1 /*
2 * Main bcache entry point - handle a read or a write request and decide what to
3 * do with it; the make_request functions are called by the block layer.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14
15 #include <linux/module.h>
16 #include <linux/hash.h>
17 #include <linux/random.h>
18 #include <linux/backing-dev.h>
19
20 #include <trace/events/bcache.h>
21
22 #define CUTOFF_CACHE_ADD 95
23 #define CUTOFF_CACHE_READA 90
24
25 struct kmem_cache *bch_search_cache;
26
27 static void bch_data_insert_start(struct closure *);
28
cache_mode(struct cached_dev * dc,struct bio * bio)29 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
30 {
31 return BDEV_CACHE_MODE(&dc->sb);
32 }
33
verify(struct cached_dev * dc,struct bio * bio)34 static bool verify(struct cached_dev *dc, struct bio *bio)
35 {
36 return dc->verify;
37 }
38
bio_csum(struct bio * bio,struct bkey * k)39 static void bio_csum(struct bio *bio, struct bkey *k)
40 {
41 struct bio_vec bv;
42 struct bvec_iter iter;
43 uint64_t csum = 0;
44
45 bio_for_each_segment(bv, bio, iter) {
46 void *d = kmap(bv.bv_page) + bv.bv_offset;
47 csum = bch_crc64_update(csum, d, bv.bv_len);
48 kunmap(bv.bv_page);
49 }
50
51 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
52 }
53
54 /* Insert data into cache */
55
bch_data_insert_keys(struct closure * cl)56 static void bch_data_insert_keys(struct closure *cl)
57 {
58 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
59 atomic_t *journal_ref = NULL;
60 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
61 int ret;
62
63 /*
64 * If we're looping, might already be waiting on
65 * another journal write - can't wait on more than one journal write at
66 * a time
67 *
68 * XXX: this looks wrong
69 */
70 #if 0
71 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
72 closure_sync(&s->cl);
73 #endif
74
75 if (!op->replace)
76 journal_ref = bch_journal(op->c, &op->insert_keys,
77 op->flush_journal ? cl : NULL);
78
79 ret = bch_btree_insert(op->c, &op->insert_keys,
80 journal_ref, replace_key);
81 if (ret == -ESRCH) {
82 op->replace_collision = true;
83 } else if (ret) {
84 op->error = -ENOMEM;
85 op->insert_data_done = true;
86 }
87
88 if (journal_ref)
89 atomic_dec_bug(journal_ref);
90
91 if (!op->insert_data_done) {
92 continue_at(cl, bch_data_insert_start, op->wq);
93 return;
94 }
95
96 bch_keylist_free(&op->insert_keys);
97 closure_return(cl);
98 }
99
bch_keylist_realloc(struct keylist * l,unsigned u64s,struct cache_set * c)100 static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
101 struct cache_set *c)
102 {
103 size_t oldsize = bch_keylist_nkeys(l);
104 size_t newsize = oldsize + u64s;
105
106 /*
107 * The journalling code doesn't handle the case where the keys to insert
108 * is bigger than an empty write: If we just return -ENOMEM here,
109 * bio_insert() and bio_invalidate() will insert the keys created so far
110 * and finish the rest when the keylist is empty.
111 */
112 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
113 return -ENOMEM;
114
115 return __bch_keylist_realloc(l, u64s);
116 }
117
bch_data_invalidate(struct closure * cl)118 static void bch_data_invalidate(struct closure *cl)
119 {
120 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
121 struct bio *bio = op->bio;
122
123 pr_debug("invalidating %i sectors from %llu",
124 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
125
126 while (bio_sectors(bio)) {
127 unsigned sectors = min(bio_sectors(bio),
128 1U << (KEY_SIZE_BITS - 1));
129
130 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
131 goto out;
132
133 bio->bi_iter.bi_sector += sectors;
134 bio->bi_iter.bi_size -= sectors << 9;
135
136 bch_keylist_add(&op->insert_keys,
137 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
138 }
139
140 op->insert_data_done = true;
141 bio_put(bio);
142 out:
143 continue_at(cl, bch_data_insert_keys, op->wq);
144 }
145
bch_data_insert_error(struct closure * cl)146 static void bch_data_insert_error(struct closure *cl)
147 {
148 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
149
150 /*
151 * Our data write just errored, which means we've got a bunch of keys to
152 * insert that point to data that wasn't succesfully written.
153 *
154 * We don't have to insert those keys but we still have to invalidate
155 * that region of the cache - so, if we just strip off all the pointers
156 * from the keys we'll accomplish just that.
