• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/freezer.h>
5 #include <linux/mm.h>
6 #include <linux/stat.h>
7 #include <linux/fcntl.h>
8 #include <linux/swap.h>
9 #include <linux/string.h>
10 #include <linux/init.h>
11 #include <linux/pagemap.h>
12 #include <linux/perf_event.h>
13 #include <linux/highmem.h>
14 #include <linux/spinlock.h>
15 #include <linux/key.h>
16 #include <linux/personality.h>
17 #include <linux/binfmts.h>
18 #include <linux/coredump.h>
19 #include <linux/utsname.h>
20 #include <linux/pid_namespace.h>
21 #include <linux/module.h>
22 #include <linux/namei.h>
23 #include <linux/mount.h>
24 #include <linux/security.h>
25 #include <linux/syscalls.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/cn_proc.h>
28 #include <linux/audit.h>
29 #include <linux/tracehook.h>
30 #include <linux/kmod.h>
31 #include <linux/fsnotify.h>
32 #include <linux/fs_struct.h>
33 #include <linux/pipe_fs_i.h>
34 #include <linux/oom.h>
35 #include <linux/compat.h>
36 #include <linux/sched.h>
37 #include <linux/fs.h>
38 #include <linux/path.h>
39 
40 #include <asm/uaccess.h>
41 #include <asm/mmu_context.h>
42 #include <asm/tlb.h>
43 #include <asm/exec.h>
44 
45 #include <trace/events/task.h>
46 #include "internal.h"
47 
48 #include <trace/events/sched.h>
49 
50 int core_uses_pid;
51 unsigned int core_pipe_limit;
52 char core_pattern[CORENAME_MAX_SIZE] = "core";
53 static int core_name_size = CORENAME_MAX_SIZE;
54 
55 struct core_name {
56 	char *corename;
57 	int used, size;
58 };
59 
60 /* The maximal length of core_pattern is also specified in sysctl.c */
61 
expand_corename(struct core_name * cn,int size)62 static int expand_corename(struct core_name *cn, int size)
63 {
64 	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
65 
66 	if (!corename)
67 		return -ENOMEM;
68 
69 	if (size > core_name_size) /* racy but harmless */
70 		core_name_size = size;
71 
72 	cn->size = ksize(corename);
73 	cn->corename = corename;
74 	return 0;
75 }
76 
cn_vprintf(struct core_name * cn,const char * fmt,va_list arg)77 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
78 				     va_list arg)
79 {
80 	int free, need;
81 	va_list arg_copy;
82 
83 again:
84 	free = cn->size - cn->used;
85 
86 	va_copy(arg_copy, arg);
87 	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
88 	va_end(arg_copy);
89 
90 	if (need < free) {
91 		cn->used += need;
92 		return 0;
93 	}
94 
95 	if (!expand_corename(cn, cn->size + need - free + 1))
96 		goto again;
97 
98 	return -ENOMEM;
99 }
100 
cn_printf(struct core_name * cn,const char * fmt,...)101 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
102 {
103 	va_list arg;
104 	int ret;
105 
106 	va_start(arg, fmt);
107 	ret = cn_vprintf(cn, fmt, arg);
108 	va_end(arg);
109 
110 	return ret;
111 }
112 
113 static __printf(2, 3)
cn_esc_printf(struct core_name * cn,const char * fmt,...)114 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
115 {
116 	int cur = cn->used;
117 	va_list arg;
118 	int ret;
119 
120 	va_start(arg, fmt);
121 	ret = cn_vprintf(cn, fmt, arg);
122 	va_end(arg);
123 
124 	for (; cur < cn->used; ++cur) {
125 		if (cn->corename[cur] == '/')
126 			cn->corename[cur] = '!';
127 	}
128 	return ret;
129 }
130 
cn_print_exe_file(struct core_name * cn)131 static int cn_print_exe_file(struct core_name *cn)
132 {
133 	struct file *exe_file;
134 	char *pathbuf, *path;
