 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2753 rpinfo[idx_r].freq,
2754 rpinfo[idx_l].target_power_54,
2755 rpinfo[idx_r].target_power_54);
2756 }
2757
2758 /**
2759 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2760 * @ah: the &struct ath5k_hw
2761 * @channel: The &struct ieee80211_channel
2762 *
2763 * Get the max edge power for this channel if
2764 * we have such data from EEPROM's Conformance Test
2765 * Limits (CTL), and limit max power if needed.
2766 */
2767 static void
ath5k_get_max_ctl_power(struct ath5k_hw * ah,struct ieee80211_channel * channel)2768 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2769 struct ieee80211_channel *channel)
2770 {
2771 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2772 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2773 struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2774 u8 *ctl_val = ee->ee_ctl;
2775 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2776 s16 edge_pwr = 0;
2777 u8 rep_idx;
2778 u8 i, ctl_mode;
2779 u8 ctl_idx = 0xFF;
2780 u32 target = channel->center_freq;
2781
2782 ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2783
2784 switch (channel->hw_value) {
2785 case AR5K_MODE_11A:
2786 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2787 ctl_mode |= AR5K_CTL_TURBO;
2788 else
2789 ctl_mode |= AR5K_CTL_11A;
2790 break;
2791 case AR5K_MODE_11G:
2792 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2793 ctl_mode |= AR5K_CTL_TURBOG;
2794 else
2795 ctl_mode |= AR5K_CTL_11G;
2796 break;
2797 case AR5K_MODE_11B:
2798 ctl_mode |= AR5K_CTL_11B;
2799 break;
2800 default:
2801 return;
2802 }
2803
2804 for (i = 0; i < ee->ee_ctls; i++) {
2805 if (ctl_val[i] == ctl_mode) {
2806 ctl_idx = i;
2807 break;
2808 }
2809 }
2810
2811 /* If we have a CTL dataset available grab it and find the
2812 * edge power for our frequency */
2813 if (ctl_idx == 0xFF)
2814 return;
2815
2816 /* Edge powers are sorted by frequency from lower
2817 * to higher. Each CTL corresponds to 8 edge power
2818 * measurements. */
2819 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2820
2821 /* Don't do boundaries check because we
2822 * might have more that one bands defined
2823 * for this mode */
2824
2825 /* Get the edge power that's closer to our
2826 * frequency */
2827 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2828 rep_idx += i;
2829 if (target <= rep[rep_idx].freq)
2830 edge_pwr = (s16) rep[rep_idx].edge;
2831 }
2832
2833 if (edge_pwr)
2834 ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2835 }
2836
2837
2838 /*
2839 * Power to PCDAC table functions
2840 */
2841
2842 /**
2843 * DOC: Power to PCDAC table functions
2844 *
2845 * For RF5111 we have an XPD -eXternal Power Detector- curve
2846 * for each calibrated channel. Each curve has 0,5dB Power steps
2847 * on x axis and PCDAC steps (offsets) on y axis and looks like an
2848 * exponential function. To recreate the curve we read 11 points
2849 * from eeprom (eeprom.c) and interpolate here.
2850 *
2851 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2852 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2853 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2854 * power steps on x axis and PCDAC steps on y axis and looks like a
2855 * linear function. To recreate the curve and pass the power values
2856 * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2857 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2858 * and interpolate here.
2859 *
2860 * For a given channel we get the calibrated points (piers) for it or
2861 * -if we don't have calibration data for this specific channel- from the
2862 * available surrounding channels we have calibration data for, after we do a
2863 * linear interpolation between them. Then since we have our calibrated points
2864 * for this channel, we do again a linear interpolation between them to get the
2865 * whole curve.
2866 *
2867 * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2868 */
2869
2870 /**
2871 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2872 * @ah: The &struct ath5k_hw
2873 * @table_min: Minimum power (x min)
2874 * @table_max: Maximum power (x max)
2875 *
2876 * No further processing is needed for RF5111, the only thing we have to
2877 * do is fill the values below and above calibration range since eeprom data
2878 * may not cover the entire PCDAC table.
2879 */
2880 static void
ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw * ah,s16 * table_min,s16 * table_max)2881 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2882 s16 *table_max)
2883 {
2884 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2885 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
2886 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2887 s16 min_pwr, max_pwr;
2888
2889 /* Get table boundaries */
2890 min_pwr = table_min[0];
2891 pcdac_0 = pcdac_tmp[0];
2892
2893 max_pwr = table_max[0];
2894 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2895
2896 /* Extrapolate below minimum using pcdac_0 */
2897 pcdac_i = 0;
2898 for (i = 0; i < min_pwr; i++)
2899 pcdac_out[pcdac_i++] = pcdac_0;
2900
2901 /* Copy values from pcdac_tmp */
2902 pwr_idx = min_pwr;
2903 for (i = 0; pwr_idx <= max_pwr &&
2904 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2905 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2906 pwr_idx++;
2907 }
2908
2909 /* Extrapolate above maximum */
2910 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2911 pcdac_out[pcdac_i++] = pcdac_n;
2912
2913 }
2914
2915 /**
2916 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2917 * @ah: The &struct ath5k_hw
2918 * @table_min: Minimum power (x min)
2919 * @table_max: Maximum power (x max)
2920 * @pdcurves: Number of pd curves
2921 *
2922 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2923 * RFX112 can have up to 2 curves (one for low txpower range and one for
2924 * higher txpower range). We need to put them both on pcdac_out and place
2925 * them in the correct location. In case we only have one curve available
2926 * just fit it on pcdac_out (it's supposed to cover the entire range of
2927 * available pwr levels since it's always the higher power curve). Extrapolate
2928 * below and above final table if needed.
