• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * atmel_ssc_dai.c  --  ALSA SoC ATMEL SSC Audio Layer Platform driver
3  *
4  * Copyright (C) 2005 SAN People
5  * Copyright (C) 2008 Atmel
6  *
7  * Author: Sedji Gaouaou <sedji.gaouaou@atmel.com>
8  *         ATMEL CORP.
9  *
10  * Based on at91-ssc.c by
11  * Frank Mandarino <fmandarino@endrelia.com>
12  * Based on pxa2xx Platform drivers by
13  * Liam Girdwood <lrg@slimlogic.co.uk>
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  *
20  * This program is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
23  * GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with this program; if not, write to the Free Software
27  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
28  */
29 
30 #include <linux/init.h>
31 #include <linux/module.h>
32 #include <linux/interrupt.h>
33 #include <linux/device.h>
34 #include <linux/delay.h>
35 #include <linux/clk.h>
36 #include <linux/atmel_pdc.h>
37 
38 #include <linux/atmel-ssc.h>
39 #include <sound/core.h>
40 #include <sound/pcm.h>
41 #include <sound/pcm_params.h>
42 #include <sound/initval.h>
43 #include <sound/soc.h>
44 
45 #include "atmel-pcm.h"
46 #include "atmel_ssc_dai.h"
47 
48 
49 #define NUM_SSC_DEVICES		3
50 
51 /*
52  * SSC PDC registers required by the PCM DMA engine.
53  */
54 static struct atmel_pdc_regs pdc_tx_reg = {
55 	.xpr		= ATMEL_PDC_TPR,
56 	.xcr		= ATMEL_PDC_TCR,
57 	.xnpr		= ATMEL_PDC_TNPR,
58 	.xncr		= ATMEL_PDC_TNCR,
59 };
60 
61 static struct atmel_pdc_regs pdc_rx_reg = {
62 	.xpr		= ATMEL_PDC_RPR,
63 	.xcr		= ATMEL_PDC_RCR,
64 	.xnpr		= ATMEL_PDC_RNPR,
65 	.xncr		= ATMEL_PDC_RNCR,
66 };
67 
68 /*
69  * SSC & PDC status bits for transmit and receive.
70  */
71 static struct atmel_ssc_mask ssc_tx_mask = {
72 	.ssc_enable	= SSC_BIT(CR_TXEN),
73 	.ssc_disable	= SSC_BIT(CR_TXDIS),
74 	.ssc_endx	= SSC_BIT(SR_ENDTX),
75 	.ssc_endbuf	= SSC_BIT(SR_TXBUFE),
76 	.ssc_error	= SSC_BIT(SR_OVRUN),
77 	.pdc_enable	= ATMEL_PDC_TXTEN,
78 	.pdc_disable	= ATMEL_PDC_TXTDIS,
79 };
80 
81 static struct atmel_ssc_mask ssc_rx_mask = {
82 	.ssc_enable	= SSC_BIT(CR_RXEN),
83 	.ssc_disable	= SSC_BIT(CR_RXDIS),
84 	.ssc_endx	= SSC_BIT(SR_ENDRX),
85 	.ssc_endbuf	= SSC_BIT(SR_RXBUFF),
86 	.ssc_error	= SSC_BIT(SR_OVRUN),
87 	.pdc_enable	= ATMEL_PDC_RXTEN,
88 	.pdc_disable	= ATMEL_PDC_RXTDIS,
89 };
90 
91 
92 /*
93  * DMA parameters.
94  */
95 static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = {
96 	{{
97 	.name		= "SSC0 PCM out",
98 	.pdc		= &pdc_tx_reg,
99 	.mask		= &ssc_tx_mask,
100 	},
101 	{
102 	.name		= "SSC0 PCM in",
103 	.pdc		= &pdc_rx_reg,
104 	.mask		= &ssc_rx_mask,
105 	} },
106 	{{
107 	.name		= "SSC1 PCM out",
108 	.pdc		= &pdc_tx_reg,
109 	.mask		= &ssc_tx_mask,
110 	},
111 	{
112 	.name		= "SSC1 PCM in",
113 	.pdc		= &pdc_rx_reg,
114 	.mask		= &ssc_rx_mask,
115 	} },
116 	{{
117 	.name		= "SSC2 PCM out",
118 	.pdc		= &pdc_tx_reg,
119 	.mask		= &ssc_tx_mask,
120 	},
121 	{
122 	.name		= "SSC2 PCM in",
123 	.pdc		= &pdc_rx_reg,
124 	.mask		= &ssc_rx_mask,
125 	} },
126 };
127 
128 
129 static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = {
130 	{
131 	.name		= "ssc0",
132 	.lock		= __SPIN_LOCK_UNLOCKED(ssc_info[0].lock),
133 	.dir_mask	= SSC_DIR_MASK_UNUSED,
134 	.initialized	= 0,
135 	},
136 	{
137 	.name		= "ssc1",
138 	.lock		= __SPIN_LOCK_UNLOCKED(ssc_info[1].lock),
139 	.dir_mask	= SSC_DIR_MASK_UNUSED,
140 	.initialized	= 0,
141 	},
142 	{
143 	.name		= "ssc2",
144 	.lock		= __SPIN_LOCK_UNLOCKED(ssc_info[2].lock),
145 	.dir_mask	= SSC_DIR_MASK_UNUSED,
146 	.initialized	= 0,
147 	},
148 };
149 
150 
151 /*
152  * SSC interrupt handler.  Passes PDC interrupts to the DMA
153  * interrupt handler in the PCM driver.