135 	int ret;
136 
137 	exe_file = get_mm_exe_file(current->mm);
138 	if (!exe_file)
139 		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
140 
141 	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
142 	if (!pathbuf) {
143 		ret = -ENOMEM;
144 		goto put_exe_file;
145 	}
146 
147 	path = file_path(exe_file, pathbuf, PATH_MAX);
148 	if (IS_ERR(path)) {
149 		ret = PTR_ERR(path);
150 		goto free_buf;
151 	}
152 
153 	ret = cn_esc_printf(cn, "%s", path);
154 
155 free_buf:
156 	kfree(pathbuf);
157 put_exe_file:
158 	fput(exe_file);
159 	return ret;
160 }
161 
162 /* format_corename will inspect the pattern parameter, and output a
163  * name into corename, which must have space for at least
164  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
165  */
format_corename(struct core_name * cn,struct coredump_params * cprm)166 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
167 {
168 	const struct cred *cred = current_cred();
169 	const char *pat_ptr = core_pattern;
170 	int ispipe = (*pat_ptr == '|');
171 	int pid_in_pattern = 0;
172 	int err = 0;
173 
174 	cn->used = 0;
175 	cn->corename = NULL;
176 	if (expand_corename(cn, core_name_size))
177 		return -ENOMEM;
178 	cn->corename[0] = '\0';
179 
180 	if (ispipe)
181 		++pat_ptr;
182 
183 	/* Repeat as long as we have more pattern to process and more output
184 	   space */
185 	while (*pat_ptr) {
186 		if (*pat_ptr != '%') {
187 			err = cn_printf(cn, "%c", *pat_ptr++);
188 		} else {
189 			switch (*++pat_ptr) {
190 			/* single % at the end, drop that */
191 			case 0:
192 				goto out;
193 			/* Double percent, output one percent */
194 			case '%':
195 				err = cn_printf(cn, "%c", '%');
196 				break;
197 			/* pid */
198 			case 'p':
199 				pid_in_pattern = 1;
200 				err = cn_printf(cn, "%d",
201 					      task_tgid_vnr(current));
202 				break;
203 			/* global pid */
204 			case 'P':
205 				err = cn_printf(cn, "%d",
206 					      task_tgid_nr(current));
207 				break;
208 			case 'i':
209 				err = cn_printf(cn, "%d",
210 					      task_pid_vnr(current));
211 				break;
212 			case 'I':
213 				err = cn_printf(cn, "%d",
214 					      task_pid_nr(current));
215 				break;
216 			/* uid */
217 			case 'u':
218 				err = cn_printf(cn, "%u",
219 						from_kuid(&init_user_ns,
220 							  cred->uid));
221 				break;
222 			/* gid */
223 			case 'g':
224 				err = cn_printf(cn, "%u",
225 						from_kgid(&init_user_ns,
226 							  cred->gid));
227 				break;
228 			case 'd':
229 				err = cn_printf(cn, "%d",
230 					__get_dumpable(cprm->mm_flags));
231 				break;
232 			/* signal that caused the coredump */
233 			case 's':
234 				err = cn_printf(cn, "%d",
235 						cprm->siginfo->si_signo);
236 				break;
237 			/* UNIX time of coredump */
238 			case 't': {
239 				struct timeval tv;
240 				do_gettimeofday(&tv);
241 				err = cn_printf(cn, "%lu", tv.tv_sec);
242 				break;
243 			}
244 			/* hostname */
245 			case 'h':
246 				down_read(&uts_sem);
247 				err = cn_esc_printf(cn, "%s",
248 					      utsname()->nodename);
249 				up_read(&uts_sem);
250 				break;
251 			/* executable */
252 			case 'e':
253 				err = cn_esc_printf(cn, "%s", current->comm);
254 				break;
255 			case 'E':
256 				err = cn_print_exe_file(cn);
257 				break;
258 			/* core limit size */
259 			case 'c':
260 				err = cn_printf(cn, "%lu",
