• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <linux/etherdevice.h>
23 #include <linux/gpio.h>
24 #include <asm/unaligned.h>
25 
26 #include "hw.h"
27 #include "hw-ops.h"
28 #include "ar9003_mac.h"
29 #include "ar9003_mci.h"
30 #include "ar9003_phy.h"
31 #include "ath9k.h"
32 
33 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
34 
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38 MODULE_LICENSE("Dual BSD/GPL");
39 
ath9k_hw_set_clockrate(struct ath_hw * ah)40 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
41 {
42 	struct ath_common *common = ath9k_hw_common(ah);
43 	struct ath9k_channel *chan = ah->curchan;
44 	unsigned int clockrate;
45 
46 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
47 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
48 		clockrate = 117;
49 	else if (!chan) /* should really check for CCK instead */
50 		clockrate = ATH9K_CLOCK_RATE_CCK;
51 	else if (IS_CHAN_2GHZ(chan))
52 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
53 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
54 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
55 	else
56 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
57 
58 	if (chan) {
59 		if (IS_CHAN_HT40(chan))
60 			clockrate *= 2;
61 		if (IS_CHAN_HALF_RATE(chan))
62 			clockrate /= 2;
63 		if (IS_CHAN_QUARTER_RATE(chan))
64 			clockrate /= 4;
65 	}
66 
67 	common->clockrate = clockrate;
68 }
69 
ath9k_hw_mac_to_clks(struct ath_hw * ah,u32 usecs)70 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
71 {
72 	struct ath_common *common = ath9k_hw_common(ah);
73 
74 	return usecs * common->clockrate;
75 }
76 
ath9k_hw_wait(struct ath_hw * ah,u32 reg,u32 mask,u32 val,u32 timeout)77 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
78 {
79 	int i;
80 
81 	BUG_ON(timeout < AH_TIME_QUANTUM);
82 
83 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
84 		if ((REG_READ(ah, reg) & mask) == val)
85 			return true;
86 
87 		udelay(AH_TIME_QUANTUM);
88 	}
89 
90 	ath_dbg(ath9k_hw_common(ah), ANY,
91 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
92 		timeout, reg, REG_READ(ah, reg), mask, val);
93 
94 	return false;
95 }
96 EXPORT_SYMBOL(ath9k_hw_wait);
97 
ath9k_hw_synth_delay(struct ath_hw * ah,struct ath9k_channel * chan,int hw_delay)98 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
99 			  int hw_delay)
100 {
101 	hw_delay /= 10;
102 
103 	if (IS_CHAN_HALF_RATE(chan))
104 		hw_delay *= 2;
105 	else if (IS_CHAN_QUARTER_RATE(chan))
106 		hw_delay *= 4;
107 
108 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
109 }
110 
ath9k_hw_write_array(struct ath_hw * ah,const struct ar5416IniArray * array,int column,unsigned int * writecnt)111 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
112 			  int column, unsigned int *writecnt)
113 {
114 	int r;
115 
116 	ENABLE_REGWRITE_BUFFER(ah);
117 	for (r = 0; r < array->ia_rows; r++) {
118 		REG_WRITE(ah, INI_RA(array, r, 0),
119 			  INI_RA(array, r, column));
120 		DO_DELAY(*writecnt);
121 	}
122 	REGWRITE_BUFFER_FLUSH(ah);
123 }
124 
ath9k_hw_read_array(struct ath_hw * ah,u32 array[][2],int size)125 void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size)
126 {
127 	u32 *tmp_reg_list, *tmp_data;
128 	int i;
129 
130 	tmp_reg_list = kmalloc(size * sizeof(u32), GFP_KERNEL);
131 	if (!tmp_reg_list) {
132 		dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__);
133 		return;
134 	}
135 
136 	tmp_data = kmalloc(size * sizeof(u32), GFP_KERNEL);
137 	if (!tmp_data) {
138 		dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__);
139 		goto error_tmp_data;
140 	}
141 
142 	for (i = 0; i < size; i++)
143 		tmp_reg_list[i] = array[i][0];
144 
145 	REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size);
146 
147 	for (i = 0; i < size; i++)
148 		array[i][1] = tmp_data[i];
149 
150 	kfree(tmp_data);
151 error_tmp_data:
152 	kfree(tmp_reg_list);
153 }
154 
ath9k_hw_reverse_bits(u32 val,u32 n)155 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
156 {
157 	u32 retval;
158 	int i;
159 
160 	for (i = 0, retval = 0; i < n; i++) {
161 		retval = (retval << 1) | (val & 1);
162 		val >>= 1;
163 	}
164 	return retval;
165 }
166 
ath9k_hw_computetxtime(struct ath_hw * ah,u8 phy,int kbps,u32 frameLen,u16 rateix,bool shortPreamble)167 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
168 			   u8 phy, int kbps,
169 			   u32 frameLen, u16 rateix,
170 			   bool shortPreamble)
171 {
172 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
173 
174 	if (kbps == 0)
175 		return 0;
176 
177 	switch (phy) {
178 	case WLAN_RC_PHY_CCK:
179 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
180 		if (shortPreamble)
181 			phyTime >>= 1;
182 		numBits = frameLen << 3;
183 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
184 		break;
185 	case WLAN_RC_PHY_OFDM:
186 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
187 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
188 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
189 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
190 			txTime = OFDM_SIFS_TIME_QUARTER
191 				+ OFDM_PREAMBLE_TIME_QUARTER
192 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
193 		} else if (ah->curchan &&
194 			   IS_CHAN_HALF_RATE(ah->curchan)) {
195 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
196 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
197 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
198 			txTime = OFDM_SIFS_TIME_HALF +
199 				OFDM_PREAMBLE_TIME_HALF
200 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
201 		} else {
202 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
203 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
204 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
205 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
206 				+ (numSymbols * OFDM_SYMBOL_TIME);
207 		}
208 		break;
209 	default:
210 		ath_err(ath9k_hw_common(ah),
211 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
212 		txTime = 0;
213 		break;
214 	}
215 
216 	return txTime;
217 }
218 EXPORT_SYMBOL(ath9k_hw_computetxtime);
219 
ath9k_hw_get_channel_centers(struct ath_hw * ah,struct ath9k_channel * chan,struct chan_centers * centers)220 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
221 				  struct ath9k_channel *chan,
222 				  struct chan_centers *centers)
223 {
224 	int8_t extoff;
225 
226 	if (!IS_CHAN_HT40(chan)) {
227 		centers->ctl_center = centers->ext_center =
228 			centers->synth_center = chan->channel;
229 		return;
230 	}
231 
232 	if (IS_CHAN_HT40PLUS(chan)) {
233 		centers->synth_center =
234 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
235 		extoff = 1;
236 	} else {
237 		centers->synth_center =
238 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
239 		extoff = -1;
240 	}
241 
242 	centers->ctl_center =
243 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
244 	/* 25 MHz spacing is supported by hw but not on upper layers */
245 	centers->ext_center =
246 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
247 }
248 
249 /******************/
250 /* Chip Revisions */
251 /******************/
252 
ath9k_hw_read_revisions(struct ath_hw * ah)253 static bool ath9k_hw_read_revisions(struct ath_hw *ah)
254 {
255 	u32 srev;
256 	u32 val;
257 
258 	if (ah->get_mac_revision)
259 		ah->hw_version.macRev = ah->get_mac_revision();
260 
261 	switch (ah->hw_version.devid) {
262 	case AR5416_AR9100_DEVID:
263 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
264 		break;
265 	case AR9300_DEVID_AR9330:
266 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
267 		if (!ah->get_mac_revision) {
268 			val = REG_READ(ah, AR_SREV);
269 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
270 		}
271 		return true;
272 	case AR9300_DEVID_AR9340:
273 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
274 		return true;
275 	case AR9300_DEVID_QCA955X:
276 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
277 		return true;
278 	case AR9300_DEVID_AR953X:
279 		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
280 		return true;
281 	case AR9300_DEVID_QCA956X:
282 		ah->hw_version.macVersion = AR_SREV_VERSION_9561;
283 		return true;
284 	}
285 
286 	srev = REG_READ(ah, AR_SREV);
287 
288 	if (srev == -1) {
289 		ath_err(ath9k_hw_common(ah),
290 			"Failed to read SREV register");
291 		return false;
292 	}
293 
294 	val = srev & AR_SREV_ID;
295 
296 	if (val == 0xFF) {
297 		val = srev;
298 		ah->hw_version.macVersion =
299 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
300 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
301 
302 		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
303 			ah->is_pciexpress = true;
304 		else
305 			ah->is_pciexpress = (val &
306 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
307 	} else {
308 		if (!AR_SREV_9100(ah))
309 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
310 
311 		ah->hw_version.macRev = val & AR_SREV_REVISION;
312 
313 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
314 			ah->is_pciexpress = true;
315 	}
316 
317 	return true;
318 }
319 
320 /************************************/
321 /* HW Attach, Detach, Init Routines */
322 /************************************/
323 
ath9k_hw_disablepcie(struct ath_hw * ah)324 static void ath9k_hw_disablepcie(struct ath_hw *ah)
325 {
326 	if (!AR_SREV_5416(ah))
327 		return;
328 
329 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
330 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
331 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
332 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
333 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
334 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
335 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
336 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
337 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
338 
339 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
340 }
341 
342 /* This should work for all families including legacy */
ath9k_hw_chip_test(struct ath_hw * ah)343 static bool ath9k_hw_chip_test(struct ath_hw *ah)
344 {
345 	struct ath_common *common = ath9k_hw_common(ah);
346 	u32 regAddr[2] = { AR_STA_ID0 };
347 	u32 regHold[2];
348 	static const u32 patternData[4] = {
349 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
350 	};
351 	int i, j, loop_max;
352 
353 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
354 		loop_max = 2;
355 		regAddr[1] = AR_PHY_BASE + (8 << 2);
356 	} else
357 		loop_max = 1;
358 
359 	for (i = 0; i < loop_max; i++) {
360 		u32 addr = regAddr[i];
361 		u32 wrData, rdData;
362 
363 		regHold[i] = REG_READ(ah, addr);
364 		for (j = 0; j < 0x100; j++) {
365 			wrData = (j << 16) | j;
366 			REG_WRITE(ah, addr, wrData);
367 			rdData = REG_READ(ah, addr);
368 			if (rdData != wrData) {
369 				ath_err(common,
370 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
371 					addr, wrData, rdData);
372 				return false;
373 			}
374 		}
375 		for (j = 0; j < 4; j++) {
376 			wrData = patternData[j];
377 			REG_WRITE(ah, addr, wrData);
378 			rdData = REG_READ(ah, addr);
379 			if (wrData != rdData) {
380 				ath_err(common,
381 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
382 					addr, wrData, rdData);
383 				return false;
384 			}
385 		}
386 		REG_WRITE(ah, regAddr[i], regHold[i]);
387 	}
388 	udelay(100);
389 
390 	return true;
391 }
392 
ath9k_hw_init_config(struct ath_hw * ah)393 static void ath9k_hw_init_config(struct ath_hw *ah)
394 {
395 	struct ath_common *common = ath9k_hw_common(ah);
396 
397 	ah->config.dma_beacon_response_time = 1;
398 	ah->config.sw_beacon_response_time = 6;
399 	ah->config.cwm_ignore_extcca = false;
400 	ah->config.analog_shiftreg = 1;
401 
402 	ah->config.rx_intr_mitigation = true;
403 
404 	if (AR_SREV_9300_20_OR_LATER(ah)) {
405 		ah->config.rimt_last = 500;
406 		ah->config.rimt_first = 2000;
407 	} else {
408 		ah->config.rimt_last = 250;
409 		ah->config.rimt_first = 700;
410 	}
411 
412 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
413 		ah->config.pll_pwrsave = 7;
414 
415 	/*
416 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
417 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
418 	 * This means we use it for all AR5416 devices, and the few
419 	 * minor PCI AR9280 devices out there.
420 	 *
421 	 * Serialization is required because these devices do not handle
422 	 * well the case of two concurrent reads/writes due to the latency
423 	 * involved. During one read/write another read/write can be issued
424 	 * on another CPU while the previous read/write may still be working
425 	 * on our hardware, if we hit this case the hardware poops in a loop.
426 	 * We prevent this by serializing reads and writes.
427 	 *
428 	 * This issue is not present on PCI-Express devices or pre-AR5416
429 	 * devices (legacy, 802.11abg).
