• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Implementation of the kernel access vector cache (AVC).
3  *
4  * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
8  *	Replaced the avc_lock spinlock by RCU.
9  *
10  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11  *
12  *	This program is free software; you can redistribute it and/or modify
13  *	it under the terms of the GNU General Public License version 2,
14  *	as published by the Free Software Foundation.
15  */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <linux/list.h>
26 #include <net/sock.h>
27 #include <linux/un.h>
28 #include <net/af_unix.h>
29 #include <linux/ip.h>
30 #include <linux/audit.h>
31 #include <linux/ipv6.h>
32 #include <net/ipv6.h>
33 #include "avc.h"
34 #include "avc_ss.h"
35 #include "classmap.h"
36 
37 #define AVC_CACHE_SLOTS			512
38 #define AVC_DEF_CACHE_THRESHOLD		512
39 #define AVC_CACHE_RECLAIM		16
40 
41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
42 #define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
43 #else
44 #define avc_cache_stats_incr(field)	do {} while (0)
45 #endif
46 
47 struct avc_entry {
48 	u32			ssid;
49 	u32			tsid;
50 	u16			tclass;
51 	struct av_decision	avd;
52 	struct avc_xperms_node	*xp_node;
53 };
54 
55 struct avc_node {
56 	struct avc_entry	ae;
57 	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
58 	struct rcu_head		rhead;
59 };
60 
61 struct avc_xperms_decision_node {
62 	struct extended_perms_decision xpd;
63 	struct list_head xpd_list; /* list of extended_perms_decision */
64 };
65 
66 struct avc_xperms_node {
67 	struct extended_perms xp;
68 	struct list_head xpd_head; /* list head of extended_perms_decision */
69 };
70 
71 struct avc_cache {
72 	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
73 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
74 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
75 	atomic_t		active_nodes;
76 	u32			latest_notif;	/* latest revocation notification */
77 };
78 
79 struct avc_callback_node {
80 	int (*callback) (u32 event);
81 	u32 events;
82 	struct avc_callback_node *next;
83 };
84 
85 /* Exported via selinufs */
86 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
87 
88 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
89 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
90 #endif
91 
92 static struct avc_cache avc_cache;
93 static struct avc_callback_node *avc_callbacks;
94 static struct kmem_cache *avc_node_cachep;
95 static struct kmem_cache *avc_xperms_data_cachep;
96 static struct kmem_cache *avc_xperms_decision_cachep;
97 static struct kmem_cache *avc_xperms_cachep;
98 
avc_hash(u32 ssid,u32 tsid,u16 tclass)99 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
100 {
101 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
102 }
103 
104 /**
105  * avc_dump_av - Display an access vector in human-readable form.
106  * @tclass: target security class
107  * @av: access vector
108  */
avc_dump_av(struct audit_buffer * ab,u16 tclass,u32 av)109 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
110 {
111 	const char **perms;
112 	int i, perm;
113 
114 	if (av == 0) {
115 		audit_log_format(ab, " null");
116 		return;
117 	}
118 
119 	BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
120 	perms = secclass_map[tclass-1].perms;
121 
122 	audit_log_format(ab, " {");
123 	i = 0;
124 	perm = 1;
125 	while (i < (sizeof(av) * 8)) {
126 		if ((perm & av) && perms[i]) {
127 			audit_log_format(ab, " %s", perms[i]);
128 			av &= ~perm;
129 		}
130 		i++;
131 		perm <<= 1;
132 	}
133 
134 	if (av)
135 		audit_log_format(ab, " 0x%x", av);
136 
137 	audit_log_format(ab, " }");
138 }
139 
140 /**
141  * avc_dump_query - Display a SID pair and a class in human-readable form.
142  * @ssid: source security identifier
143  * @tsid: target security identifier
144  * @tclass: target security class
145  */
avc_dump_query(struct audit_buffer * ab,u32 ssid,u32 tsid,u16 tclass)146 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
147 {
148 	int rc;
149 	char *scontext;
150 	u32 scontext_len;
151 
152 	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
153 	if (rc)
154 		audit_log_format(ab, "ssid=%d", ssid);
155 	else {
156 		audit_log_format(ab, "scontext=%s", scontext);
157 		kfree(scontext);
158 	}
159 
160 	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
161 	if (rc)
162 		audit_log_format(ab, " tsid=%d", tsid);
163 	else {
164 		audit_log_format(ab, " tcontext=%s", scontext);
165 		kfree(scontext);
166 	}
167 
168 	BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
169 	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
170 }
171 
172 /**
173  * avc_init - Initialize the AVC.
174  *
175  * Initialize the access vector cache.