261 					      rlimit(RLIMIT_CORE));
262 				break;
263 			default:
264 				break;
265 			}
266 			++pat_ptr;
267 		}
268 
269 		if (err)
270 			return err;
271 	}
272 
273 out:
274 	/* Backward compatibility with core_uses_pid:
275 	 *
276 	 * If core_pattern does not include a %p (as is the default)
277 	 * and core_uses_pid is set, then .%pid will be appended to
278 	 * the filename. Do not do this for piped commands. */
279 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
280 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
281 		if (err)
282 			return err;
283 	}
284 	return ispipe;
285 }
286 
zap_process(struct task_struct * start,int exit_code,int flags)287 static int zap_process(struct task_struct *start, int exit_code, int flags)
288 {
289 	struct task_struct *t;
290 	int nr = 0;
291 
292 	/* ignore all signals except SIGKILL, see prepare_signal() */
293 	start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
294 	start->signal->group_exit_code = exit_code;
295 	start->signal->group_stop_count = 0;
296 
297 	for_each_thread(start, t) {
298 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
299 		if (t != current && t->mm) {
300 			sigaddset(&t->pending.signal, SIGKILL);
301 			signal_wake_up(t, 1);
302 			nr++;
303 		}
304 	}
305 
306 	return nr;
307 }
308 
zap_threads(struct task_struct * tsk,struct mm_struct * mm,struct core_state * core_state,int exit_code)309 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
310 			struct core_state *core_state, int exit_code)
311 {
312 	struct task_struct *g, *p;
313 	unsigned long flags;
314 	int nr = -EAGAIN;
315 
316 	spin_lock_irq(&tsk->sighand->siglock);
317 	if (!signal_group_exit(tsk->signal)) {
318 		mm->core_state = core_state;
319 		tsk->signal->group_exit_task = tsk;
320 		nr = zap_process(tsk, exit_code, 0);
321 		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
322 	}
323 	spin_unlock_irq(&tsk->sighand->siglock);
324 	if (unlikely(nr < 0))
325 		return nr;
326 
327 	tsk->flags |= PF_DUMPCORE;
328 	if (atomic_read(&mm->mm_users) == nr + 1)
329 		goto done;
330 	/*
331 	 * We should find and kill all tasks which use this mm, and we should
332 	 * count them correctly into ->nr_threads. We don't take tasklist
333 	 * lock, but this is safe wrt:
334 	 *
335 	 * fork:
336 	 *	None of sub-threads can fork after zap_process(leader). All
337 	 *	processes which were created before this point should be
338 	 *	visible to zap_threads() because copy_process() adds the new
339 	 *	process to the tail of init_task.tasks list, and lock/unlock
340 	 *	of ->siglock provides a memory barrier.
341 	 *
342 	 * do_exit:
343 	 *	The caller holds mm->mmap_sem. This means that the task which
344 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
345 	 *	its ->mm.
346 	 *
347 	 * de_thread:
348 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
349 	 *	we must see either old or new leader, this does not matter.
350 	 *	However, it can change p->sighand, so lock_task_sighand(p)
351 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
352 	 *	it can't fail.
353 	 *
354 	 *	Note also that "g" can be the old leader with ->mm == NULL
355 	 *	and already unhashed and thus removed from ->thread_group.
356 	 *	This is OK, __unhash_process()->list_del_rcu() does not
357 	 *	clear the ->next pointer, we will find the new leader via
358 	 *	next_thread().