430 	 */
431 	if (num_possible_cpus() > 1)
432 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
433 
434 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
435 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
436 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
437 		     !ah->is_pciexpress)) {
438 			ah->config.serialize_regmode = SER_REG_MODE_ON;
439 		} else {
440 			ah->config.serialize_regmode = SER_REG_MODE_OFF;
441 		}
442 	}
443 
444 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
445 		ah->config.serialize_regmode);
446 
447 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
448 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
449 	else
450 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
451 }
452 
ath9k_hw_init_defaults(struct ath_hw * ah)453 static void ath9k_hw_init_defaults(struct ath_hw *ah)
454 {
455 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
456 
457 	regulatory->country_code = CTRY_DEFAULT;
458 	regulatory->power_limit = MAX_RATE_POWER;
459 
460 	ah->hw_version.magic = AR5416_MAGIC;
461 	ah->hw_version.subvendorid = 0;
462 
463 	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
464 			       AR_STA_ID1_MCAST_KSRCH;
465 	if (AR_SREV_9100(ah))
466 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
467 
468 	ah->slottime = ATH9K_SLOT_TIME_9;
469 	ah->globaltxtimeout = (u32) -1;
470 	ah->power_mode = ATH9K_PM_UNDEFINED;
471 	ah->htc_reset_init = true;
472 
473 	ah->tpc_enabled = false;
474 
475 	ah->ani_function = ATH9K_ANI_ALL;
476 	if (!AR_SREV_9300_20_OR_LATER(ah))
477 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
478 
479 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
480 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
481 	else
482 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
483 }
484 
ath9k_hw_init_macaddr(struct ath_hw * ah)485 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
486 {
487 	struct ath_common *common = ath9k_hw_common(ah);
488 	u32 sum;
489 	int i;
490 	u16 eeval;
491 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
492 
493 	sum = 0;
494 	for (i = 0; i < 3; i++) {
495 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
496 		sum += eeval;
497 		common->macaddr[2 * i] = eeval >> 8;
498 		common->macaddr[2 * i + 1] = eeval & 0xff;
499 	}
500 	if (!is_valid_ether_addr(common->macaddr)) {
501 		ath_err(common,
502 			"eeprom contains invalid mac address: %pM\n",
503 			common->macaddr);
504 
505 		random_ether_addr(common->macaddr);
506 		ath_err(common,
507 			"random mac address will be used: %pM\n",
508 			common->macaddr);
509 	}
510 
511 	return 0;
512 }
513 
ath9k_hw_post_init(struct ath_hw * ah)514 static int ath9k_hw_post_init(struct ath_hw *ah)
515 {
516 	struct ath_common *common = ath9k_hw_common(ah);
517 	int ecode;
518 
519 	if (common->bus_ops->ath_bus_type != ATH_USB) {
520 		if (!ath9k_hw_chip_test(ah))
521 			return -ENODEV;
522 	}
523 
524 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
525 		ecode = ar9002_hw_rf_claim(ah);
526 		if (ecode != 0)
527 			return ecode;
528 	}
529 
530 	ecode = ath9k_hw_eeprom_init(ah);
531 	if (ecode != 0)
532 		return ecode;
533 
534 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
535 		ah->eep_ops->get_eeprom_ver(ah),
536 		ah->eep_ops->get_eeprom_rev(ah));
537 
538 	ath9k_hw_ani_init(ah);
539 
540 	/*
541 	 * EEPROM needs to be initialized before we do this.
542 	 * This is required for regulatory compliance.
543 	 */
544 	if (AR_SREV_9300_20_OR_LATER(ah)) {
545 		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
546 		if ((regdmn & 0xF0) == CTL_FCC) {
547 			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
548 			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
549 		}
550 	}
551 
552 	return 0;
553 }
554 
ath9k_hw_attach_ops(struct ath_hw * ah)555 static int ath9k_hw_attach_ops(struct ath_hw *ah)
556 {
557 	if (!AR_SREV_9300_20_OR_LATER(ah))
558 		return ar9002_hw_attach_ops(ah);
559 
560 	ar9003_hw_attach_ops(ah);
561 	return 0;
562 }
563 
564 /* Called for all hardware families */
__ath9k_hw_init(struct ath_hw * ah)565 static int __ath9k_hw_init(struct ath_hw *ah)
566 {
567 	struct ath_common *common = ath9k_hw_common(ah);
568 	int r = 0;
569 
570 	if (!ath9k_hw_read_revisions(ah)) {
571 		ath_err(common, "Could not read hardware revisions");
572 		return -EOPNOTSUPP;
573 	}
574 
575 	switch (ah->hw_version.macVersion) {
576 	case AR_SREV_VERSION_5416_PCI:
577 	case AR_SREV_VERSION_5416_PCIE:
578 	case AR_SREV_VERSION_9160:
579 	case AR_SREV_VERSION_9100:
580 	case AR_SREV_VERSION_9280:
581 	case AR_SREV_VERSION_9285:
582 	case AR_SREV_VERSION_9287:
583 	case AR_SREV_VERSION_9271:
584 	case AR_SREV_VERSION_9300:
585 	case AR_SREV_VERSION_9330:
586 	case AR_SREV_VERSION_9485:
587 	case AR_SREV_VERSION_9340:
588 	case AR_SREV_VERSION_9462:
589 	case AR_SREV_VERSION_9550:
590 	case AR_SREV_VERSION_9565:
591 	case AR_SREV_VERSION_9531:
592 	case AR_SREV_VERSION_9561:
593 		break;
594 	default:
595 		ath_err(common,
596 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
597 			ah->hw_version.macVersion, ah->hw_version.macRev);
598 		return -EOPNOTSUPP;
599 	}
600 
601 	/*
602 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
603 	 * We need to do this to avoid RMW of this register. We cannot
604 	 * read the reg when chip is asleep.
605 	 */
606 	if (AR_SREV_9300_20_OR_LATER(ah)) {
607 		ah->WARegVal = REG_READ(ah, AR_WA);
608 		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
609 				 AR_WA_ASPM_TIMER_BASED_DISABLE);
610 	}
611 
612 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
613 		ath_err(common, "Couldn't reset chip\n");
614 		return -EIO;
615 	}
616 
617 	if (AR_SREV_9565(ah)) {
618 		ah->WARegVal |= AR_WA_BIT22;
619 		REG_WRITE(ah, AR_WA, ah->WARegVal);
620 	}
621 
622 	ath9k_hw_init_defaults(ah);
623 	ath9k_hw_init_config(ah);
624 
625 	r = ath9k_hw_attach_ops(ah);
626 	if (r)
627 		return r;
628 
629 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
630 		ath_err(common, "Couldn't wakeup chip\n");
631 		return -EIO;
632 	}
633 
634 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
635 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
636 		ah->is_pciexpress = false;
637 
638 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
639 	ath9k_hw_init_cal_settings(ah);
640 
641 	if (!ah->is_pciexpress)
642 		ath9k_hw_disablepcie(ah);
643 
644 	r = ath9k_hw_post_init(ah);
645 	if (r)
646 		return r;
647 
648 	ath9k_hw_init_mode_gain_regs(ah);
649 	r = ath9k_hw_fill_cap_info(ah);
650 	if (r)
651 		return r;
652 
653 	r = ath9k_hw_init_macaddr(ah);
654 	if (r) {
655 		ath_err(common, "Failed to initialize MAC address\n");
656 		return r;
657 	}
658 
659 	ath9k_hw_init_hang_checks(ah);
660 
661 	common->state = ATH_HW_INITIALIZED;
662 
663 	return 0;
664 }
665 
ath9k_hw_init(struct ath_hw * ah)666 int ath9k_hw_init(struct ath_hw *ah)
667 {
668 	int ret;
669 	struct ath_common *common = ath9k_hw_common(ah);
670 
671 	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
672 	switch (ah->hw_version.devid) {
673 	case AR5416_DEVID_PCI:
674 	case AR5416_DEVID_PCIE:
675 	case AR5416_AR9100_DEVID:
676 	case AR9160_DEVID_PCI:
677 	case AR9280_DEVID_PCI:
678 	case AR9280_DEVID_PCIE:
679 	case AR9285_DEVID_PCIE:
680 	case AR9287_DEVID_PCI:
681 	case AR9287_DEVID_PCIE:
682 	case AR2427_DEVID_PCIE:
683 	case AR9300_DEVID_PCIE:
684 	case AR9300_DEVID_AR9485_PCIE:
685 	case AR9300_DEVID_AR9330:
686 	case AR9300_DEVID_AR9340:
687 	case AR9300_DEVID_QCA955X:
688 	case AR9300_DEVID_AR9580:
689 	case AR9300_DEVID_AR9462:
690 	case AR9485_DEVID_AR1111:
691 	case AR9300_DEVID_AR9565:
692 	case AR9300_DEVID_AR953X:
693 	case AR9300_DEVID_QCA956X:
694 		break;
695 	default:
696 		if (common->bus_ops->ath_bus_type == ATH_USB)
697 			break;
698 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
699 			ah->hw_version.devid);
700 		return -EOPNOTSUPP;
701 	}
702 
703 	ret = __ath9k_hw_init(ah);
704 	if (ret) {
705 		ath_err(common,
706 			"Unable to initialize hardware; initialization status: %d\n",
707 			ret);
708 		return ret;
709 	}
710 
711 	ath_dynack_init(ah);
712 
713 	return 0;
714 }
715 EXPORT_SYMBOL(ath9k_hw_init);
716 
ath9k_hw_init_qos(struct ath_hw * ah)717 static void ath9k_hw_init_qos(struct ath_hw *ah)
718 {
719 	ENABLE_REGWRITE_BUFFER(ah);
720 
721 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
722 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
723 
724 	REG_WRITE(ah, AR_QOS_NO_ACK,
725 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
726 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
727 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
728 
729 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
730 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
731 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
732 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
733 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
734 
735 	REGWRITE_BUFFER_FLUSH(ah);
736 }
737 
ar9003_get_pll_sqsum_dvc(struct ath_hw * ah)738 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
739 {
740 	struct ath_common *common = ath9k_hw_common(ah);
741 	int i = 0;
742 
743 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
744 	udelay(100);
745 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
746 
747 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
748 
749 		udelay(100);
750 
751 		if (WARN_ON_ONCE(i >= 100)) {
752 			ath_err(common, "PLL4 meaurement not done\n");
753 			break;
754 		}
755 
756 		i++;
757 	}
758 
759 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
760 }
761 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
762 
ath9k_hw_init_pll(struct ath_hw * ah,struct ath9k_channel * chan)763 static void ath9k_hw_init_pll(struct ath_hw *ah,
764 			      struct ath9k_channel *chan)
765 {
766 	u32 pll;
767 
768 	pll = ath9k_hw_compute_pll_control(ah, chan);
769 
770 	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
771 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
772 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
773 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
774 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
775 			      AR_CH0_DPLL2_KD, 0x40);
776 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
777 			      AR_CH0_DPLL2_KI, 0x4);
778 
779 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
780 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
781 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
782 			      AR_CH0_BB_DPLL1_NINI, 0x58);
783 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
784 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
785 
786 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
787 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
788 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
789 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
790 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
791 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
792 
793 		/* program BB PLL phase_shift to 0x6 */
794 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
795 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
796 
797 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
798 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
799 		udelay(1000);
800 	} else if (AR_SREV_9330(ah)) {
801 		u32 ddr_dpll2, pll_control2, kd;
802 
803 		if (ah->is_clk_25mhz) {
804 			ddr_dpll2 = 0x18e82f01;
805 			pll_control2 = 0xe04a3d;
806 			kd = 0x1d;
807 		} else {
808 			ddr_dpll2 = 0x19e82f01;
809 			pll_control2 = 0x886666;
810 			kd = 0x3d;
811 		}
812 
813 		/* program DDR PLL ki and kd value */
814 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
815 
816 		/* program DDR PLL phase_shift */
817 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
818 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
819 
820 		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
821 			  pll | AR_RTC_9300_PLL_BYPASS);
822 		udelay(1000);
823 
824 		/* program refdiv, nint, frac to RTC register */
825 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
826 
827 		/* program BB PLL kd and ki value */
828 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
829 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
830 
831 		/* program BB PLL phase_shift */
832 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
833 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
834 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
835 		   AR_SREV_9561(ah)) {
836 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
837 
838 		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
839 			  pll | AR_RTC_9300_SOC_PLL_BYPASS);
840 		udelay(1000);
841 
842 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
843 		udelay(100);
844 
845 		if (ah->is_clk_25mhz) {
846 			if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
847 				pll2_divint = 0x1c;
848 				pll2_divfrac = 0xa3d2;
849 				refdiv = 1;
850 			} else {
851 				pll2_divint = 0x54;
852 				pll2_divfrac = 0x1eb85;
853 				refdiv = 3;
854 			}
855 		} else {
856 			if (AR_SREV_9340(ah)) {
857 				pll2_divint = 88;
858 				pll2_divfrac = 0;
859 				refdiv = 5;
860 			} else {
861 				pll2_divint = 0x11;
