• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63 
64 struct btrfs_iget_args {
65 	struct btrfs_key *location;
66 	struct btrfs_root *root;
67 };
68 
69 static const struct inode_operations btrfs_dir_inode_operations;
70 static const struct inode_operations btrfs_symlink_inode_operations;
71 static const struct inode_operations btrfs_dir_ro_inode_operations;
72 static const struct inode_operations btrfs_special_inode_operations;
73 static const struct inode_operations btrfs_file_inode_operations;
74 static const struct address_space_operations btrfs_aops;
75 static const struct address_space_operations btrfs_symlink_aops;
76 static const struct file_operations btrfs_dir_file_operations;
77 static struct extent_io_ops btrfs_extent_io_ops;
78 
79 static struct kmem_cache *btrfs_inode_cachep;
80 static struct kmem_cache *btrfs_delalloc_work_cachep;
81 struct kmem_cache *btrfs_trans_handle_cachep;
82 struct kmem_cache *btrfs_transaction_cachep;
83 struct kmem_cache *btrfs_path_cachep;
84 struct kmem_cache *btrfs_free_space_cachep;
85 
86 #define S_SHIFT 12
87 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
88 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
89 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
90 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
91 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
92 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
93 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
94 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
95 };
96 
97 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
98 static int btrfs_truncate(struct inode *inode);
99 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
100 static noinline int cow_file_range(struct inode *inode,
101 				   struct page *locked_page,
102 				   u64 start, u64 end, int *page_started,
103 				   unsigned long *nr_written, int unlock);
104 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
105 					   u64 len, u64 orig_start,
106 					   u64 block_start, u64 block_len,
107 					   u64 orig_block_len, u64 ram_bytes,
108 					   int type);
109 
110 static int btrfs_dirty_inode(struct inode *inode);
111 
112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_inode_set_ops(struct inode * inode)113 void btrfs_test_inode_set_ops(struct inode *inode)
114 {
115 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
116 }
117 #endif
118 
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir,const struct qstr * qstr)119 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
120 				     struct inode *inode,  struct inode *dir,
121 				     const struct qstr *qstr)
122 {
123 	int err;
124 
125 	err = btrfs_init_acl(trans, inode, dir);
126 	if (!err)
127 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
128 	return err;
129 }
130 
131 /*
132  * this does all the hard work for inserting an inline extent into
133  * the btree.  The caller should have done a btrfs_drop_extents so that
134  * no overlapping inline items exist in the btree
135  */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,int extent_inserted,struct btrfs_root * root,struct inode * inode,u64 start,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages)136 static int insert_inline_extent(struct btrfs_trans_handle *trans,
137 				struct btrfs_path *path, int extent_inserted,
138 				struct btrfs_root *root, struct inode *inode,
139 				u64 start, size_t size, size_t compressed_size,
140 				int compress_type,
141 				struct page **compressed_pages)
142 {
143 	struct extent_buffer *leaf;
144 	struct page *page = NULL;
145 	char *kaddr;
146 	unsigned long ptr;
147 	struct btrfs_file_extent_item *ei;
148 	int err = 0;
149 	int ret;
150 	size_t cur_size = size;
151 	unsigned long offset;
152 
153 	if (compressed_size && compressed_pages)
154 		cur_size = compressed_size;
155 
156 	inode_add_bytes(inode, size);
157 
158 	if (!extent_inserted) {
159 		struct btrfs_key key;
160 		size_t datasize;
161 
162 		key.objectid = btrfs_ino(inode);
163 		key.offset = start;
164 		key.type = BTRFS_EXTENT_DATA_KEY;
165 
166 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
167 		path->leave_spinning = 1;
168 		ret = btrfs_insert_empty_item(trans, root, path, &key,
169 					      datasize);
170 		if (ret) {
171 			err = ret;
172 			goto fail;
173 		}
174 	}
175 	leaf = path->nodes[0];
176 	ei = btrfs_item_ptr(leaf, path->slots[0],
177 			    struct btrfs_file_extent_item);
178 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
179 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
180 	btrfs_set_file_extent_encryption(leaf, ei, 0);
181 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
182 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
183 	ptr = btrfs_file_extent_inline_start(ei);
184 
185 	if (compress_type != BTRFS_COMPRESS_NONE) {
186 		struct page *cpage;
187 		int i = 0;
188 		while (compressed_size > 0) {
189 			cpage = compressed_pages[i];
190 			cur_size = min_t(unsigned long, compressed_size,
191 				       PAGE_CACHE_SIZE);
192 
193 			kaddr = kmap_atomic(cpage);
194 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
195 			kunmap_atomic(kaddr);
196 
197 			i++;
198 			ptr += cur_size;
199 			compressed_size -= cur_size;
200 		}
201 		btrfs_set_file_extent_compression(leaf, ei,
202 						  compress_type);
203 	} else {
204 		page = find_get_page(inode->i_mapping,
205 				     start >> PAGE_CACHE_SHIFT);
206 		btrfs_set_file_extent_compression(leaf, ei, 0);
207 		kaddr = kmap_atomic(page);
208 		offset = start & (PAGE_CACHE_SIZE - 1);
209 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
210 		kunmap_atomic(kaddr);
211 		page_cache_release(page);
212 	}
213 	btrfs_mark_buffer_dirty(leaf);
214 	btrfs_release_path(path);
215 
216 	/*
217 	 * we're an inline extent, so nobody can
218 	 * extend the file past i_size without locking
219 	 * a page we already have locked.
220 	 *
221 	 * We must do any isize and inode updates
222 	 * before we unlock the pages.  Otherwise we
223 	 * could end up racing with unlink.
224 	 */
225 	BTRFS_I(inode)->disk_i_size = inode->i_size;
226 	ret = btrfs_update_inode(trans, root, inode);
227 
228 	return ret;
229 fail:
230 	return err;
231 }
232 
233 
234 /*
235  * conditionally insert an inline extent into the file.  This
236  * does the checks required to make sure the data is small enough
237  * to fit as an inline extent.
238  */
cow_file_range_inline(struct btrfs_root * root,struct inode * inode,u64 start,u64 end,size_t compressed_size,int compress_type,struct page ** compressed_pages)239 static noinline int cow_file_range_inline(struct btrfs_root *root,
240 					  struct inode *inode, u64 start,
241 					  u64 end, size_t compressed_size,
242 					  int compress_type,
243 					  struct page **compressed_pages)
244 {
245 	struct btrfs_trans_handle *trans;
246 	u64 isize = i_size_read(inode);
247 	u64 actual_end = min(end + 1, isize);
248 	u64 inline_len = actual_end - start;
249 	u64 aligned_end = ALIGN(end, root->sectorsize);
250 	u64 data_len = inline_len;
251 	int ret;
252 	struct btrfs_path *path;
253 	int extent_inserted = 0;
254 	u32 extent_item_size;
255 
256 	if (compressed_size)
257 		data_len = compressed_size;
258 
259 	if (start > 0 ||
260 	    actual_end > PAGE_CACHE_SIZE ||
261 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
262 	    (!compressed_size &&
263 	    (actual_end & (root->sectorsize - 1)) == 0) ||
264 	    end + 1 < isize ||
265 	    data_len > root->fs_info->max_inline) {
266 		return 1;
267 	}
268 
269 	path = btrfs_alloc_path();
270 	if (!path)
271 		return -ENOMEM;
272 
273 	trans = btrfs_join_transaction(root);
274 	if (IS_ERR(trans)) {
275 		btrfs_free_path(path);
276 		return PTR_ERR(trans);
277 	}
278 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
279 
280 	if (compressed_size && compressed_pages)
281 		extent_item_size = btrfs_file_extent_calc_inline_size(
282 		   compressed_size);
283 	else
284 		extent_item_size = btrfs_file_extent_calc_inline_size(
285 		    inline_len);
286 
287 	ret = __btrfs_drop_extents(trans, root, inode, path,
288 				   start, aligned_end, NULL,
289 				   1, 1, extent_item_size, &extent_inserted);
290 	if (ret) {
291 		btrfs_abort_transaction(trans, root, ret);
292 		goto out;
293 	}
294 
295 	if (isize > actual_end)
296 		inline_len = min_t(u64, isize, actual_end);
297 	ret = insert_inline_extent(trans, path, extent_inserted,
298 				   root, inode, start,
299 				   inline_len, compressed_size,
300 				   compress_type, compressed_pages);
301 	if (ret && ret != -ENOSPC) {
302 		btrfs_abort_transaction(trans, root, ret);
303 		goto out;
304 	} else if (ret == -ENOSPC) {
305 		ret = 1;
306 		goto out;
307 	}
308 
309 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
310 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
311 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
312 out:
313 	/*
314 	 * Don't forget to free the reserved space, as for inlined extent
315 	 * it won't count as data extent, free them directly here.
316 	 * And at reserve time, it's always aligned to page size, so
317 	 * just free one page here.
318 	 */
319 	btrfs_qgroup_free_data(inode, 0, PAGE_CACHE_SIZE);
320 	btrfs_free_path(path);
321 	btrfs_end_transaction(trans, root);
322 	return ret;
323 }
324 
325 struct async_extent {
326 	u64 start;
327 	u64 ram_size;
328 	u64 compressed_size;
329 	struct page **pages;
330 	unsigned long nr_pages;
331 	int compress_type;
332 	struct list_head list;
333 };
334 
335 struct async_cow {
336 	struct inode *inode;
337 	struct btrfs_root *root;
338 	struct page *locked_page;
339 	u64 start;
340 	u64 end;
341 	struct list_head extents;
342 	struct btrfs_work work;
343 };
344 
add_async_extent(struct async_cow * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)345 static noinline int add_async_extent(struct async_cow *cow,
346 				     u64 start, u64 ram_size,
347 				     u64 compressed_size,
348 				     struct page **pages,
349 				     unsigned long nr_pages,
350 				     int compress_type)
351 {
352 	struct async_extent *async_extent;
353 
354 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
355 	BUG_ON(!async_extent); /* -ENOMEM */
356 	async_extent->start = start;
357 	async_extent->ram_size = ram_size;
358 	async_extent->compressed_size = compressed_size;
359 	async_extent->pages = pages;
360 	async_extent->nr_pages = nr_pages;
361 	async_extent->compress_type = compress_type;
362 	list_add_tail(&async_extent->list, &cow->extents);
363 	return 0;
364 }
365 
inode_need_compress(struct inode * inode)366 static inline int inode_need_compress(struct inode *inode)
367 {
368 	struct btrfs_root *root = BTRFS_I(inode)->root;
369 
370 	/* force compress */
371 	if (btrfs_test_opt(root, FORCE_COMPRESS))
372 		return 1;
373 	/* bad compression ratios */
374 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
375 		return 0;
376 	if (btrfs_test_opt(root, COMPRESS) ||
377 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
378 	    BTRFS_I(inode)->force_compress)
379 		return 1;
380 	return 0;
381 }
382 
383 /*
384  * we create compressed extents in two phases.  The first
385  * phase compresses a range of pages that have already been
386  * locked (both pages and state bits are locked).
387  *
388  * This is done inside an ordered work queue, and the compression
389  * is spread across many cpus.  The actual IO submission is step
390  * two, and the ordered work queue takes care of making sure that
391  * happens in the same order things were put onto the queue by
392  * writepages and friends.
393  *
394  * If this code finds it can't get good compression, it puts an
395  * entry onto the work queue to write the uncompressed bytes.  This
396  * makes sure that both compressed inodes and uncompressed inodes
397  * are written in the same order that the flusher thread sent them
398  * down.
399  */
compress_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,struct async_cow * async_cow,int * num_added)400 static noinline void compress_file_range(struct inode *inode,
401 					struct page *locked_page,
402 					u64 start, u64 end,
403 					struct async_cow *async_cow,
404 					int *num_added)
405 {
406 	struct btrfs_root *root = BTRFS_I(inode)->root;
407 	u64 num_bytes;
408 	u64 blocksize = root->sectorsize;
409 	u64 actual_end;
410 	u64 isize = i_size_read(inode);
411 	int ret = 0;
412 	struct page **pages = NULL;
413 	unsigned long nr_pages;
414 	unsigned long nr_pages_ret = 0;
415 	unsigned long total_compressed = 0;
416 	unsigned long total_in = 0;
417 	unsigned long max_compressed = 128 * 1024;
418 	unsigned long max_uncompressed = 128 * 1024;
419 	int i;
420 	int will_compress;
421 	int compress_type = root->fs_info->compress_type;
422 	int redirty = 0;
423 
424 	/* if this is a small write inside eof, kick off a defrag */
425 	if ((end - start + 1) < 16 * 1024 &&
426 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
427 		btrfs_add_inode_defrag(NULL, inode);
428 
429 	actual_end = min_t(u64, isize, end + 1);
430 again:
431 	will_compress = 0;
432 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
433 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
434 
435 	/*
436 	 * we don't want to send crud past the end of i_size through
437 	 * compression, that's just a waste of CPU time.  So, if the
438 	 * end of the file is before the start of our current
439 	 * requested range of bytes, we bail out to the uncompressed
440 	 * cleanup code that can deal with all of this.
441 	 *
442 	 * It isn't really the fastest way to fix things, but this is a
443 	 * very uncommon corner.
444 	 */
445 	if (actual_end <= start)
446 		goto cleanup_and_bail_uncompressed;
447 
448 	total_compressed = actual_end - start;
449 
450 	/*
451 	 * skip compression for a small file range(<=blocksize) that
452 	 * isn't an inline extent, since it dosen't save disk space at all.
453 	 */
454 	if (total_compressed <= blocksize &&
455 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
456 		goto cleanup_and_bail_uncompressed;
457 
458 	/* we want to make sure that amount of ram required to uncompress
459 	 * an extent is reasonable, so we limit the total size in ram
460 	 * of a compressed extent to 128k.  This is a crucial number
461 	 * because it also controls how easily we can spread reads across
462 	 * cpus for decompression.
463 	 *
464 	 * We also want to make sure the amount of IO required to do
465 	 * a random read is reasonably small, so we limit the size of
466 	 * a compressed extent to 128k.
467 	 */
468 	total_compressed = min(total_compressed, max_uncompressed);
469 	num_bytes = ALIGN(end - start + 1, blocksize);
470 	num_bytes = max(blocksize,  num_bytes);
471 	total_in = 0;
472 	ret = 0;
473 
474 	/*
475 	 * we do compression for mount -o compress and when the
476 	 * inode has not been flagged as nocompress.  This flag can
477 	 * change at any time if we discover bad compression ratios.
478 	 */
479 	if (inode_need_compress(inode)) {
480 		WARN_ON(pages);
481 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
482 		if (!pages) {
483 			/* just bail out to the uncompressed code */
484 			nr_pages = 0;
485 			goto cont;
486 		}
487 
488 		if (BTRFS_I(inode)->force_compress)
489 			compress_type = BTRFS_I(inode)->force_compress;
490 
491 		/*
492 		 * we need to call clear_page_dirty_for_io on each
493 		 * page in the range.  Otherwise applications with the file
494 		 * mmap'd can wander in and change the page contents while
495 		 * we are compressing them.
496 		 *
497 		 * If the compression fails for any reason, we set the pages
498 		 * dirty again later on.
499 		 */
500 		extent_range_clear_dirty_for_io(inode, start, end);
501 		redirty = 1;
502 		ret = btrfs_compress_pages(compress_type,
503 					   inode->i_mapping, start,
504 					   total_compressed, pages,
505 					   nr_pages, &nr_pages_ret,
506 					   &total_in,
507 					   &total_compressed,
508 					   max_compressed);
509 
510 		if (!ret) {
511 			unsigned long offset = total_compressed &
512 				(PAGE_CACHE_SIZE - 1);
513 			struct page *page = pages[nr_pages_ret - 1];
514 			char *kaddr;
515 
516 			/* zero the tail end of the last page, we might be
517 			 * sending it down to disk
518 			 */
519 			if (offset) {
520 				kaddr = kmap_atomic(page);
521 				memset(kaddr + offset, 0,
522 				       PAGE_CACHE_SIZE - offset);
523 				kunmap_atomic(kaddr);
524 			}
525 			will_compress = 1;
526 		}
527 	}
528 cont:
529 	if (start == 0) {
530 		/* lets try to make an inline extent */
531 		if (ret || total_in < (actual_end - start)) {
532 			/* we didn't compress the entire range, try
533 			 * to make an uncompressed inline extent.
534 			 */
535 			ret = cow_file_range_inline(root, inode, start, end,
536 						    0, 0, NULL);
537 		} else {
538 			/* try making a compressed inline extent */
539 			ret = cow_file_range_inline(root, inode, start, end,
540 						    total_compressed,
541 						    compress_type, pages);
542 		}
543 		if (ret <= 0) {
544 			unsigned long clear_flags = EXTENT_DELALLOC |
545 				EXTENT_DEFRAG;
546 			unsigned long page_error_op;
547 
548 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
549 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
550 
551 			/*
552 			 * inline extent creation worked or returned error,
553 			 * we don't need to create any more async work items.
554 			 * Unlock and free up our temp pages.
555 			 */
556 			extent_clear_unlock_delalloc(inode, start, end, NULL,
557 						     clear_flags, PAGE_UNLOCK |
558 						     PAGE_CLEAR_DIRTY |
559 						     PAGE_SET_WRITEBACK |
560 						     page_error_op |
561 						     PAGE_END_WRITEBACK);
562 			goto free_pages_out;
563 		}
564 	}
565 
566 	if (will_compress) {
567 		/*
568 		 * we aren't doing an inline extent round the compressed size
569 		 * up to a block size boundary so the allocator does sane
570 		 * things
571 		 */
572 		total_compressed = ALIGN(total_compressed, blocksize);
573 
574 		/*
575 		 * one last check to make sure the compression is really a
576 		 * win, compare the page count read with the blocks on disk
577 		 */
578 		total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
579 		if (total_compressed >= total_in) {
580 			will_compress = 0;
581 		} else {
582 			num_bytes = total_in;
583 		}
584 	}
585 	if (!will_compress && pages) {
586 		/*
587 		 * the compression code ran but failed to make things smaller,
588 		 * free any pages it allocated and our page pointer array
589 		 */
590 		for (i = 0; i < nr_pages_ret; i++) {
591 			WARN_ON(pages[i]->mapping);
592 			page_cache_release(pages[i]);
593 		}
594 		kfree(pages);
595 		pages = NULL;
596 		total_compressed = 0;
597 		nr_pages_ret = 0;
598 
599 		/* flag the file so we don't compress in the future */
600 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
601 		    !(BTRFS_I(inode)->force_compress)) {
602 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
603 		}
604 	}
605 	if (will_compress) {
606 		*num_added += 1;
607 
608 		/* the async work queues will take care of doing actual
609 		 * allocation on disk for these compressed pages,
610 		 * and will submit them to the elevator.
611 		 */
612 		add_async_extent(async_cow, start, num_bytes,
613 				 total_compressed, pages, nr_pages_ret,
614 				 compress_type);
615 
616 		if (start + num_bytes < end) {
617 			start += num_bytes;
618 			pages = NULL;
619 			cond_resched();
620 			goto again;
621 		}
622 	} else {
623 cleanup_and_bail_uncompressed:
624 		/*
625 		 * No compression, but we still need to write the pages in
626 		 * the file we've been given so far.  redirty the locked
627 		 * page if it corresponds to our extent and set things up
628 		 * for the async work queue to run cow_file_range to do
629 		 * the normal delalloc dance
630 		 */
631 		if (page_offset(locked_page) >= start &&
632 		    page_offset(locked_page) <= end) {
633 			__set_page_dirty_nobuffers(locked_page);
634 			/* unlocked later on in the async handlers */
635 		}
636 		if (redirty)
637 			extent_range_redirty_for_io(inode, start, end);
638 		add_async_extent(async_cow, start, end - start + 1,
639 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
640 		*num_added += 1;
641 	}
642 
643 	return;
644 
645 free_pages_out:
646 	for (i = 0; i < nr_pages_ret; i++) {
647 		WARN_ON(pages[i]->mapping);
648 		page_cache_release(pages[i]);
649 	}
650 	kfree(pages);
651 }
652 
free_async_extent_pages(struct async_extent * async_extent)653 static void free_async_extent_pages(struct async_extent *async_extent)
654 {
655 	int i;
656 
657 	if (!async_extent->pages)
658 		return;
659 
660 	for (i = 0; i < async_extent->nr_pages; i++) {
661 		WARN_ON(async_extent->pages[i]->mapping);
662 		page_cache_release(async_extent->pages[i]);
663 	}
664 	kfree(async_extent->pages);
665 	async_extent->nr_pages = 0;
666 	async_extent->pages = NULL;
667 }
668 
669 /*
670  * phase two of compressed writeback.  This is the ordered portion
671  * of the code, which only gets called in the order the work was
672  * queued.  We walk all the async extents created by compress_file_range
673  * and send them down to the disk.
674  */
submit_compressed_extents(struct inode * inode,struct async_cow * async_cow)675 static noinline void submit_compressed_extents(struct inode *inode,
676 					      struct async_cow *async_cow)
677 {
678 	struct async_extent *async_extent;
679 	u64 alloc_hint = 0;
680 	struct btrfs_key ins;
681 	struct extent_map *em;
682 	struct btrfs_root *root = BTRFS_I(inode)->root;
683 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
684 	struct extent_io_tree *io_tree;
685 	int ret = 0;
686 
687 again:
688 	while (!list_empty(&async_cow->extents)) {
689 		async_extent = list_entry(async_cow->extents.next,
690 					  struct async_extent, list);
691 		list_del(&async_extent->list);
692 
693 		io_tree = &BTRFS_I(inode)->io_tree;
694 
695 retry:
696 		/* did the compression code fall back to uncompressed IO? */
697 		if (!async_extent->pages) {
698 			int page_started = 0;
699 			unsigned long nr_written = 0;
700 
701 			lock_extent(io_tree, async_extent->start,
702 					 async_extent->start +
703 					 async_extent->ram_size - 1);
704 
705 			/* allocate blocks */
706 			ret = cow_file_range(inode, async_cow->locked_page,
707 					     async_extent->start,
708 					     async_extent->start +
709 					     async_extent->ram_size - 1,
710 					     &page_started, &nr_written, 0);
711 
712 			/* JDM XXX */
713 
714 			/*
715 			 * if page_started, cow_file_range inserted an
716 			 * inline extent and took care of all the unlocking
717 			 * and IO for us.  Otherwise, we need to submit
718 			 * all those pages down to the drive.
719 			 */
720 			if (!page_started && !ret)
721 				extent_write_locked_range(io_tree,
722 						  inode, async_extent->start,
723 						  async_extent->start +
724 						  async_extent->ram_size - 1,
725 						  btrfs_get_extent,
726 						  WB_SYNC_ALL);
727 			else if (ret)
728 				unlock_page(async_cow->locked_page);
729 			kfree(async_extent);
730 			cond_resched();
731 			continue;
732 		}
733 
734 		lock_extent(io_tree, async_extent->start,
735 			    async_extent->start + async_extent->ram_size - 1);
736 
737 		ret = btrfs_reserve_extent(root,
738 					   async_extent->compressed_size,
739 					   async_extent->compressed_size,
740 					   0, alloc_hint, &ins, 1, 1);
741 		if (ret) {
742 			free_async_extent_pages(async_extent);
743 
744 			if (ret == -ENOSPC) {
745 				unlock_extent(io_tree, async_extent->start,
746 					      async_extent->start +
747 					      async_extent->ram_size - 1);
748 
749 				/*
750 				 * we need to redirty the pages if we decide to
751 				 * fallback to uncompressed IO, otherwise we
752 				 * will not submit these pages down to lower
753 				 * layers.
754 				 */
755 				extent_range_redirty_for_io(inode,
756 						async_extent->start,
757 						async_extent->start +
758 						async_extent->ram_size - 1);
759 
760 				goto retry;
761 			}
762 			goto out_free;
763 		}
764 		/*
765 		 * here we're doing allocation and writeback of the
766 		 * compressed pages
767 		 */
768 		btrfs_drop_extent_cache(inode, async_extent->start,
769 					async_extent->start +
770 					async_extent->ram_size - 1, 0);
771 
772 		em = alloc_extent_map();
773 		if (!em) {
774 			ret = -ENOMEM;
775 			goto out_free_reserve;
776 		}
777 		em->start = async_extent->start;
778 		em->len = async_extent->ram_size;
779 		em->orig_start = em->start;
780 		em->mod_start = em->start;
781 		em->mod_len = em->len;
782 
783 		em->block_start = ins.objectid;
784 		em->block_len = ins.offset;
785 		em->orig_block_len = ins.offset;
786 		em->ram_bytes = async_extent->ram_size;
787 		em->bdev = root->fs_info->fs_devices->latest_bdev;
788 		em->compress_type = async_extent->compress_type;
789 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
790 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
791 		em->generation = -1;
792 
793 		while (1) {
794 			write_lock(&em_tree->lock);
795 			ret = add_extent_mapping(em_tree, em, 1);
796 			write_unlock(&em_tree->lock);
797 			if (ret != -EEXIST) {
798 				free_extent_map(em);
799 				break;
800 			}
801 			btrfs_drop_extent_cache(inode, async_extent->start,
802 						async_extent->start +
803 						async_extent->ram_size - 1, 0);
804 		}
805 
806 		if (ret)
807 			goto out_free_reserve;
808 
809 		ret = btrfs_add_ordered_extent_compress(inode,
810 						async_extent->start,
811 						ins.objectid,
812 						async_extent->ram_size,
813 						ins.offset,
814 						BTRFS_ORDERED_COMPRESSED,
815 						async_extent->compress_type);
816 		if (ret) {
817 			btrfs_drop_extent_cache(inode, async_extent->start,
818 						async_extent->start +
819 						async_extent->ram_size - 1, 0);
820 			goto out_free_reserve;
821 		}
822 
823 		/*
824 		 * clear dirty, set writeback and unlock the pages.
825 		 */
826 		extent_clear_unlock_delalloc(inode, async_extent->start,
827 				async_extent->start +
828 				async_extent->ram_size - 1,
829 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
830 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
831 				PAGE_SET_WRITEBACK);
832 		ret = btrfs_submit_compressed_write(inode,
833 				    async_extent->start,
834 				    async_extent->ram_size,
835 				    ins.objectid,
836 				    ins.offset, async_extent->pages,
837 				    async_extent->nr_pages);
838 		if (ret) {
839 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
840 			struct page *p = async_extent->pages[0];
841 			const u64 start = async_extent->start;
842 			const u64 end = start + async_extent->ram_size - 1;
843 
844 			p->mapping = inode->i_mapping;
845 			tree->ops->writepage_end_io_hook(p, start, end,
846 							 NULL, 0);
847 			p->mapping = NULL;
848 			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
849 						     PAGE_END_WRITEBACK |
850 						     PAGE_SET_ERROR);
851 			free_async_extent_pages(async_extent);
852 		}
853 		alloc_hint = ins.objectid + ins.offset;
854 		kfree(async_extent);
855 		cond_resched();
856 	}
857 	return;
858 out_free_reserve:
859 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
860 out_free:
861 	extent_clear_unlock_delalloc(inode, async_extent->start,
862 				     async_extent->start +
863 				     async_extent->ram_size - 1,
864 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
865 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
866 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
867 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
868 				     PAGE_SET_ERROR);
869 	free_async_extent_pages(async_extent);
870 	kfree(async_extent);
871 	goto again;
872 }
873 
get_extent_allocation_hint(struct inode * inode,u64 start,u64 num_bytes)874 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
875 				      u64 num_bytes)
876 {
877 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
878 	struct extent_map *em;
879 	u64 alloc_hint = 0;
880 
881 	read_lock(&em_tree->lock);
882 	em = search_extent_mapping(em_tree, start, num_bytes);
883 	if (em) {
884 		/*
885 		 * if block start isn't an actual block number then find the
886 		 * first block in this inode and use that as a hint.  If that
887 		 * block is also bogus then just don't worry about it.
888 		 */
889 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
890 			free_extent_map(em);
891 			em = search_extent_mapping(em_tree, 0, 0);
892 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
893 				alloc_hint = em->block_start;
894 			if (em)
895 				free_extent_map(em);
896 		} else {
897 			alloc_hint = em->block_start;
898 			free_extent_map(em);
899 		}
900 	}
901 	read_unlock(&em_tree->lock);
902 
903 	return alloc_hint;
904 }
905 
906 /*
907  * when extent_io.c finds a delayed allocation range in the file,
908  * the call backs end up in this code.  The basic idea is to
909  * allocate extents on disk for the range, and create ordered data structs
910  * in ram to track those extents.
911  *
912  * locked_page is the page that writepage had locked already.  We use
913  * it to make sure we don't do extra locks or unlocks.
914  *
915  * *page_started is set to one if we unlock locked_page and do everything
916  * required to start IO on it.  It may be clean and already done with
917  * IO when we return.
918  */
cow_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,int unlock)919 static noinline int cow_file_range(struct inode *inode,
920 				   struct page *locked_page,
921 				   u64 start, u64 end, int *page_started,
922 				   unsigned long *nr_written,
923 				   int unlock)
924 {
925 	struct btrfs_root *root = BTRFS_I(inode)->root;
926 	u64 alloc_hint = 0;
927 	u64 num_bytes;
928 	unsigned long ram_size;
929 	u64 min_alloc_size;
930 	u64 cur_alloc_size;
931 	u64 blocksize = root->sectorsize;
932 	struct btrfs_key ins;
933 	struct extent_map *em;
934 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
935 	int ret = 0;
936 
937 	if (btrfs_is_free_space_inode(inode)) {
938 		WARN_ON_ONCE(1);
939 		ret = -EINVAL;
940 		goto out_unlock;
941 	}
942 
943 	num_bytes = ALIGN(end - start + 1, blocksize);
944 	num_bytes = max(blocksize,  num_bytes);
945 
946 	/* if this is a small write inside eof, kick off defrag */
947 	if (num_bytes < 64 * 1024 &&
948 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
949 		btrfs_add_inode_defrag(NULL, inode);
950 
951 	if (start == 0) {
952 		/* lets try to make an inline extent */
953 		ret = cow_file_range_inline(root, inode, start, end, 0, 0,
954 					    NULL);
955 		if (ret == 0) {
956 			extent_clear_unlock_delalloc(inode, start, end, NULL,
957 				     EXTENT_LOCKED | EXTENT_DELALLOC |
958 				     EXTENT_DEFRAG, PAGE_UNLOCK |
959 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
960 				     PAGE_END_WRITEBACK);
961 
962 			*nr_written = *nr_written +
963 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
964 			*page_started = 1;
965 			goto out;
966 		} else if (ret < 0) {
967 			goto out_unlock;
968 		}
969 	}
970 
971 	BUG_ON(num_bytes > btrfs_super_total_bytes(root->fs_info->super_copy));
972 
973 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
974 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
975 
976 	/*
977 	 * Relocation relies on the relocated extents to have exactly the same
978 	 * size as the original extents. Normally writeback for relocation data
979 	 * extents follows a NOCOW path because relocation preallocates the
980 	 * extents. However, due to an operation such as scrub turning a block
981 	 * group to RO mode, it may fallback to COW mode, so we must make sure
982 	 * an extent allocated during COW has exactly the requested size and can
983 	 * not be split into smaller extents, otherwise relocation breaks and
984 	 * fails during the stage where it updates the bytenr of file extent
985 	 * items.
986 	 */
987 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
988 		min_alloc_size = num_bytes;
989 	else
990 		min_alloc_size = root->sectorsize;
991 
992 	while (num_bytes > 0) {
993 		unsigned long op;
994 
995 		cur_alloc_size = num_bytes;
996 		ret = btrfs_reserve_extent(root, cur_alloc_size,
997 					   min_alloc_size, 0, alloc_hint,
998 					   &ins, 1, 1);
999 		if (ret < 0)
1000 			goto out_unlock;
1001 
1002 		em = alloc_extent_map();
1003 		if (!em) {
1004 			ret = -ENOMEM;
1005 			goto out_reserve;
1006 		}
1007 		em->start = start;
1008 		em->orig_start = em->start;
1009 		ram_size = ins.offset;
1010 		em->len = ins.offset;
1011 		em->mod_start = em->start;
1012 		em->mod_len = em->len;
1013 
1014 		em->block_start = ins.objectid;
1015 		em->block_len = ins.offset;
1016 		em->orig_block_len = ins.offset;
1017 		em->ram_bytes = ram_size;
1018 		em->bdev = root->fs_info->fs_devices->latest_bdev;
1019 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
1020 		em->generation = -1;
1021 
1022 		while (1) {
1023 			write_lock(&em_tree->lock);
1024 			ret = add_extent_mapping(em_tree, em, 1);
1025 			write_unlock(&em_tree->lock);
1026 			if (ret != -EEXIST) {
1027 				free_extent_map(em);
1028 				break;
1029 			}
1030 			btrfs_drop_extent_cache(inode, start,
1031 						start + ram_size - 1, 0);
1032 		}
1033 		if (ret)
1034 			goto out_reserve;
1035 
1036 		cur_alloc_size = ins.offset;
1037 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1038 					       ram_size, cur_alloc_size, 0);
1039 		if (ret)
1040 			goto out_drop_extent_cache;
1041 
1042 		if (root->root_key.objectid ==
1043 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1044 			ret = btrfs_reloc_clone_csums(inode, start,
1045 						      cur_alloc_size);
1046 			if (ret)
1047 				goto out_drop_extent_cache;
1048 		}
1049 
1050 		if (num_bytes < cur_alloc_size)
1051 			break;
1052 
1053 		/* we're not doing compressed IO, don't unlock the first
1054 		 * page (which the caller expects to stay locked), don't
1055 		 * clear any dirty bits and don't set any writeback bits
1056 		 *
1057 		 * Do set the Private2 bit so we know this page was properly
1058 		 * setup for writepage
1059 		 */
1060 		op = unlock ? PAGE_UNLOCK : 0;
1061 		op |= PAGE_SET_PRIVATE2;
1062 
1063 		extent_clear_unlock_delalloc(inode, start,
1064 					     start + ram_size - 1, locked_page,
1065 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1066 					     op);
1067 		if (num_bytes < cur_alloc_size)
1068 			num_bytes = 0;
1069 		else
1070 			num_bytes -= cur_alloc_size;
1071 		alloc_hint = ins.objectid + ins.offset;
1072 		start += cur_alloc_size;
1073 	}
1074 out:
1075 	return ret;
1076 
1077 out_drop_extent_cache:
1078 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1079 out_reserve:
1080 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1081 out_unlock:
1082 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1083 				     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1084 				     EXTENT_DELALLOC | EXTENT_DEFRAG,
1085 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1086 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1087 	goto out;
1088 }
1089 
1090 /*
1091  * work queue call back to started compression on a file and pages
1092  */
async_cow_start(struct btrfs_work * work)1093 static noinline void async_cow_start(struct btrfs_work *work)
1094 {
1095 	struct async_cow *async_cow;
1096 	int num_added = 0;
1097 	async_cow = container_of(work, struct async_cow, work);
1098 
1099 	compress_file_range(async_cow->inode, async_cow->locked_page,
1100 			    async_cow->start, async_cow->end, async_cow,
1101 			    &num_added);
1102 	if (num_added == 0) {
1103 		btrfs_add_delayed_iput(async_cow->inode);
1104 		async_cow->inode = NULL;
1105 	}
1106 }
1107 
1108 /*
1109  * work queue call back to submit previously compressed pages
1110  */
async_cow_submit(struct btrfs_work * work)1111 static noinline void async_cow_submit(struct btrfs_work *work)
1112 {
1113 	struct async_cow *async_cow;
1114 	struct btrfs_root *root;
1115 	unsigned long nr_pages;
1116 
1117 	async_cow = container_of(work, struct async_cow, work);
1118 
1119 	root = async_cow->root;
1120 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1121 		PAGE_CACHE_SHIFT;
1122 
1123 	/*
1124 	 * atomic_sub_return implies a barrier for waitqueue_active
1125 	 */
1126 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1127 	    5 * 1024 * 1024 &&
1128 	    waitqueue_active(&root->fs_info->async_submit_wait))
1129 		wake_up(&root->fs_info->async_submit_wait);
1130 
1131 	if (async_cow->inode)
1132 		submit_compressed_extents(async_cow->inode, async_cow);
1133 }
1134 
async_cow_free(struct btrfs_work * work)1135 static noinline void async_cow_free(struct btrfs_work *work)
1136 {
1137 	struct async_cow *async_cow;
1138 	async_cow = container_of(work, struct async_cow, work);
1139 	if (async_cow->inode)
1140 		btrfs_add_delayed_iput(async_cow->inode);
1141 	kfree(async_cow);
1142 }
1143 
cow_file_range_async(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1144 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1145 				u64 start, u64 end, int *page_started,
1146 				unsigned long *nr_written)
1147 {
1148 	struct async_cow *async_cow;
1149 	struct btrfs_root *root = BTRFS_I(inode)->root;
1150 	unsigned long nr_pages;
1151 	u64 cur_end;
1152 	int limit = 10 * 1024 * 1024;
1153 
1154 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1155 			 1, 0, NULL, GFP_NOFS);
1156 	while (start < end) {
1157 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1158 		BUG_ON(!async_cow); /* -ENOMEM */
1159 		async_cow->inode = igrab(inode);
1160 		async_cow->root = root;
1161 		async_cow->locked_page = locked_page;
1162 		async_cow->start = start;
1163 
1164 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1165 		    !btrfs_test_opt(root, FORCE_COMPRESS))
1166 			cur_end = end;
1167 		else
1168 			cur_end = min(end, start + 512 * 1024 - 1);
1169 
1170 		async_cow->end = cur_end;
1171 		INIT_LIST_HEAD(&async_cow->extents);
1172 
1173 		btrfs_init_work(&async_cow->work,
1174 				btrfs_delalloc_helper,
1175 				async_cow_start, async_cow_submit,
1176 				async_cow_free);
1177 
1178 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1179 			PAGE_CACHE_SHIFT;
1180 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1181 
1182 		btrfs_queue_work(root->fs_info->delalloc_workers,
1183 				 &async_cow->work);
1184 
1185 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1186 			wait_event(root->fs_info->async_submit_wait,
1187 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1188 			    limit));
1189 		}
1190 
1191 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1192 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1193 			wait_event(root->fs_info->async_submit_wait,
1194 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1195 			   0));
1196 		}
1197 
1198 		*nr_written += nr_pages;
1199 		start = cur_end + 1;
1200 	}
1201 	*page_started = 1;
1202 	return 0;
1203 }
1204 
csum_exist_in_range(struct btrfs_root * root,u64 bytenr,u64 num_bytes)1205 static noinline int csum_exist_in_range(struct btrfs_root *root,
1206 					u64 bytenr, u64 num_bytes)
1207 {
1208 	int ret;
1209 	struct btrfs_ordered_sum *sums;
1210 	LIST_HEAD(list);
1211 
1212 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1213 				       bytenr + num_bytes - 1, &list, 0);
1214 	if (ret == 0 && list_empty(&list))
1215 		return 0;
1216 
1217 	while (!list_empty(&list)) {
1218 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1219 		list_del(&sums->list);
1220 		kfree(sums);
1221 	}
1222 	if (ret < 0)
1223 		return ret;
1224 	return 1;
1225 }
1226 
1227 /*
1228  * when nowcow writeback call back.  This checks for snapshots or COW copies
1229  * of the extents that exist in the file, and COWs the file as required.
