• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 
26 #include <trace/events/block.h>
27 
28 #include <linux/blk-mq.h>
29 #include "blk.h"
30 #include "blk-mq.h"
31 #include "blk-mq-tag.h"
32 
33 static DEFINE_MUTEX(all_q_mutex);
34 static LIST_HEAD(all_q_list);
35 
36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
37 
38 /*
39  * Check if any of the ctx's have pending work in this hardware queue
40  */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 {
43 	unsigned int i;
44 
45 	for (i = 0; i < hctx->ctx_map.size; i++)
46 		if (hctx->ctx_map.map[i].word)
47 			return true;
48 
49 	return false;
50 }
51 
get_bm(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 					      struct blk_mq_ctx *ctx)
54 {
55 	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
56 }
57 
58 #define CTX_TO_BIT(hctx, ctx)	\
59 	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60 
61 /*
62  * Mark this ctx as having pending work in this hardware queue
63  */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 				     struct blk_mq_ctx *ctx)
66 {
67 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68 
69 	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
71 }
72 
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 				      struct blk_mq_ctx *ctx)
75 {
76 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77 
78 	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 }
80 
blk_mq_freeze_queue_start(struct request_queue * q)81 void blk_mq_freeze_queue_start(struct request_queue *q)
82 {
83 	int freeze_depth;
84 
85 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
86 	if (freeze_depth == 1) {
87 		percpu_ref_kill(&q->q_usage_counter);
88 		blk_mq_run_hw_queues(q, false);
89 	}
90 }
91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92 
blk_mq_freeze_queue_wait(struct request_queue * q)93 static void blk_mq_freeze_queue_wait(struct request_queue *q)
94 {
95 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 }
97 
98 /*
99  * Guarantee no request is in use, so we can change any data structure of
100  * the queue afterward.
101  */
blk_freeze_queue(struct request_queue * q)102 void blk_freeze_queue(struct request_queue *q)
103 {
104 	/*
105 	 * In the !blk_mq case we are only calling this to kill the
106 	 * q_usage_counter, otherwise this increases the freeze depth
107 	 * and waits for it to return to zero.  For this reason there is
108 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 	 * exported to drivers as the only user for unfreeze is blk_mq.
110 	 */
111 	blk_mq_freeze_queue_start(q);
112 	blk_mq_freeze_queue_wait(q);
113 }
114 
blk_mq_freeze_queue(struct request_queue * q)115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117 	/*
118 	 * ...just an alias to keep freeze and unfreeze actions balanced
119 	 * in the blk_mq_* namespace
120 	 */
121 	blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124 
blk_mq_unfreeze_queue(struct request_queue * q)125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127 	int freeze_depth;
128 
129 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 	WARN_ON_ONCE(freeze_depth < 0);
131 	if (!freeze_depth) {
132 		percpu_ref_reinit(&q->q_usage_counter);
133 		wake_up_all(&q->mq_freeze_wq);
134 	}
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137 
blk_mq_wake_waiters(struct request_queue * q)138 void blk_mq_wake_waiters(struct request_queue *q)
139 {
140 	struct blk_mq_hw_ctx *hctx;
141 	unsigned int i;
142 
143 	queue_for_each_hw_ctx(q, hctx, i)
144 		if (blk_mq_hw_queue_mapped(hctx))
145 			blk_mq_tag_wakeup_all(hctx->tags, true);
146 
147 	/*
148 	 * If we are called because the queue has now been marked as
149 	 * dying, we need to ensure that processes currently waiting on
150 	 * the queue are notified as well.
151 	 */
152 	wake_up_all(&q->mq_freeze_wq);
153 }
154 
blk_mq_can_queue(struct blk_mq_hw_ctx * hctx)155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
156 {
157 	return blk_mq_has_free_tags(hctx->tags);
158 }
159 EXPORT_SYMBOL(blk_mq_can_queue);
160 
blk_mq_rq_ctx_init(struct request_queue * q,struct blk_mq_ctx * ctx,struct request * rq,unsigned int rw_flags)161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 			       struct request *rq, unsigned int rw_flags)
163 {
164 	if (blk_queue_io_stat(q))
165 		rw_flags |= REQ_IO_STAT;
166 
167 	INIT_LIST_HEAD(&rq->queuelist);
168 	/* csd/requeue_work/fifo_time is initialized before use */
169 	rq->q = q;
170 	rq->mq_ctx = ctx;
171 	rq->cmd_flags |= rw_flags;
172 	/* do not touch atomic flags, it needs atomic ops against the timer */
173 	rq->cpu = -1;
174 	INIT_HLIST_NODE(&rq->hash);
175 	RB_CLEAR_NODE(&rq->rb_node);
176 	rq->rq_disk = NULL;
177 	rq->part = NULL;
178 	rq->start_time = jiffies;
179 #ifdef CONFIG_BLK_CGROUP
180 	rq->rl = NULL;
181 	set_start_time_ns(rq);
182 	rq->io_start_time_ns = 0;
183 #endif
184 	rq->nr_phys_segments = 0;
185 #if defined(CONFIG_BLK_DEV_INTEGRITY)
186 	rq->nr_integrity_segments = 0;
187 #endif
188 	rq->special = NULL;
189 	/* tag was already set */
190 	rq->errors = 0;
191 
192 	rq->cmd = rq->__cmd;
193 
194 	rq->extra_len = 0;
195 	rq->sense_len = 0;
196 	rq->resid_len = 0;
197 	rq->sense = NULL;
198 
199 	INIT_LIST_HEAD(&rq->timeout_list);
200 	rq->timeout = 0;
201 
202 	rq->end_io = NULL;
203 	rq->end_io_data = NULL;
204 	rq->next_rq = NULL;
205 
206 	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
207 }
208 
209 static struct request *
__blk_mq_alloc_request(struct blk_mq_alloc_data * data,int rw)210 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
211 {
212 	struct request *rq;
213 	unsigned int tag;
214 
215 	tag = blk_mq_get_tag(data);
216 	if (tag != BLK_MQ_TAG_FAIL) {
217 		rq = data->hctx->tags->rqs[tag];
218 
219 		if (blk_mq_tag_busy(data->hctx)) {
220 			rq->cmd_flags = REQ_MQ_INFLIGHT;
221 			atomic_inc(&data->hctx->nr_active);
222 		}
223 
224 		rq->tag = tag;
225 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
226 		return rq;
227 	}
228 
229 	return NULL;
230 }
231 
blk_mq_alloc_request(struct request_queue * q,int rw,gfp_t gfp,bool reserved)232 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
233 		bool reserved)
234 {
235 	struct blk_mq_ctx *ctx;
236 	struct blk_mq_hw_ctx *hctx;
237 	struct request *rq;
238 	struct blk_mq_alloc_data alloc_data;
239 	int ret;
240 
241 	ret = blk_queue_enter(q, gfp);
242 	if (ret)
243 		return ERR_PTR(ret);
244 
245 	ctx = blk_mq_get_ctx(q);
246 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
247 	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_DIRECT_RECLAIM,
248 			reserved, ctx, hctx);
249 
250 	rq = __blk_mq_alloc_request(&alloc_data, rw);
251 	if (!rq && (gfp & __GFP_DIRECT_RECLAIM)) {
252 		__blk_mq_run_hw_queue(hctx);
253 		blk_mq_put_ctx(ctx);
254 
255 		ctx = blk_mq_get_ctx(q);
256 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
257 		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
258 				hctx);
259 		rq =  __blk_mq_alloc_request(&alloc_data, rw);
260 		ctx = alloc_data.ctx;
261 	}
262 	blk_mq_put_ctx(ctx);
263 	if (!rq) {
264 		blk_queue_exit(q);
265 		return ERR_PTR(-EWOULDBLOCK);
266 	}
267 	return rq;
268 }
269 EXPORT_SYMBOL(blk_mq_alloc_request);
270 
__blk_mq_free_request(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct request * rq)271 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
272 				  struct blk_mq_ctx *ctx, struct request *rq)
273 {
274 	const int tag = rq->tag;
275 	struct request_queue *q = rq->q;
276 
277 	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
278 		atomic_dec(&hctx->nr_active);
279 	rq->cmd_flags = 0;
280 
281 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
282 	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
283 	blk_queue_exit(q);
284 }
285 
blk_mq_free_hctx_request(struct blk_mq_hw_ctx * hctx,struct request * rq)286 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
287 {
288 	struct blk_mq_ctx *ctx = rq->mq_ctx;
289 
290 	ctx->rq_completed[rq_is_sync(rq)]++;
291 	__blk_mq_free_request(hctx, ctx, rq);
292 
293 }
294 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
295 
blk_mq_free_request(struct request * rq)296 void blk_mq_free_request(struct request *rq)
297 {
298 	struct blk_mq_hw_ctx *hctx;
299 	struct request_queue *q = rq->q;
300 
301 	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
302 	blk_mq_free_hctx_request(hctx, rq);
303 }
304 EXPORT_SYMBOL_GPL(blk_mq_free_request);
305 
__blk_mq_end_request(struct request * rq,int error)306 inline void __blk_mq_end_request(struct request *rq, int error)
307 {
308 	blk_account_io_done(rq);
309 
310 	if (rq->end_io) {
311 		rq->end_io(rq, error);
312 	} else {
313 		if (unlikely(blk_bidi_rq(rq)))
314 			blk_mq_free_request(rq->next_rq);
315 		blk_mq_free_request(rq);
316 	}
317 }
318 EXPORT_SYMBOL(__blk_mq_end_request);
319 
blk_mq_end_request(struct request * rq,int error)320 void blk_mq_end_request(struct request *rq, int error)
321 {
322 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
323 		BUG();
324 	__blk_mq_end_request(rq, error);
325 }
326 EXPORT_SYMBOL(blk_mq_end_request);
327 
__blk_mq_complete_request_remote(void * data)328 static void __blk_mq_complete_request_remote(void *data)
329 {
330 	struct request *rq = data;
331 
332 	rq->q->softirq_done_fn(rq);
333 }
334 
blk_mq_ipi_complete_request(struct request * rq)335 static void blk_mq_ipi_complete_request(struct request *rq)
336 {
337 	struct blk_mq_ctx *ctx = rq->mq_ctx;
338 	bool shared = false;
339 	int cpu;
340 
341 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
342 		rq->q->softirq_done_fn(rq);
343 		return;
344 	}
345 
346 	cpu = get_cpu();
347 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
348 		shared = cpus_share_cache(cpu, ctx->cpu);
349 
350 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
351 		rq->csd.func = __blk_mq_complete_request_remote;
352 		rq->csd.info = rq;
353 		rq->csd.flags = 0;
354 		smp_call_function_single_async(ctx->cpu, &rq->csd);
355 	} else {
356 		rq->q->softirq_done_fn(rq);
357 	}
358 	put_cpu();
359 }
360 
__blk_mq_complete_request(struct request * rq)361 static void __blk_mq_complete_request(struct request *rq)
362 {
363 	struct request_queue *q = rq->q;
364 
365 	if (!q->softirq_done_fn)
366 		blk_mq_end_request(rq, rq->errors);
367 	else
368 		blk_mq_ipi_complete_request(rq);
369 }
370 
371 /**
372  * blk_mq_complete_request - end I/O on a request
373  * @rq:		the request being processed
374  *
375  * Description:
376  *	Ends all I/O on a request. It does not handle partial completions.