862 				pll2_divfrac = (AR_SREV_9531(ah) ||
863 						AR_SREV_9561(ah)) ?
864 						0x26665 : 0x26666;
865 				refdiv = 1;
866 			}
867 		}
868 
869 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
870 		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
871 			regval |= (0x1 << 22);
872 		else
873 			regval |= (0x1 << 16);
874 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
875 		udelay(100);
876 
877 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
878 			  (pll2_divint << 18) | pll2_divfrac);
879 		udelay(100);
880 
881 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
882 		if (AR_SREV_9340(ah))
883 			regval = (regval & 0x80071fff) |
884 				(0x1 << 30) |
885 				(0x1 << 13) |
886 				(0x4 << 26) |
887 				(0x18 << 19);
888 		else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
889 			regval = (regval & 0x01c00fff) |
890 				(0x1 << 31) |
891 				(0x2 << 29) |
892 				(0xa << 25) |
893 				(0x1 << 19);
894 
895 			if (AR_SREV_9531(ah))
896 				regval |= (0x6 << 12);
897 		} else
898 			regval = (regval & 0x80071fff) |
899 				(0x3 << 30) |
900 				(0x1 << 13) |
901 				(0x4 << 26) |
902 				(0x60 << 19);
903 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
904 
905 		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
906 			REG_WRITE(ah, AR_PHY_PLL_MODE,
907 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
908 		else
909 			REG_WRITE(ah, AR_PHY_PLL_MODE,
910 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
911 
912 		udelay(1000);
913 	}
914 
915 	if (AR_SREV_9565(ah))
916 		pll |= 0x40000;
917 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
918 
919 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
920 	    AR_SREV_9550(ah))
921 		udelay(1000);
922 
923 	/* Switch the core clock for ar9271 to 117Mhz */
924 	if (AR_SREV_9271(ah)) {
925 		udelay(500);
926 		REG_WRITE(ah, 0x50040, 0x304);
927 	}
928 
929 	udelay(RTC_PLL_SETTLE_DELAY);
930 
931 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
932 }
933 
ath9k_hw_init_interrupt_masks(struct ath_hw * ah,enum nl80211_iftype opmode)934 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
935 					  enum nl80211_iftype opmode)
936 {
937 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
938 	u32 imr_reg = AR_IMR_TXERR |
939 		AR_IMR_TXURN |
940 		AR_IMR_RXERR |
941 		AR_IMR_RXORN |
942 		AR_IMR_BCNMISC;
943 
944 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
945 	    AR_SREV_9561(ah))
946 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
947 
948 	if (AR_SREV_9300_20_OR_LATER(ah)) {
949 		imr_reg |= AR_IMR_RXOK_HP;
950 		if (ah->config.rx_intr_mitigation)
951 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
952 		else
953 			imr_reg |= AR_IMR_RXOK_LP;
954 
955 	} else {
956 		if (ah->config.rx_intr_mitigation)
957 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
958 		else
959 			imr_reg |= AR_IMR_RXOK;
960 	}
961 
962 	if (ah->config.tx_intr_mitigation)
963 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
964 	else
965 		imr_reg |= AR_IMR_TXOK;
966 
967 	ENABLE_REGWRITE_BUFFER(ah);
968 
969 	REG_WRITE(ah, AR_IMR, imr_reg);
970 	ah->imrs2_reg |= AR_IMR_S2_GTT;
971 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
972 
973 	if (!AR_SREV_9100(ah)) {
974 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
975 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
976 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
977 	}
978 
979 	REGWRITE_BUFFER_FLUSH(ah);
980 
981 	if (AR_SREV_9300_20_OR_LATER(ah)) {
982 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
983 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
984 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
985 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
986 	}
987 }
988 
ath9k_hw_set_sifs_time(struct ath_hw * ah,u32 us)989 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
990 {
991 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
992 	val = min(val, (u32) 0xFFFF);
993 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
994 }
995 
ath9k_hw_setslottime(struct ath_hw * ah,u32 us)996 void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
997 {
998 	u32 val = ath9k_hw_mac_to_clks(ah, us);
999 	val = min(val, (u32) 0xFFFF);
1000 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1001 }
1002 
ath9k_hw_set_ack_timeout(struct ath_hw * ah,u32 us)1003 void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1004 {
1005 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1006 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1007 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1008 }
1009 
ath9k_hw_set_cts_timeout(struct ath_hw * ah,u32 us)1010 void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1011 {
1012 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1013 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1014 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1015 }
1016 
ath9k_hw_set_global_txtimeout(struct ath_hw * ah,u32 tu)1017 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1018 {
1019 	if (tu > 0xFFFF) {
1020 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1021 			tu);
1022 		ah->globaltxtimeout = (u32) -1;
1023 		return false;
1024 	} else {
1025 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1026 		ah->globaltxtimeout = tu;
1027 		return true;
1028 	}
1029 }
1030 
ath9k_hw_init_global_settings(struct ath_hw * ah)1031 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1032 {
1033 	struct ath_common *common = ath9k_hw_common(ah);
1034 	const struct ath9k_channel *chan = ah->curchan;
1035 	int acktimeout, ctstimeout, ack_offset = 0;
1036 	int slottime;
1037 	int sifstime;
1038 	int rx_lat = 0, tx_lat = 0, eifs = 0;
1039 	u32 reg;
1040 
1041 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1042 		ah->misc_mode);
1043 
1044 	if (!chan)
1045 		return;
1046 
1047 	if (ah->misc_mode != 0)
1048 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1049 
1050 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1051 		rx_lat = 41;
1052 	else
1053 		rx_lat = 37;
1054 	tx_lat = 54;
1055 
1056 	if (IS_CHAN_5GHZ(chan))
1057 		sifstime = 16;
1058 	else
1059 		sifstime = 10;
1060 
1061 	if (IS_CHAN_HALF_RATE(chan)) {
1062 		eifs = 175;
1063 		rx_lat *= 2;
1064 		tx_lat *= 2;
1065 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1066 		    tx_lat += 11;
1067 
1068 		sifstime = 32;
1069 		ack_offset = 16;
1070 		slottime = 13;
1071 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1072 		eifs = 340;
1073 		rx_lat = (rx_lat * 4) - 1;
1074 		tx_lat *= 4;
1075 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1076 		    tx_lat += 22;
1077 
1078 		sifstime = 64;
1079 		ack_offset = 32;
1080 		slottime = 21;
1081 	} else {
1082 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1083 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1084 			reg = AR_USEC_ASYNC_FIFO;
1085 		} else {
1086 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1087 				common->clockrate;
1088 			reg = REG_READ(ah, AR_USEC);
1089 		}
1090 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1091 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1092 
1093 		slottime = ah->slottime;
1094 	}
1095 
1096 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1097 	slottime += 3 * ah->coverage_class;
1098 	acktimeout = slottime + sifstime + ack_offset;
1099 	ctstimeout = acktimeout;
1100 
1101 	/*
1102 	 * Workaround for early ACK timeouts, add an offset to match the
1103 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1104 	 * This was initially only meant to work around an issue with delayed
1105 	 * BA frames in some implementations, but it has been found to fix ACK
1106 	 * timeout issues in other cases as well.
1107 	 */
1108 	if (IS_CHAN_2GHZ(chan) &&
1109 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1110 		acktimeout += 64 - sifstime - ah->slottime;
1111 		ctstimeout += 48 - sifstime - ah->slottime;
1112 	}
1113 
1114 	if (ah->dynack.enabled) {
1115 		acktimeout = ah->dynack.ackto;
1116 		ctstimeout = acktimeout;
1117 		slottime = (acktimeout - 3) / 2;
1118 	} else {
1119 		ah->dynack.ackto = acktimeout;
1120 	}
1121 
1122 	ath9k_hw_set_sifs_time(ah, sifstime);
1123 	ath9k_hw_setslottime(ah, slottime);
1124 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1125 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1126 	if (ah->globaltxtimeout != (u32) -1)
1127 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1128 
1129 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1130 	REG_RMW(ah, AR_USEC,
1131 		(common->clockrate - 1) |
1132 		SM(rx_lat, AR_USEC_RX_LAT) |
1133 		SM(tx_lat, AR_USEC_TX_LAT),
1134 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1135 
1136 }
1137 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1138 
ath9k_hw_deinit(struct ath_hw * ah)1139 void ath9k_hw_deinit(struct ath_hw *ah)
1140 {
1141 	struct ath_common *common = ath9k_hw_common(ah);
1142 
1143 	if (common->state < ATH_HW_INITIALIZED)
1144 		return;
1145 
1146 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1147 }
1148 EXPORT_SYMBOL(ath9k_hw_deinit);
1149 
1150 /*******/
1151 /* INI */
1152 /*******/
1153 
ath9k_regd_get_ctl(struct ath_regulatory * reg,struct ath9k_channel * chan)1154 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1155 {
1156 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1157 
1158 	if (IS_CHAN_2GHZ(chan))
1159 		ctl |= CTL_11G;
1160 	else
1161 		ctl |= CTL_11A;
1162 
1163 	return ctl;
1164 }
1165 
1166 /****************************************/
1167 /* Reset and Channel Switching Routines */
1168 /****************************************/
1169 
ath9k_hw_set_dma(struct ath_hw * ah)1170 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1171 {
1172 	struct ath_common *common = ath9k_hw_common(ah);
1173 	int txbuf_size;
1174 
1175 	ENABLE_REGWRITE_BUFFER(ah);
1176 
1177 	/*
1178 	 * set AHB_MODE not to do cacheline prefetches
1179 	*/
1180 	if (!AR_SREV_9300_20_OR_LATER(ah))
1181 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1182 
1183 	/*
1184 	 * let mac dma reads be in 128 byte chunks
1185 	 */
1186 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1187 
1188 	REGWRITE_BUFFER_FLUSH(ah);
1189 
1190 	/*
1191 	 * Restore TX Trigger Level to its pre-reset value.
1192 	 * The initial value depends on whether aggregation is enabled, and is
1193 	 * adjusted whenever underruns are detected.
1194 	 */
1195 	if (!AR_SREV_9300_20_OR_LATER(ah))
1196 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1197 
1198 	ENABLE_REGWRITE_BUFFER(ah);
1199 
1200 	/*
1201 	 * let mac dma writes be in 128 byte chunks
1202 	 */
1203 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1204 
1205 	/*
1206 	 * Setup receive FIFO threshold to hold off TX activities
1207 	 */
1208 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1209 
1210 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1211 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1212 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1213 
1214 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1215 			ah->caps.rx_status_len);
1216 	}
1217 
1218 	/*
1219 	 * reduce the number of usable entries in PCU TXBUF to avoid
1220 	 * wrap around issues.
1221 	 */
1222 	if (AR_SREV_9285(ah)) {
1223 		/* For AR9285 the number of Fifos are reduced to half.