1230  *
1231  * If no cow copies or snapshots exist, we write directly to the existing
1232  * blocks on disk
1233  */
run_delalloc_nocow(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,int force,unsigned long * nr_written)1234 static noinline int run_delalloc_nocow(struct inode *inode,
1235 				       struct page *locked_page,
1236 			      u64 start, u64 end, int *page_started, int force,
1237 			      unsigned long *nr_written)
1238 {
1239 	struct btrfs_root *root = BTRFS_I(inode)->root;
1240 	struct btrfs_trans_handle *trans;
1241 	struct extent_buffer *leaf;
1242 	struct btrfs_path *path;
1243 	struct btrfs_file_extent_item *fi;
1244 	struct btrfs_key found_key;
1245 	u64 cow_start;
1246 	u64 cur_offset;
1247 	u64 extent_end;
1248 	u64 extent_offset;
1249 	u64 disk_bytenr;
1250 	u64 num_bytes;
1251 	u64 disk_num_bytes;
1252 	u64 ram_bytes;
1253 	int extent_type;
1254 	int ret, err;
1255 	int type;
1256 	int nocow;
1257 	int check_prev = 1;
1258 	bool nolock;
1259 	u64 ino = btrfs_ino(inode);
1260 
1261 	path = btrfs_alloc_path();
1262 	if (!path) {
1263 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1264 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1265 					     EXTENT_DO_ACCOUNTING |
1266 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1267 					     PAGE_CLEAR_DIRTY |
1268 					     PAGE_SET_WRITEBACK |
1269 					     PAGE_END_WRITEBACK);
1270 		return -ENOMEM;
1271 	}
1272 
1273 	nolock = btrfs_is_free_space_inode(inode);
1274 
1275 	if (nolock)
1276 		trans = btrfs_join_transaction_nolock(root);
1277 	else
1278 		trans = btrfs_join_transaction(root);
1279 
1280 	if (IS_ERR(trans)) {
1281 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1282 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1283 					     EXTENT_DO_ACCOUNTING |
1284 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1285 					     PAGE_CLEAR_DIRTY |
1286 					     PAGE_SET_WRITEBACK |
1287 					     PAGE_END_WRITEBACK);
1288 		btrfs_free_path(path);
1289 		return PTR_ERR(trans);
1290 	}
1291 
1292 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1293 
1294 	cow_start = (u64)-1;
1295 	cur_offset = start;
1296 	while (1) {
1297 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1298 					       cur_offset, 0);
1299 		if (ret < 0)
1300 			goto error;
1301 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1302 			leaf = path->nodes[0];
1303 			btrfs_item_key_to_cpu(leaf, &found_key,
1304 					      path->slots[0] - 1);
1305 			if (found_key.objectid == ino &&
1306 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1307 				path->slots[0]--;
1308 		}
1309 		check_prev = 0;
1310 next_slot:
1311 		leaf = path->nodes[0];
1312 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1313 			ret = btrfs_next_leaf(root, path);
1314 			if (ret < 0) {
1315 				if (cow_start != (u64)-1)
1316 					cur_offset = cow_start;
1317 				goto error;
1318 			}
1319 			if (ret > 0)
1320 				break;
1321 			leaf = path->nodes[0];
1322 		}
1323 
1324 		nocow = 0;
1325 		disk_bytenr = 0;
1326 		num_bytes = 0;
1327 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1328 
1329 		if (found_key.objectid > ino)
1330 			break;
1331 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1332 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1333 			path->slots[0]++;
1334 			goto next_slot;
1335 		}
1336 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1337 		    found_key.offset > end)
1338 			break;
1339 
1340 		if (found_key.offset > cur_offset) {
1341 			extent_end = found_key.offset;
1342 			extent_type = 0;
1343 			goto out_check;
1344 		}
1345 
1346 		fi = btrfs_item_ptr(leaf, path->slots[0],
1347 				    struct btrfs_file_extent_item);
1348 		extent_type = btrfs_file_extent_type(leaf, fi);
1349 
1350 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1351 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1352 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1353 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1354 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1355 			extent_end = found_key.offset +
1356 				btrfs_file_extent_num_bytes(leaf, fi);
1357 			disk_num_bytes =
1358 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1359 			if (extent_end <= start) {
1360 				path->slots[0]++;
1361 				goto next_slot;
1362 			}
1363 			if (disk_bytenr == 0)
1364 				goto out_check;
1365 			if (btrfs_file_extent_compression(leaf, fi) ||
1366 			    btrfs_file_extent_encryption(leaf, fi) ||
1367 			    btrfs_file_extent_other_encoding(leaf, fi))
1368 				goto out_check;
1369 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1370 				goto out_check;
1371 			if (btrfs_extent_readonly(root, disk_bytenr))
1372 				goto out_check;
1373 			ret = btrfs_cross_ref_exist(trans, root, ino,
1374 						  found_key.offset -
1375 						  extent_offset, disk_bytenr);
1376 			if (ret) {
1377 				/*
1378 				 * ret could be -EIO if the above fails to read
1379 				 * metadata.
1380 				 */
1381 				if (ret < 0) {
1382 					if (cow_start != (u64)-1)
1383 						cur_offset = cow_start;
1384 					goto error;
1385 				}
1386 
1387 				WARN_ON_ONCE(nolock);
1388 				goto out_check;
1389 			}
1390 			disk_bytenr += extent_offset;
1391 			disk_bytenr += cur_offset - found_key.offset;
1392 			num_bytes = min(end + 1, extent_end) - cur_offset;
1393 			/*
1394 			 * if there are pending snapshots for this root,
1395 			 * we fall into common COW way.
1396 			 */
1397 			if (!nolock) {
1398 				err = btrfs_start_write_no_snapshoting(root);
1399 				if (!err)
1400 					goto out_check;
1401 			}
1402 			/*
1403 			 * force cow if csum exists in the range.
1404 			 * this ensure that csum for a given extent are
1405 			 * either valid or do not exist.
1406 			 */
1407 			ret = csum_exist_in_range(root, disk_bytenr, num_bytes);
1408 			if (ret) {
1409 				/*
1410 				 * ret could be -EIO if the above fails to read
1411 				 * metadata.
1412 				 */
1413 				if (ret < 0) {
1414 					if (cow_start != (u64)-1)
1415 						cur_offset = cow_start;
1416 					goto error;
1417 				}
1418 				WARN_ON_ONCE(nolock);
1419 				goto out_check;
1420 			}
1421 			nocow = 1;
1422 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1423 			extent_end = found_key.offset +
1424 				btrfs_file_extent_inline_len(leaf,
1425 						     path->slots[0], fi);
1426 			extent_end = ALIGN(extent_end, root->sectorsize);
1427 		} else {
1428 			BUG_ON(1);
1429 		}
1430 out_check:
1431 		if (extent_end <= start) {
1432 			path->slots[0]++;
1433 			if (!nolock && nocow)
1434 				btrfs_end_write_no_snapshoting(root);
1435 			goto next_slot;
1436 		}
1437 		if (!nocow) {
1438 			if (cow_start == (u64)-1)
1439 				cow_start = cur_offset;
1440 			cur_offset = extent_end;
1441 			if (cur_offset > end)
1442 				break;
1443 			path->slots[0]++;
1444 			goto next_slot;
1445 		}
1446 
1447 		btrfs_release_path(path);
1448 		if (cow_start != (u64)-1) {
1449 			ret = cow_file_range(inode, locked_page,
1450 					     cow_start, found_key.offset - 1,
1451 					     page_started, nr_written, 1);
1452 			if (ret) {
1453 				if (!nolock && nocow)
1454 					btrfs_end_write_no_snapshoting(root);
1455 				goto error;
1456 			}
1457 			cow_start = (u64)-1;
1458 		}
1459 
1460 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1461 			struct extent_map *em;
1462 			struct extent_map_tree *em_tree;
1463 			em_tree = &BTRFS_I(inode)->extent_tree;
1464 			em = alloc_extent_map();
1465 			BUG_ON(!em); /* -ENOMEM */
1466 			em->start = cur_offset;
1467 			em->orig_start = found_key.offset - extent_offset;
1468 			em->len = num_bytes;
1469 			em->block_len = num_bytes;
1470 			em->block_start = disk_bytenr;
1471 			em->orig_block_len = disk_num_bytes;
1472 			em->ram_bytes = ram_bytes;
1473 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1474 			em->mod_start = em->start;
1475 			em->mod_len = em->len;
1476 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1477 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1478 			em->generation = -1;
1479 			while (1) {
1480 				write_lock(&em_tree->lock);
1481 				ret = add_extent_mapping(em_tree, em, 1);
1482 				write_unlock(&em_tree->lock);
1483 				if (ret != -EEXIST) {
1484 					free_extent_map(em);
1485 					break;
1486 				}
1487 				btrfs_drop_extent_cache(inode, em->start,
1488 						em->start + em->len - 1, 0);
1489 			}
1490 			type = BTRFS_ORDERED_PREALLOC;
1491 		} else {
1492 			type = BTRFS_ORDERED_NOCOW;
1493 		}
1494 
1495 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1496 					       num_bytes, num_bytes, type);
1497 		BUG_ON(ret); /* -ENOMEM */
1498 
1499 		if (root->root_key.objectid ==
1500 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1501 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1502 						      num_bytes);
1503 			if (ret) {
1504 				if (!nolock && nocow)
1505 					btrfs_end_write_no_snapshoting(root);
1506 				goto error;
1507 			}
1508 		}
1509 
1510 		extent_clear_unlock_delalloc(inode, cur_offset,
1511 					     cur_offset + num_bytes - 1,
1512 					     locked_page, EXTENT_LOCKED |
1513 					     EXTENT_DELALLOC, PAGE_UNLOCK |
1514 					     PAGE_SET_PRIVATE2);
1515 		if (!nolock && nocow)
1516 			btrfs_end_write_no_snapshoting(root);
1517 		cur_offset = extent_end;
1518 		if (cur_offset > end)
1519 			break;
1520 	}
1521 	btrfs_release_path(path);
1522 
1523 	if (cur_offset <= end && cow_start == (u64)-1) {
1524 		cow_start = cur_offset;
1525 		cur_offset = end;
1526 	}
1527 
1528 	if (cow_start != (u64)-1) {
1529 		ret = cow_file_range(inode, locked_page, cow_start, end,
1530 				     page_started, nr_written, 1);
1531 		if (ret)
1532 			goto error;
1533 	}
1534 
1535 error:
1536 	err = btrfs_end_transaction(trans, root);
1537 	if (!ret)
1538 		ret = err;
1539 
1540 	if (ret && cur_offset < end)
1541 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1542 					     locked_page, EXTENT_LOCKED |
1543 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1544 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1545 					     PAGE_CLEAR_DIRTY |
1546 					     PAGE_SET_WRITEBACK |
1547 					     PAGE_END_WRITEBACK);
1548 	btrfs_free_path(path);
1549 	return ret;
1550 }
1551 
need_force_cow(struct inode * inode,u64 start,u64 end)1552 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1553 {
1554 
1555 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1556 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1557 		return 0;
1558 
1559 	/*
1560 	 * @defrag_bytes is a hint value, no spinlock held here,
1561 	 * if is not zero, it means the file is defragging.
1562 	 * Force cow if given extent needs to be defragged.
1563 	 */
1564 	if (BTRFS_I(inode)->defrag_bytes &&
1565 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1566 			   EXTENT_DEFRAG, 0, NULL))
1567 		return 1;
1568 
1569 	return 0;
1570 }
1571 
1572 /*
1573  * extent_io.c call back to do delayed allocation processing
1574  */
run_delalloc_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1575 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1576 			      u64 start, u64 end, int *page_started,
1577 			      unsigned long *nr_written)
1578 {
1579 	int ret;
1580 	int force_cow = need_force_cow(inode, start, end);
1581 
1582 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1583 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1584 					 page_started, 1, nr_written);
1585 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1586 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1587 					 page_started, 0, nr_written);
1588 	} else if (!inode_need_compress(inode)) {
1589 		ret = cow_file_range(inode, locked_page, start, end,
1590 				      page_started, nr_written, 1);
1591 	} else {
1592 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1593 			&BTRFS_I(inode)->runtime_flags);
1594 		ret = cow_file_range_async(inode, locked_page, start, end,
1595 					   page_started, nr_written);
1596 	}
1597 	return ret;
1598 }
1599 
btrfs_split_extent_hook(struct inode * inode,struct extent_state * orig,u64 split)1600 static void btrfs_split_extent_hook(struct inode *inode,
1601 				    struct extent_state *orig, u64 split)
1602 {
1603 	u64 size;
1604 
1605 	/* not delalloc, ignore it */
1606 	if (!(orig->state & EXTENT_DELALLOC))
1607 		return;
1608 
1609 	size = orig->end - orig->start + 1;
1610 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1611 		u64 num_extents;
1612 		u64 new_size;
1613 
1614 		/*
1615 		 * See the explanation in btrfs_merge_extent_hook, the same
1616 		 * applies here, just in reverse.
1617 		 */
1618 		new_size = orig->end - split + 1;
1619 		num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1620 					BTRFS_MAX_EXTENT_SIZE);
1621 		new_size = split - orig->start;
1622 		num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1623 					BTRFS_MAX_EXTENT_SIZE);
1624 		if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1625 			      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1626 			return;
1627 	}
1628 
1629 	spin_lock(&BTRFS_I(inode)->lock);
1630 	BTRFS_I(inode)->outstanding_extents++;
1631 	spin_unlock(&BTRFS_I(inode)->lock);
1632 }
1633 
1634 /*
1635  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1636  * extents so we can keep track of new extents that are just merged onto old
1637  * extents, such as when we are doing sequential writes, so we can properly
1638  * account for the metadata space we'll need.
1639  */
btrfs_merge_extent_hook(struct inode * inode,struct extent_state * new,struct extent_state * other)1640 static void btrfs_merge_extent_hook(struct inode *inode,
1641 				    struct extent_state *new,
1642 				    struct extent_state *other)
1643 {
1644 	u64 new_size, old_size;
1645 	u64 num_extents;
1646 
1647 	/* not delalloc, ignore it */
1648 	if (!(other->state & EXTENT_DELALLOC))
1649 		return;
1650 
1651 	if (new->start > other->start)
1652 		new_size = new->end - other->start + 1;
1653 	else
1654 		new_size = other->end - new->start + 1;
1655 
1656 	/* we're not bigger than the max, unreserve the space and go */
1657 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1658 		spin_lock(&BTRFS_I(inode)->lock);
1659 		BTRFS_I(inode)->outstanding_extents--;
1660 		spin_unlock(&BTRFS_I(inode)->lock);
1661 		return;
1662 	}
1663 
1664 	/*
1665 	 * We have to add up either side to figure out how many extents were
1666 	 * accounted for before we merged into one big extent.  If the number of
1667 	 * extents we accounted for is <= the amount we need for the new range
1668 	 * then we can return, otherwise drop.  Think of it like this
1669 	 *
1670 	 * [ 4k][MAX_SIZE]
1671 	 *
1672 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1673 	 * need 2 outstanding extents, on one side we have 1 and the other side
1674 	 * we have 1 so they are == and we can return.  But in this case
1675 	 *
1676 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1677 	 *
1678 	 * Each range on their own accounts for 2 extents, but merged together
1679 	 * they are only 3 extents worth of accounting, so we need to drop in
1680 	 * this case.
1681 	 */
1682 	old_size = other->end - other->start + 1;
1683 	num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1684 				BTRFS_MAX_EXTENT_SIZE);
1685 	old_size = new->end - new->start + 1;
1686 	num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1687 				 BTRFS_MAX_EXTENT_SIZE);
1688 
1689 	if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1690 		      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1691 		return;
1692 
1693 	spin_lock(&BTRFS_I(inode)->lock);
1694 	BTRFS_I(inode)->outstanding_extents--;
1695 	spin_unlock(&BTRFS_I(inode)->lock);
1696 }
1697 
btrfs_add_delalloc_inodes(struct btrfs_root * root,struct inode * inode)1698 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1699 				      struct inode *inode)
1700 {
1701 	spin_lock(&root->delalloc_lock);
1702 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1703 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1704 			      &root->delalloc_inodes);
1705 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1706 			&BTRFS_I(inode)->runtime_flags);
1707 		root->nr_delalloc_inodes++;
1708 		if (root->nr_delalloc_inodes == 1) {
1709 			spin_lock(&root->fs_info->delalloc_root_lock);
1710 			BUG_ON(!list_empty(&root->delalloc_root));
1711 			list_add_tail(&root->delalloc_root,
1712 				      &root->fs_info->delalloc_roots);
1713 			spin_unlock(&root->fs_info->delalloc_root_lock);
1714 		}
1715 	}
1716 	spin_unlock(&root->delalloc_lock);
1717 }
1718 
btrfs_del_delalloc_inode(struct btrfs_root * root,struct inode * inode)1719 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1720 				     struct inode *inode)
1721 {
1722 	spin_lock(&root->delalloc_lock);
1723 	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1724 		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1725 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1726 			  &BTRFS_I(inode)->runtime_flags);
1727 		root->nr_delalloc_inodes--;
1728 		if (!root->nr_delalloc_inodes) {
1729 			spin_lock(&root->fs_info->delalloc_root_lock);
1730 			BUG_ON(list_empty(&root->delalloc_root));
1731 			list_del_init(&root->delalloc_root);
1732 			spin_unlock(&root->fs_info->delalloc_root_lock);
1733 		}
1734 	}
1735 	spin_unlock(&root->delalloc_lock);
1736 }
1737 
1738 /*
1739  * extent_io.c set_bit_hook, used to track delayed allocation
1740  * bytes in this file, and to maintain the list of inodes that
1741  * have pending delalloc work to be done.
1742  */
btrfs_set_bit_hook(struct inode * inode,struct extent_state * state,unsigned * bits)1743 static void btrfs_set_bit_hook(struct inode *inode,
1744 			       struct extent_state *state, unsigned *bits)
1745 {
1746 
1747 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1748 		WARN_ON(1);
1749 	/*
1750 	 * set_bit and clear bit hooks normally require _irqsave/restore
1751 	 * but in this case, we are only testing for the DELALLOC
1752 	 * bit, which is only set or cleared with irqs on
1753 	 */
1754 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1755 		struct btrfs_root *root = BTRFS_I(inode)->root;
1756 		u64 len = state->end + 1 - state->start;
1757 		bool do_list = !btrfs_is_free_space_inode(inode);
1758 
1759 		if (*bits & EXTENT_FIRST_DELALLOC) {
1760 			*bits &= ~EXTENT_FIRST_DELALLOC;
1761 		} else {
1762 			spin_lock(&BTRFS_I(inode)->lock);
1763 			BTRFS_I(inode)->outstanding_extents++;
1764 			spin_unlock(&BTRFS_I(inode)->lock);
1765 		}
1766 
1767 		/* For sanity tests */
1768 		if (btrfs_test_is_dummy_root(root))
1769 			return;
1770 
1771 		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1772 				     root->fs_info->delalloc_batch);
1773 		spin_lock(&BTRFS_I(inode)->lock);
1774 		BTRFS_I(inode)->delalloc_bytes += len;
1775 		if (*bits & EXTENT_DEFRAG)
1776 			BTRFS_I(inode)->defrag_bytes += len;
1777 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1778 					 &BTRFS_I(inode)->runtime_flags))
1779 			btrfs_add_delalloc_inodes(root, inode);
1780 		spin_unlock(&BTRFS_I(inode)->lock);
1781 	}
1782 }
1783 
1784 /*
1785  * extent_io.c clear_bit_hook, see set_bit_hook for why
1786  */
btrfs_clear_bit_hook(struct inode * inode,struct extent_state * state,unsigned * bits)1787 static void btrfs_clear_bit_hook(struct inode *inode,
1788 				 struct extent_state *state,
1789 				 unsigned *bits)
1790 {
1791 	u64 len = state->end + 1 - state->start;
1792 	u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1793 				    BTRFS_MAX_EXTENT_SIZE);
1794 
1795 	spin_lock(&BTRFS_I(inode)->lock);
1796 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1797 		BTRFS_I(inode)->defrag_bytes -= len;
1798 	spin_unlock(&BTRFS_I(inode)->lock);
1799 
1800 	/*
1801 	 * set_bit and clear bit hooks normally require _irqsave/restore
1802 	 * but in this case, we are only testing for the DELALLOC
1803 	 * bit, which is only set or cleared with irqs on
1804 	 */
1805 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1806 		struct btrfs_root *root = BTRFS_I(inode)->root;
1807 		bool do_list = !btrfs_is_free_space_inode(inode);
1808 
1809 		if (*bits & EXTENT_FIRST_DELALLOC) {
1810 			*bits &= ~EXTENT_FIRST_DELALLOC;
1811 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1812 			spin_lock(&BTRFS_I(inode)->lock);
1813 			BTRFS_I(inode)->outstanding_extents -= num_extents;
1814 			spin_unlock(&BTRFS_I(inode)->lock);
1815 		}
1816 
1817 		/*
1818 		 * We don't reserve metadata space for space cache inodes so we
1819 		 * don't need to call dellalloc_release_metadata if there is an
1820 		 * error.
1821 		 */
1822 		if (*bits & EXTENT_DO_ACCOUNTING &&
1823 		    root != root->fs_info->tree_root)
1824 			btrfs_delalloc_release_metadata(inode, len);
1825 
1826 		/* For sanity tests. */
1827 		if (btrfs_test_is_dummy_root(root))
1828 			return;
1829 
1830 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1831 		    && do_list && !(state->state & EXTENT_NORESERVE))
1832 			btrfs_free_reserved_data_space_noquota(inode,
1833 					state->start, len);
1834 
1835 		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1836 				     root->fs_info->delalloc_batch);
1837 		spin_lock(&BTRFS_I(inode)->lock);
1838 		BTRFS_I(inode)->delalloc_bytes -= len;
1839 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1840 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1841 			     &BTRFS_I(inode)->runtime_flags))
1842 			btrfs_del_delalloc_inode(root, inode);
1843 		spin_unlock(&BTRFS_I(inode)->lock);
1844 	}
1845 }
1846 
1847 /*
1848  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1849  * we don't create bios that span stripes or chunks
1850  */
btrfs_merge_bio_hook(int rw,struct page * page,unsigned long offset,size_t size,struct bio * bio,unsigned long bio_flags)1851 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1852 			 size_t size, struct bio *bio,
1853 			 unsigned long bio_flags)
1854 {
1855 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1856 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1857 	u64 length = 0;
1858 	u64 map_length;
1859 	int ret;
1860 
1861 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1862 		return 0;
1863 
1864 	length = bio->bi_iter.bi_size;
1865 	map_length = length;
1866 	ret = btrfs_map_block(root->fs_info, rw, logical,
1867 			      &map_length, NULL, 0);
1868 	/* Will always return 0 with map_multi == NULL */
1869 	BUG_ON(ret < 0);
1870 	if (map_length < length + size)
1871 		return 1;
1872 	return 0;
1873 }
1874 
1875 /*
1876  * in order to insert checksums into the metadata in large chunks,
1877  * we wait until bio submission time.   All the pages in the bio are
1878  * checksummed and sums are attached onto the ordered extent record.
1879  *
1880  * At IO completion time the cums attached on the ordered extent record
1881  * are inserted into the btree
1882  */
__btrfs_submit_bio_start(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)1883 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1884 				    struct bio *bio, int mirror_num,
1885 				    unsigned long bio_flags,
1886 				    u64 bio_offset)
1887 {
1888 	struct btrfs_root *root = BTRFS_I(inode)->root;
1889 	int ret = 0;
1890 
1891 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1892 	BUG_ON(ret); /* -ENOMEM */
1893 	return 0;
1894 }
1895 
1896 /*
1897  * in order to insert checksums into the metadata in large chunks,
1898  * we wait until bio submission time.   All the pages in the bio are
1899  * checksummed and sums are attached onto the ordered extent record.
1900  *
1901  * At IO completion time the cums attached on the ordered extent record
1902  * are inserted into the btree
1903  */
__btrfs_submit_bio_done(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)1904 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1905 			  int mirror_num, unsigned long bio_flags,
1906 			  u64 bio_offset)
1907 {
1908 	struct btrfs_root *root = BTRFS_I(inode)->root;
1909 	int ret;
1910 
1911 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1912 	if (ret) {
1913 		bio->bi_error = ret;
1914 		bio_endio(bio);
1915 	}
1916 	return ret;
1917 }
1918 
1919 /*
1920  * extent_io.c submission hook. This does the right thing for csum calculation
1921  * on write, or reading the csums from the tree before a read
1922  */
btrfs_submit_bio_hook(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)1923 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1924 			  int mirror_num, unsigned long bio_flags,
1925 			  u64 bio_offset)
1926 {
1927 	struct btrfs_root *root = BTRFS_I(inode)->root;
1928 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1929 	int ret = 0;
1930 	int skip_sum;
1931 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1932 
1933 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1934 
1935 	if (btrfs_is_free_space_inode(inode))
1936 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1937 
1938 	if (!(rw & REQ_WRITE)) {
1939 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1940 		if (ret)
1941 			goto out;
1942 
1943 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1944 			ret = btrfs_submit_compressed_read(inode, bio,
1945 							   mirror_num,
1946 							   bio_flags);
1947 			goto out;
1948 		} else if (!skip_sum) {
1949 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1950 			if (ret)
1951 				goto out;
1952 		}
1953 		goto mapit;
1954 	} else if (async && !skip_sum) {
1955 		/* csum items have already been cloned */
1956 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1957 			goto mapit;
1958 		/* we're doing a write, do the async checksumming */
1959 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1960 				   inode, rw, bio, mirror_num,
1961 				   bio_flags, bio_offset,
1962 				   __btrfs_submit_bio_start,
1963 				   __btrfs_submit_bio_done);
1964 		goto out;
1965 	} else if (!skip_sum) {
1966 		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1967 		if (ret)
1968 			goto out;
1969 	}
1970 
1971 mapit:
1972 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1973 
1974 out:
1975 	if (ret < 0) {
1976 		bio->bi_error = ret;
1977 		bio_endio(bio);
1978 	}
1979 	return ret;
1980 }
1981 
1982 /*
1983  * given a list of ordered sums record them in the inode.  This happens
1984  * at IO completion time based on sums calculated at bio submission time.
1985  */
add_pending_csums(struct btrfs_trans_handle * trans,struct inode * inode,u64 file_offset,struct list_head * list)1986 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1987 			     struct inode *inode, u64 file_offset,
1988 			     struct list_head *list)
1989 {
1990 	struct btrfs_ordered_sum *sum;
1991 
1992 	list_for_each_entry(sum, list, list) {
1993 		trans->adding_csums = 1;
1994 		btrfs_csum_file_blocks(trans,
1995 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1996 		trans->adding_csums = 0;
1997 	}
1998 	return 0;
1999 }
2000 
btrfs_set_extent_delalloc(struct inode * inode,u64 start,u64 end,struct extent_state ** cached_state)2001 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2002 			      struct extent_state **cached_state)
2003 {
2004 	WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
2005 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2006 				   cached_state, GFP_NOFS);
2007 }
2008 
2009 /* see btrfs_writepage_start_hook for details on why this is required */
2010 struct btrfs_writepage_fixup {
2011 	struct page *page;
2012 	struct btrfs_work work;
2013 };
2014 
btrfs_writepage_fixup_worker(struct btrfs_work * work)2015 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2016 {
2017 	struct btrfs_writepage_fixup *fixup;
2018 	struct btrfs_ordered_extent *ordered;
2019 	struct extent_state *cached_state = NULL;
2020 	struct page *page;
2021 	struct inode *inode;
2022 	u64 page_start;
2023 	u64 page_end;
2024 	int ret;
2025 
2026 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2027 	page = fixup->page;
2028 again:
2029 	lock_page(page);
2030 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2031 		ClearPageChecked(page);
2032 		goto out_page;
2033 	}
2034 
2035 	inode = page->mapping->host;
2036 	page_start = page_offset(page);
2037 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
2038 
2039 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
2040 			 &cached_state);
2041 
2042 	/* already ordered? We're done */
2043 	if (PagePrivate2(page))
2044 		goto out;
2045 
2046 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
2047 	if (ordered) {
2048 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2049 				     page_end, &cached_state, GFP_NOFS);
2050 		unlock_page(page);
2051 		btrfs_start_ordered_extent(inode, ordered, 1);
2052 		btrfs_put_ordered_extent(ordered);
2053 		goto again;
2054 	}
2055 
2056 	ret = btrfs_delalloc_reserve_space(inode, page_start,
2057 					   PAGE_CACHE_SIZE);
2058 	if (ret) {
2059 		mapping_set_error(page->mapping, ret);
2060 		end_extent_writepage(page, ret, page_start, page_end);
2061 		ClearPageChecked(page);
2062 		goto out;
2063 	 }
2064 
2065 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
2066 					&cached_state);
2067 	if (ret) {
2068 		mapping_set_error(page->mapping, ret);
2069 		end_extent_writepage(page, ret, page_start, page_end);
2070 		ClearPageChecked(page);
2071 		goto out;
2072 	}
2073 
2074 	ClearPageChecked(page);
2075 	set_page_dirty(page);
2076 out:
2077 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2078 			     &cached_state, GFP_NOFS);
2079 out_page:
2080 	unlock_page(page);
2081 	page_cache_release(page);
2082 	kfree(fixup);
2083 }
2084 
2085 /*
2086  * There are a few paths in the higher layers of the kernel that directly
2087  * set the page dirty bit without asking the filesystem if it is a
2088  * good idea.  This causes problems because we want to make sure COW
2089  * properly happens and the data=ordered rules are followed.
2090  *
2091  * In our case any range that doesn't have the ORDERED bit set
2092  * hasn't been properly setup for IO.  We kick off an async process
2093  * to fix it up.  The async helper will wait for ordered extents, set
2094  * the delalloc bit and make it safe to write the page.
2095  */
btrfs_writepage_start_hook(struct page * page,u64 start,u64 end)2096 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2097 {
2098 	struct inode *inode = page->mapping->host;
2099 	struct btrfs_writepage_fixup *fixup;
2100 	struct btrfs_root *root = BTRFS_I(inode)->root;
2101 
2102 	/* this page is properly in the ordered list */
2103 	if (TestClearPagePrivate2(page))
2104 		return 0;
2105 
2106 	if (PageChecked(page))
2107 		return -EAGAIN;
2108 
2109 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2110 	if (!fixup)
2111 		return -EAGAIN;
2112 
2113 	SetPageChecked(page);
2114 	page_cache_get(page);
2115 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2116 			btrfs_writepage_fixup_worker, NULL, NULL);
2117 	fixup->page = page;
2118 	btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2119 	return -EBUSY;
2120 }
2121 
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct inode * inode,u64 file_pos,u64 disk_bytenr,u64 disk_num_bytes,u64 num_bytes,u64 ram_bytes,u8 compression,u8 encryption,u16 other_encoding,int extent_type)2122 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2123 				       struct inode *inode, u64 file_pos,
2124 				       u64 disk_bytenr, u64 disk_num_bytes,
2125 				       u64 num_bytes, u64 ram_bytes,
2126 				       u8 compression, u8 encryption,
2127 				       u16 other_encoding, int extent_type)
2128 {
2129 	struct btrfs_root *root = BTRFS_I(inode)->root;
2130 	struct btrfs_file_extent_item *fi;
2131 	struct btrfs_path *path;
2132 	struct extent_buffer *leaf;
2133 	struct btrfs_key ins;
2134 	int extent_inserted = 0;
2135 	int ret;
2136 
2137 	path = btrfs_alloc_path();
2138 	if (!path)
2139 		return -ENOMEM;
2140 
2141 	/*
2142 	 * we may be replacing one extent in the tree with another.
2143 	 * The new extent is pinned in the extent map, and we don't want
2144 	 * to drop it from the cache until it is completely in the btree.
2145 	 *
2146 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2147 	 * the caller is expected to unpin it and allow it to be merged
2148 	 * with the others.
2149 	 */
2150 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2151 				   file_pos + num_bytes, NULL, 0,
2152 				   1, sizeof(*fi), &extent_inserted);
2153 	if (ret)
2154 		goto out;
2155 
2156 	if (!extent_inserted) {
2157 		ins.objectid = btrfs_ino(inode);
2158 		ins.offset = file_pos;
2159 		ins.type = BTRFS_EXTENT_DATA_KEY;
2160 
2161 		path->leave_spinning = 1;
2162 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2163 					      sizeof(*fi));
2164 		if (ret)
2165 			goto out;
2166 	}
2167 	leaf = path->nodes[0];
2168 	fi = btrfs_item_ptr(leaf, path->slots[0],
2169 			    struct btrfs_file_extent_item);
2170 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2171 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2172 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2173 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2174 	btrfs_set_file_extent_offset(leaf, fi, 0);
2175 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2176 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2177 	btrfs_set_file_extent_compression(leaf, fi, compression);
2178 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2179 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2180 
2181 	btrfs_mark_buffer_dirty(leaf);
2182 	btrfs_release_path(path);
2183 
2184 	inode_add_bytes(inode, num_bytes);
2185 
2186 	ins.objectid = disk_bytenr;
2187 	ins.offset = disk_num_bytes;
2188 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2189 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2190 					root->root_key.objectid,
2191 					btrfs_ino(inode), file_pos,
2192 					ram_bytes, &ins);
2193 	/*
2194 	 * Release the reserved range from inode dirty range map, as it is
2195 	 * already moved into delayed_ref_head
2196 	 */
2197 	btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2198 out:
2199 	btrfs_free_path(path);
2200 
2201 	return ret;
2202 }
2203 
2204 /* snapshot-aware defrag */
2205 struct sa_defrag_extent_backref {
2206 	struct rb_node node;
2207 	struct old_sa_defrag_extent *old;
2208 	u64 root_id;
2209 	u64 inum;
2210 	u64 file_pos;
2211 	u64 extent_offset;
2212 	u64 num_bytes;
2213 	u64 generation;
2214 };
2215 
2216 struct old_sa_defrag_extent {
2217 	struct list_head list;
2218 	struct new_sa_defrag_extent *new;
2219 
2220 	u64 extent_offset;
2221 	u64 bytenr;
2222 	u64 offset;
2223 	u64 len;
2224 	int count;
2225 };
2226 
2227 struct new_sa_defrag_extent {
2228 	struct rb_root root;
2229 	struct list_head head;
2230 	struct btrfs_path *path;
2231 	struct inode *inode;
2232 	u64 file_pos;
2233 	u64 len;
2234 	u64 bytenr;
2235 	u64 disk_len;
2236 	u8 compress_type;
2237 };
2238 
backref_comp(struct sa_defrag_extent_backref * b1,struct sa_defrag_extent_backref * b2)2239 static int backref_comp(struct sa_defrag_extent_backref *b1,
2240 			struct sa_defrag_extent_backref *b2)
2241 {
2242 	if (b1->root_id < b2->root_id)
2243 		return -1;
2244 	else if (b1->root_id > b2->root_id)
2245 		return 1;
2246 
2247 	if (b1->inum < b2->inum)
2248 		return -1;
2249 	else if (b1->inum > b2->inum)
2250 		return 1;
2251 
2252 	if (b1->file_pos < b2->file_pos)
2253 		return -1;
2254 	else if (b1->file_pos > b2->file_pos)
2255 		return 1;
2256 
2257 	/*
2258 	 * [------------------------------] ===> (a range of space)
2259 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2260 	 * |<---------------------------->| ===> (fs/file tree B)
2261 	 *
2262 	 * A range of space can refer to two file extents in one tree while
2263 	 * refer to only one file extent in another tree.
2264 	 *
2265 	 * So we may process a disk offset more than one time(two extents in A)
2266 	 * and locate at the same extent(one extent in B), then insert two same
2267 	 * backrefs(both refer to the extent in B).
2268 	 */
2269 	return 0;
2270 }
2271 
backref_insert(struct rb_root * root,struct sa_defrag_extent_backref * backref)2272 static void backref_insert(struct rb_root *root,
2273 			   struct sa_defrag_extent_backref *backref)
2274 {
2275 	struct rb_node **p = &root->rb_node;
2276 	struct rb_node *parent = NULL;
2277 	struct sa_defrag_extent_backref *entry;
2278 	int ret;
2279 
2280 	while (*p) {
2281 		parent = *p;
2282 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2283 
2284 		ret = backref_comp(backref, entry);
2285 		if (ret < 0)
2286 			p = &(*p)->rb_left;
2287 		else
2288 			p = &(*p)->rb_right;
2289 	}
2290 
2291 	rb_link_node(&backref->node, parent, p);
2292 	rb_insert_color(&backref->node, root);
2293 }
2294 
2295 /*
2296  * Note the backref might has changed, and in this case we just return 0.