2929 */
2930 static void
ath5k_combine_linear_pcdac_curves(struct ath5k_hw * ah,s16 * table_min,s16 * table_max,u8 pdcurves)2931 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2932 s16 *table_max, u8 pdcurves)
2933 {
2934 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2935 u8 *pcdac_low_pwr;
2936 u8 *pcdac_high_pwr;
2937 u8 *pcdac_tmp;
2938 u8 pwr;
2939 s16 max_pwr_idx;
2940 s16 min_pwr_idx;
2941 s16 mid_pwr_idx = 0;
2942 /* Edge flag turns on the 7nth bit on the PCDAC
2943 * to declare the higher power curve (force values
2944 * to be greater than 64). If we only have one curve
2945 * we don't need to set this, if we have 2 curves and
2946 * fill the table backwards this can also be used to
2947 * switch from higher power curve to lower power curve */
2948 u8 edge_flag;
2949 int i;
2950
2951 /* When we have only one curve available
2952 * that's the higher power curve. If we have
2953 * two curves the first is the high power curve
2954 * and the next is the low power curve. */
2955 if (pdcurves > 1) {
2956 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2957 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2958 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2959 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2960
2961 /* If table size goes beyond 31.5dB, keep the
2962 * upper 31.5dB range when setting tx power.
2963 * Note: 126 = 31.5 dB in quarter dB steps */
2964 if (table_max[0] - table_min[1] > 126)
2965 min_pwr_idx = table_max[0] - 126;
2966 else
2967 min_pwr_idx = table_min[1];
2968
2969 /* Since we fill table backwards
2970 * start from high power curve */
2971 pcdac_tmp = pcdac_high_pwr;
2972
2973 edge_flag = 0x40;
2974 } else {
2975 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2976 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2977 min_pwr_idx = table_min[0];
2978 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2979 pcdac_tmp = pcdac_high_pwr;
2980 edge_flag = 0;
2981 }
2982
2983 /* This is used when setting tx power*/
2984 ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2985
2986 /* Fill Power to PCDAC table backwards */
2987 pwr = max_pwr_idx;
2988 for (i = 63; i >= 0; i--) {
2989 /* Entering lower power range, reset
2990 * edge flag and set pcdac_tmp to lower
2991 * power curve.*/
2992 if (edge_flag == 0x40 &&
2993 (2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2994 edge_flag = 0x00;
2995 pcdac_tmp = pcdac_low_pwr;
2996 pwr = mid_pwr_idx / 2;
2997 }
2998
2999 /* Don't go below 1, extrapolate below if we have
3000 * already switched to the lower power curve -or
3001 * we only have one curve and edge_flag is zero
3002 * anyway */
3003 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
3004 while (i >= 0) {
3005 pcdac_out[i] = pcdac_out[i + 1];
3006 i--;
3007 }
3008 break;
3009 }
3010
3011 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
3012
3013 /* Extrapolate above if pcdac is greater than
3014 * 126 -this can happen because we OR pcdac_out
3015 * value with edge_flag on high power curve */
3016 if (pcdac_out[i] > 126)
3017 pcdac_out[i] = 126;
3018
3019 /* Decrease by a 0.5dB step */
3020 pwr--;
3021 }
3022 }
3023
3024 /**
3025 * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3026 * @ah: The &struct ath5k_hw
3027 */
3028 static void
ath5k_write_pcdac_table(struct ath5k_hw * ah)3029 ath5k_write_pcdac_table(struct ath5k_hw *ah)
3030 {
3031 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
3032 int i;
3033
3034 /*
3035 * Write TX power values
3036 */
3037 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3038 ath5k_hw_reg_write(ah,
3039 (((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
3040 (((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
3041 AR5K_PHY_PCDAC_TXPOWER(i));
3042 }
3043 }
3044
3045
3046 /*
3047 * Power to PDADC table functions
3048 */
3049
3050 /**
3051 * DOC: Power to PDADC table functions
3052 *
3053 * For RF2413 and later we have a Power to PDADC table (Power Detector)
3054 * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3055 * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3056 * PDADC steps on y axis and looks like an exponential function like the
3057 * RF5111 curve.