1224 		 * So set the usable tx buf size also to half to
1225 		 * avoid data/delimiter underruns
1226 		 */
1227 		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1228 	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1229 		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1230 		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1231 	} else {
1232 		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1233 	}
1234 
1235 	if (!AR_SREV_9271(ah))
1236 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1237 
1238 	REGWRITE_BUFFER_FLUSH(ah);
1239 
1240 	if (AR_SREV_9300_20_OR_LATER(ah))
1241 		ath9k_hw_reset_txstatus_ring(ah);
1242 }
1243 
ath9k_hw_set_operating_mode(struct ath_hw * ah,int opmode)1244 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1245 {
1246 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1247 	u32 set = AR_STA_ID1_KSRCH_MODE;
1248 
1249 	ENABLE_REG_RMW_BUFFER(ah);
1250 	switch (opmode) {
1251 	case NL80211_IFTYPE_ADHOC:
1252 		if (!AR_SREV_9340_13(ah)) {
1253 			set |= AR_STA_ID1_ADHOC;
1254 			REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1255 			break;
1256 		}
1257 		/* fall through */
1258 	case NL80211_IFTYPE_OCB:
1259 	case NL80211_IFTYPE_MESH_POINT:
1260 	case NL80211_IFTYPE_AP:
1261 		set |= AR_STA_ID1_STA_AP;
1262 		/* fall through */
1263 	case NL80211_IFTYPE_STATION:
1264 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1265 		break;
1266 	default:
1267 		if (!ah->is_monitoring)
1268 			set = 0;
1269 		break;
1270 	}
1271 	REG_RMW(ah, AR_STA_ID1, set, mask);
1272 	REG_RMW_BUFFER_FLUSH(ah);
1273 }
1274 
ath9k_hw_get_delta_slope_vals(struct ath_hw * ah,u32 coef_scaled,u32 * coef_mantissa,u32 * coef_exponent)1275 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1276 				   u32 *coef_mantissa, u32 *coef_exponent)
1277 {
1278 	u32 coef_exp, coef_man;
1279 
1280 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1281 		if ((coef_scaled >> coef_exp) & 0x1)
1282 			break;
1283 
1284 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1285 
1286 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1287 
1288 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1289 	*coef_exponent = coef_exp - 16;
1290 }
1291 
1292 /* AR9330 WAR:
1293  * call external reset function to reset WMAC if:
1294  * - doing a cold reset
1295  * - we have pending frames in the TX queues.
1296  */
ath9k_hw_ar9330_reset_war(struct ath_hw * ah,int type)1297 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1298 {
1299 	int i, npend = 0;
1300 
1301 	for (i = 0; i < AR_NUM_QCU; i++) {
1302 		npend = ath9k_hw_numtxpending(ah, i);
1303 		if (npend)
1304 			break;
1305 	}
1306 
1307 	if (ah->external_reset &&
1308 	    (npend || type == ATH9K_RESET_COLD)) {
1309 		int reset_err = 0;
1310 
1311 		ath_dbg(ath9k_hw_common(ah), RESET,
1312 			"reset MAC via external reset\n");
1313 
1314 		reset_err = ah->external_reset();
1315 		if (reset_err) {
1316 			ath_err(ath9k_hw_common(ah),
1317 				"External reset failed, err=%d\n",
1318 				reset_err);
1319 			return false;
1320 		}
1321 
1322 		REG_WRITE(ah, AR_RTC_RESET, 1);
1323 	}
1324 
1325 	return true;
1326 }
1327 
ath9k_hw_set_reset(struct ath_hw * ah,int type)1328 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1329 {
1330 	u32 rst_flags;
1331 	u32 tmpReg;
1332 
1333 	if (AR_SREV_9100(ah)) {
1334 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1335 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1336 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1337 	}
1338 
1339 	ENABLE_REGWRITE_BUFFER(ah);
1340 
1341 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1342 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1343 		udelay(10);
1344 	}
1345 
1346 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1347 		  AR_RTC_FORCE_WAKE_ON_INT);
1348 
1349 	if (AR_SREV_9100(ah)) {
1350 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1351 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1352 	} else {
1353 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1354 		if (AR_SREV_9340(ah))
1355 			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1356 		else
1357 			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1358 				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1359 
1360 		if (tmpReg) {
1361 			u32 val;
1362 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1363 
1364 			val = AR_RC_HOSTIF;
1365 			if (!AR_SREV_9300_20_OR_LATER(ah))
1366 				val |= AR_RC_AHB;
1367 			REG_WRITE(ah, AR_RC, val);
1368 
1369 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1370 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1371 
1372 		rst_flags = AR_RTC_RC_MAC_WARM;
1373 		if (type == ATH9K_RESET_COLD)
1374 			rst_flags |= AR_RTC_RC_MAC_COLD;
1375 	}
1376 
1377 	if (AR_SREV_9330(ah)) {
1378 		if (!ath9k_hw_ar9330_reset_war(ah, type))
1379 			return false;
1380 	}
1381 
1382 	if (ath9k_hw_mci_is_enabled(ah))
1383 		ar9003_mci_check_gpm_offset(ah);
1384 
1385 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1386 
1387 	REGWRITE_BUFFER_FLUSH(ah);
1388 
1389 	if (AR_SREV_9300_20_OR_LATER(ah))
1390 		udelay(50);
1391 	else if (AR_SREV_9100(ah))
1392 		mdelay(10);
1393 	else
1394 		udelay(100);
1395 
1396 	REG_WRITE(ah, AR_RTC_RC, 0);
1397 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1398 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1399 		return false;
1400 	}
1401 
1402 	if (!AR_SREV_9100(ah))
1403 		REG_WRITE(ah, AR_RC, 0);
1404 
1405 	if (AR_SREV_9100(ah))
1406 		udelay(50);
1407 
1408 	return true;
1409 }
1410 
ath9k_hw_set_reset_power_on(struct ath_hw * ah)1411 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1412 {
1413 	ENABLE_REGWRITE_BUFFER(ah);
1414 
1415 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1416 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1417 		udelay(10);
1418 	}
1419 
1420 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1421 		  AR_RTC_FORCE_WAKE_ON_INT);
1422 
1423 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1424 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1425 
1426 	REG_WRITE(ah, AR_RTC_RESET, 0);
1427 
1428 	REGWRITE_BUFFER_FLUSH(ah);
1429 
1430 	udelay(2);
1431 
1432 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1433 		REG_WRITE(ah, AR_RC, 0);
1434 
1435 	REG_WRITE(ah, AR_RTC_RESET, 1);
1436 
1437 	if (!ath9k_hw_wait(ah,
1438 			   AR_RTC_STATUS,
1439 			   AR_RTC_STATUS_M,
1440 			   AR_RTC_STATUS_ON,
1441 			   AH_WAIT_TIMEOUT)) {
1442 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1443 		return false;
1444 	}
1445 
1446 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1447 }
1448 
ath9k_hw_set_reset_reg(struct ath_hw * ah,u32 type)1449 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1450 {
1451 	bool ret = false;
1452 
1453 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1454 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1455 		udelay(10);
1456 	}
1457 
1458 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1459 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1460 
1461 	if (!ah->reset_power_on)
1462 		type = ATH9K_RESET_POWER_ON;
1463 
1464 	switch (type) {
1465 	case ATH9K_RESET_POWER_ON:
1466 		ret = ath9k_hw_set_reset_power_on(ah);
1467 		if (ret)
1468 			ah->reset_power_on = true;
1469 		break;
1470 	case ATH9K_RESET_WARM:
1471 	case ATH9K_RESET_COLD:
1472 		ret = ath9k_hw_set_reset(ah, type);
1473 		break;
1474 	default:
1475 		break;
1476 	}
1477 
1478 	return ret;
1479 }
1480 
ath9k_hw_chip_reset(struct ath_hw * ah,struct ath9k_channel * chan)1481 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1482 				struct ath9k_channel *chan)
1483 {
1484 	int reset_type = ATH9K_RESET_WARM;
1485 
1486 	if (AR_SREV_9280(ah)) {
1487 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1488 			reset_type = ATH9K_RESET_POWER_ON;
1489 		else
1490 			reset_type = ATH9K_RESET_COLD;
1491 	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1492 		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1493 		reset_type = ATH9K_RESET_COLD;
1494 
1495 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1496 		return false;
1497 
1498 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1499 		return false;
1500 
1501 	ah->chip_fullsleep = false;
1502 
1503 	if (AR_SREV_9330(ah))
1504 		ar9003_hw_internal_regulator_apply(ah);
1505 	ath9k_hw_init_pll(ah, chan);
1506 
1507 	return true;
1508 }
1509 
ath9k_hw_channel_change(struct ath_hw * ah,struct ath9k_channel * chan)1510 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1511 				    struct ath9k_channel *chan)
1512 {
1513 	struct ath_common *common = ath9k_hw_common(ah);
1514 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1515 	bool band_switch = false, mode_diff = false;
1516 	u8 ini_reloaded = 0;
1517 	u32 qnum;
1518 	int r;
1519 
1520 	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1521 		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1522 		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1523 		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1524 	}
1525 
1526 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1527 		if (ath9k_hw_numtxpending(ah, qnum)) {
1528 			ath_dbg(common, QUEUE,
1529 				"Transmit frames pending on queue %d\n", qnum);
1530 			return false;
1531 		}
1532 	}
1533 
1534 	if (!ath9k_hw_rfbus_req(ah)) {
1535 		ath_err(common, "Could not kill baseband RX\n");
1536 		return false;
1537 	}
1538 
1539 	if (band_switch || mode_diff) {
1540 		ath9k_hw_mark_phy_inactive(ah);
1541 		udelay(5);
1542 
1543 		if (band_switch)
1544 			ath9k_hw_init_pll(ah, chan);
1545 
1546 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1547 			ath_err(common, "Failed to do fast channel change\n");
1548 			return false;
1549 		}
1550 	}
1551 
1552 	ath9k_hw_set_channel_regs(ah, chan);
1553 
1554 	r = ath9k_hw_rf_set_freq(ah, chan);
1555 	if (r) {
1556 		ath_err(common, "Failed to set channel\n");
1557 		return false;
1558 	}
1559 	ath9k_hw_set_clockrate(ah);
1560 	ath9k_hw_apply_txpower(ah, chan, false);
1561 
1562 	ath9k_hw_set_delta_slope(ah, chan);
1563 	ath9k_hw_spur_mitigate_freq(ah, chan);
1564 
1565 	if (band_switch || ini_reloaded)
1566 		ah->eep_ops->set_board_values(ah, chan);
1567 
1568 	ath9k_hw_init_bb(ah, chan);
1569 	ath9k_hw_rfbus_done(ah);
1570 
1571 	if (band_switch || ini_reloaded) {
1572 		ah->ah_flags |= AH_FASTCC;
1573 		ath9k_hw_init_cal(ah, chan);
1574 		ah->ah_flags &= ~AH_FASTCC;
1575 	}
1576 
1577 	return true;
1578 }
1579 
ath9k_hw_apply_gpio_override(struct ath_hw * ah)1580 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1581 {
1582 	u32 gpio_mask = ah->gpio_mask;
1583 	int i;
1584 
1585 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1586 		if (!(gpio_mask & 1))
1587 			continue;
1588 
1589 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1590 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1591 	}
1592 }
1593 
ath9k_hw_check_nav(struct ath_hw * ah)1594 void ath9k_hw_check_nav(struct ath_hw *ah)
1595 {
1596 	struct ath_common *common = ath9k_hw_common(ah);
1597 	u32 val;
1598 
1599 	val = REG_READ(ah, AR_NAV);
1600 	if (val != 0xdeadbeef && val > 0x7fff) {
1601 		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1602 		REG_WRITE(ah, AR_NAV, 0);
1603 	}
1604 }
1605 EXPORT_SYMBOL(ath9k_hw_check_nav);
1606 
ath9k_hw_check_alive(struct ath_hw * ah)1607 bool ath9k_hw_check_alive(struct ath_hw *ah)
1608 {
1609 	int count = 50;
1610 	u32 reg, last_val;
1611 
1612 	/* Check if chip failed to wake up */
1613 	if (REG_READ(ah, AR_CFG) == 0xdeadbeef)
1614 		return false;
1615 
1616 	if (AR_SREV_9300(ah))
1617 		return !ath9k_hw_detect_mac_hang(ah);
1618 
1619 	if (AR_SREV_9285_12_OR_LATER(ah))
1620 		return true;
1621 
1622 	last_val = REG_READ(ah, AR_OBS_BUS_1);
1623 	do {
1624 		reg = REG_READ(ah, AR_OBS_BUS_1);
1625 		if (reg != last_val)
1626 			return true;
1627 
1628 		udelay(1);
1629 		last_val = reg;
1630 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1631 			continue;
1632 
1633 		switch (reg & 0x7E000B00) {
1634 		case 0x1E000000:
1635 		case 0x52000B00:
1636 		case 0x18000B00:
1637 			continue;
1638 		default:
1639 			return true;
1640 		}
1641 	} while (count-- > 0);
1642 
1643 	return false;
1644 }
1645 EXPORT_SYMBOL(ath9k_hw_check_alive);
1646 
ath9k_hw_init_mfp(struct ath_hw * ah)1647 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1648 {
1649 	/* Setup MFP options for CCMP */
1650 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1651 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1652 		 * frames when constructing CCMP AAD. */
1653 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1654 			      0xc7ff);