154  */
atmel_ssc_interrupt(int irq,void * dev_id)155 static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id)
156 {
157 	struct atmel_ssc_info *ssc_p = dev_id;
158 	struct atmel_pcm_dma_params *dma_params;
159 	u32 ssc_sr;
160 	u32 ssc_substream_mask;
161 	int i;
162 
163 	ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR)
164 			& (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR);
165 
166 	/*
167 	 * Loop through the substreams attached to this SSC.  If
168 	 * a DMA-related interrupt occurred on that substream, call
169 	 * the DMA interrupt handler function, if one has been
170 	 * registered in the dma_params structure by the PCM driver.
171 	 */
172 	for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) {
173 		dma_params = ssc_p->dma_params[i];
174 
175 		if ((dma_params != NULL) &&
176 			(dma_params->dma_intr_handler != NULL)) {
177 			ssc_substream_mask = (dma_params->mask->ssc_endx |
178 					dma_params->mask->ssc_endbuf);
179 			if (ssc_sr & ssc_substream_mask) {
180 				dma_params->dma_intr_handler(ssc_sr,
181 						dma_params->
182 						substream);
183 			}
184 		}
185 	}
186 
187 	return IRQ_HANDLED;
188 }
189 
190 /*
191  * When the bit clock is input, limit the maximum rate according to the
192  * Serial Clock Ratio Considerations section from the SSC documentation:
193  *
194  *   The Transmitter and the Receiver can be programmed to operate
195  *   with the clock signals provided on either the TK or RK pins.
196  *   This allows the SSC to support many slave-mode data transfers.
197  *   In this case, the maximum clock speed allowed on the RK pin is:
198  *   - Peripheral clock divided by 2 if Receiver Frame Synchro is input
199  *   - Peripheral clock divided by 3 if Receiver Frame Synchro is output
200  *   In addition, the maximum clock speed allowed on the TK pin is:
201  *   - Peripheral clock divided by 6 if Transmit Frame Synchro is input
202  *   - Peripheral clock divided by 2 if Transmit Frame Synchro is output
203  *
204  * When the bit clock is output, limit the rate according to the
205  * SSC divider restrictions.
206  */
atmel_ssc_hw_rule_rate(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)207 static int atmel_ssc_hw_rule_rate(struct snd_pcm_hw_params *params,
208 				  struct snd_pcm_hw_rule *rule)
209 {
210 	struct atmel_ssc_info *ssc_p = rule->private;
211 	struct ssc_device *ssc = ssc_p->ssc;
212 	struct snd_interval *i = hw_param_interval(params, rule->var);
213 	struct snd_interval t;
214 	struct snd_ratnum r = {
215 		.den_min = 1,
216 		.den_max = 4095,
217 		.den_step = 1,
218 	};
219 	unsigned int num = 0, den = 0;
220 	int frame_size;
221 	int mck_div = 2;
222 	int ret;
223 
224 	frame_size = snd_soc_params_to_frame_size(params);
225 	if (frame_size < 0)
226 		return frame_size;
227 
228 	switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
229 	case SND_SOC_DAIFMT_CBM_CFS:
230 		if ((ssc_p->dir_mask & SSC_DIR_MASK_CAPTURE)
231 		    && ssc->clk_from_rk_pin)
232 			/* Receiver Frame Synchro (i.e. capture)
233 			 * is output (format is _CFS) and the RK pin
234 			 * is used for input (format is _CBM_).
235 			 */
236 			mck_div = 3;
237 		break;
238 
239 	case SND_SOC_DAIFMT_CBM_CFM:
240 		if ((ssc_p->dir_mask & SSC_DIR_MASK_PLAYBACK)
241 		    && !ssc->clk_from_rk_pin)
242 			/* Transmit Frame Synchro (i.e. playback)
243 			 * is input (format is _CFM) and the TK pin
244 			 * is used for input (format _CBM_ but not
245 			 * using the RK pin).