176  */
avc_init(void)177 void __init avc_init(void)
178 {
179 	int i;
180 
181 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
182 		INIT_HLIST_HEAD(&avc_cache.slots[i]);
183 		spin_lock_init(&avc_cache.slots_lock[i]);
184 	}
185 	atomic_set(&avc_cache.active_nodes, 0);
186 	atomic_set(&avc_cache.lru_hint, 0);
187 
188 	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
189 					0, SLAB_PANIC, NULL);
190 	avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
191 					sizeof(struct avc_xperms_node),
192 					0, SLAB_PANIC, NULL);
193 	avc_xperms_decision_cachep = kmem_cache_create(
194 					"avc_xperms_decision_node",
195 					sizeof(struct avc_xperms_decision_node),
196 					0, SLAB_PANIC, NULL);
197 	avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
198 					sizeof(struct extended_perms_data),
199 					0, SLAB_PANIC, NULL);
200 
201 	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
202 }
203 
avc_get_hash_stats(char * page)204 int avc_get_hash_stats(char *page)
205 {
206 	int i, chain_len, max_chain_len, slots_used;
207 	struct avc_node *node;
208 	struct hlist_head *head;
209 
210 	rcu_read_lock();
211 
212 	slots_used = 0;
213 	max_chain_len = 0;
214 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
215 		head = &avc_cache.slots[i];
216 		if (!hlist_empty(head)) {
217 			slots_used++;
218 			chain_len = 0;
219 			hlist_for_each_entry_rcu(node, head, list)
220 				chain_len++;
221 			if (chain_len > max_chain_len)
222 				max_chain_len = chain_len;
223 		}
224 	}
225 
226 	rcu_read_unlock();
227 
228 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
229 			 "longest chain: %d\n",
230 			 atomic_read(&avc_cache.active_nodes),
231 			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
232 }
233 
234 /*
235  * using a linked list for extended_perms_decision lookup because the list is
236  * always small. i.e. less than 5, typically 1
237  */
avc_xperms_decision_lookup(u8 driver,struct avc_xperms_node * xp_node)238 static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
239 					struct avc_xperms_node *xp_node)
240 {
241 	struct avc_xperms_decision_node *xpd_node;
242 
243 	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
244 		if (xpd_node->xpd.driver == driver)
245 			return &xpd_node->xpd;
246 	}
247 	return NULL;
248 }
249 
250 static inline unsigned int
avc_xperms_has_perm(struct extended_perms_decision * xpd,u8 perm,u8 which)251 avc_xperms_has_perm(struct extended_perms_decision *xpd,
252 					u8 perm, u8 which)
253 {
254 	unsigned int rc = 0;
255 
256 	if ((which == XPERMS_ALLOWED) &&
257 			(xpd->used & XPERMS_ALLOWED))
258 		rc = security_xperm_test(xpd->allowed->p, perm);
259 	else if ((which == XPERMS_AUDITALLOW) &&
260 			(xpd->used & XPERMS_AUDITALLOW))
261 		rc = security_xperm_test(xpd->auditallow->p, perm);
262 	else if ((which == XPERMS_DONTAUDIT) &&
263 			(xpd->used & XPERMS_DONTAUDIT))
264 		rc = security_xperm_test(xpd->dontaudit->p, perm);
265 	return rc;
266 }
267 
avc_xperms_allow_perm(struct avc_xperms_node * xp_node,u8 driver,u8 perm)268 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
269 				u8 driver, u8 perm)
270 {
271 	struct extended_perms_decision *xpd;
272 	security_xperm_set(xp_node->xp.drivers.p, driver);
273 	xpd = avc_xperms_decision_lookup(driver, xp_node);
274 	if (xpd && xpd->allowed)
275 		security_xperm_set(xpd->allowed->p, perm);
276 }
277 
avc_xperms_decision_free(struct avc_xperms_decision_node * xpd_node)278 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
279 {
280 	struct extended_perms_decision *xpd;
281 
282 	xpd = &xpd_node->xpd;
283 	if (xpd->allowed)
284 		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
285 	if (xpd->auditallow)
286 		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
287 	if (xpd->dontaudit)
288 		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
289 	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
290 }
291 
avc_xperms_free(struct avc_xperms_node * xp_node)292 static void avc_xperms_free(struct avc_xperms_node *xp_node)
293 {
294 	struct avc_xperms_decision_node *xpd_node, *tmp;
295 
296 	if (!xp_node)
297 		return;
298 
299 	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
300 		list_del(&xpd_node->xpd_list);
301 		avc_xperms_decision_free(xpd_node);
302 	}
303 	kmem_cache_free(avc_xperms_cachep, xp_node);
304 }
305 
avc_copy_xperms_decision(struct extended_perms_decision * dest,struct extended_perms_decision * src)306 static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
307 					struct extended_perms_decision *src)
308 {
309 	dest->driver = src->driver;
310 	dest->used = src->used;
311 	if (dest->used & XPERMS_ALLOWED)
312 		memcpy(dest->allowed->p, src->allowed->p,
313 				sizeof(src->allowed->p));
314 	if (dest->used & XPERMS_AUDITALLOW)
315 		memcpy(dest->auditallow->p, src->auditallow->p,
316 				sizeof(src->auditallow->p));
317 	if (dest->used & XPERMS_DONTAUDIT)
318 		memcpy(dest->dontaudit->p, src->dontaudit->p,
319 				sizeof(src->dontaudit->p));
320 }
321 