377  *	The actual completion happens out-of-order, through a IPI handler.
378  **/
blk_mq_complete_request(struct request * rq,int error)379 void blk_mq_complete_request(struct request *rq, int error)
380 {
381 	struct request_queue *q = rq->q;
382 
383 	if (unlikely(blk_should_fake_timeout(q)))
384 		return;
385 	if (!blk_mark_rq_complete(rq)) {
386 		rq->errors = error;
387 		__blk_mq_complete_request(rq);
388 	}
389 }
390 EXPORT_SYMBOL(blk_mq_complete_request);
391 
blk_mq_request_started(struct request * rq)392 int blk_mq_request_started(struct request *rq)
393 {
394 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
395 }
396 EXPORT_SYMBOL_GPL(blk_mq_request_started);
397 
blk_mq_start_request(struct request * rq)398 void blk_mq_start_request(struct request *rq)
399 {
400 	struct request_queue *q = rq->q;
401 
402 	trace_block_rq_issue(q, rq);
403 
404 	rq->resid_len = blk_rq_bytes(rq);
405 	if (unlikely(blk_bidi_rq(rq)))
406 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
407 
408 	blk_add_timer(rq);
409 
410 	/*
411 	 * Ensure that ->deadline is visible before set the started
412 	 * flag and clear the completed flag.
413 	 */
414 	smp_mb__before_atomic();
415 
416 	/*
417 	 * Mark us as started and clear complete. Complete might have been
418 	 * set if requeue raced with timeout, which then marked it as
419 	 * complete. So be sure to clear complete again when we start
420 	 * the request, otherwise we'll ignore the completion event.
421 	 */
422 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
423 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
424 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
425 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
426 
427 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
428 		/*
429 		 * Make sure space for the drain appears.  We know we can do
430 		 * this because max_hw_segments has been adjusted to be one
431 		 * fewer than the device can handle.
432 		 */
433 		rq->nr_phys_segments++;
434 	}
435 }
436 EXPORT_SYMBOL(blk_mq_start_request);
437 
__blk_mq_requeue_request(struct request * rq)438 static void __blk_mq_requeue_request(struct request *rq)
439 {
440 	struct request_queue *q = rq->q;
441 
442 	trace_block_rq_requeue(q, rq);
443 
444 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
445 		if (q->dma_drain_size && blk_rq_bytes(rq))
446 			rq->nr_phys_segments--;
447 	}
448 }
449 
blk_mq_requeue_request(struct request * rq)450 void blk_mq_requeue_request(struct request *rq)
451 {
452 	__blk_mq_requeue_request(rq);
453 
454 	BUG_ON(blk_queued_rq(rq));
455 	blk_mq_add_to_requeue_list(rq, true);
456 }
457 EXPORT_SYMBOL(blk_mq_requeue_request);
458 
blk_mq_requeue_work(struct work_struct * work)459 static void blk_mq_requeue_work(struct work_struct *work)
460 {
461 	struct request_queue *q =
462 		container_of(work, struct request_queue, requeue_work);
463 	LIST_HEAD(rq_list);
464 	struct request *rq, *next;
465 	unsigned long flags;
466 
467 	spin_lock_irqsave(&q->requeue_lock, flags);
468 	list_splice_init(&q->requeue_list, &rq_list);
469 	spin_unlock_irqrestore(&q->requeue_lock, flags);
470 
471 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
472 		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
473 			continue;
474 
475 		rq->cmd_flags &= ~REQ_SOFTBARRIER;
476 		list_del_init(&rq->queuelist);
477 		blk_mq_insert_request(rq, true, false, false);
478 	}
479 
480 	while (!list_empty(&rq_list)) {
481 		rq = list_entry(rq_list.next, struct request, queuelist);
482 		list_del_init(&rq->queuelist);
483 		blk_mq_insert_request(rq, false, false, false);
484 	}
485 
486 	/*
487 	 * Use the start variant of queue running here, so that running
488 	 * the requeue work will kick stopped queues.
489 	 */
490 	blk_mq_start_hw_queues(q);
491 }
492 
blk_mq_add_to_requeue_list(struct request * rq,bool at_head)493 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
494 {
495 	struct request_queue *q = rq->q;
496 	unsigned long flags;
497 
498 	/*
499 	 * We abuse this flag that is otherwise used by the I/O scheduler to
500 	 * request head insertation from the workqueue.
501 	 */
502 	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
503 
504 	spin_lock_irqsave(&q->requeue_lock, flags);
505 	if (at_head) {
506 		rq->cmd_flags |= REQ_SOFTBARRIER;
507 		list_add(&rq->queuelist, &q->requeue_list);
508 	} else {
509 		list_add_tail(&rq->queuelist, &q->requeue_list);
510 	}
511 	spin_unlock_irqrestore(&q->requeue_lock, flags);
512 }
513 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
514 
blk_mq_cancel_requeue_work(struct request_queue * q)515 void blk_mq_cancel_requeue_work(struct request_queue *q)
516 {
517 	cancel_work_sync(&q->requeue_work);
518 }
519 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
520 
blk_mq_kick_requeue_list(struct request_queue * q)521 void blk_mq_kick_requeue_list(struct request_queue *q)
522 {
523 	kblockd_schedule_work(&q->requeue_work);
524 }
525 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
526 
blk_mq_abort_requeue_list(struct request_queue * q)527 void blk_mq_abort_requeue_list(struct request_queue *q)
528 {
529 	unsigned long flags;
530 	LIST_HEAD(rq_list);
531 
532 	spin_lock_irqsave(&q->requeue_lock, flags);
533 	list_splice_init(&q->requeue_list, &rq_list);
534 	spin_unlock_irqrestore(&q->requeue_lock, flags);
535 
536 	while (!list_empty(&rq_list)) {
537 		struct request *rq;
538 
539 		rq = list_first_entry(&rq_list, struct request, queuelist);
540 		list_del_init(&rq->queuelist);
541 		rq->errors = -EIO;
542 		blk_mq_end_request(rq, rq->errors);
543 	}
544 }
545 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
546 
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)547 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
548 {
549 	return tags->rqs[tag];
550 }
551 EXPORT_SYMBOL(blk_mq_tag_to_rq);
552 
553 struct blk_mq_timeout_data {
554 	unsigned long next;
555 	unsigned int next_set;
556 };
557 
blk_mq_rq_timed_out(struct request * req,bool reserved)558 void blk_mq_rq_timed_out(struct request *req, bool reserved)
559 {
560 	struct blk_mq_ops *ops = req->q->mq_ops;
561 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
562 
563 	/*
564 	 * We know that complete is set at this point. If STARTED isn't set
565 	 * anymore, then the request isn't active and the "timeout" should
566 	 * just be ignored. This can happen due to the bitflag ordering.
567 	 * Timeout first checks if STARTED is set, and if it is, assumes
568 	 * the request is active. But if we race with completion, then
569 	 * we both flags will get cleared. So check here again, and ignore
570 	 * a timeout event with a request that isn't active.
571 	 */
572 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
573 		return;
574 
575 	if (ops->timeout)
576 		ret = ops->timeout(req, reserved);
577 
578 	switch (ret) {
579 	case BLK_EH_HANDLED:
580 		__blk_mq_complete_request(req);
581 		break;
582 	case BLK_EH_RESET_TIMER:
583 		blk_add_timer(req);
584 		blk_clear_rq_complete(req);
585 		break;
586 	case BLK_EH_NOT_HANDLED:
587 		break;
588 	default:
589 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
590 		break;
591 	}
592 }
593 
blk_mq_check_expired(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)594 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
595 		struct request *rq, void *priv, bool reserved)
596 {
597 	struct blk_mq_timeout_data *data = priv;
598 
599 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
600 		/*
601 		 * If a request wasn't started before the queue was
602 		 * marked dying, kill it here or it'll go unnoticed.