2297  */
record_one_backref(u64 inum,u64 offset,u64 root_id,void * ctx)2298 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2299 				       void *ctx)
2300 {
2301 	struct btrfs_file_extent_item *extent;
2302 	struct btrfs_fs_info *fs_info;
2303 	struct old_sa_defrag_extent *old = ctx;
2304 	struct new_sa_defrag_extent *new = old->new;
2305 	struct btrfs_path *path = new->path;
2306 	struct btrfs_key key;
2307 	struct btrfs_root *root;
2308 	struct sa_defrag_extent_backref *backref;
2309 	struct extent_buffer *leaf;
2310 	struct inode *inode = new->inode;
2311 	int slot;
2312 	int ret;
2313 	u64 extent_offset;
2314 	u64 num_bytes;
2315 
2316 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2317 	    inum == btrfs_ino(inode))
2318 		return 0;
2319 
2320 	key.objectid = root_id;
2321 	key.type = BTRFS_ROOT_ITEM_KEY;
2322 	key.offset = (u64)-1;
2323 
2324 	fs_info = BTRFS_I(inode)->root->fs_info;
2325 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2326 	if (IS_ERR(root)) {
2327 		if (PTR_ERR(root) == -ENOENT)
2328 			return 0;
2329 		WARN_ON(1);
2330 		pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2331 			 inum, offset, root_id);
2332 		return PTR_ERR(root);
2333 	}
2334 
2335 	key.objectid = inum;
2336 	key.type = BTRFS_EXTENT_DATA_KEY;
2337 	if (offset > (u64)-1 << 32)
2338 		key.offset = 0;
2339 	else
2340 		key.offset = offset;
2341 
2342 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2343 	if (WARN_ON(ret < 0))
2344 		return ret;
2345 	ret = 0;
2346 
2347 	while (1) {
2348 		cond_resched();
2349 
2350 		leaf = path->nodes[0];
2351 		slot = path->slots[0];
2352 
2353 		if (slot >= btrfs_header_nritems(leaf)) {
2354 			ret = btrfs_next_leaf(root, path);
2355 			if (ret < 0) {
2356 				goto out;
2357 			} else if (ret > 0) {
2358 				ret = 0;
2359 				goto out;
2360 			}
2361 			continue;
2362 		}
2363 
2364 		path->slots[0]++;
2365 
2366 		btrfs_item_key_to_cpu(leaf, &key, slot);
2367 
2368 		if (key.objectid > inum)
2369 			goto out;
2370 
2371 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2372 			continue;
2373 
2374 		extent = btrfs_item_ptr(leaf, slot,
2375 					struct btrfs_file_extent_item);
2376 
2377 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2378 			continue;
2379 
2380 		/*
2381 		 * 'offset' refers to the exact key.offset,
2382 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2383 		 * (key.offset - extent_offset).
2384 		 */
2385 		if (key.offset != offset)
2386 			continue;
2387 
2388 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2389 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2390 
2391 		if (extent_offset >= old->extent_offset + old->offset +
2392 		    old->len || extent_offset + num_bytes <=
2393 		    old->extent_offset + old->offset)
2394 			continue;
2395 		break;
2396 	}
2397 
2398 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2399 	if (!backref) {
2400 		ret = -ENOENT;
2401 		goto out;
2402 	}
2403 
2404 	backref->root_id = root_id;
2405 	backref->inum = inum;
2406 	backref->file_pos = offset;
2407 	backref->num_bytes = num_bytes;
2408 	backref->extent_offset = extent_offset;
2409 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2410 	backref->old = old;
2411 	backref_insert(&new->root, backref);
2412 	old->count++;
2413 out:
2414 	btrfs_release_path(path);
2415 	WARN_ON(ret);
2416 	return ret;
2417 }
2418 
record_extent_backrefs(struct btrfs_path * path,struct new_sa_defrag_extent * new)2419 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2420 				   struct new_sa_defrag_extent *new)
2421 {
2422 	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2423 	struct old_sa_defrag_extent *old, *tmp;
2424 	int ret;
2425 
2426 	new->path = path;
2427 
2428 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2429 		ret = iterate_inodes_from_logical(old->bytenr +
2430 						  old->extent_offset, fs_info,
2431 						  path, record_one_backref,
2432 						  old);
2433 		if (ret < 0 && ret != -ENOENT)
2434 			return false;
2435 
2436 		/* no backref to be processed for this extent */
2437 		if (!old->count) {
2438 			list_del(&old->list);
2439 			kfree(old);
2440 		}
2441 	}
2442 
2443 	if (list_empty(&new->head))
2444 		return false;
2445 
2446 	return true;
2447 }
2448 
relink_is_mergable(struct extent_buffer * leaf,struct btrfs_file_extent_item * fi,struct new_sa_defrag_extent * new)2449 static int relink_is_mergable(struct extent_buffer *leaf,
2450 			      struct btrfs_file_extent_item *fi,
2451 			      struct new_sa_defrag_extent *new)
2452 {
2453 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2454 		return 0;
2455 
2456 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2457 		return 0;
2458 
2459 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2460 		return 0;
2461 
2462 	if (btrfs_file_extent_encryption(leaf, fi) ||
2463 	    btrfs_file_extent_other_encoding(leaf, fi))
2464 		return 0;
2465 
2466 	return 1;
2467 }
2468 
2469 /*
2470  * Note the backref might has changed, and in this case we just return 0.
2471  */
relink_extent_backref(struct btrfs_path * path,struct sa_defrag_extent_backref * prev,struct sa_defrag_extent_backref * backref)2472 static noinline int relink_extent_backref(struct btrfs_path *path,
2473 				 struct sa_defrag_extent_backref *prev,
2474 				 struct sa_defrag_extent_backref *backref)
2475 {
2476 	struct btrfs_file_extent_item *extent;
2477 	struct btrfs_file_extent_item *item;
2478 	struct btrfs_ordered_extent *ordered;
2479 	struct btrfs_trans_handle *trans;
2480 	struct btrfs_fs_info *fs_info;
2481 	struct btrfs_root *root;
2482 	struct btrfs_key key;
2483 	struct extent_buffer *leaf;
2484 	struct old_sa_defrag_extent *old = backref->old;
2485 	struct new_sa_defrag_extent *new = old->new;
2486 	struct inode *src_inode = new->inode;
2487 	struct inode *inode;
2488 	struct extent_state *cached = NULL;
2489 	int ret = 0;
2490 	u64 start;
2491 	u64 len;
2492 	u64 lock_start;
2493 	u64 lock_end;
2494 	bool merge = false;
2495 	int index;
2496 
2497 	if (prev && prev->root_id == backref->root_id &&
2498 	    prev->inum == backref->inum &&
2499 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2500 		merge = true;
2501 
2502 	/* step 1: get root */
2503 	key.objectid = backref->root_id;
2504 	key.type = BTRFS_ROOT_ITEM_KEY;
2505 	key.offset = (u64)-1;
2506 
2507 	fs_info = BTRFS_I(src_inode)->root->fs_info;
2508 	index = srcu_read_lock(&fs_info->subvol_srcu);
2509 
2510 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2511 	if (IS_ERR(root)) {
2512 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2513 		if (PTR_ERR(root) == -ENOENT)
2514 			return 0;
2515 		return PTR_ERR(root);
2516 	}
2517 
2518 	if (btrfs_root_readonly(root)) {
2519 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2520 		return 0;
2521 	}
2522 
2523 	/* step 2: get inode */
2524 	key.objectid = backref->inum;
2525 	key.type = BTRFS_INODE_ITEM_KEY;
2526 	key.offset = 0;
2527 
2528 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2529 	if (IS_ERR(inode)) {
2530 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2531 		return 0;
2532 	}
2533 
2534 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2535 
2536 	/* step 3: relink backref */
2537 	lock_start = backref->file_pos;
2538 	lock_end = backref->file_pos + backref->num_bytes - 1;
2539 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2540 			 0, &cached);
2541 
2542 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2543 	if (ordered) {
2544 		btrfs_put_ordered_extent(ordered);
2545 		goto out_unlock;
2546 	}
2547 
2548 	trans = btrfs_join_transaction(root);
2549 	if (IS_ERR(trans)) {
2550 		ret = PTR_ERR(trans);
2551 		goto out_unlock;
2552 	}
2553 
2554 	key.objectid = backref->inum;
2555 	key.type = BTRFS_EXTENT_DATA_KEY;
2556 	key.offset = backref->file_pos;
2557 
2558 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2559 	if (ret < 0) {
2560 		goto out_free_path;
2561 	} else if (ret > 0) {
2562 		ret = 0;
2563 		goto out_free_path;
2564 	}
2565 
2566 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2567 				struct btrfs_file_extent_item);
2568 
2569 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2570 	    backref->generation)
2571 		goto out_free_path;
2572 
2573 	btrfs_release_path(path);
2574 
2575 	start = backref->file_pos;
2576 	if (backref->extent_offset < old->extent_offset + old->offset)
2577 		start += old->extent_offset + old->offset -
2578 			 backref->extent_offset;
2579 
2580 	len = min(backref->extent_offset + backref->num_bytes,
2581 		  old->extent_offset + old->offset + old->len);
2582 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2583 
2584 	ret = btrfs_drop_extents(trans, root, inode, start,
2585 				 start + len, 1);
2586 	if (ret)
2587 		goto out_free_path;
2588 again:
2589 	key.objectid = btrfs_ino(inode);
2590 	key.type = BTRFS_EXTENT_DATA_KEY;
2591 	key.offset = start;
2592 
2593 	path->leave_spinning = 1;
2594 	if (merge) {
2595 		struct btrfs_file_extent_item *fi;
2596 		u64 extent_len;
2597 		struct btrfs_key found_key;
2598 
2599 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2600 		if (ret < 0)
2601 			goto out_free_path;
2602 
2603 		path->slots[0]--;
2604 		leaf = path->nodes[0];
2605 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2606 
2607 		fi = btrfs_item_ptr(leaf, path->slots[0],
2608 				    struct btrfs_file_extent_item);
2609 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2610 
2611 		if (extent_len + found_key.offset == start &&
2612 		    relink_is_mergable(leaf, fi, new)) {
2613 			btrfs_set_file_extent_num_bytes(leaf, fi,
2614 							extent_len + len);
2615 			btrfs_mark_buffer_dirty(leaf);
2616 			inode_add_bytes(inode, len);
2617 
2618 			ret = 1;
2619 			goto out_free_path;
2620 		} else {
2621 			merge = false;
2622 			btrfs_release_path(path);
2623 			goto again;
2624 		}
2625 	}
2626 
2627 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2628 					sizeof(*extent));
2629 	if (ret) {
2630 		btrfs_abort_transaction(trans, root, ret);
2631 		goto out_free_path;
2632 	}
2633 
2634 	leaf = path->nodes[0];
2635 	item = btrfs_item_ptr(leaf, path->slots[0],
2636 				struct btrfs_file_extent_item);
2637 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2638 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2639 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2640 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2641 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2642 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2643 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2644 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2645 	btrfs_set_file_extent_encryption(leaf, item, 0);
2646 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2647 
2648 	btrfs_mark_buffer_dirty(leaf);
2649 	inode_add_bytes(inode, len);
2650 	btrfs_release_path(path);
2651 
2652 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2653 			new->disk_len, 0,
2654 			backref->root_id, backref->inum,
2655 			new->file_pos);	/* start - extent_offset */
2656 	if (ret) {
2657 		btrfs_abort_transaction(trans, root, ret);
2658 		goto out_free_path;
2659 	}
2660 
2661 	ret = 1;
2662 out_free_path:
2663 	btrfs_release_path(path);
2664 	path->leave_spinning = 0;
2665 	btrfs_end_transaction(trans, root);
2666 out_unlock:
2667 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2668 			     &cached, GFP_NOFS);
2669 	iput(inode);
2670 	return ret;
2671 }
2672 
free_sa_defrag_extent(struct new_sa_defrag_extent * new)2673 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2674 {
2675 	struct old_sa_defrag_extent *old, *tmp;
2676 
2677 	if (!new)
2678 		return;
2679 
2680 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2681 		kfree(old);
2682 	}
2683 	kfree(new);
2684 }
2685 
relink_file_extents(struct new_sa_defrag_extent * new)2686 static void relink_file_extents(struct new_sa_defrag_extent *new)
2687 {
2688 	struct btrfs_path *path;
2689 	struct sa_defrag_extent_backref *backref;
2690 	struct sa_defrag_extent_backref *prev = NULL;
2691 	struct inode *inode;
2692 	struct btrfs_root *root;
2693 	struct rb_node *node;
2694 	int ret;
2695 
2696 	inode = new->inode;
2697 	root = BTRFS_I(inode)->root;
2698 
2699 	path = btrfs_alloc_path();
2700 	if (!path)
2701 		return;
2702 
2703 	if (!record_extent_backrefs(path, new)) {
2704 		btrfs_free_path(path);
2705 		goto out;
2706 	}
2707 	btrfs_release_path(path);
2708 
2709 	while (1) {
2710 		node = rb_first(&new->root);
2711 		if (!node)
2712 			break;
2713 		rb_erase(node, &new->root);
2714 
2715 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2716 
2717 		ret = relink_extent_backref(path, prev, backref);
2718 		WARN_ON(ret < 0);
2719 
2720 		kfree(prev);
2721 
2722 		if (ret == 1)
2723 			prev = backref;
2724 		else
2725 			prev = NULL;
2726 		cond_resched();
2727 	}
2728 	kfree(prev);
2729 
2730 	btrfs_free_path(path);
2731 out:
2732 	free_sa_defrag_extent(new);
2733 
2734 	atomic_dec(&root->fs_info->defrag_running);
2735 	wake_up(&root->fs_info->transaction_wait);
2736 }
2737 
2738 static struct new_sa_defrag_extent *
record_old_file_extents(struct inode * inode,struct btrfs_ordered_extent * ordered)2739 record_old_file_extents(struct inode *inode,
2740 			struct btrfs_ordered_extent *ordered)
2741 {
2742 	struct btrfs_root *root = BTRFS_I(inode)->root;
2743 	struct btrfs_path *path;
2744 	struct btrfs_key key;
2745 	struct old_sa_defrag_extent *old;
2746 	struct new_sa_defrag_extent *new;
2747 	int ret;
2748 
2749 	new = kmalloc(sizeof(*new), GFP_NOFS);
2750 	if (!new)
2751 		return NULL;
2752 
2753 	new->inode = inode;
2754 	new->file_pos = ordered->file_offset;
2755 	new->len = ordered->len;
2756 	new->bytenr = ordered->start;
2757 	new->disk_len = ordered->disk_len;
2758 	new->compress_type = ordered->compress_type;
2759 	new->root = RB_ROOT;
2760 	INIT_LIST_HEAD(&new->head);
2761 
2762 	path = btrfs_alloc_path();
2763 	if (!path)
2764 		goto out_kfree;
2765 
2766 	key.objectid = btrfs_ino(inode);
2767 	key.type = BTRFS_EXTENT_DATA_KEY;
2768 	key.offset = new->file_pos;
2769 
2770 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2771 	if (ret < 0)
2772 		goto out_free_path;
2773 	if (ret > 0 && path->slots[0] > 0)
2774 		path->slots[0]--;
2775 
2776 	/* find out all the old extents for the file range */
2777 	while (1) {
2778 		struct btrfs_file_extent_item *extent;
2779 		struct extent_buffer *l;
2780 		int slot;
2781 		u64 num_bytes;
2782 		u64 offset;
2783 		u64 end;
2784 		u64 disk_bytenr;
2785 		u64 extent_offset;
2786 
2787 		l = path->nodes[0];
2788 		slot = path->slots[0];
2789 
2790 		if (slot >= btrfs_header_nritems(l)) {
2791 			ret = btrfs_next_leaf(root, path);
2792 			if (ret < 0)
2793 				goto out_free_path;
2794 			else if (ret > 0)
2795 				break;
2796 			continue;
2797 		}
2798 
2799 		btrfs_item_key_to_cpu(l, &key, slot);
2800 
2801 		if (key.objectid != btrfs_ino(inode))
2802 			break;
2803 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2804 			break;
2805 		if (key.offset >= new->file_pos + new->len)
2806 			break;
2807 
2808 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2809 
2810 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2811 		if (key.offset + num_bytes < new->file_pos)
2812 			goto next;
2813 
2814 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2815 		if (!disk_bytenr)
2816 			goto next;
2817 
2818 		extent_offset = btrfs_file_extent_offset(l, extent);
2819 
2820 		old = kmalloc(sizeof(*old), GFP_NOFS);
2821 		if (!old)
2822 			goto out_free_path;
2823 
2824 		offset = max(new->file_pos, key.offset);
2825 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2826 
2827 		old->bytenr = disk_bytenr;
2828 		old->extent_offset = extent_offset;
2829 		old->offset = offset - key.offset;
2830 		old->len = end - offset;
2831 		old->new = new;
2832 		old->count = 0;
2833 		list_add_tail(&old->list, &new->head);
2834 next:
2835 		path->slots[0]++;
2836 		cond_resched();
2837 	}
2838 
2839 	btrfs_free_path(path);
2840 	atomic_inc(&root->fs_info->defrag_running);
2841 
2842 	return new;
2843 
2844 out_free_path:
2845 	btrfs_free_path(path);
2846 out_kfree:
2847 	free_sa_defrag_extent(new);
2848 	return NULL;
2849 }
2850 
btrfs_release_delalloc_bytes(struct btrfs_root * root,u64 start,u64 len)2851 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2852 					 u64 start, u64 len)
2853 {
2854 	struct btrfs_block_group_cache *cache;
2855 
2856 	cache = btrfs_lookup_block_group(root->fs_info, start);
2857 	ASSERT(cache);
2858 
2859 	spin_lock(&cache->lock);
2860 	cache->delalloc_bytes -= len;
2861 	spin_unlock(&cache->lock);
2862 
2863 	btrfs_put_block_group(cache);
2864 }
2865 
2866 /* as ordered data IO finishes, this gets called so we can finish
2867  * an ordered extent if the range of bytes in the file it covers are
2868  * fully written.
2869  */
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered_extent)2870 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2871 {
2872 	struct inode *inode = ordered_extent->inode;
2873 	struct btrfs_root *root = BTRFS_I(inode)->root;
2874 	struct btrfs_trans_handle *trans = NULL;
2875 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2876 	struct extent_state *cached_state = NULL;
2877 	struct new_sa_defrag_extent *new = NULL;
2878 	int compress_type = 0;
2879 	int ret = 0;
2880 	u64 logical_len = ordered_extent->len;
2881 	bool nolock;
2882 	bool truncated = false;
2883 
2884 	nolock = btrfs_is_free_space_inode(inode);
2885 
2886 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2887 		ret = -EIO;
2888 		goto out;
2889 	}
2890 
2891 	btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2892 				     ordered_extent->file_offset +
2893 				     ordered_extent->len - 1);
2894 
2895 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2896 		truncated = true;
2897 		logical_len = ordered_extent->truncated_len;
2898 		/* Truncated the entire extent, don't bother adding */
2899 		if (!logical_len)
2900 			goto out;
2901 	}
2902 
2903 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2904 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2905 
2906 		/*
2907 		 * For mwrite(mmap + memset to write) case, we still reserve
2908 		 * space for NOCOW range.
2909 		 * As NOCOW won't cause a new delayed ref, just free the space
2910 		 */
2911 		btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2912 				       ordered_extent->len);
2913 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2914 		if (nolock)
2915 			trans = btrfs_join_transaction_nolock(root);
2916 		else
2917 			trans = btrfs_join_transaction(root);
2918 		if (IS_ERR(trans)) {
2919 			ret = PTR_ERR(trans);
2920 			trans = NULL;
2921 			goto out;
2922 		}
2923 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2924 		ret = btrfs_update_inode_fallback(trans, root, inode);
2925 		if (ret) /* -ENOMEM or corruption */
2926 			btrfs_abort_transaction(trans, root, ret);
2927 		goto out;
2928 	}
2929 
2930 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2931 			 ordered_extent->file_offset + ordered_extent->len - 1,
2932 			 0, &cached_state);
2933 
2934 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2935 			ordered_extent->file_offset + ordered_extent->len - 1,
2936 			EXTENT_DEFRAG, 1, cached_state);
2937 	if (ret) {
2938 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2939 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2940 			/* the inode is shared */
2941 			new = record_old_file_extents(inode, ordered_extent);
2942 
2943 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2944 			ordered_extent->file_offset + ordered_extent->len - 1,
2945 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2946 	}
2947 
2948 	if (nolock)
2949 		trans = btrfs_join_transaction_nolock(root);
2950 	else
2951 		trans = btrfs_join_transaction(root);
2952 	if (IS_ERR(trans)) {
2953 		ret = PTR_ERR(trans);
2954 		trans = NULL;
2955 		goto out_unlock;
2956 	}
2957 
2958 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2959 
2960 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2961 		compress_type = ordered_extent->compress_type;
2962 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2963 		BUG_ON(compress_type);
2964 		ret = btrfs_mark_extent_written(trans, inode,
2965 						ordered_extent->file_offset,
2966 						ordered_extent->file_offset +
2967 						logical_len);
2968 	} else {
2969 		BUG_ON(root == root->fs_info->tree_root);
2970 		ret = insert_reserved_file_extent(trans, inode,
2971 						ordered_extent->file_offset,
2972 						ordered_extent->start,
2973 						ordered_extent->disk_len,
2974 						logical_len, logical_len,
2975 						compress_type, 0, 0,
2976 						BTRFS_FILE_EXTENT_REG);
2977 		if (!ret)
2978 			btrfs_release_delalloc_bytes(root,
2979 						     ordered_extent->start,
2980 						     ordered_extent->disk_len);
2981 	}
2982 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2983 			   ordered_extent->file_offset, ordered_extent->len,
2984 			   trans->transid);
2985 	if (ret < 0) {
2986 		btrfs_abort_transaction(trans, root, ret);
2987 		goto out_unlock;
2988 	}
2989 
2990 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2991 			  &ordered_extent->list);
2992 
2993 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2994 	ret = btrfs_update_inode_fallback(trans, root, inode);
2995 	if (ret) { /* -ENOMEM or corruption */
2996 		btrfs_abort_transaction(trans, root, ret);
2997 		goto out_unlock;
2998 	}
2999 	ret = 0;
3000 out_unlock:
3001 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
3002 			     ordered_extent->file_offset +
3003 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
3004 out:
3005 	if (root != root->fs_info->tree_root)
3006 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
3007 	if (trans)
3008 		btrfs_end_transaction(trans, root);
3009 
3010 	if (ret || truncated) {
3011 		u64 start, end;
3012 
3013 		if (truncated)
3014 			start = ordered_extent->file_offset + logical_len;
3015 		else
3016 			start = ordered_extent->file_offset;
3017 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3018 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3019 
3020 		/* Drop the cache for the part of the extent we didn't write. */
3021 		btrfs_drop_extent_cache(inode, start, end, 0);
3022 
3023 		/*
3024 		 * If the ordered extent had an IOERR or something else went
3025 		 * wrong we need to return the space for this ordered extent
3026 		 * back to the allocator.  We only free the extent in the
3027 		 * truncated case if we didn't write out the extent at all.
3028 		 */
3029 		if ((ret || !logical_len) &&
3030 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3031 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3032 			btrfs_free_reserved_extent(root, ordered_extent->start,
3033 						   ordered_extent->disk_len, 1);
3034 	}
3035 
3036 
3037 	/*
3038 	 * This needs to be done to make sure anybody waiting knows we are done
3039 	 * updating everything for this ordered extent.
3040 	 */
3041 	btrfs_remove_ordered_extent(inode, ordered_extent);
3042 
3043 	/* for snapshot-aware defrag */
3044 	if (new) {
3045 		if (ret) {
3046 			free_sa_defrag_extent(new);
3047 			atomic_dec(&root->fs_info->defrag_running);
3048 		} else {
3049 			relink_file_extents(new);
3050 		}
3051 	}
3052 
3053 	/* once for us */
3054 	btrfs_put_ordered_extent(ordered_extent);
3055 	/* once for the tree */
3056 	btrfs_put_ordered_extent(ordered_extent);
3057 
3058 	return ret;
3059 }
3060 
finish_ordered_fn(struct btrfs_work * work)3061 static void finish_ordered_fn(struct btrfs_work *work)
3062 {
3063 	struct btrfs_ordered_extent *ordered_extent;
3064 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3065 	btrfs_finish_ordered_io(ordered_extent);
3066 }
3067 
btrfs_writepage_end_io_hook(struct page * page,u64 start,u64 end,struct extent_state * state,int uptodate)3068 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3069 				struct extent_state *state, int uptodate)
3070 {
3071 	struct inode *inode = page->mapping->host;
3072 	struct btrfs_root *root = BTRFS_I(inode)->root;
3073 	struct btrfs_ordered_extent *ordered_extent = NULL;
3074 	struct btrfs_workqueue *wq;
3075 	btrfs_work_func_t func;
3076 
3077 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3078 
3079 	ClearPagePrivate2(page);
3080 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3081 					    end - start + 1, uptodate))
3082 		return 0;
3083 
3084 	if (btrfs_is_free_space_inode(inode)) {
3085 		wq = root->fs_info->endio_freespace_worker;
3086 		func = btrfs_freespace_write_helper;
3087 	} else {
3088 		wq = root->fs_info->endio_write_workers;
3089 		func = btrfs_endio_write_helper;
3090 	}
3091 
3092 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3093 			NULL);
3094 	btrfs_queue_work(wq, &ordered_extent->work);
3095 
3096 	return 0;
3097 }
3098 
__readpage_endio_check(struct inode * inode,struct btrfs_io_bio * io_bio,int icsum,struct page * page,int pgoff,u64 start,size_t len)3099 static int __readpage_endio_check(struct inode *inode,
3100 				  struct btrfs_io_bio *io_bio,
3101 				  int icsum, struct page *page,
3102 				  int pgoff, u64 start, size_t len)
3103 {
3104 	char *kaddr;
3105 	u32 csum_expected;
3106 	u32 csum = ~(u32)0;
3107 
3108 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3109 
3110 	kaddr = kmap_atomic(page);
3111 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3112 	btrfs_csum_final(csum, (char *)&csum);
3113 	if (csum != csum_expected)
3114 		goto zeroit;
3115 
3116 	kunmap_atomic(kaddr);
3117 	return 0;
3118 zeroit:
3119 	btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3120 		"csum failed ino %llu off %llu csum %u expected csum %u",
3121 			   btrfs_ino(inode), start, csum, csum_expected);
3122 	memset(kaddr + pgoff, 1, len);
3123 	flush_dcache_page(page);
3124 	kunmap_atomic(kaddr);
3125 	if (csum_expected == 0)
3126 		return 0;
3127 	return -EIO;
3128 }
3129 
3130 /*
3131  * when reads are done, we need to check csums to verify the data is correct
3132  * if there's a match, we allow the bio to finish.  If not, the code in
3133  * extent_io.c will try to find good copies for us.
3134  */
btrfs_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)3135 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3136 				      u64 phy_offset, struct page *page,
3137 				      u64 start, u64 end, int mirror)
3138 {
3139 	size_t offset = start - page_offset(page);
3140 	struct inode *inode = page->mapping->host;
3141 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3142 	struct btrfs_root *root = BTRFS_I(inode)->root;
3143 
3144 	if (PageChecked(page)) {
3145 		ClearPageChecked(page);
3146 		return 0;
3147 	}
3148 
3149 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3150 		return 0;
3151 
3152 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3153 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3154 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3155 				  GFP_NOFS);
3156 		return 0;
3157 	}
3158 
3159 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3160 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3161 				      start, (size_t)(end - start + 1));
3162 }
3163 
3164 struct delayed_iput {
3165 	struct list_head list;
3166 	struct inode *inode;
3167 };
3168 
3169 /* JDM: If this is fs-wide, why can't we add a pointer to
3170  * btrfs_inode instead and avoid the allocation? */
btrfs_add_delayed_iput(struct inode * inode)3171 void btrfs_add_delayed_iput(struct inode *inode)
3172 {
3173 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3174 	struct delayed_iput *delayed;
3175 
3176 	if (atomic_add_unless(&inode->i_count, -1, 1))
3177 		return;
3178 
3179 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3180 	delayed->inode = inode;
3181 
3182 	spin_lock(&fs_info->delayed_iput_lock);
3183 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3184 	spin_unlock(&fs_info->delayed_iput_lock);
3185 }
3186 
btrfs_run_delayed_iputs(struct btrfs_root * root)3187 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3188 {
3189 	LIST_HEAD(list);
3190 	struct btrfs_fs_info *fs_info = root->fs_info;
3191 	struct delayed_iput *delayed;
3192 	int empty;
3193 
3194 	spin_lock(&fs_info->delayed_iput_lock);
3195 	empty = list_empty(&fs_info->delayed_iputs);
3196 	spin_unlock(&fs_info->delayed_iput_lock);
3197 	if (empty)
3198 		return;
3199 
3200 	spin_lock(&fs_info->delayed_iput_lock);
3201 	list_splice_init(&fs_info->delayed_iputs, &list);
3202 	spin_unlock(&fs_info->delayed_iput_lock);
3203 
3204 	while (!list_empty(&list)) {
3205 		delayed = list_entry(list.next, struct delayed_iput, list);
3206 		list_del(&delayed->list);
3207 		iput(delayed->inode);
3208 		kfree(delayed);
3209 	}
3210 }
3211 
3212 /*
3213  * This is called in transaction commit time. If there are no orphan
3214  * files in the subvolume, it removes orphan item and frees block_rsv
3215  * structure.
3216  */
btrfs_orphan_commit_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)3217 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3218 			      struct btrfs_root *root)
3219 {
3220 	struct btrfs_block_rsv *block_rsv;
3221 	int ret;
3222 
3223 	if (atomic_read(&root->orphan_inodes) ||
3224 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3225 		return;
3226 
3227 	spin_lock(&root->orphan_lock);
3228 	if (atomic_read(&root->orphan_inodes)) {
3229 		spin_unlock(&root->orphan_lock);
3230 		return;
3231 	}
3232 
3233 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3234 		spin_unlock(&root->orphan_lock);
3235 		return;
3236 	}
3237 
3238 	block_rsv = root->orphan_block_rsv;
3239 	root->orphan_block_rsv = NULL;
3240 	spin_unlock(&root->orphan_lock);
3241 
3242 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3243 	    btrfs_root_refs(&root->root_item) > 0) {
3244 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3245 					    root->root_key.objectid);
3246 		if (ret)
3247 			btrfs_abort_transaction(trans, root, ret);
3248 		else
3249 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3250 				  &root->state);
3251 	}
3252 
3253 	if (block_rsv) {
3254 		WARN_ON(block_rsv->size > 0);
3255 		btrfs_free_block_rsv(root, block_rsv);
3256 	}
3257 }
3258 
3259 /*
3260  * This creates an orphan entry for the given inode in case something goes
3261  * wrong in the middle of an unlink/truncate.
3262  *
3263  * NOTE: caller of this function should reserve 5 units of metadata for
3264  *	 this function.
3265  */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct inode * inode)3266 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3267 {
3268 	struct btrfs_root *root = BTRFS_I(inode)->root;
3269 	struct btrfs_block_rsv *block_rsv = NULL;
3270 	int reserve = 0;
3271 	int insert = 0;
3272 	int ret;
3273 
3274 	if (!root->orphan_block_rsv) {
3275 		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3276 		if (!block_rsv)
3277 			return -ENOMEM;
3278 	}
3279 
3280 	spin_lock(&root->orphan_lock);
3281 	if (!root->orphan_block_rsv) {
3282 		root->orphan_block_rsv = block_rsv;
3283 	} else if (block_rsv) {
3284 		btrfs_free_block_rsv(root, block_rsv);
3285 		block_rsv = NULL;
3286 	}
3287 
3288 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3289 			      &BTRFS_I(inode)->runtime_flags)) {
3290 #if 0
3291 		/*
3292 		 * For proper ENOSPC handling, we should do orphan
3293 		 * cleanup when mounting. But this introduces backward
3294 		 * compatibility issue.
3295 		 */
3296 		if (!xchg(&root->orphan_item_inserted, 1))
3297 			insert = 2;
3298 		else
3299 			insert = 1;
3300 #endif
3301 		insert = 1;
3302 		atomic_inc(&root->orphan_inodes);
3303 	}
3304 
3305 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3306 			      &BTRFS_I(inode)->runtime_flags))
3307 		reserve = 1;
3308 	spin_unlock(&root->orphan_lock);
3309 
3310 	/* grab metadata reservation from transaction handle */
3311 	if (reserve) {
3312 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3313 		BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3314 	}
3315 
3316 	/* insert an orphan item to track this unlinked/truncated file */
3317 	if (insert >= 1) {
3318 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3319 		if (ret) {
3320 			atomic_dec(&root->orphan_inodes);
3321 			if (reserve) {
3322 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3323 					  &BTRFS_I(inode)->runtime_flags);
3324 				btrfs_orphan_release_metadata(inode);
3325 			}
3326 			if (ret != -EEXIST) {
3327 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3328 					  &BTRFS_I(inode)->runtime_flags);
3329 				btrfs_abort_transaction(trans, root, ret);
3330 				return ret;
3331 			}
3332 		}
3333 		ret = 0;
3334 	}
3335 
3336 	/* insert an orphan item to track subvolume contains orphan files */
3337 	if (insert >= 2) {
3338 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3339 					       root->root_key.objectid);
3340 		if (ret && ret != -EEXIST) {
3341 			btrfs_abort_transaction(trans, root, ret);
3342 			return ret;
3343 		}
3344 	}
3345 	return 0;
3346 }
3347 
3348 /*
3349  * We have done the truncate/delete so we can go ahead and remove the orphan
3350  * item for this particular inode.
3351  */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct inode * inode)3352 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3353 			    struct inode *inode)
3354 {
3355 	struct btrfs_root *root = BTRFS_I(inode)->root;
3356 	int delete_item = 0;
3357 	int release_rsv = 0;
3358 	int ret = 0;
3359 
3360 	spin_lock(&root->orphan_lock);
3361 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3362 			       &BTRFS_I(inode)->runtime_flags))
3363 		delete_item = 1;
3364 
3365 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3366 			       &BTRFS_I(inode)->runtime_flags))
3367 		release_rsv = 1;
3368 	spin_unlock(&root->orphan_lock);
3369 
3370 	if (delete_item) {
3371 		atomic_dec(&root->orphan_inodes);
3372 		if (trans)
3373 			ret = btrfs_del_orphan_item(trans, root,
3374 						    btrfs_ino(inode));
3375 	}
3376 
3377 	if (release_rsv)
3378 		btrfs_orphan_release_metadata(inode);
3379 
3380 	return ret;
3381 }
3382 
3383 /*
3384  * this cleans up any orphans that may be left on the list from the last use
3385  * of this root.
3386  */
btrfs_orphan_cleanup(struct btrfs_root * root)3387 int btrfs_orphan_cleanup(struct btrfs_root *root)
3388 {
3389 	struct btrfs_path *path;
3390 	struct extent_buffer *leaf;
3391 	struct btrfs_key key, found_key;
3392 	struct btrfs_trans_handle *trans;
3393 	struct inode *inode;
3394 	u64 last_objectid = 0;
3395 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3396 
3397 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3398 		return 0;
3399 
3400 	path = btrfs_alloc_path();
3401 	if (!path) {
3402 		ret = -ENOMEM;
3403 		goto out;
3404 	}
3405 	path->reada = -1;
3406 
3407 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3408 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3409 	key.offset = (u64)-1;
3410 
3411 	while (1) {
3412 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3413 		if (ret < 0)
3414 			goto out;
3415 
3416 		/*
3417 		 * if ret == 0 means we found what we were searching for, which
3418 		 * is weird, but possible, so only screw with path if we didn't
3419 		 * find the key and see if we have stuff that matches
3420 		 */
3421 		if (ret > 0) {
3422 			ret = 0;
3423 			if (path->slots[0] == 0)
3424 				break;
3425 			path->slots[0]--;
3426 		}
3427 
3428 		/* pull out the item */
3429 		leaf = path->nodes[0];
3430 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3431 
3432 		/* make sure the item matches what we want */
3433 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3434 			break;
3435 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3436 			break;
3437 
3438 		/* release the path since we're done with it */
3439 		btrfs_release_path(path);
3440 
3441 		/*
3442 		 * this is where we are basically btrfs_lookup, without the
3443 		 * crossing root thing.  we store the inode number in the
3444 		 * offset of the orphan item.
3445 		 */
3446 
3447 		if (found_key.offset == last_objectid) {
3448 			btrfs_err(root->fs_info,
3449 				"Error removing orphan entry, stopping orphan cleanup");
3450 			ret = -EINVAL;
3451 			goto out;
3452 		}
3453 
3454 		last_objectid = found_key.offset;
3455 
3456 		found_key.objectid = found_key.offset;
3457 		found_key.type = BTRFS_INODE_ITEM_KEY;
3458 		found_key.offset = 0;
3459 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3460 		ret = PTR_ERR_OR_ZERO(inode);
3461 		if (ret && ret != -ESTALE)
3462 			goto out;
3463 
3464 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
3465 			struct btrfs_root *dead_root;
3466 			struct btrfs_fs_info *fs_info = root->fs_info;
3467 			int is_dead_root = 0;
3468 
3469 			/*
3470 			 * this is an orphan in the tree root. Currently these
3471 			 * could come from 2 sources:
3472 			 *  a) a snapshot deletion in progress
3473 			 *  b) a free space cache inode
3474 			 * We need to distinguish those two, as the snapshot
3475 			 * orphan must not get deleted.
3476 			 * find_dead_roots already ran before us, so if this
3477 			 * is a snapshot deletion, we should find the root
3478 			 * in the dead_roots list
3479 			 */
3480 			spin_lock(&fs_info->trans_lock);
3481 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3482 					    root_list) {
3483 				if (dead_root->root_key.objectid ==
3484 				    found_key.objectid) {
3485 					is_dead_root = 1;
3486 					break;
3487 				}
3488 			}
3489 			spin_unlock(&fs_info->trans_lock);
3490 			if (is_dead_root) {
3491 				/* prevent this orphan from being found again */
3492 				key.offset = found_key.objectid - 1;
3493 				continue;
3494 			}
3495 		}
3496 		/*
3497 		 * Inode is already gone but the orphan item is still there,
3498 		 * kill the orphan item.