322 /*
323  * similar to avc_copy_xperms_decision, but only copy decision
324  * information relevant to this perm
325  */
avc_quick_copy_xperms_decision(u8 perm,struct extended_perms_decision * dest,struct extended_perms_decision * src)326 static inline void avc_quick_copy_xperms_decision(u8 perm,
327 			struct extended_perms_decision *dest,
328 			struct extended_perms_decision *src)
329 {
330 	/*
331 	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
332 	 * command permission
333 	 */
334 	u8 i = perm >> 5;
335 
336 	dest->used = src->used;
337 	if (dest->used & XPERMS_ALLOWED)
338 		dest->allowed->p[i] = src->allowed->p[i];
339 	if (dest->used & XPERMS_AUDITALLOW)
340 		dest->auditallow->p[i] = src->auditallow->p[i];
341 	if (dest->used & XPERMS_DONTAUDIT)
342 		dest->dontaudit->p[i] = src->dontaudit->p[i];
343 }
344 
345 static struct avc_xperms_decision_node
avc_xperms_decision_alloc(u8 which)346 		*avc_xperms_decision_alloc(u8 which)
347 {
348 	struct avc_xperms_decision_node *xpd_node;
349 	struct extended_perms_decision *xpd;
350 
351 	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep,
352 				     GFP_NOWAIT | __GFP_NOWARN);
353 	if (!xpd_node)
354 		return NULL;
355 
356 	xpd = &xpd_node->xpd;
357 	if (which & XPERMS_ALLOWED) {
358 		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
359 						GFP_NOWAIT | __GFP_NOWARN);
360 		if (!xpd->allowed)
361 			goto error;
362 	}
363 	if (which & XPERMS_AUDITALLOW) {
364 		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
365 						GFP_NOWAIT | __GFP_NOWARN);
366 		if (!xpd->auditallow)
367 			goto error;
368 	}
369 	if (which & XPERMS_DONTAUDIT) {
370 		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
371 						GFP_NOWAIT | __GFP_NOWARN);
372 		if (!xpd->dontaudit)
373 			goto error;
374 	}
375 	return xpd_node;
376 error:
377 	avc_xperms_decision_free(xpd_node);
378 	return NULL;
379 }
380 
avc_add_xperms_decision(struct avc_node * node,struct extended_perms_decision * src)381 static int avc_add_xperms_decision(struct avc_node *node,
382 			struct extended_perms_decision *src)
383 {
384 	struct avc_xperms_decision_node *dest_xpd;
385 
386 	node->ae.xp_node->xp.len++;
387 	dest_xpd = avc_xperms_decision_alloc(src->used);
388 	if (!dest_xpd)
389 		return -ENOMEM;
390 	avc_copy_xperms_decision(&dest_xpd->xpd, src);
391 	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
392 	return 0;
393 }
394 
avc_xperms_alloc(void)395 static struct avc_xperms_node *avc_xperms_alloc(void)
396 {
397 	struct avc_xperms_node *xp_node;
398 
399 	xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT | __GFP_NOWARN);
400 	if (!xp_node)
401 		return xp_node;
402 	INIT_LIST_HEAD(&xp_node->xpd_head);
403 	return xp_node;
404 }
405 
avc_xperms_populate(struct avc_node * node,struct avc_xperms_node * src)406 static int avc_xperms_populate(struct avc_node *node,
407 				struct avc_xperms_node *src)
408 {
409 	struct avc_xperms_node *dest;
410 	struct avc_xperms_decision_node *dest_xpd;
411 	struct avc_xperms_decision_node *src_xpd;
412 
413 	if (src->xp.len == 0)
414 		return 0;
415 	dest = avc_xperms_alloc();
416 	if (!dest)
417 		return -ENOMEM;
418 
419 	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
420 	dest->xp.len = src->xp.len;
421 
422 	/* for each source xpd allocate a destination xpd and copy */
423 	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
424 		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
425 		if (!dest_xpd)
426 			goto error;
427 		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
428 		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
429 	}
430 	node->ae.xp_node = dest;
431 	return 0;
432 error:
433 	avc_xperms_free(dest);
434 	return -ENOMEM;
435 
436 }
437 
avc_xperms_audit_required(u32 requested,struct av_decision * avd,struct extended_perms_decision * xpd,u8 perm,int result,u32 * deniedp)438 static inline u32 avc_xperms_audit_required(u32 requested,
439 					struct av_decision *avd,
440 					struct extended_perms_decision *xpd,
441 					u8 perm,
442 					int result,
443 					u32 *deniedp)
444 {
445 	u32 denied, audited;
446 
447 	denied = requested & ~avd->allowed;
448 	if (unlikely(denied)) {
449 		audited = denied & avd->auditdeny;
450 		if (audited && xpd) {
451 			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
452 				audited &= ~requested;
453 		}
454 	} else if (result) {
455 		audited = denied = requested;
456 	} else {
457 		audited = requested & avd->auditallow;
458 		if (audited && xpd) {
459 			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
460 				audited &= ~requested;
461 		}
462 	}
463 
464 	*deniedp = denied;
465 	return audited;
466 }
467 
avc_xperms_audit(u32 ssid,u32 tsid,u16 tclass,u32 requested,struct av_decision * avd,struct extended_perms_decision * xpd,u8 perm,int result,struct common_audit_data * ad)468 static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass,
469 				u32 requested, struct av_decision *avd,
470 				struct extended_perms_decision *xpd,
