• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define SKB_CB_ATHBUF(__skb)	(*((struct ath_rxbuf **)__skb->cb))
22 
ath9k_check_auto_sleep(struct ath_softc * sc)23 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
24 {
25 	return sc->ps_enabled &&
26 	       (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
27 }
28 
29 /*
30  * Setup and link descriptors.
31  *
32  * 11N: we can no longer afford to self link the last descriptor.
33  * MAC acknowledges BA status as long as it copies frames to host
34  * buffer (or rx fifo). This can incorrectly acknowledge packets
35  * to a sender if last desc is self-linked.
36  */
ath_rx_buf_link(struct ath_softc * sc,struct ath_rxbuf * bf,bool flush)37 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_rxbuf *bf,
38 			    bool flush)
39 {
40 	struct ath_hw *ah = sc->sc_ah;
41 	struct ath_common *common = ath9k_hw_common(ah);
42 	struct ath_desc *ds;
43 	struct sk_buff *skb;
44 
45 	ds = bf->bf_desc;
46 	ds->ds_link = 0; /* link to null */
47 	ds->ds_data = bf->bf_buf_addr;
48 
49 	/* virtual addr of the beginning of the buffer. */
50 	skb = bf->bf_mpdu;
51 	BUG_ON(skb == NULL);
52 	ds->ds_vdata = skb->data;
53 
54 	/*
55 	 * setup rx descriptors. The rx_bufsize here tells the hardware
56 	 * how much data it can DMA to us and that we are prepared
57 	 * to process
58 	 */
59 	ath9k_hw_setuprxdesc(ah, ds,
60 			     common->rx_bufsize,
61 			     0);
62 
63 	if (sc->rx.rxlink)
64 		*sc->rx.rxlink = bf->bf_daddr;
65 	else if (!flush)
66 		ath9k_hw_putrxbuf(ah, bf->bf_daddr);
67 
68 	sc->rx.rxlink = &ds->ds_link;
69 }
70 
ath_rx_buf_relink(struct ath_softc * sc,struct ath_rxbuf * bf,bool flush)71 static void ath_rx_buf_relink(struct ath_softc *sc, struct ath_rxbuf *bf,
72 			      bool flush)
73 {
74 	if (sc->rx.buf_hold)
75 		ath_rx_buf_link(sc, sc->rx.buf_hold, flush);
76 
77 	sc->rx.buf_hold = bf;
78 }
79 
ath_setdefantenna(struct ath_softc * sc,u32 antenna)80 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
81 {
82 	/* XXX block beacon interrupts */
83 	ath9k_hw_setantenna(sc->sc_ah, antenna);
84 	sc->rx.defant = antenna;
85 	sc->rx.rxotherant = 0;
86 }
87 
ath_opmode_init(struct ath_softc * sc)88 static void ath_opmode_init(struct ath_softc *sc)
89 {
90 	struct ath_hw *ah = sc->sc_ah;
91 	struct ath_common *common = ath9k_hw_common(ah);
92 
93 	u32 rfilt, mfilt[2];
94 
95 	/* configure rx filter */
96 	rfilt = ath_calcrxfilter(sc);
97 	ath9k_hw_setrxfilter(ah, rfilt);
98 
99 	/* configure bssid mask */
100 	ath_hw_setbssidmask(common);
101 
102 	/* configure operational mode */
103 	ath9k_hw_setopmode(ah);
104 
105 	/* calculate and install multicast filter */
106 	mfilt[0] = mfilt[1] = ~0;
107 	ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
108 }
109 
ath_rx_edma_buf_link(struct ath_softc * sc,enum ath9k_rx_qtype qtype)110 static bool ath_rx_edma_buf_link(struct ath_softc *sc,
111 				 enum ath9k_rx_qtype qtype)
112 {
113 	struct ath_hw *ah = sc->sc_ah;
114 	struct ath_rx_edma *rx_edma;
115 	struct sk_buff *skb;
116 	struct ath_rxbuf *bf;
117 
118 	rx_edma = &sc->rx.rx_edma[qtype];
119 	if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
120 		return false;
121 
122 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
123 	list_del_init(&bf->list);
124 
125 	skb = bf->bf_mpdu;
126 
127 	memset(skb->data, 0, ah->caps.rx_status_len);
128 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
129 				ah->caps.rx_status_len, DMA_TO_DEVICE);
130 
131 	SKB_CB_ATHBUF(skb) = bf;
132 	ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
133 	__skb_queue_tail(&rx_edma->rx_fifo, skb);
134 
135 	return true;
136 }
137 
ath_rx_addbuffer_edma(struct ath_softc * sc,enum ath9k_rx_qtype qtype)138 static void ath_rx_addbuffer_edma(struct ath_softc *sc,
139 				  enum ath9k_rx_qtype qtype)
140 {
141 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
142 	struct ath_rxbuf *bf, *tbf;
143 
144 	if (list_empty(&sc->rx.rxbuf)) {
145 		ath_dbg(common, QUEUE, "No free rx buf available\n");
146 		return;
147 	}
148 
149 	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
150 		if (!ath_rx_edma_buf_link(sc, qtype))
151 			break;
152 
153 }
154 
ath_rx_remove_buffer(struct ath_softc * sc,enum ath9k_rx_qtype qtype)155 static void ath_rx_remove_buffer(struct ath_softc *sc,
156 				 enum ath9k_rx_qtype qtype)
157 {
158 	struct ath_rxbuf *bf;
159 	struct ath_rx_edma *rx_edma;
160 	struct sk_buff *skb;
161 
162 	rx_edma = &sc->rx.rx_edma[qtype];
163 
164 	while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
