1 /*
2 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
3 *
4 * Uses a block device as cache for other block devices; optimized for SSDs.
5 * All allocation is done in buckets, which should match the erase block size
6 * of the device.
7 *
8 * Buckets containing cached data are kept on a heap sorted by priority;
9 * bucket priority is increased on cache hit, and periodically all the buckets
10 * on the heap have their priority scaled down. This currently is just used as
11 * an LRU but in the future should allow for more intelligent heuristics.
12 *
13 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14 * counter. Garbage collection is used to remove stale pointers.
15 *
16 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17 * as keys are inserted we only sort the pages that have not yet been written.
18 * When garbage collection is run, we resort the entire node.
19 *
20 * All configuration is done via sysfs; see Documentation/bcache.txt.
21 */
22
23 #include "bcache.h"
24 #include "btree.h"
25 #include "debug.h"
26 #include "extents.h"
27
28 #include <linux/slab.h>
29 #include <linux/bitops.h>
30 #include <linux/freezer.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <trace/events/bcache.h>
37
38 /*
39 * Todo:
40 * register_bcache: Return errors out to userspace correctly
41 *
42 * Writeback: don't undirty key until after a cache flush
43 *
44 * Create an iterator for key pointers
45 *
46 * On btree write error, mark bucket such that it won't be freed from the cache
47 *
48 * Journalling:
49 * Check for bad keys in replay
50 * Propagate barriers
51 * Refcount journal entries in journal_replay
52 *
53 * Garbage collection:
54 * Finish incremental gc
55 * Gc should free old UUIDs, data for invalid UUIDs
56 *
57 * Provide a way to list backing device UUIDs we have data cached for, and
58 * probably how long it's been since we've seen them, and a way to invalidate
59 * dirty data for devices that will never be attached again
60 *
61 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
62 * that based on that and how much dirty data we have we can keep writeback
63 * from being starved
64 *
65 * Add a tracepoint or somesuch to watch for writeback starvation
66 *
67 * When btree depth > 1 and splitting an interior node, we have to make sure
68 * alloc_bucket() cannot fail. This should be true but is not completely
69 * obvious.
70 *
71 * Plugging?
72 *
73 * If data write is less than hard sector size of ssd, round up offset in open
74 * bucket to the next whole sector
75 *
76 * Superblock needs to be fleshed out for multiple cache devices
77 *
78 * Add a sysfs tunable for the number of writeback IOs in flight
79 *
80 * Add a sysfs tunable for the number of open data buckets
81 *
82 * IO tracking: Can we track when one process is doing io on behalf of another?
83 * IO tracking: Don't use just an average, weigh more recent stuff higher
84 *
85 * Test module load/unload
86 */
87
88 #define MAX_NEED_GC 64
89 #define MAX_SAVE_PRIO 72
90
91 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
92
93 #define PTR_HASH(c, k) \
94 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
95
96 #define insert_lock(s, b) ((b)->level <= (s)->lock)
97
98 /*
99 * These macros are for recursing down the btree - they handle the details of
100 * locking and looking up nodes in the cache for you. They're best treated as
101 * mere syntax when reading code that uses them.
102 *
103 * op->lock determines whether we take a read or a write lock at a given depth.
104 * If you've got a read lock and find that you need a write lock (i.e. you're
105 * going to have to split), set op->lock and return -EINTR; btree_root() will
106 * call you again and you'll have the correct lock.
107 */
108
109 /**
110 * btree - recurse down the btree on a specified key
111 * @fn: function to call, which will be passed the child node
112 * @key: key to recurse on
113 * @b: parent btree node
114 * @op: pointer to struct btree_op
115 */
116 #define btree(fn, key, b, op, ...) \
117 ({ \
118 int _r, l = (b)->level - 1; \
119 bool _w = l <= (op)->lock; \
120 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
121 _w, b); \
122 if (!IS_ERR(_child)) { \
123 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
124 rw_unlock(_w, _child); \
125 } else \
126 _r = PTR_ERR(_child); \
127 _r; \
128 })
129
130 /**
131 * btree_root - call a function on the root of the btree
132 * @fn: function to call, which will be passed the child node
133 * @c: cache set
134 * @op: pointer to struct btree_op
135 */
136 #define btree_root(fn, c, op, ...) \
137 ({ \
138 int _r = -EINTR; \
139 do { \
140 struct btree *_b = (c)->root; \
141 bool _w = insert_lock(op, _b); \
142 rw_lock(_w, _b, _b->level); \
143 if (_b == (c)->root && \
144 _w == insert_lock(op, _b)) { \
145 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
146 } \
147 rw_unlock(_w, _b); \
148 bch_cannibalize_unlock(c); \
149 if (_r == -EINTR) \
150 schedule(); \
151 } while (_r == -EINTR); \
152 \
153 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
154 _r; \
155 })
156
write_block(struct btree * b)157 static inline struct bset *write_block(struct btree *b)
158 {
159 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
160 }
161
bch_btree_init_next(struct btree * b)162 static void bch_btree_init_next(struct btree *b)
163 {
164 /* If not a leaf node, always sort */
165 if (b->level && b->keys.nsets)
166 bch_btree_sort(&b->keys, &b->c->sort);
167 else
168 bch_btree_sort_lazy(&b->keys, &b->c->sort);
169
170 if (b->written < btree_blocks(b))
171 bch_bset_init_next(&b->keys, write_block(b),
172 bset_magic(&b->c->sb));
173
174 }
175
176 /* Btree key manipulation */
177
bkey_put(struct cache_set * c,struct bkey * k)178 void bkey_put(struct cache_set *c, struct bkey *k)
179 {
180 unsigned i;
181
182 for (i = 0; i < KEY_PTRS(k); i++)
183 if (ptr_available(c, k, i))
184 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
185 }
186
187 /* Btree IO */
188
btree_csum_set(struct btree * b,struct bset * i)189 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
190 {
191 uint64_t crc = b->key.ptr[0];
192 void *data = (void *) i + 8, *end = bset_bkey_last(i);
193
194 crc = bch_crc64_update(crc, data, end - data);
195 return crc ^ 0xffffffffffffffffULL;
196 }
197
bch_btree_node_read_done(struct btree * b)198 void bch_btree_node_read_done(struct btree *b)
199 {
200 const char *err = "bad btree header";
201 struct bset *i = btree_bset_first(b);
202 struct btree_iter *iter;
203
204 iter = mempool_alloc(b->c->fill_iter, GFP_NOIO);
205 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
206 iter->used = 0;
207
208 #ifdef CONFIG_BCACHE_DEBUG
209 iter->b = &b->keys;
210 #endif
211
212 if (!i->seq)
213 goto err;
214
215 for (;
216 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
217 i = write_block(b)) {
218 err = "unsupported bset version";
219 if (i->version > BCACHE_BSET_VERSION)
220 goto err;
221
222 err = "bad btree header";
223 if (b->written + set_blocks(i, block_bytes(b->c)) >
224 btree_blocks(b))
225 goto err;
226
227 err = "bad magic";
228 if (i->magic != bset_magic(&b->c->sb))
229 goto err;
230
231 err = "bad checksum";
232 switch (i->version) {
233 case 0:
234 if (i->csum != csum_set(i))
235 goto err;
236 break;
237 case BCACHE_BSET_VERSION:
238 if (i->csum != btree_csum_set(b, i))
239 goto err;
240 break;
241 }
242
243 err = "empty set";
244 if (i != b->keys.set[0].data && !i->keys)
245 goto err;
246
247 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
248
249 b->written += set_blocks(i, block_bytes(b->c));
250 }
251
252 err = "corrupted btree";
253 for (i = write_block(b);
254 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
255 i = ((void *) i) + block_bytes(b->c))
256 if (i->seq == b->keys.set[0].data->seq)
257 goto err;
258
259 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
260
261 i = b->keys.set[0].data;
262 err = "short btree key";
263 if (b->keys.set[0].size &&
264 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
265 goto err;
266
267 if (b->written < btree_blocks(b))
268 bch_bset_init_next(&b->keys, write_block(b),
269 bset_magic(&b->c->sb));
270 out:
271 mempool_free(iter, b->c->fill_iter);
272 return;
273 err:
274 set_btree_node_io_error(b);
275 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
276 err, PTR_BUCKET_NR(b->c, &b->key, 0),
277 bset_block_offset(b, i), i->keys);
278 goto out;
279 }
280
btree_node_read_endio(struct bio * bio)281 static void btree_node_read_endio(struct bio *bio)
282 {
283 struct closure *cl = bio->bi_private;
284 closure_put(cl);
285 }
286
bch_btree_node_read(struct btree * b)287 static void bch_btree_node_read(struct btree *b)
288 {
289 uint64_t start_time = local_clock();
290 struct closure cl;
291 struct bio *bio;
292
293 trace_bcache_btree_read(b);
294
295 closure_init_stack(&cl);
296
297 bio = bch_bbio_alloc(b->c);
298 bio->bi_rw = REQ_META|READ_SYNC;
299 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
300 bio->bi_end_io = btree_node_read_endio;
301 bio->bi_private = &cl;
302
303 bch_bio_map(bio, b->keys.set[0].data);
304
305 bch_submit_bbio(bio, b->c, &b->key, 0);
306 closure_sync(&cl);
307
308 if (bio->bi_error)
309 set_btree_node_io_error(b);
310
311 bch_bbio_free(bio, b->c);
312
313 if (btree_node_io_error(b))
314 goto err;
315
316 bch_btree_node_read_done(b);
317 bch_time_stats_update(&b->c->btree_read_time, start_time);
318
319 return;
320 err:
321 bch_cache_set_error(b->c, "io error reading bucket %zu",
322 PTR_BUCKET_NR(b->c, &b->key, 0));
323 }
324
btree_complete_write(struct btree * b,struct btree_write * w)325 static void btree_complete_write(struct btree *b, struct btree_write *w)
326 {
327 if (w->prio_blocked &&
328 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
329 wake_up_allocators(b->c);
330
331 if (w->journal) {
332 atomic_dec_bug(w->journal);
333 __closure_wake_up(&b->c->journal.wait);
334 }
335
336 w->prio_blocked = 0;
337 w->journal = NULL;
338 }
339
btree_node_write_unlock(struct closure * cl)340 static void btree_node_write_unlock(struct closure *cl)
341 {
342 struct btree *b = container_of(cl, struct btree, io);
343
344 up(&b->io_mutex);
345 }
346
__btree_node_write_done(struct closure * cl)347 static void __btree_node_write_done(struct closure *cl)
348 {
349 struct btree *b = container_of(cl, struct btree, io);
350 struct btree_write *w = btree_prev_write(b);
351
352 bch_bbio_free(b->bio, b->c);
353 b->bio = NULL;
354 btree_complete_write(b, w);
355
356 if (btree_node_dirty(b))
357 schedule_delayed_work(&b->work, 30 * HZ);
358
359 closure_return_with_destructor(cl, btree_node_write_unlock);
360 }
361
btree_node_write_done(struct closure * cl)362 static void btree_node_write_done(struct closure *cl)
363 {
364 struct btree *b = container_of(cl, struct btree, io);
365 struct bio_vec *bv;
366 int n;
367
368 bio_for_each_segment_all(bv, b->bio, n)
369 __free_page(bv->bv_page);
370
371 __btree_node_write_done(cl);
372 }
373
btree_node_write_endio(struct bio * bio)374 static void btree_node_write_endio(struct bio *bio)
375 {
376 struct closure *cl = bio->bi_private;
377 struct btree *b = container_of(cl, struct btree, io);
378
379 if (bio->bi_error)
380 set_btree_node_io_error(b);
381
382 bch_bbio_count_io_errors(b->c, bio, bio->bi_error, "writing btree");
383 closure_put(cl);
384 }
385
do_btree_node_write(struct btree * b)386 static void do_btree_node_write(struct btree *b)
387 {
388 struct closure *cl = &b->io;
389 struct bset *i = btree_bset_last(b);
390 BKEY_PADDED(key) k;
391
392 i->version = BCACHE_BSET_VERSION;
393 i->csum = btree_csum_set(b, i);
394
395 BUG_ON(b->bio);
396 b->bio = bch_bbio_alloc(b->c);
397
398 b->bio->bi_end_io = btree_node_write_endio;
399 b->bio->bi_private = cl;
400 b->bio->bi_rw = REQ_META|WRITE_SYNC|REQ_FUA;
401 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
402 bch_bio_map(b->bio, i);
403
404 /*
405 * If we're appending to a leaf node, we don't technically need FUA -
406 * this write just needs to be persisted before the next journal write,
407 * which will be marked FLUSH|FUA.
