1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t) ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36
37
38 static u16 bits_per_symbol[][2] = {
39 /* 20MHz 40MHz */
40 { 26, 54 }, /* 0: BPSK */
41 { 52, 108 }, /* 1: QPSK 1/2 */
42 { 78, 162 }, /* 2: QPSK 3/4 */
43 { 104, 216 }, /* 3: 16-QAM 1/2 */
44 { 156, 324 }, /* 4: 16-QAM 3/4 */
45 { 208, 432 }, /* 5: 64-QAM 2/3 */
46 { 234, 486 }, /* 6: 64-QAM 3/4 */
47 { 260, 540 }, /* 7: 64-QAM 5/6 */
48 };
49
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 int tx_flags, struct ath_txq *txq);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 struct ath_txq *txq, struct list_head *bf_q,
56 struct ath_tx_status *ts, int txok);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 struct list_head *head, bool internal);
59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
60 struct ath_tx_status *ts, int nframes, int nbad,
61 int txok);
62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
63 int seqno);
64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
65 struct ath_txq *txq,
66 struct ath_atx_tid *tid,
67 struct sk_buff *skb);
68
69 enum {
70 MCS_HT20,
71 MCS_HT20_SGI,
72 MCS_HT40,
73 MCS_HT40_SGI,
74 };
75
76 /*********************/
77 /* Aggregation logic */
78 /*********************/
79
ath_txq_lock(struct ath_softc * sc,struct ath_txq * txq)80 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
81 __acquires(&txq->axq_lock)
82 {
83 spin_lock_bh(&txq->axq_lock);
84 }
85
ath_txq_unlock(struct ath_softc * sc,struct ath_txq * txq)86 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
87 __releases(&txq->axq_lock)
88 {
89 spin_unlock_bh(&txq->axq_lock);
90 }
91
ath_txq_unlock_complete(struct ath_softc * sc,struct ath_txq * txq)92 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
93 __releases(&txq->axq_lock)
94 {
95 struct sk_buff_head q;
96 struct sk_buff *skb;
97
98 __skb_queue_head_init(&q);
99 skb_queue_splice_init(&txq->complete_q, &q);
100 spin_unlock_bh(&txq->axq_lock);
101
102 while ((skb = __skb_dequeue(&q)))
103 ieee80211_tx_status(sc->hw, skb);
104 }
105
ath_tx_queue_tid(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid)106 static void ath_tx_queue_tid(struct ath_softc *sc, struct ath_txq *txq,
107 struct ath_atx_tid *tid)
108 {
109 struct list_head *list;
110 struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv;
111 struct ath_chanctx *ctx = avp->chanctx;
112
113 if (!ctx)
114 return;
115
116 list = &ctx->acq[TID_TO_WME_AC(tid->tidno)];
117 if (list_empty(&tid->list))
118 list_add_tail(&tid->list, list);
119 }
120
get_frame_info(struct sk_buff * skb)121 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
122 {
123 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
124 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
125 sizeof(tx_info->rate_driver_data));
126 return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
127 }
128
ath_send_bar(struct ath_atx_tid * tid,u16 seqno)129 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
130 {
131 if (!tid->an->sta)
132 return;
133
134 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
135 seqno << IEEE80211_SEQ_SEQ_SHIFT);
136 }
137
ath_set_rates(struct ieee80211_vif * vif,struct ieee80211_sta * sta,struct ath_buf * bf)138 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
139 struct ath_buf *bf)
140 {
141 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
142 ARRAY_SIZE(bf->rates));
143 }
144
ath_txq_skb_done(struct ath_softc * sc,struct ath_txq * txq,struct sk_buff * skb)145 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
146 struct sk_buff *skb)
147 {
148 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
149 struct ath_frame_info *fi = get_frame_info(skb);
150 int q = fi->txq;
151
152 if (q < 0)
153 return;
154
155 txq = sc->tx.txq_map[q];
156 if (WARN_ON(--txq->pending_frames < 0))
157 txq->pending_frames = 0;
158
159 if (txq->stopped &&
160 txq->pending_frames < sc->tx.txq_max_pending[q]) {
161 if (ath9k_is_chanctx_enabled())
162 ieee80211_wake_queue(sc->hw, info->hw_queue);
163 else
164 ieee80211_wake_queue(sc->hw, q);
165 txq->stopped = false;
166 }
167 }
168
169 static struct ath_atx_tid *
ath_get_skb_tid(struct ath_softc * sc,struct ath_node * an,struct sk_buff * skb)170 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
171 {
172 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
173 return ATH_AN_2_TID(an, tidno);
174 }
175
ath_tid_has_buffered(struct ath_atx_tid * tid)176 static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
177 {
178 return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
179 }
180
ath_tid_dequeue(struct ath_atx_tid * tid)181 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
182 {
183 struct sk_buff *skb;
184
185 skb = __skb_dequeue(&tid->retry_q);
186 if (!skb)
187 skb = __skb_dequeue(&tid->buf_q);
188
189 return skb;
190 }
191
192 /*
193 * ath_tx_tid_change_state:
194 * - clears a-mpdu flag of previous session
195 * - force sequence number allocation to fix next BlockAck Window
196 */
197 static void
ath_tx_tid_change_state(struct ath_softc * sc,struct ath_atx_tid * tid)198 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
199 {
200 struct ath_txq *txq = tid->txq;
201 struct ieee80211_tx_info *tx_info;
202 struct sk_buff *skb, *tskb;
203 struct ath_buf *bf;
204 struct ath_frame_info *fi;
205
206 skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
207 fi = get_frame_info(skb);
208 bf = fi->bf;
209
210 tx_info = IEEE80211_SKB_CB(skb);
211 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
212
213 if (bf)
214 continue;
215
216 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
217 if (!bf) {
218 __skb_unlink(skb, &tid->buf_q);
219 ath_txq_skb_done(sc, txq, skb);
220 ieee80211_free_txskb(sc->hw, skb);
221 continue;
222 }
223 }
224
225 }
226
ath_tx_flush_tid(struct ath_softc * sc,struct ath_atx_tid * tid)227 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
228 {
229 struct ath_txq *txq = tid->txq;
230 struct sk_buff *skb;
231 struct ath_buf *bf;
232 struct list_head bf_head;
233 struct ath_tx_status ts;
234 struct ath_frame_info *fi;
235 bool sendbar = false;
236
237 INIT_LIST_HEAD(&bf_head);
238
239 memset(&ts, 0, sizeof(ts));
240
241 while ((skb = __skb_dequeue(&tid->retry_q))) {
242 fi = get_frame_info(skb);
243 bf = fi->bf;
244 if (!bf) {
245 ath_txq_skb_done(sc, txq, skb);
246 ieee80211_free_txskb(sc->hw, skb);
247 continue;
248 }
249
250 if (fi->baw_tracked) {
251 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
252 sendbar = true;
253 }
254
255 list_add_tail(&bf->list, &bf_head);
256 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
257 }
258
259 if (sendbar) {
260 ath_txq_unlock(sc, txq);
261 ath_send_bar(tid, tid->seq_start);
262 ath_txq_lock(sc, txq);
263 }
264 }
265
ath_tx_update_baw(struct ath_softc * sc,struct ath_atx_tid * tid,int seqno)266 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
267 int seqno)
268 {
269 int index, cindex;
270
271 index = ATH_BA_INDEX(tid->seq_start, seqno);
272 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
273
274 __clear_bit(cindex, tid->tx_buf);
275
276 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
277 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
278 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
279 if (tid->bar_index >= 0)
280 tid->bar_index--;
281 }
282 }
283
ath_tx_addto_baw(struct ath_softc * sc,struct ath_atx_tid * tid,struct ath_buf * bf)284 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
285 struct ath_buf *bf)
286 {
287 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
288 u16 seqno = bf->bf_state.seqno;
289 int index, cindex;
290
291 index = ATH_BA_INDEX(tid->seq_start, seqno);
292 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
293 __set_bit(cindex, tid->tx_buf);
294 fi->baw_tracked = 1;
295
296 if (index >= ((tid->baw_tail - tid->baw_head) &
297 (ATH_TID_MAX_BUFS - 1))) {
298 tid->baw_tail = cindex;
299 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
300 }
301 }
302
ath_tid_drain(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid)303 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
304 struct ath_atx_tid *tid)
305
306 {
307 struct sk_buff *skb;
308 struct ath_buf *bf;
309 struct list_head bf_head;
310 struct ath_tx_status ts;
311 struct ath_frame_info *fi;
312
313 memset(&ts, 0, sizeof(ts));
314 INIT_LIST_HEAD(&bf_head);
315
316 while ((skb = ath_tid_dequeue(tid))) {
317 fi = get_frame_info(skb);
318 bf = fi->bf;
319
320 if (!bf) {
321 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
322 continue;
323 }
324
325 list_add_tail(&bf->list, &bf_head);
326 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
327 }
328 }
329
ath_tx_set_retry(struct ath_softc * sc,struct ath_txq * txq,struct sk_buff * skb,int count)330 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
331 struct sk_buff *skb, int count)
332 {
333 struct ath_frame_info *fi = get_frame_info(skb);
334 struct ath_buf *bf = fi->bf;
335 struct ieee80211_hdr *hdr;
336 int prev = fi->retries;
337
338 TX_STAT_INC(txq->axq_qnum, a_retries);
339 fi->retries += count;
340
341 if (prev > 0)
342 return;
343
344 hdr = (struct ieee80211_hdr *)skb->data;
345 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
346 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
347 sizeof(*hdr), DMA_TO_DEVICE);
348 }
349
ath_tx_get_buffer(struct ath_softc * sc)350 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
351 {
352 struct ath_buf *bf = NULL;
353
354 spin_lock_bh(&sc->tx.txbuflock);
355
356 if (unlikely(list_empty(&sc->tx.txbuf))) {
357 spin_unlock_bh(&sc->tx.txbuflock);
358 return NULL;
359 }
360
361 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
362 list_del(&bf->list);
363
364 spin_unlock_bh(&sc->tx.txbuflock);
365
366 return bf;
367 }
368
ath_tx_return_buffer(struct ath_softc * sc,struct ath_buf * bf)369 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
370 {
371 spin_lock_bh(&sc->tx.txbuflock);
372 list_add_tail(&bf->list, &sc->tx.txbuf);
373 spin_unlock_bh(&sc->tx.txbuflock);
374 }
375
ath_clone_txbuf(struct ath_softc * sc,struct ath_buf * bf)376 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
377 {
378 struct ath_buf *tbf;
379
380 tbf = ath_tx_get_buffer(sc);
381 if (WARN_ON(!tbf))
382 return NULL;
383
384 ATH_TXBUF_RESET(tbf);
385
386 tbf->bf_mpdu = bf->bf_mpdu;
387 tbf->bf_buf_addr = bf->bf_buf_addr;
388 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
389 tbf->bf_state = bf->bf_state;
390 tbf->bf_state.stale = false;
391
392 return tbf;
393 }
394
ath_tx_count_frames(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_status * ts,int txok,int * nframes,int * nbad)395 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
396 struct ath_tx_status *ts, int txok,
397 int *nframes, int *nbad)
398 {
399 struct ath_frame_info *fi;
400 u16 seq_st = 0;
401 u32 ba[WME_BA_BMP_SIZE >> 5];
402 int ba_index;
403 int isaggr = 0;
404
405 *nbad = 0;
406 *nframes = 0;
407
408 isaggr = bf_isaggr(bf);
409 if (isaggr) {
410 seq_st = ts->ts_seqnum;
411 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
412 }
413
414 while (bf) {
415 fi = get_frame_info(bf->bf_mpdu);
416 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
417
418 (*nframes)++;
419 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
420 (*nbad)++;
421
422 bf = bf->bf_next;
423 }
424 }
425
426
ath_tx_complete_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_buf * bf,struct list_head * bf_q,struct ath_tx_status * ts,int txok)427 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
428 struct ath_buf *bf, struct list_head *bf_q,
429 struct ath_tx_status *ts, int txok)
430 {
431 struct ath_node *an = NULL;
432 struct sk_buff *skb;
433 struct ieee80211_sta *sta;
434 struct ieee80211_hw *hw = sc->hw;
435 struct ieee80211_hdr *hdr;
436 struct ieee80211_tx_info *tx_info;
437 struct ath_atx_tid *tid = NULL;
438 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
439 struct list_head bf_head;
440 struct sk_buff_head bf_pending;
441 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
442 u32 ba[WME_BA_BMP_SIZE >> 5];
443 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
444 bool rc_update = true, isba;
445 struct ieee80211_tx_rate rates[4];
446 struct ath_frame_info *fi;
447 int nframes;
448 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
449 int i, retries;
450 int bar_index = -1;
451
452 skb = bf->bf_mpdu;
453 hdr = (struct ieee80211_hdr *)skb->data;
454
455 tx_info = IEEE80211_SKB_CB(skb);
456
457 memcpy(rates, bf->rates, sizeof(rates));
458
459 retries = ts->ts_longretry + 1;
460 for (i = 0; i < ts->ts_rateindex; i++)
461 retries += rates[i].count;
462
463 rcu_read_lock();
464
465 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
466 if (!sta) {
467 rcu_read_unlock();
468
469 INIT_LIST_HEAD(&bf_head);
470 while (bf) {
471 bf_next = bf->bf_next;
472
473 if (!bf->bf_state.stale || bf_next != NULL)
474 list_move_tail(&bf->list, &bf_head);
475
476 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
477
478 bf = bf_next;
479 }
480 return;
481 }
482
483 an = (struct ath_node *)sta->drv_priv;
484 tid = ath_get_skb_tid(sc, an, skb);
485 seq_first = tid->seq_start;
486 isba = ts->ts_flags & ATH9K_TX_BA;
487
488 /*
489 * The hardware occasionally sends a tx status for the wrong TID.