603 		 */
604 		if (unlikely(blk_queue_dying(rq->q))) {
605 			rq->errors = -EIO;
606 			blk_mq_end_request(rq, rq->errors);
607 		}
608 		return;
609 	}
610 	if (rq->cmd_flags & REQ_NO_TIMEOUT)
611 		return;
612 
613 	if (time_after_eq(jiffies, rq->deadline)) {
614 		if (!blk_mark_rq_complete(rq))
615 			blk_mq_rq_timed_out(rq, reserved);
616 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
617 		data->next = rq->deadline;
618 		data->next_set = 1;
619 	}
620 }
621 
blk_mq_rq_timer(unsigned long priv)622 static void blk_mq_rq_timer(unsigned long priv)
623 {
624 	struct request_queue *q = (struct request_queue *)priv;
625 	struct blk_mq_timeout_data data = {
626 		.next		= 0,
627 		.next_set	= 0,
628 	};
629 	int i;
630 
631 	/* A deadlock might occur if a request is stuck requiring a
632 	 * timeout at the same time a queue freeze is waiting
633 	 * completion, since the timeout code would not be able to
634 	 * acquire the queue reference here.
635 	 *
636 	 * That's why we don't use blk_queue_enter here; instead, we use
637 	 * percpu_ref_tryget directly, because we need to be able to
638 	 * obtain a reference even in the short window between the queue
639 	 * starting to freeze, by dropping the first reference in
640 	 * blk_mq_freeze_queue_start, and the moment the last request is
641 	 * consumed, marked by the instant q_usage_counter reaches
642 	 * zero.
643 	 */
644 	if (!percpu_ref_tryget(&q->q_usage_counter))
645 		return;
646 
647 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
648 
649 	if (data.next_set) {
650 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
651 		mod_timer(&q->timeout, data.next);
652 	} else {
653 		struct blk_mq_hw_ctx *hctx;
654 
655 		queue_for_each_hw_ctx(q, hctx, i) {
656 			/* the hctx may be unmapped, so check it here */
657 			if (blk_mq_hw_queue_mapped(hctx))
658 				blk_mq_tag_idle(hctx);
659 		}
660 	}
661 	blk_queue_exit(q);
662 }
663 
664 /*
665  * Reverse check our software queue for entries that we could potentially
666  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
667  * too much time checking for merges.
668  */
blk_mq_attempt_merge(struct request_queue * q,struct blk_mq_ctx * ctx,struct bio * bio)669 static bool blk_mq_attempt_merge(struct request_queue *q,
670 				 struct blk_mq_ctx *ctx, struct bio *bio)
671 {
672 	struct request *rq;
673 	int checked = 8;
674 
675 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
676 		int el_ret;
677 
678 		if (!checked--)
679 			break;
680 
681 		if (!blk_rq_merge_ok(rq, bio))
682 			continue;
683 
684 		el_ret = blk_try_merge(rq, bio);
685 		if (el_ret == ELEVATOR_BACK_MERGE) {
686 			if (bio_attempt_back_merge(q, rq, bio)) {
687 				ctx->rq_merged++;
688 				return true;
689 			}
690 			break;
691 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
692 			if (bio_attempt_front_merge(q, rq, bio)) {
693 				ctx->rq_merged++;
694 				return true;
695 			}
696 			break;
697 		}
698 	}
699 
700 	return false;
701 }
702 
703 /*
704  * Process software queues that have been marked busy, splicing them
705  * to the for-dispatch
706  */
flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)707 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
708 {
709 	struct blk_mq_ctx *ctx;
710 	int i;
711 
712 	for (i = 0; i < hctx->ctx_map.size; i++) {
713 		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
714 		unsigned int off, bit;
715 
716 		if (!bm->word)
717 			continue;
718 
719 		bit = 0;
720 		off = i * hctx->ctx_map.bits_per_word;
721 		do {
722 			bit = find_next_bit(&bm->word, bm->depth, bit);
723 			if (bit >= bm->depth)
724 				break;
725 
726 			ctx = hctx->ctxs[bit + off];
727 			clear_bit(bit, &bm->word);
728 			spin_lock(&ctx->lock);
729 			list_splice_tail_init(&ctx->rq_list, list);
730 			spin_unlock(&ctx->lock);
731 
732 			bit++;
733 		} while (1);
734 	}
735 }
736 
737 /*
738  * Run this hardware queue, pulling any software queues mapped to it in.
739  * Note that this function currently has various problems around ordering
740  * of IO. In particular, we'd like FIFO behaviour on handling existing
741  * items on the hctx->dispatch list. Ignore that for now.
742  */
__blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx)743 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
744 {
745 	struct request_queue *q = hctx->queue;
746 	struct request *rq;
747 	LIST_HEAD(rq_list);
748 	LIST_HEAD(driver_list);
749 	struct list_head *dptr;
750 	int queued;
751 
752 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
753 
754 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
755 		return;
756 
757 	hctx->run++;
758 
759 	/*
760 	 * Touch any software queue that has pending entries.
761 	 */
762 	flush_busy_ctxs(hctx, &rq_list);
763 
764 	/*
765 	 * If we have previous entries on our dispatch list, grab them
766 	 * and stuff them at the front for more fair dispatch.
767 	 */
768 	if (!list_empty_careful(&hctx->dispatch)) {
769 		spin_lock(&hctx->lock);
770 		if (!list_empty(&hctx->dispatch))
771 			list_splice_init(&hctx->dispatch, &rq_list);
772 		spin_unlock(&hctx->lock);
773 	}
774 
775 	/*
776 	 * Start off with dptr being NULL, so we start the first request
777 	 * immediately, even if we have more pending.
778 	 */
779 	dptr = NULL;
780 
781 	/*
782 	 * Now process all the entries, sending them to the driver.
783 	 */
784 	queued = 0;
785 	while (!list_empty(&rq_list)) {
786 		struct blk_mq_queue_data bd;
787 		int ret;
788 
789 		rq = list_first_entry(&rq_list, struct request, queuelist);
790 		list_del_init(&rq->queuelist);
791 
792 		bd.rq = rq;
793 		bd.list = dptr;
794 		bd.last = list_empty(&rq_list);
795 
796 		ret = q->mq_ops->queue_rq(hctx, &bd);
797 		switch (ret) {
798 		case BLK_MQ_RQ_QUEUE_OK:
799 			queued++;
800 			break;
801 		case BLK_MQ_RQ_QUEUE_BUSY:
802 			list_add(&rq->queuelist, &rq_list);
803 			__blk_mq_requeue_request(rq);
804 			break;
805 		default:
806 			pr_err("blk-mq: bad return on queue: %d\n", ret);
807 		case BLK_MQ_RQ_QUEUE_ERROR:
808 			rq->errors = -EIO;
809 			blk_mq_end_request(rq, rq->errors);
810 			break;
811 		}
812 
813 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
814 			break;
815 
816 		/*
817 		 * We've done the first request. If we have more than 1
818 		 * left in the list, set dptr to defer issue.
819 		 */
820 		if (!dptr && rq_list.next != rq_list.prev)
821 			dptr = &driver_list;
822 	}
823 
824 	if (!queued)
825 		hctx->dispatched[0]++;
826 	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
827 		hctx->dispatched[ilog2(queued) + 1]++;
828 
829 	/*
830 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
831 	 * that is where we will continue on next queue run.
832 	 */
833 	if (!list_empty(&rq_list)) {
834 		spin_lock(&hctx->lock);
835 		list_splice(&rq_list, &hctx->dispatch);
836 		spin_unlock(&hctx->lock);
837 		/*
838 		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
839 		 * it's possible the queue is stopped and restarted again
840 		 * before this. Queue restart will dispatch requests. And since
841 		 * requests in rq_list aren't added into hctx->dispatch yet,
842 		 * the requests in rq_list might get lost.
843 		 *
844 		 * blk_mq_run_hw_queue() already checks the STOPPED bit
845 		 **/
846 		blk_mq_run_hw_queue(hctx, true);
847 	}
848 }
849 
850 /*
851  * It'd be great if the workqueue API had a way to pass
852  * in a mask and had some smarts for more clever placement.
853  * For now we just round-robin here, switching for every
854  * BLK_MQ_CPU_WORK_BATCH queued items.