1655 		if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1656 			ah->sw_mgmt_crypto_tx = true;
1657 		else
1658 			ah->sw_mgmt_crypto_tx = false;
1659 		ah->sw_mgmt_crypto_rx = false;
1660 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1661 		/* Disable hardware crypto for management frames */
1662 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1663 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1664 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1665 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1666 		ah->sw_mgmt_crypto_tx = true;
1667 		ah->sw_mgmt_crypto_rx = true;
1668 	} else {
1669 		ah->sw_mgmt_crypto_tx = true;
1670 		ah->sw_mgmt_crypto_rx = true;
1671 	}
1672 }
1673 
ath9k_hw_reset_opmode(struct ath_hw * ah,u32 macStaId1,u32 saveDefAntenna)1674 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1675 				  u32 macStaId1, u32 saveDefAntenna)
1676 {
1677 	struct ath_common *common = ath9k_hw_common(ah);
1678 
1679 	ENABLE_REGWRITE_BUFFER(ah);
1680 
1681 	REG_RMW(ah, AR_STA_ID1, macStaId1
1682 		  | AR_STA_ID1_RTS_USE_DEF
1683 		  | ah->sta_id1_defaults,
1684 		  ~AR_STA_ID1_SADH_MASK);
1685 	ath_hw_setbssidmask(common);
1686 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1687 	ath9k_hw_write_associd(ah);
1688 	REG_WRITE(ah, AR_ISR, ~0);
1689 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1690 
1691 	REGWRITE_BUFFER_FLUSH(ah);
1692 
1693 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1694 }
1695 
ath9k_hw_init_queues(struct ath_hw * ah)1696 static void ath9k_hw_init_queues(struct ath_hw *ah)
1697 {
1698 	int i;
1699 
1700 	ENABLE_REGWRITE_BUFFER(ah);
1701 
1702 	for (i = 0; i < AR_NUM_DCU; i++)
1703 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1704 
1705 	REGWRITE_BUFFER_FLUSH(ah);
1706 
1707 	ah->intr_txqs = 0;
1708 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1709 		ath9k_hw_resettxqueue(ah, i);
1710 }
1711 
1712 /*
1713  * For big endian systems turn on swapping for descriptors
1714  */
ath9k_hw_init_desc(struct ath_hw * ah)1715 static void ath9k_hw_init_desc(struct ath_hw *ah)
1716 {
1717 	struct ath_common *common = ath9k_hw_common(ah);
1718 
1719 	if (AR_SREV_9100(ah)) {
1720 		u32 mask;
1721 		mask = REG_READ(ah, AR_CFG);
1722 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1723 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1724 				mask);
1725 		} else {
1726 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1727 			REG_WRITE(ah, AR_CFG, mask);
1728 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1729 				REG_READ(ah, AR_CFG));
1730 		}
1731 	} else {
1732 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1733 			/* Configure AR9271 target WLAN */
1734 			if (AR_SREV_9271(ah))
1735 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1736 			else
1737 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1738 		}
1739 #ifdef __BIG_ENDIAN
1740 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1741 			 AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1742 			 AR_SREV_9561(ah))
1743 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1744 		else
1745 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1746 #endif
1747 	}
1748 }
1749 
1750 /*
1751  * Fast channel change:
1752  * (Change synthesizer based on channel freq without resetting chip)
1753  */
ath9k_hw_do_fastcc(struct ath_hw * ah,struct ath9k_channel * chan)1754 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1755 {
1756 	struct ath_common *common = ath9k_hw_common(ah);
1757 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1758 	int ret;
1759 
1760 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1761 		goto fail;
1762 
1763 	if (ah->chip_fullsleep)
1764 		goto fail;
1765 
1766 	if (!ah->curchan)
1767 		goto fail;
1768 
1769 	if (chan->channel == ah->curchan->channel)
1770 		goto fail;
1771 
1772 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1773 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1774 		goto fail;
1775 
1776 	/*
1777 	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1778 	 */
1779 	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1780 	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1781 		goto fail;
1782 
1783 	if (!ath9k_hw_check_alive(ah))
1784 		goto fail;
1785 
1786 	/*
1787 	 * For AR9462, make sure that calibration data for
1788 	 * re-using are present.
1789 	 */
1790 	if (AR_SREV_9462(ah) && (ah->caldata &&
1791 				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1792 				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1793 				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1794 		goto fail;
1795 
1796 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1797 		ah->curchan->channel, chan->channel);
1798 
1799 	ret = ath9k_hw_channel_change(ah, chan);
1800 	if (!ret)
1801 		goto fail;
1802 
1803 	if (ath9k_hw_mci_is_enabled(ah))
1804 		ar9003_mci_2g5g_switch(ah, false);
1805 
1806 	ath9k_hw_loadnf(ah, ah->curchan);
1807 	ath9k_hw_start_nfcal(ah, true);
1808 
1809 	if (AR_SREV_9271(ah))
1810 		ar9002_hw_load_ani_reg(ah, chan);
1811 
1812 	return 0;
1813 fail:
1814 	return -EINVAL;
1815 }
1816 
ath9k_hw_get_tsf_offset(struct timespec * last,struct timespec * cur)1817 u32 ath9k_hw_get_tsf_offset(struct timespec *last, struct timespec *cur)
1818 {
1819 	struct timespec ts;
1820 	s64 usec;
1821 
1822 	if (!cur) {
1823 		getrawmonotonic(&ts);
1824 		cur = &ts;
1825 	}
1826 
1827 	usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1828 	usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1829 
1830 	return (u32) usec;
1831 }
1832 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1833 
ath9k_hw_reset(struct ath_hw * ah,struct ath9k_channel * chan,struct ath9k_hw_cal_data * caldata,bool fastcc)1834 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1835 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1836 {
1837 	struct ath_common *common = ath9k_hw_common(ah);
1838 	u32 saveLedState;
1839 	u32 saveDefAntenna;
1840 	u32 macStaId1;
1841 	u64 tsf = 0;
1842 	s64 usec = 0;
1843 	int r;
1844 	bool start_mci_reset = false;
1845 	bool save_fullsleep = ah->chip_fullsleep;
1846 
1847 	if (ath9k_hw_mci_is_enabled(ah)) {
1848 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1849 		if (start_mci_reset)
1850 			return 0;
1851 	}
1852 
1853 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1854 		return -EIO;
1855 
1856 	if (ah->curchan && !ah->chip_fullsleep)
1857 		ath9k_hw_getnf(ah, ah->curchan);
1858 
1859 	ah->caldata = caldata;
1860 	if (caldata && (chan->channel != caldata->channel ||
1861 			chan->channelFlags != caldata->channelFlags)) {
1862 		/* Operating channel changed, reset channel calibration data */
1863 		memset(caldata, 0, sizeof(*caldata));
1864 		ath9k_init_nfcal_hist_buffer(ah, chan);
1865 	} else if (caldata) {
1866 		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1867 	}
1868 	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1869 
1870 	if (fastcc) {
1871 		r = ath9k_hw_do_fastcc(ah, chan);
1872 		if (!r)
1873 			return r;
1874 	}
1875 
1876 	if (ath9k_hw_mci_is_enabled(ah))
1877 		ar9003_mci_stop_bt(ah, save_fullsleep);
1878 
1879 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1880 	if (saveDefAntenna == 0)
1881 		saveDefAntenna = 1;
1882 
1883 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1884 
1885 	/* Save TSF before chip reset, a cold reset clears it */
1886 	tsf = ath9k_hw_gettsf64(ah);
1887 	usec = ktime_to_us(ktime_get_raw());
1888 
1889 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1890 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1891 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1892 
1893 	ath9k_hw_mark_phy_inactive(ah);
1894 
1895 	ah->paprd_table_write_done = false;
1896 
1897 	/* Only required on the first reset */
1898 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1899 		REG_WRITE(ah,
1900 			  AR9271_RESET_POWER_DOWN_CONTROL,
1901 			  AR9271_RADIO_RF_RST);
1902 		udelay(50);
1903 	}
1904 
1905 	if (!ath9k_hw_chip_reset(ah, chan)) {
1906 		ath_err(common, "Chip reset failed\n");
1907 		return -EINVAL;
1908 	}
1909 
1910 	/* Only required on the first reset */
1911 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1912 		ah->htc_reset_init = false;
1913 		REG_WRITE(ah,
1914 			  AR9271_RESET_POWER_DOWN_CONTROL,
1915 			  AR9271_GATE_MAC_CTL);
1916 		udelay(50);
1917 	}
1918 
1919 	/* Restore TSF */
1920 	usec = ktime_to_us(ktime_get_raw()) - usec;
1921 	ath9k_hw_settsf64(ah, tsf + usec);
1922 
1923 	if (AR_SREV_9280_20_OR_LATER(ah))
1924 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1925 
1926 	if (!AR_SREV_9300_20_OR_LATER(ah))
1927 		ar9002_hw_enable_async_fifo(ah);
1928 
1929 	r = ath9k_hw_process_ini(ah, chan);
1930 	if (r)
1931 		return r;
1932 
1933 	ath9k_hw_set_rfmode(ah, chan);
1934 
1935 	if (ath9k_hw_mci_is_enabled(ah))
1936 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1937 
1938 	/*
1939 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1940 	 * right after the chip reset. When that happens, write a new
1941 	 * value after the initvals have been applied, with an offset
1942 	 * based on measured time difference
1943 	 */
1944 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1945 		tsf += 1500;
1946 		ath9k_hw_settsf64(ah, tsf);
1947 	}
1948 
1949 	ath9k_hw_init_mfp(ah);
1950 
1951 	ath9k_hw_set_delta_slope(ah, chan);
1952 	ath9k_hw_spur_mitigate_freq(ah, chan);
1953 	ah->eep_ops->set_board_values(ah, chan);
1954 
1955 	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1956 
1957 	r = ath9k_hw_rf_set_freq(ah, chan);
1958 	if (r)
1959 		return r;
1960 
1961 	ath9k_hw_set_clockrate(ah);
1962 
1963 	ath9k_hw_init_queues(ah);
1964 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1965 	ath9k_hw_ani_cache_ini_regs(ah);
1966 	ath9k_hw_init_qos(ah);
1967 
1968 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1969 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1970 
1971 	ath9k_hw_init_global_settings(ah);
1972 
1973 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1974 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1975 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1976 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1977 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1978 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1979 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1980 	}
1981 
1982 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1983 
1984 	ath9k_hw_set_dma(ah);
1985 
1986 	if (!ath9k_hw_mci_is_enabled(ah))
1987 		REG_WRITE(ah, AR_OBS, 8);
1988 
1989 	ENABLE_REG_RMW_BUFFER(ah);
1990 	if (ah->config.rx_intr_mitigation) {
1991 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
1992 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
1993 	}
1994 
1995 	if (ah->config.tx_intr_mitigation) {
1996 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1997 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1998 	}
1999 	REG_RMW_BUFFER_FLUSH(ah);
2000 
2001 	ath9k_hw_init_bb(ah, chan);
2002 
2003 	if (caldata) {
2004 		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
2005 		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
2006 	}
2007 	if (!ath9k_hw_init_cal(ah, chan))
2008 		return -EIO;
2009 
2010 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2011 		return -EIO;
2012 
2013 	ENABLE_REGWRITE_BUFFER(ah);
2014 
2015 	ath9k_hw_restore_chainmask(ah);
2016 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2017 
2018 	REGWRITE_BUFFER_FLUSH(ah);
2019 
2020 	ath9k_hw_gen_timer_start_tsf2(ah);
2021 
2022 	ath9k_hw_init_desc(ah);
2023 
2024 	if (ath9k_hw_btcoex_is_enabled(ah))
2025 		ath9k_hw_btcoex_enable(ah);
2026 
2027 	if (ath9k_hw_mci_is_enabled(ah))
2028 		ar9003_mci_check_bt(ah);
2029 
2030 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2031 		ath9k_hw_loadnf(ah, chan);
2032 		ath9k_hw_start_nfcal(ah, true);
2033 	}
2034 
2035 	if (AR_SREV_9300_20_OR_LATER(ah))
2036 		ar9003_hw_bb_watchdog_config(ah);
2037 
2038 	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
2039 		ar9003_hw_disable_phy_restart(ah);
2040 
2041 	ath9k_hw_apply_gpio_override(ah);
2042 
2043 	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2044 		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2045 
2046 	if (ah->hw->conf.radar_enabled) {
2047 		/* set HW specific DFS configuration */
2048 		ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
2049 		ath9k_hw_set_radar_params(ah);
2050 	}
2051 
2052 	return 0;
2053 }
2054 EXPORT_SYMBOL(ath9k_hw_reset);
2055 
2056 /******************************/
2057 /* Power Management (Chipset) */
2058 /******************************/
2059 
2060 /*
2061  * Notify Power Mgt is disabled in self-generated frames.