157 */
158
159 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
160
161 while (src != op->insert_keys.top) {
162 struct bkey *n = bkey_next(src);
163
164 SET_KEY_PTRS(src, 0);
165 memmove(dst, src, bkey_bytes(src));
166
167 dst = bkey_next(dst);
168 src = n;
169 }
170
171 op->insert_keys.top = dst;
172
173 bch_data_insert_keys(cl);
174 }
175
bch_data_insert_endio(struct bio * bio)176 static void bch_data_insert_endio(struct bio *bio)
177 {
178 struct closure *cl = bio->bi_private;
179 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
180
181 if (bio->bi_error) {
182 /* TODO: We could try to recover from this. */
183 if (op->writeback)
184 op->error = bio->bi_error;
185 else if (!op->replace)
186 set_closure_fn(cl, bch_data_insert_error, op->wq);
187 else
188 set_closure_fn(cl, NULL, NULL);
189 }
190
191 bch_bbio_endio(op->c, bio, bio->bi_error, "writing data to cache");
192 }
193
bch_data_insert_start(struct closure * cl)194 static void bch_data_insert_start(struct closure *cl)
195 {
196 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
197 struct bio *bio = op->bio, *n;
198
199 if (op->bypass)
200 return bch_data_invalidate(cl);
201
202 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
203 wake_up_gc(op->c);
204
205 /*
206 * Journal writes are marked REQ_FLUSH; if the original write was a
207 * flush, it'll wait on the journal write.
208 */
209 bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
210
211 do {
212 unsigned i;
213 struct bkey *k;
214 struct bio_set *split = op->c->bio_split;
215
216 /* 1 for the device pointer and 1 for the chksum */
217 if (bch_keylist_realloc(&op->insert_keys,
218 3 + (op->csum ? 1 : 0),
219 op->c)) {
220 continue_at(cl, bch_data_insert_keys, op->wq);
221 return;
222 }
223
224 k = op->insert_keys.top;
225 bkey_init(k);
226 SET_KEY_INODE(k, op->inode);
227 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
228
229 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
230 op->write_point, op->write_prio,
231 op->writeback))
232 goto err;
233
234 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
235
236 n->bi_end_io = bch_data_insert_endio;
237 n->bi_private = cl;
238
239 if (op->writeback) {
240 SET_KEY_DIRTY(k, true);
241
242 for (i = 0; i < KEY_PTRS(k); i++)
243 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
244 GC_MARK_DIRTY);
245 }
246
247 SET_KEY_CSUM(k, op->csum);
248 if (KEY_CSUM(k))
249 bio_csum(n, k);
250
251 trace_bcache_cache_insert(k);
252 bch_keylist_push(&op->insert_keys);
253
254 n->bi_rw |= REQ_WRITE;
255 bch_submit_bbio(n, op->c, k, 0);
256 } while (n != bio);
257
258 op->insert_data_done = true;
259 continue_at(cl, bch_data_insert_keys, op->wq);
260 return;
261 err:
262 /* bch_alloc_sectors() blocks if s->writeback = true */
263 BUG_ON(op->writeback);
264
265 /*
266 * But if it's not a writeback write we'd rather just bail out if
267 * there aren't any buckets ready to write to - it might take awhile and
268 * we might be starving btree writes for gc or something.
269 */
270
271 if (!op->replace) {
272 /*
273 * Writethrough write: We can't complete the write until we've
274 * updated the index. But we don't want to delay the write while
275 * we wait for buckets to be freed up, so just invalidate the
276 * rest of the write.
277 */
278 op->bypass = true;
279 return bch_data_invalidate(cl);
280 } else {
281 /*
282 * From a cache miss, we can just insert the keys for the data
283 * we have written or bail out if we didn't do anything.
284 */
285 op->insert_data_done = true;
286 bio_put(bio);
287
288 if (!bch_keylist_empty(&op->insert_keys))
289 continue_at(cl, bch_data_insert_keys, op->wq);
290 else
291 closure_return(cl);
292 }
293 }
294
295 /**
296 * bch_data_insert - stick some data in the cache
297 *
298 * This is the starting point for any data to end up in a cache device; it could
299 * be from a normal write, or a writeback write, or a write to a flash only
300 * volume - it's also used by the moving garbage collector to compact data in
301 * mostly empty buckets.
302 *
303 * It first writes the data to the cache, creating a list of keys to be inserted
304 * (if the data had to be fragmented there will be multiple keys); after the
305 * data is written it calls bch_journal, and after the keys have been added to
306 * the next journal write they're inserted into the btree.