471 				u8 perm, int result,
472 				struct common_audit_data *ad)
473 {
474 	u32 audited, denied;
475 
476 	audited = avc_xperms_audit_required(
477 			requested, avd, xpd, perm, result, &denied);
478 	if (likely(!audited))
479 		return 0;
480 	return slow_avc_audit(ssid, tsid, tclass, requested,
481 			audited, denied, result, ad, 0);
482 }
483 
avc_node_free(struct rcu_head * rhead)484 static void avc_node_free(struct rcu_head *rhead)
485 {
486 	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
487 	avc_xperms_free(node->ae.xp_node);
488 	kmem_cache_free(avc_node_cachep, node);
489 	avc_cache_stats_incr(frees);
490 }
491 
avc_node_delete(struct avc_node * node)492 static void avc_node_delete(struct avc_node *node)
493 {
494 	hlist_del_rcu(&node->list);
495 	call_rcu(&node->rhead, avc_node_free);
496 	atomic_dec(&avc_cache.active_nodes);
497 }
498 
avc_node_kill(struct avc_node * node)499 static void avc_node_kill(struct avc_node *node)
500 {
501 	avc_xperms_free(node->ae.xp_node);
502 	kmem_cache_free(avc_node_cachep, node);
503 	avc_cache_stats_incr(frees);
504 	atomic_dec(&avc_cache.active_nodes);
505 }
506 
avc_node_replace(struct avc_node * new,struct avc_node * old)507 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
508 {
509 	hlist_replace_rcu(&old->list, &new->list);
510 	call_rcu(&old->rhead, avc_node_free);
511 	atomic_dec(&avc_cache.active_nodes);
512 }
513 
avc_reclaim_node(void)514 static inline int avc_reclaim_node(void)
515 {
516 	struct avc_node *node;
517 	int hvalue, try, ecx;
518 	unsigned long flags;
519 	struct hlist_head *head;
520 	spinlock_t *lock;
521 
522 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
523 		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
524 		head = &avc_cache.slots[hvalue];
525 		lock = &avc_cache.slots_lock[hvalue];
526 
527 		if (!spin_trylock_irqsave(lock, flags))
528 			continue;
529 
530 		rcu_read_lock();
531 		hlist_for_each_entry(node, head, list) {
532 			avc_node_delete(node);
533 			avc_cache_stats_incr(reclaims);
534 			ecx++;
535 			if (ecx >= AVC_CACHE_RECLAIM) {
536 				rcu_read_unlock();
537 				spin_unlock_irqrestore(lock, flags);
538 				goto out;
539 			}
540 		}
541 		rcu_read_unlock();
542 		spin_unlock_irqrestore(lock, flags);
543 	}
544 out:
545 	return ecx;
546 }
547 
avc_alloc_node(void)548 static struct avc_node *avc_alloc_node(void)
549 {
550 	struct avc_node *node;
551 
552 	node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT | __GFP_NOWARN);
553 	if (!node)
554 		goto out;
555 
556 	INIT_HLIST_NODE(&node->list);
557 	avc_cache_stats_incr(allocations);
558 
559 	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
560 		avc_reclaim_node();
561 
562 out:
563 	return node;
564 }
565 
avc_node_populate(struct avc_node * node,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)566 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
567 {
568 	node->ae.ssid = ssid;
569 	node->ae.tsid = tsid;
570 	node->ae.tclass = tclass;
571 	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
572 }
573 
avc_search_node(u32 ssid,u32 tsid,u16 tclass)574 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
575 {
576 	struct avc_node *node, *ret = NULL;
577 	int hvalue;
578 	struct hlist_head *head;
579 
580 	hvalue = avc_hash(ssid, tsid, tclass);
581 	head = &avc_cache.slots[hvalue];
582 	hlist_for_each_entry_rcu(node, head, list) {
583 		if (ssid == node->ae.ssid &&
584 		    tclass == node->ae.tclass &&
585 		    tsid == node->ae.tsid) {
586 			ret = node;
587 			break;
588 		}
589 	}
590 
591 	return ret;
592 }
593 
594 /**
595  * avc_lookup - Look up an AVC entry.
596  * @ssid: source security identifier
597  * @tsid: target security identifier
598  * @tclass: target security class
599  *
600  * Look up an AVC entry that is valid for the
601  * (@ssid, @tsid), interpreting the permissions
602  * based on @tclass.  If a valid AVC entry exists,
603  * then this function returns the avc_node.
604  * Otherwise, this function returns NULL.
605  */
avc_lookup(u32 ssid,u32 tsid,u16 tclass)606 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
607 {
608 	struct avc_node *node;
609 
610 	avc_cache_stats_incr(lookups);
611 	node = avc_search_node(ssid, tsid, tclass);
612 
613 	if (node)
614 		return node;
615 
616 	avc_cache_stats_incr(misses);
617 	return NULL;
618 }
619 
avc_latest_notif_update(int seqno,int is_insert)620 static int avc_latest_notif_update(int seqno, int is_insert)
621 {
622 	int ret = 0;
623 	static DEFINE_SPINLOCK(notif_lock);
624 	unsigned long flag;
625 
626 	spin_lock_irqsave(&notif_lock, flag);
627 	if (is_insert) {
628 		if (seqno < avc_cache.latest_notif) {
629 			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
630 			       seqno, avc_cache.latest_notif);
631 			ret = -EAGAIN;
632 		}
633 	} else {
634 		if (seqno > avc_cache.latest_notif)
635 			avc_cache.latest_notif = seqno;
636 	}
637 	spin_unlock_irqrestore(&notif_lock, flag);
638 
639 	return ret;
640 }
641 
642 /**
643  * avc_insert - Insert an AVC entry.