855  */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)856 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
857 {
858 	if (hctx->queue->nr_hw_queues == 1)
859 		return WORK_CPU_UNBOUND;
860 
861 	if (--hctx->next_cpu_batch <= 0) {
862 		int next_cpu;
863 
864 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
865 		if (next_cpu >= nr_cpu_ids)
866 			next_cpu = cpumask_first(hctx->cpumask);
867 
868 		hctx->next_cpu = next_cpu;
869 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
870 	}
871 
872 	return hctx->next_cpu;
873 }
874 
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)875 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
876 {
877 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
878 	    !blk_mq_hw_queue_mapped(hctx)))
879 		return;
880 
881 	if (!async) {
882 		int cpu = get_cpu();
883 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
884 			__blk_mq_run_hw_queue(hctx);
885 			put_cpu();
886 			return;
887 		}
888 
889 		put_cpu();
890 	}
891 
892 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
893 			&hctx->run_work, 0);
894 }
895 
blk_mq_run_hw_queues(struct request_queue * q,bool async)896 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
897 {
898 	struct blk_mq_hw_ctx *hctx;
899 	int i;
900 
901 	queue_for_each_hw_ctx(q, hctx, i) {
902 		if ((!blk_mq_hctx_has_pending(hctx) &&
903 		    list_empty_careful(&hctx->dispatch)) ||
904 		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
905 			continue;
906 
907 		blk_mq_run_hw_queue(hctx, async);
908 	}
909 }
910 EXPORT_SYMBOL(blk_mq_run_hw_queues);
911 
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)912 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
913 {
914 	cancel_delayed_work(&hctx->run_work);
915 	cancel_delayed_work(&hctx->delay_work);
916 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
917 }
918 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
919 
blk_mq_stop_hw_queues(struct request_queue * q)920 void blk_mq_stop_hw_queues(struct request_queue *q)
921 {
922 	struct blk_mq_hw_ctx *hctx;
923 	int i;
924 
925 	queue_for_each_hw_ctx(q, hctx, i)
926 		blk_mq_stop_hw_queue(hctx);
927 }
928 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
929 
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)930 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
931 {
932 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
933 
934 	blk_mq_run_hw_queue(hctx, false);
935 }
936 EXPORT_SYMBOL(blk_mq_start_hw_queue);
937 
blk_mq_start_hw_queues(struct request_queue * q)938 void blk_mq_start_hw_queues(struct request_queue *q)
939 {
940 	struct blk_mq_hw_ctx *hctx;
941 	int i;
942 
943 	queue_for_each_hw_ctx(q, hctx, i)
944 		blk_mq_start_hw_queue(hctx);
945 }
946 EXPORT_SYMBOL(blk_mq_start_hw_queues);
947 
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)948 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
949 {
950 	struct blk_mq_hw_ctx *hctx;
951 	int i;
952 
953 	queue_for_each_hw_ctx(q, hctx, i) {
954 		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
955 			continue;
956 
957 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
958 		blk_mq_run_hw_queue(hctx, async);
959 	}
960 }
961 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
962 
blk_mq_run_work_fn(struct work_struct * work)963 static void blk_mq_run_work_fn(struct work_struct *work)
964 {
965 	struct blk_mq_hw_ctx *hctx;
966 
967 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
968 
969 	__blk_mq_run_hw_queue(hctx);
970 }
971 
blk_mq_delay_work_fn(struct work_struct * work)972 static void blk_mq_delay_work_fn(struct work_struct *work)
973 {
974 	struct blk_mq_hw_ctx *hctx;
975 
976 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
977 
978 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
979 		__blk_mq_run_hw_queue(hctx);
980 }
981 
blk_mq_delay_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)982 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
983 {
984 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
985 		return;
986 
987 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
988 			&hctx->delay_work, msecs_to_jiffies(msecs));
989 }
990 EXPORT_SYMBOL(blk_mq_delay_queue);
991 
__blk_mq_insert_req_list(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct request * rq,bool at_head)992 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
993 					    struct blk_mq_ctx *ctx,
994 					    struct request *rq,
995 					    bool at_head)
996 {
997 	trace_block_rq_insert(hctx->queue, rq);
998 
999 	if (at_head)
1000 		list_add(&rq->queuelist, &ctx->rq_list);
1001 	else
1002 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1003 }
1004 
__blk_mq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1005 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1006 				    struct request *rq, bool at_head)
1007 {
1008 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1009 
1010 	__blk_mq_insert_req_list(hctx, ctx, rq, at_head);
1011 	blk_mq_hctx_mark_pending(hctx, ctx);
1012 }
1013 
blk_mq_insert_request(struct request * rq,bool at_head,bool run_queue,bool async)1014 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1015 		bool async)
1016 {
1017 	struct request_queue *q = rq->q;
1018 	struct blk_mq_hw_ctx *hctx;
1019 	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1020 
1021 	current_ctx = blk_mq_get_ctx(q);
1022 	if (!cpu_online(ctx->cpu))
1023 		rq->mq_ctx = ctx = current_ctx;
1024 
1025 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1026 
1027 	spin_lock(&ctx->lock);
1028 	__blk_mq_insert_request(hctx, rq, at_head);
1029 	spin_unlock(&ctx->lock);
1030 
1031 	if (run_queue)
1032 		blk_mq_run_hw_queue(hctx, async);
1033 
1034 	blk_mq_put_ctx(current_ctx);
1035 }
1036 
blk_mq_insert_requests(struct request_queue * q,struct blk_mq_ctx * ctx,struct list_head * list,int depth,bool from_schedule)1037 static void blk_mq_insert_requests(struct request_queue *q,
1038 				     struct blk_mq_ctx *ctx,
1039 				     struct list_head *list,
1040 				     int depth,
1041 				     bool from_schedule)
1042 
1043 {
1044 	struct blk_mq_hw_ctx *hctx;
1045 	struct blk_mq_ctx *current_ctx;
1046 
1047 	trace_block_unplug(q, depth, !from_schedule);
1048 
1049 	current_ctx = blk_mq_get_ctx(q);
1050 
1051 	if (!cpu_online(ctx->cpu))
1052 		ctx = current_ctx;
1053 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1054 
1055 	/*
1056 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1057 	 * offline now
1058 	 */
1059 	spin_lock(&ctx->lock);
1060 	while (!list_empty(list)) {
1061 		struct request *rq;
1062 
1063 		rq = list_first_entry(list, struct request, queuelist);
1064 		list_del_init(&rq->queuelist);
1065 		rq->mq_ctx = ctx;
1066 		__blk_mq_insert_req_list(hctx, ctx, rq, false);
1067 	}
1068 	blk_mq_hctx_mark_pending(hctx, ctx);
1069 	spin_unlock(&ctx->lock);
1070 
1071 	blk_mq_run_hw_queue(hctx, from_schedule);
1072 	blk_mq_put_ctx(current_ctx);
1073 }
1074 
plug_ctx_cmp(void * priv,struct list_head * a,struct list_head * b)1075 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1076 {
1077 	struct request *rqa = container_of(a, struct request, queuelist);
1078 	struct request *rqb = container_of(b, struct request, queuelist);
1079 
1080 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1081 		 (rqa->mq_ctx == rqb->mq_ctx &&
1082 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1083 }
1084 
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)1085 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1086 {
1087 	struct blk_mq_ctx *this_ctx;
1088 	struct request_queue *this_q;
1089 	struct request *rq;
1090 	LIST_HEAD(list);
1091 	LIST_HEAD(ctx_list);
1092 	unsigned int depth;
1093 
1094 	list_splice_init(&plug->mq_list, &list);
1095 
1096 	list_sort(NULL, &list, plug_ctx_cmp);
1097 
1098 	this_q = NULL;
1099 	this_ctx = NULL;
1100 	depth = 0;
1101 
1102 	while (!list_empty(&list)) {
1103 		rq = list_entry_rq(list.next);
1104 		list_del_init(&rq->queuelist);
1105 		BUG_ON(!rq->q);
1106 		if (rq->mq_ctx != this_ctx) {
1107 			if (this_ctx) {
1108 				blk_mq_insert_requests(this_q, this_ctx,
1109 							&ctx_list, depth,
1110 							from_schedule);
1111 			}
1112 
1113 			this_ctx = rq->mq_ctx;
1114 			this_q = rq->q;
1115 			depth = 0;
1116 		}
1117 
1118 		depth++;
1119 		list_add_tail(&rq->queuelist, &ctx_list);
1120 	}
1121 
1122 	/*
1123 	 * If 'this_ctx' is set, we know we have entries to complete
1124 	 * on 'ctx_list'. Do those.
1125 	 */
1126 	if (this_ctx) {
1127 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1128 				       from_schedule);
1129 	}
1130 }
1131 
blk_mq_bio_to_request(struct request * rq,struct bio * bio)1132 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1133 {
1134 	init_request_from_bio(rq, bio);
1135 
1136 	if (blk_do_io_stat(rq))
1137 		blk_account_io_start(rq, 1);
1138 }
1139 
hctx_allow_merges(struct blk_mq_hw_ctx * hctx)1140 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1141 {
1142 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1143 		!blk_queue_nomerges(hctx->queue);
1144 }
1145 
blk_mq_merge_queue_io(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct request * rq,struct bio * bio)1146 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1147 					 struct blk_mq_ctx *ctx,
1148 					 struct request *rq, struct bio *bio)
1149 {
1150 	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1151 		blk_mq_bio_to_request(rq, bio);
1152 		spin_lock(&ctx->lock);
1153 insert_rq:
1154 		__blk_mq_insert_request(hctx, rq, false);
1155 		spin_unlock(&ctx->lock);
1156 		return false;
1157 	} else {
1158 		struct request_queue *q = hctx->queue;
1159 
1160 		spin_lock(&ctx->lock);
1161 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1162 			blk_mq_bio_to_request(rq, bio);
1163 			goto insert_rq;
1164 		}
1165 
1166 		spin_unlock(&ctx->lock);
1167 		__blk_mq_free_request(hctx, ctx, rq);
1168 		return true;
1169 	}
1170 }
1171 
1172 struct blk_map_ctx {
1173 	struct blk_mq_hw_ctx *hctx;
1174 	struct blk_mq_ctx *ctx;
1175 };
1176 
blk_mq_map_request(struct request_queue * q,struct bio * bio,struct blk_map_ctx * data)1177 static struct request *blk_mq_map_request(struct request_queue *q,
1178 					  struct bio *bio,
1179 					  struct blk_map_ctx *data)
1180 {
1181 	struct blk_mq_hw_ctx *hctx;
1182 	struct blk_mq_ctx *ctx;
1183 	struct request *rq;
1184 	int rw = bio_data_dir(bio);
1185 	struct blk_mq_alloc_data alloc_data;
1186 
1187 	blk_queue_enter_live(q);
1188 	ctx = blk_mq_get_ctx(q);
1189 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1190 
1191 	if (rw_is_sync(bio->bi_rw))
1192 		rw |= REQ_SYNC;
1193 
1194 	trace_block_getrq(q, bio, rw);
1195 	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1196 			hctx);
1197 	rq = __blk_mq_alloc_request(&alloc_data, rw);
1198 	if (unlikely(!rq)) {
1199 		__blk_mq_run_hw_queue(hctx);
1200 		blk_mq_put_ctx(ctx);
1201 		trace_block_sleeprq(q, bio, rw);
1202 
1203 		ctx = blk_mq_get_ctx(q);
1204 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1205 		blk_mq_set_alloc_data(&alloc_data, q,
1206 				__GFP_RECLAIM|__GFP_HIGH, false, ctx, hctx);
1207 		rq = __blk_mq_alloc_request(&alloc_data, rw);
1208 		ctx = alloc_data.ctx;
1209 		hctx = alloc_data.hctx;
1210 	}
1211 
1212 	hctx->queued++;
1213 	data->hctx = hctx;
1214 	data->ctx = ctx;
1215 	return rq;
1216 }
1217 
blk_mq_direct_issue_request(struct request * rq,blk_qc_t * cookie)1218 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1219 {
1220 	int ret;
1221 	struct request_queue *q = rq->q;
1222 	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1223 			rq->mq_ctx->cpu);
1224 	struct blk_mq_queue_data bd = {
1225 		.rq = rq,
1226 		.list = NULL,
1227 		.last = 1
1228 	};
1229 	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1230 
1231 	/*
1232 	 * For OK queue, we are done. For error, kill it. Any other
1233 	 * error (busy), just add it to our list as we previously
1234 	 * would have done
1235 	 */
1236 	ret = q->mq_ops->queue_rq(hctx, &bd);
1237 	if (ret == BLK_MQ_RQ_QUEUE_OK) {
1238 		*cookie = new_cookie;
1239 		return 0;
1240 	}
1241 
1242 	__blk_mq_requeue_request(rq);
1243 
1244 	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1245 		*cookie = BLK_QC_T_NONE;
1246 		rq->errors = -EIO;
1247 		blk_mq_end_request(rq, rq->errors);
1248 		return 0;
1249 	}
1250 
1251 	return -1;
1252 }
1253 
1254 /*
1255  * Multiple hardware queue variant. This will not use per-process plugs,
1256  * but will attempt to bypass the hctx queueing if we can go straight to
1257  * hardware for SYNC IO.