165 		bf = SKB_CB_ATHBUF(skb);
166 		BUG_ON(!bf);
167 		list_add_tail(&bf->list, &sc->rx.rxbuf);
168 	}
169 }
170 
ath_rx_edma_cleanup(struct ath_softc * sc)171 static void ath_rx_edma_cleanup(struct ath_softc *sc)
172 {
173 	struct ath_hw *ah = sc->sc_ah;
174 	struct ath_common *common = ath9k_hw_common(ah);
175 	struct ath_rxbuf *bf;
176 
177 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
178 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
179 
180 	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
181 		if (bf->bf_mpdu) {
182 			dma_unmap_single(sc->dev, bf->bf_buf_addr,
183 					common->rx_bufsize,
184 					DMA_BIDIRECTIONAL);
185 			dev_kfree_skb_any(bf->bf_mpdu);
186 			bf->bf_buf_addr = 0;
187 			bf->bf_mpdu = NULL;
188 		}
189 	}
190 }
191 
ath_rx_edma_init_queue(struct ath_rx_edma * rx_edma,int size)192 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
193 {
194 	__skb_queue_head_init(&rx_edma->rx_fifo);
195 	rx_edma->rx_fifo_hwsize = size;
196 }
197 
ath_rx_edma_init(struct ath_softc * sc,int nbufs)198 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
199 {
200 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
201 	struct ath_hw *ah = sc->sc_ah;
202 	struct sk_buff *skb;
203 	struct ath_rxbuf *bf;
204 	int error = 0, i;
205 	u32 size;
206 
207 	ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
208 				    ah->caps.rx_status_len);
209 
210 	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
211 			       ah->caps.rx_lp_qdepth);
212 	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
213 			       ah->caps.rx_hp_qdepth);
214 
215 	size = sizeof(struct ath_rxbuf) * nbufs;
216 	bf = devm_kzalloc(sc->dev, size, GFP_KERNEL);
217 	if (!bf)
218 		return -ENOMEM;
219 
220 	INIT_LIST_HEAD(&sc->rx.rxbuf);
221 
222 	for (i = 0; i < nbufs; i++, bf++) {
223 		skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
224 		if (!skb) {
225 			error = -ENOMEM;
226 			goto rx_init_fail;
227 		}
228 
229 		memset(skb->data, 0, common->rx_bufsize);
230 		bf->bf_mpdu = skb;
231 
232 		bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
233 						 common->rx_bufsize,
234 						 DMA_BIDIRECTIONAL);
235 		if (unlikely(dma_mapping_error(sc->dev,
236 						bf->bf_buf_addr))) {
237 				dev_kfree_skb_any(skb);
238 				bf->bf_mpdu = NULL;
239 				bf->bf_buf_addr = 0;
240 				ath_err(common,
241 					"dma_mapping_error() on RX init\n");
242 				error = -ENOMEM;
243 				goto rx_init_fail;
244 		}
245 
246 		list_add_tail(&bf->list, &sc->rx.rxbuf);
247 	}
248 
249 	return 0;
250 
251 rx_init_fail:
252 	ath_rx_edma_cleanup(sc);
253 	return error;
254 }
255 
ath_edma_start_recv(struct ath_softc * sc)256 static void ath_edma_start_recv(struct ath_softc *sc)
257 {
258 	ath9k_hw_rxena(sc->sc_ah);
259 	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP);
260 	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP);
261 	ath_opmode_init(sc);
262 	ath9k_hw_startpcureceive(sc->sc_ah, sc->cur_chan->offchannel);
263 }
264 
ath_edma_stop_recv(struct ath_softc * sc)265 static void ath_edma_stop_recv(struct ath_softc *sc)
266 {
267 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
268 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
269 }
270 
ath_rx_init(struct ath_softc * sc,int nbufs)271 int ath_rx_init(struct ath_softc *sc, int nbufs)
272 {
273 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
274 	struct sk_buff *skb;
275 	struct ath_rxbuf *bf;
276 	int error = 0;
277 
278 	spin_lock_init(&sc->sc_pcu_lock);
279 
280 	common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
281 			     sc->sc_ah->caps.rx_status_len;
282 
283 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
284 		return ath_rx_edma_init(sc, nbufs);
285 
286 	ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
287 		common->cachelsz, common->rx_bufsize);
288 
289 	/* Initialize rx descriptors */
290 
291 	error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
292 				  "rx", nbufs, 1, 0);
293 	if (error != 0) {
294 		ath_err(common,
295 			"failed to allocate rx descriptors: %d\n",
296 			error);
297 		goto err;
298 	}
299 
300 	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
301 		skb = ath_rxbuf_alloc(common, common->rx_bufsize,
302 				      GFP_KERNEL);
303 		if (skb == NULL) {
304 			error = -ENOMEM;
305 			goto err;
306 		}
307 
308 		bf->bf_mpdu = skb;
309 		bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
310 						 common->rx_bufsize,
311 						 DMA_FROM_DEVICE);
312 		if (unlikely(dma_mapping_error(sc->dev,
313 					       bf->bf_buf_addr))) {