644  * @ssid: source security identifier
645  * @tsid: target security identifier
646  * @tclass: target security class
647  * @avd: resulting av decision
648  * @xp_node: resulting extended permissions
649  *
650  * Insert an AVC entry for the SID pair
651  * (@ssid, @tsid) and class @tclass.
652  * The access vectors and the sequence number are
653  * normally provided by the security server in
654  * response to a security_compute_av() call.  If the
655  * sequence number @avd->seqno is not less than the latest
656  * revocation notification, then the function copies
657  * the access vectors into a cache entry, returns
658  * avc_node inserted. Otherwise, this function returns NULL.
659  */
avc_insert(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd,struct avc_xperms_node * xp_node)660 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass,
661 				struct av_decision *avd,
662 				struct avc_xperms_node *xp_node)
663 {
664 	struct avc_node *pos, *node = NULL;
665 	int hvalue;
666 	unsigned long flag;
667 
668 	if (avc_latest_notif_update(avd->seqno, 1))
669 		goto out;
670 
671 	node = avc_alloc_node();
672 	if (node) {
673 		struct hlist_head *head;
674 		spinlock_t *lock;
675 		int rc = 0;
676 
677 		hvalue = avc_hash(ssid, tsid, tclass);
678 		avc_node_populate(node, ssid, tsid, tclass, avd);
679 		rc = avc_xperms_populate(node, xp_node);
680 		if (rc) {
681 			kmem_cache_free(avc_node_cachep, node);
682 			return NULL;
683 		}
684 		head = &avc_cache.slots[hvalue];
685 		lock = &avc_cache.slots_lock[hvalue];
686 
687 		spin_lock_irqsave(lock, flag);
688 		hlist_for_each_entry(pos, head, list) {
689 			if (pos->ae.ssid == ssid &&
690 			    pos->ae.tsid == tsid &&
691 			    pos->ae.tclass == tclass) {
692 				avc_node_replace(node, pos);
693 				goto found;
694 			}
695 		}
696 		hlist_add_head_rcu(&node->list, head);
697 found:
698 		spin_unlock_irqrestore(lock, flag);
699 	}
700 out:
701 	return node;
702 }
703 
704 /**
705  * avc_audit_pre_callback - SELinux specific information
706  * will be called by generic audit code
707  * @ab: the audit buffer
708  * @a: audit_data
709  */
avc_audit_pre_callback(struct audit_buffer * ab,void * a)710 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
711 {
712 	struct common_audit_data *ad = a;
713 	audit_log_format(ab, "avc:  %s ",
714 			 ad->selinux_audit_data->denied ? "denied" : "granted");
715 	avc_dump_av(ab, ad->selinux_audit_data->tclass,
716 			ad->selinux_audit_data->audited);
717 	audit_log_format(ab, " for ");
718 }
719 
720 /**
721  * avc_audit_post_callback - SELinux specific information
722  * will be called by generic audit code
723  * @ab: the audit buffer
724  * @a: audit_data
725  */
avc_audit_post_callback(struct audit_buffer * ab,void * a)726 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
727 {
728 	struct common_audit_data *ad = a;
729 	audit_log_format(ab, " ");
730 	avc_dump_query(ab, ad->selinux_audit_data->ssid,
731 			   ad->selinux_audit_data->tsid,
732 			   ad->selinux_audit_data->tclass);
733 	if (ad->selinux_audit_data->denied) {
734 		audit_log_format(ab, " permissive=%u",
735 				 ad->selinux_audit_data->result ? 0 : 1);
736 	}
737 }
738 
739 /* This is the slow part of avc audit with big stack footprint */
slow_avc_audit(u32 ssid,u32 tsid,u16 tclass,u32 requested,u32 audited,u32 denied,int result,struct common_audit_data * a,unsigned flags)740 noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
741 		u32 requested, u32 audited, u32 denied, int result,
742 		struct common_audit_data *a,
743 		unsigned flags)
744 {
745 	struct common_audit_data stack_data;
746 	struct selinux_audit_data sad;
747 
748 	if (!a) {
749 		a = &stack_data;
750 		a->type = LSM_AUDIT_DATA_NONE;
751 	}
752 
753 	/*
754 	 * When in a RCU walk do the audit on the RCU retry.  This is because
755 	 * the collection of the dname in an inode audit message is not RCU
756 	 * safe.  Note this may drop some audits when the situation changes
757 	 * during retry. However this is logically just as if the operation
758 	 * happened a little later.
759 	 */
760 	if ((a->type == LSM_AUDIT_DATA_INODE) &&
761 	    (flags & MAY_NOT_BLOCK))
762 		return -ECHILD;
763 
764 	sad.tclass = tclass;
765 	sad.requested = requested;
766 	sad.ssid = ssid;
767 	sad.tsid = tsid;
768 	sad.audited = audited;
769 	sad.denied = denied;
770 	sad.result = result;
771 
772 	a->selinux_audit_data = &sad;
773 
774 	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
775 	return 0;
776 }
777 
778 /**
779  * avc_add_callback - Register a callback for security events.