3058 *
3059 * To recreate the curves we read the points from eeprom (eeprom.c)
3060 * and interpolate here. Note that in most cases only 2 (higher and lower)
3061 * curves are used (like RF5112) but vendors have the opportunity to include
3062 * all 4 curves on eeprom. The final curve (higher power) has an extra
3063 * point for better accuracy like RF5112.
3064 *
3065 * The process is similar to what we do above for RF5111/5112
3066 */
3067
3068 /**
3069 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3070 * @ah: The &struct ath5k_hw
3071 * @pwr_min: Minimum power (x min)
3072 * @pwr_max: Maximum power (x max)
3073 * @pdcurves: Number of available curves
3074 *
3075 * Combine the various pd curves and create the final Power to PDADC table
3076 * We can have up to 4 pd curves, we need to do a similar process
3077 * as we do for RF5112. This time we don't have an edge_flag but we
3078 * set the gain boundaries on a separate register.
3079 */
3080 static void
ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw * ah,s16 * pwr_min,s16 * pwr_max,u8 pdcurves)3081 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
3082 s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
3083 {
3084 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
3085 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3086 u8 *pdadc_tmp;
3087 s16 pdadc_0;
3088 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
3089 u8 pd_gain_overlap;
3090
3091 /* Note: Register value is initialized on initvals
3092 * there is no feedback from hw.
3093 * XXX: What about pd_gain_overlap from EEPROM ? */
3094 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
3095 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
3096
3097 /* Create final PDADC table */
3098 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
3099 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
3100
3101 if (pdg == pdcurves - 1)
3102 /* 2 dB boundary stretch for last
3103 * (higher power) curve */
3104 gain_boundaries[pdg] = pwr_max[pdg] + 4;
3105 else
3106 /* Set gain boundary in the middle
3107 * between this curve and the next one */
3108 gain_boundaries[pdg] =
3109 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
3110
3111 /* Sanity check in case our 2 db stretch got out of
3112 * range. */
3113 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
3114 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
3115
3116 /* For the first curve (lower power)
3117 * start from 0 dB */
3118 if (pdg == 0)
3119 pdadc_0 = 0;
3120 else
3121 /* For the other curves use the gain overlap */
3122 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
3123 pd_gain_overlap;
3124
3125 /* Force each power step to be at least 0.5 dB */
3126 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
3127 pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
3128 else
3129 pwr_step = 1;
3130
3131 /* If pdadc_0 is negative, we need to extrapolate
3132 * below this pdgain by a number of pwr_steps */
3133 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
3134 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
3135 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
3136 pdadc_0++;
3137 }
3138
3139 /* Set last pwr level, using gain boundaries */
3140 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
3141 /* Limit it to be inside pwr range */
3142 table_size = pwr_max[pdg] - pwr_min[pdg];
3143 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
3144
3145 /* Fill pdadc_out table */
3146 while (pdadc_0 < max_idx && pdadc_i < 128)
3147 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
3148
3149 /* Need to extrapolate above this pdgain? */
3150 if (pdadc_n <= max_idx)
3151 continue;
3152
3153 /* Force each power step to be at least 0.5 dB */
3154 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
3155 pwr_step = pdadc_tmp[table_size - 1] -
3156 pdadc_tmp[table_size - 2];
3157 else
3158 pwr_step = 1;
3159
3160 /* Extrapolate above */
3161 while ((pdadc_0 < (s16) pdadc_n) &&
3162 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
3163 s16 tmp = pdadc_tmp[table_size - 1] +
3164 (pdadc_0 - max_idx) * pwr_step;
3165 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
3166 pdadc_0++;
3167 }
3168 }
3169
3170 while (pdg < AR5K_EEPROM_N_PD_GAINS) {
3171 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
3172 pdg++;
3173 }
3174
3175 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
3176 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
3177 pdadc_i++;
3178 }
3179
3180 /* Set gain boundaries */
3181 ath5k_hw_reg_write(ah,
3182 AR5K_REG_SM(pd_gain_overlap,
3183 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
3184 AR5K_REG_SM(gain_boundaries[0],
3185 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
3186 AR5K_REG_SM(gain_boundaries[1],
3187 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
3188 AR5K_REG_SM(gain_boundaries[2],
3189 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
3190 AR5K_REG_SM(gain_boundaries[3],
3191 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
3192 AR5K_PHY_TPC_RG5);
3193
3194 /* Used for setting rate power table */
3195 ah->ah_txpower.txp_min_idx = pwr_min[0];
3196
3197 }
3198
3199 /**
3200 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3201 * @ah: The &struct ath5k_hw
3202 * @ee_mode: One of enum ath5k_driver_mode
3203 */
3204 static void
ath5k_write_pwr_to_pdadc_table(struct ath5k_hw * ah,u8 ee_mode)3205 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
3206 {
3207 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3208 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3209 u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
3210 u8 pdcurves = ee->ee_pd_gains[ee_mode];
3211 u32 reg;
3212 u8 i;
3213
3214 /* Select the right pdgain curves */
3215
3216 /* Clear current settings */
3217 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
3218 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
3219 AR5K_PHY_TPC_RG1_PDGAIN_2 |
3220 AR5K_PHY_TPC_RG1_PDGAIN_3 |
3221 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3222
3223 /*
3224 * Use pd_gains curve from eeprom
3225 *
3226 * This overrides the default setting from initvals
3227 * in case some vendors (e.g. Zcomax) don't use the default
3228 * curves. If we don't honor their settings we 'll get a
3229 * 5dB (1 * gain overlap ?) drop.