1258  */
blk_mq_make_request(struct request_queue * q,struct bio * bio)1259 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1260 {
1261 	const int is_sync = rw_is_sync(bio->bi_rw);
1262 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1263 	struct blk_map_ctx data;
1264 	struct request *rq;
1265 	unsigned int request_count = 0;
1266 	struct blk_plug *plug;
1267 	struct request *same_queue_rq = NULL;
1268 	blk_qc_t cookie;
1269 
1270 	blk_queue_bounce(q, &bio);
1271 
1272 	blk_queue_split(q, &bio, q->bio_split);
1273 
1274 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1275 		bio_io_error(bio);
1276 		return BLK_QC_T_NONE;
1277 	}
1278 
1279 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1280 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1281 		return BLK_QC_T_NONE;
1282 
1283 	rq = blk_mq_map_request(q, bio, &data);
1284 	if (unlikely(!rq))
1285 		return BLK_QC_T_NONE;
1286 
1287 	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1288 
1289 	if (unlikely(is_flush_fua)) {
1290 		blk_mq_bio_to_request(rq, bio);
1291 		blk_insert_flush(rq);
1292 		goto run_queue;
1293 	}
1294 
1295 	plug = current->plug;
1296 	/*
1297 	 * If the driver supports defer issued based on 'last', then
1298 	 * queue it up like normal since we can potentially save some
1299 	 * CPU this way.
1300 	 */
1301 	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1302 	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1303 		struct request *old_rq = NULL;
1304 
1305 		blk_mq_bio_to_request(rq, bio);
1306 
1307 		/*
1308 		 * We do limited pluging. If the bio can be merged, do that.
1309 		 * Otherwise the existing request in the plug list will be
1310 		 * issued. So the plug list will have one request at most
1311 		 */
1312 		if (plug) {
1313 			/*
1314 			 * The plug list might get flushed before this. If that
1315 			 * happens, same_queue_rq is invalid and plug list is
1316 			 * empty
1317 			 */
1318 			if (same_queue_rq && !list_empty(&plug->mq_list)) {
1319 				old_rq = same_queue_rq;
1320 				list_del_init(&old_rq->queuelist);
1321 			}
1322 			list_add_tail(&rq->queuelist, &plug->mq_list);
1323 		} else /* is_sync */
1324 			old_rq = rq;
1325 		blk_mq_put_ctx(data.ctx);
1326 		if (!old_rq)
1327 			goto done;
1328 		if (test_bit(BLK_MQ_S_STOPPED, &data.hctx->state) ||
1329 		    blk_mq_direct_issue_request(old_rq, &cookie) != 0)
1330 			blk_mq_insert_request(old_rq, false, true, true);
1331 		goto done;
1332 	}
1333 
1334 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1335 		/*
1336 		 * For a SYNC request, send it to the hardware immediately. For
1337 		 * an ASYNC request, just ensure that we run it later on. The
1338 		 * latter allows for merging opportunities and more efficient
1339 		 * dispatching.
1340 		 */
1341 run_queue:
1342 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1343 	}
1344 	blk_mq_put_ctx(data.ctx);
1345 done:
1346 	return cookie;
1347 }
1348 
1349 /*
1350  * Single hardware queue variant. This will attempt to use any per-process
1351  * plug for merging and IO deferral.
1352  */
blk_sq_make_request(struct request_queue * q,struct bio * bio)1353 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1354 {
1355 	const int is_sync = rw_is_sync(bio->bi_rw);
1356 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1357 	struct blk_plug *plug;
1358 	unsigned int request_count = 0;
1359 	struct blk_map_ctx data;
1360 	struct request *rq;
1361 	blk_qc_t cookie;
1362 
1363 	blk_queue_bounce(q, &bio);
1364 
1365 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1366 		bio_io_error(bio);
1367 		return BLK_QC_T_NONE;
1368 	}
1369 
1370 	blk_queue_split(q, &bio, q->bio_split);
1371 
1372 	if (!is_flush_fua && !blk_queue_nomerges(q)) {
1373 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1374 			return BLK_QC_T_NONE;
1375 	} else
1376 		request_count = blk_plug_queued_count(q);
1377 
1378 	rq = blk_mq_map_request(q, bio, &data);
1379 	if (unlikely(!rq))
1380 		return BLK_QC_T_NONE;
1381 
1382 	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1383 
1384 	if (unlikely(is_flush_fua)) {
1385 		blk_mq_bio_to_request(rq, bio);
1386 		blk_insert_flush(rq);
1387 		goto run_queue;
1388 	}
1389 
1390 	/*
1391 	 * A task plug currently exists. Since this is completely lockless,
1392 	 * utilize that to temporarily store requests until the task is
1393 	 * either done or scheduled away.
1394 	 */
1395 	plug = current->plug;
1396 	if (plug) {
1397 		blk_mq_bio_to_request(rq, bio);
1398 		if (!request_count)
1399 			trace_block_plug(q);
1400 
1401 		blk_mq_put_ctx(data.ctx);
1402 
1403 		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1404 			blk_flush_plug_list(plug, false);
1405 			trace_block_plug(q);
1406 		}
1407 
1408 		list_add_tail(&rq->queuelist, &plug->mq_list);
1409 		return cookie;
1410 	}
1411 
1412 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1413 		/*
1414 		 * For a SYNC request, send it to the hardware immediately. For
1415 		 * an ASYNC request, just ensure that we run it later on. The
1416 		 * latter allows for merging opportunities and more efficient
1417 		 * dispatching.
1418 		 */
1419 run_queue:
1420 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1421 	}
1422 
1423 	blk_mq_put_ctx(data.ctx);
1424 	return cookie;
1425 }
1426 
1427 /*
1428  * Default mapping to a software queue, since we use one per CPU.
1429  */
blk_mq_map_queue(struct request_queue * q,const int cpu)1430 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1431 {
1432 	return q->queue_hw_ctx[q->mq_map[cpu]];
1433 }
1434 EXPORT_SYMBOL(blk_mq_map_queue);
1435 
blk_mq_free_rq_map(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)1436 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1437 		struct blk_mq_tags *tags, unsigned int hctx_idx)
1438 {
1439 	struct page *page;
1440 
1441 	if (tags->rqs && set->ops->exit_request) {
1442 		int i;
1443 
1444 		for (i = 0; i < tags->nr_tags; i++) {
1445 			if (!tags->rqs[i])
1446 				continue;
1447 			set->ops->exit_request(set->driver_data, tags->rqs[i],
1448 						hctx_idx, i);
1449 			tags->rqs[i] = NULL;
1450 		}
1451 	}
1452 
1453 	while (!list_empty(&tags->page_list)) {
1454 		page = list_first_entry(&tags->page_list, struct page, lru);
1455 		list_del_init(&page->lru);
1456 		/*
1457 		 * Remove kmemleak object previously allocated in
1458 		 * blk_mq_init_rq_map().
1459 		 */
1460 		kmemleak_free(page_address(page));
1461 		__free_pages(page, page->private);
1462 	}
1463 
1464 	kfree(tags->rqs);
1465 
1466 	blk_mq_free_tags(tags);
1467 }
1468 
order_to_size(unsigned int order)1469 static size_t order_to_size(unsigned int order)
1470 {
1471 	return (size_t)PAGE_SIZE << order;
1472 }
1473 
blk_mq_init_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx)1474 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1475 		unsigned int hctx_idx)
1476 {
1477 	struct blk_mq_tags *tags;
1478 	unsigned int i, j, entries_per_page, max_order = 4;
1479 	size_t rq_size, left;
1480 
1481 	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1482 				set->numa_node,
1483 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1484 	if (!tags)
1485 		return NULL;
1486 
1487 	INIT_LIST_HEAD(&tags->page_list);
1488 
1489 	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1490 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1491 				 set->numa_node);
1492 	if (!tags->rqs) {
1493 		blk_mq_free_tags(tags);
1494 		return NULL;
1495 	}
1496 
1497 	/*
1498 	 * rq_size is the size of the request plus driver payload, rounded
1499 	 * to the cacheline size
1500 	 */
1501 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1502 				cache_line_size());
1503 	left = rq_size * set->queue_depth;
1504 
1505 	for (i = 0; i < set->queue_depth; ) {
1506 		int this_order = max_order;
1507 		struct page *page;
1508 		int to_do;
1509 		void *p;
1510 
1511 		while (this_order && left < order_to_size(this_order - 1))
1512 			this_order--;
1513 
1514 		do {
1515 			page = alloc_pages_node(set->numa_node,
1516 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1517 				this_order);
1518 			if (page)
1519 				break;
1520 			if (!this_order--)
1521 				break;
1522 			if (order_to_size(this_order) < rq_size)
1523 				break;
1524 		} while (1);
1525 
1526 		if (!page)
1527 			goto fail;
1528 
1529 		page->private = this_order;
1530 		list_add_tail(&page->lru, &tags->page_list);
1531 
1532 		p = page_address(page);
1533 		/*
1534 		 * Allow kmemleak to scan these pages as they contain pointers
1535 		 * to additional allocations like via ops->init_request().