359 	 */
360 	rcu_read_lock();
361 	for_each_process(g) {
362 		if (g == tsk->group_leader)
363 			continue;
364 		if (g->flags & PF_KTHREAD)
365 			continue;
366 
367 		for_each_thread(g, p) {
368 			if (unlikely(!p->mm))
369 				continue;
370 			if (unlikely(p->mm == mm)) {
371 				lock_task_sighand(p, &flags);
372 				nr += zap_process(p, exit_code,
373 							SIGNAL_GROUP_EXIT);
374 				unlock_task_sighand(p, &flags);
375 			}
376 			break;
377 		}
378 	}
379 	rcu_read_unlock();
380 done:
381 	atomic_set(&core_state->nr_threads, nr);
382 	return nr;
383 }
384 
coredump_wait(int exit_code,struct core_state * core_state)385 static int coredump_wait(int exit_code, struct core_state *core_state)
386 {
387 	struct task_struct *tsk = current;
388 	struct mm_struct *mm = tsk->mm;
389 	int core_waiters = -EBUSY;
390 
391 	init_completion(&core_state->startup);
392 	core_state->dumper.task = tsk;
393 	core_state->dumper.next = NULL;
394 
395 	down_write(&mm->mmap_sem);
396 	if (!mm->core_state)
397 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
398 	up_write(&mm->mmap_sem);
399 
400 	if (core_waiters > 0) {
401 		struct core_thread *ptr;
402 
403 		freezer_do_not_count();
404 		wait_for_completion(&core_state->startup);
405 		freezer_count();
406 		/*
407 		 * Wait for all the threads to become inactive, so that
408 		 * all the thread context (extended register state, like
409 		 * fpu etc) gets copied to the memory.
410 		 */
411 		ptr = core_state->dumper.next;
412 		while (ptr != NULL) {
413 			wait_task_inactive(ptr->task, 0);
414 			ptr = ptr->next;
415 		}
416 	}
417 
418 	return core_waiters;
419 }
420 
coredump_finish(struct mm_struct * mm,bool core_dumped)421 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
422 {
423 	struct core_thread *curr, *next;
424 	struct task_struct *task;
425 
426 	spin_lock_irq(&current->sighand->siglock);
427 	if (core_dumped && !__fatal_signal_pending(current))
428 		current->signal->group_exit_code |= 0x80;
429 	current->signal->group_exit_task = NULL;
430 	current->signal->flags = SIGNAL_GROUP_EXIT;
431 	spin_unlock_irq(&current->sighand->siglock);
432 
433 	next = mm->core_state->dumper.next;
434 	while ((curr = next) != NULL) {
435 		next = curr->next;
436 		task = curr->task;
437 		/*
438 		 * see exit_mm(), curr->task must not see
439 		 * ->task == NULL before we read ->next.
440 		 */
441 		smp_mb();
442 		curr->task = NULL;
443 		wake_up_process(task);
444 	}
445 
446 	mm->core_state = NULL;
447 }
448 
dump_interrupted(void)449 static bool dump_interrupted(void)
450 {
451 	/*
452 	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
453 	 * can do try_to_freeze() and check __fatal_signal_pending(),
454 	 * but then we need to teach dump_write() to restart and clear
455 	 * TIF_SIGPENDING.
456 	 */
457 	return signal_pending(current);
458 }
459 
wait_for_dump_helpers(struct file * file)460 static void wait_for_dump_helpers(struct file *file)
461 {
462 	struct pipe_inode_info *pipe = file->private_data;
463 
464 	pipe_lock(pipe);
465 	pipe->readers++;
466 	pipe->writers--;
467 	wake_up_interruptible_sync(&pipe->wait);
468 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
469 	pipe_unlock(pipe);
470 
471 	/*
472 	 * We actually want wait_event_freezable() but then we need
473 	 * to clear TIF_SIGPENDING and improve dump_interrupted().
474 	 */
475 	wait_event_interruptible(pipe->wait, pipe->readers == 1);
476 
477 	pipe_lock(pipe);
478 	pipe->readers--;
479 	pipe->writers++;
480 	pipe_unlock(pipe);
481 }
482 
483 /*
484  * umh_pipe_setup
485  * helper function to customize the process used
486  * to collect the core in userspace.  Specifically
487  * it sets up a pipe and installs it as fd 0 (stdin)
488  * for the process.  Returns 0 on success, or
489  * PTR_ERR on failure.