2062  * If requested, force chip to sleep.
2063  */
ath9k_set_power_sleep(struct ath_hw * ah)2064 static void ath9k_set_power_sleep(struct ath_hw *ah)
2065 {
2066 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2067 
2068 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2069 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2070 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2071 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2072 		/* xxx Required for WLAN only case ? */
2073 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2074 		udelay(100);
2075 	}
2076 
2077 	/*
2078 	 * Clear the RTC force wake bit to allow the
2079 	 * mac to go to sleep.
2080 	 */
2081 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2082 
2083 	if (ath9k_hw_mci_is_enabled(ah))
2084 		udelay(100);
2085 
2086 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2087 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2088 
2089 	/* Shutdown chip. Active low */
2090 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2091 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2092 		udelay(2);
2093 	}
2094 
2095 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2096 	if (AR_SREV_9300_20_OR_LATER(ah))
2097 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2098 }
2099 
2100 /*
2101  * Notify Power Management is enabled in self-generating
2102  * frames. If request, set power mode of chip to
2103  * auto/normal.  Duration in units of 128us (1/8 TU).
2104  */
ath9k_set_power_network_sleep(struct ath_hw * ah)2105 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2106 {
2107 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2108 
2109 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2110 
2111 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2112 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2113 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2114 			  AR_RTC_FORCE_WAKE_ON_INT);
2115 	} else {
2116 
2117 		/* When chip goes into network sleep, it could be waken
2118 		 * up by MCI_INT interrupt caused by BT's HW messages
2119 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2120 		 * rate (~100us). This will cause chip to leave and
2121 		 * re-enter network sleep mode frequently, which in
2122 		 * consequence will have WLAN MCI HW to generate lots of
2123 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2124 		 * BT CPU to busy to process.
2125 		 */
2126 		if (ath9k_hw_mci_is_enabled(ah))
2127 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2128 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2129 		/*
2130 		 * Clear the RTC force wake bit to allow the
2131 		 * mac to go to sleep.
2132 		 */
2133 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2134 
2135 		if (ath9k_hw_mci_is_enabled(ah))
2136 			udelay(30);
2137 	}
2138 
2139 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2140 	if (AR_SREV_9300_20_OR_LATER(ah))
2141 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2142 }
2143 
ath9k_hw_set_power_awake(struct ath_hw * ah)2144 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2145 {
2146 	u32 val;
2147 	int i;
2148 
2149 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2150 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2151 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2152 		udelay(10);
2153 	}
2154 
2155 	if ((REG_READ(ah, AR_RTC_STATUS) &
2156 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2157 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2158 			return false;
2159 		}
2160 		if (!AR_SREV_9300_20_OR_LATER(ah))
2161 			ath9k_hw_init_pll(ah, NULL);
2162 	}
2163 	if (AR_SREV_9100(ah))
2164 		REG_SET_BIT(ah, AR_RTC_RESET,
2165 			    AR_RTC_RESET_EN);
2166 
2167 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2168 		    AR_RTC_FORCE_WAKE_EN);
2169 	if (AR_SREV_9100(ah))
2170 		mdelay(10);
2171 	else
2172 		udelay(50);
2173 
2174 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2175 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2176 		if (val == AR_RTC_STATUS_ON)
2177 			break;
2178 		udelay(50);
2179 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2180 			    AR_RTC_FORCE_WAKE_EN);
2181 	}
2182 	if (i == 0) {
2183 		ath_err(ath9k_hw_common(ah),
2184 			"Failed to wakeup in %uus\n",
2185 			POWER_UP_TIME / 20);
2186 		return false;
2187 	}
2188 
2189 	if (ath9k_hw_mci_is_enabled(ah))
2190 		ar9003_mci_set_power_awake(ah);
2191 
2192 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2193 
2194 	return true;
2195 }
2196 
ath9k_hw_setpower(struct ath_hw * ah,enum ath9k_power_mode mode)2197 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2198 {
2199 	struct ath_common *common = ath9k_hw_common(ah);
2200 	int status = true;
2201 	static const char *modes[] = {
2202 		"AWAKE",
2203 		"FULL-SLEEP",
2204 		"NETWORK SLEEP",
2205 		"UNDEFINED"
2206 	};
2207 
2208 	if (ah->power_mode == mode)
2209 		return status;
2210 
2211 	ath_dbg(common, RESET, "%s -> %s\n",
2212 		modes[ah->power_mode], modes[mode]);
2213 
2214 	switch (mode) {
2215 	case ATH9K_PM_AWAKE:
2216 		status = ath9k_hw_set_power_awake(ah);
2217 		break;
2218 	case ATH9K_PM_FULL_SLEEP:
2219 		if (ath9k_hw_mci_is_enabled(ah))
2220 			ar9003_mci_set_full_sleep(ah);
2221 
2222 		ath9k_set_power_sleep(ah);
2223 		ah->chip_fullsleep = true;
2224 		break;
2225 	case ATH9K_PM_NETWORK_SLEEP:
2226 		ath9k_set_power_network_sleep(ah);
2227 		break;
2228 	default:
2229 		ath_err(common, "Unknown power mode %u\n", mode);
2230 		return false;
2231 	}
2232 	ah->power_mode = mode;
2233 
2234 	/*
2235 	 * XXX: If this warning never comes up after a while then
2236 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2237 	 * ath9k_hw_setpower() return type void.
2238 	 */
2239 
2240 	if (!(ah->ah_flags & AH_UNPLUGGED))
2241 		ATH_DBG_WARN_ON_ONCE(!status);
2242 
2243 	return status;
2244 }
2245 EXPORT_SYMBOL(ath9k_hw_setpower);
2246 
2247 /*******************/
2248 /* Beacon Handling */
2249 /*******************/
2250 
ath9k_hw_beaconinit(struct ath_hw * ah,u32 next_beacon,u32 beacon_period)2251 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2252 {
2253 	int flags = 0;
2254 
2255 	ENABLE_REGWRITE_BUFFER(ah);
2256 
2257 	switch (ah->opmode) {
2258 	case NL80211_IFTYPE_ADHOC:
2259 		REG_SET_BIT(ah, AR_TXCFG,
2260 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2261 	case NL80211_IFTYPE_MESH_POINT:
2262 	case NL80211_IFTYPE_AP:
2263 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2264 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2265 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2266 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2267 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2268 		flags |=
2269 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2270 		break;
2271 	default:
2272 		ath_dbg(ath9k_hw_common(ah), BEACON,
2273 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2274 		return;
2275 		break;
2276 	}
2277 
2278 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2279 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2280 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2281 
2282 	REGWRITE_BUFFER_FLUSH(ah);
2283 
2284 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2285 }
2286 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2287 
ath9k_hw_set_sta_beacon_timers(struct ath_hw * ah,const struct ath9k_beacon_state * bs)2288 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2289 				    const struct ath9k_beacon_state *bs)
2290 {
2291 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2292 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2293 	struct ath_common *common = ath9k_hw_common(ah);
2294 
2295 	ENABLE_REGWRITE_BUFFER(ah);
2296 
2297 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2298 	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2299 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2300 
2301 	REGWRITE_BUFFER_FLUSH(ah);
2302 
2303 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2304 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2305 
2306 	beaconintval = bs->bs_intval;
2307 
2308 	if (bs->bs_sleepduration > beaconintval)
2309 		beaconintval = bs->bs_sleepduration;
2310 
2311 	dtimperiod = bs->bs_dtimperiod;
2312 	if (bs->bs_sleepduration > dtimperiod)
2313 		dtimperiod = bs->bs_sleepduration;
2314 
2315 	if (beaconintval == dtimperiod)
2316 		nextTbtt = bs->bs_nextdtim;
2317 	else
2318 		nextTbtt = bs->bs_nexttbtt;
2319 
2320 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2321 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2322 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2323 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2324 
2325 	ENABLE_REGWRITE_BUFFER(ah);
2326 
2327 	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2328 	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2329 
2330 	REG_WRITE(ah, AR_SLEEP1,
2331 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2332 		  | AR_SLEEP1_ASSUME_DTIM);
2333 
2334 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2335 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2336 	else
2337 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2338 
2339 	REG_WRITE(ah, AR_SLEEP2,
2340 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2341 
2342 	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2343 	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2344 
2345 	REGWRITE_BUFFER_FLUSH(ah);
2346 
2347 	REG_SET_BIT(ah, AR_TIMER_MODE,
2348 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2349 		    AR_DTIM_TIMER_EN);
2350 
2351 	/* TSF Out of Range Threshold */
2352 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2353 }
2354 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2355 
2356 /*******************/
2357 /* HW Capabilities */
2358 /*******************/
2359 
fixup_chainmask(u8 chip_chainmask,u8 eeprom_chainmask)2360 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2361 {
2362 	eeprom_chainmask &= chip_chainmask;
2363 	if (eeprom_chainmask)
2364 		return eeprom_chainmask;
2365 	else
2366 		return chip_chainmask;
2367 }
2368 
2369 /**
2370  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2371  * @ah: the atheros hardware data structure
2372  *
2373  * We enable DFS support upstream on chipsets which have passed a series
2374  * of tests. The testing requirements are going to be documented. Desired
2375  * test requirements are documented at:
2376  *
2377  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2378  *
2379  * Once a new chipset gets properly tested an individual commit can be used
2380  * to document the testing for DFS for that chipset.
2381  */
ath9k_hw_dfs_tested(struct ath_hw * ah)2382 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2383 {
2384 
2385 	switch (ah->hw_version.macVersion) {
2386 	/* for temporary testing DFS with 9280 */
2387 	case AR_SREV_VERSION_9280:
2388 	/* AR9580 will likely be our first target to get testing on */
2389 	case AR_SREV_VERSION_9580:
2390 		return true;
2391 	default:
2392 		return false;
2393 	}
2394 }
2395 
ath9k_hw_fill_cap_info(struct ath_hw * ah)2396 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2397 {
2398 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2399 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2400 	struct ath_common *common = ath9k_hw_common(ah);
2401 
2402 	u16 eeval;
2403 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2404 
2405 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2406 	regulatory->current_rd = eeval;
2407 
2408 	if (ah->opmode != NL80211_IFTYPE_AP &&
2409 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2410 		if (regulatory->current_rd == 0x64 ||
2411 		    regulatory->current_rd == 0x65)
2412 			regulatory->current_rd += 5;
2413 		else if (regulatory->current_rd == 0x41)
2414 			regulatory->current_rd = 0x43;
2415 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2416 			regulatory->current_rd);
2417 	}
2418 
2419 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2420 
2421 	if (eeval & AR5416_OPFLAGS_11A) {
2422 		if (ah->disable_5ghz)
2423 			ath_warn(common, "disabling 5GHz band\n");
2424 		else
2425 			pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2426 	}
2427 
2428 	if (eeval & AR5416_OPFLAGS_11G) {
2429 		if (ah->disable_2ghz)
2430 			ath_warn(common, "disabling 2GHz band\n");
2431 		else
2432 			pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2433 	}
2434 
2435 	if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2436 		ath_err(common, "both bands are disabled\n");
2437 		return -EINVAL;
2438 	}
2439 
2440 	if (AR_SREV_9485(ah) ||
2441 	    AR_SREV_9285(ah) ||
2442 	    AR_SREV_9330(ah) ||
2443 	    AR_SREV_9565(ah))
2444 		pCap->chip_chainmask = 1;
2445 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2446 		pCap->chip_chainmask = 7;
2447 	else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2448 		 AR_SREV_9340(ah) ||
2449 		 AR_SREV_9462(ah) ||
2450 		 AR_SREV_9531(ah))
2451 		pCap->chip_chainmask = 3;
2452 	else
2453 		pCap->chip_chainmask = 7;
2454 
2455 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2456 	/*
2457 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2458 	 * the EEPROM.