1536 		 */
1537 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1538 		entries_per_page = order_to_size(this_order) / rq_size;
1539 		to_do = min(entries_per_page, set->queue_depth - i);
1540 		left -= to_do * rq_size;
1541 		for (j = 0; j < to_do; j++) {
1542 			tags->rqs[i] = p;
1543 			if (set->ops->init_request) {
1544 				if (set->ops->init_request(set->driver_data,
1545 						tags->rqs[i], hctx_idx, i,
1546 						set->numa_node)) {
1547 					tags->rqs[i] = NULL;
1548 					goto fail;
1549 				}
1550 			}
1551 
1552 			p += rq_size;
1553 			i++;
1554 		}
1555 	}
1556 	return tags;
1557 
1558 fail:
1559 	blk_mq_free_rq_map(set, tags, hctx_idx);
1560 	return NULL;
1561 }
1562 
blk_mq_free_bitmap(struct blk_mq_ctxmap * bitmap)1563 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1564 {
1565 	kfree(bitmap->map);
1566 }
1567 
blk_mq_alloc_bitmap(struct blk_mq_ctxmap * bitmap,int node)1568 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1569 {
1570 	unsigned int bpw = 8, total, num_maps, i;
1571 
1572 	bitmap->bits_per_word = bpw;
1573 
1574 	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1575 	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1576 					GFP_KERNEL, node);
1577 	if (!bitmap->map)
1578 		return -ENOMEM;
1579 
1580 	total = nr_cpu_ids;
1581 	for (i = 0; i < num_maps; i++) {
1582 		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1583 		total -= bitmap->map[i].depth;
1584 	}
1585 
1586 	return 0;
1587 }
1588 
blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx * hctx,int cpu)1589 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1590 {
1591 	struct request_queue *q = hctx->queue;
1592 	struct blk_mq_ctx *ctx;
1593 	LIST_HEAD(tmp);
1594 
1595 	/*
1596 	 * Move ctx entries to new CPU, if this one is going away.
1597 	 */
1598 	ctx = __blk_mq_get_ctx(q, cpu);
1599 
1600 	spin_lock(&ctx->lock);
1601 	if (!list_empty(&ctx->rq_list)) {
1602 		list_splice_init(&ctx->rq_list, &tmp);
1603 		blk_mq_hctx_clear_pending(hctx, ctx);
1604 	}
1605 	spin_unlock(&ctx->lock);
1606 
1607 	if (list_empty(&tmp))
1608 		return NOTIFY_OK;
1609 
1610 	ctx = blk_mq_get_ctx(q);
1611 	spin_lock(&ctx->lock);
1612 
1613 	while (!list_empty(&tmp)) {
1614 		struct request *rq;
1615 
1616 		rq = list_first_entry(&tmp, struct request, queuelist);
1617 		rq->mq_ctx = ctx;
1618 		list_move_tail(&rq->queuelist, &ctx->rq_list);
1619 	}
1620 
1621 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1622 	blk_mq_hctx_mark_pending(hctx, ctx);
1623 
1624 	spin_unlock(&ctx->lock);
1625 
1626 	blk_mq_run_hw_queue(hctx, true);
1627 	blk_mq_put_ctx(ctx);
1628 	return NOTIFY_OK;
1629 }
1630 
blk_mq_hctx_notify(void * data,unsigned long action,unsigned int cpu)1631 static int blk_mq_hctx_notify(void *data, unsigned long action,
1632 			      unsigned int cpu)
1633 {
1634 	struct blk_mq_hw_ctx *hctx = data;
1635 
1636 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1637 		return blk_mq_hctx_cpu_offline(hctx, cpu);
1638 
1639 	/*
1640 	 * In case of CPU online, tags may be reallocated
1641 	 * in blk_mq_map_swqueue() after mapping is updated.
1642 	 */
1643 
1644 	return NOTIFY_OK;
1645 }
1646 
1647 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)1648 static void blk_mq_exit_hctx(struct request_queue *q,
1649 		struct blk_mq_tag_set *set,
1650 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1651 {
1652 	unsigned flush_start_tag = set->queue_depth;
1653 
1654 	if (blk_mq_hw_queue_mapped(hctx))
1655 		blk_mq_tag_idle(hctx);
1656 
1657 	if (set->ops->exit_request)
1658 		set->ops->exit_request(set->driver_data,
1659 				       hctx->fq->flush_rq, hctx_idx,
1660 				       flush_start_tag + hctx_idx);
1661 
1662 	if (set->ops->exit_hctx)
1663 		set->ops->exit_hctx(hctx, hctx_idx);
1664 
1665 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1666 	blk_free_flush_queue(hctx->fq);
1667 	blk_mq_free_bitmap(&hctx->ctx_map);
1668 }
1669 
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)1670 static void blk_mq_exit_hw_queues(struct request_queue *q,
1671 		struct blk_mq_tag_set *set, int nr_queue)
1672 {
1673 	struct blk_mq_hw_ctx *hctx;
1674 	unsigned int i;
1675 
1676 	queue_for_each_hw_ctx(q, hctx, i) {
1677 		if (i == nr_queue)
1678 			break;
1679 		blk_mq_exit_hctx(q, set, hctx, i);
1680 	}
1681 }
1682 
blk_mq_free_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set)1683 static void blk_mq_free_hw_queues(struct request_queue *q,
1684 		struct blk_mq_tag_set *set)
1685 {
1686 	struct blk_mq_hw_ctx *hctx;
1687 	unsigned int i;
1688 
1689 	queue_for_each_hw_ctx(q, hctx, i)
1690 		free_cpumask_var(hctx->cpumask);
1691 }
1692 
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)1693 static int blk_mq_init_hctx(struct request_queue *q,
1694 		struct blk_mq_tag_set *set,
1695 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1696 {
1697 	int node;
1698 	unsigned flush_start_tag = set->queue_depth;
1699 
1700 	node = hctx->numa_node;
1701 	if (node == NUMA_NO_NODE)
1702 		node = hctx->numa_node = set->numa_node;
1703 
1704 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1705 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1706 	spin_lock_init(&hctx->lock);
1707 	INIT_LIST_HEAD(&hctx->dispatch);
1708 	hctx->queue = q;
1709 	hctx->queue_num = hctx_idx;
1710 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1711 
1712 	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1713 					blk_mq_hctx_notify, hctx);
1714 	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1715 
1716 	hctx->tags = set->tags[hctx_idx];
1717 
1718 	/*
1719 	 * Allocate space for all possible cpus to avoid allocation at
1720 	 * runtime
1721 	 */
1722 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1723 					GFP_KERNEL, node);
1724 	if (!hctx->ctxs)
1725 		goto unregister_cpu_notifier;
1726 
1727 	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1728 		goto free_ctxs;
1729 
1730 	hctx->nr_ctx = 0;
1731 
1732 	if (set->ops->init_hctx &&
1733 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1734 		goto free_bitmap;
1735 
1736 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1737 	if (!hctx->fq)
1738 		goto exit_hctx;
1739 
1740 	if (set->ops->init_request &&
1741 	    set->ops->init_request(set->driver_data,
1742 				   hctx->fq->flush_rq, hctx_idx,
1743 				   flush_start_tag + hctx_idx, node))
1744 		goto free_fq;
1745 
1746 	return 0;
1747 
1748  free_fq:
1749 	kfree(hctx->fq);
1750  exit_hctx:
1751 	if (set->ops->exit_hctx)
1752 		set->ops->exit_hctx(hctx, hctx_idx);
1753  free_bitmap:
1754 	blk_mq_free_bitmap(&hctx->ctx_map);
1755  free_ctxs:
1756 	kfree(hctx->ctxs);
1757  unregister_cpu_notifier:
1758 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1759 
1760 	return -1;
1761 }
1762 
blk_mq_init_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set)1763 static int blk_mq_init_hw_queues(struct request_queue *q,
1764 		struct blk_mq_tag_set *set)
1765 {
1766 	struct blk_mq_hw_ctx *hctx;
1767 	unsigned int i;
1768 
1769 	/*
1770 	 * Initialize hardware queues
1771 	 */
1772 	queue_for_each_hw_ctx(q, hctx, i) {
1773 		if (blk_mq_init_hctx(q, set, hctx, i))
1774 			break;
1775 	}
1776 
1777 	if (i == q->nr_hw_queues)
1778 		return 0;
1779 
1780 	/*
1781 	 * Init failed
1782 	 */
1783 	blk_mq_exit_hw_queues(q, set, i);
1784 
1785 	return 1;
1786 }
1787 
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)1788 static void blk_mq_init_cpu_queues(struct request_queue *q,
1789 				   unsigned int nr_hw_queues)
1790 {
1791 	unsigned int i;
1792 
1793 	for_each_possible_cpu(i) {
1794 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1795 		struct blk_mq_hw_ctx *hctx;
1796 
1797 		memset(__ctx, 0, sizeof(*__ctx));
1798 		__ctx->cpu = i;
1799 		spin_lock_init(&__ctx->lock);
1800 		INIT_LIST_HEAD(&__ctx->rq_list);
1801 		__ctx->queue = q;
1802 
1803 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1804 		if (!cpu_online(i))
1805 			continue;
1806 
1807 		hctx = q->mq_ops->map_queue(q, i);
1808 
1809 		/*
1810 		 * Set local node, IFF we have more than one hw queue. If
1811 		 * not, we remain on the home node of the device
1812 		 */
1813 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1814 			hctx->numa_node = cpu_to_node(i);
1815 	}
1816 }
1817 
blk_mq_map_swqueue(struct request_queue * q,const struct cpumask * online_mask)1818 static void blk_mq_map_swqueue(struct request_queue *q,
1819 			       const struct cpumask *online_mask)
1820 {
1821 	unsigned int i;
1822 	struct blk_mq_hw_ctx *hctx;
1823 	struct blk_mq_ctx *ctx;
1824 	struct blk_mq_tag_set *set = q->tag_set;
1825 
1826 	/*
1827 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
1828 	 */
1829 	mutex_lock(&q->sysfs_lock);
1830 
1831 	queue_for_each_hw_ctx(q, hctx, i) {
1832 		cpumask_clear(hctx->cpumask);
1833 		hctx->nr_ctx = 0;
1834 	}
1835 
1836 	/*
1837 	 * Map software to hardware queues
1838 	 */
1839 	queue_for_each_ctx(q, ctx, i) {
1840 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1841 		if (!cpumask_test_cpu(i, online_mask))
1842 			continue;
1843 
1844 		hctx = q->mq_ops->map_queue(q, i);
1845 		cpumask_set_cpu(i, hctx->cpumask);
1846 		ctx->index_hw = hctx->nr_ctx;
1847 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1848 	}
1849 
1850 	mutex_unlock(&q->sysfs_lock);
1851 
1852 	queue_for_each_hw_ctx(q, hctx, i) {
1853 		struct blk_mq_ctxmap *map = &hctx->ctx_map;
1854 
1855 		/*
1856 		 * If no software queues are mapped to this hardware queue,
1857 		 * disable it and free the request entries.