408 *
409 * Similarly if we're writing a new btree root - the pointer is going to
410 * be in the next journal entry.
411 *
412 * But if we're writing a new btree node (that isn't a root) or
413 * appending to a non leaf btree node, we need either FUA or a flush
414 * when we write the parent with the new pointer. FUA is cheaper than a
415 * flush, and writes appending to leaf nodes aren't blocking anything so
416 * just make all btree node writes FUA to keep things sane.
417 */
418
419 bkey_copy(&k.key, &b->key);
420 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
421 bset_sector_offset(&b->keys, i));
422
423 if (!bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
424 int j;
425 struct bio_vec *bv;
426 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
427
428 bio_for_each_segment_all(bv, b->bio, j)
429 memcpy(page_address(bv->bv_page),
430 base + j * PAGE_SIZE, PAGE_SIZE);
431
432 bch_submit_bbio(b->bio, b->c, &k.key, 0);
433
434 continue_at(cl, btree_node_write_done, NULL);
435 } else {
436 b->bio->bi_vcnt = 0;
437 bch_bio_map(b->bio, i);
438
439 bch_submit_bbio(b->bio, b->c, &k.key, 0);
440
441 closure_sync(cl);
442 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
443 }
444 }
445
__bch_btree_node_write(struct btree * b,struct closure * parent)446 void __bch_btree_node_write(struct btree *b, struct closure *parent)
447 {
448 struct bset *i = btree_bset_last(b);
449
450 lockdep_assert_held(&b->write_lock);
451
452 trace_bcache_btree_write(b);
453
454 BUG_ON(current->bio_list);
455 BUG_ON(b->written >= btree_blocks(b));
456 BUG_ON(b->written && !i->keys);
457 BUG_ON(btree_bset_first(b)->seq != i->seq);
458 bch_check_keys(&b->keys, "writing");
459
460 cancel_delayed_work(&b->work);
461
462 /* If caller isn't waiting for write, parent refcount is cache set */
463 down(&b->io_mutex);
464 closure_init(&b->io, parent ?: &b->c->cl);
465
466 clear_bit(BTREE_NODE_dirty, &b->flags);
467 change_bit(BTREE_NODE_write_idx, &b->flags);
468
469 do_btree_node_write(b);
470
471 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
472 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
473
474 b->written += set_blocks(i, block_bytes(b->c));
475 }
476
bch_btree_node_write(struct btree * b,struct closure * parent)477 void bch_btree_node_write(struct btree *b, struct closure *parent)
478 {
479 unsigned nsets = b->keys.nsets;
480
481 lockdep_assert_held(&b->lock);
482
483 __bch_btree_node_write(b, parent);
484
485 /*
486 * do verify if there was more than one set initially (i.e. we did a
487 * sort) and we sorted down to a single set:
488 */
489 if (nsets && !b->keys.nsets)
490 bch_btree_verify(b);
491
492 bch_btree_init_next(b);
493 }
494
bch_btree_node_write_sync(struct btree * b)495 static void bch_btree_node_write_sync(struct btree *b)
496 {
497 struct closure cl;
498
499 closure_init_stack(&cl);
500
501 mutex_lock(&b->write_lock);
502 bch_btree_node_write(b, &cl);
503 mutex_unlock(&b->write_lock);
504
505 closure_sync(&cl);
506 }
507
btree_node_write_work(struct work_struct * w)508 static void btree_node_write_work(struct work_struct *w)
509 {
510 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
511
512 mutex_lock(&b->write_lock);
513 if (btree_node_dirty(b))
514 __bch_btree_node_write(b, NULL);
515 mutex_unlock(&b->write_lock);
516 }
517
bch_btree_leaf_dirty(struct btree * b,atomic_t * journal_ref)518 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
519 {
520 struct bset *i = btree_bset_last(b);
521 struct btree_write *w = btree_current_write(b);
522
523 lockdep_assert_held(&b->write_lock);
524
525 BUG_ON(!b->written);
526 BUG_ON(!i->keys);
527
528 if (!btree_node_dirty(b))
529 schedule_delayed_work(&b->work, 30 * HZ);
530
531 set_btree_node_dirty(b);
532
533 if (journal_ref) {
534 if (w->journal &&
535 journal_pin_cmp(b->c, w->journal, journal_ref)) {
536 atomic_dec_bug(w->journal);
537 w->journal = NULL;
538 }
539
540 if (!w->journal) {
541 w->journal = journal_ref;
542 atomic_inc(w->journal);
543 }
544 }
545
546 /* Force write if set is too big */
547 if (set_bytes(i) > PAGE_SIZE - 48 &&
548 !current->bio_list)
549 bch_btree_node_write(b, NULL);
550 }
551
552 /*
553 * Btree in memory cache - allocation/freeing
554 * mca -> memory cache
555 */
556
557 #define mca_reserve(c) (((c->root && c->root->level) \
558 ? c->root->level : 1) * 8 + 16)
559 #define mca_can_free(c) \
560 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
561
mca_data_free(struct btree * b)562 static void mca_data_free(struct btree *b)
563 {
564 BUG_ON(b->io_mutex.count != 1);
565
566 bch_btree_keys_free(&b->keys);
567
568 b->c->btree_cache_used--;
569 list_move(&b->list, &b->c->btree_cache_freed);
570 }
571
mca_bucket_free(struct btree * b)572 static void mca_bucket_free(struct btree *b)
573 {
574 BUG_ON(btree_node_dirty(b));
575
576 b->key.ptr[0] = 0;
577 hlist_del_init_rcu(&b->hash);
578 list_move(&b->list, &b->c->btree_cache_freeable);
579 }
580
btree_order(struct bkey * k)581 static unsigned btree_order(struct bkey *k)
582 {
583 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
584 }
585
mca_data_alloc(struct btree * b,struct bkey * k,gfp_t gfp)586 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
587 {
588 if (!bch_btree_keys_alloc(&b->keys,
589 max_t(unsigned,
590 ilog2(b->c->btree_pages),
591 btree_order(k)),
592 gfp)) {
593 b->c->btree_cache_used++;
594 list_move(&b->list, &b->c->btree_cache);
595 } else {
596 list_move(&b->list, &b->c->btree_cache_freed);
597 }
598 }
599
mca_bucket_alloc(struct cache_set * c,struct bkey * k,gfp_t gfp)600 static struct btree *mca_bucket_alloc(struct cache_set *c,
601 struct bkey *k, gfp_t gfp)
602 {
603 struct btree *b = kzalloc(sizeof(struct btree), gfp);
604 if (!b)
605 return NULL;
606
607 init_rwsem(&b->lock);
608 lockdep_set_novalidate_class(&b->lock);
609 mutex_init(&b->write_lock);
610 lockdep_set_novalidate_class(&b->write_lock);
611 INIT_LIST_HEAD(&b->list);
612 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
613 b->c = c;
614 sema_init(&b->io_mutex, 1);
615
616 mca_data_alloc(b, k, gfp);
617 return b;
618 }
619
mca_reap(struct btree * b,unsigned min_order,bool flush)620 static int mca_reap(struct btree *b, unsigned min_order, bool flush)
621 {
622 struct closure cl;
623
624 closure_init_stack(&cl);
625 lockdep_assert_held(&b->c->bucket_lock);
626
627 if (!down_write_trylock(&b->lock))
628 return -ENOMEM;
629
630 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
631
632 if (b->keys.page_order < min_order)
633 goto out_unlock;
634
635 if (!flush) {
636 if (btree_node_dirty(b))
637 goto out_unlock;
638
639 if (down_trylock(&b->io_mutex))
640 goto out_unlock;
641 up(&b->io_mutex);
642 }
643
644 mutex_lock(&b->write_lock);
645 if (btree_node_dirty(b))
646 __bch_btree_node_write(b, &cl);
647 mutex_unlock(&b->write_lock);
648
649 closure_sync(&cl);
650
651 /* wait for any in flight btree write */
652 down(&b->io_mutex);
653 up(&b->io_mutex);
654
655 return 0;
656 out_unlock:
657 rw_unlock(true, b);
658 return -ENOMEM;
659 }
660
bch_mca_scan(struct shrinker * shrink,struct shrink_control * sc)661 static unsigned long bch_mca_scan(struct shrinker *shrink,
662 struct shrink_control *sc)
663 {
664 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
665 struct btree *b, *t;
666 unsigned long i, nr = sc->nr_to_scan;
667 unsigned long freed = 0;
668
669 if (c->shrinker_disabled)
670 return SHRINK_STOP;
671
672 if (c->btree_cache_alloc_lock)
673 return SHRINK_STOP;
674
675 /* Return -1 if we can't do anything right now */
676 if (sc->gfp_mask & __GFP_IO)
677 mutex_lock(&c->bucket_lock);
678 else if (!mutex_trylock(&c->bucket_lock))
679 return -1;
680
681 /*
682 * It's _really_ critical that we don't free too many btree nodes - we
683 * have to always leave ourselves a reserve. The reserve is how we