246 			 */
247 			mck_div = 6;
248 		break;
249 	}
250 
251 	switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
252 	case SND_SOC_DAIFMT_CBS_CFS:
253 		r.num = ssc_p->mck_rate / mck_div / frame_size;
254 
255 		ret = snd_interval_ratnum(i, 1, &r, &num, &den);
256 		if (ret >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
257 			params->rate_num = num;
258 			params->rate_den = den;
259 		}
260 		break;
261 
262 	case SND_SOC_DAIFMT_CBM_CFS:
263 	case SND_SOC_DAIFMT_CBM_CFM:
264 		t.min = 8000;
265 		t.max = ssc_p->mck_rate / mck_div / frame_size;
266 		t.openmin = t.openmax = 0;
267 		t.integer = 0;
268 		ret = snd_interval_refine(i, &t);
269 		break;
270 
271 	default:
272 		ret = -EINVAL;
273 		break;
274 	}
275 
276 	return ret;
277 }
278 
279 /*-------------------------------------------------------------------------*\
280  * DAI functions
281 \*-------------------------------------------------------------------------*/
282 /*
283  * Startup.  Only that one substream allowed in each direction.
284  */
atmel_ssc_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * dai)285 static int atmel_ssc_startup(struct snd_pcm_substream *substream,
286 			     struct snd_soc_dai *dai)
287 {
288 	struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
289 	struct atmel_pcm_dma_params *dma_params;
290 	int dir, dir_mask;
291 	int ret;
292 
293 	pr_debug("atmel_ssc_startup: SSC_SR=0x%x\n",
294 		ssc_readl(ssc_p->ssc->regs, SR));
295 
296 	/* Enable PMC peripheral clock for this SSC */
297 	pr_debug("atmel_ssc_dai: Starting clock\n");
298 	clk_enable(ssc_p->ssc->clk);
299 	ssc_p->mck_rate = clk_get_rate(ssc_p->ssc->clk);
300 
301 	/* Reset the SSC unless initialized to keep it in a clean state */
302 	if (!ssc_p->initialized)
303 		ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
304 
305 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
306 		dir = 0;
307 		dir_mask = SSC_DIR_MASK_PLAYBACK;
308 	} else {
309 		dir = 1;
310 		dir_mask = SSC_DIR_MASK_CAPTURE;
311 	}
312 
313 	ret = snd_pcm_hw_rule_add(substream->runtime, 0,
314 				  SNDRV_PCM_HW_PARAM_RATE,
315 				  atmel_ssc_hw_rule_rate,
316 				  ssc_p,
317 				  SNDRV_PCM_HW_PARAM_FRAME_BITS,
318 				  SNDRV_PCM_HW_PARAM_CHANNELS, -1);
319 	if (ret < 0) {
320 		dev_err(dai->dev, "Failed to specify rate rule: %d\n", ret);
321 		return ret;
322 	}
323 
324 	dma_params = &ssc_dma_params[dai->id][dir];
325 	dma_params->ssc = ssc_p->ssc;
326 	dma_params->substream = substream;
327 
328 	ssc_p->dma_params[dir] = dma_params;
329 
330 	snd_soc_dai_set_dma_data(dai, substream, dma_params);
331 
332 	spin_lock_irq(&ssc_p->lock);
333 	if (ssc_p->dir_mask & dir_mask) {
334 		spin_unlock_irq(&ssc_p->lock);
335 		return -EBUSY;
336 	}
337 	ssc_p->dir_mask |= dir_mask;
338 	spin_unlock_irq(&ssc_p->lock);
339 
340 	return 0;
341 }
342 
343 /*
344  * Shutdown.  Clear DMA parameters and shutdown the SSC if there
345  * are no other substreams open.
346  */
atmel_ssc_shutdown(struct snd_pcm_substream * substream,struct snd_soc_dai * dai)347 static void atmel_ssc_shutdown(struct snd_pcm_substream *substream,
348 			       struct snd_soc_dai *dai)
349 {
350 	struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
351 	struct atmel_pcm_dma_params *dma_params;
352 	int dir, dir_mask;
353 
354 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
355 		dir = 0;
356 	else
357 		dir = 1;
358 
359 	dma_params = ssc_p->dma_params[dir];
360 
361 	if (dma_params != NULL) {
362 		dma_params->ssc = NULL;
363 		dma_params->substream = NULL;
364 		ssc_p->dma_params[dir] = NULL;
365 	}
366 
367 	dir_mask = 1 << dir;
368 
369 	spin_lock_irq(&ssc_p->lock);
370 	ssc_p->dir_mask &= ~dir_mask;
371 	if (!ssc_p->dir_mask) {
372 		if (ssc_p->initialized) {
373 			free_irq(ssc_p->ssc->irq, ssc_p);
374 			ssc_p->initialized = 0;
375 		}
376 
377 		/* Reset the SSC */
378 		ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
379 		/* Clear the SSC dividers */
380 		ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0;
381 	}
382 	spin_unlock_irq(&ssc_p->lock);
383 
384 	/* Shutdown the SSC clock. */
385 	pr_debug("atmel_ssc_dai: Stopping clock\n");
386 	clk_disable(ssc_p->ssc->clk);
387 }
388 
389 
390 /*
391  * Record the DAI format for use in hw_params().