1858 		 */
1859 		if (!hctx->nr_ctx) {
1860 			if (set->tags[i]) {
1861 				blk_mq_free_rq_map(set, set->tags[i], i);
1862 				set->tags[i] = NULL;
1863 			}
1864 			hctx->tags = NULL;
1865 			continue;
1866 		}
1867 
1868 		/* unmapped hw queue can be remapped after CPU topo changed */
1869 		if (!set->tags[i])
1870 			set->tags[i] = blk_mq_init_rq_map(set, i);
1871 		hctx->tags = set->tags[i];
1872 		WARN_ON(!hctx->tags);
1873 
1874 		/*
1875 		 * Set the map size to the number of mapped software queues.
1876 		 * This is more accurate and more efficient than looping
1877 		 * over all possibly mapped software queues.
1878 		 */
1879 		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1880 
1881 		/*
1882 		 * Initialize batch roundrobin counts
1883 		 */
1884 		hctx->next_cpu = cpumask_first(hctx->cpumask);
1885 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1886 	}
1887 
1888 	queue_for_each_ctx(q, ctx, i) {
1889 		if (!cpumask_test_cpu(i, online_mask))
1890 			continue;
1891 
1892 		hctx = q->mq_ops->map_queue(q, i);
1893 		cpumask_set_cpu(i, hctx->tags->cpumask);
1894 	}
1895 }
1896 
queue_set_hctx_shared(struct request_queue * q,bool shared)1897 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1898 {
1899 	struct blk_mq_hw_ctx *hctx;
1900 	int i;
1901 
1902 	queue_for_each_hw_ctx(q, hctx, i) {
1903 		if (shared)
1904 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
1905 		else
1906 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1907 	}
1908 }
1909 
blk_mq_update_tag_set_depth(struct blk_mq_tag_set * set,bool shared)1910 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1911 {
1912 	struct request_queue *q;
1913 
1914 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1915 		blk_mq_freeze_queue(q);
1916 		queue_set_hctx_shared(q, shared);
1917 		blk_mq_unfreeze_queue(q);
1918 	}
1919 }
1920 
blk_mq_del_queue_tag_set(struct request_queue * q)1921 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1922 {
1923 	struct blk_mq_tag_set *set = q->tag_set;
1924 
1925 	mutex_lock(&set->tag_list_lock);
1926 	list_del_init(&q->tag_set_list);
1927 	if (list_is_singular(&set->tag_list)) {
1928 		/* just transitioned to unshared */
1929 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
1930 		/* update existing queue */
1931 		blk_mq_update_tag_set_depth(set, false);
1932 	}
1933 	mutex_unlock(&set->tag_list_lock);
1934 }
1935 
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)1936 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1937 				     struct request_queue *q)
1938 {
1939 	q->tag_set = set;
1940 
1941 	mutex_lock(&set->tag_list_lock);
1942 
1943 	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1944 	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1945 		set->flags |= BLK_MQ_F_TAG_SHARED;
1946 		/* update existing queue */
1947 		blk_mq_update_tag_set_depth(set, true);
1948 	}
1949 	if (set->flags & BLK_MQ_F_TAG_SHARED)
1950 		queue_set_hctx_shared(q, true);
1951 	list_add_tail(&q->tag_set_list, &set->tag_list);
1952 
1953 	mutex_unlock(&set->tag_list_lock);
1954 }
1955 
1956 /*
1957  * It is the actual release handler for mq, but we do it from
1958  * request queue's release handler for avoiding use-after-free
1959  * and headache because q->mq_kobj shouldn't have been introduced,
1960  * but we can't group ctx/kctx kobj without it.
1961  */
blk_mq_release(struct request_queue * q)1962 void blk_mq_release(struct request_queue *q)
1963 {
1964 	struct blk_mq_hw_ctx *hctx;
1965 	unsigned int i;
1966 
1967 	/* hctx kobj stays in hctx */
1968 	queue_for_each_hw_ctx(q, hctx, i) {
1969 		if (!hctx)
1970 			continue;
1971 		kfree(hctx->ctxs);
1972 		kfree(hctx);
1973 	}
1974 
1975 	kfree(q->mq_map);
1976 	q->mq_map = NULL;
1977 
1978 	kfree(q->queue_hw_ctx);
1979 
1980 	/* ctx kobj stays in queue_ctx */
1981 	free_percpu(q->queue_ctx);
1982 }
1983 
blk_mq_init_queue(struct blk_mq_tag_set * set)1984 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1985 {
1986 	struct request_queue *uninit_q, *q;
1987 
1988 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1989 	if (!uninit_q)
1990 		return ERR_PTR(-ENOMEM);
1991 
1992 	q = blk_mq_init_allocated_queue(set, uninit_q);
1993 	if (IS_ERR(q))
1994 		blk_cleanup_queue(uninit_q);
1995 
1996 	return q;
1997 }
1998 EXPORT_SYMBOL(blk_mq_init_queue);
1999 
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q)2000 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2001 						  struct request_queue *q)
2002 {
2003 	struct blk_mq_hw_ctx **hctxs;
2004 	struct blk_mq_ctx __percpu *ctx;
2005 	unsigned int *map;
2006 	int i;
2007 
2008 	ctx = alloc_percpu(struct blk_mq_ctx);
2009 	if (!ctx)
2010 		return ERR_PTR(-ENOMEM);
2011 
2012 	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
2013 			set->numa_node);
2014 
2015 	if (!hctxs)
2016 		goto err_percpu;
2017 
2018 	map = blk_mq_make_queue_map(set);
2019 	if (!map)
2020 		goto err_map;
2021 
2022 	for (i = 0; i < set->nr_hw_queues; i++) {
2023 		int node = blk_mq_hw_queue_to_node(map, i);
2024 
2025 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2026 					GFP_KERNEL, node);
2027 		if (!hctxs[i])
2028 			goto err_hctxs;
2029 
2030 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2031 						node))
2032 			goto err_hctxs;
2033 
2034 		atomic_set(&hctxs[i]->nr_active, 0);
2035 		hctxs[i]->numa_node = node;
2036 		hctxs[i]->queue_num = i;
2037 	}
2038 
2039 	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
2040 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2041 
2042 	q->nr_queues = nr_cpu_ids;
2043 	q->nr_hw_queues = set->nr_hw_queues;
2044 	q->mq_map = map;
2045 
2046 	q->queue_ctx = ctx;
2047 	q->queue_hw_ctx = hctxs;
2048 
2049 	q->mq_ops = set->ops;
2050 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2051 
2052 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2053 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2054 
2055 	q->sg_reserved_size = INT_MAX;
2056 
2057 	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2058 	INIT_LIST_HEAD(&q->requeue_list);
2059 	spin_lock_init(&q->requeue_lock);
2060 
2061 	if (q->nr_hw_queues > 1)
2062 		blk_queue_make_request(q, blk_mq_make_request);
2063 	else
2064 		blk_queue_make_request(q, blk_sq_make_request);
2065 
2066 	/*
2067 	 * Do this after blk_queue_make_request() overrides it...