3230 */
3231 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3232
3233 switch (pdcurves) {
3234 case 3:
3235 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
3236 /* Fall through */
3237 case 2:
3238 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
3239 /* Fall through */
3240 case 1:
3241 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
3242 break;
3243 }
3244 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
3245
3246 /*
3247 * Write TX power values
3248 */
3249 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3250 u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
3251 ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
3252 }
3253 }
3254
3255
3256 /*
3257 * Common code for PCDAC/PDADC tables
3258 */
3259
3260 /**
3261 * ath5k_setup_channel_powertable() - Set up power table for this channel
3262 * @ah: The &struct ath5k_hw
3263 * @channel: The &struct ieee80211_channel
3264 * @ee_mode: One of enum ath5k_driver_mode
3265 * @type: One of enum ath5k_powertable_type (eeprom.h)
3266 *
3267 * This is the main function that uses all of the above
3268 * to set PCDAC/PDADC table on hw for the current channel.
3269 * This table is used for tx power calibration on the baseband,
3270 * without it we get weird tx power levels and in some cases
3271 * distorted spectral mask
3272 */
3273 static int
ath5k_setup_channel_powertable(struct ath5k_hw * ah,struct ieee80211_channel * channel,u8 ee_mode,u8 type)3274 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
3275 struct ieee80211_channel *channel,
3276 u8 ee_mode, u8 type)
3277 {
3278 struct ath5k_pdgain_info *pdg_L, *pdg_R;
3279 struct ath5k_chan_pcal_info *pcinfo_L;
3280 struct ath5k_chan_pcal_info *pcinfo_R;
3281 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3282 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
3283 s16 table_min[AR5K_EEPROM_N_PD_GAINS];
3284 s16 table_max[AR5K_EEPROM_N_PD_GAINS];
3285 u8 *tmpL;
3286 u8 *tmpR;
3287 u32 target = channel->center_freq;
3288 int pdg, i;
3289
3290 /* Get surrounding freq piers for this channel */
3291 ath5k_get_chan_pcal_surrounding_piers(ah, channel,
3292 &pcinfo_L,
3293 &pcinfo_R);
3294
3295 /* Loop over pd gain curves on
3296 * surrounding freq piers by index */
3297 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
3298
3299 /* Fill curves in reverse order
3300 * from lower power (max gain)
3301 * to higher power. Use curve -> idx
3302 * backmapping we did on eeprom init */
3303 u8 idx = pdg_curve_to_idx[pdg];
3304
3305 /* Grab the needed curves by index */
3306 pdg_L = &pcinfo_L->pd_curves[idx];
3307 pdg_R = &pcinfo_R->pd_curves[idx];
3308
3309 /* Initialize the temp tables */
3310 tmpL = ah->ah_txpower.tmpL[pdg];
3311 tmpR = ah->ah_txpower.tmpR[pdg];
3312
3313 /* Set curve's x boundaries and create
3314 * curves so that they cover the same
3315 * range (if we don't do that one table
3316 * will have values on some range and the
3317 * other one won't have any so interpolation
3318 * will fail) */
3319 table_min[pdg] = min(pdg_L->pd_pwr[0],
3320 pdg_R->pd_pwr[0]) / 2;
3321
3322 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3323 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
3324
3325 /* Now create the curves on surrounding channels
3326 * and interpolate if needed to get the final
3327 * curve for this gain on this channel */
3328 switch (type) {
3329 case AR5K_PWRTABLE_LINEAR_PCDAC:
3330 /* Override min/max so that we don't loose
3331 * accuracy (don't divide by 2) */
3332 table_min[pdg] = min(pdg_L->pd_pwr[0],
3333 pdg_R->pd_pwr[0]);
3334
3335 table_max[pdg] =
3336 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3337 pdg_R->pd_pwr[pdg_R->pd_points - 1]);
3338
3339 /* Override minimum so that we don't get
3340 * out of bounds while extrapolating
3341 * below. Don't do this when we have 2
3342 * curves and we are on the high power curve
3343 * because table_min is ok in this case */
3344 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
3345
3346 table_min[pdg] =
3347 ath5k_get_linear_pcdac_min(pdg_L->pd_step,
3348 pdg_R->pd_step,
3349 pdg_L->pd_pwr,
3350 pdg_R->pd_pwr);
3351
3352 /* Don't go too low because we will
3353 * miss the upper part of the curve.