314 			dev_kfree_skb_any(skb);
315 			bf->bf_mpdu = NULL;
316 			bf->bf_buf_addr = 0;
317 			ath_err(common,
318 				"dma_mapping_error() on RX init\n");
319 			error = -ENOMEM;
320 			goto err;
321 		}
322 	}
323 	sc->rx.rxlink = NULL;
324 err:
325 	if (error)
326 		ath_rx_cleanup(sc);
327 
328 	return error;
329 }
330 
ath_rx_cleanup(struct ath_softc * sc)331 void ath_rx_cleanup(struct ath_softc *sc)
332 {
333 	struct ath_hw *ah = sc->sc_ah;
334 	struct ath_common *common = ath9k_hw_common(ah);
335 	struct sk_buff *skb;
336 	struct ath_rxbuf *bf;
337 
338 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
339 		ath_rx_edma_cleanup(sc);
340 		return;
341 	}
342 
343 	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
344 		skb = bf->bf_mpdu;
345 		if (skb) {
346 			dma_unmap_single(sc->dev, bf->bf_buf_addr,
347 					 common->rx_bufsize,
348 					 DMA_FROM_DEVICE);
349 			dev_kfree_skb(skb);
350 			bf->bf_buf_addr = 0;
351 			bf->bf_mpdu = NULL;
352 		}
353 	}
354 }
355 
356 /*
357  * Calculate the receive filter according to the
358  * operating mode and state:
359  *
360  * o always accept unicast, broadcast, and multicast traffic
361  * o maintain current state of phy error reception (the hal
362  *   may enable phy error frames for noise immunity work)
363  * o probe request frames are accepted only when operating in
364  *   hostap, adhoc, or monitor modes
365  * o enable promiscuous mode according to the interface state
366  * o accept beacons:
367  *   - when operating in adhoc mode so the 802.11 layer creates
368  *     node table entries for peers,
369  *   - when operating in station mode for collecting rssi data when
370  *     the station is otherwise quiet, or
371  *   - when operating as a repeater so we see repeater-sta beacons
372  *   - when scanning
373  */
374 
ath_calcrxfilter(struct ath_softc * sc)375 u32 ath_calcrxfilter(struct ath_softc *sc)
376 {
377 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
378 	u32 rfilt;
379 
380 	if (config_enabled(CONFIG_ATH9K_TX99))
381 		return 0;
382 
383 	rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
384 		| ATH9K_RX_FILTER_MCAST;
385 
386 	/* if operating on a DFS channel, enable radar pulse detection */
387 	if (sc->hw->conf.radar_enabled)
388 		rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR;
389 
390 	spin_lock_bh(&sc->chan_lock);
391 
392 	if (sc->cur_chan->rxfilter & FIF_PROBE_REQ)
393 		rfilt |= ATH9K_RX_FILTER_PROBEREQ;
394 
395 	if (sc->sc_ah->is_monitoring)
396 		rfilt |= ATH9K_RX_FILTER_PROM;
397 
398 	if ((sc->cur_chan->rxfilter & FIF_CONTROL) ||
399 	    sc->sc_ah->dynack.enabled)
400 		rfilt |= ATH9K_RX_FILTER_CONTROL;
401 
402 	if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
403 	    (sc->cur_chan->nvifs <= 1) &&
404 	    !(sc->cur_chan->rxfilter & FIF_BCN_PRBRESP_PROMISC))
405 		rfilt |= ATH9K_RX_FILTER_MYBEACON;
406 	else if (sc->sc_ah->opmode != NL80211_IFTYPE_OCB)
407 		rfilt |= ATH9K_RX_FILTER_BEACON;
408 
409 	if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
410 	    (sc->cur_chan->rxfilter & FIF_PSPOLL))
411 		rfilt |= ATH9K_RX_FILTER_PSPOLL;
412 
413 	if (sc->cur_chandef.width != NL80211_CHAN_WIDTH_20_NOHT)
414 		rfilt |= ATH9K_RX_FILTER_COMP_BAR;
415 
416 	if (sc->cur_chan->nvifs > 1 || (sc->cur_chan->rxfilter & FIF_OTHER_BSS)) {
417 		/* This is needed for older chips */
418 		if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
419 			rfilt |= ATH9K_RX_FILTER_PROM;
420 		rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
421 	}
422 
423 	if (AR_SREV_9550(sc->sc_ah) || AR_SREV_9531(sc->sc_ah) ||
424 	    AR_SREV_9561(sc->sc_ah))
425 		rfilt |= ATH9K_RX_FILTER_4ADDRESS;
426 
427 	if (ath9k_is_chanctx_enabled() &&
428 	    test_bit(ATH_OP_SCANNING, &common->op_flags))
429 		rfilt |= ATH9K_RX_FILTER_BEACON;
430 
431 	spin_unlock_bh(&sc->chan_lock);
432 
433 	return rfilt;
434 
435 }
436 
ath_startrecv(struct ath_softc * sc)437 void ath_startrecv(struct ath_softc *sc)
438 {
439 	struct ath_hw *ah = sc->sc_ah;
440 	struct ath_rxbuf *bf, *tbf;
441 
442 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
443 		ath_edma_start_recv(sc);
444 		return;
445 	}
446 
447 	if (list_empty(&sc->rx.rxbuf))
448 		goto start_recv;
449 
450 	sc->rx.buf_hold = NULL;
451 	sc->rx.rxlink = NULL;
452 	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
453 		ath_rx_buf_link(sc, bf, false);
454 	}
455 
456 	/* We could have deleted elements so the list may be empty now */
457 	if (list_empty(&sc->rx.rxbuf))
458 		goto start_recv;
459 