392  */
atmel_ssc_set_dai_fmt(struct snd_soc_dai * cpu_dai,unsigned int fmt)393 static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai,
394 		unsigned int fmt)
395 {
396 	struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id];
397 
398 	ssc_p->daifmt = fmt;
399 	return 0;
400 }
401 
402 /*
403  * Record SSC clock dividers for use in hw_params().
404  */
atmel_ssc_set_dai_clkdiv(struct snd_soc_dai * cpu_dai,int div_id,int div)405 static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai,
406 	int div_id, int div)
407 {
408 	struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id];
409 
410 	switch (div_id) {
411 	case ATMEL_SSC_CMR_DIV:
412 		/*
413 		 * The same master clock divider is used for both
414 		 * transmit and receive, so if a value has already
415 		 * been set, it must match this value.
416 		 */
417 		if (ssc_p->dir_mask !=
418 			(SSC_DIR_MASK_PLAYBACK | SSC_DIR_MASK_CAPTURE))
419 			ssc_p->cmr_div = div;
420 		else if (ssc_p->cmr_div == 0)
421 			ssc_p->cmr_div = div;
422 		else
423 			if (div != ssc_p->cmr_div)
424 				return -EBUSY;
425 		break;
426 
427 	case ATMEL_SSC_TCMR_PERIOD:
428 		ssc_p->tcmr_period = div;
429 		break;
430 
431 	case ATMEL_SSC_RCMR_PERIOD:
432 		ssc_p->rcmr_period = div;
433 		break;
434 
435 	default:
436 		return -EINVAL;
437 	}
438 
439 	return 0;
440 }
441 
442 /*
443  * Configure the SSC.
444  */
atmel_ssc_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * dai)445 static int atmel_ssc_hw_params(struct snd_pcm_substream *substream,
446 	struct snd_pcm_hw_params *params,
447 	struct snd_soc_dai *dai)
448 {
449 	int id = dai->id;
450 	struct atmel_ssc_info *ssc_p = &ssc_info[id];
451 	struct ssc_device *ssc = ssc_p->ssc;
452 	struct atmel_pcm_dma_params *dma_params;
453 	int dir, channels, bits;
454 	u32 tfmr, rfmr, tcmr, rcmr;
455 	int ret;
456 	int fslen, fslen_ext;
457 
458 	/*
459 	 * Currently, there is only one set of dma params for
460 	 * each direction.  If more are added, this code will
461 	 * have to be changed to select the proper set.
462 	 */
463 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
464 		dir = 0;
465 	else
466 		dir = 1;
467 
468 	dma_params = ssc_p->dma_params[dir];
469 
470 	channels = params_channels(params);
471 
472 	/*
473 	 * Determine sample size in bits and the PDC increment.
474 	 */
475 	switch (params_format(params)) {
476 	case SNDRV_PCM_FORMAT_S8:
477 		bits = 8;
478 		dma_params->pdc_xfer_size = 1;
479 		break;
480 	case SNDRV_PCM_FORMAT_S16_LE:
481 		bits = 16;
482 		dma_params->pdc_xfer_size = 2;
483 		break;
484 	case SNDRV_PCM_FORMAT_S24_LE:
485 		bits = 24;
486 		dma_params->pdc_xfer_size = 4;
487 		break;
488 	case SNDRV_PCM_FORMAT_S32_LE:
489 		bits = 32;
490 		dma_params->pdc_xfer_size = 4;
491 		break;
492 	default:
493 		printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format");
494 		return -EINVAL;
495 	}
496 
497 	/*
498 	 * Compute SSC register settings.
499 	 */
500 	switch (ssc_p->daifmt
501 		& (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_MASTER_MASK)) {
502 
503 	case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBS_CFS:
504 		/*
505 		 * I2S format, SSC provides BCLK and LRC clocks.
506 		 *
507 		 * The SSC transmit and receive clocks are generated
508 		 * from the MCK divider, and the BCLK signal
509 		 * is output on the SSC TK line.