490  * Note that it also sets the core limit to 1.  This
491  * is a special value that we use to trap recursive
492  * core dumps
493  */
umh_pipe_setup(struct subprocess_info * info,struct cred * new)494 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
495 {
496 	struct file *files[2];
497 	struct coredump_params *cp = (struct coredump_params *)info->data;
498 	int err = create_pipe_files(files, 0);
499 	if (err)
500 		return err;
501 
502 	cp->file = files[1];
503 
504 	err = replace_fd(0, files[0], 0);
505 	fput(files[0]);
506 	/* and disallow core files too */
507 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
508 
509 	return err;
510 }
511 
do_coredump(const siginfo_t * siginfo)512 void do_coredump(const siginfo_t *siginfo)
513 {
514 	struct core_state core_state;
515 	struct core_name cn;
516 	struct mm_struct *mm = current->mm;
517 	struct linux_binfmt * binfmt;
518 	const struct cred *old_cred;
519 	struct cred *cred;
520 	int retval = 0;
521 	int ispipe;
522 	struct files_struct *displaced;
523 	/* require nonrelative corefile path and be extra careful */
524 	bool need_suid_safe = false;
525 	bool core_dumped = false;
526 	static atomic_t core_dump_count = ATOMIC_INIT(0);
527 	struct coredump_params cprm = {
528 		.siginfo = siginfo,
529 		.regs = signal_pt_regs(),
530 		.limit = rlimit(RLIMIT_CORE),
531 		/*
532 		 * We must use the same mm->flags while dumping core to avoid
533 		 * inconsistency of bit flags, since this flag is not protected
534 		 * by any locks.
535 		 */
536 		.mm_flags = mm->flags,
537 	};
538 
539 	audit_core_dumps(siginfo->si_signo);
540 
541 	binfmt = mm->binfmt;
542 	if (!binfmt || !binfmt->core_dump)
543 		goto fail;
544 	if (!__get_dumpable(cprm.mm_flags))
545 		goto fail;
546 
547 	cred = prepare_creds();
548 	if (!cred)
549 		goto fail;
550 	/*
551 	 * We cannot trust fsuid as being the "true" uid of the process
552 	 * nor do we know its entire history. We only know it was tainted
553 	 * so we dump it as root in mode 2, and only into a controlled
554 	 * environment (pipe handler or fully qualified path).
555 	 */
556 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
557 		/* Setuid core dump mode */
558 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
559 		need_suid_safe = true;
560 	}
561 
562 	retval = coredump_wait(siginfo->si_signo, &core_state);
563 	if (retval < 0)
564 		goto fail_creds;
565 
566 	old_cred = override_creds(cred);
567 
568 	ispipe = format_corename(&cn, &cprm);
569 
570 	if (ispipe) {
571 		int dump_count;
572 		char **helper_argv;
573 		struct subprocess_info *sub_info;
574 
575 		if (ispipe < 0) {
576 			printk(KERN_WARNING "format_corename failed\n");
577 			printk(KERN_WARNING "Aborting core\n");
578 			goto fail_unlock;
579 		}
580 
581 		if (cprm.limit == 1) {
582 			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
583 			 *
584 			 * Normally core limits are irrelevant to pipes, since
585 			 * we're not writing to the file system, but we use
586 			 * cprm.limit of 1 here as a special value, this is a
587 			 * consistent way to catch recursive crashes.
588 			 * We can still crash if the core_pattern binary sets
589 			 * RLIM_CORE = !1, but it runs as root, and can do
590 			 * lots of stupid things.
591 			 *
592 			 * Note that we use task_tgid_vnr here to grab the pid
593 			 * of the process group leader.  That way we get the
594 			 * right pid if a thread in a multi-threaded
595 			 * core_pattern process dies.