460 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
461 	ath9k_hw_putrxbuf(ah, bf->bf_daddr);
462 	ath9k_hw_rxena(ah);
463 
464 start_recv:
465 	ath_opmode_init(sc);
466 	ath9k_hw_startpcureceive(ah, sc->cur_chan->offchannel);
467 }
468 
ath_flushrecv(struct ath_softc * sc)469 static void ath_flushrecv(struct ath_softc *sc)
470 {
471 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
472 		ath_rx_tasklet(sc, 1, true);
473 	ath_rx_tasklet(sc, 1, false);
474 }
475 
ath_stoprecv(struct ath_softc * sc)476 bool ath_stoprecv(struct ath_softc *sc)
477 {
478 	struct ath_hw *ah = sc->sc_ah;
479 	bool stopped, reset = false;
480 
481 	ath9k_hw_abortpcurecv(ah);
482 	ath9k_hw_setrxfilter(ah, 0);
483 	stopped = ath9k_hw_stopdmarecv(ah, &reset);
484 
485 	ath_flushrecv(sc);
486 
487 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
488 		ath_edma_stop_recv(sc);
489 	else
490 		sc->rx.rxlink = NULL;
491 
492 	if (!(ah->ah_flags & AH_UNPLUGGED) &&
493 	    unlikely(!stopped)) {
494 		ath_dbg(ath9k_hw_common(sc->sc_ah), RESET,
495 			"Failed to stop Rx DMA\n");
496 		RESET_STAT_INC(sc, RESET_RX_DMA_ERROR);
497 	}
498 	return stopped && !reset;
499 }
500 
ath_beacon_dtim_pending_cab(struct sk_buff * skb)501 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
502 {
503 	/* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
504 	struct ieee80211_mgmt *mgmt;
505 	u8 *pos, *end, id, elen;
506 	struct ieee80211_tim_ie *tim;
507 
508 	mgmt = (struct ieee80211_mgmt *)skb->data;
509 	pos = mgmt->u.beacon.variable;
510 	end = skb->data + skb->len;
511 
512 	while (pos + 2 < end) {
513 		id = *pos++;
514 		elen = *pos++;
515 		if (pos + elen > end)
516 			break;
517 
518 		if (id == WLAN_EID_TIM) {
519 			if (elen < sizeof(*tim))
520 				break;
521 			tim = (struct ieee80211_tim_ie *) pos;
522 			if (tim->dtim_count != 0)
523 				break;
524 			return tim->bitmap_ctrl & 0x01;
525 		}
526 
527 		pos += elen;
528 	}
529 
530 	return false;
531 }
532 
ath_rx_ps_beacon(struct ath_softc * sc,struct sk_buff * skb)533 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
534 {
535 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
536 	bool skip_beacon = false;
537 
538 	if (skb->len < 24 + 8 + 2 + 2)
539 		return;
540 
541 	sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
542 
543 	if (sc->ps_flags & PS_BEACON_SYNC) {
544 		sc->ps_flags &= ~PS_BEACON_SYNC;
545 		ath_dbg(common, PS,
546 			"Reconfigure beacon timers based on synchronized timestamp\n");
547 
548 #ifdef CONFIG_ATH9K_CHANNEL_CONTEXT
549 		if (ath9k_is_chanctx_enabled()) {
550 			if (sc->cur_chan == &sc->offchannel.chan)
551 				skip_beacon = true;
552 		}
553 #endif
554 
555 		if (!skip_beacon &&
556 		    !(WARN_ON_ONCE(sc->cur_chan->beacon.beacon_interval == 0)))
557 			ath9k_set_beacon(sc);
558 
559 		ath9k_p2p_beacon_sync(sc);
560 	}
561 
562 	if (ath_beacon_dtim_pending_cab(skb)) {
563 		/*
564 		 * Remain awake waiting for buffered broadcast/multicast
565 		 * frames. If the last broadcast/multicast frame is not
566 		 * received properly, the next beacon frame will work as
567 		 * a backup trigger for returning into NETWORK SLEEP state,
568 		 * so we are waiting for it as well.
569 		 */
570 		ath_dbg(common, PS,
571 			"Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
572 		sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
573 		return;
574 	}
575 
576 	if (sc->ps_flags & PS_WAIT_FOR_CAB) {
577 		/*
578 		 * This can happen if a broadcast frame is dropped or the AP
579 		 * fails to send a frame indicating that all CAB frames have
580 		 * been delivered.
581 		 */
582 		sc->ps_flags &= ~PS_WAIT_FOR_CAB;
583 		ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
584 	}
585 }
586 
ath_rx_ps(struct ath_softc * sc,struct sk_buff * skb,bool mybeacon)587 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
588 {
589 	struct ieee80211_hdr *hdr;
590 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
591 
592 	hdr = (struct ieee80211_hdr *)skb->data;
593 
594 	/* Process Beacon and CAB receive in PS state */
595 	if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
596 	    && mybeacon) {
597 		ath_rx_ps_beacon(sc, skb);
598 	} else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
599 		   (ieee80211_is_data(hdr->frame_control) ||
600 		    ieee80211_is_action(hdr->frame_control)) &&
601 		   is_multicast_ether_addr(hdr->addr1) &&
602 		   !ieee80211_has_moredata(hdr->frame_control)) {
603 		/*
604 		 * No more broadcast/multicast frames to be received at this
605 		 * point.