490 * In this case, the BA status cannot be considered valid and all
491 * subframes need to be retransmitted
492 *
493 * Only BlockAcks have a TID and therefore normal Acks cannot be
494 * checked
495 */
496 if (isba && tid->tidno != ts->tid)
497 txok = false;
498
499 isaggr = bf_isaggr(bf);
500 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
501
502 if (isaggr && txok) {
503 if (ts->ts_flags & ATH9K_TX_BA) {
504 seq_st = ts->ts_seqnum;
505 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
506 } else {
507 /*
508 * AR5416 can become deaf/mute when BA
509 * issue happens. Chip needs to be reset.
510 * But AP code may have sychronization issues
511 * when perform internal reset in this routine.
512 * Only enable reset in STA mode for now.
513 */
514 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
515 needreset = 1;
516 }
517 }
518
519 __skb_queue_head_init(&bf_pending);
520
521 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
522 while (bf) {
523 u16 seqno = bf->bf_state.seqno;
524
525 txfail = txpending = sendbar = 0;
526 bf_next = bf->bf_next;
527
528 skb = bf->bf_mpdu;
529 tx_info = IEEE80211_SKB_CB(skb);
530 fi = get_frame_info(skb);
531
532 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
533 !tid->active) {
534 /*
535 * Outside of the current BlockAck window,
536 * maybe part of a previous session
537 */
538 txfail = 1;
539 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
540 /* transmit completion, subframe is
541 * acked by block ack */
542 acked_cnt++;
543 } else if (!isaggr && txok) {
544 /* transmit completion */
545 acked_cnt++;
546 } else if (flush) {
547 txpending = 1;
548 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
549 if (txok || !an->sleeping)
550 ath_tx_set_retry(sc, txq, bf->bf_mpdu,
551 retries);
552
553 txpending = 1;
554 } else {
555 txfail = 1;
556 txfail_cnt++;
557 bar_index = max_t(int, bar_index,
558 ATH_BA_INDEX(seq_first, seqno));
559 }
560
561 /*
562 * Make sure the last desc is reclaimed if it
563 * not a holding desc.
564 */
565 INIT_LIST_HEAD(&bf_head);
566 if (bf_next != NULL || !bf_last->bf_state.stale)
567 list_move_tail(&bf->list, &bf_head);
568
569 if (!txpending) {
570 /*
571 * complete the acked-ones/xretried ones; update
572 * block-ack window
573 */
574 ath_tx_update_baw(sc, tid, seqno);
575
576 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
577 memcpy(tx_info->control.rates, rates, sizeof(rates));
578 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
579 rc_update = false;
580 if (bf == bf->bf_lastbf)
581 ath_dynack_sample_tx_ts(sc->sc_ah,
582 bf->bf_mpdu,
583 ts);
584 }
585
586 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
587 !txfail);
588 } else {
589 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
590 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
591 ieee80211_sta_eosp(sta);
592 }
593 /* retry the un-acked ones */
594 if (bf->bf_next == NULL && bf_last->bf_state.stale) {
595 struct ath_buf *tbf;
596
597 tbf = ath_clone_txbuf(sc, bf_last);
598 /*
599 * Update tx baw and complete the
600 * frame with failed status if we
601 * run out of tx buf.
602 */
603 if (!tbf) {
604 ath_tx_update_baw(sc, tid, seqno);
605
606 ath_tx_complete_buf(sc, bf, txq,
607 &bf_head, ts, 0);
608 bar_index = max_t(int, bar_index,
609 ATH_BA_INDEX(seq_first, seqno));
610 break;
611 }
612
613 fi->bf = tbf;
614 }
615
616 /*
617 * Put this buffer to the temporary pending
618 * queue to retain ordering
619 */
620 __skb_queue_tail(&bf_pending, skb);
621 }
622
623 bf = bf_next;
624 }
625
626 /* prepend un-acked frames to the beginning of the pending frame queue */
627 if (!skb_queue_empty(&bf_pending)) {
628 if (an->sleeping)
629 ieee80211_sta_set_buffered(sta, tid->tidno, true);
630
631 skb_queue_splice_tail(&bf_pending, &tid->retry_q);
632 if (!an->sleeping) {
633 ath_tx_queue_tid(sc, txq, tid);
634
635 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
636 tid->clear_ps_filter = true;
637 }
638 }
639
640 if (bar_index >= 0) {
641 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
642
643 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
644 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
645
646 ath_txq_unlock(sc, txq);
647 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
648 ath_txq_lock(sc, txq);
649 }
650
651 rcu_read_unlock();
652
653 if (needreset)
654 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
655 }
656
bf_is_ampdu_not_probing(struct ath_buf * bf)657 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
658 {
659 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
660 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
661 }
662
ath_tx_process_buffer(struct ath_softc * sc,struct ath_txq * txq,struct ath_tx_status * ts,struct ath_buf * bf,struct list_head * bf_head)663 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
664 struct ath_tx_status *ts, struct ath_buf *bf,
665 struct list_head *bf_head)
666 {
667 struct ieee80211_tx_info *info;
668 bool txok, flush;
669
670 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
671 flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
672 txq->axq_tx_inprogress = false;
673
674 txq->axq_depth--;
675 if (bf_is_ampdu_not_probing(bf))
676 txq->axq_ampdu_depth--;
677
678 ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
679 ts->ts_rateindex);
680 if (!bf_isampdu(bf)) {
681 if (!flush) {
682 info = IEEE80211_SKB_CB(bf->bf_mpdu);
683 memcpy(info->control.rates, bf->rates,
684 sizeof(info->control.rates));
685 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
686 ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts);
687 }
688 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
689 } else
690 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
691
692 if (!flush)
693 ath_txq_schedule(sc, txq);
694 }
695
ath_lookup_legacy(struct ath_buf * bf)696 static bool ath_lookup_legacy(struct ath_buf *bf)
697 {
698 struct sk_buff *skb;
699 struct ieee80211_tx_info *tx_info;
700 struct ieee80211_tx_rate *rates;
701 int i;
702
703 skb = bf->bf_mpdu;
704 tx_info = IEEE80211_SKB_CB(skb);
705 rates = tx_info->control.rates;
706
707 for (i = 0; i < 4; i++) {
708 if (!rates[i].count || rates[i].idx < 0)
709 break;
710
711 if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
712 return true;
713 }
714
715 return false;
716 }
717
ath_lookup_rate(struct ath_softc * sc,struct ath_buf * bf,struct ath_atx_tid * tid)718 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
719 struct ath_atx_tid *tid)
720 {
721 struct sk_buff *skb;
722 struct ieee80211_tx_info *tx_info;
723 struct ieee80211_tx_rate *rates;
724 u32 max_4ms_framelen, frmlen;
725 u16 aggr_limit, bt_aggr_limit, legacy = 0;
726 int q = tid->txq->mac80211_qnum;
727 int i;
728
729 skb = bf->bf_mpdu;
730 tx_info = IEEE80211_SKB_CB(skb);
731 rates = bf->rates;
732
733 /*
734 * Find the lowest frame length among the rate series that will have a
735 * 4ms (or TXOP limited) transmit duration.
736 */
737 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
738
739 for (i = 0; i < 4; i++) {
740 int modeidx;
741
742 if (!rates[i].count)
743 continue;
744
745 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
746 legacy = 1;
747 break;
748 }
749
750 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
751 modeidx = MCS_HT40;
752 else
753 modeidx = MCS_HT20;
754
755 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
756 modeidx++;
757
758 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
759 max_4ms_framelen = min(max_4ms_framelen, frmlen);
760 }
761
762 /*
763 * limit aggregate size by the minimum rate if rate selected is
764 * not a probe rate, if rate selected is a probe rate then
765 * avoid aggregation of this packet.
766 */
767 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
768 return 0;
769
770 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
771
772 /*
773 * Override the default aggregation limit for BTCOEX.
774 */
775 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
776 if (bt_aggr_limit)
777 aggr_limit = bt_aggr_limit;
778
779 if (tid->an->maxampdu)
780 aggr_limit = min(aggr_limit, tid->an->maxampdu);
781
782 return aggr_limit;
783 }
784
785 /*
786 * Returns the number of delimiters to be added to
787 * meet the minimum required mpdudensity.
788 */
ath_compute_num_delims(struct ath_softc * sc,struct ath_atx_tid * tid,struct ath_buf * bf,u16 frmlen,bool first_subfrm)789 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
790 struct ath_buf *bf, u16 frmlen,
791 bool first_subfrm)
792 {
793 #define FIRST_DESC_NDELIMS 60
794 u32 nsymbits, nsymbols;
795 u16 minlen;
796 u8 flags, rix;
797 int width, streams, half_gi, ndelim, mindelim;
798 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
799
800 /* Select standard number of delimiters based on frame length alone */
801 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
802
803 /*
804 * If encryption enabled, hardware requires some more padding between
805 * subframes.