307 *
308 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
309 * and op->inode is used for the key inode.
310 *
311 * If s->bypass is true, instead of inserting the data it invalidates the
312 * region of the cache represented by s->cache_bio and op->inode.
313 */
bch_data_insert(struct closure * cl)314 void bch_data_insert(struct closure *cl)
315 {
316 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
317
318 trace_bcache_write(op->c, op->inode, op->bio,
319 op->writeback, op->bypass);
320
321 bch_keylist_init(&op->insert_keys);
322 bio_get(op->bio);
323 bch_data_insert_start(cl);
324 }
325
326 /* Congested? */
327
bch_get_congested(struct cache_set * c)328 unsigned bch_get_congested(struct cache_set *c)
329 {
330 int i;
331 long rand;
332
333 if (!c->congested_read_threshold_us &&
334 !c->congested_write_threshold_us)
335 return 0;
336
337 i = (local_clock_us() - c->congested_last_us) / 1024;
338 if (i < 0)
339 return 0;
340
341 i += atomic_read(&c->congested);
342 if (i >= 0)
343 return 0;
344
345 i += CONGESTED_MAX;
346
347 if (i > 0)
348 i = fract_exp_two(i, 6);
349
350 rand = get_random_int();
351 i -= bitmap_weight(&rand, BITS_PER_LONG);
352
353 return i > 0 ? i : 1;
354 }
355
add_sequential(struct task_struct * t)356 static void add_sequential(struct task_struct *t)
357 {
358 ewma_add(t->sequential_io_avg,
359 t->sequential_io, 8, 0);
360
361 t->sequential_io = 0;
362 }
363
iohash(struct cached_dev * dc,uint64_t k)364 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
365 {
366 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
367 }
368
check_should_bypass(struct cached_dev * dc,struct bio * bio)369 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
370 {
371 struct cache_set *c = dc->disk.c;
372 unsigned mode = cache_mode(dc, bio);
373 unsigned sectors, congested = bch_get_congested(c);
374 struct task_struct *task = current;
375 struct io *i;
376
377 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
378 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
379 (bio->bi_rw & REQ_DISCARD))
380 goto skip;
381
382 if (mode == CACHE_MODE_NONE ||
383 (mode == CACHE_MODE_WRITEAROUND &&
384 (bio->bi_rw & REQ_WRITE)))
385 goto skip;
386
387 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
388 bio_sectors(bio) & (c->sb.block_size - 1)) {
389 pr_debug("skipping unaligned io");
390 goto skip;
391 }
392
393 if (bypass_torture_test(dc)) {
394 if ((get_random_int() & 3) == 3)
395 goto skip;
396 else
397 goto rescale;
398 }
399
400 if (!congested && !dc->sequential_cutoff)
401 goto rescale;
402
403 if (!congested &&
404 mode == CACHE_MODE_WRITEBACK &&
405 (bio->bi_rw & REQ_WRITE) &&
406 (bio->bi_rw & REQ_SYNC))
407 goto rescale;
408
409 spin_lock(&dc->io_lock);
410
411 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
412 if (i->last == bio->bi_iter.bi_sector &&
413 time_before(jiffies, i->jiffies))
414 goto found;
415
416 i = list_first_entry(&dc->io_lru, struct io, lru);
417
418 add_sequential(task);
419 i->sequential = 0;
420 found:
421 if (i->sequential + bio->bi_iter.bi_size > i->sequential)
422 i->sequential += bio->bi_iter.bi_size;
423
424 i->last = bio_end_sector(bio);
425 i->jiffies = jiffies + msecs_to_jiffies(5000);
426 task->sequential_io = i->sequential;
427
428 hlist_del(&i->hash);
429 hlist_add_head(&i->hash, iohash(dc, i->last));
430 list_move_tail(&i->lru, &dc->io_lru);
431
432 spin_unlock(&dc->io_lock);
433
434 sectors = max(task->sequential_io,
435 task->sequential_io_avg) >> 9;
436
437 if (dc->sequential_cutoff &&
438 sectors >= dc->sequential_cutoff >> 9) {
439 trace_bcache_bypass_sequential(bio);
440 goto skip;
441 }
442
443 if (congested && sectors >= congested) {
444 trace_bcache_bypass_congested(bio);
445 goto skip;
446 }
447
448 rescale:
449 bch_rescale_priorities(c, bio_sectors(bio));
450 return false;
451 skip:
452 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
453 return true;
454 }
455
456 /* Cache lookup */
457
458 struct search {
459 /* Stack frame for bio_complete */
460 struct closure cl;
461
462 struct bbio bio;
463 struct bio *orig_bio;
464 struct bio *cache_miss;
465 struct bcache_device *d;
466
467 unsigned insert_bio_sectors;
468 unsigned recoverable:1;
469 unsigned write:1;
470 unsigned read_dirty_data:1;
471 unsigned cache_missed:1;
472
473 unsigned long start_time;
474
475 struct btree_op op;
476 struct data_insert_op iop;
477 };
478
bch_cache_read_endio(struct bio * bio)479 static void bch_cache_read_endio(struct bio *bio)
480 {
481 struct bbio *b = container_of(bio, struct bbio, bio);
482 struct closure *cl = bio->bi_private;
483 struct search *s = container_of(cl, struct search, cl);
484
485 /*
486 * If the bucket was reused while our bio was in flight, we might have
487 * read the wrong data. Set s->error but not error so it doesn't get
488 * counted against the cache device, but we'll still reread the data
489 * from the backing device.