606 		 */
607 		sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
608 		ath_dbg(common, PS,
609 			"All PS CAB frames received, back to sleep\n");
610 	} else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
611 		   !is_multicast_ether_addr(hdr->addr1) &&
612 		   !ieee80211_has_morefrags(hdr->frame_control)) {
613 		sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
614 		ath_dbg(common, PS,
615 			"Going back to sleep after having received PS-Poll data (0x%lx)\n",
616 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
617 					PS_WAIT_FOR_CAB |
618 					PS_WAIT_FOR_PSPOLL_DATA |
619 					PS_WAIT_FOR_TX_ACK));
620 	}
621 }
622 
ath_edma_get_buffers(struct ath_softc * sc,enum ath9k_rx_qtype qtype,struct ath_rx_status * rs,struct ath_rxbuf ** dest)623 static bool ath_edma_get_buffers(struct ath_softc *sc,
624 				 enum ath9k_rx_qtype qtype,
625 				 struct ath_rx_status *rs,
626 				 struct ath_rxbuf **dest)
627 {
628 	struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
629 	struct ath_hw *ah = sc->sc_ah;
630 	struct ath_common *common = ath9k_hw_common(ah);
631 	struct sk_buff *skb;
632 	struct ath_rxbuf *bf;
633 	int ret;
634 
635 	skb = skb_peek(&rx_edma->rx_fifo);
636 	if (!skb)
637 		return false;
638 
639 	bf = SKB_CB_ATHBUF(skb);
640 	BUG_ON(!bf);
641 
642 	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
643 				common->rx_bufsize, DMA_FROM_DEVICE);
644 
645 	ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
646 	if (ret == -EINPROGRESS) {
647 		/*let device gain the buffer again*/
648 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
649 				common->rx_bufsize, DMA_FROM_DEVICE);
650 		return false;
651 	}
652 
653 	__skb_unlink(skb, &rx_edma->rx_fifo);
654 	if (ret == -EINVAL) {
655 		/* corrupt descriptor, skip this one and the following one */
656 		list_add_tail(&bf->list, &sc->rx.rxbuf);
657 		ath_rx_edma_buf_link(sc, qtype);
658 
659 		skb = skb_peek(&rx_edma->rx_fifo);
660 		if (skb) {
661 			bf = SKB_CB_ATHBUF(skb);
662 			BUG_ON(!bf);
663 
664 			__skb_unlink(skb, &rx_edma->rx_fifo);
665 			list_add_tail(&bf->list, &sc->rx.rxbuf);
666 			ath_rx_edma_buf_link(sc, qtype);
667 		}
668 
669 		bf = NULL;
670 	}
671 
672 	*dest = bf;
673 	return true;
674 }
675 
ath_edma_get_next_rx_buf(struct ath_softc * sc,struct ath_rx_status * rs,enum ath9k_rx_qtype qtype)676 static struct ath_rxbuf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
677 						struct ath_rx_status *rs,
678 						enum ath9k_rx_qtype qtype)
679 {
680 	struct ath_rxbuf *bf = NULL;
681 
682 	while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
683 		if (!bf)
684 			continue;
685 
686 		return bf;
687 	}
688 	return NULL;
689 }
690 
ath_get_next_rx_buf(struct ath_softc * sc,struct ath_rx_status * rs)691 static struct ath_rxbuf *ath_get_next_rx_buf(struct ath_softc *sc,
692 					   struct ath_rx_status *rs)
693 {
694 	struct ath_hw *ah = sc->sc_ah;
695 	struct ath_common *common = ath9k_hw_common(ah);
696 	struct ath_desc *ds;
697 	struct ath_rxbuf *bf;
698 	int ret;
699 
700 	if (list_empty(&sc->rx.rxbuf)) {
701 		sc->rx.rxlink = NULL;
702 		return NULL;
703 	}
704 
705 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
706 	if (bf == sc->rx.buf_hold)
707 		return NULL;
708 
709 	ds = bf->bf_desc;
710 
711 	/*
712 	 * Must provide the virtual address of the current
713 	 * descriptor, the physical address, and the virtual
714 	 * address of the next descriptor in the h/w chain.
715 	 * This allows the HAL to look ahead to see if the
716 	 * hardware is done with a descriptor by checking the
717 	 * done bit in the following descriptor and the address
718 	 * of the current descriptor the DMA engine is working
719 	 * on.  All this is necessary because of our use of
720 	 * a self-linked list to avoid rx overruns.
721 	 */
722 	ret = ath9k_hw_rxprocdesc(ah, ds, rs);
723 	if (ret == -EINPROGRESS) {
724 		struct ath_rx_status trs;
725 		struct ath_rxbuf *tbf;
726 		struct ath_desc *tds;
727 
728 		memset(&trs, 0, sizeof(trs));
729 		if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
730 			sc->rx.rxlink = NULL;
731 			return NULL;
732 		}
733 
734 		tbf = list_entry(bf->list.next, struct ath_rxbuf, list);
735 
736 		/*
737 		 * On some hardware the descriptor status words could
738 		 * get corrupted, including the done bit. Because of
739 		 * this, check if the next descriptor's done bit is
740 		 * set or not.
741 		 *
742 		 * If the next descriptor's done bit is set, the current
743 		 * descriptor has been corrupted. Force s/w to discard
744 		 * this descriptor and continue...
745 		 */
746 
747 		tds = tbf->bf_desc;
748 		ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
749 		if (ret == -EINPROGRESS)
750 			return NULL;
751 
752 		/*
753 		 * Re-check previous descriptor, in case it has been filled
754 		 * in the mean time.