510 		 */
511 
512 		if (bits > 16 && !ssc->pdata->has_fslen_ext) {
513 			dev_err(dai->dev,
514 				"sample size %d is too large for SSC device\n",
515 				bits);
516 			return -EINVAL;
517 		}
518 
519 		fslen_ext = (bits - 1) / 16;
520 		fslen = (bits - 1) % 16;
521 
522 		rcmr =	  SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
523 			| SSC_BF(RCMR_STTDLY, START_DELAY)
524 			| SSC_BF(RCMR_START, SSC_START_FALLING_RF)
525 			| SSC_BF(RCMR_CKI, SSC_CKI_RISING)
526 			| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
527 			| SSC_BF(RCMR_CKS, SSC_CKS_DIV);
528 
529 		rfmr =    SSC_BF(RFMR_FSLEN_EXT, fslen_ext)
530 			| SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
531 			| SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
532 			| SSC_BF(RFMR_FSLEN, fslen)
533 			| SSC_BF(RFMR_DATNB, (channels - 1))
534 			| SSC_BIT(RFMR_MSBF)
535 			| SSC_BF(RFMR_LOOP, 0)
536 			| SSC_BF(RFMR_DATLEN, (bits - 1));
537 
538 		tcmr =	  SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
539 			| SSC_BF(TCMR_STTDLY, START_DELAY)
540 			| SSC_BF(TCMR_START, SSC_START_FALLING_RF)
541 			| SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
542 			| SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
543 			| SSC_BF(TCMR_CKS, SSC_CKS_DIV);
544 
545 		tfmr =    SSC_BF(TFMR_FSLEN_EXT, fslen_ext)
546 			| SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
547 			| SSC_BF(TFMR_FSDEN, 0)
548 			| SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
549 			| SSC_BF(TFMR_FSLEN, fslen)
550 			| SSC_BF(TFMR_DATNB, (channels - 1))
551 			| SSC_BIT(TFMR_MSBF)
552 			| SSC_BF(TFMR_DATDEF, 0)
553 			| SSC_BF(TFMR_DATLEN, (bits - 1));
554 		break;
555 
556 	case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFM:
557 		/* I2S format, CODEC supplies BCLK and LRC clocks. */
558 		rcmr =	  SSC_BF(RCMR_PERIOD, 0)
559 			| SSC_BF(RCMR_STTDLY, START_DELAY)
560 			| SSC_BF(RCMR_START, SSC_START_FALLING_RF)
561 			| SSC_BF(RCMR_CKI, SSC_CKI_RISING)
562 			| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
563 			| SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
564 					   SSC_CKS_PIN : SSC_CKS_CLOCK);
565 
566 		rfmr =	  SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
567 			| SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
568 			| SSC_BF(RFMR_FSLEN, 0)
569 			| SSC_BF(RFMR_DATNB, (channels - 1))
570 			| SSC_BIT(RFMR_MSBF)
571 			| SSC_BF(RFMR_LOOP, 0)
572 			| SSC_BF(RFMR_DATLEN, (bits - 1));
573 
574 		tcmr =	  SSC_BF(TCMR_PERIOD, 0)
575 			| SSC_BF(TCMR_STTDLY, START_DELAY)
576 			| SSC_BF(TCMR_START, SSC_START_FALLING_RF)
577 			| SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
578 			| SSC_BF(TCMR_CKO, SSC_CKO_NONE)
579 			| SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
580 					   SSC_CKS_CLOCK : SSC_CKS_PIN);
581 
582 		tfmr =	  SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
583 			| SSC_BF(TFMR_FSDEN, 0)
584 			| SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
585 			| SSC_BF(TFMR_FSLEN, 0)
586 			| SSC_BF(TFMR_DATNB, (channels - 1))
587 			| SSC_BIT(TFMR_MSBF)
588 			| SSC_BF(TFMR_DATDEF, 0)
589 			| SSC_BF(TFMR_DATLEN, (bits - 1));
590 		break;
591 
592 	case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFS:
593 		/* I2S format, CODEC supplies BCLK, SSC supplies LRCLK. */
594 		if (bits > 16 && !ssc->pdata->has_fslen_ext) {
595 			dev_err(dai->dev,
596 				"sample size %d is too large for SSC device\n",
597 				bits);
598 			return -EINVAL;
599 		}
600 
601 		fslen_ext = (bits - 1) / 16;
602 		fslen = (bits - 1) % 16;
603 
604 		rcmr =	  SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
605 			| SSC_BF(RCMR_STTDLY, START_DELAY)
606 			| SSC_BF(RCMR_START, SSC_START_FALLING_RF)
607 			| SSC_BF(RCMR_CKI, SSC_CKI_RISING)
608 			| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
609 			| SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
610 					   SSC_CKS_PIN : SSC_CKS_CLOCK);
611 
612 		rfmr =    SSC_BF(RFMR_FSLEN_EXT, fslen_ext)
613 			| SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
614 			| SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
615 			| SSC_BF(RFMR_FSLEN, fslen)
616 			| SSC_BF(RFMR_DATNB, (channels - 1))
617 			| SSC_BIT(RFMR_MSBF)
618 			| SSC_BF(RFMR_LOOP, 0)
619 			| SSC_BF(RFMR_DATLEN, (bits - 1));
620 
621 		tcmr =	  SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
622 			| SSC_BF(TCMR_STTDLY, START_DELAY)
623 			| SSC_BF(TCMR_START, SSC_START_FALLING_RF)
624 			| SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
625 			| SSC_BF(TCMR_CKO, SSC_CKO_NONE)
626 			| SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
627 					   SSC_CKS_CLOCK : SSC_CKS_PIN);
628 
629 		tfmr =    SSC_BF(TFMR_FSLEN_EXT, fslen_ext)
630 			| SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_NEGATIVE)
631 			| SSC_BF(TFMR_FSDEN, 0)
632 			| SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
633 			| SSC_BF(TFMR_FSLEN, fslen)
634 			| SSC_BF(TFMR_DATNB, (channels - 1))
635 			| SSC_BIT(TFMR_MSBF)
636 			| SSC_BF(TFMR_DATDEF, 0)
637 			| SSC_BF(TFMR_DATLEN, (bits - 1));
638 		break;
639 
640 	case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBS_CFS:
641 		/*
642 		 * DSP/PCM Mode A format, SSC provides BCLK and LRC clocks.