490 */
491
492 if (bio->bi_error)
493 s->iop.error = bio->bi_error;
494 else if (!KEY_DIRTY(&b->key) &&
495 ptr_stale(s->iop.c, &b->key, 0)) {
496 atomic_long_inc(&s->iop.c->cache_read_races);
497 s->iop.error = -EINTR;
498 }
499
500 bch_bbio_endio(s->iop.c, bio, bio->bi_error, "reading from cache");
501 }
502
503 /*
504 * Read from a single key, handling the initial cache miss if the key starts in
505 * the middle of the bio
506 */
cache_lookup_fn(struct btree_op * op,struct btree * b,struct bkey * k)507 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
508 {
509 struct search *s = container_of(op, struct search, op);
510 struct bio *n, *bio = &s->bio.bio;
511 struct bkey *bio_key;
512 unsigned ptr;
513
514 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
515 return MAP_CONTINUE;
516
517 if (KEY_INODE(k) != s->iop.inode ||
518 KEY_START(k) > bio->bi_iter.bi_sector) {
519 unsigned bio_sectors = bio_sectors(bio);
520 unsigned sectors = KEY_INODE(k) == s->iop.inode
521 ? min_t(uint64_t, INT_MAX,
522 KEY_START(k) - bio->bi_iter.bi_sector)
523 : INT_MAX;
524
525 int ret = s->d->cache_miss(b, s, bio, sectors);
526 if (ret != MAP_CONTINUE)
527 return ret;
528
529 /* if this was a complete miss we shouldn't get here */
530 BUG_ON(bio_sectors <= sectors);
531 }
532
533 if (!KEY_SIZE(k))
534 return MAP_CONTINUE;
535
536 /* XXX: figure out best pointer - for multiple cache devices */
537 ptr = 0;
538
539 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
540
541 if (KEY_DIRTY(k))
542 s->read_dirty_data = true;
543
544 n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
545 KEY_OFFSET(k) - bio->bi_iter.bi_sector),
546 GFP_NOIO, s->d->bio_split);
547
548 bio_key = &container_of(n, struct bbio, bio)->key;
549 bch_bkey_copy_single_ptr(bio_key, k, ptr);
550
551 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
552 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
553
554 n->bi_end_io = bch_cache_read_endio;
555 n->bi_private = &s->cl;
556
557 /*
558 * The bucket we're reading from might be reused while our bio
559 * is in flight, and we could then end up reading the wrong
560 * data.
561 *
562 * We guard against this by checking (in cache_read_endio()) if
563 * the pointer is stale again; if so, we treat it as an error
564 * and reread from the backing device (but we don't pass that
565 * error up anywhere).