3499 		 */
3500 		if (ret == -ESTALE) {
3501 			trans = btrfs_start_transaction(root, 1);
3502 			if (IS_ERR(trans)) {
3503 				ret = PTR_ERR(trans);
3504 				goto out;
3505 			}
3506 			btrfs_debug(root->fs_info, "auto deleting %Lu",
3507 				found_key.objectid);
3508 			ret = btrfs_del_orphan_item(trans, root,
3509 						    found_key.objectid);
3510 			btrfs_end_transaction(trans, root);
3511 			if (ret)
3512 				goto out;
3513 			continue;
3514 		}
3515 
3516 		/*
3517 		 * add this inode to the orphan list so btrfs_orphan_del does
3518 		 * the proper thing when we hit it
3519 		 */
3520 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3521 			&BTRFS_I(inode)->runtime_flags);
3522 		atomic_inc(&root->orphan_inodes);
3523 
3524 		/* if we have links, this was a truncate, lets do that */
3525 		if (inode->i_nlink) {
3526 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3527 				iput(inode);
3528 				continue;
3529 			}
3530 			nr_truncate++;
3531 
3532 			/* 1 for the orphan item deletion. */
3533 			trans = btrfs_start_transaction(root, 1);
3534 			if (IS_ERR(trans)) {
3535 				iput(inode);
3536 				ret = PTR_ERR(trans);
3537 				goto out;
3538 			}
3539 			ret = btrfs_orphan_add(trans, inode);
3540 			btrfs_end_transaction(trans, root);
3541 			if (ret) {
3542 				iput(inode);
3543 				goto out;
3544 			}
3545 
3546 			ret = btrfs_truncate(inode);
3547 			if (ret)
3548 				btrfs_orphan_del(NULL, inode);
3549 		} else {
3550 			nr_unlink++;
3551 		}
3552 
3553 		/* this will do delete_inode and everything for us */
3554 		iput(inode);
3555 		if (ret)
3556 			goto out;
3557 	}
3558 	/* release the path since we're done with it */
3559 	btrfs_release_path(path);
3560 
3561 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3562 
3563 	if (root->orphan_block_rsv)
3564 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3565 					(u64)-1);
3566 
3567 	if (root->orphan_block_rsv ||
3568 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3569 		trans = btrfs_join_transaction(root);
3570 		if (!IS_ERR(trans))
3571 			btrfs_end_transaction(trans, root);
3572 	}
3573 
3574 	if (nr_unlink)
3575 		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3576 	if (nr_truncate)
3577 		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3578 
3579 out:
3580 	if (ret)
3581 		btrfs_err(root->fs_info,
3582 			"could not do orphan cleanup %d", ret);
3583 	btrfs_free_path(path);
3584 	return ret;
3585 }
3586 
3587 /*
3588  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3589  * don't find any xattrs, we know there can't be any acls.
3590  *
3591  * slot is the slot the inode is in, objectid is the objectid of the inode
3592  */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3593 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3594 					  int slot, u64 objectid,
3595 					  int *first_xattr_slot)
3596 {
3597 	u32 nritems = btrfs_header_nritems(leaf);
3598 	struct btrfs_key found_key;
3599 	static u64 xattr_access = 0;
3600 	static u64 xattr_default = 0;
3601 	int scanned = 0;
3602 
3603 	if (!xattr_access) {
3604 		xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3605 					strlen(POSIX_ACL_XATTR_ACCESS));
3606 		xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3607 					strlen(POSIX_ACL_XATTR_DEFAULT));
3608 	}
3609 
3610 	slot++;
3611 	*first_xattr_slot = -1;
3612 	while (slot < nritems) {
3613 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3614 
3615 		/* we found a different objectid, there must not be acls */
3616 		if (found_key.objectid != objectid)
3617 			return 0;
3618 
3619 		/* we found an xattr, assume we've got an acl */
3620 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3621 			if (*first_xattr_slot == -1)
3622 				*first_xattr_slot = slot;
3623 			if (found_key.offset == xattr_access ||
3624 			    found_key.offset == xattr_default)
3625 				return 1;
3626 		}
3627 
3628 		/*
3629 		 * we found a key greater than an xattr key, there can't
3630 		 * be any acls later on
3631 		 */
3632 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3633 			return 0;
3634 
3635 		slot++;
3636 		scanned++;
3637 
3638 		/*
3639 		 * it goes inode, inode backrefs, xattrs, extents,
3640 		 * so if there are a ton of hard links to an inode there can
3641 		 * be a lot of backrefs.  Don't waste time searching too hard,
3642 		 * this is just an optimization
3643 		 */
3644 		if (scanned >= 8)
3645 			break;
3646 	}
3647 	/* we hit the end of the leaf before we found an xattr or
3648 	 * something larger than an xattr.  We have to assume the inode
3649 	 * has acls
3650 	 */
3651 	if (*first_xattr_slot == -1)
3652 		*first_xattr_slot = slot;
3653 	return 1;
3654 }
3655 
3656 /*
3657  * read an inode from the btree into the in-memory inode
3658  */
btrfs_read_locked_inode(struct inode * inode)3659 static void btrfs_read_locked_inode(struct inode *inode)
3660 {
3661 	struct btrfs_path *path;
3662 	struct extent_buffer *leaf;
3663 	struct btrfs_inode_item *inode_item;
3664 	struct btrfs_root *root = BTRFS_I(inode)->root;
3665 	struct btrfs_key location;
3666 	unsigned long ptr;
3667 	int maybe_acls;
3668 	u32 rdev;
3669 	int ret;
3670 	bool filled = false;
3671 	int first_xattr_slot;
3672 
3673 	ret = btrfs_fill_inode(inode, &rdev);
3674 	if (!ret)
3675 		filled = true;
3676 
3677 	path = btrfs_alloc_path();
3678 	if (!path)
3679 		goto make_bad;
3680 
3681 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3682 
3683 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3684 	if (ret)
3685 		goto make_bad;
3686 
3687 	leaf = path->nodes[0];
3688 
3689 	if (filled)
3690 		goto cache_index;
3691 
3692 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3693 				    struct btrfs_inode_item);
3694 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3695 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3696 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3697 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3698 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3699 
3700 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3701 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3702 
3703 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3704 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3705 
3706 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3707 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3708 
3709 	BTRFS_I(inode)->i_otime.tv_sec =
3710 		btrfs_timespec_sec(leaf, &inode_item->otime);
3711 	BTRFS_I(inode)->i_otime.tv_nsec =
3712 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3713 
3714 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3715 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3716 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3717 
3718 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3719 	inode->i_generation = BTRFS_I(inode)->generation;
3720 	inode->i_rdev = 0;
3721 	rdev = btrfs_inode_rdev(leaf, inode_item);
3722 
3723 	BTRFS_I(inode)->index_cnt = (u64)-1;
3724 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3725 
3726 cache_index:
3727 	/*
3728 	 * If we were modified in the current generation and evicted from memory
3729 	 * and then re-read we need to do a full sync since we don't have any
3730 	 * idea about which extents were modified before we were evicted from
3731 	 * cache.
3732 	 *
3733 	 * This is required for both inode re-read from disk and delayed inode
3734 	 * in delayed_nodes_tree.
3735 	 */
3736 	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3737 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3738 			&BTRFS_I(inode)->runtime_flags);
3739 
3740 	/*
3741 	 * We don't persist the id of the transaction where an unlink operation
3742 	 * against the inode was last made. So here we assume the inode might
3743 	 * have been evicted, and therefore the exact value of last_unlink_trans
3744 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3745 	 * between the inode and its parent if the inode is fsync'ed and the log
3746 	 * replayed. For example, in the scenario:
3747 	 *
3748 	 * touch mydir/foo
3749 	 * ln mydir/foo mydir/bar
3750 	 * sync
3751 	 * unlink mydir/bar
3752 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3753 	 * xfs_io -c fsync mydir/foo
3754 	 * <power failure>
3755 	 * mount fs, triggers fsync log replay
3756 	 *
3757 	 * We must make sure that when we fsync our inode foo we also log its
3758 	 * parent inode, otherwise after log replay the parent still has the
3759 	 * dentry with the "bar" name but our inode foo has a link count of 1
3760 	 * and doesn't have an inode ref with the name "bar" anymore.
3761 	 *
3762 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3763 	 * but it guarantees correctness at the expense of ocassional full
3764 	 * transaction commits on fsync if our inode is a directory, or if our
3765 	 * inode is not a directory, logging its parent unnecessarily.
3766 	 */
3767 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3768 
3769 	path->slots[0]++;
3770 	if (inode->i_nlink != 1 ||
3771 	    path->slots[0] >= btrfs_header_nritems(leaf))
3772 		goto cache_acl;
3773 
3774 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3775 	if (location.objectid != btrfs_ino(inode))
3776 		goto cache_acl;
3777 
3778 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3779 	if (location.type == BTRFS_INODE_REF_KEY) {
3780 		struct btrfs_inode_ref *ref;
3781 
3782 		ref = (struct btrfs_inode_ref *)ptr;
3783 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3784 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3785 		struct btrfs_inode_extref *extref;
3786 
3787 		extref = (struct btrfs_inode_extref *)ptr;
3788 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3789 								     extref);
3790 	}
3791 cache_acl:
3792 	/*
3793 	 * try to precache a NULL acl entry for files that don't have
3794 	 * any xattrs or acls
3795 	 */
3796 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3797 					   btrfs_ino(inode), &first_xattr_slot);
3798 	if (first_xattr_slot != -1) {
3799 		path->slots[0] = first_xattr_slot;
3800 		ret = btrfs_load_inode_props(inode, path);
3801 		if (ret)
3802 			btrfs_err(root->fs_info,
3803 				  "error loading props for ino %llu (root %llu): %d",
3804 				  btrfs_ino(inode),
3805 				  root->root_key.objectid, ret);
3806 	}
3807 	btrfs_free_path(path);
3808 
3809 	if (!maybe_acls)
3810 		cache_no_acl(inode);
3811 
3812 	switch (inode->i_mode & S_IFMT) {
3813 	case S_IFREG:
3814 		inode->i_mapping->a_ops = &btrfs_aops;
3815 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3816 		inode->i_fop = &btrfs_file_operations;
3817 		inode->i_op = &btrfs_file_inode_operations;
3818 		break;
3819 	case S_IFDIR:
3820 		inode->i_fop = &btrfs_dir_file_operations;
3821 		if (root == root->fs_info->tree_root)
3822 			inode->i_op = &btrfs_dir_ro_inode_operations;
3823 		else
3824 			inode->i_op = &btrfs_dir_inode_operations;
3825 		break;
3826 	case S_IFLNK:
3827 		inode->i_op = &btrfs_symlink_inode_operations;
3828 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3829 		break;
3830 	default:
3831 		inode->i_op = &btrfs_special_inode_operations;
3832 		init_special_inode(inode, inode->i_mode, rdev);
3833 		break;
3834 	}
3835 
3836 	btrfs_update_iflags(inode);
3837 	return;
3838 
3839 make_bad:
3840 	btrfs_free_path(path);
3841 	make_bad_inode(inode);
3842 }
3843 
3844 /*
3845  * given a leaf and an inode, copy the inode fields into the leaf
3846  */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)3847 static void fill_inode_item(struct btrfs_trans_handle *trans,
3848 			    struct extent_buffer *leaf,
3849 			    struct btrfs_inode_item *item,
3850 			    struct inode *inode)
3851 {
3852 	struct btrfs_map_token token;
3853 
3854 	btrfs_init_map_token(&token);
3855 
3856 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3857 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3858 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3859 				   &token);
3860 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3861 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3862 
3863 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3864 				     inode->i_atime.tv_sec, &token);
3865 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3866 				      inode->i_atime.tv_nsec, &token);
3867 
3868 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3869 				     inode->i_mtime.tv_sec, &token);
3870 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3871 				      inode->i_mtime.tv_nsec, &token);
3872 
3873 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3874 				     inode->i_ctime.tv_sec, &token);
3875 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3876 				      inode->i_ctime.tv_nsec, &token);
3877 
3878 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3879 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3880 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3881 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3882 
3883 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3884 				     &token);
3885 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3886 					 &token);
3887 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3888 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3889 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3890 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3891 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3892 }
3893 
3894 /*
3895  * copy everything in the in-memory inode into the btree.
3896  */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3897 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3898 				struct btrfs_root *root, struct inode *inode)
3899 {
3900 	struct btrfs_inode_item *inode_item;
3901 	struct btrfs_path *path;
3902 	struct extent_buffer *leaf;
3903 	int ret;
3904 
3905 	path = btrfs_alloc_path();
3906 	if (!path)
3907 		return -ENOMEM;
3908 
3909 	path->leave_spinning = 1;
3910 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3911 				 1);
3912 	if (ret) {
3913 		if (ret > 0)
3914 			ret = -ENOENT;
3915 		goto failed;
3916 	}
3917 
3918 	leaf = path->nodes[0];
3919 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3920 				    struct btrfs_inode_item);
3921 
3922 	fill_inode_item(trans, leaf, inode_item, inode);
3923 	btrfs_mark_buffer_dirty(leaf);
3924 	btrfs_set_inode_last_trans(trans, inode);
3925 	ret = 0;
3926 failed:
3927 	btrfs_free_path(path);
3928 	return ret;
3929 }
3930 
3931 /*
3932  * copy everything in the in-memory inode into the btree.
3933  */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3934 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3935 				struct btrfs_root *root, struct inode *inode)
3936 {
3937 	int ret;
3938 
3939 	/*
3940 	 * If the inode is a free space inode, we can deadlock during commit
3941 	 * if we put it into the delayed code.
3942 	 *
3943 	 * The data relocation inode should also be directly updated
3944 	 * without delay
3945 	 */
3946 	if (!btrfs_is_free_space_inode(inode)
3947 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3948 	    && !root->fs_info->log_root_recovering) {
3949 		btrfs_update_root_times(trans, root);
3950 
3951 		ret = btrfs_delayed_update_inode(trans, root, inode);
3952 		if (!ret)
3953 			btrfs_set_inode_last_trans(trans, inode);
3954 		return ret;
3955 	}
3956 
3957 	return btrfs_update_inode_item(trans, root, inode);
3958 }
3959 
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3960 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3961 					 struct btrfs_root *root,
3962 					 struct inode *inode)
3963 {
3964 	int ret;
3965 
3966 	ret = btrfs_update_inode(trans, root, inode);
3967 	if (ret == -ENOSPC)
3968 		return btrfs_update_inode_item(trans, root, inode);
3969 	return ret;
3970 }
3971 
3972 /*
3973  * unlink helper that gets used here in inode.c and in the tree logging
3974  * recovery code.  It remove a link in a directory with a given name, and
3975  * also drops the back refs in the inode to the directory
3976  */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct inode * inode,const char * name,int name_len)3977 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3978 				struct btrfs_root *root,
3979 				struct inode *dir, struct inode *inode,
3980 				const char *name, int name_len)
3981 {
3982 	struct btrfs_path *path;
3983 	int ret = 0;
3984 	struct extent_buffer *leaf;
3985 	struct btrfs_dir_item *di;
3986 	struct btrfs_key key;
3987 	u64 index;
3988 	u64 ino = btrfs_ino(inode);
3989 	u64 dir_ino = btrfs_ino(dir);
3990 
3991 	path = btrfs_alloc_path();
3992 	if (!path) {
3993 		ret = -ENOMEM;
3994 		goto out;
3995 	}
3996 
3997 	path->leave_spinning = 1;
3998 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3999 				    name, name_len, -1);
4000 	if (IS_ERR(di)) {
4001 		ret = PTR_ERR(di);
4002 		goto err;
4003 	}
4004 	if (!di) {
4005 		ret = -ENOENT;
4006 		goto err;
4007 	}
4008 	leaf = path->nodes[0];
4009 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4010 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4011 	if (ret)
4012 		goto err;
4013 	btrfs_release_path(path);
4014 
4015 	/*
4016 	 * If we don't have dir index, we have to get it by looking up
4017 	 * the inode ref, since we get the inode ref, remove it directly,
4018 	 * it is unnecessary to do delayed deletion.
4019 	 *
4020 	 * But if we have dir index, needn't search inode ref to get it.
4021 	 * Since the inode ref is close to the inode item, it is better
4022 	 * that we delay to delete it, and just do this deletion when
4023 	 * we update the inode item.
4024 	 */
4025 	if (BTRFS_I(inode)->dir_index) {
4026 		ret = btrfs_delayed_delete_inode_ref(inode);
4027 		if (!ret) {
4028 			index = BTRFS_I(inode)->dir_index;
4029 			goto skip_backref;
4030 		}
4031 	}
4032 
4033 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4034 				  dir_ino, &index);
4035 	if (ret) {
4036 		btrfs_info(root->fs_info,
4037 			"failed to delete reference to %.*s, inode %llu parent %llu",
4038 			name_len, name, ino, dir_ino);
4039 		btrfs_abort_transaction(trans, root, ret);
4040 		goto err;
4041 	}
4042 skip_backref:
4043 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4044 	if (ret) {
4045 		btrfs_abort_transaction(trans, root, ret);
4046 		goto err;
4047 	}
4048 
4049 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
4050 					 inode, dir_ino);
4051 	if (ret != 0 && ret != -ENOENT) {
4052 		btrfs_abort_transaction(trans, root, ret);
4053 		goto err;
4054 	}
4055 
4056 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4057 					   dir, index);
4058 	if (ret == -ENOENT)
4059 		ret = 0;
4060 	else if (ret)
4061 		btrfs_abort_transaction(trans, root, ret);
4062 err:
4063 	btrfs_free_path(path);
4064 	if (ret)
4065 		goto out;
4066 
4067 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4068 	inode_inc_iversion(inode);
4069 	inode_inc_iversion(dir);
4070 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4071 	ret = btrfs_update_inode(trans, root, dir);
4072 out:
4073 	return ret;
4074 }
4075 
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct inode * inode,const char * name,int name_len)4076 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4077 		       struct btrfs_root *root,
4078 		       struct inode *dir, struct inode *inode,
4079 		       const char *name, int name_len)
4080 {
4081 	int ret;
4082 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4083 	if (!ret) {
4084 		drop_nlink(inode);
4085 		ret = btrfs_update_inode(trans, root, inode);
4086 	}
4087 	return ret;
4088 }
4089 
4090 /*
4091  * helper to start transaction for unlink and rmdir.
4092  *
4093  * unlink and rmdir are special in btrfs, they do not always free space, so
4094  * if we cannot make our reservations the normal way try and see if there is
4095  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4096  * allow the unlink to occur.
4097  */
__unlink_start_trans(struct inode * dir)4098 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4099 {
4100 	struct btrfs_root *root = BTRFS_I(dir)->root;
4101 
4102 	/*
4103 	 * 1 for the possible orphan item
4104 	 * 1 for the dir item
4105 	 * 1 for the dir index
4106 	 * 1 for the inode ref
4107 	 * 1 for the inode
4108 	 */
4109 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4110 }
4111 
btrfs_unlink(struct inode * dir,struct dentry * dentry)4112 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4113 {
4114 	struct btrfs_root *root = BTRFS_I(dir)->root;
4115 	struct btrfs_trans_handle *trans;
4116 	struct inode *inode = d_inode(dentry);
4117 	int ret;
4118 
4119 	trans = __unlink_start_trans(dir);
4120 	if (IS_ERR(trans))
4121 		return PTR_ERR(trans);
4122 
4123 	btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4124 
4125 	ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4126 				 dentry->d_name.name, dentry->d_name.len);
4127 	if (ret)
4128 		goto out;
4129 
4130 	if (inode->i_nlink == 0) {
4131 		ret = btrfs_orphan_add(trans, inode);
4132 		if (ret)
4133 			goto out;
4134 	}
4135 
4136 out:
4137 	btrfs_end_transaction(trans, root);
4138 	btrfs_btree_balance_dirty(root);
4139 	return ret;
4140 }
4141 
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,u64 objectid,const char * name,int name_len)4142 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4143 			struct btrfs_root *root,
4144 			struct inode *dir, u64 objectid,
4145 			const char *name, int name_len)
4146 {
4147 	struct btrfs_path *path;
4148 	struct extent_buffer *leaf;
4149 	struct btrfs_dir_item *di;
4150 	struct btrfs_key key;
4151 	u64 index;
4152 	int ret;
4153 	u64 dir_ino = btrfs_ino(dir);
4154 
4155 	path = btrfs_alloc_path();
4156 	if (!path)
4157 		return -ENOMEM;
4158 
4159 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4160 				   name, name_len, -1);
4161 	if (IS_ERR_OR_NULL(di)) {
4162 		if (!di)
4163 			ret = -ENOENT;
4164 		else
4165 			ret = PTR_ERR(di);
4166 		goto out;
4167 	}
4168 
4169 	leaf = path->nodes[0];
4170 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4171 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4172 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4173 	if (ret) {
4174 		btrfs_abort_transaction(trans, root, ret);
4175 		goto out;
4176 	}
4177 	btrfs_release_path(path);
4178 
4179 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4180 				 objectid, root->root_key.objectid,
4181 				 dir_ino, &index, name, name_len);
4182 	if (ret < 0) {
4183 		if (ret != -ENOENT) {
4184 			btrfs_abort_transaction(trans, root, ret);
4185 			goto out;
4186 		}
4187 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4188 						 name, name_len);
4189 		if (IS_ERR_OR_NULL(di)) {
4190 			if (!di)
4191 				ret = -ENOENT;
4192 			else
4193 				ret = PTR_ERR(di);
4194 			btrfs_abort_transaction(trans, root, ret);
4195 			goto out;
4196 		}
4197 
4198 		leaf = path->nodes[0];
4199 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4200 		btrfs_release_path(path);
4201 		index = key.offset;
4202 	}
4203 	btrfs_release_path(path);
4204 
4205 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4206 	if (ret) {
4207 		btrfs_abort_transaction(trans, root, ret);
4208 		goto out;
4209 	}
4210 
4211 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4212 	inode_inc_iversion(dir);
4213 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4214 	ret = btrfs_update_inode_fallback(trans, root, dir);
4215 	if (ret)
4216 		btrfs_abort_transaction(trans, root, ret);
4217 out:
4218 	btrfs_free_path(path);
4219 	return ret;
4220 }
4221 
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4222 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4223 {
4224 	struct inode *inode = d_inode(dentry);
4225 	int err = 0;
4226 	struct btrfs_root *root = BTRFS_I(dir)->root;
4227 	struct btrfs_trans_handle *trans;
4228 
4229 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4230 		return -ENOTEMPTY;
4231 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4232 		return -EPERM;
4233 
4234 	trans = __unlink_start_trans(dir);
4235 	if (IS_ERR(trans))
4236 		return PTR_ERR(trans);
4237 
4238 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4239 		err = btrfs_unlink_subvol(trans, root, dir,
4240 					  BTRFS_I(inode)->location.objectid,
4241 					  dentry->d_name.name,
4242 					  dentry->d_name.len);
4243 		goto out;
4244 	}
4245 
4246 	err = btrfs_orphan_add(trans, inode);
4247 	if (err)
4248 		goto out;
4249 
4250 	/* now the directory is empty */
4251 	err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4252 				 dentry->d_name.name, dentry->d_name.len);
4253 	if (!err)
4254 		btrfs_i_size_write(inode, 0);
4255 out:
4256 	btrfs_end_transaction(trans, root);
4257 	btrfs_btree_balance_dirty(root);
4258 
4259 	return err;
4260 }
4261 
truncate_space_check(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytes_deleted)4262 static int truncate_space_check(struct btrfs_trans_handle *trans,
4263 				struct btrfs_root *root,
4264 				u64 bytes_deleted)
4265 {
4266 	int ret;
4267 
4268 	bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4269 	ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4270 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4271 	if (!ret)
4272 		trans->bytes_reserved += bytes_deleted;
4273 	return ret;
4274 
4275 }
4276 
truncate_inline_extent(struct inode * inode,struct btrfs_path * path,struct btrfs_key * found_key,const u64 item_end,const u64 new_size)4277 static int truncate_inline_extent(struct inode *inode,
4278 				  struct btrfs_path *path,
4279 				  struct btrfs_key *found_key,
4280 				  const u64 item_end,
4281 				  const u64 new_size)
4282 {
4283 	struct extent_buffer *leaf = path->nodes[0];
4284 	int slot = path->slots[0];
4285 	struct btrfs_file_extent_item *fi;
4286 	u32 size = (u32)(new_size - found_key->offset);
4287 	struct btrfs_root *root = BTRFS_I(inode)->root;
4288 
4289 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4290 
4291 	if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4292 		loff_t offset = new_size;
4293 		loff_t page_end = ALIGN(offset, PAGE_CACHE_SIZE);
4294 
4295 		/*
4296 		 * Zero out the remaining of the last page of our inline extent,
4297 		 * instead of directly truncating our inline extent here - that
4298 		 * would be much more complex (decompressing all the data, then
4299 		 * compressing the truncated data, which might be bigger than
4300 		 * the size of the inline extent, resize the extent, etc).
4301 		 * We release the path because to get the page we might need to
4302 		 * read the extent item from disk (data not in the page cache).
4303 		 */
4304 		btrfs_release_path(path);
4305 		return btrfs_truncate_page(inode, offset, page_end - offset, 0);
4306 	}
4307 
4308 	btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4309 	size = btrfs_file_extent_calc_inline_size(size);
4310 	btrfs_truncate_item(root, path, size, 1);
4311 
4312 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4313 		inode_sub_bytes(inode, item_end + 1 - new_size);
4314 
4315 	return 0;
4316 }
4317 
4318 /*
4319  * this can truncate away extent items, csum items and directory items.
4320  * It starts at a high offset and removes keys until it can't find
4321  * any higher than new_size
4322  *
4323  * csum items that cross the new i_size are truncated to the new size
4324  * as well.
4325  *
4326  * min_type is the minimum key type to truncate down to.  If set to 0, this
4327  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4328  */
btrfs_truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 new_size,u32 min_type)4329 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4330 			       struct btrfs_root *root,
4331 			       struct inode *inode,
4332 			       u64 new_size, u32 min_type)
4333 {
4334 	struct btrfs_path *path;
4335 	struct extent_buffer *leaf;
4336 	struct btrfs_file_extent_item *fi;
4337 	struct btrfs_key key;
4338 	struct btrfs_key found_key;
4339 	u64 extent_start = 0;
4340 	u64 extent_num_bytes = 0;
4341 	u64 extent_offset = 0;
4342 	u64 item_end = 0;
4343 	u64 last_size = new_size;
4344 	u32 found_type = (u8)-1;
4345 	int found_extent;
4346 	int del_item;
4347 	int pending_del_nr = 0;
4348 	int pending_del_slot = 0;
4349 	int extent_type = -1;
4350 	int ret;
4351 	int err = 0;
4352 	u64 ino = btrfs_ino(inode);
4353 	u64 bytes_deleted = 0;
4354 	bool be_nice = 0;
4355 	bool should_throttle = 0;
4356 	bool should_end = 0;
4357 
4358 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4359 
4360 	/*
4361 	 * for non-free space inodes and ref cows, we want to back off from
4362 	 * time to time
4363 	 */
4364 	if (!btrfs_is_free_space_inode(inode) &&
4365 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4366 		be_nice = 1;
4367 
4368 	path = btrfs_alloc_path();
4369 	if (!path)
4370 		return -ENOMEM;
4371 	path->reada = -1;
4372 
4373 	/*
4374 	 * We want to drop from the next block forward in case this new size is
4375 	 * not block aligned since we will be keeping the last block of the
4376 	 * extent just the way it is.
4377 	 */
4378 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4379 	    root == root->fs_info->tree_root)
4380 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4381 					root->sectorsize), (u64)-1, 0);
4382 
4383 	/*
4384 	 * This function is also used to drop the items in the log tree before
4385 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4386 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4387 	 * items.
4388 	 */
4389 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4390 		btrfs_kill_delayed_inode_items(inode);
4391 
4392 	key.objectid = ino;
4393 	key.offset = (u64)-1;
4394 	key.type = (u8)-1;
4395 
4396 search_again:
4397 	/*
4398 	 * with a 16K leaf size and 128MB extents, you can actually queue
4399 	 * up a huge file in a single leaf.  Most of the time that
4400 	 * bytes_deleted is > 0, it will be huge by the time we get here
4401 	 */
4402 	if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4403 		if (btrfs_should_end_transaction(trans, root)) {
4404 			err = -EAGAIN;
4405 			goto error;
4406 		}
4407 	}
4408 
4409 
4410 	path->leave_spinning = 1;
4411 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4412 	if (ret < 0) {
4413 		err = ret;
4414 		goto out;
4415 	}
4416 
4417 	if (ret > 0) {
4418 		/* there are no items in the tree for us to truncate, we're
4419 		 * done
4420 		 */
4421 		if (path->slots[0] == 0)
4422 			goto out;
4423 		path->slots[0]--;
4424 	}
4425 
4426 	while (1) {
4427 		fi = NULL;
4428 		leaf = path->nodes[0];
4429 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4430 		found_type = found_key.type;
4431 
4432 		if (found_key.objectid != ino)
4433 			break;
4434 
4435 		if (found_type < min_type)
4436 			break;
4437 
4438 		item_end = found_key.offset;
4439 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4440 			fi = btrfs_item_ptr(leaf, path->slots[0],
4441 					    struct btrfs_file_extent_item);
4442 			extent_type = btrfs_file_extent_type(leaf, fi);
4443 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4444 				item_end +=
4445 				    btrfs_file_extent_num_bytes(leaf, fi);
4446 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4447 				item_end += btrfs_file_extent_inline_len(leaf,
4448 							 path->slots[0], fi);
4449 			}
4450 			item_end--;
4451 		}
4452 		if (found_type > min_type) {
4453 			del_item = 1;
4454 		} else {
4455 			if (item_end < new_size) {
4456 				/*
4457 				 * With NO_HOLES mode, for the following mapping
4458 				 *
4459 				 * [0-4k][hole][8k-12k]
4460 				 *
4461 				 * if truncating isize down to 6k, it ends up
4462 				 * isize being 8k.
4463 				 */
4464 				if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
4465 					last_size = new_size;
4466 				break;
4467 			}
4468 			if (found_key.offset >= new_size)
4469 				del_item = 1;
4470 			else
4471 				del_item = 0;
4472 		}
4473 		found_extent = 0;
4474 		/* FIXME, shrink the extent if the ref count is only 1 */
4475 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4476 			goto delete;
4477 
4478 		if (del_item)
4479 			last_size = found_key.offset;
4480 		else
4481 			last_size = new_size;
4482 
4483 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4484 			u64 num_dec;
4485 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4486 			if (!del_item) {
4487 				u64 orig_num_bytes =
4488 					btrfs_file_extent_num_bytes(leaf, fi);
4489 				extent_num_bytes = ALIGN(new_size -
4490 						found_key.offset,
4491 						root->sectorsize);
4492 				btrfs_set_file_extent_num_bytes(leaf, fi,
4493 							 extent_num_bytes);
4494 				num_dec = (orig_num_bytes -
4495 					   extent_num_bytes);
4496 				if (test_bit(BTRFS_ROOT_REF_COWS,
4497 					     &root->state) &&
4498 				    extent_start != 0)
4499 					inode_sub_bytes(inode, num_dec);
4500 				btrfs_mark_buffer_dirty(leaf);
4501 			} else {
4502 				extent_num_bytes =
4503 					btrfs_file_extent_disk_num_bytes(leaf,
4504 									 fi);
4505 				extent_offset = found_key.offset -
4506 					btrfs_file_extent_offset(leaf, fi);
4507 
4508 				/* FIXME blocksize != 4096 */
4509 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4510 				if (extent_start != 0) {
4511 					found_extent = 1;
4512 					if (test_bit(BTRFS_ROOT_REF_COWS,
4513 						     &root->state))
4514 						inode_sub_bytes(inode, num_dec);
4515 				}
4516 			}
4517 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4518 			/*
4519 			 * we can't truncate inline items that have had
4520 			 * special encodings
4521 			 */
4522 			if (!del_item &&
4523 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4524 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4525 
4526 				/*
4527 				 * Need to release path in order to truncate a
4528 				 * compressed extent. So delete any accumulated
4529 				 * extent items so far.
4530 				 */
4531 				if (btrfs_file_extent_compression(leaf, fi) !=
4532 				    BTRFS_COMPRESS_NONE && pending_del_nr) {
4533 					err = btrfs_del_items(trans, root, path,
4534 							      pending_del_slot,
4535 							      pending_del_nr);
4536 					if (err) {
4537 						btrfs_abort_transaction(trans,
4538 									root,
4539 									err);
4540 						goto error;
4541 					}
4542 					pending_del_nr = 0;
4543 				}
4544 
4545 				err = truncate_inline_extent(inode, path,
4546 							     &found_key,
4547 							     item_end,
4548 							     new_size);
4549 				if (err) {
4550 					btrfs_abort_transaction(trans,
4551 								root, err);
4552 					goto error;
4553 				}
4554 			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4555 					    &root->state)) {
4556 				inode_sub_bytes(inode, item_end + 1 - new_size);
4557 			}
4558 		}
4559 delete:
4560 		if (del_item) {
4561 			if (!pending_del_nr) {
4562 				/* no pending yet, add ourselves */
4563 				pending_del_slot = path->slots[0];
4564 				pending_del_nr = 1;
4565 			} else if (pending_del_nr &&
4566 				   path->slots[0] + 1 == pending_del_slot) {
4567 				/* hop on the pending chunk */
4568 				pending_del_nr++;
4569 				pending_del_slot = path->slots[0];
4570 			} else {
4571 				BUG();
4572 			}
4573 		} else {
4574 			break;
4575 		}
4576 		should_throttle = 0;
4577 
4578 		if (found_extent &&
4579 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4580 		     root == root->fs_info->tree_root)) {
4581 			btrfs_set_path_blocking(path);
4582 			bytes_deleted += extent_num_bytes;
4583 			ret = btrfs_free_extent(trans, root, extent_start,
4584 						extent_num_bytes, 0,
4585 						btrfs_header_owner(leaf),
4586 						ino, extent_offset);
4587 			BUG_ON(ret);
4588 			if (btrfs_should_throttle_delayed_refs(trans, root))
4589 				btrfs_async_run_delayed_refs(root,
4590 					trans->delayed_ref_updates * 2, 0);
4591 			if (be_nice) {
4592 				if (truncate_space_check(trans, root,
4593 							 extent_num_bytes)) {
4594 					should_end = 1;
4595 				}
4596 				if (btrfs_should_throttle_delayed_refs(trans,
4597 								       root)) {
4598 					should_throttle = 1;
4599 				}
4600 			}
4601 		}
4602 
4603 		if (found_type == BTRFS_INODE_ITEM_KEY)
4604 			break;
4605 
4606 		if (path->slots[0] == 0 ||
4607 		    path->slots[0] != pending_del_slot ||
4608 		    should_throttle || should_end) {
4609 			if (pending_del_nr) {
4610 				ret = btrfs_del_items(trans, root, path,
4611 						pending_del_slot,
4612 						pending_del_nr);
4613 				if (ret) {
4614 					btrfs_abort_transaction(trans,
4615 								root, ret);
4616 					goto error;
4617 				}
4618 				pending_del_nr = 0;
4619 			}
4620 			btrfs_release_path(path);
4621 			if (should_throttle) {
4622 				unsigned long updates = trans->delayed_ref_updates;
4623 				if (updates) {
4624 					trans->delayed_ref_updates = 0;
4625 					ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4626 					if (ret && !err)
4627 						err = ret;
4628 				}
4629 			}
4630 			/*
4631 			 * if we failed to refill our space rsv, bail out
4632 			 * and let the transaction restart
4633 			 */
4634 			if (should_end) {
4635 				err = -EAGAIN;
4636 				goto error;
4637 			}
4638 			goto search_again;
4639 		} else {
4640 			path->slots[0]--;
4641 		}
4642 	}
4643 out:
4644 	if (pending_del_nr) {
4645 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4646 				      pending_del_nr);
4647 		if (ret)
4648 			btrfs_abort_transaction(trans, root, ret);
4649 	}
4650 error:
4651 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4652 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4653 
4654 	btrfs_free_path(path);
4655 
4656 	if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4657 		unsigned long updates = trans->delayed_ref_updates;
4658 		if (updates) {
4659 			trans->delayed_ref_updates = 0;
4660 			ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4661 			if (ret && !err)
4662 				err = ret;
4663 		}
4664 	}
4665 	return err;
4666 }
4667 
4668 /*
4669  * btrfs_truncate_page - read, zero a chunk and write a page
4670  * @inode - inode that we're zeroing
4671  * @from - the offset to start zeroing
4672  * @len - the length to zero, 0 to zero the entire range respective to the
4673  *	offset
4674  * @front - zero up to the offset instead of from the offset on
4675  *
4676  * This will find the page for the "from" offset and cow the page and zero the
4677  * part we want to zero.  This is used with truncate and hole punching.
4678  */
btrfs_truncate_page(struct inode * inode,loff_t from,loff_t len,int front)4679 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4680 			int front)
4681 {
4682 	struct address_space *mapping = inode->i_mapping;
4683 	struct btrfs_root *root = BTRFS_I(inode)->root;
4684 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4685 	struct btrfs_ordered_extent *ordered;
4686 	struct extent_state *cached_state = NULL;
4687 	char *kaddr;
4688 	u32 blocksize = root->sectorsize;
4689 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
4690 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
4691 	struct page *page;
4692 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4693 	int ret = 0;
4694 	u64 page_start;
4695 	u64 page_end;
4696 
4697 	if ((offset & (blocksize - 1)) == 0 &&
4698 	    (!len || ((len & (blocksize - 1)) == 0)))
4699 		goto out;
4700 	ret = btrfs_delalloc_reserve_space(inode,
4701 			round_down(from, PAGE_CACHE_SIZE), PAGE_CACHE_SIZE);
4702 	if (ret)
4703 		goto out;
4704 
4705 again:
4706 	page = find_or_create_page(mapping, index, mask);
4707 	if (!page) {
4708 		btrfs_delalloc_release_space(inode,
4709 				round_down(from, PAGE_CACHE_SIZE),
4710 				PAGE_CACHE_SIZE);
4711 		ret = -ENOMEM;
4712 		goto out;
4713 	}
4714 
4715 	page_start = page_offset(page);
4716 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4717 
4718 	if (!PageUptodate(page)) {
4719 		ret = btrfs_readpage(NULL, page);
4720 		lock_page(page);
4721 		if (page->mapping != mapping) {
4722 			unlock_page(page);
4723 			page_cache_release(page);
4724 			goto again;
4725 		}
4726 		if (!PageUptodate(page)) {
4727 			ret = -EIO;
4728 			goto out_unlock;
4729 		}
4730 	}
4731 	wait_on_page_writeback(page);
4732 
4733 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4734 	set_page_extent_mapped(page);
4735 
4736 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4737 	if (ordered) {
4738 		unlock_extent_cached(io_tree, page_start, page_end,
4739 				     &cached_state, GFP_NOFS);
4740 		unlock_page(page);
4741 		page_cache_release(page);
4742 		btrfs_start_ordered_extent(inode, ordered, 1);
4743 		btrfs_put_ordered_extent(ordered);
4744 		goto again;
4745 	}
4746 
4747 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4748 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4749 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4750 			  0, 0, &cached_state, GFP_NOFS);
4751 
4752 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4753 					&cached_state);
4754 	if (ret) {
4755 		unlock_extent_cached(io_tree, page_start, page_end,
4756 				     &cached_state, GFP_NOFS);
4757 		goto out_unlock;
4758 	}
4759 
4760 	if (offset != PAGE_CACHE_SIZE) {
4761 		if (!len)
4762 			len = PAGE_CACHE_SIZE - offset;
4763 		kaddr = kmap(page);
4764 		if (front)
4765 			memset(kaddr, 0, offset);
4766 		else
4767 			memset(kaddr + offset, 0, len);
4768 		flush_dcache_page(page);
4769 		kunmap(page);
4770 	}
4771 	ClearPageChecked(page);
4772 	set_page_dirty(page);
4773 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4774 			     GFP_NOFS);
4775 
4776 out_unlock:
4777 	if (ret)
4778 		btrfs_delalloc_release_space(inode, page_start,
4779 					     PAGE_CACHE_SIZE);
4780 	unlock_page(page);
4781 	page_cache_release(page);
4782 out:
4783 	return ret;
4784 }
4785 
maybe_insert_hole(struct btrfs_root * root,struct inode * inode,u64 offset,u64 len)4786 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4787 			     u64 offset, u64 len)
4788 {
4789 	struct btrfs_trans_handle *trans;
4790 	int ret;
4791 
4792 	/*
4793 	 * Still need to make sure the inode looks like it's been updated so
4794 	 * that any holes get logged if we fsync.