684 * guarantee that allocating memory for a new btree node can always
685 * succeed, so that inserting keys into the btree can always succeed and
686 * IO can always make forward progress:
687 */
688 nr /= c->btree_pages;
689 if (nr == 0)
690 nr = 1;
691 nr = min_t(unsigned long, nr, mca_can_free(c));
692
693 i = 0;
694 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
695 if (freed >= nr)
696 break;
697
698 if (++i > 3 &&
699 !mca_reap(b, 0, false)) {
700 mca_data_free(b);
701 rw_unlock(true, b);
702 freed++;
703 }
704 }
705
706 for (i = 0; (nr--) && i < c->btree_cache_used; i++) {
707 if (list_empty(&c->btree_cache))
708 goto out;
709
710 b = list_first_entry(&c->btree_cache, struct btree, list);
711 list_rotate_left(&c->btree_cache);
712
713 if (!b->accessed &&
714 !mca_reap(b, 0, false)) {
715 mca_bucket_free(b);
716 mca_data_free(b);
717 rw_unlock(true, b);
718 freed++;
719 } else
720 b->accessed = 0;
721 }
722 out:
723 mutex_unlock(&c->bucket_lock);
724 return freed;
725 }
726
bch_mca_count(struct shrinker * shrink,struct shrink_control * sc)727 static unsigned long bch_mca_count(struct shrinker *shrink,
728 struct shrink_control *sc)
729 {
730 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
731
732 if (c->shrinker_disabled)
733 return 0;
734
735 if (c->btree_cache_alloc_lock)
736 return 0;
737
738 return mca_can_free(c) * c->btree_pages;
739 }
740
bch_btree_cache_free(struct cache_set * c)741 void bch_btree_cache_free(struct cache_set *c)
742 {
743 struct btree *b;
744 struct closure cl;
745 closure_init_stack(&cl);
746
747 if (c->shrink.list.next)
748 unregister_shrinker(&c->shrink);
749
750 mutex_lock(&c->bucket_lock);
751
752 #ifdef CONFIG_BCACHE_DEBUG
753 if (c->verify_data)
754 list_move(&c->verify_data->list, &c->btree_cache);
755
756 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
757 #endif
758
759 list_splice(&c->btree_cache_freeable,
760 &c->btree_cache);
761
762 while (!list_empty(&c->btree_cache)) {
763 b = list_first_entry(&c->btree_cache, struct btree, list);
764
765 if (btree_node_dirty(b))
766 btree_complete_write(b, btree_current_write(b));
767 clear_bit(BTREE_NODE_dirty, &b->flags);
768
769 mca_data_free(b);
770 }
771
772 while (!list_empty(&c->btree_cache_freed)) {
773 b = list_first_entry(&c->btree_cache_freed,
774 struct btree, list);
775 list_del(&b->list);
776 cancel_delayed_work_sync(&b->work);
777 kfree(b);
778 }
779
780 mutex_unlock(&c->bucket_lock);
781 }
782
bch_btree_cache_alloc(struct cache_set * c)783 int bch_btree_cache_alloc(struct cache_set *c)
784 {
785 unsigned i;
786
787 for (i = 0; i < mca_reserve(c); i++)
788 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
789 return -ENOMEM;
790
791 list_splice_init(&c->btree_cache,
792 &c->btree_cache_freeable);
793
794 #ifdef CONFIG_BCACHE_DEBUG
795 mutex_init(&c->verify_lock);
796
797 c->verify_ondisk = (void *)
798 __get_free_pages(GFP_KERNEL|__GFP_COMP, ilog2(bucket_pages(c)));
799
800 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
801
802 if (c->verify_data &&
803 c->verify_data->keys.set->data)
804 list_del_init(&c->verify_data->list);
805 else
806 c->verify_data = NULL;
807 #endif
808
809 c->shrink.count_objects = bch_mca_count;
810 c->shrink.scan_objects = bch_mca_scan;
811 c->shrink.seeks = 4;
812 c->shrink.batch = c->btree_pages * 2;
813
814 if (register_shrinker(&c->shrink))
815 pr_warn("bcache: %s: could not register shrinker",
816 __func__);
817
818 return 0;
819 }
820
821 /* Btree in memory cache - hash table */
822
mca_hash(struct cache_set * c,struct bkey * k)823 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
824 {
825 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
826 }
827
mca_find(struct cache_set * c,struct bkey * k)828 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
829 {
830 struct btree *b;
831
832 rcu_read_lock();
833 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
834 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
835 goto out;
836 b = NULL;
837 out:
838 rcu_read_unlock();
839 return b;
840 }
841
mca_cannibalize_lock(struct cache_set * c,struct btree_op * op)842 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
843 {
844 spin_lock(&c->btree_cannibalize_lock);
845 if (likely(c->btree_cache_alloc_lock == NULL)) {
846 c->btree_cache_alloc_lock = current;
847 } else if (c->btree_cache_alloc_lock != current) {
848 if (op)
849 prepare_to_wait(&c->btree_cache_wait, &op->wait,
850 TASK_UNINTERRUPTIBLE);
851 spin_unlock(&c->btree_cannibalize_lock);
852 return -EINTR;
853 }
854 spin_unlock(&c->btree_cannibalize_lock);
855
856 return 0;
857 }
858
mca_cannibalize(struct cache_set * c,struct btree_op * op,struct bkey * k)859 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
860 struct bkey *k)
861 {
862 struct btree *b;
863
864 trace_bcache_btree_cache_cannibalize(c);
865
866 if (mca_cannibalize_lock(c, op))
867 return ERR_PTR(-EINTR);
868
869 list_for_each_entry_reverse(b, &c->btree_cache, list)
870 if (!mca_reap(b, btree_order(k), false))
871 return b;
872
873 list_for_each_entry_reverse(b, &c->btree_cache, list)
874 if (!mca_reap(b, btree_order(k), true))
875 return b;
876
877 WARN(1, "btree cache cannibalize failed\n");
878 return ERR_PTR(-ENOMEM);
879 }
880
881 /*
882 * We can only have one thread cannibalizing other cached btree nodes at a time,
883 * or we'll deadlock. We use an open coded mutex to ensure that, which a
884 * cannibalize_bucket() will take. This means every time we unlock the root of
885 * the btree, we need to release this lock if we have it held.
886 */
bch_cannibalize_unlock(struct cache_set * c)887 static void bch_cannibalize_unlock(struct cache_set *c)
888 {
889 spin_lock(&c->btree_cannibalize_lock);
890 if (c->btree_cache_alloc_lock == current) {
891 c->btree_cache_alloc_lock = NULL;
892 wake_up(&c->btree_cache_wait);
893 }
894 spin_unlock(&c->btree_cannibalize_lock);
895 }
896
mca_alloc(struct cache_set * c,struct btree_op * op,struct bkey * k,int level)897 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
898 struct bkey *k, int level)
899 {
900 struct btree *b;
901
902 BUG_ON(current->bio_list);
903
904 lockdep_assert_held(&c->bucket_lock);
905
906 if (mca_find(c, k))
907 return NULL;
908
909 /* btree_free() doesn't free memory; it sticks the node on the end of
910 * the list. Check if there's any freed nodes there:
911 */
912 list_for_each_entry(b, &c->btree_cache_freeable, list)
913 if (!mca_reap(b, btree_order(k), false))
914 goto out;
915
916 /* We never free struct btree itself, just the memory that holds the on
917 * disk node. Check the freed list before allocating a new one:
918 */
919 list_for_each_entry(b, &c->btree_cache_freed, list)
920 if (!mca_reap(b, 0, false)) {
921 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
922 if (!b->keys.set[0].data)
923 goto err;
924 else
925 goto out;
926 }
927
928 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
929 if (!b)
930 goto err;
931
932 BUG_ON(!down_write_trylock(&b->lock));
933 if (!b->keys.set->data)
934 goto err;
935 out:
936 BUG_ON(b->io_mutex.count != 1);
937
938 bkey_copy(&b->key, k);
939 list_move(&b->list, &c->btree_cache);
940 hlist_del_init_rcu(&b->hash);
941 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
942
943 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
944 b->parent = (void *) ~0UL;
945 b->flags = 0;
946 b->written = 0;
947 b->level = level;
948
949 if (!b->level)
950 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
951 &b->c->expensive_debug_checks);
952 else
953 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
954 &b->c->expensive_debug_checks);
955
956 return b;
957 err:
958 if (b)
959 rw_unlock(true, b);
960
961 b = mca_cannibalize(c, op, k);
962 if (!IS_ERR(b))
963 goto out;
964
965 return b;
966 }
967
968 /**
969 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
970 * in from disk if necessary.