2068 	 */
2069 	q->nr_requests = set->queue_depth;
2070 
2071 	if (set->ops->complete)
2072 		blk_queue_softirq_done(q, set->ops->complete);
2073 
2074 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2075 
2076 	if (blk_mq_init_hw_queues(q, set))
2077 		goto err_hctxs;
2078 
2079 	get_online_cpus();
2080 	mutex_lock(&all_q_mutex);
2081 
2082 	list_add_tail(&q->all_q_node, &all_q_list);
2083 	blk_mq_add_queue_tag_set(set, q);
2084 	blk_mq_map_swqueue(q, cpu_online_mask);
2085 
2086 	mutex_unlock(&all_q_mutex);
2087 	put_online_cpus();
2088 
2089 	return q;
2090 
2091 err_hctxs:
2092 	kfree(map);
2093 	for (i = 0; i < set->nr_hw_queues; i++) {
2094 		if (!hctxs[i])
2095 			break;
2096 		free_cpumask_var(hctxs[i]->cpumask);
2097 		kfree(hctxs[i]);
2098 	}
2099 err_map:
2100 	kfree(hctxs);
2101 err_percpu:
2102 	free_percpu(ctx);
2103 	return ERR_PTR(-ENOMEM);
2104 }
2105 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2106 
blk_mq_free_queue(struct request_queue * q)2107 void blk_mq_free_queue(struct request_queue *q)
2108 {
2109 	struct blk_mq_tag_set	*set = q->tag_set;
2110 
2111 	mutex_lock(&all_q_mutex);
2112 	list_del_init(&q->all_q_node);
2113 	mutex_unlock(&all_q_mutex);
2114 
2115 	blk_mq_del_queue_tag_set(q);
2116 
2117 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2118 	blk_mq_free_hw_queues(q, set);
2119 }
2120 
2121 /* Basically redo blk_mq_init_queue with queue frozen */
blk_mq_queue_reinit(struct request_queue * q,const struct cpumask * online_mask)2122 static void blk_mq_queue_reinit(struct request_queue *q,
2123 				const struct cpumask *online_mask)
2124 {
2125 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2126 
2127 	blk_mq_sysfs_unregister(q);
2128 
2129 	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2130 
2131 	/*
2132 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2133 	 * we should change hctx numa_node according to new topology (this
2134 	 * involves free and re-allocate memory, worthy doing?)
2135 	 */
2136 
2137 	blk_mq_map_swqueue(q, online_mask);
2138 
2139 	blk_mq_sysfs_register(q);
2140 }
2141 
blk_mq_queue_reinit_notify(struct notifier_block * nb,unsigned long action,void * hcpu)2142 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2143 				      unsigned long action, void *hcpu)
2144 {
2145 	struct request_queue *q;
2146 	int cpu = (unsigned long)hcpu;
2147 	/*
2148 	 * New online cpumask which is going to be set in this hotplug event.
2149 	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2150 	 * one-by-one and dynamically allocating this could result in a failure.
2151 	 */
2152 	static struct cpumask online_new;
2153 
2154 	/*
2155 	 * Before hotadded cpu starts handling requests, new mappings must
2156 	 * be established.  Otherwise, these requests in hw queue might
2157 	 * never be dispatched.
2158 	 *
2159 	 * For example, there is a single hw queue (hctx) and two CPU queues
2160 	 * (ctx0 for CPU0, and ctx1 for CPU1).
2161 	 *
2162 	 * Now CPU1 is just onlined and a request is inserted into
2163 	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2164 	 * still zero.
2165 	 *
2166 	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2167 	 * set in pending bitmap and tries to retrieve requests in
2168 	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
2169 	 * so the request in ctx1->rq_list is ignored.
2170 	 */
2171 	switch (action & ~CPU_TASKS_FROZEN) {
2172 	case CPU_DEAD:
2173 	case CPU_UP_CANCELED:
2174 		cpumask_copy(&online_new, cpu_online_mask);
2175 		break;
2176 	case CPU_UP_PREPARE:
2177 		cpumask_copy(&online_new, cpu_online_mask);
2178 		cpumask_set_cpu(cpu, &online_new);
2179 		break;
2180 	default:
2181 		return NOTIFY_OK;
2182 	}
2183 
2184 	mutex_lock(&all_q_mutex);
2185 
2186 	/*
2187 	 * We need to freeze and reinit all existing queues.  Freezing
2188 	 * involves synchronous wait for an RCU grace period and doing it
2189 	 * one by one may take a long time.  Start freezing all queues in
2190 	 * one swoop and then wait for the completions so that freezing can
2191 	 * take place in parallel.
2192 	 */
2193 	list_for_each_entry(q, &all_q_list, all_q_node)
2194 		blk_mq_freeze_queue_start(q);
2195 	list_for_each_entry(q, &all_q_list, all_q_node) {
2196 		blk_mq_freeze_queue_wait(q);
2197 
2198 		/*
2199 		 * timeout handler can't touch hw queue during the
2200 		 * reinitialization
2201 		 */
2202 		del_timer_sync(&q->timeout);
2203 	}
2204 
2205 	list_for_each_entry(q, &all_q_list, all_q_node)
2206 		blk_mq_queue_reinit(q, &online_new);
2207 
2208 	list_for_each_entry(q, &all_q_list, all_q_node)
2209 		blk_mq_unfreeze_queue(q);
2210 
2211 	mutex_unlock(&all_q_mutex);
2212 	return NOTIFY_OK;
2213 }
2214 
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)2215 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2216 {
2217 	int i;
2218 
2219 	for (i = 0; i < set->nr_hw_queues; i++) {
2220 		set->tags[i] = blk_mq_init_rq_map(set, i);
2221 		if (!set->tags[i])
2222 			goto out_unwind;
2223 	}
2224 
2225 	return 0;
2226 
2227 out_unwind:
2228 	while (--i >= 0)
2229 		blk_mq_free_rq_map(set, set->tags[i], i);
2230 
2231 	return -ENOMEM;
2232 }
2233 
2234 /*
2235  * Allocate the request maps associated with this tag_set. Note that this
2236  * may reduce the depth asked for, if memory is tight. set->queue_depth
2237  * will be updated to reflect the allocated depth.
2238  */
blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)2239 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2240 {
2241 	unsigned int depth;
2242 	int err;
2243 
2244 	depth = set->queue_depth;
2245 	do {
2246 		err = __blk_mq_alloc_rq_maps(set);
2247 		if (!err)
2248 			break;
2249 
2250 		set->queue_depth >>= 1;
2251 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2252 			err = -ENOMEM;
2253 			break;
2254 		}
2255 	} while (set->queue_depth);
2256 
2257 	if (!set->queue_depth || err) {
2258 		pr_err("blk-mq: failed to allocate request map\n");
2259 		return -ENOMEM;
2260 	}
2261 
2262 	if (depth != set->queue_depth)
2263 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2264 						depth, set->queue_depth);
2265 
2266 	return 0;
2267 }
2268 
blk_mq_tags_cpumask(struct blk_mq_tags * tags)2269 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2270 {
2271 	return tags->cpumask;
2272 }
2273 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2274 
2275 /*
2276  * Alloc a tag set to be associated with one or more request queues.
2277  * May fail with EINVAL for various error conditions. May adjust the
2278  * requested depth down, if if it too large. In that case, the set
2279  * value will be stored in set->queue_depth.
2280  */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)2281 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2282 {
2283 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2284 
2285 	if (!set->nr_hw_queues)
2286 		return -EINVAL;
2287 	if (!set->queue_depth)
2288 		return -EINVAL;
2289 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2290 		return -EINVAL;
2291 
2292 	if (!set->ops->queue_rq || !set->ops->map_queue)
2293 		return -EINVAL;
2294 
2295 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2296 		pr_info("blk-mq: reduced tag depth to %u\n",
2297 			BLK_MQ_MAX_DEPTH);
2298 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2299 	}
2300 
2301 	/*
2302 	 * If a crashdump is active, then we are potentially in a very
2303 	 * memory constrained environment. Limit us to 1 queue and
2304 	 * 64 tags to prevent using too much memory.
2305 	 */
2306 	if (is_kdump_kernel()) {
2307 		set->nr_hw_queues = 1;
2308 		set->queue_depth = min(64U, set->queue_depth);
2309 	}
2310 
2311 	set->tags = kmalloc_node(set->nr_hw_queues *
2312 				 sizeof(struct blk_mq_tags *),
2313 				 GFP_KERNEL, set->numa_node);
2314 	if (!set->tags)
2315 		return -ENOMEM;
2316 
2317 	if (blk_mq_alloc_rq_maps(set))
2318 		goto enomem;
2319 
2320 	mutex_init(&set->tag_list_lock);
2321 	INIT_LIST_HEAD(&set->tag_list);
2322 
2323 	return 0;
2324 enomem:
2325 	kfree(set->tags);
2326 	set->tags = NULL;
2327 	return -ENOMEM;
2328 }
2329 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2330 
blk_mq_free_tag_set(struct blk_mq_tag_set * set)2331 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2332 {
2333 	int i;
2334 
2335 	for (i = 0; i < set->nr_hw_queues; i++) {
2336 		if (set->tags[i])
2337 			blk_mq_free_rq_map(set, set->tags[i], i);
2338 	}
2339 
2340 	kfree(set->tags);
2341 	set->tags = NULL;
2342 }
2343 EXPORT_SYMBOL(blk_mq_free_tag_set);
2344 
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)2345 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2346 {
2347 	struct blk_mq_tag_set *set = q->tag_set;
2348 	struct blk_mq_hw_ctx *hctx;
2349 	int i, ret;
2350 
2351 	if (!set || nr > set->queue_depth)
2352 		return -EINVAL;
2353 
2354 	ret = 0;
2355 	queue_for_each_hw_ctx(q, hctx, i) {
2356 		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2357 		if (ret)
2358 			break;
2359 	}
2360 
2361 	if (!ret)
2362 		q->nr_requests = nr;
2363 
2364 	return ret;
2365 }
2366 
blk_mq_disable_hotplug(void)2367 void blk_mq_disable_hotplug(void)
2368 {
2369 	mutex_lock(&all_q_mutex);
2370 }
2371 
blk_mq_enable_hotplug(void)2372 void blk_mq_enable_hotplug(void)
2373 {
2374 	mutex_unlock(&all_q_mutex);
2375 }
2376 
blk_mq_init(void)2377 static int __init blk_mq_init(void)
2378 {
2379 	blk_mq_cpu_init();
2380 
2381 	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2382 
2383 	return 0;
2384 }
2385 subsys_initcall(blk_mq_init);
2386