780  * @callback: callback function
781  * @events: security events
782  *
783  * Register a callback function for events in the set @events.
784  * Returns %0 on success or -%ENOMEM if insufficient memory
785  * exists to add the callback.
786  */
avc_add_callback(int (* callback)(u32 event),u32 events)787 int __init avc_add_callback(int (*callback)(u32 event), u32 events)
788 {
789 	struct avc_callback_node *c;
790 	int rc = 0;
791 
792 	c = kmalloc(sizeof(*c), GFP_KERNEL);
793 	if (!c) {
794 		rc = -ENOMEM;
795 		goto out;
796 	}
797 
798 	c->callback = callback;
799 	c->events = events;
800 	c->next = avc_callbacks;
801 	avc_callbacks = c;
802 out:
803 	return rc;
804 }
805 
806 /**
807  * avc_update_node Update an AVC entry
808  * @event : Updating event
809  * @perms : Permission mask bits
810  * @ssid,@tsid,@tclass : identifier of an AVC entry
811  * @seqno : sequence number when decision was made
812  * @xpd: extended_perms_decision to be added to the node
813  *
814  * if a valid AVC entry doesn't exist,this function returns -ENOENT.
815  * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
816  * otherwise, this function updates the AVC entry. The original AVC-entry object
817  * will release later by RCU.
818  */
avc_update_node(u32 event,u32 perms,u8 driver,u8 xperm,u32 ssid,u32 tsid,u16 tclass,u32 seqno,struct extended_perms_decision * xpd,u32 flags)819 static int avc_update_node(u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
820 			u32 tsid, u16 tclass, u32 seqno,
821 			struct extended_perms_decision *xpd,
822 			u32 flags)
823 {
824 	int hvalue, rc = 0;
825 	unsigned long flag;
826 	struct avc_node *pos, *node, *orig = NULL;
827 	struct hlist_head *head;
828 	spinlock_t *lock;
829 
830 	node = avc_alloc_node();
831 	if (!node) {
832 		rc = -ENOMEM;
833 		goto out;
834 	}
835 
836 	/* Lock the target slot */
837 	hvalue = avc_hash(ssid, tsid, tclass);
838 
839 	head = &avc_cache.slots[hvalue];
840 	lock = &avc_cache.slots_lock[hvalue];
841 
842 	spin_lock_irqsave(lock, flag);
843 
844 	hlist_for_each_entry(pos, head, list) {
845 		if (ssid == pos->ae.ssid &&
846 		    tsid == pos->ae.tsid &&
847 		    tclass == pos->ae.tclass &&
848 		    seqno == pos->ae.avd.seqno){
849 			orig = pos;
850 			break;
851 		}
852 	}
853 
854 	if (!orig) {
855 		rc = -ENOENT;
856 		avc_node_kill(node);
857 		goto out_unlock;
858 	}
859 
860 	/*
861 	 * Copy and replace original node.
862 	 */
863 
864 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
865 
866 	if (orig->ae.xp_node) {
867 		rc = avc_xperms_populate(node, orig->ae.xp_node);
868 		if (rc) {
869 			avc_node_kill(node);
870 			goto out_unlock;
871 		}
872 	}
873 
874 	switch (event) {
875 	case AVC_CALLBACK_GRANT:
876 		node->ae.avd.allowed |= perms;
877 		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
878 			avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
879 		break;
880 	case AVC_CALLBACK_TRY_REVOKE:
881 	case AVC_CALLBACK_REVOKE:
882 		node->ae.avd.allowed &= ~perms;
883 		break;
884 	case AVC_CALLBACK_AUDITALLOW_ENABLE:
885 		node->ae.avd.auditallow |= perms;
886 		break;
887 	case AVC_CALLBACK_AUDITALLOW_DISABLE:
888 		node->ae.avd.auditallow &= ~perms;
889 		break;
890 	case AVC_CALLBACK_AUDITDENY_ENABLE:
891 		node->ae.avd.auditdeny |= perms;
892 		break;
893 	case AVC_CALLBACK_AUDITDENY_DISABLE:
894 		node->ae.avd.auditdeny &= ~perms;
895 		break;
896 	case AVC_CALLBACK_ADD_XPERMS:
897 		avc_add_xperms_decision(node, xpd);
898 		break;
899 	}
900 	avc_node_replace(node, orig);
901 out_unlock:
902 	spin_unlock_irqrestore(lock, flag);
903 out:
904 	return rc;
905 }
906 
907 /**
908  * avc_flush - Flush the cache
909  */
avc_flush(void)910 static void avc_flush(void)
911 {
912 	struct hlist_head *head;
913 	struct avc_node *node;
914 	spinlock_t *lock;
915 	unsigned long flag;
916 	int i;
917 
918 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
919 		head = &avc_cache.slots[i];
920 		lock = &avc_cache.slots_lock[i];
921 
922 		spin_lock_irqsave(lock, flag);
923 		/*
924 		 * With preemptable RCU, the outer spinlock does not
925 		 * prevent RCU grace periods from ending.
926 		 */
927 		rcu_read_lock();
928 		hlist_for_each_entry(node, head, list)
929 			avc_node_delete(node);
930 		rcu_read_unlock();
931 		spin_unlock_irqrestore(lock, flag);
932 	}
933 }
934 
935 /**
936  * avc_ss_reset - Flush the cache and revalidate migrated permissions.