806 * TODO - this could be improved to be dependent on the rate.
807 * The hardware can keep up at lower rates, but not higher rates
808 */
809 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
810 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
811 ndelim += ATH_AGGR_ENCRYPTDELIM;
812
813 /*
814 * Add delimiter when using RTS/CTS with aggregation
815 * and non enterprise AR9003 card
816 */
817 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
818 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
819 ndelim = max(ndelim, FIRST_DESC_NDELIMS);
820
821 /*
822 * Convert desired mpdu density from microeconds to bytes based
823 * on highest rate in rate series (i.e. first rate) to determine
824 * required minimum length for subframe. Take into account
825 * whether high rate is 20 or 40Mhz and half or full GI.
826 *
827 * If there is no mpdu density restriction, no further calculation
828 * is needed.
829 */
830
831 if (tid->an->mpdudensity == 0)
832 return ndelim;
833
834 rix = bf->rates[0].idx;
835 flags = bf->rates[0].flags;
836 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
837 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
838
839 if (half_gi)
840 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
841 else
842 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
843
844 if (nsymbols == 0)
845 nsymbols = 1;
846
847 streams = HT_RC_2_STREAMS(rix);
848 nsymbits = bits_per_symbol[rix % 8][width] * streams;
849 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
850
851 if (frmlen < minlen) {
852 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
853 ndelim = max(mindelim, ndelim);
854 }
855
856 return ndelim;
857 }
858
859 static struct ath_buf *
ath_tx_get_tid_subframe(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct sk_buff_head ** q)860 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
861 struct ath_atx_tid *tid, struct sk_buff_head **q)
862 {
863 struct ieee80211_tx_info *tx_info;
864 struct ath_frame_info *fi;
865 struct sk_buff *skb;
866 struct ath_buf *bf;
867 u16 seqno;
868
869 while (1) {
870 *q = &tid->retry_q;
871 if (skb_queue_empty(*q))
872 *q = &tid->buf_q;
873
874 skb = skb_peek(*q);
875 if (!skb)
876 break;
877
878 fi = get_frame_info(skb);
879 bf = fi->bf;
880 if (!fi->bf)
881 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
882 else
883 bf->bf_state.stale = false;
884
885 if (!bf) {
886 __skb_unlink(skb, *q);
887 ath_txq_skb_done(sc, txq, skb);
888 ieee80211_free_txskb(sc->hw, skb);
889 continue;
890 }
891
892 bf->bf_next = NULL;
893 bf->bf_lastbf = bf;
894
895 tx_info = IEEE80211_SKB_CB(skb);
896 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
897
898 /*
899 * No aggregation session is running, but there may be frames
900 * from a previous session or a failed attempt in the queue.
901 * Send them out as normal data frames
902 */
903 if (!tid->active)
904 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
905
906 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
907 bf->bf_state.bf_type = 0;
908 return bf;
909 }
910
911 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
912 seqno = bf->bf_state.seqno;
913
914 /* do not step over block-ack window */
915 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
916 break;
917
918 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
919 struct ath_tx_status ts = {};
920 struct list_head bf_head;
921
922 INIT_LIST_HEAD(&bf_head);
923 list_add(&bf->list, &bf_head);
924 __skb_unlink(skb, *q);
925 ath_tx_update_baw(sc, tid, seqno);
926 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
927 continue;
928 }
929
930 return bf;
931 }
932
933 return NULL;
934 }
935
936 static bool
ath_tx_form_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct list_head * bf_q,struct ath_buf * bf_first,struct sk_buff_head * tid_q,int * aggr_len)937 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
938 struct ath_atx_tid *tid, struct list_head *bf_q,
939 struct ath_buf *bf_first, struct sk_buff_head *tid_q,
940 int *aggr_len)
941 {
942 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
943 struct ath_buf *bf = bf_first, *bf_prev = NULL;
944 int nframes = 0, ndelim;
945 u16 aggr_limit = 0, al = 0, bpad = 0,
946 al_delta, h_baw = tid->baw_size / 2;
947 struct ieee80211_tx_info *tx_info;
948 struct ath_frame_info *fi;
949 struct sk_buff *skb;
950 bool closed = false;
951
952 bf = bf_first;
953 aggr_limit = ath_lookup_rate(sc, bf, tid);
954
955 do {
956 skb = bf->bf_mpdu;
957 fi = get_frame_info(skb);
958
959 /* do not exceed aggregation limit */
960 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
961 if (nframes) {
962 if (aggr_limit < al + bpad + al_delta ||
963 ath_lookup_legacy(bf) || nframes >= h_baw)
964 break;
965
966 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
967 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
968 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
969 break;
970 }
971
972 /* add padding for previous frame to aggregation length */
973 al += bpad + al_delta;
974
975 /*
976 * Get the delimiters needed to meet the MPDU
977 * density for this node.
978 */
979 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
980 !nframes);
981 bpad = PADBYTES(al_delta) + (ndelim << 2);
982
983 nframes++;
984 bf->bf_next = NULL;
985
986 /* link buffers of this frame to the aggregate */
987 if (!fi->baw_tracked)
988 ath_tx_addto_baw(sc, tid, bf);
989 bf->bf_state.ndelim = ndelim;
990
991 __skb_unlink(skb, tid_q);
992 list_add_tail(&bf->list, bf_q);
993 if (bf_prev)
994 bf_prev->bf_next = bf;
995
996 bf_prev = bf;
997
998 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
999 if (!bf) {
1000 closed = true;
1001 break;
1002 }
1003 } while (ath_tid_has_buffered(tid));
1004
1005 bf = bf_first;
1006 bf->bf_lastbf = bf_prev;
1007
1008 if (bf == bf_prev) {
1009 al = get_frame_info(bf->bf_mpdu)->framelen;
1010 bf->bf_state.bf_type = BUF_AMPDU;
1011 } else {
1012 TX_STAT_INC(txq->axq_qnum, a_aggr);
1013 }
1014
1015 *aggr_len = al;
1016
1017 return closed;
1018 #undef PADBYTES
1019 }
1020
1021 /*
1022 * rix - rate index
1023 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1024 * width - 0 for 20 MHz, 1 for 40 MHz
1025 * half_gi - to use 4us v/s 3.6 us for symbol time
1026 */
ath_pkt_duration(struct ath_softc * sc,u8 rix,int pktlen,int width,int half_gi,bool shortPreamble)1027 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1028 int width, int half_gi, bool shortPreamble)
1029 {
1030 u32 nbits, nsymbits, duration, nsymbols;
1031 int streams;
1032
1033 /* find number of symbols: PLCP + data */
1034 streams = HT_RC_2_STREAMS(rix);
1035 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1036 nsymbits = bits_per_symbol[rix % 8][width] * streams;
1037 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1038
1039 if (!half_gi)
1040 duration = SYMBOL_TIME(nsymbols);
1041 else
1042 duration = SYMBOL_TIME_HALFGI(nsymbols);
1043
1044 /* addup duration for legacy/ht training and signal fields */
1045 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1046
1047 return duration;
1048 }
1049
ath_max_framelen(int usec,int mcs,bool ht40,bool sgi)1050 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1051 {
1052 int streams = HT_RC_2_STREAMS(mcs);
1053 int symbols, bits;
1054 int bytes = 0;
1055
1056 usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1057 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1058 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1059 bits -= OFDM_PLCP_BITS;
1060 bytes = bits / 8;
1061 if (bytes > 65532)
1062 bytes = 65532;
1063
1064 return bytes;
1065 }
1066
ath_update_max_aggr_framelen(struct ath_softc * sc,int queue,int txop)1067 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1068 {
1069 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1070 int mcs;
1071
1072 /* 4ms is the default (and maximum) duration */
1073 if (!txop || txop > 4096)
1074 txop = 4096;
1075
1076 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1077 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1078 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1079 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1080 for (mcs = 0; mcs < 32; mcs++) {
1081 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1082 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1083 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1084 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1085 }
1086 }
1087
ath_get_rate_txpower(struct ath_softc * sc,struct ath_buf * bf,u8 rateidx,bool is_40,bool is_cck)1088 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
1089 u8 rateidx, bool is_40, bool is_cck)
1090 {
1091 u8 max_power;
1092 struct sk_buff *skb;
1093 struct ath_frame_info *fi;
1094 struct ieee80211_tx_info *info;
1095 struct ath_hw *ah = sc->sc_ah;
1096
1097 if (sc->tx99_state || !ah->tpc_enabled)
1098 return MAX_RATE_POWER;
1099
1100 skb = bf->bf_mpdu;
1101 fi = get_frame_info(skb);
1102 info = IEEE80211_SKB_CB(skb);
1103
1104 if (!AR_SREV_9300_20_OR_LATER(ah)) {
1105 int txpower = fi->tx_power;
1106
1107 if (is_40) {
1108 u8 power_ht40delta;
1109 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1110
1111 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
1112 bool is_2ghz;
1113 struct modal_eep_header *pmodal;
1114
1115 is_2ghz = info->band == IEEE80211_BAND_2GHZ;
1116 pmodal = &eep->modalHeader[is_2ghz];
1117 power_ht40delta = pmodal->ht40PowerIncForPdadc;
1118 } else {
1119 power_ht40delta = 2;
1120 }
1121 txpower += power_ht40delta;
1122 }
1123
1124 if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
1125 AR_SREV_9271(ah)) {
1126 txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
1127 } else if (AR_SREV_9280_20_OR_LATER(ah)) {
1128 s8 power_offset;
1129
1130 power_offset = ah->eep_ops->get_eeprom(ah,
1131 EEP_PWR_TABLE_OFFSET);
1132 txpower -= 2 * power_offset;
1133 }
1134
1135 if (OLC_FOR_AR9280_20_LATER && is_cck)
1136 txpower -= 2;
1137
1138 txpower = max(txpower, 0);
1139 max_power = min_t(u8, ah->tx_power[rateidx], txpower);
1140
1141 /* XXX: clamp minimum TX power at 1 for AR9160 since if
1142 * max_power is set to 0, frames are transmitted at max
1143 * TX power
1144 */
1145 if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
1146 max_power = 1;
1147 } else if (!bf->bf_state.bfs_paprd) {
1148 if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC))
1149 max_power = min_t(u8, ah->tx_power_stbc[rateidx],
1150 fi->tx_power);
1151 else
1152 max_power = min_t(u8, ah->tx_power[rateidx],
1153 fi->tx_power);
1154 } else {
1155 max_power = ah->paprd_training_power;
1156 }
1157
1158 return max_power;
1159 }
1160
ath_buf_set_rate(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_info * info,int len,bool rts)1161 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1162 struct ath_tx_info *info, int len, bool rts)
1163 {
1164 struct ath_hw *ah = sc->sc_ah;
1165 struct ath_common *common = ath9k_hw_common(ah);
1166 struct sk_buff *skb;
1167 struct ieee80211_tx_info *tx_info;
1168 struct ieee80211_tx_rate *rates;
1169 const struct ieee80211_rate *rate;
1170 struct ieee80211_hdr *hdr;
1171 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1172 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1173 int i;
1174 u8 rix = 0;
1175
1176 skb = bf->bf_mpdu;
1177 tx_info = IEEE80211_SKB_CB(skb);
1178 rates = bf->rates;
1179 hdr = (struct ieee80211_hdr *)skb->data;
1180
1181 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1182 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1183 info->rtscts_rate = fi->rtscts_rate;
1184
1185 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1186 bool is_40, is_sgi, is_sp, is_cck;
1187 int phy;
1188
1189 if (!rates[i].count || (rates[i].idx < 0))
1190 continue;
1191
1192 rix = rates[i].idx;
1193 info->rates[i].Tries = rates[i].count;
1194
1195 /*
1196 * Handle RTS threshold for unaggregated HT frames.