3354 * Note: 126 = 31.5dB (max power supported)
3355 * in 0.25dB units */
3356 if (table_max[pdg] - table_min[pdg] > 126)
3357 table_min[pdg] = table_max[pdg] - 126;
3358 }
3359
3360 /* Fall through */
3361 case AR5K_PWRTABLE_PWR_TO_PCDAC:
3362 case AR5K_PWRTABLE_PWR_TO_PDADC:
3363
3364 ath5k_create_power_curve(table_min[pdg],
3365 table_max[pdg],
3366 pdg_L->pd_pwr,
3367 pdg_L->pd_step,
3368 pdg_L->pd_points, tmpL, type);
3369
3370 /* We are in a calibration
3371 * pier, no need to interpolate
3372 * between freq piers */
3373 if (pcinfo_L == pcinfo_R)
3374 continue;
3375
3376 ath5k_create_power_curve(table_min[pdg],
3377 table_max[pdg],
3378 pdg_R->pd_pwr,
3379 pdg_R->pd_step,
3380 pdg_R->pd_points, tmpR, type);
3381 break;
3382 default:
3383 return -EINVAL;
3384 }
3385
3386 /* Interpolate between curves
3387 * of surrounding freq piers to
3388 * get the final curve for this
3389 * pd gain. Re-use tmpL for interpolation
3390 * output */
3391 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
3392 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
3393 tmpL[i] = (u8) ath5k_get_interpolated_value(target,
3394 (s16) pcinfo_L->freq,
3395 (s16) pcinfo_R->freq,
3396 (s16) tmpL[i],
3397 (s16) tmpR[i]);
3398 }
3399 }
3400
3401 /* Now we have a set of curves for this
3402 * channel on tmpL (x range is table_max - table_min
3403 * and y values are tmpL[pdg][]) sorted in the same
3404 * order as EEPROM (because we've used the backmapping).
3405 * So for RF5112 it's from higher power to lower power
3406 * and for RF2413 it's from lower power to higher power.
3407 * For RF5111 we only have one curve. */
3408
3409 /* Fill min and max power levels for this
3410 * channel by interpolating the values on
3411 * surrounding channels to complete the dataset */
3412 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
3413 (s16) pcinfo_L->freq,
3414 (s16) pcinfo_R->freq,
3415 pcinfo_L->min_pwr, pcinfo_R->min_pwr);
3416
3417 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
3418 (s16) pcinfo_L->freq,
3419 (s16) pcinfo_R->freq,
3420 pcinfo_L->max_pwr, pcinfo_R->max_pwr);
3421
3422 /* Fill PCDAC/PDADC table */
3423 switch (type) {
3424 case AR5K_PWRTABLE_LINEAR_PCDAC:
3425 /* For RF5112 we can have one or two curves
3426 * and each curve covers a certain power lvl
3427 * range so we need to do some more processing */
3428 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
3429 ee->ee_pd_gains[ee_mode]);
3430
3431 /* Set txp.offset so that we can
3432 * match max power value with max
3433 * table index */
3434 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
3435 break;
3436 case AR5K_PWRTABLE_PWR_TO_PCDAC:
3437 /* We are done for RF5111 since it has only
3438 * one curve, just fit the curve on the table */
3439 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
3440
3441 /* No rate powertable adjustment for RF5111 */
3442 ah->ah_txpower.txp_min_idx = 0;
3443 ah->ah_txpower.txp_offset = 0;
3444 break;
3445 case AR5K_PWRTABLE_PWR_TO_PDADC:
3446 /* Set PDADC boundaries and fill
3447 * final PDADC table */
3448 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3449 ee->ee_pd_gains[ee_mode]);
3450
3451 /* Set txp.offset, note that table_min
3452 * can be negative */
3453 ah->ah_txpower.txp_offset = table_min[0];
3454 break;
3455 default:
3456 return -EINVAL;
3457 }
3458
3459 ah->ah_txpower.txp_setup = true;
3460
3461 return 0;
3462 }
3463
3464 /**
3465 * ath5k_write_channel_powertable() - Set power table for current channel on hw
3466 * @ah: The &struct ath5k_hw
3467 * @ee_mode: One of enum ath5k_driver_mode
3468 * @type: One of enum ath5k_powertable_type (eeprom.h)
3469 */
3470 static void
ath5k_write_channel_powertable(struct ath5k_hw * ah,u8 ee_mode,u8 type)3471 ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3472 {
3473 if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3474 ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3475 else
3476 ath5k_write_pcdac_table(ah);
3477 }
3478
3479
3480 /**
3481 * DOC: Per-rate tx power setting
3482 *
3483 * This is the code that sets the desired tx power limit (below
3484 * maximum) on hw for each rate (we also have TPC that sets
3485 * power per packet type). We do that by providing an index on the
3486 * PCDAC/PDADC table we set up above, for each rate.
3487 *
3488 * For now we only limit txpower based on maximum tx power
3489 * supported by hw (what's inside rate_info) + conformance test
3490 * limits. We need to limit this even more, based on regulatory domain
3491 * etc to be safe. Normally this is done from above so we don't care
3492 * here, all we care is that the tx power we set will be O.K.