755 		 */
756 		ret = ath9k_hw_rxprocdesc(ah, ds, rs);
757 		if (ret == -EINPROGRESS) {
758 			/*
759 			 * mark descriptor as zero-length and set the 'more'
760 			 * flag to ensure that both buffers get discarded
761 			 */
762 			rs->rs_datalen = 0;
763 			rs->rs_more = true;
764 		}
765 	}
766 
767 	list_del(&bf->list);
768 	if (!bf->bf_mpdu)
769 		return bf;
770 
771 	/*
772 	 * Synchronize the DMA transfer with CPU before
773 	 * 1. accessing the frame
774 	 * 2. requeueing the same buffer to h/w
775 	 */
776 	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
777 			common->rx_bufsize,
778 			DMA_FROM_DEVICE);
779 
780 	return bf;
781 }
782 
ath9k_process_tsf(struct ath_rx_status * rs,struct ieee80211_rx_status * rxs,u64 tsf)783 static void ath9k_process_tsf(struct ath_rx_status *rs,
784 			      struct ieee80211_rx_status *rxs,
785 			      u64 tsf)
786 {
787 	u32 tsf_lower = tsf & 0xffffffff;
788 
789 	rxs->mactime = (tsf & ~0xffffffffULL) | rs->rs_tstamp;
790 	if (rs->rs_tstamp > tsf_lower &&
791 	    unlikely(rs->rs_tstamp - tsf_lower > 0x10000000))
792 		rxs->mactime -= 0x100000000ULL;
793 
794 	if (rs->rs_tstamp < tsf_lower &&
795 	    unlikely(tsf_lower - rs->rs_tstamp > 0x10000000))
796 		rxs->mactime += 0x100000000ULL;
797 }
798 
799 /*
800  * For Decrypt or Demic errors, we only mark packet status here and always push
801  * up the frame up to let mac80211 handle the actual error case, be it no
802  * decryption key or real decryption error. This let us keep statistics there.
803  */
ath9k_rx_skb_preprocess(struct ath_softc * sc,struct sk_buff * skb,struct ath_rx_status * rx_stats,struct ieee80211_rx_status * rx_status,bool * decrypt_error,u64 tsf)804 static int ath9k_rx_skb_preprocess(struct ath_softc *sc,
805 				   struct sk_buff *skb,
806 				   struct ath_rx_status *rx_stats,
807 				   struct ieee80211_rx_status *rx_status,
808 				   bool *decrypt_error, u64 tsf)
809 {
810 	struct ieee80211_hw *hw = sc->hw;
811 	struct ath_hw *ah = sc->sc_ah;
812 	struct ath_common *common = ath9k_hw_common(ah);
813 	struct ieee80211_hdr *hdr;
814 	bool discard_current = sc->rx.discard_next;
815 
816 	/*
817 	 * Discard corrupt descriptors which are marked in
818 	 * ath_get_next_rx_buf().
819 	 */
820 	if (discard_current)
821 		goto corrupt;
822 
823 	sc->rx.discard_next = false;
824 
825 	/*
826 	 * Discard zero-length packets.
827 	 */
828 	if (!rx_stats->rs_datalen) {
829 		RX_STAT_INC(rx_len_err);
830 		goto corrupt;
831 	}
832 
833 	/*
834 	 * rs_status follows rs_datalen so if rs_datalen is too large
835 	 * we can take a hint that hardware corrupted it, so ignore
836 	 * those frames.
837 	 */
838 	if (rx_stats->rs_datalen > (common->rx_bufsize - ah->caps.rx_status_len)) {
839 		RX_STAT_INC(rx_len_err);
840 		goto corrupt;
841 	}
842 
843 	/* Only use status info from the last fragment */
844 	if (rx_stats->rs_more)
845 		return 0;
846 
847 	/*
848 	 * Return immediately if the RX descriptor has been marked
849 	 * as corrupt based on the various error bits.
850 	 *
851 	 * This is different from the other corrupt descriptor
852 	 * condition handled above.
853 	 */
854 	if (rx_stats->rs_status & ATH9K_RXERR_CORRUPT_DESC)
855 		goto corrupt;
856 
857 	hdr = (struct ieee80211_hdr *) (skb->data + ah->caps.rx_status_len);
858 
859 	ath9k_process_tsf(rx_stats, rx_status, tsf);
860 	ath_debug_stat_rx(sc, rx_stats);
861 
862 	/*
863 	 * Process PHY errors and return so that the packet
864 	 * can be dropped.
865 	 */
866 	if (rx_stats->rs_status & ATH9K_RXERR_PHY) {
867 		ath9k_dfs_process_phyerr(sc, hdr, rx_stats, rx_status->mactime);
868 		if (ath_cmn_process_fft(&sc->spec_priv, hdr, rx_stats, rx_status->mactime))
869 			RX_STAT_INC(rx_spectral);
870 
871 		return -EINVAL;
872 	}
873 
874 	/*
875 	 * everything but the rate is checked here, the rate check is done
876 	 * separately to avoid doing two lookups for a rate for each frame.