4795 	 */
4796 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4797 		BTRFS_I(inode)->last_trans = root->fs_info->generation;
4798 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4799 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4800 		return 0;
4801 	}
4802 
4803 	/*
4804 	 * 1 - for the one we're dropping
4805 	 * 1 - for the one we're adding
4806 	 * 1 - for updating the inode.
4807 	 */
4808 	trans = btrfs_start_transaction(root, 3);
4809 	if (IS_ERR(trans))
4810 		return PTR_ERR(trans);
4811 
4812 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4813 	if (ret) {
4814 		btrfs_abort_transaction(trans, root, ret);
4815 		btrfs_end_transaction(trans, root);
4816 		return ret;
4817 	}
4818 
4819 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4820 				       0, 0, len, 0, len, 0, 0, 0);
4821 	if (ret)
4822 		btrfs_abort_transaction(trans, root, ret);
4823 	else
4824 		btrfs_update_inode(trans, root, inode);
4825 	btrfs_end_transaction(trans, root);
4826 	return ret;
4827 }
4828 
4829 /*
4830  * This function puts in dummy file extents for the area we're creating a hole
4831  * for.  So if we are truncating this file to a larger size we need to insert
4832  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4833  * the range between oldsize and size
4834  */
btrfs_cont_expand(struct inode * inode,loff_t oldsize,loff_t size)4835 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4836 {
4837 	struct btrfs_root *root = BTRFS_I(inode)->root;
4838 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4839 	struct extent_map *em = NULL;
4840 	struct extent_state *cached_state = NULL;
4841 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4842 	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4843 	u64 block_end = ALIGN(size, root->sectorsize);
4844 	u64 last_byte;
4845 	u64 cur_offset;
4846 	u64 hole_size;
4847 	int err = 0;
4848 
4849 	/*
4850 	 * If our size started in the middle of a page we need to zero out the
4851 	 * rest of the page before we expand the i_size, otherwise we could
4852 	 * expose stale data.
4853 	 */
4854 	err = btrfs_truncate_page(inode, oldsize, 0, 0);
4855 	if (err)
4856 		return err;
4857 
4858 	if (size <= hole_start)
4859 		return 0;
4860 
4861 	while (1) {
4862 		struct btrfs_ordered_extent *ordered;
4863 
4864 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4865 				 &cached_state);
4866 		ordered = btrfs_lookup_ordered_range(inode, hole_start,
4867 						     block_end - hole_start);
4868 		if (!ordered)
4869 			break;
4870 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4871 				     &cached_state, GFP_NOFS);
4872 		btrfs_start_ordered_extent(inode, ordered, 1);
4873 		btrfs_put_ordered_extent(ordered);
4874 	}
4875 
4876 	cur_offset = hole_start;
4877 	while (1) {
4878 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4879 				block_end - cur_offset, 0);
4880 		if (IS_ERR(em)) {
4881 			err = PTR_ERR(em);
4882 			em = NULL;
4883 			break;
4884 		}
4885 		last_byte = min(extent_map_end(em), block_end);
4886 		last_byte = ALIGN(last_byte , root->sectorsize);
4887 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4888 			struct extent_map *hole_em;
4889 			hole_size = last_byte - cur_offset;
4890 
4891 			err = maybe_insert_hole(root, inode, cur_offset,
4892 						hole_size);
4893 			if (err)
4894 				break;
4895 			btrfs_drop_extent_cache(inode, cur_offset,
4896 						cur_offset + hole_size - 1, 0);
4897 			hole_em = alloc_extent_map();
4898 			if (!hole_em) {
4899 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4900 					&BTRFS_I(inode)->runtime_flags);
4901 				goto next;
4902 			}
4903 			hole_em->start = cur_offset;
4904 			hole_em->len = hole_size;
4905 			hole_em->orig_start = cur_offset;
4906 
4907 			hole_em->block_start = EXTENT_MAP_HOLE;
4908 			hole_em->block_len = 0;
4909 			hole_em->orig_block_len = 0;
4910 			hole_em->ram_bytes = hole_size;
4911 			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4912 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4913 			hole_em->generation = root->fs_info->generation;
4914 
4915 			while (1) {
4916 				write_lock(&em_tree->lock);
4917 				err = add_extent_mapping(em_tree, hole_em, 1);
4918 				write_unlock(&em_tree->lock);
4919 				if (err != -EEXIST)
4920 					break;
4921 				btrfs_drop_extent_cache(inode, cur_offset,
4922 							cur_offset +
4923 							hole_size - 1, 0);
4924 			}
4925 			free_extent_map(hole_em);
4926 		}
4927 next:
4928 		free_extent_map(em);
4929 		em = NULL;
4930 		cur_offset = last_byte;
4931 		if (cur_offset >= block_end)
4932 			break;
4933 	}
4934 	free_extent_map(em);
4935 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4936 			     GFP_NOFS);
4937 	return err;
4938 }
4939 
wait_snapshoting_atomic_t(atomic_t * a)4940 static int wait_snapshoting_atomic_t(atomic_t *a)
4941 {
4942 	schedule();
4943 	return 0;
4944 }
4945 
wait_for_snapshot_creation(struct btrfs_root * root)4946 static void wait_for_snapshot_creation(struct btrfs_root *root)
4947 {
4948 	while (true) {
4949 		int ret;
4950 
4951 		ret = btrfs_start_write_no_snapshoting(root);
4952 		if (ret)
4953 			break;
4954 		wait_on_atomic_t(&root->will_be_snapshoted,
4955 				 wait_snapshoting_atomic_t,
4956 				 TASK_UNINTERRUPTIBLE);
4957 	}
4958 }
4959 
btrfs_setsize(struct inode * inode,struct iattr * attr)4960 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4961 {
4962 	struct btrfs_root *root = BTRFS_I(inode)->root;
4963 	struct btrfs_trans_handle *trans;
4964 	loff_t oldsize = i_size_read(inode);
4965 	loff_t newsize = attr->ia_size;
4966 	int mask = attr->ia_valid;
4967 	int ret;
4968 
4969 	/*
4970 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4971 	 * special case where we need to update the times despite not having
4972 	 * these flags set.  For all other operations the VFS set these flags
4973 	 * explicitly if it wants a timestamp update.
4974 	 */
4975 	if (newsize != oldsize) {
4976 		inode_inc_iversion(inode);
4977 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4978 			inode->i_ctime = inode->i_mtime =
4979 				current_fs_time(inode->i_sb);
4980 	}
4981 
4982 	if (newsize > oldsize) {
4983 		truncate_pagecache(inode, newsize);
4984 		/*
4985 		 * Don't do an expanding truncate while snapshoting is ongoing.
4986 		 * This is to ensure the snapshot captures a fully consistent
4987 		 * state of this file - if the snapshot captures this expanding
4988 		 * truncation, it must capture all writes that happened before
4989 		 * this truncation.
4990 		 */
4991 		wait_for_snapshot_creation(root);
4992 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4993 		if (ret) {
4994 			btrfs_end_write_no_snapshoting(root);
4995 			return ret;
4996 		}
4997 
4998 		trans = btrfs_start_transaction(root, 1);
4999 		if (IS_ERR(trans)) {
5000 			btrfs_end_write_no_snapshoting(root);
5001 			return PTR_ERR(trans);
5002 		}
5003 
5004 		i_size_write(inode, newsize);
5005 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5006 		ret = btrfs_update_inode(trans, root, inode);
5007 		btrfs_end_write_no_snapshoting(root);
5008 		btrfs_end_transaction(trans, root);
5009 	} else {
5010 
5011 		/*
5012 		 * We're truncating a file that used to have good data down to
5013 		 * zero. Make sure it gets into the ordered flush list so that
5014 		 * any new writes get down to disk quickly.
5015 		 */
5016 		if (newsize == 0)
5017 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5018 				&BTRFS_I(inode)->runtime_flags);
5019 
5020 		/*
5021 		 * 1 for the orphan item we're going to add
5022 		 * 1 for the orphan item deletion.
5023 		 */
5024 		trans = btrfs_start_transaction(root, 2);
5025 		if (IS_ERR(trans))
5026 			return PTR_ERR(trans);
5027 
5028 		/*
5029 		 * We need to do this in case we fail at _any_ point during the
5030 		 * actual truncate.  Once we do the truncate_setsize we could
5031 		 * invalidate pages which forces any outstanding ordered io to
5032 		 * be instantly completed which will give us extents that need
5033 		 * to be truncated.  If we fail to get an orphan inode down we
5034 		 * could have left over extents that were never meant to live,
5035 		 * so we need to garuntee from this point on that everything
5036 		 * will be consistent.
5037 		 */
5038 		ret = btrfs_orphan_add(trans, inode);
5039 		btrfs_end_transaction(trans, root);
5040 		if (ret)
5041 			return ret;
5042 
5043 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
5044 		truncate_setsize(inode, newsize);
5045 
5046 		/* Disable nonlocked read DIO to avoid the end less truncate */
5047 		btrfs_inode_block_unlocked_dio(inode);
5048 		inode_dio_wait(inode);
5049 		btrfs_inode_resume_unlocked_dio(inode);
5050 
5051 		ret = btrfs_truncate(inode);
5052 		if (ret && inode->i_nlink) {
5053 			int err;
5054 
5055 			/*
5056 			 * failed to truncate, disk_i_size is only adjusted down
5057 			 * as we remove extents, so it should represent the true
5058 			 * size of the inode, so reset the in memory size and
5059 			 * delete our orphan entry.
5060 			 */
5061 			trans = btrfs_join_transaction(root);
5062 			if (IS_ERR(trans)) {
5063 				btrfs_orphan_del(NULL, inode);
5064 				return ret;
5065 			}
5066 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5067 			err = btrfs_orphan_del(trans, inode);
5068 			if (err)
5069 				btrfs_abort_transaction(trans, root, err);
5070 			btrfs_end_transaction(trans, root);
5071 		}
5072 	}
5073 
5074 	return ret;
5075 }
5076 
btrfs_setattr(struct dentry * dentry,struct iattr * attr)5077 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5078 {
5079 	struct inode *inode = d_inode(dentry);
5080 	struct btrfs_root *root = BTRFS_I(inode)->root;
5081 	int err;
5082 
5083 	if (btrfs_root_readonly(root))
5084 		return -EROFS;
5085 
5086 	err = inode_change_ok(inode, attr);
5087 	if (err)
5088 		return err;
5089 
5090 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5091 		err = btrfs_setsize(inode, attr);
5092 		if (err)
5093 			return err;
5094 	}
5095 
5096 	if (attr->ia_valid) {
5097 		setattr_copy(inode, attr);
5098 		inode_inc_iversion(inode);
5099 		err = btrfs_dirty_inode(inode);
5100 
5101 		if (!err && attr->ia_valid & ATTR_MODE)
5102 			err = posix_acl_chmod(inode, inode->i_mode);
5103 	}
5104 
5105 	return err;
5106 }
5107 
5108 /*
5109  * While truncating the inode pages during eviction, we get the VFS calling
5110  * btrfs_invalidatepage() against each page of the inode. This is slow because
5111  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5112  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5113  * extent_state structures over and over, wasting lots of time.
5114  *
5115  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5116  * those expensive operations on a per page basis and do only the ordered io
5117  * finishing, while we release here the extent_map and extent_state structures,
5118  * without the excessive merging and splitting.
5119  */
evict_inode_truncate_pages(struct inode * inode)5120 static void evict_inode_truncate_pages(struct inode *inode)
5121 {
5122 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5123 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5124 	struct rb_node *node;
5125 
5126 	ASSERT(inode->i_state & I_FREEING);
5127 	truncate_inode_pages_final(&inode->i_data);
5128 
5129 	write_lock(&map_tree->lock);
5130 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5131 		struct extent_map *em;
5132 
5133 		node = rb_first(&map_tree->map);
5134 		em = rb_entry(node, struct extent_map, rb_node);
5135 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5136 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5137 		remove_extent_mapping(map_tree, em);
5138 		free_extent_map(em);
5139 		if (need_resched()) {
5140 			write_unlock(&map_tree->lock);
5141 			cond_resched();
5142 			write_lock(&map_tree->lock);
5143 		}
5144 	}
5145 	write_unlock(&map_tree->lock);
5146 
5147 	/*
5148 	 * Keep looping until we have no more ranges in the io tree.
5149 	 * We can have ongoing bios started by readpages (called from readahead)
5150 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5151 	 * still in progress (unlocked the pages in the bio but did not yet
5152 	 * unlocked the ranges in the io tree). Therefore this means some
5153 	 * ranges can still be locked and eviction started because before
5154 	 * submitting those bios, which are executed by a separate task (work
5155 	 * queue kthread), inode references (inode->i_count) were not taken
5156 	 * (which would be dropped in the end io callback of each bio).
5157 	 * Therefore here we effectively end up waiting for those bios and
5158 	 * anyone else holding locked ranges without having bumped the inode's
5159 	 * reference count - if we don't do it, when they access the inode's
5160 	 * io_tree to unlock a range it may be too late, leading to an
5161 	 * use-after-free issue.
5162 	 */
5163 	spin_lock(&io_tree->lock);
5164 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5165 		struct extent_state *state;
5166 		struct extent_state *cached_state = NULL;
5167 		u64 start;
5168 		u64 end;
5169 
5170 		node = rb_first(&io_tree->state);
5171 		state = rb_entry(node, struct extent_state, rb_node);
5172 		start = state->start;
5173 		end = state->end;
5174 		spin_unlock(&io_tree->lock);
5175 
5176 		lock_extent_bits(io_tree, start, end, 0, &cached_state);
5177 
5178 		/*
5179 		 * If still has DELALLOC flag, the extent didn't reach disk,
5180 		 * and its reserved space won't be freed by delayed_ref.
5181 		 * So we need to free its reserved space here.
5182 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5183 		 *
5184 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5185 		 */
5186 		if (state->state & EXTENT_DELALLOC)
5187 			btrfs_qgroup_free_data(inode, start, end - start + 1);
5188 
5189 		clear_extent_bit(io_tree, start, end,
5190 				 EXTENT_LOCKED | EXTENT_DIRTY |
5191 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5192 				 EXTENT_DEFRAG, 1, 1,
5193 				 &cached_state, GFP_NOFS);
5194 
5195 		cond_resched();
5196 		spin_lock(&io_tree->lock);
5197 	}
5198 	spin_unlock(&io_tree->lock);
5199 }
5200 
btrfs_evict_inode(struct inode * inode)5201 void btrfs_evict_inode(struct inode *inode)
5202 {
5203 	struct btrfs_trans_handle *trans;
5204 	struct btrfs_root *root = BTRFS_I(inode)->root;
5205 	struct btrfs_block_rsv *rsv, *global_rsv;
5206 	int steal_from_global = 0;
5207 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5208 	int ret;
5209 
5210 	trace_btrfs_inode_evict(inode);
5211 
5212 	evict_inode_truncate_pages(inode);
5213 
5214 	if (inode->i_nlink &&
5215 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5216 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5217 	     btrfs_is_free_space_inode(inode)))
5218 		goto no_delete;
5219 
5220 	if (is_bad_inode(inode)) {
5221 		btrfs_orphan_del(NULL, inode);
5222 		goto no_delete;
5223 	}
5224 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5225 	if (!special_file(inode->i_mode))
5226 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5227 
5228 	btrfs_free_io_failure_record(inode, 0, (u64)-1);
5229 
5230 	if (root->fs_info->log_root_recovering) {
5231 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5232 				 &BTRFS_I(inode)->runtime_flags));
5233 		goto no_delete;
5234 	}
5235 
5236 	if (inode->i_nlink > 0) {
5237 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5238 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5239 		goto no_delete;
5240 	}
5241 
5242 	ret = btrfs_commit_inode_delayed_inode(inode);
5243 	if (ret) {
5244 		btrfs_orphan_del(NULL, inode);
5245 		goto no_delete;
5246 	}
5247 
5248 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5249 	if (!rsv) {
5250 		btrfs_orphan_del(NULL, inode);
5251 		goto no_delete;
5252 	}
5253 	rsv->size = min_size;
5254 	rsv->failfast = 1;
5255 	global_rsv = &root->fs_info->global_block_rsv;
5256 
5257 	btrfs_i_size_write(inode, 0);
5258 
5259 	/*
5260 	 * This is a bit simpler than btrfs_truncate since we've already
5261 	 * reserved our space for our orphan item in the unlink, so we just
5262 	 * need to reserve some slack space in case we add bytes and update
5263 	 * inode item when doing the truncate.
5264 	 */
5265 	while (1) {
5266 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5267 					     BTRFS_RESERVE_FLUSH_LIMIT);
5268 
5269 		/*
5270 		 * Try and steal from the global reserve since we will
5271 		 * likely not use this space anyway, we want to try as
5272 		 * hard as possible to get this to work.
5273 		 */
5274 		if (ret)
5275 			steal_from_global++;
5276 		else
5277 			steal_from_global = 0;
5278 		ret = 0;
5279 
5280 		/*
5281 		 * steal_from_global == 0: we reserved stuff, hooray!
5282 		 * steal_from_global == 1: we didn't reserve stuff, boo!
5283 		 * steal_from_global == 2: we've committed, still not a lot of
5284 		 * room but maybe we'll have room in the global reserve this
5285 		 * time.
5286 		 * steal_from_global == 3: abandon all hope!
5287 		 */
5288 		if (steal_from_global > 2) {
5289 			btrfs_warn(root->fs_info,
5290 				"Could not get space for a delete, will truncate on mount %d",
5291 				ret);
5292 			btrfs_orphan_del(NULL, inode);
5293 			btrfs_free_block_rsv(root, rsv);
5294 			goto no_delete;
5295 		}
5296 
5297 		trans = btrfs_join_transaction(root);
5298 		if (IS_ERR(trans)) {
5299 			btrfs_orphan_del(NULL, inode);
5300 			btrfs_free_block_rsv(root, rsv);
5301 			goto no_delete;
5302 		}
5303 
5304 		/*
5305 		 * We can't just steal from the global reserve, we need tomake
5306 		 * sure there is room to do it, if not we need to commit and try
5307 		 * again.
5308 		 */
5309 		if (steal_from_global) {
5310 			if (!btrfs_check_space_for_delayed_refs(trans, root))
5311 				ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5312 							      min_size);
5313 			else
5314 				ret = -ENOSPC;
5315 		}
5316 
5317 		/*
5318 		 * Couldn't steal from the global reserve, we have too much
5319 		 * pending stuff built up, commit the transaction and try it
5320 		 * again.
5321 		 */
5322 		if (ret) {
5323 			ret = btrfs_commit_transaction(trans, root);
5324 			if (ret) {
5325 				btrfs_orphan_del(NULL, inode);
5326 				btrfs_free_block_rsv(root, rsv);
5327 				goto no_delete;
5328 			}
5329 			continue;
5330 		} else {
5331 			steal_from_global = 0;
5332 		}
5333 
5334 		trans->block_rsv = rsv;
5335 
5336 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5337 		if (ret != -ENOSPC && ret != -EAGAIN)
5338 			break;
5339 
5340 		trans->block_rsv = &root->fs_info->trans_block_rsv;
5341 		btrfs_end_transaction(trans, root);
5342 		trans = NULL;
5343 		btrfs_btree_balance_dirty(root);
5344 	}
5345 
5346 	btrfs_free_block_rsv(root, rsv);
5347 
5348 	/*
5349 	 * Errors here aren't a big deal, it just means we leave orphan items
5350 	 * in the tree.  They will be cleaned up on the next mount.
5351 	 */
5352 	if (ret == 0) {
5353 		trans->block_rsv = root->orphan_block_rsv;
5354 		btrfs_orphan_del(trans, inode);
5355 	} else {
5356 		btrfs_orphan_del(NULL, inode);
5357 	}
5358 
5359 	trans->block_rsv = &root->fs_info->trans_block_rsv;
5360 	if (!(root == root->fs_info->tree_root ||
5361 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5362 		btrfs_return_ino(root, btrfs_ino(inode));
5363 
5364 	btrfs_end_transaction(trans, root);
5365 	btrfs_btree_balance_dirty(root);
5366 no_delete:
5367 	btrfs_remove_delayed_node(inode);
5368 	clear_inode(inode);
5369 	return;
5370 }
5371 
5372 /*
5373  * Return the key found in the dir entry in the location pointer, fill @type
5374  * with BTRFS_FT_*, and return 0.
5375  *
5376  * If no dir entries were found, location->objectid is 0.
5377  */
btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5378 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5379 			       struct btrfs_key *location, u8 *type)
5380 {
5381 	const char *name = dentry->d_name.name;
5382 	int namelen = dentry->d_name.len;
5383 	struct btrfs_dir_item *di;
5384 	struct btrfs_path *path;
5385 	struct btrfs_root *root = BTRFS_I(dir)->root;
5386 	int ret = 0;
5387 
5388 	path = btrfs_alloc_path();
5389 	if (!path)
5390 		return -ENOMEM;
5391 
5392 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5393 				    namelen, 0);
5394 	if (IS_ERR(di))
5395 		ret = PTR_ERR(di);
5396 
5397 	if (IS_ERR_OR_NULL(di))
5398 		goto out_err;
5399 
5400 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5401 	if (!ret)
5402 		*type = btrfs_dir_type(path->nodes[0], di);
5403 out:
5404 	btrfs_free_path(path);
5405 	return ret;
5406 out_err:
5407 	location->objectid = 0;
5408 	goto out;
5409 }
5410 
5411 /*
5412  * when we hit a tree root in a directory, the btrfs part of the inode
5413  * needs to be changed to reflect the root directory of the tree root.  This
5414  * is kind of like crossing a mount point.
5415  */
fixup_tree_root_location(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5416 static int fixup_tree_root_location(struct btrfs_root *root,
5417 				    struct inode *dir,
5418 				    struct dentry *dentry,
5419 				    struct btrfs_key *location,
5420 				    struct btrfs_root **sub_root)
5421 {
5422 	struct btrfs_path *path;
5423 	struct btrfs_root *new_root;
5424 	struct btrfs_root_ref *ref;
5425 	struct extent_buffer *leaf;
5426 	struct btrfs_key key;
5427 	int ret;
5428 	int err = 0;
5429 
5430 	path = btrfs_alloc_path();
5431 	if (!path) {
5432 		err = -ENOMEM;
5433 		goto out;
5434 	}
5435 
5436 	err = -ENOENT;
5437 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5438 	key.type = BTRFS_ROOT_REF_KEY;
5439 	key.offset = location->objectid;
5440 
5441 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5442 				0, 0);
5443 	if (ret) {
5444 		if (ret < 0)
5445 			err = ret;
5446 		goto out;
5447 	}
5448 
5449 	leaf = path->nodes[0];
5450 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5451 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5452 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5453 		goto out;
5454 
5455 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5456 				   (unsigned long)(ref + 1),
5457 				   dentry->d_name.len);
5458 	if (ret)
5459 		goto out;
5460 
5461 	btrfs_release_path(path);
5462 
5463 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5464 	if (IS_ERR(new_root)) {
5465 		err = PTR_ERR(new_root);
5466 		goto out;
5467 	}
5468 
5469 	*sub_root = new_root;
5470 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5471 	location->type = BTRFS_INODE_ITEM_KEY;
5472 	location->offset = 0;
5473 	err = 0;
5474 out:
5475 	btrfs_free_path(path);
5476 	return err;
5477 }
5478 
inode_tree_add(struct inode * inode)5479 static void inode_tree_add(struct inode *inode)
5480 {
5481 	struct btrfs_root *root = BTRFS_I(inode)->root;
5482 	struct btrfs_inode *entry;
5483 	struct rb_node **p;
5484 	struct rb_node *parent;
5485 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5486 	u64 ino = btrfs_ino(inode);
5487 
5488 	if (inode_unhashed(inode))
5489 		return;
5490 	parent = NULL;
5491 	spin_lock(&root->inode_lock);
5492 	p = &root->inode_tree.rb_node;
5493 	while (*p) {
5494 		parent = *p;
5495 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5496 
5497 		if (ino < btrfs_ino(&entry->vfs_inode))
5498 			p = &parent->rb_left;
5499 		else if (ino > btrfs_ino(&entry->vfs_inode))
5500 			p = &parent->rb_right;
5501 		else {
5502 			WARN_ON(!(entry->vfs_inode.i_state &
5503 				  (I_WILL_FREE | I_FREEING)));
5504 			rb_replace_node(parent, new, &root->inode_tree);
5505 			RB_CLEAR_NODE(parent);
5506 			spin_unlock(&root->inode_lock);
5507 			return;
5508 		}
5509 	}
5510 	rb_link_node(new, parent, p);
5511 	rb_insert_color(new, &root->inode_tree);
5512 	spin_unlock(&root->inode_lock);
5513 }
5514 
inode_tree_del(struct inode * inode)5515 static void inode_tree_del(struct inode *inode)
5516 {
5517 	struct btrfs_root *root = BTRFS_I(inode)->root;
5518 	int empty = 0;
5519 
5520 	spin_lock(&root->inode_lock);
5521 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5522 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5523 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5524 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5525 	}
5526 	spin_unlock(&root->inode_lock);
5527 
5528 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5529 		spin_lock(&root->inode_lock);
5530 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5531 		spin_unlock(&root->inode_lock);
5532 		if (empty)
5533 			btrfs_add_dead_root(root);
5534 	}
5535 }
5536 
btrfs_invalidate_inodes(struct btrfs_root * root)5537 void btrfs_invalidate_inodes(struct btrfs_root *root)
5538 {
5539 	struct rb_node *node;
5540 	struct rb_node *prev;
5541 	struct btrfs_inode *entry;
5542 	struct inode *inode;
5543 	u64 objectid = 0;
5544 
5545 	if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5546 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5547 
5548 	spin_lock(&root->inode_lock);
5549 again:
5550 	node = root->inode_tree.rb_node;
5551 	prev = NULL;
5552 	while (node) {
5553 		prev = node;
5554 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5555 
5556 		if (objectid < btrfs_ino(&entry->vfs_inode))
5557 			node = node->rb_left;
5558 		else if (objectid > btrfs_ino(&entry->vfs_inode))
5559 			node = node->rb_right;
5560 		else
5561 			break;
5562 	}
5563 	if (!node) {
5564 		while (prev) {
5565 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5566 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5567 				node = prev;
5568 				break;
5569 			}
5570 			prev = rb_next(prev);
5571 		}
5572 	}
5573 	while (node) {
5574 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5575 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
5576 		inode = igrab(&entry->vfs_inode);
5577 		if (inode) {
5578 			spin_unlock(&root->inode_lock);
5579 			if (atomic_read(&inode->i_count) > 1)
5580 				d_prune_aliases(inode);
5581 			/*
5582 			 * btrfs_drop_inode will have it removed from
5583 			 * the inode cache when its usage count
5584 			 * hits zero.
5585 			 */
5586 			iput(inode);
5587 			cond_resched();
5588 			spin_lock(&root->inode_lock);
5589 			goto again;
5590 		}
5591 
5592 		if (cond_resched_lock(&root->inode_lock))
5593 			goto again;
5594 
5595 		node = rb_next(node);
5596 	}
5597 	spin_unlock(&root->inode_lock);
5598 }
5599 
btrfs_init_locked_inode(struct inode * inode,void * p)5600 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5601 {
5602 	struct btrfs_iget_args *args = p;
5603 	inode->i_ino = args->location->objectid;
5604 	memcpy(&BTRFS_I(inode)->location, args->location,
5605 	       sizeof(*args->location));
5606 	BTRFS_I(inode)->root = args->root;
5607 	return 0;
5608 }
5609 
btrfs_find_actor(struct inode * inode,void * opaque)5610 static int btrfs_find_actor(struct inode *inode, void *opaque)
5611 {
5612 	struct btrfs_iget_args *args = opaque;
5613 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5614 		args->root == BTRFS_I(inode)->root;
5615 }
5616 
btrfs_iget_locked(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root)5617 static struct inode *btrfs_iget_locked(struct super_block *s,
5618 				       struct btrfs_key *location,
5619 				       struct btrfs_root *root)
5620 {
5621 	struct inode *inode;
5622 	struct btrfs_iget_args args;
5623 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5624 
5625 	args.location = location;
5626 	args.root = root;
5627 
5628 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5629 			     btrfs_init_locked_inode,
5630 			     (void *)&args);
5631 	return inode;
5632 }
5633 
5634 /* Get an inode object given its location and corresponding root.
5635  * Returns in *is_new if the inode was read from disk
5636  */
btrfs_iget(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root,int * new)5637 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5638 			 struct btrfs_root *root, int *new)
5639 {
5640 	struct inode *inode;
5641 
5642 	inode = btrfs_iget_locked(s, location, root);
5643 	if (!inode)
5644 		return ERR_PTR(-ENOMEM);
5645 
5646 	if (inode->i_state & I_NEW) {
5647 		btrfs_read_locked_inode(inode);
5648 		if (!is_bad_inode(inode)) {
5649 			inode_tree_add(inode);
5650 			unlock_new_inode(inode);
5651 			if (new)
5652 				*new = 1;
5653 		} else {
5654 			unlock_new_inode(inode);
5655 			iput(inode);
5656 			inode = ERR_PTR(-ESTALE);
5657 		}
5658 	}
5659 
5660 	return inode;
5661 }
5662 
new_simple_dir(struct super_block * s,struct btrfs_key * key,struct btrfs_root * root)5663 static struct inode *new_simple_dir(struct super_block *s,
5664 				    struct btrfs_key *key,
5665 				    struct btrfs_root *root)
5666 {
5667 	struct inode *inode = new_inode(s);
5668 
5669 	if (!inode)
5670 		return ERR_PTR(-ENOMEM);
5671 
5672 	BTRFS_I(inode)->root = root;
5673 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5674 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5675 
5676 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5677 	inode->i_op = &btrfs_dir_ro_inode_operations;
5678 	inode->i_fop = &simple_dir_operations;
5679 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5680 	inode->i_mtime = CURRENT_TIME;
5681 	inode->i_atime = inode->i_mtime;
5682 	inode->i_ctime = inode->i_mtime;
5683 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5684 
5685 	return inode;
5686 }
5687 
btrfs_inode_type(struct inode * inode)5688 static inline u8 btrfs_inode_type(struct inode *inode)
5689 {
5690 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5691 }
5692 
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5693 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5694 {
5695 	struct inode *inode;
5696 	struct btrfs_root *root = BTRFS_I(dir)->root;
5697 	struct btrfs_root *sub_root = root;
5698 	struct btrfs_key location;
5699 	u8 di_type = 0;
5700 	int index;
5701 	int ret = 0;
5702 
5703 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5704 		return ERR_PTR(-ENAMETOOLONG);
5705 
5706 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5707 	if (ret < 0)
5708 		return ERR_PTR(ret);
5709 
5710 	if (location.objectid == 0)
5711 		return ERR_PTR(-ENOENT);
5712 
5713 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5714 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5715 		if (IS_ERR(inode))
5716 			return inode;
5717 
5718 		/* Do extra check against inode mode with di_type */
5719 		if (btrfs_inode_type(inode) != di_type) {
5720 			btrfs_crit(root->fs_info,
5721 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5722 				  inode->i_mode, btrfs_inode_type(inode),
5723 				  di_type);
5724 			iput(inode);
5725 			return ERR_PTR(-EUCLEAN);
5726 		}
5727 		return inode;
5728 	}
5729 
5730 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5731 
5732 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
5733 	ret = fixup_tree_root_location(root, dir, dentry,
5734 				       &location, &sub_root);
5735 	if (ret < 0) {
5736 		if (ret != -ENOENT)
5737 			inode = ERR_PTR(ret);
5738 		else
5739 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5740 	} else {
5741 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5742 	}
5743 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5744 
5745 	if (!IS_ERR(inode) && root != sub_root) {
5746 		down_read(&root->fs_info->cleanup_work_sem);
5747 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5748 			ret = btrfs_orphan_cleanup(sub_root);
5749 		up_read(&root->fs_info->cleanup_work_sem);
5750 		if (ret) {
5751 			iput(inode);
5752 			inode = ERR_PTR(ret);
5753 		}
5754 	}
5755 
5756 	return inode;
5757 }
5758 
btrfs_dentry_delete(const struct dentry * dentry)5759 static int btrfs_dentry_delete(const struct dentry *dentry)
5760 {
5761 	struct btrfs_root *root;
5762 	struct inode *inode = d_inode(dentry);
5763 
5764 	if (!inode && !IS_ROOT(dentry))
5765 		inode = d_inode(dentry->d_parent);
5766 
5767 	if (inode) {
5768 		root = BTRFS_I(inode)->root;
5769 		if (btrfs_root_refs(&root->root_item) == 0)
5770 			return 1;
5771 
5772 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5773 			return 1;
5774 	}
5775 	return 0;
5776 }
5777 
btrfs_dentry_release(struct dentry * dentry)5778 static void btrfs_dentry_release(struct dentry *dentry)
5779 {
5780 	kfree(dentry->d_fsdata);
5781 }
5782 
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5783 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5784 				   unsigned int flags)
5785 {
5786 	struct inode *inode;
5787 
5788 	inode = btrfs_lookup_dentry(dir, dentry);
5789 	if (IS_ERR(inode)) {
5790 		if (PTR_ERR(inode) == -ENOENT)
5791 			inode = NULL;
5792 		else
5793 			return ERR_CAST(inode);
5794 	}
5795 
5796 	return d_splice_alias(inode, dentry);
5797 }
5798 
5799 unsigned char btrfs_filetype_table[] = {
5800 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5801 };
5802 
btrfs_real_readdir(struct file * file,struct dir_context * ctx)5803 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5804 {
5805 	struct inode *inode = file_inode(file);
5806 	struct btrfs_root *root = BTRFS_I(inode)->root;
5807 	struct btrfs_item *item;
5808 	struct btrfs_dir_item *di;
5809 	struct btrfs_key key;
5810 	struct btrfs_key found_key;
5811 	struct btrfs_path *path;
5812 	struct list_head ins_list;
5813 	struct list_head del_list;
5814 	int ret;
5815 	struct extent_buffer *leaf;
5816 	int slot;
5817 	unsigned char d_type;
5818 	int over = 0;
5819 	u32 di_cur;
5820 	u32 di_total;
5821 	u32 di_len;
5822 	int key_type = BTRFS_DIR_INDEX_KEY;
5823 	char tmp_name[32];
5824 	char *name_ptr;
5825 	int name_len;
5826 	int is_curr = 0;	/* ctx->pos points to the current index? */
5827 	bool emitted;
5828 
5829 	/* FIXME, use a real flag for deciding about the key type */
5830 	if (root->fs_info->tree_root == root)
5831 		key_type = BTRFS_DIR_ITEM_KEY;
5832 
5833 	if (!dir_emit_dots(file, ctx))
5834 		return 0;
5835 
5836 	path = btrfs_alloc_path();
5837 	if (!path)
5838 		return -ENOMEM;
5839 
5840 	path->reada = 1;
5841 
5842 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5843 		INIT_LIST_HEAD(&ins_list);
5844 		INIT_LIST_HEAD(&del_list);
5845 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
5846 	}
5847 
5848 	key.type = key_type;
5849 	key.offset = ctx->pos;
5850 	key.objectid = btrfs_ino(inode);
5851 
5852 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5853 	if (ret < 0)
5854 		goto err;
5855 
5856 	emitted = false;
5857 	while (1) {
5858 		leaf = path->nodes[0];
5859 		slot = path->slots[0];
5860 		if (slot >= btrfs_header_nritems(leaf)) {
5861 			ret = btrfs_next_leaf(root, path);
5862 			if (ret < 0)
5863 				goto err;
5864 			else if (ret > 0)
5865 				break;
5866 			continue;
5867 		}
5868 
5869 		item = btrfs_item_nr(slot);
5870 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5871 
5872 		if (found_key.objectid != key.objectid)
5873 			break;
5874 		if (found_key.type != key_type)
5875 			break;
5876 		if (found_key.offset < ctx->pos)
5877 			goto next;
5878 		if (key_type == BTRFS_DIR_INDEX_KEY &&
5879 		    btrfs_should_delete_dir_index(&del_list,
5880 						  found_key.offset))
5881 			goto next;
5882 
5883 		ctx->pos = found_key.offset;
5884 		is_curr = 1;
5885 
5886 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5887 		di_cur = 0;
5888 		di_total = btrfs_item_size(leaf, item);
5889 
5890 		while (di_cur < di_total) {
5891 			struct btrfs_key location;
5892 
5893 			if (verify_dir_item(root, leaf, di))
5894 				break;
5895 
5896 			name_len = btrfs_dir_name_len(leaf, di);
5897 			if (name_len <= sizeof(tmp_name)) {
5898 				name_ptr = tmp_name;
5899 			} else {
5900 				name_ptr = kmalloc(name_len, GFP_NOFS);
5901 				if (!name_ptr) {
5902 					ret = -ENOMEM;
5903 					goto err;
5904 				}
5905 			}
5906 			read_extent_buffer(leaf, name_ptr,
5907 					   (unsigned long)(di + 1), name_len);
5908 
5909 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5910 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5911 
5912 
5913 			/* is this a reference to our own snapshot? If so
5914 			 * skip it.