2459 	 */
2460 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2461 	    !(eeval & AR5416_OPFLAGS_11A) &&
2462 	    !(AR_SREV_9271(ah)))
2463 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2464 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2465 	else if (AR_SREV_9100(ah))
2466 		pCap->rx_chainmask = 0x7;
2467 	else
2468 		/* Use rx_chainmask from EEPROM. */
2469 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2470 
2471 	pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2472 	pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2473 	ah->txchainmask = pCap->tx_chainmask;
2474 	ah->rxchainmask = pCap->rx_chainmask;
2475 
2476 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2477 
2478 	/* enable key search for every frame in an aggregate */
2479 	if (AR_SREV_9300_20_OR_LATER(ah))
2480 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2481 
2482 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2483 
2484 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2485 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2486 	else
2487 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2488 
2489 	if (AR_SREV_9271(ah))
2490 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2491 	else if (AR_DEVID_7010(ah))
2492 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2493 	else if (AR_SREV_9300_20_OR_LATER(ah))
2494 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2495 	else if (AR_SREV_9287_11_OR_LATER(ah))
2496 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2497 	else if (AR_SREV_9285_12_OR_LATER(ah))
2498 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2499 	else if (AR_SREV_9280_20_OR_LATER(ah))
2500 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2501 	else
2502 		pCap->num_gpio_pins = AR_NUM_GPIO;
2503 
2504 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2505 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2506 	else
2507 		pCap->rts_aggr_limit = (8 * 1024);
2508 
2509 #ifdef CONFIG_ATH9K_RFKILL
2510 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2511 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2512 		ah->rfkill_gpio =
2513 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2514 		ah->rfkill_polarity =
2515 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2516 
2517 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2518 	}
2519 #endif
2520 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2521 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2522 	else
2523 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2524 
2525 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2526 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2527 	else
2528 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2529 
2530 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2531 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2532 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2533 		    !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2534 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2535 
2536 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2537 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2538 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2539 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2540 		pCap->txs_len = sizeof(struct ar9003_txs);
2541 	} else {
2542 		pCap->tx_desc_len = sizeof(struct ath_desc);
2543 		if (AR_SREV_9280_20(ah))
2544 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2545 	}
2546 
2547 	if (AR_SREV_9300_20_OR_LATER(ah))
2548 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2549 
2550 	if (AR_SREV_9561(ah))
2551 		ah->ent_mode = 0x3BDA000;
2552 	else if (AR_SREV_9300_20_OR_LATER(ah))
2553 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2554 
2555 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2556 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2557 
2558 	if (AR_SREV_9285(ah)) {
2559 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2560 			ant_div_ctl1 =
2561 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2562 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2563 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2564 				ath_info(common, "Enable LNA combining\n");
2565 			}
2566 		}
2567 	}
2568 
2569 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2570 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2571 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2572 	}
2573 
2574 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2575 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2576 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2577 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2578 			ath_info(common, "Enable LNA combining\n");
2579 		}
2580 	}
2581 
2582 	if (ath9k_hw_dfs_tested(ah))
2583 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2584 
2585 	tx_chainmask = pCap->tx_chainmask;
2586 	rx_chainmask = pCap->rx_chainmask;
2587 	while (tx_chainmask || rx_chainmask) {
2588 		if (tx_chainmask & BIT(0))
2589 			pCap->max_txchains++;
2590 		if (rx_chainmask & BIT(0))
2591 			pCap->max_rxchains++;
2592 
2593 		tx_chainmask >>= 1;
2594 		rx_chainmask >>= 1;
2595 	}
2596 
2597 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2598 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2599 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2600 
2601 		if (AR_SREV_9462_20_OR_LATER(ah))
2602 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2603 	}
2604 
2605 	if (AR_SREV_9300_20_OR_LATER(ah) &&
2606 	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2607 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2608 
2609 #ifdef CONFIG_ATH9K_WOW
2610 	if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2611 		ah->wow.max_patterns = MAX_NUM_PATTERN;
2612 	else
2613 		ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2614 #endif
2615 
2616 	return 0;
2617 }
2618 
2619 /****************************/
2620 /* GPIO / RFKILL / Antennae */
2621 /****************************/
2622 
ath9k_hw_gpio_cfg_output_mux(struct ath_hw * ah,u32 gpio,u32 type)2623 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2624 					 u32 gpio, u32 type)
2625 {
2626 	int addr;
2627 	u32 gpio_shift, tmp;
2628 
2629 	if (gpio > 11)
2630 		addr = AR_GPIO_OUTPUT_MUX3;
2631 	else if (gpio > 5)
2632 		addr = AR_GPIO_OUTPUT_MUX2;
2633 	else
2634 		addr = AR_GPIO_OUTPUT_MUX1;
2635 
2636 	gpio_shift = (gpio % 6) * 5;
2637 
2638 	if (AR_SREV_9280_20_OR_LATER(ah)
2639 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2640 		REG_RMW(ah, addr, (type << gpio_shift),
2641 			(0x1f << gpio_shift));
2642 	} else {
2643 		tmp = REG_READ(ah, addr);
2644 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2645 		tmp &= ~(0x1f << gpio_shift);
2646 		tmp |= (type << gpio_shift);
2647 		REG_WRITE(ah, addr, tmp);
2648 	}
2649 }
2650 
ath9k_hw_cfg_gpio_input(struct ath_hw * ah,u32 gpio)2651 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2652 {
2653 	u32 gpio_shift;
2654 
2655 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2656 
2657 	if (AR_DEVID_7010(ah)) {
2658 		gpio_shift = gpio;
2659 		REG_RMW(ah, AR7010_GPIO_OE,
2660 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2661 			(AR7010_GPIO_OE_MASK << gpio_shift));
2662 		return;
2663 	}
2664 
2665 	gpio_shift = gpio << 1;
2666 	REG_RMW(ah,
2667 		AR_GPIO_OE_OUT,
2668 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2669 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2670 }
2671 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2672 
ath9k_hw_gpio_get(struct ath_hw * ah,u32 gpio)2673 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2674 {
2675 #define MS_REG_READ(x, y) \
2676 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2677 
2678 	if (gpio >= ah->caps.num_gpio_pins)
2679 		return 0xffffffff;
2680 
2681 	if (AR_DEVID_7010(ah)) {
2682 		u32 val;
2683 		val = REG_READ(ah, AR7010_GPIO_IN);
2684 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2685 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2686 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2687 			AR_GPIO_BIT(gpio)) != 0;
2688 	else if (AR_SREV_9271(ah))
2689 		return MS_REG_READ(AR9271, gpio) != 0;
2690 	else if (AR_SREV_9287_11_OR_LATER(ah))
2691 		return MS_REG_READ(AR9287, gpio) != 0;
2692 	else if (AR_SREV_9285_12_OR_LATER(ah))
2693 		return MS_REG_READ(AR9285, gpio) != 0;
2694 	else if (AR_SREV_9280_20_OR_LATER(ah))
2695 		return MS_REG_READ(AR928X, gpio) != 0;
2696 	else
2697 		return MS_REG_READ(AR, gpio) != 0;
2698 }
2699 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2700 
ath9k_hw_cfg_output(struct ath_hw * ah,u32 gpio,u32 ah_signal_type)2701 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2702 			 u32 ah_signal_type)
2703 {
2704 	u32 gpio_shift;
2705 
2706 	if (AR_DEVID_7010(ah)) {
2707 		gpio_shift = gpio;
2708 		REG_RMW(ah, AR7010_GPIO_OE,
2709 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2710 			(AR7010_GPIO_OE_MASK << gpio_shift));
2711 		return;
2712 	}
2713 
2714 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2715 	gpio_shift = 2 * gpio;
2716 	REG_RMW(ah,
2717 		AR_GPIO_OE_OUT,
2718 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2719 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2720 }
2721 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2722 
ath9k_hw_set_gpio(struct ath_hw * ah,u32 gpio,u32 val)2723 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2724 {
2725 	if (AR_DEVID_7010(ah)) {
2726 		val = val ? 0 : 1;
2727 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2728 			AR_GPIO_BIT(gpio));
2729 		return;
2730 	}
2731 
2732 	if (AR_SREV_9271(ah))
2733 		val = ~val;
2734 
2735 	if ((1 << gpio) & AR_GPIO_OE_OUT_MASK)
2736 		REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2737 			AR_GPIO_BIT(gpio));
2738 	else
2739 		gpio_set_value(gpio, val & 1);
2740 }
2741 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2742 
ath9k_hw_request_gpio(struct ath_hw * ah,u32 gpio,const char * label)2743 void ath9k_hw_request_gpio(struct ath_hw *ah, u32 gpio, const char *label)
2744 {
2745 	if (gpio >= ah->caps.num_gpio_pins)
2746 		return;
2747 
2748 	gpio_request_one(gpio, GPIOF_DIR_OUT | GPIOF_INIT_LOW, label);
2749 }
2750 EXPORT_SYMBOL(ath9k_hw_request_gpio);
2751 
ath9k_hw_setantenna(struct ath_hw * ah,u32 antenna)2752 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2753 {
2754 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2755 }
2756 EXPORT_SYMBOL(ath9k_hw_setantenna);
2757 
2758 /*********************/
2759 /* General Operation */
2760 /*********************/
2761 
ath9k_hw_getrxfilter(struct ath_hw * ah)2762 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2763 {
2764 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2765 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2766 
2767 	if (phybits & AR_PHY_ERR_RADAR)
2768 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2769 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2770 		bits |= ATH9K_RX_FILTER_PHYERR;
2771 
2772 	return bits;
2773 }
2774 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2775 
ath9k_hw_setrxfilter(struct ath_hw * ah,u32 bits)2776 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2777 {
2778 	u32 phybits;
2779 
2780 	ENABLE_REGWRITE_BUFFER(ah);
2781 
2782 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2783 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2784 
2785 	REG_WRITE(ah, AR_RX_FILTER, bits);
2786 
2787 	phybits = 0;
2788 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2789 		phybits |= AR_PHY_ERR_RADAR;
2790 	if (bits & ATH9K_RX_FILTER_PHYERR)
2791 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2792 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2793 
2794 	if (phybits)
2795 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2796 	else
2797 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2798 
2799 	REGWRITE_BUFFER_FLUSH(ah);
2800 }
2801 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2802 
ath9k_hw_phy_disable(struct ath_hw * ah)2803 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2804 {
2805 	if (ath9k_hw_mci_is_enabled(ah))
2806 		ar9003_mci_bt_gain_ctrl(ah);
2807 
2808 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2809 		return false;
2810 
2811 	ath9k_hw_init_pll(ah, NULL);
2812 	ah->htc_reset_init = true;
2813 	return true;
2814 }
2815 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2816 
ath9k_hw_disable(struct ath_hw * ah)2817 bool ath9k_hw_disable(struct ath_hw *ah)
2818 {
2819 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2820 		return false;
2821 
2822 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2823 		return false;
2824 
2825 	ath9k_hw_init_pll(ah, NULL);
2826 	return true;
2827 }
2828 EXPORT_SYMBOL(ath9k_hw_disable);
2829 
get_antenna_gain(struct ath_hw * ah,struct ath9k_channel * chan)2830 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2831 {
2832 	enum eeprom_param gain_param;
2833 
2834 	if (IS_CHAN_2GHZ(chan))
2835 		gain_param = EEP_ANTENNA_GAIN_2G;
2836 	else
2837 		gain_param = EEP_ANTENNA_GAIN_5G;
2838 
2839 	return ah->eep_ops->get_eeprom(ah, gain_param);
2840 }
2841 
ath9k_hw_apply_txpower(struct ath_hw * ah,struct ath9k_channel * chan,bool test)2842 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2843 			    bool test)
2844 {
2845 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2846 	struct ieee80211_channel *channel;
2847 	int chan_pwr, new_pwr, max_gain;
2848 	int ant_gain, ant_reduction = 0;
2849 
2850 	if (!chan)
2851 		return;
2852 
2853 	channel = chan->chan;
2854 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2855 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2856 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2857 
2858 	ant_gain = get_antenna_gain(ah, chan);
2859 	if (ant_gain > max_gain)
2860 		ant_reduction = ant_gain - max_gain;
2861 
2862 	ah->eep_ops->set_txpower(ah, chan,
2863 				 ath9k_regd_get_ctl(reg, chan),
2864 				 ant_reduction, new_pwr, test);
2865 }
2866 
ath9k_hw_set_txpowerlimit(struct ath_hw * ah,u32 limit,bool test)2867 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2868 {
2869 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2870 	struct ath9k_channel *chan = ah->curchan;