877 	 */
878 	spin_lock_bh(&sc->chan_lock);
879 	if (!ath9k_cmn_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error,
880 				 sc->cur_chan->rxfilter)) {
881 		spin_unlock_bh(&sc->chan_lock);
882 		return -EINVAL;
883 	}
884 	spin_unlock_bh(&sc->chan_lock);
885 
886 	if (ath_is_mybeacon(common, hdr)) {
887 		RX_STAT_INC(rx_beacons);
888 		rx_stats->is_mybeacon = true;
889 	}
890 
891 	/*
892 	 * This shouldn't happen, but have a safety check anyway.
893 	 */
894 	if (WARN_ON(!ah->curchan))
895 		return -EINVAL;
896 
897 	if (ath9k_cmn_process_rate(common, hw, rx_stats, rx_status)) {
898 		/*
899 		 * No valid hardware bitrate found -- we should not get here
900 		 * because hardware has already validated this frame as OK.
901 		 */
902 		ath_dbg(common, ANY, "unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
903 			rx_stats->rs_rate);
904 		RX_STAT_INC(rx_rate_err);
905 		return -EINVAL;
906 	}
907 
908 	if (ath9k_is_chanctx_enabled()) {
909 		if (rx_stats->is_mybeacon)
910 			ath_chanctx_beacon_recv_ev(sc,
911 					   ATH_CHANCTX_EVENT_BEACON_RECEIVED);
912 	}
913 
914 	ath9k_cmn_process_rssi(common, hw, rx_stats, rx_status);
915 
916 	rx_status->band = ah->curchan->chan->band;
917 	rx_status->freq = ah->curchan->chan->center_freq;
918 	rx_status->antenna = rx_stats->rs_antenna;
919 	rx_status->flag |= RX_FLAG_MACTIME_END;
920 
921 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
922 	if (ieee80211_is_data_present(hdr->frame_control) &&
923 	    !ieee80211_is_qos_nullfunc(hdr->frame_control))
924 		sc->rx.num_pkts++;
925 #endif
926 
927 	return 0;
928 
929 corrupt:
930 	sc->rx.discard_next = rx_stats->rs_more;
931 	return -EINVAL;
932 }
933 
934 /*
935  * Run the LNA combining algorithm only in these cases:
936  *
937  * Standalone WLAN cards with both LNA/Antenna diversity
938  * enabled in the EEPROM.
939  *
940  * WLAN+BT cards which are in the supported card list
941  * in ath_pci_id_table and the user has loaded the
942  * driver with "bt_ant_diversity" set to true.
943  */
ath9k_antenna_check(struct ath_softc * sc,struct ath_rx_status * rs)944 static void ath9k_antenna_check(struct ath_softc *sc,
945 				struct ath_rx_status *rs)
946 {
947 	struct ath_hw *ah = sc->sc_ah;
948 	struct ath9k_hw_capabilities *pCap = &ah->caps;
949 	struct ath_common *common = ath9k_hw_common(ah);
950 
951 	if (!(ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB))
952 		return;
953 
954 	/*
955 	 * Change the default rx antenna if rx diversity
956 	 * chooses the other antenna 3 times in a row.
957 	 */
958 	if (sc->rx.defant != rs->rs_antenna) {
959 		if (++sc->rx.rxotherant >= 3)
960 			ath_setdefantenna(sc, rs->rs_antenna);
961 	} else {
962 		sc->rx.rxotherant = 0;
963 	}
964 
965 	if (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV) {
966 		if (common->bt_ant_diversity)
967 			ath_ant_comb_scan(sc, rs);
968 	} else {
969 		ath_ant_comb_scan(sc, rs);
970 	}
971 }
972 
ath9k_apply_ampdu_details(struct ath_softc * sc,struct ath_rx_status * rs,struct ieee80211_rx_status * rxs)973 static void ath9k_apply_ampdu_details(struct ath_softc *sc,
974 	struct ath_rx_status *rs, struct ieee80211_rx_status *rxs)
975 {
976 	if (rs->rs_isaggr) {
977 		rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
978 
979 		rxs->ampdu_reference = sc->rx.ampdu_ref;
980 
981 		if (!rs->rs_moreaggr) {
982 			rxs->flag |= RX_FLAG_AMPDU_IS_LAST;
983 			sc->rx.ampdu_ref++;
984 		}
985 
986 		if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE)
987 			rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR;
988 	}
989 }
990 
ath_rx_tasklet(struct ath_softc * sc,int flush,bool hp)991 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
992 {
993 	struct ath_rxbuf *bf;
994 	struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
995 	struct ieee80211_rx_status *rxs;
996 	struct ath_hw *ah = sc->sc_ah;
997 	struct ath_common *common = ath9k_hw_common(ah);
998 	struct ieee80211_hw *hw = sc->hw;
999 	int retval;
1000 	struct ath_rx_status rs;
1001 	enum ath9k_rx_qtype qtype;
1002 	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1003 	int dma_type;
1004 	u64 tsf = 0;
1005 	unsigned long flags;
1006 	dma_addr_t new_buf_addr;
1007 	unsigned int budget = 512;
1008 	struct ieee80211_hdr *hdr;
1009 
1010 	if (edma)
1011 		dma_type = DMA_BIDIRECTIONAL;
1012 	else
1013 		dma_type = DMA_FROM_DEVICE;
1014 
1015 	qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
1016 
1017 	tsf = ath9k_hw_gettsf64(ah);
1018 
1019 	do {
1020 		bool decrypt_error = false;
1021 
1022 		memset(&rs, 0, sizeof(rs));
1023 		if (edma)
1024 			bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
1025 		else
1026 			bf = ath_get_next_rx_buf(sc, &rs);
1027 
1028 		if (!bf)
1029 			break;
1030 
1031 		skb = bf->bf_mpdu;
1032 		if (!skb)
1033 			continue;
1034 
1035 		/*
1036 		 * Take frame header from the first fragment and RX status from
1037 		 * the last one.