5915 			 *
5916 			 * In contrast to old kernels, we insert the snapshot's
5917 			 * dir item and dir index after it has been created, so
5918 			 * we won't find a reference to our own snapshot. We
5919 			 * still keep the following code for backward
5920 			 * compatibility.
5921 			 */
5922 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5923 			    location.objectid == root->root_key.objectid) {
5924 				over = 0;
5925 				goto skip;
5926 			}
5927 			over = !dir_emit(ctx, name_ptr, name_len,
5928 				       location.objectid, d_type);
5929 
5930 skip:
5931 			if (name_ptr != tmp_name)
5932 				kfree(name_ptr);
5933 
5934 			if (over)
5935 				goto nopos;
5936 			emitted = true;
5937 			di_len = btrfs_dir_name_len(leaf, di) +
5938 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5939 			di_cur += di_len;
5940 			di = (struct btrfs_dir_item *)((char *)di + di_len);
5941 		}
5942 next:
5943 		path->slots[0]++;
5944 	}
5945 
5946 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5947 		if (is_curr)
5948 			ctx->pos++;
5949 		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
5950 		if (ret)
5951 			goto nopos;
5952 	}
5953 
5954 	/*
5955 	 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5956 	 * it was was set to the termination value in previous call. We assume
5957 	 * that "." and ".." were emitted if we reach this point and set the
5958 	 * termination value as well for an empty directory.
5959 	 */
5960 	if (ctx->pos > 2 && !emitted)
5961 		goto nopos;
5962 
5963 	/* Reached end of directory/root. Bump pos past the last item. */
5964 	ctx->pos++;
5965 
5966 	/*
5967 	 * Stop new entries from being returned after we return the last
5968 	 * entry.
5969 	 *
5970 	 * New directory entries are assigned a strictly increasing
5971 	 * offset.  This means that new entries created during readdir
5972 	 * are *guaranteed* to be seen in the future by that readdir.
5973 	 * This has broken buggy programs which operate on names as
5974 	 * they're returned by readdir.  Until we re-use freed offsets
5975 	 * we have this hack to stop new entries from being returned
5976 	 * under the assumption that they'll never reach this huge
5977 	 * offset.
5978 	 *
5979 	 * This is being careful not to overflow 32bit loff_t unless the
5980 	 * last entry requires it because doing so has broken 32bit apps
5981 	 * in the past.
5982 	 */
5983 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5984 		if (ctx->pos >= INT_MAX)
5985 			ctx->pos = LLONG_MAX;
5986 		else
5987 			ctx->pos = INT_MAX;
5988 	}
5989 nopos:
5990 	ret = 0;
5991 err:
5992 	if (key_type == BTRFS_DIR_INDEX_KEY)
5993 		btrfs_put_delayed_items(&ins_list, &del_list);
5994 	btrfs_free_path(path);
5995 	return ret;
5996 }
5997 
btrfs_write_inode(struct inode * inode,struct writeback_control * wbc)5998 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5999 {
6000 	struct btrfs_root *root = BTRFS_I(inode)->root;
6001 	struct btrfs_trans_handle *trans;
6002 	int ret = 0;
6003 	bool nolock = false;
6004 
6005 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6006 		return 0;
6007 
6008 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
6009 		nolock = true;
6010 
6011 	if (wbc->sync_mode == WB_SYNC_ALL) {
6012 		if (nolock)
6013 			trans = btrfs_join_transaction_nolock(root);
6014 		else
6015 			trans = btrfs_join_transaction(root);
6016 		if (IS_ERR(trans))
6017 			return PTR_ERR(trans);
6018 		ret = btrfs_commit_transaction(trans, root);
6019 	}
6020 	return ret;
6021 }
6022 
6023 /*
6024  * This is somewhat expensive, updating the tree every time the
6025  * inode changes.  But, it is most likely to find the inode in cache.
6026  * FIXME, needs more benchmarking...there are no reasons other than performance
6027  * to keep or drop this code.
6028  */
btrfs_dirty_inode(struct inode * inode)6029 static int btrfs_dirty_inode(struct inode *inode)
6030 {
6031 	struct btrfs_root *root = BTRFS_I(inode)->root;
6032 	struct btrfs_trans_handle *trans;
6033 	int ret;
6034 
6035 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6036 		return 0;
6037 
6038 	trans = btrfs_join_transaction(root);
6039 	if (IS_ERR(trans))
6040 		return PTR_ERR(trans);
6041 
6042 	ret = btrfs_update_inode(trans, root, inode);
6043 	if (ret && ret == -ENOSPC) {
6044 		/* whoops, lets try again with the full transaction */
6045 		btrfs_end_transaction(trans, root);
6046 		trans = btrfs_start_transaction(root, 1);
6047 		if (IS_ERR(trans))
6048 			return PTR_ERR(trans);
6049 
6050 		ret = btrfs_update_inode(trans, root, inode);
6051 	}
6052 	btrfs_end_transaction(trans, root);
6053 	if (BTRFS_I(inode)->delayed_node)
6054 		btrfs_balance_delayed_items(root);
6055 
6056 	return ret;
6057 }
6058 
6059 /*
6060  * This is a copy of file_update_time.  We need this so we can return error on
6061  * ENOSPC for updating the inode in the case of file write and mmap writes.
6062  */
btrfs_update_time(struct inode * inode,struct timespec * now,int flags)6063 static int btrfs_update_time(struct inode *inode, struct timespec *now,
6064 			     int flags)
6065 {
6066 	struct btrfs_root *root = BTRFS_I(inode)->root;
6067 
6068 	if (btrfs_root_readonly(root))
6069 		return -EROFS;
6070 
6071 	if (flags & S_VERSION)
6072 		inode_inc_iversion(inode);
6073 	if (flags & S_CTIME)
6074 		inode->i_ctime = *now;
6075 	if (flags & S_MTIME)
6076 		inode->i_mtime = *now;
6077 	if (flags & S_ATIME)
6078 		inode->i_atime = *now;
6079 	return btrfs_dirty_inode(inode);
6080 }
6081 
6082 /*
6083  * find the highest existing sequence number in a directory
6084  * and then set the in-memory index_cnt variable to reflect
6085  * free sequence numbers
6086  */
btrfs_set_inode_index_count(struct inode * inode)6087 static int btrfs_set_inode_index_count(struct inode *inode)
6088 {
6089 	struct btrfs_root *root = BTRFS_I(inode)->root;
6090 	struct btrfs_key key, found_key;
6091 	struct btrfs_path *path;
6092 	struct extent_buffer *leaf;
6093 	int ret;
6094 
6095 	key.objectid = btrfs_ino(inode);
6096 	key.type = BTRFS_DIR_INDEX_KEY;
6097 	key.offset = (u64)-1;
6098 
6099 	path = btrfs_alloc_path();
6100 	if (!path)
6101 		return -ENOMEM;
6102 
6103 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6104 	if (ret < 0)
6105 		goto out;
6106 	/* FIXME: we should be able to handle this */
6107 	if (ret == 0)
6108 		goto out;
6109 	ret = 0;
6110 
6111 	/*
6112 	 * MAGIC NUMBER EXPLANATION:
6113 	 * since we search a directory based on f_pos we have to start at 2
6114 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6115 	 * else has to start at 2
6116 	 */
6117 	if (path->slots[0] == 0) {
6118 		BTRFS_I(inode)->index_cnt = 2;
6119 		goto out;
6120 	}
6121 
6122 	path->slots[0]--;
6123 
6124 	leaf = path->nodes[0];
6125 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6126 
6127 	if (found_key.objectid != btrfs_ino(inode) ||
6128 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6129 		BTRFS_I(inode)->index_cnt = 2;
6130 		goto out;
6131 	}
6132 
6133 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6134 out:
6135 	btrfs_free_path(path);
6136 	return ret;
6137 }
6138 
6139 /*
6140  * helper to find a free sequence number in a given directory.  This current
6141  * code is very simple, later versions will do smarter things in the btree
6142  */
btrfs_set_inode_index(struct inode * dir,u64 * index)6143 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6144 {
6145 	int ret = 0;
6146 
6147 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6148 		ret = btrfs_inode_delayed_dir_index_count(dir);
6149 		if (ret) {
6150 			ret = btrfs_set_inode_index_count(dir);
6151 			if (ret)
6152 				return ret;
6153 		}
6154 	}
6155 
6156 	*index = BTRFS_I(dir)->index_cnt;
6157 	BTRFS_I(dir)->index_cnt++;
6158 
6159 	return ret;
6160 }
6161 
btrfs_insert_inode_locked(struct inode * inode)6162 static int btrfs_insert_inode_locked(struct inode *inode)
6163 {
6164 	struct btrfs_iget_args args;
6165 	args.location = &BTRFS_I(inode)->location;
6166 	args.root = BTRFS_I(inode)->root;
6167 
6168 	return insert_inode_locked4(inode,
6169 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6170 		   btrfs_find_actor, &args);
6171 }
6172 
btrfs_new_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,const char * name,int name_len,u64 ref_objectid,u64 objectid,umode_t mode,u64 * index)6173 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6174 				     struct btrfs_root *root,
6175 				     struct inode *dir,
6176 				     const char *name, int name_len,
6177 				     u64 ref_objectid, u64 objectid,
6178 				     umode_t mode, u64 *index)
6179 {
6180 	struct inode *inode;
6181 	struct btrfs_inode_item *inode_item;
6182 	struct btrfs_key *location;
6183 	struct btrfs_path *path;
6184 	struct btrfs_inode_ref *ref;
6185 	struct btrfs_key key[2];
6186 	u32 sizes[2];
6187 	int nitems = name ? 2 : 1;
6188 	unsigned long ptr;
6189 	int ret;
6190 
6191 	path = btrfs_alloc_path();
6192 	if (!path)
6193 		return ERR_PTR(-ENOMEM);
6194 
6195 	inode = new_inode(root->fs_info->sb);
6196 	if (!inode) {
6197 		btrfs_free_path(path);
6198 		return ERR_PTR(-ENOMEM);
6199 	}
6200 
6201 	/*
6202 	 * O_TMPFILE, set link count to 0, so that after this point,
6203 	 * we fill in an inode item with the correct link count.
6204 	 */
6205 	if (!name)
6206 		set_nlink(inode, 0);
6207 
6208 	/*
6209 	 * we have to initialize this early, so we can reclaim the inode
6210 	 * number if we fail afterwards in this function.
6211 	 */
6212 	inode->i_ino = objectid;
6213 
6214 	if (dir && name) {
6215 		trace_btrfs_inode_request(dir);
6216 
6217 		ret = btrfs_set_inode_index(dir, index);
6218 		if (ret) {
6219 			btrfs_free_path(path);
6220 			iput(inode);
6221 			return ERR_PTR(ret);
6222 		}
6223 	} else if (dir) {
6224 		*index = 0;
6225 	}
6226 	/*
6227 	 * index_cnt is ignored for everything but a dir,
6228 	 * btrfs_get_inode_index_count has an explanation for the magic
6229 	 * number
6230 	 */
6231 	BTRFS_I(inode)->index_cnt = 2;
6232 	BTRFS_I(inode)->dir_index = *index;
6233 	BTRFS_I(inode)->root = root;
6234 	BTRFS_I(inode)->generation = trans->transid;
6235 	inode->i_generation = BTRFS_I(inode)->generation;
6236 
6237 	/*
6238 	 * We could have gotten an inode number from somebody who was fsynced
6239 	 * and then removed in this same transaction, so let's just set full
6240 	 * sync since it will be a full sync anyway and this will blow away the
6241 	 * old info in the log.
6242 	 */
6243 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6244 
6245 	key[0].objectid = objectid;
6246 	key[0].type = BTRFS_INODE_ITEM_KEY;
6247 	key[0].offset = 0;
6248 
6249 	sizes[0] = sizeof(struct btrfs_inode_item);
6250 
6251 	if (name) {
6252 		/*
6253 		 * Start new inodes with an inode_ref. This is slightly more
6254 		 * efficient for small numbers of hard links since they will
6255 		 * be packed into one item. Extended refs will kick in if we
6256 		 * add more hard links than can fit in the ref item.
6257 		 */
6258 		key[1].objectid = objectid;
6259 		key[1].type = BTRFS_INODE_REF_KEY;
6260 		key[1].offset = ref_objectid;
6261 
6262 		sizes[1] = name_len + sizeof(*ref);
6263 	}
6264 
6265 	location = &BTRFS_I(inode)->location;
6266 	location->objectid = objectid;
6267 	location->offset = 0;
6268 	location->type = BTRFS_INODE_ITEM_KEY;
6269 
6270 	ret = btrfs_insert_inode_locked(inode);
6271 	if (ret < 0)
6272 		goto fail;
6273 
6274 	path->leave_spinning = 1;
6275 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6276 	if (ret != 0)
6277 		goto fail_unlock;
6278 
6279 	inode_init_owner(inode, dir, mode);
6280 	inode_set_bytes(inode, 0);
6281 
6282 	inode->i_mtime = CURRENT_TIME;
6283 	inode->i_atime = inode->i_mtime;
6284 	inode->i_ctime = inode->i_mtime;
6285 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6286 
6287 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6288 				  struct btrfs_inode_item);
6289 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6290 			     sizeof(*inode_item));
6291 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6292 
6293 	if (name) {
6294 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6295 				     struct btrfs_inode_ref);
6296 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6297 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6298 		ptr = (unsigned long)(ref + 1);
6299 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6300 	}
6301 
6302 	btrfs_mark_buffer_dirty(path->nodes[0]);
6303 	btrfs_free_path(path);
6304 
6305 	btrfs_inherit_iflags(inode, dir);
6306 
6307 	if (S_ISREG(mode)) {
6308 		if (btrfs_test_opt(root, NODATASUM))
6309 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6310 		if (btrfs_test_opt(root, NODATACOW))
6311 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6312 				BTRFS_INODE_NODATASUM;
6313 	}
6314 
6315 	inode_tree_add(inode);
6316 
6317 	trace_btrfs_inode_new(inode);
6318 	btrfs_set_inode_last_trans(trans, inode);
6319 
6320 	btrfs_update_root_times(trans, root);
6321 
6322 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6323 	if (ret)
6324 		btrfs_err(root->fs_info,
6325 			  "error inheriting props for ino %llu (root %llu): %d",
6326 			  btrfs_ino(inode), root->root_key.objectid, ret);
6327 
6328 	return inode;
6329 
6330 fail_unlock:
6331 	unlock_new_inode(inode);
6332 fail:
6333 	if (dir && name)
6334 		BTRFS_I(dir)->index_cnt--;
6335 	btrfs_free_path(path);
6336 	iput(inode);
6337 	return ERR_PTR(ret);
6338 }
6339 
6340 /*
6341  * utility function to add 'inode' into 'parent_inode' with
6342  * a give name and a given sequence number.
6343  * if 'add_backref' is true, also insert a backref from the
6344  * inode to the parent directory.
6345  */
btrfs_add_link(struct btrfs_trans_handle * trans,struct inode * parent_inode,struct inode * inode,const char * name,int name_len,int add_backref,u64 index)6346 int btrfs_add_link(struct btrfs_trans_handle *trans,
6347 		   struct inode *parent_inode, struct inode *inode,
6348 		   const char *name, int name_len, int add_backref, u64 index)
6349 {
6350 	int ret = 0;
6351 	struct btrfs_key key;
6352 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6353 	u64 ino = btrfs_ino(inode);
6354 	u64 parent_ino = btrfs_ino(parent_inode);
6355 
6356 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6357 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6358 	} else {
6359 		key.objectid = ino;
6360 		key.type = BTRFS_INODE_ITEM_KEY;
6361 		key.offset = 0;
6362 	}
6363 
6364 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6365 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6366 					 key.objectid, root->root_key.objectid,
6367 					 parent_ino, index, name, name_len);
6368 	} else if (add_backref) {
6369 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6370 					     parent_ino, index);
6371 	}
6372 
6373 	/* Nothing to clean up yet */
6374 	if (ret)
6375 		return ret;
6376 
6377 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6378 				    parent_inode, &key,
6379 				    btrfs_inode_type(inode), index);
6380 	if (ret == -EEXIST || ret == -EOVERFLOW)
6381 		goto fail_dir_item;
6382 	else if (ret) {
6383 		btrfs_abort_transaction(trans, root, ret);
6384 		return ret;
6385 	}
6386 
6387 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
6388 			   name_len * 2);
6389 	inode_inc_iversion(parent_inode);
6390 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6391 	ret = btrfs_update_inode(trans, root, parent_inode);
6392 	if (ret)
6393 		btrfs_abort_transaction(trans, root, ret);
6394 	return ret;
6395 
6396 fail_dir_item:
6397 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6398 		u64 local_index;
6399 		int err;
6400 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6401 				 key.objectid, root->root_key.objectid,
6402 				 parent_ino, &local_index, name, name_len);
6403 
6404 	} else if (add_backref) {
6405 		u64 local_index;
6406 		int err;
6407 
6408 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6409 					  ino, parent_ino, &local_index);
6410 	}
6411 	return ret;
6412 }
6413 
btrfs_add_nondir(struct btrfs_trans_handle * trans,struct inode * dir,struct dentry * dentry,struct inode * inode,int backref,u64 index)6414 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6415 			    struct inode *dir, struct dentry *dentry,
6416 			    struct inode *inode, int backref, u64 index)
6417 {
6418 	int err = btrfs_add_link(trans, dir, inode,
6419 				 dentry->d_name.name, dentry->d_name.len,
6420 				 backref, index);
6421 	if (err > 0)
6422 		err = -EEXIST;
6423 	return err;
6424 }
6425 
btrfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6426 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6427 			umode_t mode, dev_t rdev)
6428 {
6429 	struct btrfs_trans_handle *trans;
6430 	struct btrfs_root *root = BTRFS_I(dir)->root;
6431 	struct inode *inode = NULL;
6432 	int err;
6433 	int drop_inode = 0;
6434 	u64 objectid;
6435 	u64 index = 0;
6436 
6437 	/*
6438 	 * 2 for inode item and ref
6439 	 * 2 for dir items
6440 	 * 1 for xattr if selinux is on
6441 	 */
6442 	trans = btrfs_start_transaction(root, 5);
6443 	if (IS_ERR(trans))
6444 		return PTR_ERR(trans);
6445 
6446 	err = btrfs_find_free_ino(root, &objectid);
6447 	if (err)
6448 		goto out_unlock;
6449 
6450 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6451 				dentry->d_name.len, btrfs_ino(dir), objectid,
6452 				mode, &index);
6453 	if (IS_ERR(inode)) {
6454 		err = PTR_ERR(inode);
6455 		goto out_unlock;
6456 	}
6457 
6458 	/*
6459 	* If the active LSM wants to access the inode during
6460 	* d_instantiate it needs these. Smack checks to see
6461 	* if the filesystem supports xattrs by looking at the
6462 	* ops vector.
6463 	*/
6464 	inode->i_op = &btrfs_special_inode_operations;
6465 	init_special_inode(inode, inode->i_mode, rdev);
6466 
6467 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6468 	if (err)
6469 		goto out_unlock_inode;
6470 
6471 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6472 	if (err) {
6473 		goto out_unlock_inode;
6474 	} else {
6475 		btrfs_update_inode(trans, root, inode);
6476 		d_instantiate_new(dentry, inode);
6477 	}
6478 
6479 out_unlock:
6480 	btrfs_end_transaction(trans, root);
6481 	btrfs_balance_delayed_items(root);
6482 	btrfs_btree_balance_dirty(root);
6483 	if (drop_inode) {
6484 		inode_dec_link_count(inode);
6485 		iput(inode);
6486 	}
6487 	return err;
6488 
6489 out_unlock_inode:
6490 	drop_inode = 1;
6491 	unlock_new_inode(inode);
6492 	goto out_unlock;
6493 
6494 }
6495 
btrfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6496 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6497 			umode_t mode, bool excl)
6498 {
6499 	struct btrfs_trans_handle *trans;
6500 	struct btrfs_root *root = BTRFS_I(dir)->root;
6501 	struct inode *inode = NULL;
6502 	int drop_inode_on_err = 0;
6503 	int err;
6504 	u64 objectid;
6505 	u64 index = 0;
6506 
6507 	/*
6508 	 * 2 for inode item and ref
6509 	 * 2 for dir items
6510 	 * 1 for xattr if selinux is on
6511 	 */
6512 	trans = btrfs_start_transaction(root, 5);
6513 	if (IS_ERR(trans))
6514 		return PTR_ERR(trans);
6515 
6516 	err = btrfs_find_free_ino(root, &objectid);
6517 	if (err)
6518 		goto out_unlock;
6519 
6520 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6521 				dentry->d_name.len, btrfs_ino(dir), objectid,
6522 				mode, &index);
6523 	if (IS_ERR(inode)) {
6524 		err = PTR_ERR(inode);
6525 		goto out_unlock;
6526 	}
6527 	drop_inode_on_err = 1;
6528 	/*
6529 	* If the active LSM wants to access the inode during
6530 	* d_instantiate it needs these. Smack checks to see
6531 	* if the filesystem supports xattrs by looking at the
6532 	* ops vector.
6533 	*/
6534 	inode->i_fop = &btrfs_file_operations;
6535 	inode->i_op = &btrfs_file_inode_operations;
6536 	inode->i_mapping->a_ops = &btrfs_aops;
6537 
6538 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6539 	if (err)
6540 		goto out_unlock_inode;
6541 
6542 	err = btrfs_update_inode(trans, root, inode);
6543 	if (err)
6544 		goto out_unlock_inode;
6545 
6546 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6547 	if (err)
6548 		goto out_unlock_inode;
6549 
6550 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6551 	d_instantiate_new(dentry, inode);
6552 
6553 out_unlock:
6554 	btrfs_end_transaction(trans, root);
6555 	if (err && drop_inode_on_err) {
6556 		inode_dec_link_count(inode);
6557 		iput(inode);
6558 	}
6559 	btrfs_balance_delayed_items(root);
6560 	btrfs_btree_balance_dirty(root);
6561 	return err;
6562 
6563 out_unlock_inode:
6564 	unlock_new_inode(inode);
6565 	goto out_unlock;
6566 
6567 }
6568 
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6569 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6570 		      struct dentry *dentry)
6571 {
6572 	struct btrfs_trans_handle *trans = NULL;
6573 	struct btrfs_root *root = BTRFS_I(dir)->root;
6574 	struct inode *inode = d_inode(old_dentry);
6575 	u64 index;
6576 	int err;
6577 	int drop_inode = 0;
6578 
6579 	/* do not allow sys_link's with other subvols of the same device */
6580 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6581 		return -EXDEV;
6582 
6583 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6584 		return -EMLINK;
6585 
6586 	err = btrfs_set_inode_index(dir, &index);
6587 	if (err)
6588 		goto fail;
6589 
6590 	/*
6591 	 * 2 items for inode and inode ref
6592 	 * 2 items for dir items
6593 	 * 1 item for parent inode
6594 	 */
6595 	trans = btrfs_start_transaction(root, 5);
6596 	if (IS_ERR(trans)) {
6597 		err = PTR_ERR(trans);
6598 		trans = NULL;
6599 		goto fail;
6600 	}
6601 
6602 	/* There are several dir indexes for this inode, clear the cache. */
6603 	BTRFS_I(inode)->dir_index = 0ULL;
6604 	inc_nlink(inode);
6605 	inode_inc_iversion(inode);
6606 	inode->i_ctime = CURRENT_TIME;
6607 	ihold(inode);
6608 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6609 
6610 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6611 
6612 	if (err) {
6613 		drop_inode = 1;
6614 	} else {
6615 		struct dentry *parent = dentry->d_parent;
6616 		err = btrfs_update_inode(trans, root, inode);
6617 		if (err)
6618 			goto fail;
6619 		if (inode->i_nlink == 1) {
6620 			/*
6621 			 * If new hard link count is 1, it's a file created
6622 			 * with open(2) O_TMPFILE flag.
6623 			 */
6624 			err = btrfs_orphan_del(trans, inode);
6625 			if (err)
6626 				goto fail;
6627 		}
6628 		d_instantiate(dentry, inode);
6629 		btrfs_log_new_name(trans, inode, NULL, parent);
6630 	}
6631 
6632 	btrfs_balance_delayed_items(root);
6633 fail:
6634 	if (trans)
6635 		btrfs_end_transaction(trans, root);
6636 	if (drop_inode) {
6637 		inode_dec_link_count(inode);
6638 		iput(inode);
6639 	}
6640 	btrfs_btree_balance_dirty(root);
6641 	return err;
6642 }
6643 
btrfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)6644 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6645 {
6646 	struct inode *inode = NULL;
6647 	struct btrfs_trans_handle *trans;
6648 	struct btrfs_root *root = BTRFS_I(dir)->root;
6649 	int err = 0;
6650 	int drop_on_err = 0;
6651 	u64 objectid = 0;
6652 	u64 index = 0;
6653 
6654 	/*
6655 	 * 2 items for inode and ref
6656 	 * 2 items for dir items
6657 	 * 1 for xattr if selinux is on
6658 	 */
6659 	trans = btrfs_start_transaction(root, 5);
6660 	if (IS_ERR(trans))
6661 		return PTR_ERR(trans);
6662 
6663 	err = btrfs_find_free_ino(root, &objectid);
6664 	if (err)
6665 		goto out_fail;
6666 
6667 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6668 				dentry->d_name.len, btrfs_ino(dir), objectid,
6669 				S_IFDIR | mode, &index);
6670 	if (IS_ERR(inode)) {
6671 		err = PTR_ERR(inode);
6672 		goto out_fail;
6673 	}
6674 
6675 	drop_on_err = 1;
6676 	/* these must be set before we unlock the inode */
6677 	inode->i_op = &btrfs_dir_inode_operations;
6678 	inode->i_fop = &btrfs_dir_file_operations;
6679 
6680 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6681 	if (err)
6682 		goto out_fail_inode;
6683 
6684 	btrfs_i_size_write(inode, 0);
6685 	err = btrfs_update_inode(trans, root, inode);
6686 	if (err)
6687 		goto out_fail_inode;
6688 
6689 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6690 			     dentry->d_name.len, 0, index);
6691 	if (err)
6692 		goto out_fail_inode;
6693 
6694 	d_instantiate_new(dentry, inode);
6695 	drop_on_err = 0;
6696 
6697 out_fail:
6698 	btrfs_end_transaction(trans, root);
6699 	if (drop_on_err) {
6700 		inode_dec_link_count(inode);
6701 		iput(inode);
6702 	}
6703 	btrfs_balance_delayed_items(root);
6704 	btrfs_btree_balance_dirty(root);
6705 	return err;
6706 
6707 out_fail_inode:
6708 	unlock_new_inode(inode);
6709 	goto out_fail;
6710 }
6711 
6712 /* Find next extent map of a given extent map, caller needs to ensure locks */
next_extent_map(struct extent_map * em)6713 static struct extent_map *next_extent_map(struct extent_map *em)
6714 {
6715 	struct rb_node *next;
6716 
6717 	next = rb_next(&em->rb_node);
6718 	if (!next)
6719 		return NULL;
6720 	return container_of(next, struct extent_map, rb_node);
6721 }
6722 
prev_extent_map(struct extent_map * em)6723 static struct extent_map *prev_extent_map(struct extent_map *em)
6724 {
6725 	struct rb_node *prev;
6726 
6727 	prev = rb_prev(&em->rb_node);
6728 	if (!prev)
6729 		return NULL;
6730 	return container_of(prev, struct extent_map, rb_node);
6731 }
6732 
6733 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6734  * the existing extent is the nearest extent to map_start,
6735  * and an extent that you want to insert, deal with overlap and insert
6736  * the best fitted new extent into the tree.
6737  */
merge_extent_mapping(struct extent_map_tree * em_tree,struct extent_map * existing,struct extent_map * em,u64 map_start)6738 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6739 				struct extent_map *existing,
6740 				struct extent_map *em,
6741 				u64 map_start)
6742 {
6743 	struct extent_map *prev;
6744 	struct extent_map *next;
6745 	u64 start;
6746 	u64 end;
6747 	u64 start_diff;
6748 
6749 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6750 
6751 	if (existing->start > map_start) {
6752 		next = existing;
6753 		prev = prev_extent_map(next);
6754 	} else {
6755 		prev = existing;
6756 		next = next_extent_map(prev);
6757 	}
6758 
6759 	start = prev ? extent_map_end(prev) : em->start;
6760 	start = max_t(u64, start, em->start);
6761 	end = next ? next->start : extent_map_end(em);
6762 	end = min_t(u64, end, extent_map_end(em));
6763 	start_diff = start - em->start;
6764 	em->start = start;
6765 	em->len = end - start;
6766 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6767 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6768 		em->block_start += start_diff;
6769 		em->block_len -= start_diff;
6770 	}
6771 	return add_extent_mapping(em_tree, em, 0);
6772 }
6773 
uncompress_inline(struct btrfs_path * path,struct inode * inode,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)6774 static noinline int uncompress_inline(struct btrfs_path *path,
6775 				      struct inode *inode, struct page *page,
6776 				      size_t pg_offset, u64 extent_offset,
6777 				      struct btrfs_file_extent_item *item)
6778 {
6779 	int ret;
6780 	struct extent_buffer *leaf = path->nodes[0];
6781 	char *tmp;
6782 	size_t max_size;
6783 	unsigned long inline_size;
6784 	unsigned long ptr;
6785 	int compress_type;
6786 
6787 	WARN_ON(pg_offset != 0);
6788 	compress_type = btrfs_file_extent_compression(leaf, item);
6789 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6790 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6791 					btrfs_item_nr(path->slots[0]));
6792 	tmp = kmalloc(inline_size, GFP_NOFS);
6793 	if (!tmp)
6794 		return -ENOMEM;
6795 	ptr = btrfs_file_extent_inline_start(item);
6796 
6797 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6798 
6799 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6800 	ret = btrfs_decompress(compress_type, tmp, page,
6801 			       extent_offset, inline_size, max_size);
6802 
6803 	/*
6804 	 * decompression code contains a memset to fill in any space between the end
6805 	 * of the uncompressed data and the end of max_size in case the decompressed
6806 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6807 	 * the end of an inline extent and the beginning of the next block, so we
6808 	 * cover that region here.
6809 	 */
6810 
6811 	if (max_size + pg_offset < PAGE_SIZE) {
6812 		char *map = kmap(page);
6813 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6814 		kunmap(page);
6815 	}
6816 	kfree(tmp);
6817 	return ret;
6818 }
6819 
6820 /*
6821  * a bit scary, this does extent mapping from logical file offset to the disk.
6822  * the ugly parts come from merging extents from the disk with the in-ram
6823  * representation.  This gets more complex because of the data=ordered code,
6824  * where the in-ram extents might be locked pending data=ordered completion.
6825  *
6826  * This also copies inline extents directly into the page.
6827  */
6828 
btrfs_get_extent(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)6829 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6830 				    size_t pg_offset, u64 start, u64 len,
6831 				    int create)
6832 {
6833 	int ret;
6834 	int err = 0;
6835 	u64 extent_start = 0;
6836 	u64 extent_end = 0;
6837 	u64 objectid = btrfs_ino(inode);
6838 	u32 found_type;
6839 	struct btrfs_path *path = NULL;
6840 	struct btrfs_root *root = BTRFS_I(inode)->root;
6841 	struct btrfs_file_extent_item *item;
6842 	struct extent_buffer *leaf;
6843 	struct btrfs_key found_key;
6844 	struct extent_map *em = NULL;
6845 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6846 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6847 	struct btrfs_trans_handle *trans = NULL;
6848 	const bool new_inline = !page || create;
6849 
6850 again:
6851 	read_lock(&em_tree->lock);
6852 	em = lookup_extent_mapping(em_tree, start, len);
6853 	if (em)
6854 		em->bdev = root->fs_info->fs_devices->latest_bdev;
6855 	read_unlock(&em_tree->lock);
6856 
6857 	if (em) {
6858 		if (em->start > start || em->start + em->len <= start)
6859 			free_extent_map(em);
6860 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6861 			free_extent_map(em);
6862 		else
6863 			goto out;
6864 	}
6865 	em = alloc_extent_map();
6866 	if (!em) {
6867 		err = -ENOMEM;
6868 		goto out;
6869 	}
6870 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6871 	em->start = EXTENT_MAP_HOLE;
6872 	em->orig_start = EXTENT_MAP_HOLE;
6873 	em->len = (u64)-1;
6874 	em->block_len = (u64)-1;
6875 
6876 	if (!path) {
6877 		path = btrfs_alloc_path();
6878 		if (!path) {
6879 			err = -ENOMEM;
6880 			goto out;
6881 		}
6882 		/*
6883 		 * Chances are we'll be called again, so go ahead and do
6884 		 * readahead
6885 		 */
6886 		path->reada = 1;
6887 	}
6888 
6889 	ret = btrfs_lookup_file_extent(trans, root, path,
6890 				       objectid, start, trans != NULL);
6891 	if (ret < 0) {
6892 		err = ret;
6893 		goto out;
6894 	}
6895 
6896 	if (ret != 0) {
6897 		if (path->slots[0] == 0)
6898 			goto not_found;
6899 		path->slots[0]--;
6900 	}
6901 
6902 	leaf = path->nodes[0];
6903 	item = btrfs_item_ptr(leaf, path->slots[0],
6904 			      struct btrfs_file_extent_item);
6905 	/* are we inside the extent that was found? */
6906 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6907 	found_type = found_key.type;
6908 	if (found_key.objectid != objectid ||
6909 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6910 		/*
6911 		 * If we backup past the first extent we want to move forward
6912 		 * and see if there is an extent in front of us, otherwise we'll
6913 		 * say there is a hole for our whole search range which can
6914 		 * cause problems.
6915 		 */
6916 		extent_end = start;
6917 		goto next;
6918 	}
6919 
6920 	found_type = btrfs_file_extent_type(leaf, item);
6921 	extent_start = found_key.offset;
6922 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6923 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6924 		/* Only regular file could have regular/prealloc extent */
6925 		if (!S_ISREG(inode->i_mode)) {
6926 			err = -EUCLEAN;
6927 			btrfs_crit(root->fs_info,
6928 		"regular/prealloc extent found for non-regular inode %llu",
6929 				   btrfs_ino(inode));
6930 			goto out;
6931 		}
6932 		extent_end = extent_start +
6933 		       btrfs_file_extent_num_bytes(leaf, item);
6934 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6935 		size_t size;
6936 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6937 		extent_end = ALIGN(extent_start + size, root->sectorsize);
6938 	}
6939 next:
6940 	if (start >= extent_end) {
6941 		path->slots[0]++;
6942 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6943 			ret = btrfs_next_leaf(root, path);
6944 			if (ret < 0) {
6945 				err = ret;
6946 				goto out;
6947 			}
6948 			if (ret > 0)
6949 				goto not_found;
6950 			leaf = path->nodes[0];
6951 		}
6952 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6953 		if (found_key.objectid != objectid ||
6954 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6955 			goto not_found;
6956 		if (start + len <= found_key.offset)
6957 			goto not_found;
6958 		if (start > found_key.offset)
6959 			goto next;
6960 		em->start = start;
6961 		em->orig_start = start;
6962 		em->len = found_key.offset - start;
6963 		goto not_found_em;
6964 	}
6965 
6966 	btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6967 
6968 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6969 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6970 		goto insert;
6971 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6972 		unsigned long ptr;
6973 		char *map;
6974 		size_t size;
6975 		size_t extent_offset;
6976 		size_t copy_size;
6977 
6978 		if (new_inline)
6979 			goto out;
6980 
6981 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6982 		extent_offset = page_offset(page) + pg_offset - extent_start;
6983 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6984 				size - extent_offset);
6985 		em->start = extent_start + extent_offset;
6986 		em->len = ALIGN(copy_size, root->sectorsize);
6987 		em->orig_block_len = em->len;
6988 		em->orig_start = em->start;
6989 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6990 		if (create == 0 && !PageUptodate(page)) {
6991 			if (btrfs_file_extent_compression(leaf, item) !=
6992 			    BTRFS_COMPRESS_NONE) {
6993 				ret = uncompress_inline(path, inode, page,
6994 							pg_offset,
6995 							extent_offset, item);
6996 				if (ret) {
6997 					err = ret;
6998 					goto out;
6999 				}
7000 			} else {
7001 				map = kmap(page);
7002 				read_extent_buffer(leaf, map + pg_offset, ptr,
7003 						   copy_size);
7004 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
7005 					memset(map + pg_offset + copy_size, 0,
7006 					       PAGE_CACHE_SIZE - pg_offset -
7007 					       copy_size);
7008 				}
7009 				kunmap(page);
7010 			}
7011 			flush_dcache_page(page);
7012 		} else if (create && PageUptodate(page)) {
7013 			BUG();
7014 			if (!trans) {
7015 				kunmap(page);
7016 				free_extent_map(em);
7017 				em = NULL;
7018 
7019 				btrfs_release_path(path);
7020 				trans = btrfs_join_transaction(root);
7021 
7022 				if (IS_ERR(trans))
7023 					return ERR_CAST(trans);
7024 				goto again;
7025 			}
7026 			map = kmap(page);
7027 			write_extent_buffer(leaf, map + pg_offset, ptr,
7028 					    copy_size);
7029 			kunmap(page);
7030 			btrfs_mark_buffer_dirty(leaf);
7031 		}
7032 		set_extent_uptodate(io_tree, em->start,
7033 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7034 		goto insert;
7035 	}
7036 not_found:
7037 	em->start = start;
7038 	em->orig_start = start;
7039 	em->len = len;
7040 not_found_em:
7041 	em->block_start = EXTENT_MAP_HOLE;
7042 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
7043 insert:
7044 	btrfs_release_path(path);
7045 	if (em->start > start || extent_map_end(em) <= start) {
7046 		btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
7047 			em->start, em->len, start, len);
7048 		err = -EIO;
7049 		goto out;
7050 	}
7051 
7052 	err = 0;
7053 	write_lock(&em_tree->lock);
7054 	ret = add_extent_mapping(em_tree, em, 0);
7055 	/* it is possible that someone inserted the extent into the tree
7056 	 * while we had the lock dropped.  It is also possible that
7057 	 * an overlapping map exists in the tree
7058 	 */
7059 	if (ret == -EEXIST) {
7060 		struct extent_map *existing;
7061 
7062 		ret = 0;
7063 
7064 		existing = search_extent_mapping(em_tree, start, len);
7065 		/*
7066 		 * existing will always be non-NULL, since there must be
7067 		 * extent causing the -EEXIST.