566 */
567
568 __bch_submit_bbio(n, b->c);
569 return n == bio ? MAP_DONE : MAP_CONTINUE;
570 }
571
cache_lookup(struct closure * cl)572 static void cache_lookup(struct closure *cl)
573 {
574 struct search *s = container_of(cl, struct search, iop.cl);
575 struct bio *bio = &s->bio.bio;
576 int ret;
577
578 bch_btree_op_init(&s->op, -1);
579
580 ret = bch_btree_map_keys(&s->op, s->iop.c,
581 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
582 cache_lookup_fn, MAP_END_KEY);
583 if (ret == -EAGAIN) {
584 continue_at(cl, cache_lookup, bcache_wq);
585 return;
586 }
587
588 closure_return(cl);
589 }
590
591 /* Common code for the make_request functions */
592
request_endio(struct bio * bio)593 static void request_endio(struct bio *bio)
594 {
595 struct closure *cl = bio->bi_private;
596
597 if (bio->bi_error) {
598 struct search *s = container_of(cl, struct search, cl);
599 s->iop.error = bio->bi_error;
600 /* Only cache read errors are recoverable */
601 s->recoverable = false;
602 }
603
604 bio_put(bio);
605 closure_put(cl);
606 }
607
bio_complete(struct search * s)608 static void bio_complete(struct search *s)
609 {
610 if (s->orig_bio) {
611 generic_end_io_acct(bio_data_dir(s->orig_bio),
612 &s->d->disk->part0, s->start_time);
613
614 trace_bcache_request_end(s->d, s->orig_bio);
615 s->orig_bio->bi_error = s->iop.error;
616 bio_endio(s->orig_bio);
617 s->orig_bio = NULL;
618 }
619 }
620
do_bio_hook(struct search * s,struct bio * orig_bio)621 static void do_bio_hook(struct search *s, struct bio *orig_bio)
622 {
623 struct bio *bio = &s->bio.bio;
624
625 bio_init(bio);
626 __bio_clone_fast(bio, orig_bio);
627 bio->bi_end_io = request_endio;
628 bio->bi_private = &s->cl;
629
630 bio_cnt_set(bio, 3);
631 }
632
search_free(struct closure * cl)633 static void search_free(struct closure *cl)
634 {
635 struct search *s = container_of(cl, struct search, cl);
636
637 if (s->iop.bio)
638 bio_put(s->iop.bio);
639
640 bio_complete(s);
641 closure_debug_destroy(cl);
642 mempool_free(s, s->d->c->search);
643 }
644
search_alloc(struct bio * bio,struct bcache_device * d)645 static inline struct search *search_alloc(struct bio *bio,
646 struct bcache_device *d)
647 {
648 struct search *s;
649
650 s = mempool_alloc(d->c->search, GFP_NOIO);
651
652 closure_init(&s->cl, NULL);
653 do_bio_hook(s, bio);
654
655 s->orig_bio = bio;
656 s->cache_miss = NULL;
657 s->cache_missed = 0;
658 s->d = d;
659 s->recoverable = 1;
660 s->write = (bio->bi_rw & REQ_WRITE) != 0;
661 s->read_dirty_data = 0;
662 s->start_time = jiffies;
663
664 s->iop.c = d->c;
665 s->iop.bio = NULL;
666 s->iop.inode = d->id;
667 s->iop.write_point = hash_long((unsigned long) current, 16);
668 s->iop.write_prio = 0;
669 s->iop.error = 0;
670 s->iop.flags = 0;
671 s->iop.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
672 s->iop.wq = bcache_wq;
673
674 return s;
675 }
676
677 /* Cached devices */
678
cached_dev_bio_complete(struct closure * cl)679 static void cached_dev_bio_complete(struct closure *cl)
680 {
681 struct search *s = container_of(cl, struct search, cl);
682 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
683
684 search_free(cl);
685 cached_dev_put(dc);
686 }
687
688 /* Process reads */
689
cached_dev_cache_miss_done(struct closure * cl)690 static void cached_dev_cache_miss_done(struct closure *cl)
691 {
692 struct search *s = container_of(cl, struct search, cl);
693
694 if (s->iop.replace_collision)
695 bch_mark_cache_miss_collision(s->iop.c, s->d);
696
697 if (s->iop.bio) {
698 int i;
699 struct bio_vec *bv;
700
701 bio_for_each_segment_all(bv, s->iop.bio, i)
702 __free_page(bv->bv_page);
703 }
704
705 cached_dev_bio_complete(cl);
706 }
707
cached_dev_read_error(struct closure * cl)708 static void cached_dev_read_error(struct closure *cl)
709 {
710 struct search *s = container_of(cl, struct search, cl);
711 struct bio *bio = &s->bio.bio;
712
713 /*
714 * If read request hit dirty data (s->read_dirty_data is true),
715 * then recovery a failed read request from cached device may
716 * get a stale data back. So read failure recovery is only
717 * permitted when read request hit clean data in cache device,
718 * or when cache read race happened.
719 */
720 if (s->recoverable && !s->read_dirty_data) {
721 /* Retry from the backing device: */
722 trace_bcache_read_retry(s->orig_bio);
723
724 s->iop.error = 0;
725 do_bio_hook(s, s->orig_bio);
726
727 /* XXX: invalidate cache */
728
729 closure_bio_submit(bio, cl);
730 }
731
732 continue_at(cl, cached_dev_cache_miss_done, NULL);
733 }
734
cached_dev_read_done(struct closure * cl)735 static void cached_dev_read_done(struct closure *cl)
736 {
737 struct search *s = container_of(cl, struct search, cl);
738 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
739
740 /*
741 * We had a cache miss; cache_bio now contains data ready to be inserted
742 * into the cache.