3493 * for the hw (e.g. won't create noise on PA etc).
3494 *
3495 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3496 * x values) and is indexed as follows:
3497 * rates[0] - rates[7] -> OFDM rates
3498 * rates[8] - rates[14] -> CCK rates
3499 * rates[15] -> XR rates (they all have the same power)
3500 */
3501
3502 /**
3503 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3504 * @ah: The &struct ath5k_hw
3505 * @max_pwr: The maximum tx power requested in 0.5dB steps
3506 * @rate_info: The &struct ath5k_rate_pcal_info to fill
3507 * @ee_mode: One of enum ath5k_driver_mode
3508 */
3509 static void
ath5k_setup_rate_powertable(struct ath5k_hw * ah,u16 max_pwr,struct ath5k_rate_pcal_info * rate_info,u8 ee_mode)3510 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3511 struct ath5k_rate_pcal_info *rate_info,
3512 u8 ee_mode)
3513 {
3514 unsigned int i;
3515 u16 *rates;
3516 s16 rate_idx_scaled = 0;
3517
3518 /* max_pwr is power level we got from driver/user in 0.5dB
3519 * units, switch to 0.25dB units so we can compare */
3520 max_pwr *= 2;
3521 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3522
3523 /* apply rate limits */
3524 rates = ah->ah_txpower.txp_rates_power_table;
3525
3526 /* OFDM rates 6 to 24Mb/s */
3527 for (i = 0; i < 5; i++)
3528 rates[i] = min(max_pwr, rate_info->target_power_6to24);
3529
3530 /* Rest OFDM rates */
3531 rates[5] = min(rates[0], rate_info->target_power_36);
3532 rates[6] = min(rates[0], rate_info->target_power_48);
3533 rates[7] = min(rates[0], rate_info->target_power_54);
3534
3535 /* CCK rates */
3536 /* 1L */
3537 rates[8] = min(rates[0], rate_info->target_power_6to24);
3538 /* 2L */
3539 rates[9] = min(rates[0], rate_info->target_power_36);
3540 /* 2S */
3541 rates[10] = min(rates[0], rate_info->target_power_36);
3542 /* 5L */
3543 rates[11] = min(rates[0], rate_info->target_power_48);
3544 /* 5S */
3545 rates[12] = min(rates[0], rate_info->target_power_48);
3546 /* 11L */
3547 rates[13] = min(rates[0], rate_info->target_power_54);
3548 /* 11S */
3549 rates[14] = min(rates[0], rate_info->target_power_54);
3550
3551 /* XR rates */
3552 rates[15] = min(rates[0], rate_info->target_power_6to24);
3553
3554 /* CCK rates have different peak to average ratio
3555 * so we have to tweak their power so that gainf
3556 * correction works ok. For this we use OFDM to
3557 * CCK delta from eeprom */
3558 if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3559 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3560 for (i = 8; i <= 15; i++)
3561 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3562
3563 /* Save min/max and current tx power for this channel
3564 * in 0.25dB units.
3565 *
3566 * Note: We use rates[0] for current tx power because
3567 * it covers most of the rates, in most cases. It's our
3568 * tx power limit and what the user expects to see. */
3569 ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3570 ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3571
3572 /* Set max txpower for correct OFDM operation on all rates
3573 * -that is the txpower for 54Mbit-, it's used for the PAPD
3574 * gain probe and it's in 0.5dB units */
3575 ah->ah_txpower.txp_ofdm = rates[7];
3576
3577 /* Now that we have all rates setup use table offset to
3578 * match the power range set by user with the power indices
3579 * on PCDAC/PDADC table */
3580 for (i = 0; i < 16; i++) {
3581 rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset;
3582 /* Don't get out of bounds */
3583 if (rate_idx_scaled > 63)
3584 rate_idx_scaled = 63;
3585 if (rate_idx_scaled < 0)
3586 rate_idx_scaled = 0;
3587 rates[i] = rate_idx_scaled;
3588 }
3589 }
3590
3591
3592 /**
3593 * ath5k_hw_txpower() - Set transmission power limit for a given channel
3594 * @ah: The &struct ath5k_hw
3595 * @channel: The &struct ieee80211_channel
3596 * @txpower: Requested tx power in 0.5dB steps
3597 *
3598 * Combines all of the above to set the requested tx power limit
3599 * on hw.
3600 */
3601 static int
ath5k_hw_txpower(struct ath5k_hw * ah,struct ieee80211_channel * channel,u8 txpower)3602 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3603 u8 txpower)
3604 {
3605 struct ath5k_rate_pcal_info rate_info;
3606 struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3607 int ee_mode;
3608 u8 type;
3609 int ret;
3610
3611 if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3612 ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3613 return -EINVAL;
3614 }
3615
3616 ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
3617
3618 /* Initialize TX power table */
3619 switch (ah->ah_radio) {
3620 case AR5K_RF5110:
3621 /* TODO */
3622 return 0;
3623 case AR5K_RF5111:
3624 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3625 break;
3626 case AR5K_RF5112:
3627 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3628 break;
3629 case AR5K_RF2413:
3630 case AR5K_RF5413:
3631 case AR5K_RF2316:
3632 case AR5K_RF2317:
3633 case AR5K_RF2425:
3634 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3635 break;
3636 default:
3637 return -EINVAL;
3638 }
3639
3640 /*
3641 * If we don't change channel/mode skip tx powertable calculation
3642 * and use the cached one.