7068 		 */
7069 		if (start >= extent_map_end(existing) ||
7070 		    start <= existing->start) {
7071 			/*
7072 			 * The existing extent map is the one nearest to
7073 			 * the [start, start + len) range which overlaps
7074 			 */
7075 			err = merge_extent_mapping(em_tree, existing,
7076 						   em, start);
7077 			free_extent_map(existing);
7078 			if (err) {
7079 				free_extent_map(em);
7080 				em = NULL;
7081 			}
7082 		} else {
7083 			free_extent_map(em);
7084 			em = existing;
7085 			err = 0;
7086 		}
7087 	}
7088 	write_unlock(&em_tree->lock);
7089 out:
7090 
7091 	trace_btrfs_get_extent(root, em);
7092 
7093 	btrfs_free_path(path);
7094 	if (trans) {
7095 		ret = btrfs_end_transaction(trans, root);
7096 		if (!err)
7097 			err = ret;
7098 	}
7099 	if (err) {
7100 		free_extent_map(em);
7101 		return ERR_PTR(err);
7102 	}
7103 	BUG_ON(!em); /* Error is always set */
7104 	return em;
7105 }
7106 
btrfs_get_extent_fiemap(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)7107 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7108 					   size_t pg_offset, u64 start, u64 len,
7109 					   int create)
7110 {
7111 	struct extent_map *em;
7112 	struct extent_map *hole_em = NULL;
7113 	u64 range_start = start;
7114 	u64 end;
7115 	u64 found;
7116 	u64 found_end;
7117 	int err = 0;
7118 
7119 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7120 	if (IS_ERR(em))
7121 		return em;
7122 	if (em) {
7123 		/*
7124 		 * if our em maps to
7125 		 * -  a hole or
7126 		 * -  a pre-alloc extent,
7127 		 * there might actually be delalloc bytes behind it.
7128 		 */
7129 		if (em->block_start != EXTENT_MAP_HOLE &&
7130 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7131 			return em;
7132 		else
7133 			hole_em = em;
7134 	}
7135 
7136 	/* check to see if we've wrapped (len == -1 or similar) */
7137 	end = start + len;
7138 	if (end < start)
7139 		end = (u64)-1;
7140 	else
7141 		end -= 1;
7142 
7143 	em = NULL;
7144 
7145 	/* ok, we didn't find anything, lets look for delalloc */
7146 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7147 				 end, len, EXTENT_DELALLOC, 1);
7148 	found_end = range_start + found;
7149 	if (found_end < range_start)
7150 		found_end = (u64)-1;
7151 
7152 	/*
7153 	 * we didn't find anything useful, return
7154 	 * the original results from get_extent()
7155 	 */
7156 	if (range_start > end || found_end <= start) {
7157 		em = hole_em;
7158 		hole_em = NULL;
7159 		goto out;
7160 	}
7161 
7162 	/* adjust the range_start to make sure it doesn't
7163 	 * go backwards from the start they passed in
7164 	 */
7165 	range_start = max(start, range_start);
7166 	found = found_end - range_start;
7167 
7168 	if (found > 0) {
7169 		u64 hole_start = start;
7170 		u64 hole_len = len;
7171 
7172 		em = alloc_extent_map();
7173 		if (!em) {
7174 			err = -ENOMEM;
7175 			goto out;
7176 		}
7177 		/*
7178 		 * when btrfs_get_extent can't find anything it
7179 		 * returns one huge hole
7180 		 *
7181 		 * make sure what it found really fits our range, and
7182 		 * adjust to make sure it is based on the start from
7183 		 * the caller
7184 		 */
7185 		if (hole_em) {
7186 			u64 calc_end = extent_map_end(hole_em);
7187 
7188 			if (calc_end <= start || (hole_em->start > end)) {
7189 				free_extent_map(hole_em);
7190 				hole_em = NULL;
7191 			} else {
7192 				hole_start = max(hole_em->start, start);
7193 				hole_len = calc_end - hole_start;
7194 			}
7195 		}
7196 		em->bdev = NULL;
7197 		if (hole_em && range_start > hole_start) {
7198 			/* our hole starts before our delalloc, so we
7199 			 * have to return just the parts of the hole
7200 			 * that go until  the delalloc starts
7201 			 */
7202 			em->len = min(hole_len,
7203 				      range_start - hole_start);
7204 			em->start = hole_start;
7205 			em->orig_start = hole_start;
7206 			/*
7207 			 * don't adjust block start at all,
7208 			 * it is fixed at EXTENT_MAP_HOLE
7209 			 */
7210 			em->block_start = hole_em->block_start;
7211 			em->block_len = hole_len;
7212 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7213 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7214 		} else {
7215 			em->start = range_start;
7216 			em->len = found;
7217 			em->orig_start = range_start;
7218 			em->block_start = EXTENT_MAP_DELALLOC;
7219 			em->block_len = found;
7220 		}
7221 	} else if (hole_em) {
7222 		return hole_em;
7223 	}
7224 out:
7225 
7226 	free_extent_map(hole_em);
7227 	if (err) {
7228 		free_extent_map(em);
7229 		return ERR_PTR(err);
7230 	}
7231 	return em;
7232 }
7233 
btrfs_new_extent_direct(struct inode * inode,u64 start,u64 len)7234 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7235 						  u64 start, u64 len)
7236 {
7237 	struct btrfs_root *root = BTRFS_I(inode)->root;
7238 	struct extent_map *em;
7239 	struct btrfs_key ins;
7240 	u64 alloc_hint;
7241 	int ret;
7242 
7243 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7244 	ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7245 				   alloc_hint, &ins, 1, 1);
7246 	if (ret)
7247 		return ERR_PTR(ret);
7248 
7249 	em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
7250 			      ins.offset, ins.offset, ins.offset, 0);
7251 	if (IS_ERR(em)) {
7252 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7253 		return em;
7254 	}
7255 
7256 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7257 					   ins.offset, ins.offset, 0);
7258 	if (ret) {
7259 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7260 		free_extent_map(em);
7261 		return ERR_PTR(ret);
7262 	}
7263 
7264 	return em;
7265 }
7266 
7267 /*
7268  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7269  * block must be cow'd
7270  */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes)7271 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7272 			      u64 *orig_start, u64 *orig_block_len,
7273 			      u64 *ram_bytes)
7274 {
7275 	struct btrfs_trans_handle *trans;
7276 	struct btrfs_path *path;
7277 	int ret;
7278 	struct extent_buffer *leaf;
7279 	struct btrfs_root *root = BTRFS_I(inode)->root;
7280 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7281 	struct btrfs_file_extent_item *fi;
7282 	struct btrfs_key key;
7283 	u64 disk_bytenr;
7284 	u64 backref_offset;
7285 	u64 extent_end;
7286 	u64 num_bytes;
7287 	int slot;
7288 	int found_type;
7289 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7290 
7291 	path = btrfs_alloc_path();
7292 	if (!path)
7293 		return -ENOMEM;
7294 
7295 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7296 				       offset, 0);
7297 	if (ret < 0)
7298 		goto out;
7299 
7300 	slot = path->slots[0];
7301 	if (ret == 1) {
7302 		if (slot == 0) {
7303 			/* can't find the item, must cow */
7304 			ret = 0;
7305 			goto out;
7306 		}
7307 		slot--;
7308 	}
7309 	ret = 0;
7310 	leaf = path->nodes[0];
7311 	btrfs_item_key_to_cpu(leaf, &key, slot);
7312 	if (key.objectid != btrfs_ino(inode) ||
7313 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7314 		/* not our file or wrong item type, must cow */
7315 		goto out;
7316 	}
7317 
7318 	if (key.offset > offset) {
7319 		/* Wrong offset, must cow */
7320 		goto out;
7321 	}
7322 
7323 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7324 	found_type = btrfs_file_extent_type(leaf, fi);
7325 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7326 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7327 		/* not a regular extent, must cow */
7328 		goto out;
7329 	}
7330 
7331 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7332 		goto out;
7333 
7334 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7335 	if (extent_end <= offset)
7336 		goto out;
7337 
7338 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7339 	if (disk_bytenr == 0)
7340 		goto out;
7341 
7342 	if (btrfs_file_extent_compression(leaf, fi) ||
7343 	    btrfs_file_extent_encryption(leaf, fi) ||
7344 	    btrfs_file_extent_other_encoding(leaf, fi))
7345 		goto out;
7346 
7347 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7348 
7349 	if (orig_start) {
7350 		*orig_start = key.offset - backref_offset;
7351 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7352 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7353 	}
7354 
7355 	if (btrfs_extent_readonly(root, disk_bytenr))
7356 		goto out;
7357 
7358 	num_bytes = min(offset + *len, extent_end) - offset;
7359 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7360 		u64 range_end;
7361 
7362 		range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7363 		ret = test_range_bit(io_tree, offset, range_end,
7364 				     EXTENT_DELALLOC, 0, NULL);
7365 		if (ret) {
7366 			ret = -EAGAIN;
7367 			goto out;
7368 		}
7369 	}
7370 
7371 	btrfs_release_path(path);
7372 
7373 	/*
7374 	 * look for other files referencing this extent, if we
7375 	 * find any we must cow
7376 	 */
7377 	trans = btrfs_join_transaction(root);
7378 	if (IS_ERR(trans)) {
7379 		ret = 0;
7380 		goto out;
7381 	}
7382 
7383 	ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7384 				    key.offset - backref_offset, disk_bytenr);
7385 	btrfs_end_transaction(trans, root);
7386 	if (ret) {
7387 		ret = 0;
7388 		goto out;
7389 	}
7390 
7391 	/*
7392 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7393 	 * in this extent we are about to write.  If there
7394 	 * are any csums in that range we have to cow in order
7395 	 * to keep the csums correct
7396 	 */
7397 	disk_bytenr += backref_offset;
7398 	disk_bytenr += offset - key.offset;
7399 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7400 				goto out;
7401 	/*
7402 	 * all of the above have passed, it is safe to overwrite this extent
7403 	 * without cow
7404 	 */
7405 	*len = num_bytes;
7406 	ret = 1;
7407 out:
7408 	btrfs_free_path(path);
7409 	return ret;
7410 }
7411 
btrfs_page_exists_in_range(struct inode * inode,loff_t start,loff_t end)7412 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7413 {
7414 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
7415 	int found = false;
7416 	void **pagep = NULL;
7417 	struct page *page = NULL;
7418 	unsigned long start_idx;
7419 	unsigned long end_idx;
7420 
7421 	start_idx = start >> PAGE_CACHE_SHIFT;
7422 
7423 	/*
7424 	 * end is the last byte in the last page.  end == start is legal
7425 	 */
7426 	end_idx = end >> PAGE_CACHE_SHIFT;
7427 
7428 	rcu_read_lock();
7429 
7430 	/* Most of the code in this while loop is lifted from
7431 	 * find_get_page.  It's been modified to begin searching from a
7432 	 * page and return just the first page found in that range.  If the
7433 	 * found idx is less than or equal to the end idx then we know that
7434 	 * a page exists.  If no pages are found or if those pages are
7435 	 * outside of the range then we're fine (yay!) */
7436 	while (page == NULL &&
7437 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7438 		page = radix_tree_deref_slot(pagep);
7439 		if (unlikely(!page))
7440 			break;
7441 
7442 		if (radix_tree_exception(page)) {
7443 			if (radix_tree_deref_retry(page)) {
7444 				page = NULL;
7445 				continue;
7446 			}
7447 			/*
7448 			 * Otherwise, shmem/tmpfs must be storing a swap entry
7449 			 * here as an exceptional entry: so return it without
7450 			 * attempting to raise page count.
7451 			 */
7452 			page = NULL;
7453 			break; /* TODO: Is this relevant for this use case? */
7454 		}
7455 
7456 		if (!page_cache_get_speculative(page)) {
7457 			page = NULL;
7458 			continue;
7459 		}
7460 
7461 		/*
7462 		 * Has the page moved?
7463 		 * This is part of the lockless pagecache protocol. See
7464 		 * include/linux/pagemap.h for details.
7465 		 */
7466 		if (unlikely(page != *pagep)) {
7467 			page_cache_release(page);
7468 			page = NULL;
7469 		}
7470 	}
7471 
7472 	if (page) {
7473 		if (page->index <= end_idx)
7474 			found = true;
7475 		page_cache_release(page);
7476 	}
7477 
7478 	rcu_read_unlock();
7479 	return found;
7480 }
7481 
lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,int writing)7482 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7483 			      struct extent_state **cached_state, int writing)
7484 {
7485 	struct btrfs_ordered_extent *ordered;
7486 	int ret = 0;
7487 
7488 	while (1) {
7489 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7490 				 0, cached_state);
7491 		/*
7492 		 * We're concerned with the entire range that we're going to be
7493 		 * doing DIO to, so we need to make sure theres no ordered
7494 		 * extents in this range.
7495 		 */
7496 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
7497 						     lockend - lockstart + 1);
7498 
7499 		/*
7500 		 * We need to make sure there are no buffered pages in this
7501 		 * range either, we could have raced between the invalidate in
7502 		 * generic_file_direct_write and locking the extent.  The
7503 		 * invalidate needs to happen so that reads after a write do not
7504 		 * get stale data.
7505 		 */
7506 		if (!ordered &&
7507 		    (!writing ||
7508 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7509 			break;
7510 
7511 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7512 				     cached_state, GFP_NOFS);
7513 
7514 		if (ordered) {
7515 			btrfs_start_ordered_extent(inode, ordered, 1);
7516 			btrfs_put_ordered_extent(ordered);
7517 		} else {
7518 			/* Screw you mmap */
7519 			ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
7520 			if (ret)
7521 				break;
7522 			ret = filemap_fdatawait_range(inode->i_mapping,
7523 						      lockstart,
7524 						      lockend);
7525 			if (ret)
7526 				break;
7527 
7528 			/*
7529 			 * If we found a page that couldn't be invalidated just
7530 			 * fall back to buffered.
7531 			 */
7532 			ret = invalidate_inode_pages2_range(inode->i_mapping,
7533 					lockstart >> PAGE_CACHE_SHIFT,
7534 					lockend >> PAGE_CACHE_SHIFT);
7535 			if (ret)
7536 				break;
7537 		}
7538 
7539 		cond_resched();
7540 	}
7541 
7542 	return ret;
7543 }
7544 
create_pinned_em(struct inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int type)7545 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7546 					   u64 len, u64 orig_start,
7547 					   u64 block_start, u64 block_len,
7548 					   u64 orig_block_len, u64 ram_bytes,
7549 					   int type)
7550 {
7551 	struct extent_map_tree *em_tree;
7552 	struct extent_map *em;
7553 	struct btrfs_root *root = BTRFS_I(inode)->root;
7554 	int ret;
7555 
7556 	em_tree = &BTRFS_I(inode)->extent_tree;
7557 	em = alloc_extent_map();
7558 	if (!em)
7559 		return ERR_PTR(-ENOMEM);
7560 
7561 	em->start = start;
7562 	em->orig_start = orig_start;
7563 	em->mod_start = start;
7564 	em->mod_len = len;
7565 	em->len = len;
7566 	em->block_len = block_len;
7567 	em->block_start = block_start;
7568 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7569 	em->orig_block_len = orig_block_len;
7570 	em->ram_bytes = ram_bytes;
7571 	em->generation = -1;
7572 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7573 	if (type == BTRFS_ORDERED_PREALLOC)
7574 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7575 
7576 	do {
7577 		btrfs_drop_extent_cache(inode, em->start,
7578 				em->start + em->len - 1, 0);
7579 		write_lock(&em_tree->lock);
7580 		ret = add_extent_mapping(em_tree, em, 1);
7581 		write_unlock(&em_tree->lock);
7582 	} while (ret == -EEXIST);
7583 
7584 	if (ret) {
7585 		free_extent_map(em);
7586 		return ERR_PTR(ret);
7587 	}
7588 
7589 	return em;
7590 }
7591 
7592 struct btrfs_dio_data {
7593 	u64 outstanding_extents;
7594 	u64 reserve;
7595 };
7596 
adjust_dio_outstanding_extents(struct inode * inode,struct btrfs_dio_data * dio_data,const u64 len)7597 static void adjust_dio_outstanding_extents(struct inode *inode,
7598 					   struct btrfs_dio_data *dio_data,
7599 					   const u64 len)
7600 {
7601 	unsigned num_extents;
7602 
7603 	num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7604 					   BTRFS_MAX_EXTENT_SIZE);
7605 	/*
7606 	 * If we have an outstanding_extents count still set then we're
7607 	 * within our reservation, otherwise we need to adjust our inode
7608 	 * counter appropriately.
7609 	 */
7610 	if (dio_data->outstanding_extents >= num_extents) {
7611 		dio_data->outstanding_extents -= num_extents;
7612 	} else {
7613 		/*
7614 		 * If dio write length has been split due to no large enough
7615 		 * contiguous space, we need to compensate our inode counter
7616 		 * appropriately.
7617 		 */
7618 		u64 num_needed = num_extents - dio_data->outstanding_extents;
7619 
7620 		spin_lock(&BTRFS_I(inode)->lock);
7621 		BTRFS_I(inode)->outstanding_extents += num_needed;
7622 		spin_unlock(&BTRFS_I(inode)->lock);
7623 	}
7624 }
7625 
btrfs_get_blocks_direct(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)7626 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7627 				   struct buffer_head *bh_result, int create)
7628 {
7629 	struct extent_map *em;
7630 	struct btrfs_root *root = BTRFS_I(inode)->root;
7631 	struct extent_state *cached_state = NULL;
7632 	struct btrfs_dio_data *dio_data = NULL;
7633 	u64 start = iblock << inode->i_blkbits;
7634 	u64 lockstart, lockend;
7635 	u64 len = bh_result->b_size;
7636 	int unlock_bits = EXTENT_LOCKED;
7637 	int ret = 0;
7638 
7639 	if (create)
7640 		unlock_bits |= EXTENT_DIRTY;
7641 	else
7642 		len = min_t(u64, len, root->sectorsize);
7643 
7644 	lockstart = start;
7645 	lockend = start + len - 1;
7646 
7647 	if (current->journal_info) {
7648 		/*
7649 		 * Need to pull our outstanding extents and set journal_info to NULL so
7650 		 * that anything that needs to check if there's a transction doesn't get
7651 		 * confused.
7652 		 */
7653 		dio_data = current->journal_info;
7654 		current->journal_info = NULL;
7655 	}
7656 
7657 	/*
7658 	 * If this errors out it's because we couldn't invalidate pagecache for
7659 	 * this range and we need to fallback to buffered.
7660 	 */
7661 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7662 			       create)) {
7663 		ret = -ENOTBLK;
7664 		goto err;
7665 	}
7666 
7667 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7668 	if (IS_ERR(em)) {
7669 		ret = PTR_ERR(em);
7670 		goto unlock_err;
7671 	}
7672 
7673 	/*
7674 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7675 	 * io.  INLINE is special, and we could probably kludge it in here, but
7676 	 * it's still buffered so for safety lets just fall back to the generic
7677 	 * buffered path.
7678 	 *
7679 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7680 	 * decompress it, so there will be buffering required no matter what we
7681 	 * do, so go ahead and fallback to buffered.
7682 	 *
7683 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7684 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7685 	 * the generic code.
7686 	 */
7687 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7688 	    em->block_start == EXTENT_MAP_INLINE) {
7689 		free_extent_map(em);
7690 		ret = -ENOTBLK;
7691 		goto unlock_err;
7692 	}
7693 
7694 	/* Just a good old fashioned hole, return */
7695 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7696 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7697 		free_extent_map(em);
7698 		goto unlock_err;
7699 	}
7700 
7701 	/*
7702 	 * We don't allocate a new extent in the following cases
7703 	 *
7704 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7705 	 * existing extent.
7706 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7707 	 * just use the extent.
7708 	 *
7709 	 */
7710 	if (!create) {
7711 		len = min(len, em->len - (start - em->start));
7712 		lockstart = start + len;
7713 		goto unlock;
7714 	}
7715 
7716 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7717 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7718 	     em->block_start != EXTENT_MAP_HOLE)) {
7719 		int type;
7720 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7721 
7722 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7723 			type = BTRFS_ORDERED_PREALLOC;
7724 		else
7725 			type = BTRFS_ORDERED_NOCOW;
7726 		len = min(len, em->len - (start - em->start));
7727 		block_start = em->block_start + (start - em->start);
7728 
7729 		if (can_nocow_extent(inode, start, &len, &orig_start,
7730 				     &orig_block_len, &ram_bytes) == 1) {
7731 			if (type == BTRFS_ORDERED_PREALLOC) {
7732 				free_extent_map(em);
7733 				em = create_pinned_em(inode, start, len,
7734 						       orig_start,
7735 						       block_start, len,
7736 						       orig_block_len,
7737 						       ram_bytes, type);
7738 				if (IS_ERR(em)) {
7739 					ret = PTR_ERR(em);
7740 					goto unlock_err;
7741 				}
7742 			}
7743 
7744 			ret = btrfs_add_ordered_extent_dio(inode, start,
7745 					   block_start, len, len, type);
7746 			if (ret) {
7747 				free_extent_map(em);
7748 				goto unlock_err;
7749 			}
7750 			goto unlock;
7751 		}
7752 	}
7753 
7754 	/*
7755 	 * this will cow the extent, reset the len in case we changed
7756 	 * it above
7757 	 */
7758 	len = bh_result->b_size;
7759 	free_extent_map(em);
7760 	em = btrfs_new_extent_direct(inode, start, len);
7761 	if (IS_ERR(em)) {
7762 		ret = PTR_ERR(em);
7763 		goto unlock_err;
7764 	}
7765 	len = min(len, em->len - (start - em->start));
7766 unlock:
7767 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7768 		inode->i_blkbits;
7769 	bh_result->b_size = len;
7770 	bh_result->b_bdev = em->bdev;
7771 	set_buffer_mapped(bh_result);
7772 	if (create) {
7773 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7774 			set_buffer_new(bh_result);
7775 
7776 		/*
7777 		 * Need to update the i_size under the extent lock so buffered
7778 		 * readers will get the updated i_size when we unlock.
7779 		 */
7780 		if (start + len > i_size_read(inode))
7781 			i_size_write(inode, start + len);
7782 
7783 		adjust_dio_outstanding_extents(inode, dio_data, len);
7784 		btrfs_free_reserved_data_space(inode, start, len);
7785 		WARN_ON(dio_data->reserve < len);
7786 		dio_data->reserve -= len;
7787 		current->journal_info = dio_data;
7788 	}
7789 
7790 	/*
7791 	 * In the case of write we need to clear and unlock the entire range,
7792 	 * in the case of read we need to unlock only the end area that we
7793 	 * aren't using if there is any left over space.
7794 	 */
7795 	if (lockstart < lockend) {
7796 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7797 				 lockend, unlock_bits, 1, 0,
7798 				 &cached_state, GFP_NOFS);
7799 	} else {
7800 		free_extent_state(cached_state);
7801 	}
7802 
7803 	free_extent_map(em);
7804 
7805 	return 0;
7806 
7807 unlock_err:
7808 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7809 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7810 err:
7811 	if (dio_data)
7812 		current->journal_info = dio_data;
7813 	/*
7814 	 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7815 	 * write less data then expected, so that we don't underflow our inode's
7816 	 * outstanding extents counter.
7817 	 */
7818 	if (create && dio_data)
7819 		adjust_dio_outstanding_extents(inode, dio_data, len);
7820 
7821 	return ret;
7822 }
7823 
submit_dio_repair_bio(struct inode * inode,struct bio * bio,int rw,int mirror_num)7824 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7825 					int rw, int mirror_num)
7826 {
7827 	struct btrfs_root *root = BTRFS_I(inode)->root;
7828 	int ret;
7829 
7830 	BUG_ON(rw & REQ_WRITE);
7831 
7832 	bio_get(bio);
7833 
7834 	ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7835 				  BTRFS_WQ_ENDIO_DIO_REPAIR);
7836 	if (ret)
7837 		goto err;
7838 
7839 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7840 err:
7841 	bio_put(bio);
7842 	return ret;
7843 }
7844 
btrfs_check_dio_repairable(struct inode * inode,struct bio * failed_bio,struct io_failure_record * failrec,int failed_mirror)7845 static int btrfs_check_dio_repairable(struct inode *inode,
7846 				      struct bio *failed_bio,
7847 				      struct io_failure_record *failrec,
7848 				      int failed_mirror)
7849 {
7850 	int num_copies;
7851 
7852 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7853 				      failrec->logical, failrec->len);
7854 	if (num_copies == 1) {
7855 		/*
7856 		 * we only have a single copy of the data, so don't bother with
7857 		 * all the retry and error correction code that follows. no
7858 		 * matter what the error is, it is very likely to persist.
7859 		 */
7860 		pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7861 			 num_copies, failrec->this_mirror, failed_mirror);
7862 		return 0;
7863 	}
7864 
7865 	failrec->failed_mirror = failed_mirror;
7866 	failrec->this_mirror++;
7867 	if (failrec->this_mirror == failed_mirror)
7868 		failrec->this_mirror++;
7869 
7870 	if (failrec->this_mirror > num_copies) {
7871 		pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7872 			 num_copies, failrec->this_mirror, failed_mirror);
7873 		return 0;
7874 	}
7875 
7876 	return 1;
7877 }
7878 
dio_read_error(struct inode * inode,struct bio * failed_bio,struct page * page,u64 start,u64 end,int failed_mirror,bio_end_io_t * repair_endio,void * repair_arg)7879 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7880 			  struct page *page, u64 start, u64 end,
7881 			  int failed_mirror, bio_end_io_t *repair_endio,
7882 			  void *repair_arg)
7883 {
7884 	struct io_failure_record *failrec;
7885 	struct bio *bio;
7886 	int isector;
7887 	int read_mode;
7888 	int ret;
7889 
7890 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7891 
7892 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7893 	if (ret)
7894 		return ret;
7895 
7896 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7897 					 failed_mirror);
7898 	if (!ret) {
7899 		free_io_failure(inode, failrec);
7900 		return -EIO;
7901 	}
7902 
7903 	if (failed_bio->bi_vcnt > 1)
7904 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7905 	else
7906 		read_mode = READ_SYNC;
7907 
7908 	isector = start - btrfs_io_bio(failed_bio)->logical;
7909 	isector >>= inode->i_sb->s_blocksize_bits;
7910 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7911 				      0, isector, repair_endio, repair_arg);
7912 	if (!bio) {
7913 		free_io_failure(inode, failrec);
7914 		return -EIO;
7915 	}
7916 
7917 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7918 		    "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7919 		    read_mode, failrec->this_mirror, failrec->in_validation);
7920 
7921 	ret = submit_dio_repair_bio(inode, bio, read_mode,
7922 				    failrec->this_mirror);
7923 	if (ret) {
7924 		free_io_failure(inode, failrec);
7925 		bio_put(bio);
7926 	}
7927 
7928 	return ret;
7929 }
7930 
7931 struct btrfs_retry_complete {
7932 	struct completion done;
7933 	struct inode *inode;
7934 	u64 start;
7935 	int uptodate;
7936 };
7937 
btrfs_retry_endio_nocsum(struct bio * bio)7938 static void btrfs_retry_endio_nocsum(struct bio *bio)
7939 {
7940 	struct btrfs_retry_complete *done = bio->bi_private;
7941 	struct bio_vec *bvec;
7942 	int i;
7943 
7944 	if (bio->bi_error)
7945 		goto end;
7946 
7947 	done->uptodate = 1;
7948 	bio_for_each_segment_all(bvec, bio, i)
7949 		clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7950 end:
7951 	complete(&done->done);
7952 	bio_put(bio);
7953 }
7954 
__btrfs_correct_data_nocsum(struct inode * inode,struct btrfs_io_bio * io_bio)7955 static int __btrfs_correct_data_nocsum(struct inode *inode,
7956 				       struct btrfs_io_bio *io_bio)
7957 {
7958 	struct bio_vec *bvec;
7959 	struct btrfs_retry_complete done;
7960 	u64 start;
7961 	int i;
7962 	int ret;
7963 
7964 	start = io_bio->logical;
7965 	done.inode = inode;
7966 
7967 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7968 try_again:
7969 		done.uptodate = 0;
7970 		done.start = start;
7971 		init_completion(&done.done);
7972 
7973 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7974 				     start + bvec->bv_len - 1,
7975 				     io_bio->mirror_num,
7976 				     btrfs_retry_endio_nocsum, &done);
7977 		if (ret)
7978 			return ret;
7979 
7980 		wait_for_completion(&done.done);
7981 
7982 		if (!done.uptodate) {
7983 			/* We might have another mirror, so try again */
7984 			goto try_again;
7985 		}
7986 
7987 		start += bvec->bv_len;
7988 	}
7989 
7990 	return 0;
7991 }
7992 
btrfs_retry_endio(struct bio * bio)7993 static void btrfs_retry_endio(struct bio *bio)
7994 {
7995 	struct btrfs_retry_complete *done = bio->bi_private;
7996 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7997 	struct bio_vec *bvec;
7998 	int uptodate;
7999 	int ret;
8000 	int i;
8001 
8002 	if (bio->bi_error)
8003 		goto end;
8004 
8005 	uptodate = 1;
8006 	bio_for_each_segment_all(bvec, bio, i) {
8007 		ret = __readpage_endio_check(done->inode, io_bio, i,
8008 					     bvec->bv_page, 0,
8009 					     done->start, bvec->bv_len);
8010 		if (!ret)
8011 			clean_io_failure(done->inode, done->start,
8012 					 bvec->bv_page, 0);
8013 		else
8014 			uptodate = 0;
8015 	}
8016 
8017 	done->uptodate = uptodate;
8018 end:
8019 	complete(&done->done);
8020 	bio_put(bio);
8021 }
8022 
__btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,int err)8023 static int __btrfs_subio_endio_read(struct inode *inode,
8024 				    struct btrfs_io_bio *io_bio, int err)
8025 {
8026 	struct bio_vec *bvec;
8027 	struct btrfs_retry_complete done;
8028 	u64 start;
8029 	u64 offset = 0;
8030 	int i;
8031 	int ret;
8032 
8033 	err = 0;
8034 	start = io_bio->logical;
8035 	done.inode = inode;
8036 
8037 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8038 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8039 					     0, start, bvec->bv_len);
8040 		if (likely(!ret))
8041 			goto next;
8042 try_again:
8043 		done.uptodate = 0;
8044 		done.start = start;
8045 		init_completion(&done.done);
8046 
8047 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
8048 				     start + bvec->bv_len - 1,
8049 				     io_bio->mirror_num,
8050 				     btrfs_retry_endio, &done);
8051 		if (ret) {
8052 			err = ret;
8053 			goto next;
8054 		}
8055 
8056 		wait_for_completion(&done.done);
8057 
8058 		if (!done.uptodate) {
8059 			/* We might have another mirror, so try again */
8060 			goto try_again;
8061 		}
8062 next:
8063 		offset += bvec->bv_len;
8064 		start += bvec->bv_len;
8065 	}
8066 
8067 	return err;
8068 }
8069 
btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,int err)8070 static int btrfs_subio_endio_read(struct inode *inode,
8071 				  struct btrfs_io_bio *io_bio, int err)
8072 {
8073 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8074 
8075 	if (skip_csum) {
8076 		if (unlikely(err))
8077 			return __btrfs_correct_data_nocsum(inode, io_bio);
8078 		else
8079 			return 0;
8080 	} else {
8081 		return __btrfs_subio_endio_read(inode, io_bio, err);
8082 	}
8083 }
8084 
btrfs_endio_direct_read(struct bio * bio)8085 static void btrfs_endio_direct_read(struct bio *bio)
8086 {
8087 	struct btrfs_dio_private *dip = bio->bi_private;
8088 	struct inode *inode = dip->inode;
8089 	struct bio *dio_bio;
8090 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8091 	int err = bio->bi_error;
8092 
8093 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8094 		err = btrfs_subio_endio_read(inode, io_bio, err);
8095 
8096 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8097 		      dip->logical_offset + dip->bytes - 1);
8098 	dio_bio = dip->dio_bio;
8099 
8100 	kfree(dip);
8101 
8102 	dio_bio->bi_error = bio->bi_error;
8103 	dio_end_io(dio_bio, bio->bi_error);
8104 
8105 	if (io_bio->end_io)
8106 		io_bio->end_io(io_bio, err);
8107 	bio_put(bio);
8108 }
8109 
btrfs_endio_direct_write(struct bio * bio)8110 static void btrfs_endio_direct_write(struct bio *bio)
8111 {
8112 	struct btrfs_dio_private *dip = bio->bi_private;
8113 	struct inode *inode = dip->inode;
8114 	struct btrfs_root *root = BTRFS_I(inode)->root;
8115 	struct btrfs_ordered_extent *ordered = NULL;
8116 	u64 ordered_offset = dip->logical_offset;
8117 	u64 ordered_bytes = dip->bytes;
8118 	struct bio *dio_bio;
8119 	int ret;
8120 
8121 again:
8122 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8123 						   &ordered_offset,
8124 						   ordered_bytes,
8125 						   !bio->bi_error);
8126 	if (!ret)
8127 		goto out_test;
8128 
8129 	btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8130 			finish_ordered_fn, NULL, NULL);
8131 	btrfs_queue_work(root->fs_info->endio_write_workers,
8132 			 &ordered->work);
8133 out_test:
8134 	/*
8135 	 * our bio might span multiple ordered extents.  If we haven't
8136 	 * completed the accounting for the whole dio, go back and try again
8137 	 */
8138 	if (ordered_offset < dip->logical_offset + dip->bytes) {
8139 		ordered_bytes = dip->logical_offset + dip->bytes -
8140 			ordered_offset;
8141 		ordered = NULL;
8142 		goto again;
8143 	}
8144 	dio_bio = dip->dio_bio;
8145 
8146 	kfree(dip);
8147 
8148 	dio_bio->bi_error = bio->bi_error;
8149 	dio_end_io(dio_bio, bio->bi_error);
8150 	bio_put(bio);
8151 }
8152 
__btrfs_submit_bio_start_direct_io(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 offset)8153 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8154 				    struct bio *bio, int mirror_num,
8155 				    unsigned long bio_flags, u64 offset)
8156 {
8157 	int ret;
8158 	struct btrfs_root *root = BTRFS_I(inode)->root;
8159 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8160 	BUG_ON(ret); /* -ENOMEM */
8161 	return 0;
8162 }
8163 
btrfs_end_dio_bio(struct bio * bio)8164 static void btrfs_end_dio_bio(struct bio *bio)
8165 {
8166 	struct btrfs_dio_private *dip = bio->bi_private;
8167 	int err = bio->bi_error;
8168 
8169 	if (err)
8170 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8171 			   "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8172 			   btrfs_ino(dip->inode), bio->bi_rw,
8173 			   (unsigned long long)bio->bi_iter.bi_sector,
8174 			   bio->bi_iter.bi_size, err);
8175 
8176 	if (dip->subio_endio)
8177 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8178 
8179 	if (err) {
8180 		dip->errors = 1;
8181 
8182 		/*
8183 		 * before atomic variable goto zero, we must make sure
8184 		 * dip->errors is perceived to be set.
8185 		 */
8186 		smp_mb__before_atomic();
8187 	}
8188 
8189 	/* if there are more bios still pending for this dio, just exit */
8190 	if (!atomic_dec_and_test(&dip->pending_bios))
8191 		goto out;
8192 
8193 	if (dip->errors) {
8194 		bio_io_error(dip->orig_bio);
8195 	} else {
8196 		dip->dio_bio->bi_error = 0;
8197 		bio_endio(dip->orig_bio);
8198 	}
8199 out:
8200 	bio_put(bio);
8201 }
8202 
btrfs_dio_bio_alloc(struct block_device * bdev,u64 first_sector,gfp_t gfp_flags)8203 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8204 				       u64 first_sector, gfp_t gfp_flags)
8205 {
8206 	struct bio *bio;
8207 	bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8208 	if (bio)
8209 		bio_associate_current(bio);
8210 	return bio;
8211 }
8212 
btrfs_lookup_and_bind_dio_csum(struct btrfs_root * root,struct inode * inode,struct btrfs_dio_private * dip,struct bio * bio,u64 file_offset)8213 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8214 						 struct inode *inode,
8215 						 struct btrfs_dio_private *dip,
8216 						 struct bio *bio,
8217 						 u64 file_offset)
8218 {
8219 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8220 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8221 	int ret;
8222 
8223 	/*
8224 	 * We load all the csum data we need when we submit
8225 	 * the first bio to reduce the csum tree search and
8226 	 * contention.
8227 	 */
8228 	if (dip->logical_offset == file_offset) {
8229 		ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8230 						file_offset);
8231 		if (ret)
8232 			return ret;
8233 	}
8234 
8235 	if (bio == dip->orig_bio)
8236 		return 0;
8237 
8238 	file_offset -= dip->logical_offset;
8239 	file_offset >>= inode->i_sb->s_blocksize_bits;
8240 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8241 
8242 	return 0;
8243 }
8244 
__btrfs_submit_dio_bio(struct bio * bio,struct inode * inode,int rw,u64 file_offset,int skip_sum,int async_submit)8245 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8246 					 int rw, u64 file_offset, int skip_sum,
8247 					 int async_submit)
8248 {
8249 	struct btrfs_dio_private *dip = bio->bi_private;
8250 	int write = rw & REQ_WRITE;
8251 	struct btrfs_root *root = BTRFS_I(inode)->root;
8252 	int ret;
8253 
8254 	if (async_submit)
8255 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8256 
8257 	bio_get(bio);
8258 
8259 	if (!write) {
8260 		ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8261 				BTRFS_WQ_ENDIO_DATA);
8262 		if (ret)
8263 			goto err;
8264 	}
8265 
8266 	if (skip_sum)
8267 		goto map;
8268 
8269 	if (write && async_submit) {
8270 		ret = btrfs_wq_submit_bio(root->fs_info,
8271 				   inode, rw, bio, 0, 0,
8272 				   file_offset,
8273 				   __btrfs_submit_bio_start_direct_io,
8274 				   __btrfs_submit_bio_done);
8275 		goto err;
8276 	} else if (write) {
8277 		/*
8278 		 * If we aren't doing async submit, calculate the csum of the
8279 		 * bio now.