643 		 *
644 		 * The SSC transmit and receive clocks are generated from the
645 		 * MCK divider, and the BCLK signal is output
646 		 * on the SSC TK line.
647 		 */
648 		rcmr =	  SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
649 			| SSC_BF(RCMR_STTDLY, 1)
650 			| SSC_BF(RCMR_START, SSC_START_RISING_RF)
651 			| SSC_BF(RCMR_CKI, SSC_CKI_FALLING)
652 			| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
653 			| SSC_BF(RCMR_CKS, SSC_CKS_DIV);
654 
655 		rfmr =	  SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
656 			| SSC_BF(RFMR_FSOS, SSC_FSOS_POSITIVE)
657 			| SSC_BF(RFMR_FSLEN, 0)
658 			| SSC_BF(RFMR_DATNB, (channels - 1))
659 			| SSC_BIT(RFMR_MSBF)
660 			| SSC_BF(RFMR_LOOP, 0)
661 			| SSC_BF(RFMR_DATLEN, (bits - 1));
662 
663 		tcmr =	  SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
664 			| SSC_BF(TCMR_STTDLY, 1)
665 			| SSC_BF(TCMR_START, SSC_START_RISING_RF)
666 			| SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
667 			| SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
668 			| SSC_BF(TCMR_CKS, SSC_CKS_DIV);
669 
670 		tfmr =	  SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
671 			| SSC_BF(TFMR_FSDEN, 0)
672 			| SSC_BF(TFMR_FSOS, SSC_FSOS_POSITIVE)
673 			| SSC_BF(TFMR_FSLEN, 0)
674 			| SSC_BF(TFMR_DATNB, (channels - 1))
675 			| SSC_BIT(TFMR_MSBF)
676 			| SSC_BF(TFMR_DATDEF, 0)
677 			| SSC_BF(TFMR_DATLEN, (bits - 1));
678 		break;
679 
680 	case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM:
681 		/*
682 		 * DSP/PCM Mode A format, CODEC supplies BCLK and LRC clocks.
683 		 *
684 		 * Data is transferred on first BCLK after LRC pulse rising
685 		 * edge.If stereo, the right channel data is contiguous with
686 		 * the left channel data.
687 		 */
688 		rcmr =	  SSC_BF(RCMR_PERIOD, 0)
689 			| SSC_BF(RCMR_STTDLY, START_DELAY)
690 			| SSC_BF(RCMR_START, SSC_START_RISING_RF)
691 			| SSC_BF(RCMR_CKI, SSC_CKI_FALLING)
692 			| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
693 			| SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
694 					   SSC_CKS_PIN : SSC_CKS_CLOCK);
695 
696 		rfmr =	  SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
697 			| SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
698 			| SSC_BF(RFMR_FSLEN, 0)
699 			| SSC_BF(RFMR_DATNB, (channels - 1))
700 			| SSC_BIT(RFMR_MSBF)
701 			| SSC_BF(RFMR_LOOP, 0)
702 			| SSC_BF(RFMR_DATLEN, (bits - 1));
703 
704 		tcmr =	  SSC_BF(TCMR_PERIOD, 0)
705 			| SSC_BF(TCMR_STTDLY, START_DELAY)
706 			| SSC_BF(TCMR_START, SSC_START_RISING_RF)
707 			| SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
708 			| SSC_BF(TCMR_CKO, SSC_CKO_NONE)
709 			| SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
710 					   SSC_CKS_CLOCK : SSC_CKS_PIN);
711 
712 		tfmr =	  SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
713 			| SSC_BF(TFMR_FSDEN, 0)
714 			| SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
715 			| SSC_BF(TFMR_FSLEN, 0)
716 			| SSC_BF(TFMR_DATNB, (channels - 1))
717 			| SSC_BIT(TFMR_MSBF)
718 			| SSC_BF(TFMR_DATDEF, 0)
719 			| SSC_BF(TFMR_DATLEN, (bits - 1));
720 		break;
721 
722 	default:
723 		printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n",
724 			ssc_p->daifmt);
725 		return -EINVAL;
726 	}
727 	pr_debug("atmel_ssc_hw_params: "
728 			"RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n",
729 			rcmr, rfmr, tcmr, tfmr);
730 
731 	if (!ssc_p->initialized) {
732 		if (!ssc_p->ssc->pdata->use_dma) {
733 			ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0);
734 			ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0);
735 			ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0);
736 			ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0);
737 
738 			ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0);
739 			ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0);
740 			ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0);
741 			ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0);
742 		}
743 