1197 */
1198 if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1199 (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1200 unlikely(rts_thresh != (u32) -1)) {
1201 if (!rts_thresh || (len > rts_thresh))
1202 rts = true;
1203 }
1204
1205 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1206 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1207 info->flags |= ATH9K_TXDESC_RTSENA;
1208 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1209 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1210 info->flags |= ATH9K_TXDESC_CTSENA;
1211 }
1212
1213 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1214 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1215 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1216 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1217
1218 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1219 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1220 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1221
1222 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1223 /* MCS rates */
1224 info->rates[i].Rate = rix | 0x80;
1225 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1226 ah->txchainmask, info->rates[i].Rate);
1227 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1228 is_40, is_sgi, is_sp);
1229 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1230 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1231 if (rix >= 8 && fi->dyn_smps) {
1232 info->rates[i].RateFlags |=
1233 ATH9K_RATESERIES_RTS_CTS;
1234 info->flags |= ATH9K_TXDESC_CTSENA;
1235 }
1236
1237 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
1238 is_40, false);
1239 continue;
1240 }
1241
1242 /* legacy rates */
1243 rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1244 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1245 !(rate->flags & IEEE80211_RATE_ERP_G))
1246 phy = WLAN_RC_PHY_CCK;
1247 else
1248 phy = WLAN_RC_PHY_OFDM;
1249
1250 info->rates[i].Rate = rate->hw_value;
1251 if (rate->hw_value_short) {
1252 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1253 info->rates[i].Rate |= rate->hw_value_short;
1254 } else {
1255 is_sp = false;
1256 }
1257
1258 if (bf->bf_state.bfs_paprd)
1259 info->rates[i].ChSel = ah->txchainmask;
1260 else
1261 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1262 ah->txchainmask, info->rates[i].Rate);
1263
1264 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1265 phy, rate->bitrate * 100, len, rix, is_sp);
1266
1267 is_cck = IS_CCK_RATE(info->rates[i].Rate);
1268 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
1269 is_cck);
1270 }
1271
1272 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1273 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1274 info->flags &= ~ATH9K_TXDESC_RTSENA;
1275
1276 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1277 if (info->flags & ATH9K_TXDESC_RTSENA)
1278 info->flags &= ~ATH9K_TXDESC_CTSENA;
1279 }
1280
get_hw_packet_type(struct sk_buff * skb)1281 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1282 {
1283 struct ieee80211_hdr *hdr;
1284 enum ath9k_pkt_type htype;
1285 __le16 fc;
1286
1287 hdr = (struct ieee80211_hdr *)skb->data;
1288 fc = hdr->frame_control;
1289
1290 if (ieee80211_is_beacon(fc))
1291 htype = ATH9K_PKT_TYPE_BEACON;
1292 else if (ieee80211_is_probe_resp(fc))
1293 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1294 else if (ieee80211_is_atim(fc))
1295 htype = ATH9K_PKT_TYPE_ATIM;
1296 else if (ieee80211_is_pspoll(fc))
1297 htype = ATH9K_PKT_TYPE_PSPOLL;
1298 else
1299 htype = ATH9K_PKT_TYPE_NORMAL;
1300
1301 return htype;
1302 }
1303
ath_tx_fill_desc(struct ath_softc * sc,struct ath_buf * bf,struct ath_txq * txq,int len)1304 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1305 struct ath_txq *txq, int len)
1306 {
1307 struct ath_hw *ah = sc->sc_ah;
1308 struct ath_buf *bf_first = NULL;
1309 struct ath_tx_info info;
1310 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1311 bool rts = false;
1312
1313 memset(&info, 0, sizeof(info));
1314 info.is_first = true;
1315 info.is_last = true;
1316 info.qcu = txq->axq_qnum;
1317
1318 while (bf) {
1319 struct sk_buff *skb = bf->bf_mpdu;
1320 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1321 struct ath_frame_info *fi = get_frame_info(skb);
1322 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1323
1324 info.type = get_hw_packet_type(skb);
1325 if (bf->bf_next)
1326 info.link = bf->bf_next->bf_daddr;
1327 else
1328 info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1329
1330 if (!bf_first) {
1331 bf_first = bf;
1332
1333 if (!sc->tx99_state)
1334 info.flags = ATH9K_TXDESC_INTREQ;
1335 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1336 txq == sc->tx.uapsdq)
1337 info.flags |= ATH9K_TXDESC_CLRDMASK;
1338
1339 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1340 info.flags |= ATH9K_TXDESC_NOACK;
1341 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1342 info.flags |= ATH9K_TXDESC_LDPC;
1343
1344 if (bf->bf_state.bfs_paprd)
1345 info.flags |= (u32) bf->bf_state.bfs_paprd <<
1346 ATH9K_TXDESC_PAPRD_S;
1347
1348 /*
1349 * mac80211 doesn't handle RTS threshold for HT because
1350 * the decision has to be taken based on AMPDU length
1351 * and aggregation is done entirely inside ath9k.
1352 * Set the RTS/CTS flag for the first subframe based
1353 * on the threshold.
1354 */
1355 if (aggr && (bf == bf_first) &&
1356 unlikely(rts_thresh != (u32) -1)) {
1357 /*
1358 * "len" is the size of the entire AMPDU.
1359 */
1360 if (!rts_thresh || (len > rts_thresh))
1361 rts = true;
1362 }
1363
1364 if (!aggr)
1365 len = fi->framelen;
1366
1367 ath_buf_set_rate(sc, bf, &info, len, rts);
1368 }
1369
1370 info.buf_addr[0] = bf->bf_buf_addr;
1371 info.buf_len[0] = skb->len;
1372 info.pkt_len = fi->framelen;
1373 info.keyix = fi->keyix;
1374 info.keytype = fi->keytype;
1375
1376 if (aggr) {
1377 if (bf == bf_first)
1378 info.aggr = AGGR_BUF_FIRST;
1379 else if (bf == bf_first->bf_lastbf)
1380 info.aggr = AGGR_BUF_LAST;
1381 else
1382 info.aggr = AGGR_BUF_MIDDLE;
1383
1384 info.ndelim = bf->bf_state.ndelim;
1385 info.aggr_len = len;
1386 }
1387
1388 if (bf == bf_first->bf_lastbf)
1389 bf_first = NULL;
1390
1391 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1392 bf = bf->bf_next;
1393 }
1394 }
1395
1396 static void
ath_tx_form_burst(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct list_head * bf_q,struct ath_buf * bf_first,struct sk_buff_head * tid_q)1397 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1398 struct ath_atx_tid *tid, struct list_head *bf_q,
1399 struct ath_buf *bf_first, struct sk_buff_head *tid_q)
1400 {
1401 struct ath_buf *bf = bf_first, *bf_prev = NULL;
1402 struct sk_buff *skb;
1403 int nframes = 0;
1404
1405 do {
1406 struct ieee80211_tx_info *tx_info;
1407 skb = bf->bf_mpdu;
1408
1409 nframes++;
1410 __skb_unlink(skb, tid_q);
1411 list_add_tail(&bf->list, bf_q);
1412 if (bf_prev)
1413 bf_prev->bf_next = bf;
1414 bf_prev = bf;
1415
1416 if (nframes >= 2)
1417 break;
1418
1419 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1420 if (!bf)
1421 break;
1422
1423 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1424 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1425 break;
1426
1427 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1428 } while (1);
1429 }
1430
ath_tx_sched_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,bool * stop)1431 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1432 struct ath_atx_tid *tid, bool *stop)
1433 {
1434 struct ath_buf *bf;
1435 struct ieee80211_tx_info *tx_info;
1436 struct sk_buff_head *tid_q;
1437 struct list_head bf_q;
1438 int aggr_len = 0;
1439 bool aggr, last = true;
1440
1441 if (!ath_tid_has_buffered(tid))
1442 return false;
1443
1444 INIT_LIST_HEAD(&bf_q);
1445
1446 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1447 if (!bf)
1448 return false;
1449
1450 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1451 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1452 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1453 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1454 *stop = true;
1455 return false;
1456 }
1457
1458 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1459 if (aggr)
1460 last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
1461 tid_q, &aggr_len);
1462 else
1463 ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
1464
1465 if (list_empty(&bf_q))
1466 return false;
1467
1468 if (tid->clear_ps_filter || tid->an->no_ps_filter) {
1469 tid->clear_ps_filter = false;
1470 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1471 }
1472
1473 ath_tx_fill_desc(sc, bf, txq, aggr_len);
1474 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1475 return true;
1476 }
1477
ath_tx_aggr_start(struct ath_softc * sc,struct ieee80211_sta * sta,u16 tid,u16 * ssn)1478 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1479 u16 tid, u16 *ssn)
1480 {
1481 struct ath_atx_tid *txtid;
1482 struct ath_txq *txq;
1483 struct ath_node *an;
1484 u8 density;
1485
1486 an = (struct ath_node *)sta->drv_priv;
1487 txtid = ATH_AN_2_TID(an, tid);
1488 txq = txtid->txq;
1489
1490 ath_txq_lock(sc, txq);
1491
1492 /* update ampdu factor/density, they may have changed. This may happen
1493 * in HT IBSS when a beacon with HT-info is received after the station
1494 * has already been added.