1038 		 */
1039 		if (sc->rx.frag)
1040 			hdr_skb = sc->rx.frag;
1041 		else
1042 			hdr_skb = skb;
1043 
1044 		rxs = IEEE80211_SKB_RXCB(hdr_skb);
1045 		memset(rxs, 0, sizeof(struct ieee80211_rx_status));
1046 
1047 		retval = ath9k_rx_skb_preprocess(sc, hdr_skb, &rs, rxs,
1048 						 &decrypt_error, tsf);
1049 		if (retval)
1050 			goto requeue_drop_frag;
1051 
1052 		/* Ensure we always have an skb to requeue once we are done
1053 		 * processing the current buffer's skb */
1054 		requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1055 
1056 		/* If there is no memory we ignore the current RX'd frame,
1057 		 * tell hardware it can give us a new frame using the old
1058 		 * skb and put it at the tail of the sc->rx.rxbuf list for
1059 		 * processing. */
1060 		if (!requeue_skb) {
1061 			RX_STAT_INC(rx_oom_err);
1062 			goto requeue_drop_frag;
1063 		}
1064 
1065 		/* We will now give hardware our shiny new allocated skb */
1066 		new_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1067 					      common->rx_bufsize, dma_type);
1068 		if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) {
1069 			dev_kfree_skb_any(requeue_skb);
1070 			goto requeue_drop_frag;
1071 		}
1072 
1073 		/* Unmap the frame */
1074 		dma_unmap_single(sc->dev, bf->bf_buf_addr,
1075 				 common->rx_bufsize, dma_type);
1076 
1077 		bf->bf_mpdu = requeue_skb;
1078 		bf->bf_buf_addr = new_buf_addr;
1079 
1080 		skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1081 		if (ah->caps.rx_status_len)
1082 			skb_pull(skb, ah->caps.rx_status_len);
1083 
1084 		if (!rs.rs_more)
1085 			ath9k_cmn_rx_skb_postprocess(common, hdr_skb, &rs,
1086 						     rxs, decrypt_error);
1087 
1088 		if (rs.rs_more) {
1089 			RX_STAT_INC(rx_frags);
1090 			/*
1091 			 * rs_more indicates chained descriptors which can be
1092 			 * used to link buffers together for a sort of
1093 			 * scatter-gather operation.
1094 			 */
1095 			if (sc->rx.frag) {
1096 				/* too many fragments - cannot handle frame */
1097 				dev_kfree_skb_any(sc->rx.frag);
1098 				dev_kfree_skb_any(skb);
1099 				RX_STAT_INC(rx_too_many_frags_err);
1100 				skb = NULL;
1101 			}
1102 			sc->rx.frag = skb;
1103 			goto requeue;
1104 		}
1105 
1106 		if (sc->rx.frag) {
1107 			int space = skb->len - skb_tailroom(hdr_skb);
1108 
1109 			if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
1110 				dev_kfree_skb(skb);
1111 				RX_STAT_INC(rx_oom_err);
1112 				goto requeue_drop_frag;
1113 			}
1114 
1115 			sc->rx.frag = NULL;
1116 
1117 			skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
1118 						  skb->len);
1119 			dev_kfree_skb_any(skb);
1120 			skb = hdr_skb;
1121 		}
1122 
1123 		if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
1124 			skb_trim(skb, skb->len - 8);
1125 
1126 		spin_lock_irqsave(&sc->sc_pm_lock, flags);
1127 		if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
1128 				     PS_WAIT_FOR_CAB |
1129 				     PS_WAIT_FOR_PSPOLL_DATA)) ||
1130 		    ath9k_check_auto_sleep(sc))
1131 			ath_rx_ps(sc, skb, rs.is_mybeacon);
1132 		spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
1133 
1134 		ath9k_antenna_check(sc, &rs);
1135 		ath9k_apply_ampdu_details(sc, &rs, rxs);
1136 		ath_debug_rate_stats(sc, &rs, skb);
1137 
1138 		hdr = (struct ieee80211_hdr *)skb->data;
1139 		if (ieee80211_is_ack(hdr->frame_control))
1140 			ath_dynack_sample_ack_ts(sc->sc_ah, skb, rs.rs_tstamp);
1141 
1142 		ieee80211_rx(hw, skb);
1143 
1144 requeue_drop_frag:
1145 		if (sc->rx.frag) {
1146 			dev_kfree_skb_any(sc->rx.frag);
1147 			sc->rx.frag = NULL;
1148 		}
1149 requeue:
1150 		list_add_tail(&bf->list, &sc->rx.rxbuf);
1151 
1152 		if (!edma) {
1153 			ath_rx_buf_relink(sc, bf, flush);
1154 			if (!flush)
1155 				ath9k_hw_rxena(ah);
1156 		} else if (!flush) {
1157 			ath_rx_edma_buf_link(sc, qtype);
1158 		}
1159 
1160 		if (!budget--)
1161 			break;
1162 	} while (1);
1163 
1164 	if (!(ah->imask & ATH9K_INT_RXEOL)) {
1165 		ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
1166 		ath9k_hw_set_interrupts(ah);
1167 	}
1168 
1169 	return 0;
1170 }
1171