971 *
972 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
973 *
974 * The btree node will have either a read or a write lock held, depending on
975 * level and op->lock.
976 */
bch_btree_node_get(struct cache_set * c,struct btree_op * op,struct bkey * k,int level,bool write,struct btree * parent)977 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
978 struct bkey *k, int level, bool write,
979 struct btree *parent)
980 {
981 int i = 0;
982 struct btree *b;
983
984 BUG_ON(level < 0);
985 retry:
986 b = mca_find(c, k);
987
988 if (!b) {
989 if (current->bio_list)
990 return ERR_PTR(-EAGAIN);
991
992 mutex_lock(&c->bucket_lock);
993 b = mca_alloc(c, op, k, level);
994 mutex_unlock(&c->bucket_lock);
995
996 if (!b)
997 goto retry;
998 if (IS_ERR(b))
999 return b;
1000
1001 bch_btree_node_read(b);
1002
1003 if (!write)
1004 downgrade_write(&b->lock);
1005 } else {
1006 rw_lock(write, b, level);
1007 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1008 rw_unlock(write, b);
1009 goto retry;
1010 }
1011 BUG_ON(b->level != level);
1012 }
1013
1014 b->parent = parent;
1015 b->accessed = 1;
1016
1017 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1018 prefetch(b->keys.set[i].tree);
1019 prefetch(b->keys.set[i].data);
1020 }
1021
1022 for (; i <= b->keys.nsets; i++)
1023 prefetch(b->keys.set[i].data);
1024
1025 if (btree_node_io_error(b)) {
1026 rw_unlock(write, b);
1027 return ERR_PTR(-EIO);
1028 }
1029
1030 BUG_ON(!b->written);
1031
1032 return b;
1033 }
1034
btree_node_prefetch(struct btree * parent,struct bkey * k)1035 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1036 {
1037 struct btree *b;
1038
1039 mutex_lock(&parent->c->bucket_lock);
1040 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1041 mutex_unlock(&parent->c->bucket_lock);
1042
1043 if (!IS_ERR_OR_NULL(b)) {
1044 b->parent = parent;
1045 bch_btree_node_read(b);
1046 rw_unlock(true, b);
1047 }
1048 }
1049
1050 /* Btree alloc */
1051
btree_node_free(struct btree * b)1052 static void btree_node_free(struct btree *b)
1053 {
1054 trace_bcache_btree_node_free(b);
1055
1056 BUG_ON(b == b->c->root);
1057
1058 mutex_lock(&b->write_lock);
1059
1060 if (btree_node_dirty(b))
1061 btree_complete_write(b, btree_current_write(b));
1062 clear_bit(BTREE_NODE_dirty, &b->flags);
1063
1064 mutex_unlock(&b->write_lock);
1065
1066 cancel_delayed_work(&b->work);
1067
1068 mutex_lock(&b->c->bucket_lock);
1069 bch_bucket_free(b->c, &b->key);
1070 mca_bucket_free(b);
1071 mutex_unlock(&b->c->bucket_lock);
1072 }
1073
__bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,bool wait,struct btree * parent)1074 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1075 int level, bool wait,
1076 struct btree *parent)
1077 {
1078 BKEY_PADDED(key) k;
1079 struct btree *b = ERR_PTR(-EAGAIN);
1080
1081 mutex_lock(&c->bucket_lock);
1082 retry:
1083 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1084 goto err;
1085
1086 bkey_put(c, &k.key);
1087 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1088
1089 b = mca_alloc(c, op, &k.key, level);
1090 if (IS_ERR(b))
1091 goto err_free;
1092
1093 if (!b) {
1094 cache_bug(c,
1095 "Tried to allocate bucket that was in btree cache");
1096 goto retry;
1097 }
1098
1099 b->accessed = 1;
1100 b->parent = parent;
1101 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1102
1103 mutex_unlock(&c->bucket_lock);
1104
1105 trace_bcache_btree_node_alloc(b);
1106 return b;
1107 err_free:
1108 bch_bucket_free(c, &k.key);
1109 err:
1110 mutex_unlock(&c->bucket_lock);
1111
1112 trace_bcache_btree_node_alloc_fail(c);
1113 return b;
1114 }
1115
bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,struct btree * parent)1116 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1117 struct btree_op *op, int level,
1118 struct btree *parent)
1119 {
1120 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1121 }
1122
btree_node_alloc_replacement(struct btree * b,struct btree_op * op)1123 static struct btree *btree_node_alloc_replacement(struct btree *b,
1124 struct btree_op *op)
1125 {
1126 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1127 if (!IS_ERR_OR_NULL(n)) {
1128 mutex_lock(&n->write_lock);
1129 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1130 bkey_copy_key(&n->key, &b->key);
1131 mutex_unlock(&n->write_lock);
1132 }
1133
1134 return n;
1135 }
1136
make_btree_freeing_key(struct btree * b,struct bkey * k)1137 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1138 {
1139 unsigned i;
1140
1141 mutex_lock(&b->c->bucket_lock);
1142
1143 atomic_inc(&b->c->prio_blocked);
1144
1145 bkey_copy(k, &b->key);
1146 bkey_copy_key(k, &ZERO_KEY);
1147
1148 for (i = 0; i < KEY_PTRS(k); i++)
1149 SET_PTR_GEN(k, i,
1150 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1151 PTR_BUCKET(b->c, &b->key, i)));
1152
1153 mutex_unlock(&b->c->bucket_lock);
1154 }
1155
btree_check_reserve(struct btree * b,struct btree_op * op)1156 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1157 {
1158 struct cache_set *c = b->c;
1159 struct cache *ca;
1160 unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
1161
1162 mutex_lock(&c->bucket_lock);
1163
1164 for_each_cache(ca, c, i)
1165 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1166 if (op)
1167 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1168 TASK_UNINTERRUPTIBLE);
1169 mutex_unlock(&c->bucket_lock);
1170 return -EINTR;
1171 }
1172
1173 mutex_unlock(&c->bucket_lock);
1174
1175 return mca_cannibalize_lock(b->c, op);
1176 }
1177
1178 /* Garbage collection */
1179
__bch_btree_mark_key(struct cache_set * c,int level,struct bkey * k)1180 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1181 struct bkey *k)
1182 {
1183 uint8_t stale = 0;
1184 unsigned i;
1185 struct bucket *g;
1186
1187 /*
1188 * ptr_invalid() can't return true for the keys that mark btree nodes as
1189 * freed, but since ptr_bad() returns true we'll never actually use them
1190 * for anything and thus we don't want mark their pointers here
1191 */
1192 if (!bkey_cmp(k, &ZERO_KEY))
1193 return stale;
1194
1195 for (i = 0; i < KEY_PTRS(k); i++) {
1196 if (!ptr_available(c, k, i))
1197 continue;
1198
1199 g = PTR_BUCKET(c, k, i);
1200
1201 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1202 g->last_gc = PTR_GEN(k, i);
1203
1204 if (ptr_stale(c, k, i)) {
1205 stale = max(stale, ptr_stale(c, k, i));
1206 continue;
1207 }
1208
1209 cache_bug_on(GC_MARK(g) &&
1210 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1211 c, "inconsistent ptrs: mark = %llu, level = %i",
1212 GC_MARK(g), level);
1213
1214 if (level)
1215 SET_GC_MARK(g, GC_MARK_METADATA);
1216 else if (KEY_DIRTY(k))
1217 SET_GC_MARK(g, GC_MARK_DIRTY);
1218 else if (!GC_MARK(g))
1219 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1220
1221 /* guard against overflow */
1222 SET_GC_SECTORS_USED(g, min_t(unsigned,
1223 GC_SECTORS_USED(g) + KEY_SIZE(k),
1224 MAX_GC_SECTORS_USED));
1225
1226 BUG_ON(!GC_SECTORS_USED(g));
1227 }
1228
1229 return stale;
1230 }
1231
1232 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1233
bch_initial_mark_key(struct cache_set * c,int level,struct bkey * k)1234 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1235 {
1236 unsigned i;
1237
1238 for (i = 0; i < KEY_PTRS(k); i++)
1239 if (ptr_available(c, k, i) &&
1240 !ptr_stale(c, k, i)) {
1241 struct bucket *b = PTR_BUCKET(c, k, i);
1242
1243 b->gen = PTR_GEN(k, i);
1244
1245 if (level && bkey_cmp(k, &ZERO_KEY))
1246 b->prio = BTREE_PRIO;
1247 else if (!level && b->prio == BTREE_PRIO)
1248 b->prio = INITIAL_PRIO;
1249 }
1250
1251 __bch_btree_mark_key(c, level, k);
1252 }
1253
btree_gc_mark_node(struct btree * b,struct gc_stat * gc)1254 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1255 {
1256 uint8_t stale = 0;
1257 unsigned keys = 0, good_keys = 0;
1258 struct bkey *k;
1259 struct btree_iter iter;
1260 struct bset_tree *t;
1261
1262 gc->nodes++;
1263
1264 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1265 stale = max(stale, btree_mark_key(b, k));