1495 */
1496 if (sta->ht_cap.ht_supported) {
1497 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1498 sta->ht_cap.ampdu_factor)) - 1;
1499 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1500 an->mpdudensity = density;
1501 }
1502
1503 /* force sequence number allocation for pending frames */
1504 ath_tx_tid_change_state(sc, txtid);
1505
1506 txtid->active = true;
1507 *ssn = txtid->seq_start = txtid->seq_next;
1508 txtid->bar_index = -1;
1509
1510 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1511 txtid->baw_head = txtid->baw_tail = 0;
1512
1513 ath_txq_unlock_complete(sc, txq);
1514
1515 return 0;
1516 }
1517
ath_tx_aggr_stop(struct ath_softc * sc,struct ieee80211_sta * sta,u16 tid)1518 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1519 {
1520 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1521 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1522 struct ath_txq *txq = txtid->txq;
1523
1524 ath_txq_lock(sc, txq);
1525 txtid->active = false;
1526 ath_tx_flush_tid(sc, txtid);
1527 ath_tx_tid_change_state(sc, txtid);
1528 ath_txq_unlock_complete(sc, txq);
1529 }
1530
ath_tx_aggr_sleep(struct ieee80211_sta * sta,struct ath_softc * sc,struct ath_node * an)1531 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1532 struct ath_node *an)
1533 {
1534 struct ath_atx_tid *tid;
1535 struct ath_txq *txq;
1536 bool buffered;
1537 int tidno;
1538
1539 for (tidno = 0, tid = &an->tid[tidno];
1540 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1541
1542 txq = tid->txq;
1543
1544 ath_txq_lock(sc, txq);
1545
1546 if (list_empty(&tid->list)) {
1547 ath_txq_unlock(sc, txq);
1548 continue;
1549 }
1550
1551 buffered = ath_tid_has_buffered(tid);
1552
1553 list_del_init(&tid->list);
1554
1555 ath_txq_unlock(sc, txq);
1556
1557 ieee80211_sta_set_buffered(sta, tidno, buffered);
1558 }
1559 }
1560
ath_tx_aggr_wakeup(struct ath_softc * sc,struct ath_node * an)1561 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1562 {
1563 struct ath_atx_tid *tid;
1564 struct ath_txq *txq;
1565 int tidno;
1566
1567 for (tidno = 0, tid = &an->tid[tidno];
1568 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1569
1570 txq = tid->txq;
1571
1572 ath_txq_lock(sc, txq);
1573 tid->clear_ps_filter = true;
1574
1575 if (ath_tid_has_buffered(tid)) {
1576 ath_tx_queue_tid(sc, txq, tid);
1577 ath_txq_schedule(sc, txq);
1578 }
1579
1580 ath_txq_unlock_complete(sc, txq);
1581 }
1582 }
1583
ath_tx_aggr_resume(struct ath_softc * sc,struct ieee80211_sta * sta,u16 tidno)1584 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
1585 u16 tidno)
1586 {
1587 struct ath_atx_tid *tid;
1588 struct ath_node *an;
1589 struct ath_txq *txq;
1590
1591 an = (struct ath_node *)sta->drv_priv;
1592 tid = ATH_AN_2_TID(an, tidno);
1593 txq = tid->txq;
1594
1595 ath_txq_lock(sc, txq);
1596
1597 tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1598
1599 if (ath_tid_has_buffered(tid)) {
1600 ath_tx_queue_tid(sc, txq, tid);
1601 ath_txq_schedule(sc, txq);
1602 }
1603
1604 ath_txq_unlock_complete(sc, txq);
1605 }
1606
ath9k_release_buffered_frames(struct ieee80211_hw * hw,struct ieee80211_sta * sta,u16 tids,int nframes,enum ieee80211_frame_release_type reason,bool more_data)1607 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1608 struct ieee80211_sta *sta,
1609 u16 tids, int nframes,
1610 enum ieee80211_frame_release_type reason,
1611 bool more_data)
1612 {
1613 struct ath_softc *sc = hw->priv;
1614 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1615 struct ath_txq *txq = sc->tx.uapsdq;
1616 struct ieee80211_tx_info *info;
1617 struct list_head bf_q;
1618 struct ath_buf *bf_tail = NULL, *bf;
1619 struct sk_buff_head *tid_q;
1620 int sent = 0;
1621 int i;
1622
1623 INIT_LIST_HEAD(&bf_q);
1624 for (i = 0; tids && nframes; i++, tids >>= 1) {
1625 struct ath_atx_tid *tid;
1626
1627 if (!(tids & 1))
1628 continue;
1629
1630 tid = ATH_AN_2_TID(an, i);
1631
1632 ath_txq_lock(sc, tid->txq);
1633 while (nframes > 0) {
1634 bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
1635 if (!bf)
1636 break;
1637
1638 __skb_unlink(bf->bf_mpdu, tid_q);
1639 list_add_tail(&bf->list, &bf_q);
1640 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1641 if (bf_isampdu(bf)) {
1642 ath_tx_addto_baw(sc, tid, bf);
1643 bf->bf_state.bf_type &= ~BUF_AGGR;
1644 }
1645 if (bf_tail)
1646 bf_tail->bf_next = bf;
1647
1648 bf_tail = bf;
1649 nframes--;
1650 sent++;
1651 TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1652
1653 if (an->sta && !ath_tid_has_buffered(tid))
1654 ieee80211_sta_set_buffered(an->sta, i, false);
1655 }
1656 ath_txq_unlock_complete(sc, tid->txq);
1657 }
1658
1659 if (list_empty(&bf_q))
1660 return;
1661
1662 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1663 info->flags |= IEEE80211_TX_STATUS_EOSP;
1664
1665 bf = list_first_entry(&bf_q, struct ath_buf, list);
1666 ath_txq_lock(sc, txq);
1667 ath_tx_fill_desc(sc, bf, txq, 0);
1668 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1669 ath_txq_unlock(sc, txq);
1670 }
1671
1672 /********************/
1673 /* Queue Management */
1674 /********************/
1675
ath_txq_setup(struct ath_softc * sc,int qtype,int subtype)1676 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1677 {
1678 struct ath_hw *ah = sc->sc_ah;
1679 struct ath9k_tx_queue_info qi;
1680 static const int subtype_txq_to_hwq[] = {
1681 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1682 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1683 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1684 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1685 };
1686 int axq_qnum, i;
1687
1688 memset(&qi, 0, sizeof(qi));
1689 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1690 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1691 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1692 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1693 qi.tqi_physCompBuf = 0;
1694
1695 /*
1696 * Enable interrupts only for EOL and DESC conditions.
1697 * We mark tx descriptors to receive a DESC interrupt
1698 * when a tx queue gets deep; otherwise waiting for the
1699 * EOL to reap descriptors. Note that this is done to
1700 * reduce interrupt load and this only defers reaping
1701 * descriptors, never transmitting frames. Aside from
1702 * reducing interrupts this also permits more concurrency.
1703 * The only potential downside is if the tx queue backs
1704 * up in which case the top half of the kernel may backup
1705 * due to a lack of tx descriptors.
1706 *
1707 * The UAPSD queue is an exception, since we take a desc-
1708 * based intr on the EOSP frames.
1709 */
1710 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1711 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1712 } else {
1713 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1714 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1715 else
1716 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1717 TXQ_FLAG_TXDESCINT_ENABLE;
1718 }
1719 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1720 if (axq_qnum == -1) {
1721 /*
1722 * NB: don't print a message, this happens
1723 * normally on parts with too few tx queues
1724 */
1725 return NULL;
1726 }
1727 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1728 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1729
1730 txq->axq_qnum = axq_qnum;
1731 txq->mac80211_qnum = -1;
1732 txq->axq_link = NULL;
1733 __skb_queue_head_init(&txq->complete_q);
1734 INIT_LIST_HEAD(&txq->axq_q);
1735 spin_lock_init(&txq->axq_lock);
1736 txq->axq_depth = 0;
1737 txq->axq_ampdu_depth = 0;
1738 txq->axq_tx_inprogress = false;
1739 sc->tx.txqsetup |= 1<<axq_qnum;
1740
1741 txq->txq_headidx = txq->txq_tailidx = 0;
1742 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1743 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1744 }
1745 return &sc->tx.txq[axq_qnum];
1746 }
1747
ath_txq_update(struct ath_softc * sc,int qnum,struct ath9k_tx_queue_info * qinfo)1748 int ath_txq_update(struct ath_softc *sc, int qnum,
1749 struct ath9k_tx_queue_info *qinfo)
1750 {
1751 struct ath_hw *ah = sc->sc_ah;
1752 int error = 0;
1753 struct ath9k_tx_queue_info qi;
1754
1755 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1756
1757 ath9k_hw_get_txq_props(ah, qnum, &qi);
1758 qi.tqi_aifs = qinfo->tqi_aifs;
1759 qi.tqi_cwmin = qinfo->tqi_cwmin;
1760 qi.tqi_cwmax = qinfo->tqi_cwmax;
1761 qi.tqi_burstTime = qinfo->tqi_burstTime;
1762 qi.tqi_readyTime = qinfo->tqi_readyTime;
1763
1764 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1765 ath_err(ath9k_hw_common(sc->sc_ah),
1766 "Unable to update hardware queue %u!\n", qnum);
1767 error = -EIO;
1768 } else {
1769 ath9k_hw_resettxqueue(ah, qnum);
1770 }
1771
1772 return error;
1773 }
1774
ath_cabq_update(struct ath_softc * sc)1775 int ath_cabq_update(struct ath_softc *sc)
1776 {
1777 struct ath9k_tx_queue_info qi;
1778 struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1779 int qnum = sc->beacon.cabq->axq_qnum;
1780
1781 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1782
1783 qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1784 ATH_CABQ_READY_TIME) / 100;
1785 ath_txq_update(sc, qnum, &qi);
1786
1787 return 0;
1788 }
1789
ath_drain_txq_list(struct ath_softc * sc,struct ath_txq * txq,struct list_head * list)1790 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1791 struct list_head *list)
1792 {
1793 struct ath_buf *bf, *lastbf;
1794 struct list_head bf_head;
1795 struct ath_tx_status ts;
1796
1797 memset(&ts, 0, sizeof(ts));
1798 ts.ts_status = ATH9K_TX_FLUSH;
1799 INIT_LIST_HEAD(&bf_head);
1800
1801 while (!list_empty(list)) {
1802 bf = list_first_entry(list, struct ath_buf, list);
1803
1804 if (bf->bf_state.stale) {
1805 list_del(&bf->list);
1806
1807 ath_tx_return_buffer(sc, bf);
1808 continue;
1809 }
1810
1811 lastbf = bf->bf_lastbf;
1812 list_cut_position(&bf_head, list, &lastbf->list);
1813 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1814 }
1815 }
1816
1817 /*
1818 * Drain a given TX queue (could be Beacon or Data)
1819 *
1820 * This assumes output has been stopped and
1821 * we do not need to block ath_tx_tasklet.
1822 */
ath_draintxq(struct ath_softc * sc,struct ath_txq * txq)1823 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1824 {
1825 ath_txq_lock(sc, txq);
1826
1827 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1828 int idx = txq->txq_tailidx;
1829
1830 while (!list_empty(&txq->txq_fifo[idx])) {
1831 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1832
1833 INCR(idx, ATH_TXFIFO_DEPTH);
1834 }
1835 txq->txq_tailidx = idx;
1836 }
1837
1838 txq->axq_link = NULL;
1839 txq->axq_tx_inprogress = false;
1840 ath_drain_txq_list(sc, txq, &txq->axq_q);
1841
1842 ath_txq_unlock_complete(sc, txq);
1843 }
1844
ath_drain_all_txq(struct ath_softc * sc)1845 bool ath_drain_all_txq(struct ath_softc *sc)
1846 {
1847 struct ath_hw *ah = sc->sc_ah;
1848 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1849 struct ath_txq *txq;
1850 int i;
1851 u32 npend = 0;
1852
1853 if (test_bit(ATH_OP_INVALID, &common->op_flags))
1854 return true;
1855
1856 ath9k_hw_abort_tx_dma(ah);
1857
1858 /* Check if any queue remains active */
1859 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1860 if (!ATH_TXQ_SETUP(sc, i))
1861 continue;
1862
1863 if (!sc->tx.txq[i].axq_depth)
1864 continue;
1865
1866 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1867 npend |= BIT(i);
1868 }
1869
1870 if (npend) {
1871 RESET_STAT_INC(sc, RESET_TX_DMA_ERROR);
1872 ath_dbg(common, RESET,
1873 "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1874 }
1875
1876 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1877 if (!ATH_TXQ_SETUP(sc, i))
1878 continue;
1879
1880 /*
1881 * The caller will resume queues with ieee80211_wake_queues.