3643 */
3644 if (!ah->ah_txpower.txp_setup ||
3645 (channel->hw_value != curr_channel->hw_value) ||
3646 (channel->center_freq != curr_channel->center_freq)) {
3647 /* Reset TX power values but preserve requested
3648 * tx power from above */
3649 int requested_txpower = ah->ah_txpower.txp_requested;
3650
3651 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3652
3653 /* Restore TPC setting and requested tx power */
3654 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3655
3656 ah->ah_txpower.txp_requested = requested_txpower;
3657
3658 /* Calculate the powertable */
3659 ret = ath5k_setup_channel_powertable(ah, channel,
3660 ee_mode, type);
3661 if (ret)
3662 return ret;
3663 }
3664
3665 /* Write table on hw */
3666 ath5k_write_channel_powertable(ah, ee_mode, type);
3667
3668 /* Limit max power if we have a CTL available */
3669 ath5k_get_max_ctl_power(ah, channel);
3670
3671 /* FIXME: Antenna reduction stuff */
3672
3673 /* FIXME: Limit power on turbo modes */
3674
3675 /* FIXME: TPC scale reduction */
3676
3677 /* Get surrounding channels for per-rate power table
3678 * calibration */
3679 ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3680
3681 /* Setup rate power table */
3682 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3683
3684 /* Write rate power table on hw */
3685 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3686 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3687 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3688
3689 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3690 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3691 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3692
3693 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3694 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3695 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3696
3697 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3698 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3699 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3700
3701 /* FIXME: TPC support */
3702 if (ah->ah_txpower.txp_tpc) {
3703 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3704 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3705
3706 ath5k_hw_reg_write(ah,
3707 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3708 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3709 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3710 AR5K_TPC);
3711 } else {
3712 ath5k_hw_reg_write(ah, AR5K_TUNE_MAX_TXPOWER,
3713 AR5K_PHY_TXPOWER_RATE_MAX);
3714 }
3715
3716 return 0;
3717 }
3718
3719 /**
3720 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3721 * @ah: The &struct ath5k_hw
3722 * @txpower: The requested tx power limit in 0.5dB steps
3723 *
3724 * This function provides access to ath5k_hw_txpower to the driver in
3725 * case user or an application changes it while PHY is running.
3726 */
3727 int
ath5k_hw_set_txpower_limit(struct ath5k_hw * ah,u8 txpower)3728 ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3729 {
3730 ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3731 "changing txpower to %d\n", txpower);
3732
3733 return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3734 }
3735
3736
3737 /*************\
3738 Init function
3739 \*************/
3740
3741 /**
3742 * ath5k_hw_phy_init() - Initialize PHY
3743 * @ah: The &struct ath5k_hw
3744 * @channel: The @struct ieee80211_channel
3745 * @mode: One of enum ath5k_driver_mode
3746 * @fast: Try a fast channel switch instead
3747 *
3748 * This is the main function used during reset to initialize PHY
3749 * or do a fast channel change if possible.
3750 *
3751 * NOTE: Do not call this one from the driver, it assumes PHY is in a
3752 * warm reset state !
3753 */
3754 int
ath5k_hw_phy_init(struct ath5k_hw * ah,struct ieee80211_channel * channel,u8 mode,bool fast)3755 ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3756 u8 mode, bool fast)
3757 {
3758 struct ieee80211_channel *curr_channel;
3759 int ret, i;
3760 u32 phy_tst1;
3761 ret = 0;
3762
3763 /*
3764 * Sanity check for fast flag
3765 * Don't try fast channel change when changing modulation
3766 * mode/band. We check for chip compatibility on
3767 * ath5k_hw_reset.
3768 */
3769 curr_channel = ah->ah_current_channel;
3770 if (fast && (channel->hw_value != curr_channel->hw_value))
3771 return -EINVAL;
3772
3773 /*
3774 * On fast channel change we only set the synth parameters
3775 * while PHY is running, enable calibration and skip the rest.
3776 */
3777 if (fast) {
3778 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3779 AR5K_PHY_RFBUS_REQ_REQUEST);
3780 for (i = 0; i < 100; i++) {
3781 if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3782 break;
3783 udelay(5);
3784 }
3785 /* Failed */
3786 if (i >= 100)
3787 return -EIO;
3788
3789 /* Set channel and wait for synth */
3790 ret = ath5k_hw_channel(ah, channel);
3791 if (ret)
3792 return ret;
3793
3794 ath5k_hw_wait_for_synth(ah, channel);
3795 }
3796
3797 /*
3798 * Set TX power
3799 *
3800 * Note: We need to do that before we set
3801 * RF buffer settings on 5211/5212+ so that we
3802 * properly set curve indices.