937  * @seqno: policy sequence number
938  */
avc_ss_reset(u32 seqno)939 int avc_ss_reset(u32 seqno)
940 {
941 	struct avc_callback_node *c;
942 	int rc = 0, tmprc;
943 
944 	avc_flush();
945 
946 	for (c = avc_callbacks; c; c = c->next) {
947 		if (c->events & AVC_CALLBACK_RESET) {
948 			tmprc = c->callback(AVC_CALLBACK_RESET);
949 			/* save the first error encountered for the return
950 			   value and continue processing the callbacks */
951 			if (!rc)
952 				rc = tmprc;
953 		}
954 	}
955 
956 	avc_latest_notif_update(seqno, 0);
957 	return rc;
958 }
959 
960 /*
961  * Slow-path helper function for avc_has_perm_noaudit,
962  * when the avc_node lookup fails. We get called with
963  * the RCU read lock held, and need to return with it
964  * still held, but drop if for the security compute.
965  *
966  * Don't inline this, since it's the slow-path and just
967  * results in a bigger stack frame.
968  */
avc_compute_av(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd,struct avc_xperms_node * xp_node)969 static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
970 			 u16 tclass, struct av_decision *avd,
971 			 struct avc_xperms_node *xp_node)
972 {
973 	rcu_read_unlock();
974 	INIT_LIST_HEAD(&xp_node->xpd_head);
975 	security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp);
976 	rcu_read_lock();
977 	return avc_insert(ssid, tsid, tclass, avd, xp_node);
978 }
979 
avc_denied(u32 ssid,u32 tsid,u16 tclass,u32 requested,u8 driver,u8 xperm,unsigned flags,struct av_decision * avd)980 static noinline int avc_denied(u32 ssid, u32 tsid,
981 				u16 tclass, u32 requested,
982 				u8 driver, u8 xperm, unsigned flags,
983 				struct av_decision *avd)
984 {
985 	if (flags & AVC_STRICT)
986 		return -EACCES;
987 
988 	if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE))
989 		return -EACCES;
990 
991 	avc_update_node(AVC_CALLBACK_GRANT, requested, driver, xperm, ssid,
992 				tsid, tclass, avd->seqno, NULL, flags);
993 	return 0;
994 }
995 
996 /*
997  * The avc extended permissions logic adds an additional 256 bits of
998  * permissions to an avc node when extended permissions for that node are
999  * specified in the avtab. If the additional 256 permissions is not adequate,
1000  * as-is the case with ioctls, then multiple may be chained together and the
1001  * driver field is used to specify which set contains the permission.
1002  */
avc_has_extended_perms(u32 ssid,u32 tsid,u16 tclass,u32 requested,u8 driver,u8 xperm,struct common_audit_data * ad)1003 int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested,
1004 			u8 driver, u8 xperm, struct common_audit_data *ad)
1005 {
1006 	struct avc_node *node;
1007 	struct av_decision avd;
1008 	u32 denied;
1009 	struct extended_perms_decision local_xpd;
1010 	struct extended_perms_decision *xpd = NULL;
1011 	struct extended_perms_data allowed;
1012 	struct extended_perms_data auditallow;
1013 	struct extended_perms_data dontaudit;
1014 	struct avc_xperms_node local_xp_node;
1015 	struct avc_xperms_node *xp_node;
1016 	int rc = 0, rc2;
1017 
1018 	xp_node = &local_xp_node;
1019 	BUG_ON(!requested);
1020 
1021 	rcu_read_lock();
1022 
1023 	node = avc_lookup(ssid, tsid, tclass);
1024 	if (unlikely(!node)) {
1025 		node = avc_compute_av(ssid, tsid, tclass, &avd, xp_node);
1026 	} else {
1027 		memcpy(&avd, &node->ae.avd, sizeof(avd));
1028 		xp_node = node->ae.xp_node;
1029 	}
1030 	/* if extended permissions are not defined, only consider av_decision */
1031 	if (!xp_node || !xp_node->xp.len)
1032 		goto decision;
1033 
1034 	local_xpd.allowed = &allowed;
1035 	local_xpd.auditallow = &auditallow;
1036 	local_xpd.dontaudit = &dontaudit;
1037 
1038 	xpd = avc_xperms_decision_lookup(driver, xp_node);
1039 	if (unlikely(!xpd)) {
1040 		/*
1041 		 * Compute the extended_perms_decision only if the driver
1042 		 * is flagged
1043 		 */
1044 		if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1045 			avd.allowed &= ~requested;
1046 			goto decision;
1047 		}
1048 		rcu_read_unlock();
1049 		security_compute_xperms_decision(ssid, tsid, tclass, driver,
1050 						&local_xpd);
1051 		rcu_read_lock();
1052 		avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested, driver, xperm,
1053 				ssid, tsid, tclass, avd.seqno, &local_xpd, 0);
1054 	} else {
1055 		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1056 	}
1057 	xpd = &local_xpd;
1058 
1059 	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1060 		avd.allowed &= ~requested;
1061 
1062 decision:
1063 	denied = requested & ~(avd.allowed);
1064 	if (unlikely(denied))
1065 		rc = avc_denied(ssid, tsid, tclass, requested, driver, xperm,
1066 				AVC_EXTENDED_PERMS, &avd);
1067 
1068 	rcu_read_unlock();
1069 
1070 	rc2 = avc_xperms_audit(ssid, tsid, tclass, requested,
1071 			&avd, xpd, xperm, rc, ad);
1072 	if (rc2)
1073 		return rc2;
1074 	return rc;
1075 }
1076 
1077 /**
1078  * avc_has_perm_noaudit - Check permissions but perform no auditing.