1266 keys++;
1267
1268 if (bch_ptr_bad(&b->keys, k))
1269 continue;
1270
1271 gc->key_bytes += bkey_u64s(k);
1272 gc->nkeys++;
1273 good_keys++;
1274
1275 gc->data += KEY_SIZE(k);
1276 }
1277
1278 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1279 btree_bug_on(t->size &&
1280 bset_written(&b->keys, t) &&
1281 bkey_cmp(&b->key, &t->end) < 0,
1282 b, "found short btree key in gc");
1283
1284 if (b->c->gc_always_rewrite)
1285 return true;
1286
1287 if (stale > 10)
1288 return true;
1289
1290 if ((keys - good_keys) * 2 > keys)
1291 return true;
1292
1293 return false;
1294 }
1295
1296 #define GC_MERGE_NODES 4U
1297
1298 struct gc_merge_info {
1299 struct btree *b;
1300 unsigned keys;
1301 };
1302
1303 static int bch_btree_insert_node(struct btree *, struct btree_op *,
1304 struct keylist *, atomic_t *, struct bkey *);
1305
btree_gc_coalesce(struct btree * b,struct btree_op * op,struct gc_stat * gc,struct gc_merge_info * r)1306 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1307 struct gc_stat *gc, struct gc_merge_info *r)
1308 {
1309 unsigned i, nodes = 0, keys = 0, blocks;
1310 struct btree *new_nodes[GC_MERGE_NODES];
1311 struct keylist keylist;
1312 struct closure cl;
1313 struct bkey *k;
1314
1315 bch_keylist_init(&keylist);
1316
1317 if (btree_check_reserve(b, NULL))
1318 return 0;
1319
1320 memset(new_nodes, 0, sizeof(new_nodes));
1321 closure_init_stack(&cl);
1322
1323 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1324 keys += r[nodes++].keys;
1325
1326 blocks = btree_default_blocks(b->c) * 2 / 3;
1327
1328 if (nodes < 2 ||
1329 __set_blocks(b->keys.set[0].data, keys,
1330 block_bytes(b->c)) > blocks * (nodes - 1))
1331 return 0;
1332
1333 for (i = 0; i < nodes; i++) {
1334 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1335 if (IS_ERR_OR_NULL(new_nodes[i]))
1336 goto out_nocoalesce;
1337 }
1338
1339 /*
1340 * We have to check the reserve here, after we've allocated our new
1341 * nodes, to make sure the insert below will succeed - we also check
1342 * before as an optimization to potentially avoid a bunch of expensive
1343 * allocs/sorts
1344 */
1345 if (btree_check_reserve(b, NULL))
1346 goto out_nocoalesce;
1347
1348 for (i = 0; i < nodes; i++)
1349 mutex_lock(&new_nodes[i]->write_lock);
1350
1351 for (i = nodes - 1; i > 0; --i) {
1352 struct bset *n1 = btree_bset_first(new_nodes[i]);
1353 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1354 struct bkey *k, *last = NULL;
1355
1356 keys = 0;
1357
1358 if (i > 1) {
1359 for (k = n2->start;
1360 k < bset_bkey_last(n2);
1361 k = bkey_next(k)) {
1362 if (__set_blocks(n1, n1->keys + keys +
1363 bkey_u64s(k),
1364 block_bytes(b->c)) > blocks)
1365 break;
1366
1367 last = k;
1368 keys += bkey_u64s(k);
1369 }
1370 } else {
1371 /*
1372 * Last node we're not getting rid of - we're getting
1373 * rid of the node at r[0]. Have to try and fit all of
1374 * the remaining keys into this node; we can't ensure
1375 * they will always fit due to rounding and variable
1376 * length keys (shouldn't be possible in practice,
1377 * though)
1378 */
1379 if (__set_blocks(n1, n1->keys + n2->keys,
1380 block_bytes(b->c)) >
1381 btree_blocks(new_nodes[i]))
1382 goto out_unlock_nocoalesce;
1383
1384 keys = n2->keys;
1385 /* Take the key of the node we're getting rid of */
1386 last = &r->b->key;
1387 }
1388
1389 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1390 btree_blocks(new_nodes[i]));
1391
1392 if (last)
1393 bkey_copy_key(&new_nodes[i]->key, last);
1394
1395 memcpy(bset_bkey_last(n1),
1396 n2->start,
1397 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1398
1399 n1->keys += keys;
1400 r[i].keys = n1->keys;
1401
1402 memmove(n2->start,
1403 bset_bkey_idx(n2, keys),
1404 (void *) bset_bkey_last(n2) -
1405 (void *) bset_bkey_idx(n2, keys));
1406
1407 n2->keys -= keys;
1408
1409 if (__bch_keylist_realloc(&keylist,
1410 bkey_u64s(&new_nodes[i]->key)))
1411 goto out_unlock_nocoalesce;
1412
1413 bch_btree_node_write(new_nodes[i], &cl);
1414 bch_keylist_add(&keylist, &new_nodes[i]->key);
1415 }
1416
1417 for (i = 0; i < nodes; i++)
1418 mutex_unlock(&new_nodes[i]->write_lock);
1419
1420 closure_sync(&cl);
1421
1422 /* We emptied out this node */
1423 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1424 btree_node_free(new_nodes[0]);
1425 rw_unlock(true, new_nodes[0]);
1426 new_nodes[0] = NULL;
1427
1428 for (i = 0; i < nodes; i++) {
1429 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1430 goto out_nocoalesce;
1431
1432 make_btree_freeing_key(r[i].b, keylist.top);
1433 bch_keylist_push(&keylist);
1434 }
1435
1436 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1437 BUG_ON(!bch_keylist_empty(&keylist));
1438
1439 for (i = 0; i < nodes; i++) {
1440 btree_node_free(r[i].b);
1441 rw_unlock(true, r[i].b);
1442
1443 r[i].b = new_nodes[i];
1444 }
1445
1446 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1447 r[nodes - 1].b = ERR_PTR(-EINTR);
1448
1449 trace_bcache_btree_gc_coalesce(nodes);
1450 gc->nodes--;
1451
1452 bch_keylist_free(&keylist);
1453
1454 /* Invalidated our iterator */
1455 return -EINTR;
1456
1457 out_unlock_nocoalesce:
1458 for (i = 0; i < nodes; i++)
1459 mutex_unlock(&new_nodes[i]->write_lock);
1460
1461 out_nocoalesce:
1462 closure_sync(&cl);
1463 bch_keylist_free(&keylist);
1464
1465 while ((k = bch_keylist_pop(&keylist)))
1466 if (!bkey_cmp(k, &ZERO_KEY))
1467 atomic_dec(&b->c->prio_blocked);
1468
1469 for (i = 0; i < nodes; i++)
1470 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1471 btree_node_free(new_nodes[i]);
1472 rw_unlock(true, new_nodes[i]);
1473 }
1474 return 0;
1475 }
1476
btree_gc_rewrite_node(struct btree * b,struct btree_op * op,struct btree * replace)1477 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1478 struct btree *replace)
1479 {
1480 struct keylist keys;
1481 struct btree *n;
1482
1483 if (btree_check_reserve(b, NULL))
1484 return 0;
1485
1486 n = btree_node_alloc_replacement(replace, NULL);
1487
1488 /* recheck reserve after allocating replacement node */
1489 if (btree_check_reserve(b, NULL)) {
1490 btree_node_free(n);
1491 rw_unlock(true, n);
1492 return 0;
1493 }
1494
1495 bch_btree_node_write_sync(n);
1496
1497 bch_keylist_init(&keys);
1498 bch_keylist_add(&keys, &n->key);
1499
1500 make_btree_freeing_key(replace, keys.top);
1501 bch_keylist_push(&keys);
1502
1503 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1504 BUG_ON(!bch_keylist_empty(&keys));
1505
1506 btree_node_free(replace);
1507 rw_unlock(true, n);
1508
1509 /* Invalidated our iterator */
1510 return -EINTR;
1511 }
1512
btree_gc_count_keys(struct btree * b)1513 static unsigned btree_gc_count_keys(struct btree *b)
1514 {
1515 struct bkey *k;
1516 struct btree_iter iter;
1517 unsigned ret = 0;
1518
1519 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1520 ret += bkey_u64s(k);
1521
1522 return ret;
1523 }
1524
btree_gc_recurse(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1525 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1526 struct closure *writes, struct gc_stat *gc)
1527 {
1528 int ret = 0;
1529 bool should_rewrite;
1530 struct bkey *k;
1531 struct btree_iter iter;
1532 struct gc_merge_info r[GC_MERGE_NODES];
1533 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1534
1535 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1536
1537 for (i = r; i < r + ARRAY_SIZE(r); i++)
1538 i->b = ERR_PTR(-EINTR);
1539
1540 while (1) {
1541 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1542 if (k) {
1543 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1544 true, b);
1545 if (IS_ERR(r->b)) {
1546 ret = PTR_ERR(r->b);
1547 break;
1548 }
1549
1550 r->keys = btree_gc_count_keys(r->b);
1551
1552 ret = btree_gc_coalesce(b, op, gc, r);
1553 if (ret)
1554 break;
1555 }
1556
1557 if (!last->b)
1558 break;
1559
1560 if (!IS_ERR(last->b)) {
1561 should_rewrite = btree_gc_mark_node(last->b, gc);
1562 if (should_rewrite) {