1882 * Mark the queue as not stopped to prevent ath_tx_complete
1883 * from waking the queue too early.
1884 */
1885 txq = &sc->tx.txq[i];
1886 txq->stopped = false;
1887 ath_draintxq(sc, txq);
1888 }
1889
1890 return !npend;
1891 }
1892
ath_tx_cleanupq(struct ath_softc * sc,struct ath_txq * txq)1893 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1894 {
1895 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1896 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1897 }
1898
1899 /* For each acq entry, for each tid, try to schedule packets
1900 * for transmit until ampdu_depth has reached min Q depth.
1901 */
ath_txq_schedule(struct ath_softc * sc,struct ath_txq * txq)1902 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1903 {
1904 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1905 struct ath_atx_tid *tid, *last_tid;
1906 struct list_head *tid_list;
1907 bool sent = false;
1908
1909 if (txq->mac80211_qnum < 0)
1910 return;
1911
1912 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1913 return;
1914
1915 spin_lock_bh(&sc->chan_lock);
1916 tid_list = &sc->cur_chan->acq[txq->mac80211_qnum];
1917
1918 if (list_empty(tid_list)) {
1919 spin_unlock_bh(&sc->chan_lock);
1920 return;
1921 }
1922
1923 rcu_read_lock();
1924
1925 last_tid = list_entry(tid_list->prev, struct ath_atx_tid, list);
1926 while (!list_empty(tid_list)) {
1927 bool stop = false;
1928
1929 if (sc->cur_chan->stopped)
1930 break;
1931
1932 tid = list_first_entry(tid_list, struct ath_atx_tid, list);
1933 list_del_init(&tid->list);
1934
1935 if (ath_tx_sched_aggr(sc, txq, tid, &stop))
1936 sent = true;
1937
1938 /*
1939 * add tid to round-robin queue if more frames
1940 * are pending for the tid
1941 */
1942 if (ath_tid_has_buffered(tid))
1943 ath_tx_queue_tid(sc, txq, tid);
1944
1945 if (stop)
1946 break;
1947
1948 if (tid == last_tid) {
1949 if (!sent)
1950 break;
1951
1952 sent = false;
1953 last_tid = list_entry(tid_list->prev,
1954 struct ath_atx_tid, list);
1955 }
1956 }
1957
1958 rcu_read_unlock();
1959 spin_unlock_bh(&sc->chan_lock);
1960 }
1961
ath_txq_schedule_all(struct ath_softc * sc)1962 void ath_txq_schedule_all(struct ath_softc *sc)
1963 {
1964 struct ath_txq *txq;
1965 int i;
1966
1967 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
1968 txq = sc->tx.txq_map[i];
1969
1970 spin_lock_bh(&txq->axq_lock);
1971 ath_txq_schedule(sc, txq);
1972 spin_unlock_bh(&txq->axq_lock);
1973 }
1974 }
1975
1976 /***********/
1977 /* TX, DMA */
1978 /***********/
1979
1980 /*
1981 * Insert a chain of ath_buf (descriptors) on a txq and
1982 * assume the descriptors are already chained together by caller.
1983 */
ath_tx_txqaddbuf(struct ath_softc * sc,struct ath_txq * txq,struct list_head * head,bool internal)1984 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1985 struct list_head *head, bool internal)
1986 {
1987 struct ath_hw *ah = sc->sc_ah;
1988 struct ath_common *common = ath9k_hw_common(ah);
1989 struct ath_buf *bf, *bf_last;
1990 bool puttxbuf = false;
1991 bool edma;
1992
1993 /*
1994 * Insert the frame on the outbound list and
1995 * pass it on to the hardware.
1996 */
1997
1998 if (list_empty(head))
1999 return;
2000
2001 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
2002 bf = list_first_entry(head, struct ath_buf, list);
2003 bf_last = list_entry(head->prev, struct ath_buf, list);
2004
2005 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
2006 txq->axq_qnum, txq->axq_depth);
2007
2008 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
2009 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
2010 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
2011 puttxbuf = true;
2012 } else {
2013 list_splice_tail_init(head, &txq->axq_q);
2014
2015 if (txq->axq_link) {
2016 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
2017 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
2018 txq->axq_qnum, txq->axq_link,
2019 ito64(bf->bf_daddr), bf->bf_desc);
2020 } else if (!edma)
2021 puttxbuf = true;
2022
2023 txq->axq_link = bf_last->bf_desc;
2024 }
2025
2026 if (puttxbuf) {
2027 TX_STAT_INC(txq->axq_qnum, puttxbuf);
2028 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
2029 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
2030 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
2031 }
2032
2033 if (!edma || sc->tx99_state) {
2034 TX_STAT_INC(txq->axq_qnum, txstart);
2035 ath9k_hw_txstart(ah, txq->axq_qnum);
2036 }
2037
2038 if (!internal) {
2039 while (bf) {
2040 txq->axq_depth++;
2041 if (bf_is_ampdu_not_probing(bf))
2042 txq->axq_ampdu_depth++;
2043
2044 bf_last = bf->bf_lastbf;
2045 bf = bf_last->bf_next;
2046 bf_last->bf_next = NULL;
2047 }
2048 }
2049 }
2050
ath_tx_send_normal(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct sk_buff * skb)2051 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2052 struct ath_atx_tid *tid, struct sk_buff *skb)
2053 {
2054 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2055 struct ath_frame_info *fi = get_frame_info(skb);
2056 struct list_head bf_head;
2057 struct ath_buf *bf = fi->bf;
2058
2059 INIT_LIST_HEAD(&bf_head);
2060 list_add_tail(&bf->list, &bf_head);
2061 bf->bf_state.bf_type = 0;
2062 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2063 bf->bf_state.bf_type = BUF_AMPDU;
2064 ath_tx_addto_baw(sc, tid, bf);
2065 }
2066
2067 bf->bf_next = NULL;
2068 bf->bf_lastbf = bf;
2069 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2070 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2071 TX_STAT_INC(txq->axq_qnum, queued);
2072 }
2073
setup_frame_info(struct ieee80211_hw * hw,struct ieee80211_sta * sta,struct sk_buff * skb,int framelen)2074 static void setup_frame_info(struct ieee80211_hw *hw,
2075 struct ieee80211_sta *sta,
2076 struct sk_buff *skb,
2077 int framelen)
2078 {
2079 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2080 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2081 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2082 const struct ieee80211_rate *rate;
2083 struct ath_frame_info *fi = get_frame_info(skb);
2084 struct ath_node *an = NULL;
2085 enum ath9k_key_type keytype;
2086 bool short_preamble = false;
2087 u8 txpower;
2088
2089 /*
2090 * We check if Short Preamble is needed for the CTS rate by
2091 * checking the BSS's global flag.
2092 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2093 */
2094 if (tx_info->control.vif &&
2095 tx_info->control.vif->bss_conf.use_short_preamble)
2096 short_preamble = true;
2097
2098 rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2099 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2100
2101 if (sta)
2102 an = (struct ath_node *) sta->drv_priv;
2103
2104 if (tx_info->control.vif) {
2105 struct ieee80211_vif *vif = tx_info->control.vif;
2106
2107 txpower = 2 * vif->bss_conf.txpower;
2108 } else {
2109 struct ath_softc *sc = hw->priv;
2110
2111 txpower = sc->cur_chan->cur_txpower;
2112 }
2113
2114 memset(fi, 0, sizeof(*fi));
2115 fi->txq = -1;
2116 if (hw_key)
2117 fi->keyix = hw_key->hw_key_idx;
2118 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2119 fi->keyix = an->ps_key;
2120 else
2121 fi->keyix = ATH9K_TXKEYIX_INVALID;
2122 fi->dyn_smps = sta && sta->smps_mode == IEEE80211_SMPS_DYNAMIC;
2123 fi->keytype = keytype;
2124 fi->framelen = framelen;
2125 fi->tx_power = txpower;
2126
2127 if (!rate)
2128 return;
2129 fi->rtscts_rate = rate->hw_value;
2130 if (short_preamble)
2131 fi->rtscts_rate |= rate->hw_value_short;
2132 }
2133
ath_txchainmask_reduction(struct ath_softc * sc,u8 chainmask,u32 rate)2134 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2135 {
2136 struct ath_hw *ah = sc->sc_ah;
2137 struct ath9k_channel *curchan = ah->curchan;
2138
2139 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2140 (chainmask == 0x7) && (rate < 0x90))
2141 return 0x3;
2142 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2143 IS_CCK_RATE(rate))
2144 return 0x2;
2145 else
2146 return chainmask;
2147 }
2148
2149 /*
2150 * Assign a descriptor (and sequence number if necessary,
2151 * and map buffer for DMA. Frees skb on error
2152 */
ath_tx_setup_buffer(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct sk_buff * skb)2153 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2154 struct ath_txq *txq,
2155 struct ath_atx_tid *tid,
2156 struct sk_buff *skb)
2157 {
2158 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2159 struct ath_frame_info *fi = get_frame_info(skb);
2160 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2161 struct ath_buf *bf;
2162 int fragno;
2163 u16 seqno;
2164
2165 bf = ath_tx_get_buffer(sc);
2166 if (!bf) {
2167 ath_dbg(common, XMIT, "TX buffers are full\n");
2168 return NULL;
2169 }
2170
2171 ATH_TXBUF_RESET(bf);
2172
2173 if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2174 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2175 seqno = tid->seq_next;
2176 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2177
2178 if (fragno)
2179 hdr->seq_ctrl |= cpu_to_le16(fragno);
2180
2181 if (!ieee80211_has_morefrags(hdr->frame_control))
2182 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2183
2184 bf->bf_state.seqno = seqno;
2185 }
2186
2187 bf->bf_mpdu = skb;
2188
2189 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2190 skb->len, DMA_TO_DEVICE);
2191 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2192 bf->bf_mpdu = NULL;
2193 bf->bf_buf_addr = 0;
2194 ath_err(ath9k_hw_common(sc->sc_ah),
2195 "dma_mapping_error() on TX\n");
2196 ath_tx_return_buffer(sc, bf);
2197 return NULL;
2198 }
2199
2200 fi->bf = bf;
2201
2202 return bf;
2203 }
2204
ath_assign_seq(struct ath_common * common,struct sk_buff * skb)2205 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2206 {
2207 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2208 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2209 struct ieee80211_vif *vif = info->control.vif;
2210 struct ath_vif *avp;
2211
2212 if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2213 return;
2214
2215 if (!vif)
2216 return;
2217
2218 avp = (struct ath_vif *)vif->drv_priv;
2219
2220 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2221 avp->seq_no += 0x10;
2222
2223 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2224 hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2225 }
2226
ath_tx_prepare(struct ieee80211_hw * hw,struct sk_buff * skb,struct ath_tx_control * txctl)2227 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2228 struct ath_tx_control *txctl)
2229 {
2230 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2231 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2232 struct ieee80211_sta *sta = txctl->sta;
2233 struct ieee80211_vif *vif = info->control.vif;
2234 struct ath_vif *avp;
2235 struct ath_softc *sc = hw->priv;
2236 int frmlen = skb->len + FCS_LEN;
2237 int padpos, padsize;
2238
2239 /* NOTE: sta can be NULL according to net/mac80211.h */
2240 if (sta)
2241 txctl->an = (struct ath_node *)sta->drv_priv;
2242 else if (vif && ieee80211_is_data(hdr->frame_control)) {
2243 avp = (void *)vif->drv_priv;
2244 txctl->an = &avp->mcast_node;
2245 }
2246
2247 if (info->control.hw_key)
2248 frmlen += info->control.hw_key->icv_len;
2249
2250 ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2251
2252 if ((vif && vif->type != NL80211_IFTYPE_AP &&
2253 vif->type != NL80211_IFTYPE_AP_VLAN) ||
2254 !ieee80211_is_data(hdr->frame_control))
2255 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2256
2257 /* Add the padding after the header if this is not already done */
2258 padpos = ieee80211_hdrlen(hdr->frame_control);
2259 padsize = padpos & 3;
2260 if (padsize && skb->len > padpos) {
2261 if (skb_headroom(skb) < padsize)
2262 return -ENOMEM;
2263
2264 skb_push(skb, padsize);
2265 memmove(skb->data, skb->data + padsize, padpos);
2266 }
2267
2268 setup_frame_info(hw, sta, skb, frmlen);
2269 return 0;
2270 }
2271
2272
2273 /* Upon failure caller should free skb */
ath_tx_start(struct ieee80211_hw * hw,struct sk_buff * skb,struct ath_tx_control * txctl)2274 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2275 struct ath_tx_control *txctl)
2276 {
2277 struct ieee80211_hdr *hdr;
2278 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2279 struct ieee80211_sta *sta = txctl->sta;
2280 struct ieee80211_vif *vif = info->control.vif;
2281 struct ath_frame_info *fi = get_frame_info(skb);
2282 struct ath_vif *avp = NULL;
2283 struct ath_softc *sc = hw->priv;
2284 struct ath_txq *txq = txctl->txq;
2285 struct ath_atx_tid *tid = NULL;
2286 struct ath_buf *bf;
2287 bool queue, skip_uapsd = false, ps_resp;
2288 int q, ret;
2289
2290 if (vif)
2291 avp = (void *)vif->drv_priv;
2292
2293 if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN)
2294 txctl->force_channel = true;
2295
2296 ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
2297
2298 ret = ath_tx_prepare(hw, skb, txctl);
2299 if (ret)
2300 return ret;
2301
2302 hdr = (struct ieee80211_hdr *) skb->data;
2303 /*
2304 * At this point, the vif, hw_key and sta pointers in the tx control
2305 * info are no longer valid (overwritten by the ath_frame_info data.