744 		ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0,
745 				ssc_p->name, ssc_p);
746 		if (ret < 0) {
747 			printk(KERN_WARNING
748 					"atmel_ssc_dai: request_irq failure\n");
749 			pr_debug("Atmel_ssc_dai: Stoping clock\n");
750 			clk_disable(ssc_p->ssc->clk);
751 			return ret;
752 		}
753 
754 		ssc_p->initialized = 1;
755 	}
756 
757 	/* set SSC clock mode register */
758 	ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->cmr_div);
759 
760 	/* set receive clock mode and format */
761 	ssc_writel(ssc_p->ssc->regs, RCMR, rcmr);
762 	ssc_writel(ssc_p->ssc->regs, RFMR, rfmr);
763 
764 	/* set transmit clock mode and format */
765 	ssc_writel(ssc_p->ssc->regs, TCMR, tcmr);
766 	ssc_writel(ssc_p->ssc->regs, TFMR, tfmr);
767 
768 	pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n");
769 	return 0;
770 }
771 
772 
atmel_ssc_prepare(struct snd_pcm_substream * substream,struct snd_soc_dai * dai)773 static int atmel_ssc_prepare(struct snd_pcm_substream *substream,
774 			     struct snd_soc_dai *dai)
775 {
776 	struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
777 	struct atmel_pcm_dma_params *dma_params;
778 	int dir;
779 
780 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
781 		dir = 0;
782 	else
783 		dir = 1;
784 
785 	dma_params = ssc_p->dma_params[dir];
786 
787 	ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
788 	ssc_writel(ssc_p->ssc->regs, IDR, dma_params->mask->ssc_error);
789 
790 	pr_debug("%s enabled SSC_SR=0x%08x\n",
791 			dir ? "receive" : "transmit",
792 			ssc_readl(ssc_p->ssc->regs, SR));
793 	return 0;
794 }
795 
atmel_ssc_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * dai)796 static int atmel_ssc_trigger(struct snd_pcm_substream *substream,
797 			     int cmd, struct snd_soc_dai *dai)
798 {
799 	struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
800 	struct atmel_pcm_dma_params *dma_params;
801 	int dir;
802 
803 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
804 		dir = 0;
805 	else
806 		dir = 1;
807 
808 	dma_params = ssc_p->dma_params[dir];
809 
810 	switch (cmd) {
811 	case SNDRV_PCM_TRIGGER_START:
812 	case SNDRV_PCM_TRIGGER_RESUME:
813 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
814 		ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable);
815 		break;
816 	default:
817 		ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
818 		break;
819 	}
820 
821 	return 0;
822 }
823 
824 #ifdef CONFIG_PM
atmel_ssc_suspend(struct snd_soc_dai * cpu_dai)825 static int atmel_ssc_suspend(struct snd_soc_dai *cpu_dai)
826 {
827 	struct atmel_ssc_info *ssc_p;
828 
829 	if (!cpu_dai->active)
830 		return 0;
831 
832 	ssc_p = &ssc_info[cpu_dai->id];
833 
834 	/* Save the status register before disabling transmit and receive */
835 	ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR);
836 	ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS));
837 
838 	/* Save the current interrupt mask, then disable unmasked interrupts */
839 	ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR);
840 	ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr);
841 
842 	ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR);
843 	ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR);
844 	ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR);
845 	ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR);
846 	ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR);
847 
848 	return 0;
849 }
850 
851 
852 
atmel_ssc_resume(struct snd_soc_dai * cpu_dai)853 static int atmel_ssc_resume(struct snd_soc_dai *cpu_dai)
854 {
855 	struct atmel_ssc_info *ssc_p;
856 	u32 cr;
857 
858 	if (!cpu_dai->active)
859 		return 0;
860 
861 	ssc_p = &ssc_info[cpu_dai->id];
862 
863 	/* restore SSC register settings */
864 	ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr);
865 	ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr);
866 	ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr);
867 	ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr);
868 	ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr);