1563 ret = btree_gc_rewrite_node(b, op, last->b);
1564 if (ret)
1565 break;
1566 }
1567
1568 if (last->b->level) {
1569 ret = btree_gc_recurse(last->b, op, writes, gc);
1570 if (ret)
1571 break;
1572 }
1573
1574 bkey_copy_key(&b->c->gc_done, &last->b->key);
1575
1576 /*
1577 * Must flush leaf nodes before gc ends, since replace
1578 * operations aren't journalled
1579 */
1580 mutex_lock(&last->b->write_lock);
1581 if (btree_node_dirty(last->b))
1582 bch_btree_node_write(last->b, writes);
1583 mutex_unlock(&last->b->write_lock);
1584 rw_unlock(true, last->b);
1585 }
1586
1587 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1588 r->b = NULL;
1589
1590 if (need_resched()) {
1591 ret = -EAGAIN;
1592 break;
1593 }
1594 }
1595
1596 for (i = r; i < r + ARRAY_SIZE(r); i++)
1597 if (!IS_ERR_OR_NULL(i->b)) {
1598 mutex_lock(&i->b->write_lock);
1599 if (btree_node_dirty(i->b))
1600 bch_btree_node_write(i->b, writes);
1601 mutex_unlock(&i->b->write_lock);
1602 rw_unlock(true, i->b);
1603 }
1604
1605 return ret;
1606 }
1607
bch_btree_gc_root(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1608 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1609 struct closure *writes, struct gc_stat *gc)
1610 {
1611 struct btree *n = NULL;
1612 int ret = 0;
1613 bool should_rewrite;
1614
1615 should_rewrite = btree_gc_mark_node(b, gc);
1616 if (should_rewrite) {
1617 n = btree_node_alloc_replacement(b, NULL);
1618
1619 if (!IS_ERR_OR_NULL(n)) {
1620 bch_btree_node_write_sync(n);
1621
1622 bch_btree_set_root(n);
1623 btree_node_free(b);
1624 rw_unlock(true, n);
1625
1626 return -EINTR;
1627 }
1628 }
1629
1630 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1631
1632 if (b->level) {
1633 ret = btree_gc_recurse(b, op, writes, gc);
1634 if (ret)
1635 return ret;
1636 }
1637
1638 bkey_copy_key(&b->c->gc_done, &b->key);
1639
1640 return ret;
1641 }
1642
btree_gc_start(struct cache_set * c)1643 static void btree_gc_start(struct cache_set *c)
1644 {
1645 struct cache *ca;
1646 struct bucket *b;
1647 unsigned i;
1648
1649 if (!c->gc_mark_valid)
1650 return;
1651
1652 mutex_lock(&c->bucket_lock);
1653
1654 c->gc_mark_valid = 0;
1655 c->gc_done = ZERO_KEY;
1656
1657 for_each_cache(ca, c, i)
1658 for_each_bucket(b, ca) {
1659 b->last_gc = b->gen;
1660 if (!atomic_read(&b->pin)) {
1661 SET_GC_MARK(b, 0);
1662 SET_GC_SECTORS_USED(b, 0);
1663 }
1664 }
1665
1666 mutex_unlock(&c->bucket_lock);
1667 }
1668
bch_btree_gc_finish(struct cache_set * c)1669 static size_t bch_btree_gc_finish(struct cache_set *c)
1670 {
1671 size_t available = 0;
1672 struct bucket *b;
1673 struct cache *ca;
1674 unsigned i;
1675
1676 mutex_lock(&c->bucket_lock);
1677
1678 set_gc_sectors(c);
1679 c->gc_mark_valid = 1;
1680 c->need_gc = 0;
1681
1682 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1683 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1684 GC_MARK_METADATA);
1685
1686 /* don't reclaim buckets to which writeback keys point */
1687 rcu_read_lock();
1688 for (i = 0; i < c->nr_uuids; i++) {
1689 struct bcache_device *d = c->devices[i];
1690 struct cached_dev *dc;
1691 struct keybuf_key *w, *n;
1692 unsigned j;
1693
1694 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1695 continue;
1696 dc = container_of(d, struct cached_dev, disk);
1697
1698 spin_lock(&dc->writeback_keys.lock);
1699 rbtree_postorder_for_each_entry_safe(w, n,
1700 &dc->writeback_keys.keys, node)
1701 for (j = 0; j < KEY_PTRS(&w->key); j++)
1702 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1703 GC_MARK_DIRTY);
1704 spin_unlock(&dc->writeback_keys.lock);
1705 }
1706 rcu_read_unlock();
1707
1708 for_each_cache(ca, c, i) {
1709 uint64_t *i;
1710
1711 ca->invalidate_needs_gc = 0;
1712
1713 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1714 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1715
1716 for (i = ca->prio_buckets;
1717 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1718 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1719
1720 for_each_bucket(b, ca) {
1721 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1722
1723 if (atomic_read(&b->pin))
1724 continue;
1725
1726 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1727
1728 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1729 available++;
1730 }
1731 }
1732
1733 mutex_unlock(&c->bucket_lock);
1734 return available;
1735 }
1736
bch_btree_gc(struct cache_set * c)1737 static void bch_btree_gc(struct cache_set *c)
1738 {
1739 int ret;
1740 unsigned long available;
1741 struct gc_stat stats;
1742 struct closure writes;
1743 struct btree_op op;
1744 uint64_t start_time = local_clock();
1745
1746 trace_bcache_gc_start(c);
1747
1748 memset(&stats, 0, sizeof(struct gc_stat));
1749 closure_init_stack(&writes);
1750 bch_btree_op_init(&op, SHRT_MAX);
1751
1752 btree_gc_start(c);
1753
1754 do {
1755 ret = btree_root(gc_root, c, &op, &writes, &stats);
1756 closure_sync(&writes);
1757 cond_resched();
1758
1759 if (ret && ret != -EAGAIN)
1760 pr_warn("gc failed!");
1761 } while (ret);
1762
1763 available = bch_btree_gc_finish(c);
1764 wake_up_allocators(c);
1765
1766 bch_time_stats_update(&c->btree_gc_time, start_time);
1767
1768 stats.key_bytes *= sizeof(uint64_t);
1769 stats.data <<= 9;
1770 stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
1771 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1772
1773 trace_bcache_gc_end(c);
1774
1775 bch_moving_gc(c);
1776 }
1777
gc_should_run(struct cache_set * c)1778 static bool gc_should_run(struct cache_set *c)
1779 {
1780 struct cache *ca;
1781 unsigned i;
1782
1783 for_each_cache(ca, c, i)
1784 if (ca->invalidate_needs_gc)
1785 return true;
1786
1787 if (atomic_read(&c->sectors_to_gc) < 0)
1788 return true;
1789
1790 return false;
1791 }
1792
bch_gc_thread(void * arg)1793 static int bch_gc_thread(void *arg)
1794 {
1795 struct cache_set *c = arg;
1796
1797 while (1) {
1798 wait_event_interruptible(c->gc_wait,
1799 kthread_should_stop() || gc_should_run(c));
1800
1801 if (kthread_should_stop())
1802 break;
1803
1804 set_gc_sectors(c);
1805 bch_btree_gc(c);
1806 }
1807
1808 return 0;
1809 }
1810
bch_gc_thread_start(struct cache_set * c)1811 int bch_gc_thread_start(struct cache_set *c)
1812 {
1813 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1814 if (IS_ERR(c->gc_thread))
1815 return PTR_ERR(c->gc_thread);
1816
1817 return 0;
1818 }
1819
1820 /* Initial partial gc */
1821
bch_btree_check_recurse(struct btree * b,struct btree_op * op)1822 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1823 {
1824 int ret = 0;
1825 struct bkey *k, *p = NULL;
1826 struct btree_iter iter;
1827
1828 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1829 bch_initial_mark_key(b->c, b->level, k);
1830
1831 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1832
1833 if (b->level) {
1834 bch_btree_iter_init(&b->keys, &iter, NULL);
1835
1836 do {
1837 k = bch_btree_iter_next_filter(&iter, &b->keys,
1838 bch_ptr_bad);
1839 if (k)
1840 btree_node_prefetch(b, k);
1841
1842 if (p)
1843 ret = btree(check_recurse, p, b, op);
1844
1845 p = k;
1846 } while (p && !ret);
1847 }
1848
1849 return ret;
1850 }
1851
bch_btree_check(struct cache_set * c)1852 int bch_btree_check(struct cache_set *c)
1853 {
1854 struct btree_op op;
1855
1856 bch_btree_op_init(&op, SHRT_MAX);
1857
1858 return btree_root(check_recurse, c, &op);
1859 }
1860
bch_initial_gc_finish(struct cache_set * c)1861 void bch_initial_gc_finish(struct cache_set *c)
1862 {
1863 struct cache *ca;
1864 struct bucket *b;
1865 unsigned i;
1866
1867 bch_btree_gc_finish(c);
1868
1869 mutex_lock(&c->bucket_lock);
1870
1871 /*
1872 * We need to put some unused buckets directly on the prio freelist in
1873 * order to get the allocator thread started - it needs freed buckets in
1874 * order to rewrite the prios and gens, and it needs to rewrite prios
1875 * and gens in order to free buckets.
1876 *
1877 * This is only safe for buckets that have no live data in them, which
1878 * there should always be some of.