2306 */
2307
2308 q = skb_get_queue_mapping(skb);
2309
2310 ath_txq_lock(sc, txq);
2311 if (txq == sc->tx.txq_map[q]) {
2312 fi->txq = q;
2313 if (++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2314 !txq->stopped) {
2315 if (ath9k_is_chanctx_enabled())
2316 ieee80211_stop_queue(sc->hw, info->hw_queue);
2317 else
2318 ieee80211_stop_queue(sc->hw, q);
2319 txq->stopped = true;
2320 }
2321 }
2322
2323 queue = ieee80211_is_data_present(hdr->frame_control);
2324
2325 /* Force queueing of all frames that belong to a virtual interface on
2326 * a different channel context, to ensure that they are sent on the
2327 * correct channel.
2328 */
2329 if (((avp && avp->chanctx != sc->cur_chan) ||
2330 sc->cur_chan->stopped) && !txctl->force_channel) {
2331 if (!txctl->an)
2332 txctl->an = &avp->mcast_node;
2333 queue = true;
2334 skip_uapsd = true;
2335 }
2336
2337 if (txctl->an && queue)
2338 tid = ath_get_skb_tid(sc, txctl->an, skb);
2339
2340 if (!skip_uapsd && ps_resp) {
2341 ath_txq_unlock(sc, txq);
2342 txq = sc->tx.uapsdq;
2343 ath_txq_lock(sc, txq);
2344 } else if (txctl->an && queue) {
2345 WARN_ON(tid->txq != txctl->txq);
2346
2347 if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
2348 tid->clear_ps_filter = true;
2349
2350 /*
2351 * Add this frame to software queue for scheduling later
2352 * for aggregation.
2353 */
2354 TX_STAT_INC(txq->axq_qnum, a_queued_sw);
2355 __skb_queue_tail(&tid->buf_q, skb);
2356 if (!txctl->an->sleeping)
2357 ath_tx_queue_tid(sc, txq, tid);
2358
2359 ath_txq_schedule(sc, txq);
2360 goto out;
2361 }
2362
2363 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2364 if (!bf) {
2365 ath_txq_skb_done(sc, txq, skb);
2366 if (txctl->paprd)
2367 dev_kfree_skb_any(skb);
2368 else
2369 ieee80211_free_txskb(sc->hw, skb);
2370 goto out;
2371 }
2372
2373 bf->bf_state.bfs_paprd = txctl->paprd;
2374
2375 if (txctl->paprd)
2376 bf->bf_state.bfs_paprd_timestamp = jiffies;
2377
2378 ath_set_rates(vif, sta, bf);
2379 ath_tx_send_normal(sc, txq, tid, skb);
2380
2381 out:
2382 ath_txq_unlock(sc, txq);
2383
2384 return 0;
2385 }
2386
ath_tx_cabq(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct sk_buff * skb)2387 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2388 struct sk_buff *skb)
2389 {
2390 struct ath_softc *sc = hw->priv;
2391 struct ath_tx_control txctl = {
2392 .txq = sc->beacon.cabq
2393 };
2394 struct ath_tx_info info = {};
2395 struct ieee80211_hdr *hdr;
2396 struct ath_buf *bf_tail = NULL;
2397 struct ath_buf *bf;
2398 LIST_HEAD(bf_q);
2399 int duration = 0;
2400 int max_duration;
2401
2402 max_duration =
2403 sc->cur_chan->beacon.beacon_interval * 1000 *
2404 sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2405
2406 do {
2407 struct ath_frame_info *fi = get_frame_info(skb);
2408
2409 if (ath_tx_prepare(hw, skb, &txctl))
2410 break;
2411
2412 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2413 if (!bf)
2414 break;
2415
2416 bf->bf_lastbf = bf;
2417 ath_set_rates(vif, NULL, bf);
2418 ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2419 duration += info.rates[0].PktDuration;
2420 if (bf_tail)
2421 bf_tail->bf_next = bf;
2422
2423 list_add_tail(&bf->list, &bf_q);
2424 bf_tail = bf;
2425 skb = NULL;
2426
2427 if (duration > max_duration)
2428 break;
2429
2430 skb = ieee80211_get_buffered_bc(hw, vif);
2431 } while(skb);
2432
2433 if (skb)
2434 ieee80211_free_txskb(hw, skb);
2435
2436 if (list_empty(&bf_q))
2437 return;
2438
2439 bf = list_first_entry(&bf_q, struct ath_buf, list);
2440 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2441
2442 if (hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) {
2443 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2444 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2445 sizeof(*hdr), DMA_TO_DEVICE);
2446 }
2447
2448 ath_txq_lock(sc, txctl.txq);
2449 ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2450 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2451 TX_STAT_INC(txctl.txq->axq_qnum, queued);
2452 ath_txq_unlock(sc, txctl.txq);
2453 }
2454
2455 /*****************/
2456 /* TX Completion */
2457 /*****************/
2458
ath_tx_complete(struct ath_softc * sc,struct sk_buff * skb,int tx_flags,struct ath_txq * txq)2459 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2460 int tx_flags, struct ath_txq *txq)
2461 {
2462 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2463 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2464 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2465 int padpos, padsize;
2466 unsigned long flags;
2467
2468 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2469
2470 if (sc->sc_ah->caldata)
2471 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2472
2473 if (!(tx_flags & ATH_TX_ERROR)) {
2474 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
2475 tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
2476 else
2477 tx_info->flags |= IEEE80211_TX_STAT_ACK;
2478 }
2479
2480 padpos = ieee80211_hdrlen(hdr->frame_control);
2481 padsize = padpos & 3;
2482 if (padsize && skb->len>padpos+padsize) {
2483 /*
2484 * Remove MAC header padding before giving the frame back to
2485 * mac80211.
2486 */
2487 memmove(skb->data + padsize, skb->data, padpos);
2488 skb_pull(skb, padsize);
2489 }
2490
2491 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2492 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2493 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2494 ath_dbg(common, PS,
2495 "Going back to sleep after having received TX status (0x%lx)\n",
2496 sc->ps_flags & (PS_WAIT_FOR_BEACON |
2497 PS_WAIT_FOR_CAB |
2498 PS_WAIT_FOR_PSPOLL_DATA |
2499 PS_WAIT_FOR_TX_ACK));
2500 }
2501 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2502
2503 __skb_queue_tail(&txq->complete_q, skb);
2504 ath_txq_skb_done(sc, txq, skb);
2505 }
2506
ath_tx_complete_buf(struct ath_softc * sc,struct ath_buf * bf,struct ath_txq * txq,struct list_head * bf_q,struct ath_tx_status * ts,int txok)2507 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2508 struct ath_txq *txq, struct list_head *bf_q,
2509 struct ath_tx_status *ts, int txok)
2510 {
2511 struct sk_buff *skb = bf->bf_mpdu;
2512 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2513 unsigned long flags;
2514 int tx_flags = 0;
2515
2516 if (!txok)
2517 tx_flags |= ATH_TX_ERROR;
2518
2519 if (ts->ts_status & ATH9K_TXERR_FILT)
2520 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2521
2522 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2523 bf->bf_buf_addr = 0;
2524 if (sc->tx99_state)
2525 goto skip_tx_complete;
2526
2527 if (bf->bf_state.bfs_paprd) {
2528 if (time_after(jiffies,
2529 bf->bf_state.bfs_paprd_timestamp +
2530 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2531 dev_kfree_skb_any(skb);
2532 else
2533 complete(&sc->paprd_complete);
2534 } else {
2535 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2536 ath_tx_complete(sc, skb, tx_flags, txq);
2537 }
2538 skip_tx_complete:
2539 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2540 * accidentally reference it later.
2541 */
2542 bf->bf_mpdu = NULL;
2543
2544 /*
2545 * Return the list of ath_buf of this mpdu to free queue
2546 */
2547 spin_lock_irqsave(&sc->tx.txbuflock, flags);
2548 list_splice_tail_init(bf_q, &sc->tx.txbuf);
2549 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2550 }
2551
ath_tx_rc_status(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_status * ts,int nframes,int nbad,int txok)2552 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2553 struct ath_tx_status *ts, int nframes, int nbad,
2554 int txok)
2555 {
2556 struct sk_buff *skb = bf->bf_mpdu;
2557 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2558 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2559 struct ieee80211_hw *hw = sc->hw;
2560 struct ath_hw *ah = sc->sc_ah;
2561 u8 i, tx_rateindex;
2562
2563 if (txok)
2564 tx_info->status.ack_signal = ts->ts_rssi;
2565
2566 tx_rateindex = ts->ts_rateindex;
2567 WARN_ON(tx_rateindex >= hw->max_rates);
2568
2569 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2570 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2571
2572 BUG_ON(nbad > nframes);
2573 }
2574 tx_info->status.ampdu_len = nframes;
2575 tx_info->status.ampdu_ack_len = nframes - nbad;
2576
2577 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2578 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2579 /*
2580 * If an underrun error is seen assume it as an excessive
2581 * retry only if max frame trigger level has been reached
2582 * (2 KB for single stream, and 4 KB for dual stream).