3803 */
3804 ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ?
3805 ah->ah_txpower.txp_requested * 2 :
3806 AR5K_TUNE_MAX_TXPOWER);
3807 if (ret)
3808 return ret;
3809
3810 /* Write OFDM timings on 5212*/
3811 if (ah->ah_version == AR5K_AR5212 &&
3812 channel->hw_value != AR5K_MODE_11B) {
3813
3814 ret = ath5k_hw_write_ofdm_timings(ah, channel);
3815 if (ret)
3816 return ret;
3817
3818 /* Spur info is available only from EEPROM versions
3819 * greater than 5.3, but the EEPROM routines will use
3820 * static values for older versions */
3821 if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3822 ath5k_hw_set_spur_mitigation_filter(ah,
3823 channel);
3824 }
3825
3826 /* If we used fast channel switching
3827 * we are done, release RF bus and
3828 * fire up NF calibration.
3829 *
3830 * Note: Only NF calibration due to
3831 * channel change, not AGC calibration
3832 * since AGC is still running !
3833 */
3834 if (fast) {
3835 /*
3836 * Release RF Bus grant
3837 */
3838 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3839 AR5K_PHY_RFBUS_REQ_REQUEST);
3840
3841 /*
3842 * Start NF calibration
3843 */
3844 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3845 AR5K_PHY_AGCCTL_NF);
3846
3847 return ret;
3848 }
3849
3850 /*
3851 * For 5210 we do all initialization using
3852 * initvals, so we don't have to modify
3853 * any settings (5210 also only supports
3854 * a/aturbo modes)
3855 */
3856 if (ah->ah_version != AR5K_AR5210) {
3857
3858 /*
3859 * Write initial RF gain settings
3860 * This should work for both 5111/5112
3861 */
3862 ret = ath5k_hw_rfgain_init(ah, channel->band);
3863 if (ret)
3864 return ret;
3865
3866 usleep_range(1000, 1500);
3867
3868 /*
3869 * Write RF buffer
3870 */
3871 ret = ath5k_hw_rfregs_init(ah, channel, mode);
3872 if (ret)
3873 return ret;
3874
3875 /*Enable/disable 802.11b mode on 5111
3876 (enable 2111 frequency converter + CCK)*/
3877 if (ah->ah_radio == AR5K_RF5111) {
3878 if (mode == AR5K_MODE_11B)
3879 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3880 AR5K_TXCFG_B_MODE);
3881 else
3882 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3883 AR5K_TXCFG_B_MODE);
3884 }
3885
3886 } else if (ah->ah_version == AR5K_AR5210) {
3887 usleep_range(1000, 1500);
3888 /* Disable phy and wait */
3889 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3890 usleep_range(1000, 1500);
3891 }
3892
3893 /* Set channel on PHY */
3894 ret = ath5k_hw_channel(ah, channel);
3895 if (ret)
3896 return ret;
3897
3898 /*
3899 * Enable the PHY and wait until completion
3900 * This includes BaseBand and Synthesizer
3901 * activation.
3902 */
3903 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3904
3905 ath5k_hw_wait_for_synth(ah, channel);
3906
3907 /*
3908 * Perform ADC test to see if baseband is ready
3909 * Set tx hold and check adc test register
3910 */
3911 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3912 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3913 for (i = 0; i <= 20; i++) {
3914 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3915 break;
3916 usleep_range(200, 250);
3917 }
3918 ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3919
3920 /*
3921 * Start automatic gain control calibration
3922 *
3923 * During AGC calibration RX path is re-routed to
3924 * a power detector so we don't receive anything.
3925 *
3926 * This method is used to calibrate some static offsets
3927 * used together with on-the fly I/Q calibration (the
3928 * one performed via ath5k_hw_phy_calibrate), which doesn't
3929 * interrupt rx path.
3930 *
3931 * While rx path is re-routed to the power detector we also
3932 * start a noise floor calibration to measure the
3933 * card's noise floor (the noise we measure when we are not
3934 * transmitting or receiving anything).
3935 *
3936 * If we are in a noisy environment, AGC calibration may time
3937 * out and/or noise floor calibration might timeout.
3938 */
3939 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3940 AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3941
3942 /* At the same time start I/Q calibration for QAM constellation
3943 * -no need for CCK- */
3944 ah->ah_iq_cal_needed = false;
3945 if (!(mode == AR5K_MODE_11B)) {
3946 ah->ah_iq_cal_needed = true;
3947 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3948 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3949 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3950 AR5K_PHY_IQ_RUN);
3951 }
3952
3953 /* Wait for gain calibration to finish (we check for I/Q calibration
3954 * during ath5k_phy_calibrate) */
3955 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3956 AR5K_PHY_AGCCTL_CAL, 0, false)) {
3957 ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3958 channel->center_freq);
3959 }
3960
3961 /* Restore antenna mode */
3962 ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3963
3964 return ret;
3965 }
3966