1879 */
1880 for_each_cache(ca, c, i) {
1881 for_each_bucket(b, ca) {
1882 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1883 fifo_full(&ca->free[RESERVE_BTREE]))
1884 break;
1885
1886 if (bch_can_invalidate_bucket(ca, b) &&
1887 !GC_MARK(b)) {
1888 __bch_invalidate_one_bucket(ca, b);
1889 if (!fifo_push(&ca->free[RESERVE_PRIO],
1890 b - ca->buckets))
1891 fifo_push(&ca->free[RESERVE_BTREE],
1892 b - ca->buckets);
1893 }
1894 }
1895 }
1896
1897 mutex_unlock(&c->bucket_lock);
1898 }
1899
1900 /* Btree insertion */
1901
btree_insert_key(struct btree * b,struct bkey * k,struct bkey * replace_key)1902 static bool btree_insert_key(struct btree *b, struct bkey *k,
1903 struct bkey *replace_key)
1904 {
1905 unsigned status;
1906
1907 BUG_ON(bkey_cmp(k, &b->key) > 0);
1908
1909 status = bch_btree_insert_key(&b->keys, k, replace_key);
1910 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1911 bch_check_keys(&b->keys, "%u for %s", status,
1912 replace_key ? "replace" : "insert");
1913
1914 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1915 status);
1916 return true;
1917 } else
1918 return false;
1919 }
1920
insert_u64s_remaining(struct btree * b)1921 static size_t insert_u64s_remaining(struct btree *b)
1922 {
1923 long ret = bch_btree_keys_u64s_remaining(&b->keys);
1924
1925 /*
1926 * Might land in the middle of an existing extent and have to split it
1927 */
1928 if (b->keys.ops->is_extents)
1929 ret -= KEY_MAX_U64S;
1930
1931 return max(ret, 0L);
1932 }
1933
bch_btree_insert_keys(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)1934 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1935 struct keylist *insert_keys,
1936 struct bkey *replace_key)
1937 {
1938 bool ret = false;
1939 int oldsize = bch_count_data(&b->keys);
1940
1941 while (!bch_keylist_empty(insert_keys)) {
1942 struct bkey *k = insert_keys->keys;
1943
1944 if (bkey_u64s(k) > insert_u64s_remaining(b))
1945 break;
1946
1947 if (bkey_cmp(k, &b->key) <= 0) {
1948 if (!b->level)
1949 bkey_put(b->c, k);
1950
1951 ret |= btree_insert_key(b, k, replace_key);
1952 bch_keylist_pop_front(insert_keys);
1953 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
1954 BKEY_PADDED(key) temp;
1955 bkey_copy(&temp.key, insert_keys->keys);
1956
1957 bch_cut_back(&b->key, &temp.key);
1958 bch_cut_front(&b->key, insert_keys->keys);
1959
1960 ret |= btree_insert_key(b, &temp.key, replace_key);
1961 break;
1962 } else {
1963 break;
1964 }
1965 }
1966
1967 if (!ret)
1968 op->insert_collision = true;
1969
1970 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
1971
1972 BUG_ON(bch_count_data(&b->keys) < oldsize);
1973 return ret;
1974 }
1975
btree_split(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)1976 static int btree_split(struct btree *b, struct btree_op *op,
1977 struct keylist *insert_keys,
1978 struct bkey *replace_key)
1979 {
1980 bool split;
1981 struct btree *n1, *n2 = NULL, *n3 = NULL;
1982 uint64_t start_time = local_clock();
1983 struct closure cl;
1984 struct keylist parent_keys;
1985
1986 closure_init_stack(&cl);
1987 bch_keylist_init(&parent_keys);
1988
1989 if (btree_check_reserve(b, op)) {
1990 if (!b->level)
1991 return -EINTR;
1992 else
1993 WARN(1, "insufficient reserve for split\n");
1994 }
1995
1996 n1 = btree_node_alloc_replacement(b, op);
1997 if (IS_ERR(n1))
1998 goto err;
1999
2000 split = set_blocks(btree_bset_first(n1),
2001 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2002
2003 if (split) {
2004 unsigned keys = 0;
2005
2006 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2007
2008 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2009 if (IS_ERR(n2))
2010 goto err_free1;
2011
2012 if (!b->parent) {
2013 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2014 if (IS_ERR(n3))
2015 goto err_free2;
2016 }
2017
2018 mutex_lock(&n1->write_lock);
2019 mutex_lock(&n2->write_lock);
2020
2021 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2022
2023 /*
2024 * Has to be a linear search because we don't have an auxiliary
2025 * search tree yet
2026 */
2027
2028 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2029 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2030 keys));
2031
2032 bkey_copy_key(&n1->key,
2033 bset_bkey_idx(btree_bset_first(n1), keys));
2034 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2035
2036 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2037 btree_bset_first(n1)->keys = keys;
2038
2039 memcpy(btree_bset_first(n2)->start,
2040 bset_bkey_last(btree_bset_first(n1)),
2041 btree_bset_first(n2)->keys * sizeof(uint64_t));
2042
2043 bkey_copy_key(&n2->key, &b->key);
2044
2045 bch_keylist_add(&parent_keys, &n2->key);
2046 bch_btree_node_write(n2, &cl);
2047 mutex_unlock(&n2->write_lock);
2048 rw_unlock(true, n2);
2049 } else {
2050 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2051
2052 mutex_lock(&n1->write_lock);
2053 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2054 }
2055
2056 bch_keylist_add(&parent_keys, &n1->key);
2057 bch_btree_node_write(n1, &cl);
2058 mutex_unlock(&n1->write_lock);
2059
2060 if (n3) {
2061 /* Depth increases, make a new root */
2062 mutex_lock(&n3->write_lock);
2063 bkey_copy_key(&n3->key, &MAX_KEY);
2064 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2065 bch_btree_node_write(n3, &cl);
2066 mutex_unlock(&n3->write_lock);
2067
2068 closure_sync(&cl);
2069 bch_btree_set_root(n3);
2070 rw_unlock(true, n3);
2071 } else if (!b->parent) {
2072 /* Root filled up but didn't need to be split */
2073 closure_sync(&cl);
2074 bch_btree_set_root(n1);
2075 } else {
2076 /* Split a non root node */
2077 closure_sync(&cl);
2078 make_btree_freeing_key(b, parent_keys.top);
2079 bch_keylist_push(&parent_keys);
2080
2081 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2082 BUG_ON(!bch_keylist_empty(&parent_keys));
2083 }
2084
2085 btree_node_free(b);
2086 rw_unlock(true, n1);
2087
2088 bch_time_stats_update(&b->c->btree_split_time, start_time);
2089
2090 return 0;
2091 err_free2:
2092 bkey_put(b->c, &n2->key);
2093 btree_node_free(n2);
2094 rw_unlock(true, n2);
2095 err_free1:
2096 bkey_put(b->c, &n1->key);
2097 btree_node_free(n1);
2098 rw_unlock(true, n1);
2099 err:
2100 WARN(1, "bcache: btree split failed (level %u)", b->level);
2101
2102 if (n3 == ERR_PTR(-EAGAIN) ||
2103 n2 == ERR_PTR(-EAGAIN) ||
2104 n1 == ERR_PTR(-EAGAIN))
2105 return -EAGAIN;
2106
2107 return -ENOMEM;
2108 }
2109
bch_btree_insert_node(struct btree * b,struct btree_op * op,struct keylist * insert_keys,atomic_t * journal_ref,struct bkey * replace_key)2110 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2111 struct keylist *insert_keys,
2112 atomic_t *journal_ref,
2113 struct bkey *replace_key)
2114 {
2115 struct closure cl;
2116
2117 BUG_ON(b->level && replace_key);
2118
2119 closure_init_stack(&cl);
2120
2121 mutex_lock(&b->write_lock);
2122
2123 if (write_block(b) != btree_bset_last(b) &&
2124 b->keys.last_set_unwritten)
2125 bch_btree_init_next(b); /* just wrote a set */
2126
2127 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2128 mutex_unlock(&b->write_lock);
2129 goto split;
2130 }
2131
2132 BUG_ON(write_block(b) != btree_bset_last(b));
2133
2134 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2135 if (!b->level)
2136 bch_btree_leaf_dirty(b, journal_ref);
2137 else
2138 bch_btree_node_write(b, &cl);
2139 }
2140
2141 mutex_unlock(&b->write_lock);
2142
2143 /* wait for btree node write if necessary, after unlock */
2144 closure_sync(&cl);
2145
2146 return 0;
2147 split:
2148 if (current->bio_list) {
2149 op->lock = b->c->root->level + 1;
2150 return -EAGAIN;
2151 } else if (op->lock <= b->c->root->level) {
2152 op->lock = b->c->root->level + 1;
2153 return -EINTR;
2154 } else {
2155 /* Invalidated all iterators */
2156 int ret = btree_split(b, op, insert_keys, replace_key);
2157
2158 if (bch_keylist_empty(insert_keys))
2159 return 0;
2160 else if (!ret)
2161 return -EINTR;
2162 return ret;
2163 }
2164 }
2165
bch_btree_insert_check_key(struct btree * b,struct btree_op * op,struct bkey * check_key)2166 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2167 struct bkey *check_key)
2168 {
2169 int ret = -EINTR;
2170 uint64_t btree_ptr = b->key.ptr[0];
2171 unsigned long seq = b->seq;
2172 struct keylist insert;
2173 bool upgrade = op->lock == -1;
2174
2175 bch_keylist_init(&insert);
2176
2177 if (upgrade) {
2178 rw_unlock(false, b);
2179 rw_lock(true, b, b->level);
2180
2181 if (b->key.ptr[0] != btree_ptr ||
2182 b->seq != seq + 1) {
2183 op->lock = b->level;
2184 goto out;
2185 }
2186 }
2187
2188 SET_KEY_PTRS(check_key, 1);
2189 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2190
2191 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2192
2193 bch_keylist_add(&insert, check_key);
2194
2195 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2196
2197 BUG_ON(!ret && !bch_keylist_empty(&insert));
2198 out:
2199 if (upgrade)
2200 downgrade_write(&b->lock);
2201 return ret;
2202 }
2203
2204 struct btree_insert_op {
2205 struct btree_op op;
2206 struct keylist *keys;
2207 atomic_t *journal_ref;
2208 struct bkey *replace_key;
2209 };
2210