869 
870 	/* re-enable interrupts */
871 	ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr);
872 
873 	/* Re-enable receive and transmit as appropriate */
874 	cr = 0;
875 	cr |=
876 	    (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0;
877 	cr |=
878 	    (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0;
879 	ssc_writel(ssc_p->ssc->regs, CR, cr);
880 
881 	return 0;
882 }
883 #else /* CONFIG_PM */
884 #  define atmel_ssc_suspend	NULL
885 #  define atmel_ssc_resume	NULL
886 #endif /* CONFIG_PM */
887 
888 #define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8     | SNDRV_PCM_FMTBIT_S16_LE |\
889 			  SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
890 
891 static const struct snd_soc_dai_ops atmel_ssc_dai_ops = {
892 	.startup	= atmel_ssc_startup,
893 	.shutdown	= atmel_ssc_shutdown,
894 	.prepare	= atmel_ssc_prepare,
895 	.trigger	= atmel_ssc_trigger,
896 	.hw_params	= atmel_ssc_hw_params,
897 	.set_fmt	= atmel_ssc_set_dai_fmt,
898 	.set_clkdiv	= atmel_ssc_set_dai_clkdiv,
899 };
900 
901 static struct snd_soc_dai_driver atmel_ssc_dai = {
902 		.suspend = atmel_ssc_suspend,
903 		.resume = atmel_ssc_resume,
904 		.playback = {
905 			.channels_min = 1,
906 			.channels_max = 2,
907 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
908 			.rate_min = 8000,
909 			.rate_max = 384000,
910 			.formats = ATMEL_SSC_FORMATS,},
911 		.capture = {
912 			.channels_min = 1,
913 			.channels_max = 2,
914 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
915 			.rate_min = 8000,
916 			.rate_max = 384000,
917 			.formats = ATMEL_SSC_FORMATS,},
918 		.ops = &atmel_ssc_dai_ops,
919 };
920 
921 static const struct snd_soc_component_driver atmel_ssc_component = {
922 	.name		= "atmel-ssc",
923 };
924 
asoc_ssc_init(struct device * dev)925 static int asoc_ssc_init(struct device *dev)
926 {
927 	struct platform_device *pdev = to_platform_device(dev);
928 	struct ssc_device *ssc = platform_get_drvdata(pdev);
929 	int ret;
930 
931 	ret = snd_soc_register_component(dev, &atmel_ssc_component,
932 					 &atmel_ssc_dai, 1);
933 	if (ret) {
934 		dev_err(dev, "Could not register DAI: %d\n", ret);
935 		goto err;
936 	}
937 
938 	if (ssc->pdata->use_dma)
939 		ret = atmel_pcm_dma_platform_register(dev);
940 	else
941 		ret = atmel_pcm_pdc_platform_register(dev);
942 
943 	if (ret) {
944 		dev_err(dev, "Could not register PCM: %d\n", ret);
945 		goto err_unregister_dai;
946 	}
947 
948 	return 0;
949 
950 err_unregister_dai:
951 	snd_soc_unregister_component(dev);
952 err:
953 	return ret;
954 }
955 
asoc_ssc_exit(struct device * dev)956 static void asoc_ssc_exit(struct device *dev)
957 {
958 	struct platform_device *pdev = to_platform_device(dev);
959 	struct ssc_device *ssc = platform_get_drvdata(pdev);
960 
961 	if (ssc->pdata->use_dma)
962 		atmel_pcm_dma_platform_unregister(dev);
963 	else
964 		atmel_pcm_pdc_platform_unregister(dev);
965 
966 	snd_soc_unregister_component(dev);
967 }
968 
969 /**
970  * atmel_ssc_set_audio - Allocate the specified SSC for audio use.
971  */
atmel_ssc_set_audio(int ssc_id)972 int atmel_ssc_set_audio(int ssc_id)
973 {
974 	struct ssc_device *ssc;
975 	int ret;
976 
977 	/* If we can grab the SSC briefly to parent the DAI device off it */
978 	ssc = ssc_request(ssc_id);
979 	if (IS_ERR(ssc)) {
980 		pr_err("Unable to parent ASoC SSC DAI on SSC: %ld\n",
981 			PTR_ERR(ssc));
982 		return PTR_ERR(ssc);
983 	} else {
984 		ssc_info[ssc_id].ssc = ssc;
985 	}
986 
987 	ret = asoc_ssc_init(&ssc->pdev->dev);
988 
989 	return ret;
990 }
991 EXPORT_SYMBOL_GPL(atmel_ssc_set_audio);
992 
atmel_ssc_put_audio(int ssc_id)993 void atmel_ssc_put_audio(int ssc_id)
994 {
995 	struct ssc_device *ssc = ssc_info[ssc_id].ssc;
996 
997 	asoc_ssc_exit(&ssc->pdev->dev);
998 	ssc_free(ssc);
999 }
1000 EXPORT_SYMBOL_GPL(atmel_ssc_put_audio);
1001 
1002 /* Module information */
1003 MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com");
1004 MODULE_DESCRIPTION("ATMEL SSC ASoC Interface");
1005 MODULE_LICENSE("GPL");
1006