1079  * @ssid: source security identifier
1080  * @tsid: target security identifier
1081  * @tclass: target security class
1082  * @requested: requested permissions, interpreted based on @tclass
1083  * @flags:  AVC_STRICT or 0
1084  * @avd: access vector decisions
1085  *
1086  * Check the AVC to determine whether the @requested permissions are granted
1087  * for the SID pair (@ssid, @tsid), interpreting the permissions
1088  * based on @tclass, and call the security server on a cache miss to obtain
1089  * a new decision and add it to the cache.  Return a copy of the decisions
1090  * in @avd.  Return %0 if all @requested permissions are granted,
1091  * -%EACCES if any permissions are denied, or another -errno upon
1092  * other errors.  This function is typically called by avc_has_perm(),
1093  * but may also be called directly to separate permission checking from
1094  * auditing, e.g. in cases where a lock must be held for the check but
1095  * should be released for the auditing.
1096  */
avc_has_perm_noaudit(u32 ssid,u32 tsid,u16 tclass,u32 requested,unsigned flags,struct av_decision * avd)1097 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
1098 			 u16 tclass, u32 requested,
1099 			 unsigned flags,
1100 			 struct av_decision *avd)
1101 {
1102 	struct avc_node *node;
1103 	struct avc_xperms_node xp_node;
1104 	int rc = 0;
1105 	u32 denied;
1106 
1107 	BUG_ON(!requested);
1108 
1109 	rcu_read_lock();
1110 
1111 	node = avc_lookup(ssid, tsid, tclass);
1112 	if (unlikely(!node))
1113 		node = avc_compute_av(ssid, tsid, tclass, avd, &xp_node);
1114 	else
1115 		memcpy(avd, &node->ae.avd, sizeof(*avd));
1116 
1117 	denied = requested & ~(avd->allowed);
1118 	if (unlikely(denied))
1119 		rc = avc_denied(ssid, tsid, tclass, requested, 0, 0, flags, avd);
1120 
1121 	rcu_read_unlock();
1122 	return rc;
1123 }
1124 
1125 /**
1126  * avc_has_perm - Check permissions and perform any appropriate auditing.
1127  * @ssid: source security identifier
1128  * @tsid: target security identifier
1129  * @tclass: target security class
1130  * @requested: requested permissions, interpreted based on @tclass
1131  * @auditdata: auxiliary audit data
1132  *
1133  * Check the AVC to determine whether the @requested permissions are granted
1134  * for the SID pair (@ssid, @tsid), interpreting the permissions
1135  * based on @tclass, and call the security server on a cache miss to obtain
1136  * a new decision and add it to the cache.  Audit the granting or denial of
1137  * permissions in accordance with the policy.  Return %0 if all @requested
1138  * permissions are granted, -%EACCES if any permissions are denied, or
1139  * another -errno upon other errors.
1140  */
avc_has_perm(u32 ssid,u32 tsid,u16 tclass,u32 requested,struct common_audit_data * auditdata)1141 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
1142 		 u32 requested, struct common_audit_data *auditdata)
1143 {
1144 	struct av_decision avd;
1145 	int rc, rc2;
1146 
1147 	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
1148 
1149 	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata, 0);
1150 	if (rc2)
1151 		return rc2;
1152 	return rc;
1153 }
1154 
avc_has_perm_flags(u32 ssid,u32 tsid,u16 tclass,u32 requested,struct common_audit_data * auditdata,int flags)1155 int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
1156 		       u32 requested, struct common_audit_data *auditdata,
1157 		       int flags)
1158 {
1159 	struct av_decision avd;
1160 	int rc, rc2;
1161 
1162 	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
1163 
1164 	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc,
1165 			auditdata, flags);
1166 	if (rc2)
1167 		return rc2;
1168 	return rc;
1169 }
1170 
avc_policy_seqno(void)1171 u32 avc_policy_seqno(void)
1172 {
1173 	return avc_cache.latest_notif;
1174 }
1175 
avc_disable(void)1176 void avc_disable(void)
1177 {
1178 	/*
1179 	 * If you are looking at this because you have realized that we are
1180 	 * not destroying the avc_node_cachep it might be easy to fix, but
1181 	 * I don't know the memory barrier semantics well enough to know.  It's
1182 	 * possible that some other task dereferenced security_ops when
1183 	 * it still pointed to selinux operations.  If that is the case it's
1184 	 * possible that it is about to use the avc and is about to need the
1185 	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
1186 	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
1187 	 * the cache and get that memory back.
1188 	 */
1189 	if (avc_node_cachep) {
1190 		avc_flush();
1191 		/* kmem_cache_destroy(avc_node_cachep); */
1192 	}
1193 }
1194