596 			 */
597 			printk(KERN_WARNING
598 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
599 				task_tgid_vnr(current), current->comm);
600 			printk(KERN_WARNING "Aborting core\n");
601 			goto fail_unlock;
602 		}
603 		cprm.limit = RLIM_INFINITY;
604 
605 		dump_count = atomic_inc_return(&core_dump_count);
606 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
607 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
608 			       task_tgid_vnr(current), current->comm);
609 			printk(KERN_WARNING "Skipping core dump\n");
610 			goto fail_dropcount;
611 		}
612 
613 		helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
614 		if (!helper_argv) {
615 			printk(KERN_WARNING "%s failed to allocate memory\n",
616 			       __func__);
617 			goto fail_dropcount;
618 		}
619 
620 		retval = -ENOMEM;
621 		sub_info = call_usermodehelper_setup(helper_argv[0],
622 						helper_argv, NULL, GFP_KERNEL,
623 						umh_pipe_setup, NULL, &cprm);
624 		if (sub_info)
625 			retval = call_usermodehelper_exec(sub_info,
626 							  UMH_WAIT_EXEC);
627 
628 		argv_free(helper_argv);
629 		if (retval) {
630 			printk(KERN_INFO "Core dump to |%s pipe failed\n",
631 			       cn.corename);
632 			goto close_fail;
633 		}
634 	} else {
635 		struct inode *inode;
636 		int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
637 				 O_LARGEFILE | O_EXCL;
638 
639 		if (cprm.limit < binfmt->min_coredump)
640 			goto fail_unlock;
641 
642 		if (need_suid_safe && cn.corename[0] != '/') {
643 			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
644 				"to fully qualified path!\n",
645 				task_tgid_vnr(current), current->comm);
646 			printk(KERN_WARNING "Skipping core dump\n");
647 			goto fail_unlock;
648 		}
649 
650 		/*
651 		 * Unlink the file if it exists unless this is a SUID
652 		 * binary - in that case, we're running around with root
653 		 * privs and don't want to unlink another user's coredump.
654 		 */
655 		if (!need_suid_safe) {
656 			mm_segment_t old_fs;
657 
658 			old_fs = get_fs();
659 			set_fs(KERNEL_DS);
660 			/*
661 			 * If it doesn't exist, that's fine. If there's some
662 			 * other problem, we'll catch it at the filp_open().
663 			 */
664 			(void) sys_unlink((const char __user *)cn.corename);
665 			set_fs(old_fs);
666 		}
667 
668 		/*
669 		 * There is a race between unlinking and creating the
670 		 * file, but if that causes an EEXIST here, that's
671 		 * fine - another process raced with us while creating
672 		 * the corefile, and the other process won. To userspace,
673 		 * what matters is that at least one of the two processes
674 		 * writes its coredump successfully, not which one.
675 		 */
676 		if (need_suid_safe) {
677 			/*
678 			 * Using user namespaces, normal user tasks can change
679 			 * their current->fs->root to point to arbitrary
680 			 * directories. Since the intention of the "only dump
681 			 * with a fully qualified path" rule is to control where
682 			 * coredumps may be placed using root privileges,
683 			 * current->fs->root must not be used. Instead, use the
684 			 * root directory of init_task.
685 			 */
686 			struct path root;
687 
688 			task_lock(&init_task);
689 			get_fs_root(init_task.fs, &root);
690 			task_unlock(&init_task);
691 			cprm.file = file_open_root(root.dentry, root.mnt,
692 				cn.corename, open_flags, 0600);
693 			path_put(&root);
694 		} else {
695 			cprm.file = filp_open(cn.corename, open_flags, 0600);
696 		}
697 		if (IS_ERR(cprm.file))
698 			goto fail_unlock;
699 
700 		inode = file_inode(cprm.file);
701 		if (inode->i_nlink > 1)
702 			goto close_fail;
703 		if (d_unhashed(cprm.file->f_path.dentry))
704 			goto close_fail;
705 		/*
706 		 * AK: actually i see no reason to not allow this for named
707 		 * pipes etc, but keep the previous behaviour for now.
708 		 */
709 		if (!S_ISREG(inode->i_mode))
710 			goto close_fail;
711 		/*
712 		 * Don't dump core if the filesystem changed owner or mode
713 		 * of the file during file creation. This is an issue when
714 		 * a process dumps core while its cwd is e.g. on a vfat
715 		 * filesystem.