2583 * Adjust the long retry as if the frame was tried
2584 * hw->max_rate_tries times to affect how rate control updates
2585 * PER for the failed rate.
2586 * In case of congestion on the bus penalizing this type of
2587 * underruns should help hardware actually transmit new frames
2588 * successfully by eventually preferring slower rates.
2589 * This itself should also alleviate congestion on the bus.
2590 */
2591 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2592 ATH9K_TX_DELIM_UNDERRUN)) &&
2593 ieee80211_is_data(hdr->frame_control) &&
2594 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2595 tx_info->status.rates[tx_rateindex].count =
2596 hw->max_rate_tries;
2597 }
2598
2599 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2600 tx_info->status.rates[i].count = 0;
2601 tx_info->status.rates[i].idx = -1;
2602 }
2603
2604 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2605 }
2606
ath_tx_processq(struct ath_softc * sc,struct ath_txq * txq)2607 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2608 {
2609 struct ath_hw *ah = sc->sc_ah;
2610 struct ath_common *common = ath9k_hw_common(ah);
2611 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2612 struct list_head bf_head;
2613 struct ath_desc *ds;
2614 struct ath_tx_status ts;
2615 int status;
2616
2617 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2618 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2619 txq->axq_link);
2620
2621 ath_txq_lock(sc, txq);
2622 for (;;) {
2623 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2624 break;
2625
2626 if (list_empty(&txq->axq_q)) {
2627 txq->axq_link = NULL;
2628 ath_txq_schedule(sc, txq);
2629 break;
2630 }
2631 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2632
2633 /*
2634 * There is a race condition that a BH gets scheduled
2635 * after sw writes TxE and before hw re-load the last
2636 * descriptor to get the newly chained one.
2637 * Software must keep the last DONE descriptor as a
2638 * holding descriptor - software does so by marking
2639 * it with the STALE flag.
2640 */
2641 bf_held = NULL;
2642 if (bf->bf_state.stale) {
2643 bf_held = bf;
2644 if (list_is_last(&bf_held->list, &txq->axq_q))
2645 break;
2646
2647 bf = list_entry(bf_held->list.next, struct ath_buf,
2648 list);
2649 }
2650
2651 lastbf = bf->bf_lastbf;
2652 ds = lastbf->bf_desc;
2653
2654 memset(&ts, 0, sizeof(ts));
2655 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2656 if (status == -EINPROGRESS)
2657 break;
2658
2659 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2660
2661 /*
2662 * Remove ath_buf's of the same transmit unit from txq,
2663 * however leave the last descriptor back as the holding
2664 * descriptor for hw.
2665 */
2666 lastbf->bf_state.stale = true;
2667 INIT_LIST_HEAD(&bf_head);
2668 if (!list_is_singular(&lastbf->list))
2669 list_cut_position(&bf_head,
2670 &txq->axq_q, lastbf->list.prev);
2671
2672 if (bf_held) {
2673 list_del(&bf_held->list);
2674 ath_tx_return_buffer(sc, bf_held);
2675 }
2676
2677 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2678 }
2679 ath_txq_unlock_complete(sc, txq);
2680 }
2681
ath_tx_tasklet(struct ath_softc * sc)2682 void ath_tx_tasklet(struct ath_softc *sc)
2683 {
2684 struct ath_hw *ah = sc->sc_ah;
2685 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2686 int i;
2687
2688 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2689 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2690 ath_tx_processq(sc, &sc->tx.txq[i]);
2691 }
2692 }
2693
ath_tx_edma_tasklet(struct ath_softc * sc)2694 void ath_tx_edma_tasklet(struct ath_softc *sc)
2695 {
2696 struct ath_tx_status ts;
2697 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2698 struct ath_hw *ah = sc->sc_ah;
2699 struct ath_txq *txq;
2700 struct ath_buf *bf, *lastbf;
2701 struct list_head bf_head;
2702 struct list_head *fifo_list;
2703 int status;
2704
2705 for (;;) {
2706 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2707 break;
2708
2709 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2710 if (status == -EINPROGRESS)
2711 break;
2712 if (status == -EIO) {
2713 ath_dbg(common, XMIT, "Error processing tx status\n");
2714 break;
2715 }
2716
2717 /* Process beacon completions separately */
2718 if (ts.qid == sc->beacon.beaconq) {
2719 sc->beacon.tx_processed = true;
2720 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2721
2722 if (ath9k_is_chanctx_enabled()) {
2723 ath_chanctx_event(sc, NULL,
2724 ATH_CHANCTX_EVENT_BEACON_SENT);
2725 }
2726
2727 ath9k_csa_update(sc);
2728 continue;
2729 }
2730
2731 txq = &sc->tx.txq[ts.qid];
2732
2733 ath_txq_lock(sc, txq);
2734
2735 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2736
2737 fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2738 if (list_empty(fifo_list)) {
2739 ath_txq_unlock(sc, txq);
2740 return;
2741 }
2742
2743 bf = list_first_entry(fifo_list, struct ath_buf, list);
2744 if (bf->bf_state.stale) {
2745 list_del(&bf->list);
2746 ath_tx_return_buffer(sc, bf);
2747 bf = list_first_entry(fifo_list, struct ath_buf, list);
2748 }
2749
2750 lastbf = bf->bf_lastbf;
2751
2752 INIT_LIST_HEAD(&bf_head);
2753 if (list_is_last(&lastbf->list, fifo_list)) {
2754 list_splice_tail_init(fifo_list, &bf_head);
2755 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2756
2757 if (!list_empty(&txq->axq_q)) {
2758 struct list_head bf_q;
2759
2760 INIT_LIST_HEAD(&bf_q);
2761 txq->axq_link = NULL;
2762 list_splice_tail_init(&txq->axq_q, &bf_q);
2763 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2764 }
2765 } else {
2766 lastbf->bf_state.stale = true;
2767 if (bf != lastbf)
2768 list_cut_position(&bf_head, fifo_list,
2769 lastbf->list.prev);
2770 }
2771
2772 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2773 ath_txq_unlock_complete(sc, txq);
2774 }
2775 }
2776
2777 /*****************/
2778 /* Init, Cleanup */
2779 /*****************/
2780
ath_txstatus_setup(struct ath_softc * sc,int size)2781 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2782 {
2783 struct ath_descdma *dd = &sc->txsdma;
2784 u8 txs_len = sc->sc_ah->caps.txs_len;
2785
2786 dd->dd_desc_len = size * txs_len;
2787 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2788 &dd->dd_desc_paddr, GFP_KERNEL);
2789 if (!dd->dd_desc)
2790 return -ENOMEM;
2791
2792 return 0;
2793 }
2794
ath_tx_edma_init(struct ath_softc * sc)2795 static int ath_tx_edma_init(struct ath_softc *sc)
2796 {
2797 int err;
2798
2799 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2800 if (!err)
2801 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2802 sc->txsdma.dd_desc_paddr,
2803 ATH_TXSTATUS_RING_SIZE);
2804
2805 return err;
2806 }
2807
ath_tx_init(struct ath_softc * sc,int nbufs)2808 int ath_tx_init(struct ath_softc *sc, int nbufs)
2809 {
2810 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2811 int error = 0;
2812
2813 spin_lock_init(&sc->tx.txbuflock);
2814
2815 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2816 "tx", nbufs, 1, 1);
2817 if (error != 0) {
2818 ath_err(common,
2819 "Failed to allocate tx descriptors: %d\n", error);
2820 return error;
2821 }
2822
2823 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2824 "beacon", ATH_BCBUF, 1, 1);
2825 if (error != 0) {
2826 ath_err(common,
2827 "Failed to allocate beacon descriptors: %d\n", error);
2828 return error;
2829 }
2830
2831 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2832
2833 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2834 error = ath_tx_edma_init(sc);
2835
2836 return error;
2837 }
2838
ath_tx_node_init(struct ath_softc * sc,struct ath_node * an)2839 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2840 {
2841 struct ath_atx_tid *tid;
2842 int tidno, acno;
2843
2844 for (tidno = 0, tid = &an->tid[tidno];
2845 tidno < IEEE80211_NUM_TIDS;
2846 tidno++, tid++) {
2847 tid->an = an;
2848 tid->tidno = tidno;
2849 tid->seq_start = tid->seq_next = 0;
2850 tid->baw_size = WME_MAX_BA;
2851 tid->baw_head = tid->baw_tail = 0;
2852 tid->active = false;
2853 tid->clear_ps_filter = true;
2854 __skb_queue_head_init(&tid->buf_q);
2855 __skb_queue_head_init(&tid->retry_q);
2856 INIT_LIST_HEAD(&tid->list);
2857 acno = TID_TO_WME_AC(tidno);
2858 tid->txq = sc->tx.txq_map[acno];
2859 }
2860 }
2861
ath_tx_node_cleanup(struct ath_softc * sc,struct ath_node * an)2862 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2863 {
2864 struct ath_atx_tid *tid;
2865 struct ath_txq *txq;
2866 int tidno;
2867
2868 for (tidno = 0, tid = &an->tid[tidno];
2869 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2870
2871 txq = tid->txq;
2872
2873 ath_txq_lock(sc, txq);
2874
2875 if (!list_empty(&tid->list))
2876 list_del_init(&tid->list);
2877
2878 ath_tid_drain(sc, txq, tid);
2879 tid->active = false;
2880
2881 ath_txq_unlock(sc, txq);
2882 }
2883 }
2884
2885 #ifdef CONFIG_ATH9K_TX99
2886
ath9k_tx99_send(struct ath_softc * sc,struct sk_buff * skb,struct ath_tx_control * txctl)2887 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2888 struct ath_tx_control *txctl)
2889 {
2890 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2891 struct ath_frame_info *fi = get_frame_info(skb);
2892 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2893 struct ath_buf *bf;
2894 int padpos, padsize;
2895
2896 padpos = ieee80211_hdrlen(hdr->frame_control);
2897 padsize = padpos & 3;
2898
2899 if (padsize && skb->len > padpos) {
2900 if (skb_headroom(skb) < padsize) {
2901 ath_dbg(common, XMIT,
2902 "tx99 padding failed\n");
2903 return -EINVAL;
2904 }
2905
2906 skb_push(skb, padsize);
2907 memmove(skb->data, skb->data + padsize, padpos);
2908 }
2909
2910 fi->keyix = ATH9K_TXKEYIX_INVALID;
2911 fi->framelen = skb->len + FCS_LEN;
2912 fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2913
2914 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2915 if (!bf) {
2916 ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2917 return -EINVAL;
2918 }
2919
2920 ath_set_rates(sc->tx99_vif, NULL, bf);
2921
2922 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2923 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2924
2925 ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2926
2927 return 0;
2928 }
2929
2930 #endif /* CONFIG_ATH9K_TX99 */
2931