btree_insert_fn(struct btree_op * b_op,struct btree * b)2211 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2212 {
2213 struct btree_insert_op *op = container_of(b_op,
2214 struct btree_insert_op, op);
2215
2216 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2217 op->journal_ref, op->replace_key);
2218 if (ret && !bch_keylist_empty(op->keys))
2219 return ret;
2220 else
2221 return MAP_DONE;
2222 }
2223
bch_btree_insert(struct cache_set * c,struct keylist * keys,atomic_t * journal_ref,struct bkey * replace_key)2224 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2225 atomic_t *journal_ref, struct bkey *replace_key)
2226 {
2227 struct btree_insert_op op;
2228 int ret = 0;
2229
2230 BUG_ON(current->bio_list);
2231 BUG_ON(bch_keylist_empty(keys));
2232
2233 bch_btree_op_init(&op.op, 0);
2234 op.keys = keys;
2235 op.journal_ref = journal_ref;
2236 op.replace_key = replace_key;
2237
2238 while (!ret && !bch_keylist_empty(keys)) {
2239 op.op.lock = 0;
2240 ret = bch_btree_map_leaf_nodes(&op.op, c,
2241 &START_KEY(keys->keys),
2242 btree_insert_fn);
2243 }
2244
2245 if (ret) {
2246 struct bkey *k;
2247
2248 pr_err("error %i", ret);
2249
2250 while ((k = bch_keylist_pop(keys)))
2251 bkey_put(c, k);
2252 } else if (op.op.insert_collision)
2253 ret = -ESRCH;
2254
2255 return ret;
2256 }
2257
bch_btree_set_root(struct btree * b)2258 void bch_btree_set_root(struct btree *b)
2259 {
2260 unsigned i;
2261 struct closure cl;
2262
2263 closure_init_stack(&cl);
2264
2265 trace_bcache_btree_set_root(b);
2266
2267 BUG_ON(!b->written);
2268
2269 for (i = 0; i < KEY_PTRS(&b->key); i++)
2270 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2271
2272 mutex_lock(&b->c->bucket_lock);
2273 list_del_init(&b->list);
2274 mutex_unlock(&b->c->bucket_lock);
2275
2276 b->c->root = b;
2277
2278 bch_journal_meta(b->c, &cl);
2279 closure_sync(&cl);
2280 }
2281
2282 /* Map across nodes or keys */
2283
bch_btree_map_nodes_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_nodes_fn * fn,int flags)2284 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2285 struct bkey *from,
2286 btree_map_nodes_fn *fn, int flags)
2287 {
2288 int ret = MAP_CONTINUE;
2289
2290 if (b->level) {
2291 struct bkey *k;
2292 struct btree_iter iter;
2293
2294 bch_btree_iter_init(&b->keys, &iter, from);
2295
2296 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2297 bch_ptr_bad))) {
2298 ret = btree(map_nodes_recurse, k, b,
2299 op, from, fn, flags);
2300 from = NULL;
2301
2302 if (ret != MAP_CONTINUE)
2303 return ret;
2304 }
2305 }
2306
2307 if (!b->level || flags == MAP_ALL_NODES)
2308 ret = fn(op, b);
2309
2310 return ret;
2311 }
2312
__bch_btree_map_nodes(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_nodes_fn * fn,int flags)2313 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2314 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2315 {
2316 return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2317 }
2318
bch_btree_map_keys_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_keys_fn * fn,int flags)2319 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2320 struct bkey *from, btree_map_keys_fn *fn,
2321 int flags)
2322 {
2323 int ret = MAP_CONTINUE;
2324 struct bkey *k;
2325 struct btree_iter iter;
2326
2327 bch_btree_iter_init(&b->keys, &iter, from);
2328
2329 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2330 ret = !b->level
2331 ? fn(op, b, k)
2332 : btree(map_keys_recurse, k, b, op, from, fn, flags);
2333 from = NULL;
2334
2335 if (ret != MAP_CONTINUE)
2336 return ret;
2337 }
2338
2339 if (!b->level && (flags & MAP_END_KEY))
2340 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2341 KEY_OFFSET(&b->key), 0));
2342
2343 return ret;
2344 }
2345
bch_btree_map_keys(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_keys_fn * fn,int flags)2346 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2347 struct bkey *from, btree_map_keys_fn *fn, int flags)
2348 {
2349 return btree_root(map_keys_recurse, c, op, from, fn, flags);
2350 }
2351
2352 /* Keybuf code */
2353
keybuf_cmp(struct keybuf_key * l,struct keybuf_key * r)2354 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2355 {
2356 /* Overlapping keys compare equal */
2357 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2358 return -1;
2359 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2360 return 1;
2361 return 0;
2362 }
2363
keybuf_nonoverlapping_cmp(struct keybuf_key * l,struct keybuf_key * r)2364 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2365 struct keybuf_key *r)
2366 {
2367 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2368 }
2369
2370 struct refill {
2371 struct btree_op op;
2372 unsigned nr_found;
2373 struct keybuf *buf;
2374 struct bkey *end;
2375 keybuf_pred_fn *pred;
2376 };
2377
refill_keybuf_fn(struct btree_op * op,struct btree * b,struct bkey * k)2378 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2379 struct bkey *k)
2380 {
2381 struct refill *refill = container_of(op, struct refill, op);
2382 struct keybuf *buf = refill->buf;
2383 int ret = MAP_CONTINUE;
2384
2385 if (bkey_cmp(k, refill->end) > 0) {
2386 ret = MAP_DONE;
2387 goto out;
2388 }
2389
2390 if (!KEY_SIZE(k)) /* end key */
2391 goto out;
2392
2393 if (refill->pred(buf, k)) {
2394 struct keybuf_key *w;
2395
2396 spin_lock(&buf->lock);
2397
2398 w = array_alloc(&buf->freelist);
2399 if (!w) {
2400 spin_unlock(&buf->lock);
2401 return MAP_DONE;
2402 }
2403
2404 w->private = NULL;
2405 bkey_copy(&w->key, k);
2406
2407 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2408 array_free(&buf->freelist, w);
2409 else
2410 refill->nr_found++;
2411
2412 if (array_freelist_empty(&buf->freelist))
2413 ret = MAP_DONE;
2414
2415 spin_unlock(&buf->lock);
2416 }
2417 out:
2418 buf->last_scanned = *k;
2419 return ret;
2420 }
2421
bch_refill_keybuf(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2422 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2423 struct bkey *end, keybuf_pred_fn *pred)
2424 {
2425 struct bkey start = buf->last_scanned;
2426 struct refill refill;
2427
2428 cond_resched();
2429
2430 bch_btree_op_init(&refill.op, -1);
2431 refill.nr_found = 0;
2432 refill.buf = buf;
2433 refill.end = end;
2434 refill.pred = pred;
2435
2436 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2437 refill_keybuf_fn, MAP_END_KEY);
2438
2439 trace_bcache_keyscan(refill.nr_found,
2440 KEY_INODE(&start), KEY_OFFSET(&start),
2441 KEY_INODE(&buf->last_scanned),
2442 KEY_OFFSET(&buf->last_scanned));
2443
2444 spin_lock(&buf->lock);
2445
2446 if (!RB_EMPTY_ROOT(&buf->keys)) {
2447 struct keybuf_key *w;
2448 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2449 buf->start = START_KEY(&w->key);
2450
2451 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2452 buf->end = w->key;
2453 } else {
2454 buf->start = MAX_KEY;
2455 buf->end = MAX_KEY;
2456 }
2457
2458 spin_unlock(&buf->lock);
2459 }
2460
__bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2461 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2462 {
2463 rb_erase(&w->node, &buf->keys);
2464 array_free(&buf->freelist, w);
2465 }
2466
bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2467 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2468 {
2469 spin_lock(&buf->lock);
2470 __bch_keybuf_del(buf, w);
2471 spin_unlock(&buf->lock);
2472 }
2473
bch_keybuf_check_overlapping(struct keybuf * buf,struct bkey * start,struct bkey * end)2474 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2475 struct bkey *end)
2476 {
2477 bool ret = false;
2478 struct keybuf_key *p, *w, s;
2479 s.key = *start;
2480
2481 if (bkey_cmp(end, &buf->start) <= 0 ||
2482 bkey_cmp(start, &buf->end) >= 0)
2483 return false;
2484
2485 spin_lock(&buf->lock);
2486 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2487
2488 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2489 p = w;
2490 w = RB_NEXT(w, node);
2491
2492 if (p->private)
2493 ret = true;
2494 else
2495 __bch_keybuf_del(buf, p);
2496 }
2497
2498 spin_unlock(&buf->lock);
2499 return ret;
2500 }
2501
bch_keybuf_next(struct keybuf * buf)2502 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2503 {
2504 struct keybuf_key *w;
2505 spin_lock(&buf->lock);
2506
2507 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2508
2509 while (w && w->private)
2510 w = RB_NEXT(w, node);
2511
2512 if (w)
2513 w->private = ERR_PTR(-EINTR);
2514
2515 spin_unlock(&buf->lock);
2516 return w;
2517 }
2518
bch_keybuf_next_rescan(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2519 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2520 struct keybuf *buf,
2521 struct bkey *end,
2522 keybuf_pred_fn *pred)
2523 {
2524 struct keybuf_key *ret;
2525
2526 while (1) {
2527 ret = bch_keybuf_next(buf);
2528 if (ret)
2529 break;
2530
2531 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2532 pr_debug("scan finished");
2533 break;
2534 }
2535
2536 bch_refill_keybuf(c, buf, end, pred);
2537 }
2538
2539 return ret;
2540 }
2541
bch_keybuf_init(struct keybuf * buf)2542 void bch_keybuf_init(struct keybuf *buf)
2543 {
2544 buf->last_scanned = MAX_KEY;
2545 buf->keys = RB_ROOT;
2546
2547 spin_lock_init(&buf->lock);
2548 array_allocator_init(&buf->freelist);
2549 }
2550