716 		 */
717 		if (!uid_eq(inode->i_uid, current_fsuid()))
718 			goto close_fail;
719 		if ((inode->i_mode & 0677) != 0600)
720 			goto close_fail;
721 		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
722 			goto close_fail;
723 		if (do_truncate2(cprm.file->f_path.mnt, cprm.file->f_path.dentry, 0, 0, cprm.file))
724 			goto close_fail;
725 	}
726 
727 	/* get us an unshared descriptor table; almost always a no-op */
728 	retval = unshare_files(&displaced);
729 	if (retval)
730 		goto close_fail;
731 	if (displaced)
732 		put_files_struct(displaced);
733 	if (!dump_interrupted()) {
734 		file_start_write(cprm.file);
735 		core_dumped = binfmt->core_dump(&cprm);
736 		file_end_write(cprm.file);
737 	}
738 	if (ispipe && core_pipe_limit)
739 		wait_for_dump_helpers(cprm.file);
740 close_fail:
741 	if (cprm.file)
742 		filp_close(cprm.file, NULL);
743 fail_dropcount:
744 	if (ispipe)
745 		atomic_dec(&core_dump_count);
746 fail_unlock:
747 	kfree(cn.corename);
748 	coredump_finish(mm, core_dumped);
749 	revert_creds(old_cred);
750 fail_creds:
751 	put_cred(cred);
752 fail:
753 	return;
754 }
755 
756 /*
757  * Core dumping helper functions.  These are the only things you should
758  * do on a core-file: use only these functions to write out all the
759  * necessary info.
760  */
dump_emit(struct coredump_params * cprm,const void * addr,int nr)761 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
762 {
763 	struct file *file = cprm->file;
764 	loff_t pos = file->f_pos;
765 	ssize_t n;
766 	if (cprm->written + nr > cprm->limit)
767 		return 0;
768 	while (nr) {
769 		if (dump_interrupted())
770 			return 0;
771 		n = __kernel_write(file, addr, nr, &pos);
772 		if (n <= 0)
773 			return 0;
774 		file->f_pos = pos;
775 		cprm->written += n;
776 		nr -= n;
777 	}
778 	return 1;
779 }
780 EXPORT_SYMBOL(dump_emit);
781 
dump_skip(struct coredump_params * cprm,size_t nr)782 int dump_skip(struct coredump_params *cprm, size_t nr)
783 {
784 	static char zeroes[PAGE_SIZE];
785 	struct file *file = cprm->file;
786 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
787 		if (cprm->written + nr > cprm->limit)
788 			return 0;
789 		if (dump_interrupted() ||
790 		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
791 			return 0;
792 		cprm->written += nr;
793 		return 1;
794 	} else {
795 		while (nr > PAGE_SIZE) {
796 			if (!dump_emit(cprm, zeroes, PAGE_SIZE))
797 				return 0;
798 			nr -= PAGE_SIZE;
799 		}
800 		return dump_emit(cprm, zeroes, nr);
801 	}
802 }
803 EXPORT_SYMBOL(dump_skip);
804 
dump_align(struct coredump_params * cprm,int align)805 int dump_align(struct coredump_params *cprm, int align)
806 {
807 	unsigned mod = cprm->written & (align - 1);
808 	if (align & (align - 1))
809 		return 0;
810 	return mod ? dump_skip(cprm, align - mod) : 1;
811 }
812 EXPORT_SYMBOL(dump_align);
813 
814 /*
815  * Ensures that file size is big enough to contain the current file
816  * postion. This prevents gdb from complaining about a truncated file
817  * if the last "write" to the file was dump_skip.
818  */
dump_truncate(struct coredump_params * cprm)819 void dump_truncate(struct coredump_params *cprm)
820 {
821 	struct file *file = cprm->file;
822 	loff_t offset;
823 
824 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
825 		offset = file->f_op->llseek(file, 0, SEEK_CUR);
826 		if (i_size_read(file->f_mapping->host) < offset)
827 			do_truncate(file->f_path.dentry, offset, 0, file);
828 	}
829 }
830 EXPORT_SYMBOL(dump_truncate);
831