743 *
744 * First, we copy the data we just read from cache_bio's bounce buffers
745 * to the buffers the original bio pointed to:
746 */
747
748 if (s->iop.bio) {
749 bio_reset(s->iop.bio);
750 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
751 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
752 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
753 bch_bio_map(s->iop.bio, NULL);
754
755 bio_copy_data(s->cache_miss, s->iop.bio);
756
757 bio_put(s->cache_miss);
758 s->cache_miss = NULL;
759 }
760
761 if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
762 bch_data_verify(dc, s->orig_bio);
763
764 bio_complete(s);
765
766 if (s->iop.bio &&
767 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
768 BUG_ON(!s->iop.replace);
769 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
770 }
771
772 continue_at(cl, cached_dev_cache_miss_done, NULL);
773 }
774
cached_dev_read_done_bh(struct closure * cl)775 static void cached_dev_read_done_bh(struct closure *cl)
776 {
777 struct search *s = container_of(cl, struct search, cl);
778 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
779
780 bch_mark_cache_accounting(s->iop.c, s->d,
781 !s->cache_missed, s->iop.bypass);
782 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
783
784 if (s->iop.error)
785 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
786 else if (s->iop.bio || verify(dc, &s->bio.bio))
787 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
788 else
789 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
790 }
791
cached_dev_cache_miss(struct btree * b,struct search * s,struct bio * bio,unsigned sectors)792 static int cached_dev_cache_miss(struct btree *b, struct search *s,
793 struct bio *bio, unsigned sectors)
794 {
795 int ret = MAP_CONTINUE;
796 unsigned reada = 0;
797 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
798 struct bio *miss, *cache_bio;
799
800 s->cache_missed = 1;
801
802 if (s->cache_miss || s->iop.bypass) {
803 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
804 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
805 goto out_submit;
806 }
807
808 if (!(bio->bi_rw & REQ_RAHEAD) &&
809 !(bio->bi_rw & REQ_META) &&
810 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
811 reada = min_t(sector_t, dc->readahead >> 9,
812 bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
813
814 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
815
816 s->iop.replace_key = KEY(s->iop.inode,
817 bio->bi_iter.bi_sector + s->insert_bio_sectors,
818 s->insert_bio_sectors);
819
820 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
821 if (ret)
822 return ret;
823
824 s->iop.replace = true;
825
826 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
827
828 /* btree_search_recurse()'s btree iterator is no good anymore */
829 ret = miss == bio ? MAP_DONE : -EINTR;
830
831 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
832 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
833 dc->disk.bio_split);
834 if (!cache_bio)
835 goto out_submit;
836
837 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
838 cache_bio->bi_bdev = miss->bi_bdev;
839 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
840
841 cache_bio->bi_end_io = request_endio;
842 cache_bio->bi_private = &s->cl;
843
844 bch_bio_map(cache_bio, NULL);
845 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
846 goto out_put;
847
848 if (reada)
849 bch_mark_cache_readahead(s->iop.c, s->d);
850
851 s->cache_miss = miss;
852 s->iop.bio = cache_bio;
853 bio_get(cache_bio);
854 closure_bio_submit(cache_bio, &s->cl);
855
856 return ret;
857 out_put:
858 bio_put(cache_bio);
859 out_submit:
860 miss->bi_end_io = request_endio;
861 miss->bi_private = &s->cl;
862 closure_bio_submit(miss, &s->cl);
863 return ret;
864 }
865
cached_dev_read(struct cached_dev * dc,struct search * s)866 static void cached_dev_read(struct cached_dev *dc, struct search *s)
867 {
868 struct closure *cl = &s->cl;
869
870 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
871 continue_at(cl, cached_dev_read_done_bh, NULL);
872 }
873
874 /* Process writes */
875
cached_dev_write_complete(struct closure * cl)876 static void cached_dev_write_complete(struct closure *cl)
877 {
878 struct search *s = container_of(cl, struct search, cl);
879 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
880
881 up_read_non_owner(&dc->writeback_lock);
882 cached_dev_bio_complete(cl);
883 }
884
cached_dev_write(struct cached_dev * dc,struct search * s)885 static void cached_dev_write(struct cached_dev *dc, struct search *s)
886 {
887 struct closure *cl = &s->cl;
888 struct bio *bio = &s->bio.bio;
889 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
890 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
891
892 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
893
894 down_read_non_owner(&dc->writeback_lock);
895 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
896 /*
897 * We overlap with some dirty data undergoing background
898 * writeback, force this write to writeback
899 */
900 s->iop.bypass = false;
901 s->iop.writeback = true;
902 }
903
904 /*
905 * Discards aren't _required_ to do anything, so skipping if
906 * check_overlapping returned true is ok
907 *
908 * But check_overlapping drops dirty keys for which io hasn't started,
909 * so we still want to call it.