2871 	struct ieee80211_channel *channel = chan->chan;
2872 
2873 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2874 	if (test)
2875 		channel->max_power = MAX_RATE_POWER / 2;
2876 
2877 	ath9k_hw_apply_txpower(ah, chan, test);
2878 
2879 	if (test)
2880 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2881 }
2882 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2883 
ath9k_hw_setopmode(struct ath_hw * ah)2884 void ath9k_hw_setopmode(struct ath_hw *ah)
2885 {
2886 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2887 }
2888 EXPORT_SYMBOL(ath9k_hw_setopmode);
2889 
ath9k_hw_setmcastfilter(struct ath_hw * ah,u32 filter0,u32 filter1)2890 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2891 {
2892 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2893 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2894 }
2895 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2896 
ath9k_hw_write_associd(struct ath_hw * ah)2897 void ath9k_hw_write_associd(struct ath_hw *ah)
2898 {
2899 	struct ath_common *common = ath9k_hw_common(ah);
2900 
2901 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2902 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2903 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2904 }
2905 EXPORT_SYMBOL(ath9k_hw_write_associd);
2906 
2907 #define ATH9K_MAX_TSF_READ 10
2908 
ath9k_hw_gettsf64(struct ath_hw * ah)2909 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2910 {
2911 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2912 	int i;
2913 
2914 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2915 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2916 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2917 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2918 		if (tsf_upper2 == tsf_upper1)
2919 			break;
2920 		tsf_upper1 = tsf_upper2;
2921 	}
2922 
2923 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2924 
2925 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2926 }
2927 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2928 
ath9k_hw_settsf64(struct ath_hw * ah,u64 tsf64)2929 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2930 {
2931 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2932 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2933 }
2934 EXPORT_SYMBOL(ath9k_hw_settsf64);
2935 
ath9k_hw_reset_tsf(struct ath_hw * ah)2936 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2937 {
2938 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2939 			   AH_TSF_WRITE_TIMEOUT))
2940 		ath_dbg(ath9k_hw_common(ah), RESET,
2941 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2942 
2943 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2944 }
2945 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2946 
ath9k_hw_set_tsfadjust(struct ath_hw * ah,bool set)2947 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2948 {
2949 	if (set)
2950 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2951 	else
2952 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2953 }
2954 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2955 
ath9k_hw_set11nmac2040(struct ath_hw * ah,struct ath9k_channel * chan)2956 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
2957 {
2958 	u32 macmode;
2959 
2960 	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
2961 		macmode = AR_2040_JOINED_RX_CLEAR;
2962 	else
2963 		macmode = 0;
2964 
2965 	REG_WRITE(ah, AR_2040_MODE, macmode);
2966 }
2967 
2968 /* HW Generic timers configuration */
2969 
2970 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2971 {
2972 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2973 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2974 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2975 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2976 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2977 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2978 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2979 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2980 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2981 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2982 				AR_NDP2_TIMER_MODE, 0x0002},
2983 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2984 				AR_NDP2_TIMER_MODE, 0x0004},
2985 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2986 				AR_NDP2_TIMER_MODE, 0x0008},
2987 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2988 				AR_NDP2_TIMER_MODE, 0x0010},
2989 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2990 				AR_NDP2_TIMER_MODE, 0x0020},
2991 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2992 				AR_NDP2_TIMER_MODE, 0x0040},
2993 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2994 				AR_NDP2_TIMER_MODE, 0x0080}
2995 };
2996 
2997 /* HW generic timer primitives */
2998 
ath9k_hw_gettsf32(struct ath_hw * ah)2999 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3000 {
3001 	return REG_READ(ah, AR_TSF_L32);
3002 }
3003 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3004 
ath9k_hw_gen_timer_start_tsf2(struct ath_hw * ah)3005 void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
3006 {
3007 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3008 
3009 	if (timer_table->tsf2_enabled) {
3010 		REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
3011 		REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
3012 	}
3013 }
3014 
ath_gen_timer_alloc(struct ath_hw * ah,void (* trigger)(void *),void (* overflow)(void *),void * arg,u8 timer_index)3015 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3016 					  void (*trigger)(void *),
3017 					  void (*overflow)(void *),
3018 					  void *arg,
3019 					  u8 timer_index)
3020 {
3021 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3022 	struct ath_gen_timer *timer;
3023 
3024 	if ((timer_index < AR_FIRST_NDP_TIMER) ||
3025 	    (timer_index >= ATH_MAX_GEN_TIMER))
3026 		return NULL;
3027 
3028 	if ((timer_index > AR_FIRST_NDP_TIMER) &&
3029 	    !AR_SREV_9300_20_OR_LATER(ah))
3030 		return NULL;
3031 
3032 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3033 	if (timer == NULL)
3034 		return NULL;
3035 
3036 	/* allocate a hardware generic timer slot */
3037 	timer_table->timers[timer_index] = timer;
3038 	timer->index = timer_index;
3039 	timer->trigger = trigger;
3040 	timer->overflow = overflow;
3041 	timer->arg = arg;
3042 
3043 	if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
3044 		timer_table->tsf2_enabled = true;
3045 		ath9k_hw_gen_timer_start_tsf2(ah);
3046 	}
3047 
3048 	return timer;
3049 }
3050 EXPORT_SYMBOL(ath_gen_timer_alloc);
3051 
ath9k_hw_gen_timer_start(struct ath_hw * ah,struct ath_gen_timer * timer,u32 timer_next,u32 timer_period)3052 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3053 			      struct ath_gen_timer *timer,
3054 			      u32 timer_next,
3055 			      u32 timer_period)
3056 {
3057 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3058 	u32 mask = 0;
3059 
3060 	timer_table->timer_mask |= BIT(timer->index);
3061 
3062 	/*
3063 	 * Program generic timer registers
3064 	 */
3065 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3066 		 timer_next);
3067 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3068 		  timer_period);
3069 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3070 		    gen_tmr_configuration[timer->index].mode_mask);
3071 
3072 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3073 		/*
3074 		 * Starting from AR9462, each generic timer can select which tsf
3075 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3076 		 * 8 - 15  use tsf2.
3077 		 */
3078 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3079 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3080 				       (1 << timer->index));
3081 		else
3082 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3083 				       (1 << timer->index));
3084 	}
3085 
3086 	if (timer->trigger)
3087 		mask |= SM(AR_GENTMR_BIT(timer->index),
3088 			   AR_IMR_S5_GENTIMER_TRIG);
3089 	if (timer->overflow)
3090 		mask |= SM(AR_GENTMR_BIT(timer->index),
3091 			   AR_IMR_S5_GENTIMER_THRESH);
3092 
3093 	REG_SET_BIT(ah, AR_IMR_S5, mask);
3094 
3095 	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3096 		ah->imask |= ATH9K_INT_GENTIMER;
3097 		ath9k_hw_set_interrupts(ah);
3098 	}
3099 }
3100 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3101 
ath9k_hw_gen_timer_stop(struct ath_hw * ah,struct ath_gen_timer * timer)3102 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3103 {
3104 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3105 
3106 	/* Clear generic timer enable bits. */
3107 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3108 			gen_tmr_configuration[timer->index].mode_mask);
3109 
3110 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3111 		/*
3112 		 * Need to switch back to TSF if it was using TSF2.
3113 		 */
3114 		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3115 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3116 				    (1 << timer->index));
3117 		}
3118 	}
3119 
3120 	/* Disable both trigger and thresh interrupt masks */
3121 	REG_CLR_BIT(ah, AR_IMR_S5,
3122 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3123 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3124 
3125 	timer_table->timer_mask &= ~BIT(timer->index);
3126 
3127 	if (timer_table->timer_mask == 0) {
3128 		ah->imask &= ~ATH9K_INT_GENTIMER;
3129 		ath9k_hw_set_interrupts(ah);
3130 	}
3131 }
3132 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3133 
ath_gen_timer_free(struct ath_hw * ah,struct ath_gen_timer * timer)3134 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3135 {
3136 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3137 
3138 	/* free the hardware generic timer slot */
3139 	timer_table->timers[timer->index] = NULL;
3140 	kfree(timer);
3141 }
3142 EXPORT_SYMBOL(ath_gen_timer_free);
3143 
3144 /*
3145  * Generic Timer Interrupts handling
3146  */
ath_gen_timer_isr(struct ath_hw * ah)3147 void ath_gen_timer_isr(struct ath_hw *ah)
3148 {
3149 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3150 	struct ath_gen_timer *timer;
3151 	unsigned long trigger_mask, thresh_mask;
3152 	unsigned int index;
3153 
3154 	/* get hardware generic timer interrupt status */
3155 	trigger_mask = ah->intr_gen_timer_trigger;
3156 	thresh_mask = ah->intr_gen_timer_thresh;
3157 	trigger_mask &= timer_table->timer_mask;
3158 	thresh_mask &= timer_table->timer_mask;
3159 
3160 	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3161 		timer = timer_table->timers[index];
3162 		if (!timer)
3163 		    continue;
3164 		if (!timer->overflow)
3165 		    continue;
3166 
3167 		trigger_mask &= ~BIT(index);
3168 		timer->overflow(timer->arg);
3169 	}
3170 
3171 	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3172 		timer = timer_table->timers[index];
3173 		if (!timer)
3174 		    continue;
3175 		if (!timer->trigger)
3176 		    continue;
3177 		timer->trigger(timer->arg);
3178 	}
3179 }
3180 EXPORT_SYMBOL(ath_gen_timer_isr);
3181 
3182 /********/
3183 /* HTC  */
3184 /********/
3185 
3186 static struct {
3187 	u32 version;
3188 	const char * name;
3189 } ath_mac_bb_names[] = {
3190 	/* Devices with external radios */
3191 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3192 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3193 	{ AR_SREV_VERSION_9100,		"9100" },
3194 	{ AR_SREV_VERSION_9160,		"9160" },
3195 	/* Single-chip solutions */
3196 	{ AR_SREV_VERSION_9280,		"9280" },
3197 	{ AR_SREV_VERSION_9285,		"9285" },
3198 	{ AR_SREV_VERSION_9287,         "9287" },
3199 	{ AR_SREV_VERSION_9271,         "9271" },
3200 	{ AR_SREV_VERSION_9300,         "9300" },
3201 	{ AR_SREV_VERSION_9330,         "9330" },
3202 	{ AR_SREV_VERSION_9340,		"9340" },
3203 	{ AR_SREV_VERSION_9485,         "9485" },
3204 	{ AR_SREV_VERSION_9462,         "9462" },
3205 	{ AR_SREV_VERSION_9550,         "9550" },
3206 	{ AR_SREV_VERSION_9565,         "9565" },
3207 	{ AR_SREV_VERSION_9531,         "9531" },
3208 	{ AR_SREV_VERSION_9561,         "9561" },
3209 };
3210 
3211 /* For devices with external radios */
3212 static struct {
3213 	u16 version;
3214 	const char * name;
3215 } ath_rf_names[] = {
3216 	{ 0,				"5133" },
3217 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3218 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3219 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3220 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3221 };
3222 
3223 /*
3224  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3225  */
ath9k_hw_mac_bb_name(u32 mac_bb_version)3226 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3227 {
3228 	int i;
3229 
3230 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3231 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3232 			return ath_mac_bb_names[i].name;
3233 		}
3234 	}
3235 
3236 	return "????";
3237 }
3238 
3239 /*
3240  * Return the RF name. "????" is returned if the RF is unknown.
3241  * Used for devices with external radios.
3242  */
ath9k_hw_rf_name(u16 rf_version)3243 static const char *ath9k_hw_rf_name(u16 rf_version)
3244 {
3245 	int i;
3246 
3247 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3248 		if (ath_rf_names[i].version == rf_version) {
3249 			return ath_rf_names[i].name;
3250 		}
3251 	}
3252 
3253 	return "????";
3254 }
3255 
ath9k_hw_name(struct ath_hw * ah,char * hw_name,size_t len)3256 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3257 {
3258 	int used;
3259 
3260 	/* chipsets >= AR9280 are single-chip */
3261 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3262 		used = scnprintf(hw_name, len,
3263 				 "Atheros AR%s Rev:%x",
3264 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3265 				 ah->hw_version.macRev);
3266 	}
3267 	else {
3268 		used = scnprintf(hw_name, len,
3269 				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3270 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3271 				 ah->hw_version.macRev,
3272 				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3273 						  & AR_RADIO_SREV_MAJOR)),
3274 				 ah->hw_version.phyRev);
3275 	}
3276 
3277 	hw_name[used] = '\0';
3278 }
3279 EXPORT_SYMBOL(ath9k_hw_name);
3280