910 */
911 if (bio->bi_rw & REQ_DISCARD)
912 s->iop.bypass = true;
913
914 if (should_writeback(dc, s->orig_bio,
915 cache_mode(dc, bio),
916 s->iop.bypass)) {
917 s->iop.bypass = false;
918 s->iop.writeback = true;
919 }
920
921 if (s->iop.bypass) {
922 s->iop.bio = s->orig_bio;
923 bio_get(s->iop.bio);
924
925 if (!(bio->bi_rw & REQ_DISCARD) ||
926 blk_queue_discard(bdev_get_queue(dc->bdev)))
927 closure_bio_submit(bio, cl);
928 } else if (s->iop.writeback) {
929 bch_writeback_add(dc);
930 s->iop.bio = bio;
931
932 if (bio->bi_rw & REQ_FLUSH) {
933 /* Also need to send a flush to the backing device */
934 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
935 dc->disk.bio_split);
936
937 flush->bi_rw = WRITE_FLUSH;
938 flush->bi_bdev = bio->bi_bdev;
939 flush->bi_end_io = request_endio;
940 flush->bi_private = cl;
941
942 closure_bio_submit(flush, cl);
943 }
944 } else {
945 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
946
947 closure_bio_submit(bio, cl);
948 }
949
950 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
951 continue_at(cl, cached_dev_write_complete, NULL);
952 }
953
cached_dev_nodata(struct closure * cl)954 static void cached_dev_nodata(struct closure *cl)
955 {
956 struct search *s = container_of(cl, struct search, cl);
957 struct bio *bio = &s->bio.bio;
958
959 if (s->iop.flush_journal)
960 bch_journal_meta(s->iop.c, cl);
961
962 /* If it's a flush, we send the flush to the backing device too */
963 closure_bio_submit(bio, cl);
964
965 continue_at(cl, cached_dev_bio_complete, NULL);
966 }
967
968 /* Cached devices - read & write stuff */
969
cached_dev_make_request(struct request_queue * q,struct bio * bio)970 static blk_qc_t cached_dev_make_request(struct request_queue *q,
971 struct bio *bio)
972 {
973 struct search *s;
974 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
975 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
976 int rw = bio_data_dir(bio);
977
978 generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
979
980 bio->bi_bdev = dc->bdev;
981 bio->bi_iter.bi_sector += dc->sb.data_offset;
982
983 if (cached_dev_get(dc)) {
984 s = search_alloc(bio, d);
985 trace_bcache_request_start(s->d, bio);
986
987 if (!bio->bi_iter.bi_size) {
988 /*
989 * can't call bch_journal_meta from under
990 * generic_make_request
991 */
992 continue_at_nobarrier(&s->cl,
993 cached_dev_nodata,
994 bcache_wq);
995 } else {
996 s->iop.bypass = check_should_bypass(dc, bio);
997
998 if (rw)
999 cached_dev_write(dc, s);
1000 else
1001 cached_dev_read(dc, s);
1002 }
1003 } else {
1004 if ((bio->bi_rw & REQ_DISCARD) &&
1005 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1006 bio_endio(bio);
1007 else
1008 generic_make_request(bio);
1009 }
1010
1011 return BLK_QC_T_NONE;
1012 }
1013
cached_dev_ioctl(struct bcache_device * d,fmode_t mode,unsigned int cmd,unsigned long arg)1014 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1015 unsigned int cmd, unsigned long arg)
1016 {
1017 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1018 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1019 }
1020
cached_dev_congested(void * data,int bits)1021 static int cached_dev_congested(void *data, int bits)
1022 {
1023 struct bcache_device *d = data;
1024 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1025 struct request_queue *q = bdev_get_queue(dc->bdev);
1026 int ret = 0;
1027
1028 if (bdi_congested(&q->backing_dev_info, bits))
1029 return 1;
1030
1031 if (cached_dev_get(dc)) {
1032 unsigned i;
1033 struct cache *ca;
1034
1035 for_each_cache(ca, d->c, i) {
1036 q = bdev_get_queue(ca->bdev);
1037 ret |= bdi_congested(&q->backing_dev_info, bits);
1038 }
1039
1040 cached_dev_put(dc);
1041 }
1042
1043 return ret;
1044 }
1045
bch_cached_dev_request_init(struct cached_dev * dc)1046 void bch_cached_dev_request_init(struct cached_dev *dc)
1047 {
1048 struct gendisk *g = dc->disk.disk;
1049
1050 g->queue->make_request_fn = cached_dev_make_request;
1051 g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1052 dc->disk.cache_miss = cached_dev_cache_miss;
1053 dc->disk.ioctl = cached_dev_ioctl;
1054 }
1055
1056 /* Flash backed devices */
1057
flash_dev_cache_miss(struct btree * b,struct search * s,struct bio * bio,unsigned sectors)1058 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1059 struct bio *bio, unsigned sectors)
1060 {
1061 unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1062
1063 swap(bio->bi_iter.bi_size, bytes);
1064 zero_fill_bio(bio);
1065 swap(bio->bi_iter.bi_size, bytes);
1066
1067 bio_advance(bio, bytes);
1068
1069 if (!bio->bi_iter.bi_size)
1070 return MAP_DONE;
1071
1072 return MAP_CONTINUE;
1073 }
1074
flash_dev_nodata(struct closure * cl)1075 static void flash_dev_nodata(struct closure *cl)
1076 {
1077 struct search *s = container_of(cl, struct search, cl);
1078
1079 if (s->iop.flush_journal)
1080 bch_journal_meta(s->iop.c, cl);
1081
1082 continue_at(cl, search_free, NULL);
1083 }
1084
flash_dev_make_request(struct request_queue * q,struct bio * bio)1085 static blk_qc_t flash_dev_make_request(struct request_queue *q,
1086 struct bio *bio)
1087 {
1088 struct search *s;
1089 struct closure *cl;
1090 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1091 int rw = bio_data_dir(bio);
1092
1093 generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
1094
1095 s = search_alloc(bio, d);
1096 cl = &s->cl;
1097 bio = &s->bio.bio;
1098
1099 trace_bcache_request_start(s->d, bio);
1100
1101 if (!bio->bi_iter.bi_size) {
1102 /*
1103 * can't call bch_journal_meta from under
1104 * generic_make_request
1105 */
1106 continue_at_nobarrier(&s->cl,
1107 flash_dev_nodata,
1108 bcache_wq);
1109 return BLK_QC_T_NONE;
1110 } else if (rw) {
1111 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1112 &KEY(d->id, bio->bi_iter.bi_sector, 0),
1113 &KEY(d->id, bio_end_sector(bio), 0));
1114
1115 s->iop.bypass = (bio->bi_rw & REQ_DISCARD) != 0;
1116 s->iop.writeback = true;
1117 s->iop.bio = bio;
1118
1119 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1120 } else {
1121 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1122 }
1123
1124 continue_at(cl, search_free, NULL);
1125 return BLK_QC_T_NONE;
1126 }
1127
flash_dev_ioctl(struct bcache_device * d,fmode_t mode,unsigned int cmd,unsigned long arg)1128 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1129 unsigned int cmd, unsigned long arg)
1130 {
1131 return -ENOTTY;
1132 }
1133
flash_dev_congested(void * data,int bits)1134 static int flash_dev_congested(void *data, int bits)
1135 {
1136 struct bcache_device *d = data;
1137 struct request_queue *q;
1138 struct cache *ca;
1139 unsigned i;
1140 int ret = 0;
1141
1142 for_each_cache(ca, d->c, i) {
1143 q = bdev_get_queue(ca->bdev);
1144 ret |= bdi_congested(&q->backing_dev_info, bits);
1145 }
1146
1147 return ret;
1148 }
1149
bch_flash_dev_request_init(struct bcache_device * d)1150 void bch_flash_dev_request_init(struct bcache_device *d)
1151 {
1152 struct gendisk *g = d->disk;
1153
1154 g->queue->make_request_fn = flash_dev_make_request;
1155 g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1156 d->cache_miss = flash_dev_cache_miss;
1157 d->ioctl = flash_dev_ioctl;
1158 }
1159
bch_request_exit(void)1160 void bch_request_exit(void)
1161 {
1162 if (bch_search_cache)
1163 kmem_cache_destroy(bch_search_cache);
1164 }
1165
bch_request_init(void)1166 int __init bch_request_init(void)
1167 {
1168 bch_search_cache = KMEM_CACHE(search, 0);
1169 if (!bch_search_cache)
1170 return -ENOMEM;
1171
1172 return 0;
1173 }
1174