8280 		 */
8281 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8282 		if (ret)
8283 			goto err;
8284 	} else {
8285 		ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8286 						     file_offset);
8287 		if (ret)
8288 			goto err;
8289 	}
8290 map:
8291 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
8292 err:
8293 	bio_put(bio);
8294 	return ret;
8295 }
8296 
btrfs_submit_direct_hook(int rw,struct btrfs_dio_private * dip,int skip_sum)8297 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8298 				    int skip_sum)
8299 {
8300 	struct inode *inode = dip->inode;
8301 	struct btrfs_root *root = BTRFS_I(inode)->root;
8302 	struct bio *bio;
8303 	struct bio *orig_bio = dip->orig_bio;
8304 	struct bio_vec *bvec = orig_bio->bi_io_vec;
8305 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8306 	u64 file_offset = dip->logical_offset;
8307 	u64 submit_len = 0;
8308 	u64 map_length;
8309 	int nr_pages = 0;
8310 	int ret;
8311 	int async_submit = 0;
8312 
8313 	map_length = orig_bio->bi_iter.bi_size;
8314 	ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
8315 			      &map_length, NULL, 0);
8316 	if (ret)
8317 		return -EIO;
8318 
8319 	if (map_length >= orig_bio->bi_iter.bi_size) {
8320 		bio = orig_bio;
8321 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8322 		goto submit;
8323 	}
8324 
8325 	/* async crcs make it difficult to collect full stripe writes. */
8326 	if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8327 		async_submit = 0;
8328 	else
8329 		async_submit = 1;
8330 
8331 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8332 	if (!bio)
8333 		return -ENOMEM;
8334 
8335 	bio->bi_private = dip;
8336 	bio->bi_end_io = btrfs_end_dio_bio;
8337 	btrfs_io_bio(bio)->logical = file_offset;
8338 
8339 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8340 		if (map_length < submit_len + bvec->bv_len ||
8341 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
8342 				 bvec->bv_offset) < bvec->bv_len) {
8343 			/*
8344 			 * inc the count before we submit the bio so
8345 			 * we know the end IO handler won't happen before
8346 			 * we inc the count. Otherwise, the dip might get freed
8347 			 * before we're done setting it up
8348 			 */
8349 			atomic_inc(&dip->pending_bios);
8350 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
8351 						     file_offset, skip_sum,
8352 						     async_submit);
8353 			if (ret) {
8354 				bio_put(bio);
8355 				atomic_dec(&dip->pending_bios);
8356 				goto out_err;
8357 			}
8358 
8359 			start_sector += submit_len >> 9;
8360 			file_offset += submit_len;
8361 
8362 			submit_len = 0;
8363 			nr_pages = 0;
8364 
8365 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8366 						  start_sector, GFP_NOFS);
8367 			if (!bio)
8368 				goto out_err;
8369 			bio->bi_private = dip;
8370 			bio->bi_end_io = btrfs_end_dio_bio;
8371 			btrfs_io_bio(bio)->logical = file_offset;
8372 
8373 			map_length = orig_bio->bi_iter.bi_size;
8374 			ret = btrfs_map_block(root->fs_info, rw,
8375 					      start_sector << 9,
8376 					      &map_length, NULL, 0);
8377 			if (ret) {
8378 				bio_put(bio);
8379 				goto out_err;
8380 			}
8381 		} else {
8382 			submit_len += bvec->bv_len;
8383 			nr_pages++;
8384 			bvec++;
8385 		}
8386 	}
8387 
8388 submit:
8389 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
8390 				     async_submit);
8391 	if (!ret)
8392 		return 0;
8393 
8394 	if (bio != orig_bio)
8395 		bio_put(bio);
8396 out_err:
8397 	dip->errors = 1;
8398 	/*
8399 	 * before atomic variable goto zero, we must
8400 	 * make sure dip->errors is perceived to be set.
8401 	 */
8402 	smp_mb__before_atomic();
8403 	if (atomic_dec_and_test(&dip->pending_bios))
8404 		bio_io_error(dip->orig_bio);
8405 
8406 	/* bio_end_io() will handle error, so we needn't return it */
8407 	return 0;
8408 }
8409 
btrfs_submit_direct(int rw,struct bio * dio_bio,struct inode * inode,loff_t file_offset)8410 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8411 				struct inode *inode, loff_t file_offset)
8412 {
8413 	struct btrfs_dio_private *dip = NULL;
8414 	struct bio *io_bio = NULL;
8415 	struct btrfs_io_bio *btrfs_bio;
8416 	int skip_sum;
8417 	int write = rw & REQ_WRITE;
8418 	int ret = 0;
8419 
8420 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8421 
8422 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8423 	if (!io_bio) {
8424 		ret = -ENOMEM;
8425 		goto free_ordered;
8426 	}
8427 
8428 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8429 	if (!dip) {
8430 		ret = -ENOMEM;
8431 		goto free_ordered;
8432 	}
8433 
8434 	dip->private = dio_bio->bi_private;
8435 	dip->inode = inode;
8436 	dip->logical_offset = file_offset;
8437 	dip->bytes = dio_bio->bi_iter.bi_size;
8438 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8439 	io_bio->bi_private = dip;
8440 	dip->orig_bio = io_bio;
8441 	dip->dio_bio = dio_bio;
8442 	atomic_set(&dip->pending_bios, 1);
8443 	btrfs_bio = btrfs_io_bio(io_bio);
8444 	btrfs_bio->logical = file_offset;
8445 
8446 	if (write) {
8447 		io_bio->bi_end_io = btrfs_endio_direct_write;
8448 	} else {
8449 		io_bio->bi_end_io = btrfs_endio_direct_read;
8450 		dip->subio_endio = btrfs_subio_endio_read;
8451 	}
8452 
8453 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8454 	if (!ret)
8455 		return;
8456 
8457 	if (btrfs_bio->end_io)
8458 		btrfs_bio->end_io(btrfs_bio, ret);
8459 
8460 free_ordered:
8461 	/*
8462 	 * If we arrived here it means either we failed to submit the dip
8463 	 * or we either failed to clone the dio_bio or failed to allocate the
8464 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8465 	 * call bio_endio against our io_bio so that we get proper resource
8466 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8467 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8468 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8469 	 */
8470 	if (io_bio && dip) {
8471 		io_bio->bi_error = -EIO;
8472 		bio_endio(io_bio);
8473 		/*
8474 		 * The end io callbacks free our dip, do the final put on io_bio
8475 		 * and all the cleanup and final put for dio_bio (through
8476 		 * dio_end_io()).
8477 		 */
8478 		dip = NULL;
8479 		io_bio = NULL;
8480 	} else {
8481 		if (write) {
8482 			struct btrfs_ordered_extent *ordered;
8483 
8484 			ordered = btrfs_lookup_ordered_extent(inode,
8485 							      file_offset);
8486 			set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
8487 			/*
8488 			 * Decrements our ref on the ordered extent and removes
8489 			 * the ordered extent from the inode's ordered tree,
8490 			 * doing all the proper resource cleanup such as for the
8491 			 * reserved space and waking up any waiters for this
8492 			 * ordered extent (through btrfs_remove_ordered_extent).
8493 			 */
8494 			btrfs_finish_ordered_io(ordered);
8495 		} else {
8496 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8497 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8498 		}
8499 		dio_bio->bi_error = -EIO;
8500 		/*
8501 		 * Releases and cleans up our dio_bio, no need to bio_put()
8502 		 * nor bio_endio()/bio_io_error() against dio_bio.
8503 		 */
8504 		dio_end_io(dio_bio, ret);
8505 	}
8506 	if (io_bio)
8507 		bio_put(io_bio);
8508 	kfree(dip);
8509 }
8510 
check_direct_IO(struct btrfs_root * root,struct kiocb * iocb,const struct iov_iter * iter,loff_t offset)8511 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8512 			const struct iov_iter *iter, loff_t offset)
8513 {
8514 	int seg;
8515 	int i;
8516 	unsigned blocksize_mask = root->sectorsize - 1;
8517 	ssize_t retval = -EINVAL;
8518 
8519 	if (offset & blocksize_mask)
8520 		goto out;
8521 
8522 	if (iov_iter_alignment(iter) & blocksize_mask)
8523 		goto out;
8524 
8525 	/* If this is a write we don't need to check anymore */
8526 	if (iov_iter_rw(iter) == WRITE)
8527 		return 0;
8528 	/*
8529 	 * Check to make sure we don't have duplicate iov_base's in this
8530 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8531 	 * when reading back.
8532 	 */
8533 	for (seg = 0; seg < iter->nr_segs; seg++) {
8534 		for (i = seg + 1; i < iter->nr_segs; i++) {
8535 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8536 				goto out;
8537 		}
8538 	}
8539 	retval = 0;
8540 out:
8541 	return retval;
8542 }
8543 
btrfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter,loff_t offset)8544 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8545 			       loff_t offset)
8546 {
8547 	struct file *file = iocb->ki_filp;
8548 	struct inode *inode = file->f_mapping->host;
8549 	struct btrfs_root *root = BTRFS_I(inode)->root;
8550 	struct btrfs_dio_data dio_data = { 0 };
8551 	size_t count = 0;
8552 	int flags = 0;
8553 	bool wakeup = true;
8554 	bool relock = false;
8555 	ssize_t ret;
8556 
8557 	if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8558 		return 0;
8559 
8560 	inode_dio_begin(inode);
8561 	smp_mb__after_atomic();
8562 
8563 	/*
8564 	 * The generic stuff only does filemap_write_and_wait_range, which
8565 	 * isn't enough if we've written compressed pages to this area, so
8566 	 * we need to flush the dirty pages again to make absolutely sure
8567 	 * that any outstanding dirty pages are on disk.
8568 	 */
8569 	count = iov_iter_count(iter);
8570 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8571 		     &BTRFS_I(inode)->runtime_flags))
8572 		filemap_fdatawrite_range(inode->i_mapping, offset,
8573 					 offset + count - 1);
8574 
8575 	if (iov_iter_rw(iter) == WRITE) {
8576 		/*
8577 		 * If the write DIO is beyond the EOF, we need update
8578 		 * the isize, but it is protected by i_mutex. So we can
8579 		 * not unlock the i_mutex at this case.
8580 		 */
8581 		if (offset + count <= inode->i_size) {
8582 			mutex_unlock(&inode->i_mutex);
8583 			relock = true;
8584 		}
8585 		ret = btrfs_delalloc_reserve_space(inode, offset, count);
8586 		if (ret)
8587 			goto out;
8588 		dio_data.outstanding_extents = div64_u64(count +
8589 						BTRFS_MAX_EXTENT_SIZE - 1,
8590 						BTRFS_MAX_EXTENT_SIZE);
8591 
8592 		/*
8593 		 * We need to know how many extents we reserved so that we can
8594 		 * do the accounting properly if we go over the number we
8595 		 * originally calculated.  Abuse current->journal_info for this.
8596 		 */
8597 		dio_data.reserve = round_up(count, root->sectorsize);
8598 		current->journal_info = &dio_data;
8599 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8600 				     &BTRFS_I(inode)->runtime_flags)) {
8601 		inode_dio_end(inode);
8602 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8603 		wakeup = false;
8604 	}
8605 
8606 	ret = __blockdev_direct_IO(iocb, inode,
8607 				   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8608 				   iter, offset, btrfs_get_blocks_direct, NULL,
8609 				   btrfs_submit_direct, flags);
8610 	if (iov_iter_rw(iter) == WRITE) {
8611 		current->journal_info = NULL;
8612 		if (ret < 0 && ret != -EIOCBQUEUED) {
8613 			if (dio_data.reserve)
8614 				btrfs_delalloc_release_space(inode, offset,
8615 							     dio_data.reserve);
8616 		} else if (ret >= 0 && (size_t)ret < count)
8617 			btrfs_delalloc_release_space(inode, offset,
8618 						     count - (size_t)ret);
8619 	}
8620 out:
8621 	if (wakeup)
8622 		inode_dio_end(inode);
8623 	if (relock)
8624 		mutex_lock(&inode->i_mutex);
8625 
8626 	return ret;
8627 }
8628 
8629 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8630 
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)8631 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8632 		__u64 start, __u64 len)
8633 {
8634 	int	ret;
8635 
8636 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8637 	if (ret)
8638 		return ret;
8639 
8640 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8641 }
8642 
btrfs_readpage(struct file * file,struct page * page)8643 int btrfs_readpage(struct file *file, struct page *page)
8644 {
8645 	struct extent_io_tree *tree;
8646 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8647 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8648 }
8649 
btrfs_writepage(struct page * page,struct writeback_control * wbc)8650 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8651 {
8652 	struct extent_io_tree *tree;
8653 	struct inode *inode = page->mapping->host;
8654 	int ret;
8655 
8656 	if (current->flags & PF_MEMALLOC) {
8657 		redirty_page_for_writepage(wbc, page);
8658 		unlock_page(page);
8659 		return 0;
8660 	}
8661 
8662 	/*
8663 	 * If we are under memory pressure we will call this directly from the
8664 	 * VM, we need to make sure we have the inode referenced for the ordered
8665 	 * extent.  If not just return like we didn't do anything.
8666 	 */
8667 	if (!igrab(inode)) {
8668 		redirty_page_for_writepage(wbc, page);
8669 		return AOP_WRITEPAGE_ACTIVATE;
8670 	}
8671 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8672 	ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8673 	btrfs_add_delayed_iput(inode);
8674 	return ret;
8675 }
8676 
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)8677 static int btrfs_writepages(struct address_space *mapping,
8678 			    struct writeback_control *wbc)
8679 {
8680 	struct extent_io_tree *tree;
8681 
8682 	tree = &BTRFS_I(mapping->host)->io_tree;
8683 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8684 }
8685 
8686 static int
btrfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)8687 btrfs_readpages(struct file *file, struct address_space *mapping,
8688 		struct list_head *pages, unsigned nr_pages)
8689 {
8690 	struct extent_io_tree *tree;
8691 	tree = &BTRFS_I(mapping->host)->io_tree;
8692 	return extent_readpages(tree, mapping, pages, nr_pages,
8693 				btrfs_get_extent);
8694 }
__btrfs_releasepage(struct page * page,gfp_t gfp_flags)8695 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8696 {
8697 	struct extent_io_tree *tree;
8698 	struct extent_map_tree *map;
8699 	int ret;
8700 
8701 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8702 	map = &BTRFS_I(page->mapping->host)->extent_tree;
8703 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8704 	if (ret == 1) {
8705 		ClearPagePrivate(page);
8706 		set_page_private(page, 0);
8707 		page_cache_release(page);
8708 	}
8709 	return ret;
8710 }
8711 
btrfs_releasepage(struct page * page,gfp_t gfp_flags)8712 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8713 {
8714 	if (PageWriteback(page) || PageDirty(page))
8715 		return 0;
8716 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8717 }
8718 
btrfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)8719 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8720 				 unsigned int length)
8721 {
8722 	struct inode *inode = page->mapping->host;
8723 	struct extent_io_tree *tree;
8724 	struct btrfs_ordered_extent *ordered;
8725 	struct extent_state *cached_state = NULL;
8726 	u64 page_start = page_offset(page);
8727 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8728 	int inode_evicting = inode->i_state & I_FREEING;
8729 
8730 	/*
8731 	 * we have the page locked, so new writeback can't start,
8732 	 * and the dirty bit won't be cleared while we are here.
8733 	 *
8734 	 * Wait for IO on this page so that we can safely clear
8735 	 * the PagePrivate2 bit and do ordered accounting
8736 	 */
8737 	wait_on_page_writeback(page);
8738 
8739 	tree = &BTRFS_I(inode)->io_tree;
8740 	if (offset) {
8741 		btrfs_releasepage(page, GFP_NOFS);
8742 		return;
8743 	}
8744 
8745 	if (!inode_evicting)
8746 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8747 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
8748 	if (ordered) {
8749 		/*
8750 		 * IO on this page will never be started, so we need
8751 		 * to account for any ordered extents now
8752 		 */
8753 		if (!inode_evicting)
8754 			clear_extent_bit(tree, page_start, page_end,
8755 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8756 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8757 					 EXTENT_DEFRAG, 1, 0, &cached_state,
8758 					 GFP_NOFS);
8759 		/*
8760 		 * whoever cleared the private bit is responsible
8761 		 * for the finish_ordered_io
8762 		 */
8763 		if (TestClearPagePrivate2(page)) {
8764 			struct btrfs_ordered_inode_tree *tree;
8765 			u64 new_len;
8766 
8767 			tree = &BTRFS_I(inode)->ordered_tree;
8768 
8769 			spin_lock_irq(&tree->lock);
8770 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8771 			new_len = page_start - ordered->file_offset;
8772 			if (new_len < ordered->truncated_len)
8773 				ordered->truncated_len = new_len;
8774 			spin_unlock_irq(&tree->lock);
8775 
8776 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8777 							   page_start,
8778 							   PAGE_CACHE_SIZE, 1))
8779 				btrfs_finish_ordered_io(ordered);
8780 		}
8781 		btrfs_put_ordered_extent(ordered);
8782 		if (!inode_evicting) {
8783 			cached_state = NULL;
8784 			lock_extent_bits(tree, page_start, page_end, 0,
8785 					 &cached_state);
8786 		}
8787 	}
8788 
8789 	/*
8790 	 * Qgroup reserved space handler
8791 	 * Page here will be either
8792 	 * 1) Already written to disk
8793 	 *    In this case, its reserved space is released from data rsv map
8794 	 *    and will be freed by delayed_ref handler finally.
8795 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8796 	 *    space.
8797 	 * 2) Not written to disk
8798 	 *    This means the reserved space should be freed here. However,
8799 	 *    if a truncate invalidates the page (by clearing PageDirty)
8800 	 *    and the page is accounted for while allocating extent
8801 	 *    in btrfs_check_data_free_space() we let delayed_ref to
8802 	 *    free the entire extent.
8803 	 */
8804 	if (PageDirty(page))
8805 		btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
8806 	if (!inode_evicting) {
8807 		clear_extent_bit(tree, page_start, page_end,
8808 				 EXTENT_LOCKED | EXTENT_DIRTY |
8809 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8810 				 EXTENT_DEFRAG, 1, 1,
8811 				 &cached_state, GFP_NOFS);
8812 
8813 		__btrfs_releasepage(page, GFP_NOFS);
8814 	}
8815 
8816 	ClearPageChecked(page);
8817 	if (PagePrivate(page)) {
8818 		ClearPagePrivate(page);
8819 		set_page_private(page, 0);
8820 		page_cache_release(page);
8821 	}
8822 }
8823 
8824 /*
8825  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8826  * called from a page fault handler when a page is first dirtied. Hence we must
8827  * be careful to check for EOF conditions here. We set the page up correctly
8828  * for a written page which means we get ENOSPC checking when writing into
8829  * holes and correct delalloc and unwritten extent mapping on filesystems that
8830  * support these features.
8831  *
8832  * We are not allowed to take the i_mutex here so we have to play games to
8833  * protect against truncate races as the page could now be beyond EOF.  Because
8834  * vmtruncate() writes the inode size before removing pages, once we have the
8835  * page lock we can determine safely if the page is beyond EOF. If it is not
8836  * beyond EOF, then the page is guaranteed safe against truncation until we
8837  * unlock the page.
8838  */
btrfs_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)8839 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8840 {
8841 	struct page *page = vmf->page;
8842 	struct inode *inode = file_inode(vma->vm_file);
8843 	struct btrfs_root *root = BTRFS_I(inode)->root;
8844 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8845 	struct btrfs_ordered_extent *ordered;
8846 	struct extent_state *cached_state = NULL;
8847 	char *kaddr;
8848 	unsigned long zero_start;
8849 	loff_t size;
8850 	int ret;
8851 	int reserved = 0;
8852 	u64 page_start;
8853 	u64 page_end;
8854 
8855 	sb_start_pagefault(inode->i_sb);
8856 	page_start = page_offset(page);
8857 	page_end = page_start + PAGE_CACHE_SIZE - 1;
8858 
8859 	ret = btrfs_delalloc_reserve_space(inode, page_start,
8860 					   PAGE_CACHE_SIZE);
8861 	if (!ret) {
8862 		ret = file_update_time(vma->vm_file);
8863 		reserved = 1;
8864 	}
8865 	if (ret) {
8866 		if (ret == -ENOMEM)
8867 			ret = VM_FAULT_OOM;
8868 		else /* -ENOSPC, -EIO, etc */
8869 			ret = VM_FAULT_SIGBUS;
8870 		if (reserved)
8871 			goto out;
8872 		goto out_noreserve;
8873 	}
8874 
8875 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8876 again:
8877 	lock_page(page);
8878 	size = i_size_read(inode);
8879 
8880 	if ((page->mapping != inode->i_mapping) ||
8881 	    (page_start >= size)) {
8882 		/* page got truncated out from underneath us */
8883 		goto out_unlock;
8884 	}
8885 	wait_on_page_writeback(page);
8886 
8887 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8888 	set_page_extent_mapped(page);
8889 
8890 	/*
8891 	 * we can't set the delalloc bits if there are pending ordered
8892 	 * extents.  Drop our locks and wait for them to finish
8893 	 */
8894 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
8895 	if (ordered) {
8896 		unlock_extent_cached(io_tree, page_start, page_end,
8897 				     &cached_state, GFP_NOFS);
8898 		unlock_page(page);
8899 		btrfs_start_ordered_extent(inode, ordered, 1);
8900 		btrfs_put_ordered_extent(ordered);
8901 		goto again;
8902 	}
8903 
8904 	/*
8905 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
8906 	 * if it was already dirty, so for space accounting reasons we need to
8907 	 * clear any delalloc bits for the range we are fixing to save.  There
8908 	 * is probably a better way to do this, but for now keep consistent with
8909 	 * prepare_pages in the normal write path.
8910 	 */
8911 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8912 			  EXTENT_DIRTY | EXTENT_DELALLOC |
8913 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8914 			  0, 0, &cached_state, GFP_NOFS);
8915 
8916 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8917 					&cached_state);
8918 	if (ret) {
8919 		unlock_extent_cached(io_tree, page_start, page_end,
8920 				     &cached_state, GFP_NOFS);
8921 		ret = VM_FAULT_SIGBUS;
8922 		goto out_unlock;
8923 	}
8924 	ret = 0;
8925 
8926 	/* page is wholly or partially inside EOF */
8927 	if (page_start + PAGE_CACHE_SIZE > size)
8928 		zero_start = size & ~PAGE_CACHE_MASK;
8929 	else
8930 		zero_start = PAGE_CACHE_SIZE;
8931 
8932 	if (zero_start != PAGE_CACHE_SIZE) {
8933 		kaddr = kmap(page);
8934 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8935 		flush_dcache_page(page);
8936 		kunmap(page);
8937 	}
8938 	ClearPageChecked(page);
8939 	set_page_dirty(page);
8940 	SetPageUptodate(page);
8941 
8942 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
8943 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8944 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8945 
8946 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8947 
8948 out_unlock:
8949 	if (!ret) {
8950 		sb_end_pagefault(inode->i_sb);
8951 		return VM_FAULT_LOCKED;
8952 	}
8953 	unlock_page(page);
8954 out:
8955 	btrfs_delalloc_release_space(inode, page_start, PAGE_CACHE_SIZE);
8956 out_noreserve:
8957 	sb_end_pagefault(inode->i_sb);
8958 	return ret;
8959 }
8960 
btrfs_truncate(struct inode * inode)8961 static int btrfs_truncate(struct inode *inode)
8962 {
8963 	struct btrfs_root *root = BTRFS_I(inode)->root;
8964 	struct btrfs_block_rsv *rsv;
8965 	int ret = 0;
8966 	int err = 0;
8967 	struct btrfs_trans_handle *trans;
8968 	u64 mask = root->sectorsize - 1;
8969 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8970 
8971 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8972 				       (u64)-1);
8973 	if (ret)
8974 		return ret;
8975 
8976 	/*
8977 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
8978 	 * 3 things going on here
8979 	 *
8980 	 * 1) We need to reserve space for our orphan item and the space to
8981 	 * delete our orphan item.  Lord knows we don't want to have a dangling
8982 	 * orphan item because we didn't reserve space to remove it.
8983 	 *
8984 	 * 2) We need to reserve space to update our inode.
8985 	 *
8986 	 * 3) We need to have something to cache all the space that is going to
8987 	 * be free'd up by the truncate operation, but also have some slack
8988 	 * space reserved in case it uses space during the truncate (thank you
8989 	 * very much snapshotting).
8990 	 *
8991 	 * And we need these to all be seperate.  The fact is we can use alot of
8992 	 * space doing the truncate, and we have no earthly idea how much space
8993 	 * we will use, so we need the truncate reservation to be seperate so it
8994 	 * doesn't end up using space reserved for updating the inode or
8995 	 * removing the orphan item.  We also need to be able to stop the
8996 	 * transaction and start a new one, which means we need to be able to
8997 	 * update the inode several times, and we have no idea of knowing how
8998 	 * many times that will be, so we can't just reserve 1 item for the
8999 	 * entirety of the opration, so that has to be done seperately as well.
9000 	 * Then there is the orphan item, which does indeed need to be held on
9001 	 * to for the whole operation, and we need nobody to touch this reserved
9002 	 * space except the orphan code.
9003 	 *
9004 	 * So that leaves us with
9005 	 *
9006 	 * 1) root->orphan_block_rsv - for the orphan deletion.
9007 	 * 2) rsv - for the truncate reservation, which we will steal from the
9008 	 * transaction reservation.
9009 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9010 	 * updating the inode.
9011 	 */
9012 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
9013 	if (!rsv)
9014 		return -ENOMEM;
9015 	rsv->size = min_size;
9016 	rsv->failfast = 1;
9017 
9018 	/*
9019 	 * 1 for the truncate slack space
9020 	 * 1 for updating the inode.
9021 	 */
9022 	trans = btrfs_start_transaction(root, 2);
9023 	if (IS_ERR(trans)) {
9024 		err = PTR_ERR(trans);
9025 		goto out;
9026 	}
9027 
9028 	/* Migrate the slack space for the truncate to our reserve */
9029 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
9030 				      min_size);
9031 	BUG_ON(ret);
9032 
9033 	/*
9034 	 * So if we truncate and then write and fsync we normally would just
9035 	 * write the extents that changed, which is a problem if we need to
9036 	 * first truncate that entire inode.  So set this flag so we write out
9037 	 * all of the extents in the inode to the sync log so we're completely
9038 	 * safe.
9039 	 */
9040 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9041 	trans->block_rsv = rsv;
9042 
9043 	while (1) {
9044 		ret = btrfs_truncate_inode_items(trans, root, inode,
9045 						 inode->i_size,
9046 						 BTRFS_EXTENT_DATA_KEY);
9047 		if (ret != -ENOSPC && ret != -EAGAIN) {
9048 			err = ret;
9049 			break;
9050 		}
9051 
9052 		trans->block_rsv = &root->fs_info->trans_block_rsv;
9053 		ret = btrfs_update_inode(trans, root, inode);
9054 		if (ret) {
9055 			err = ret;
9056 			break;
9057 		}
9058 
9059 		btrfs_end_transaction(trans, root);
9060 		btrfs_btree_balance_dirty(root);
9061 
9062 		trans = btrfs_start_transaction(root, 2);
9063 		if (IS_ERR(trans)) {
9064 			ret = err = PTR_ERR(trans);
9065 			trans = NULL;
9066 			break;
9067 		}
9068 
9069 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
9070 					      rsv, min_size);
9071 		BUG_ON(ret);	/* shouldn't happen */
9072 		trans->block_rsv = rsv;
9073 	}
9074 
9075 	if (ret == 0 && inode->i_nlink > 0) {
9076 		trans->block_rsv = root->orphan_block_rsv;
9077 		ret = btrfs_orphan_del(trans, inode);
9078 		if (ret)
9079 			err = ret;
9080 	}
9081 
9082 	if (trans) {
9083 		trans->block_rsv = &root->fs_info->trans_block_rsv;
9084 		ret = btrfs_update_inode(trans, root, inode);
9085 		if (ret && !err)
9086 			err = ret;
9087 
9088 		ret = btrfs_end_transaction(trans, root);
9089 		btrfs_btree_balance_dirty(root);
9090 	}
9091 
9092 out:
9093 	btrfs_free_block_rsv(root, rsv);
9094 
9095 	if (ret && !err)
9096 		err = ret;
9097 
9098 	return err;
9099 }
9100 
9101 /*
9102  * create a new subvolume directory/inode (helper for the ioctl).
9103  */
btrfs_create_subvol_root(struct btrfs_trans_handle * trans,struct btrfs_root * new_root,struct btrfs_root * parent_root,u64 new_dirid)9104 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9105 			     struct btrfs_root *new_root,
9106 			     struct btrfs_root *parent_root,
9107 			     u64 new_dirid)
9108 {
9109 	struct inode *inode;
9110 	int err;
9111 	u64 index = 0;
9112 
9113 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9114 				new_dirid, new_dirid,
9115 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9116 				&index);
9117 	if (IS_ERR(inode))
9118 		return PTR_ERR(inode);
9119 	inode->i_op = &btrfs_dir_inode_operations;
9120 	inode->i_fop = &btrfs_dir_file_operations;
9121 
9122 	set_nlink(inode, 1);
9123 	btrfs_i_size_write(inode, 0);
9124 	unlock_new_inode(inode);
9125 
9126 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9127 	if (err)
9128 		btrfs_err(new_root->fs_info,
9129 			  "error inheriting subvolume %llu properties: %d",
9130 			  new_root->root_key.objectid, err);
9131 
9132 	err = btrfs_update_inode(trans, new_root, inode);
9133 
9134 	iput(inode);
9135 	return err;
9136 }
9137 
btrfs_alloc_inode(struct super_block * sb)9138 struct inode *btrfs_alloc_inode(struct super_block *sb)
9139 {
9140 	struct btrfs_inode *ei;
9141 	struct inode *inode;
9142 
9143 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9144 	if (!ei)
9145 		return NULL;
9146 
9147 	ei->root = NULL;
9148 	ei->generation = 0;
9149 	ei->last_trans = 0;
9150 	ei->last_sub_trans = 0;
9151 	ei->logged_trans = 0;
9152 	ei->delalloc_bytes = 0;
9153 	ei->defrag_bytes = 0;
9154 	ei->disk_i_size = 0;
9155 	ei->flags = 0;
9156 	ei->csum_bytes = 0;
9157 	ei->index_cnt = (u64)-1;
9158 	ei->dir_index = 0;
9159 	ei->last_unlink_trans = 0;
9160 	ei->last_log_commit = 0;
9161 
9162 	spin_lock_init(&ei->lock);
9163 	ei->outstanding_extents = 0;
9164 	ei->reserved_extents = 0;
9165 
9166 	ei->runtime_flags = 0;
9167 	ei->force_compress = BTRFS_COMPRESS_NONE;
9168 
9169 	ei->delayed_node = NULL;
9170 
9171 	ei->i_otime.tv_sec = 0;
9172 	ei->i_otime.tv_nsec = 0;
9173 
9174 	inode = &ei->vfs_inode;
9175 	extent_map_tree_init(&ei->extent_tree);
9176 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
9177 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9178 	ei->io_tree.track_uptodate = 1;
9179 	ei->io_failure_tree.track_uptodate = 1;
9180 	atomic_set(&ei->sync_writers, 0);
9181 	mutex_init(&ei->log_mutex);
9182 	mutex_init(&ei->delalloc_mutex);
9183 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9184 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9185 	RB_CLEAR_NODE(&ei->rb_node);
9186 
9187 	return inode;
9188 }
9189 
9190 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)9191 void btrfs_test_destroy_inode(struct inode *inode)
9192 {
9193 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9194 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9195 }
9196 #endif
9197 
btrfs_i_callback(struct rcu_head * head)9198 static void btrfs_i_callback(struct rcu_head *head)
9199 {
9200 	struct inode *inode = container_of(head, struct inode, i_rcu);
9201 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9202 }
9203 
btrfs_destroy_inode(struct inode * inode)9204 void btrfs_destroy_inode(struct inode *inode)
9205 {
9206 	struct btrfs_ordered_extent *ordered;
9207 	struct btrfs_root *root = BTRFS_I(inode)->root;
9208 
9209 	WARN_ON(!hlist_empty(&inode->i_dentry));
9210 	WARN_ON(inode->i_data.nrpages);
9211 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9212 	WARN_ON(BTRFS_I(inode)->reserved_extents);
9213 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9214 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9215 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9216 
9217 	/*
9218 	 * This can happen where we create an inode, but somebody else also
9219 	 * created the same inode and we need to destroy the one we already
9220 	 * created.
9221 	 */
9222 	if (!root)
9223 		goto free;
9224 
9225 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9226 		     &BTRFS_I(inode)->runtime_flags)) {
9227 		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9228 			btrfs_ino(inode));
9229 		atomic_dec(&root->orphan_inodes);
9230 	}
9231 
9232 	while (1) {
9233 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9234 		if (!ordered)
9235 			break;
9236 		else {
9237 			btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
9238 				ordered->file_offset, ordered->len);
9239 			btrfs_remove_ordered_extent(inode, ordered);
9240 			btrfs_put_ordered_extent(ordered);
9241 			btrfs_put_ordered_extent(ordered);
9242 		}
9243 	}
9244 	btrfs_qgroup_check_reserved_leak(inode);
9245 	inode_tree_del(inode);
9246 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9247 free:
9248 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9249 }
9250 
btrfs_drop_inode(struct inode * inode)9251 int btrfs_drop_inode(struct inode *inode)
9252 {
9253 	struct btrfs_root *root = BTRFS_I(inode)->root;
9254 
9255 	if (root == NULL)
9256 		return 1;
9257 
9258 	/* the snap/subvol tree is on deleting */
9259 	if (btrfs_root_refs(&root->root_item) == 0)
9260 		return 1;
9261 	else
9262 		return generic_drop_inode(inode);
9263 }
9264 
init_once(void * foo)9265 static void init_once(void *foo)
9266 {
9267 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9268 
9269 	inode_init_once(&ei->vfs_inode);
9270 }
9271 
btrfs_destroy_cachep(void)9272 void btrfs_destroy_cachep(void)
9273 {
9274 	/*
9275 	 * Make sure all delayed rcu free inodes are flushed before we
9276 	 * destroy cache.
9277 	 */
9278 	rcu_barrier();
9279 	if (btrfs_inode_cachep)
9280 		kmem_cache_destroy(btrfs_inode_cachep);
9281 	if (btrfs_trans_handle_cachep)
9282 		kmem_cache_destroy(btrfs_trans_handle_cachep);
9283 	if (btrfs_transaction_cachep)
9284 		kmem_cache_destroy(btrfs_transaction_cachep);
9285 	if (btrfs_path_cachep)
9286 		kmem_cache_destroy(btrfs_path_cachep);
9287 	if (btrfs_free_space_cachep)
9288 		kmem_cache_destroy(btrfs_free_space_cachep);
9289 	if (btrfs_delalloc_work_cachep)
9290 		kmem_cache_destroy(btrfs_delalloc_work_cachep);
9291 }
9292 
btrfs_init_cachep(void)9293 int btrfs_init_cachep(void)
9294 {
9295 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9296 			sizeof(struct btrfs_inode), 0,
9297 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
9298 	if (!btrfs_inode_cachep)
9299 		goto fail;
9300 
9301 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9302 			sizeof(struct btrfs_trans_handle), 0,
9303 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9304 	if (!btrfs_trans_handle_cachep)
9305 		goto fail;
9306 
9307 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9308 			sizeof(struct btrfs_transaction), 0,
9309 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9310 	if (!btrfs_transaction_cachep)
9311 		goto fail;
9312 
9313 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9314 			sizeof(struct btrfs_path), 0,
9315 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9316 	if (!btrfs_path_cachep)
9317 		goto fail;
9318 
9319 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9320 			sizeof(struct btrfs_free_space), 0,
9321 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9322 	if (!btrfs_free_space_cachep)
9323 		goto fail;
9324 
9325 	btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
9326 			sizeof(struct btrfs_delalloc_work), 0,
9327 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
9328 			NULL);
9329 	if (!btrfs_delalloc_work_cachep)
9330 		goto fail;
9331 
9332 	return 0;
9333 fail:
9334 	btrfs_destroy_cachep();
9335 	return -ENOMEM;
9336 }
9337 
btrfs_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)9338 static int btrfs_getattr(struct vfsmount *mnt,
9339 			 struct dentry *dentry, struct kstat *stat)
9340 {
9341 	u64 delalloc_bytes;
9342 	struct inode *inode = d_inode(dentry);
9343 	u32 blocksize = inode->i_sb->s_blocksize;
9344 
9345 	generic_fillattr(inode, stat);
9346 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9347 	stat->blksize = PAGE_CACHE_SIZE;
9348 
9349 	spin_lock(&BTRFS_I(inode)->lock);
9350 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9351 	spin_unlock(&BTRFS_I(inode)->lock);
9352 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9353 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9354 	return 0;
9355 }
9356 
btrfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)9357 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9358 			   struct inode *new_dir, struct dentry *new_dentry)
9359 {
9360 	struct btrfs_trans_handle *trans;
9361 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9362 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9363 	struct inode *new_inode = d_inode(new_dentry);
9364 	struct inode *old_inode = d_inode(old_dentry);
9365 	struct timespec ctime = CURRENT_TIME;
9366 	u64 index = 0;
9367 	u64 root_objectid;
9368 	int ret;
9369 	u64 old_ino = btrfs_ino(old_inode);
9370 
9371 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9372 		return -EPERM;
9373 
9374 	/* we only allow rename subvolume link between subvolumes */
9375 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9376 		return -EXDEV;
9377 
9378 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9379 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9380 		return -ENOTEMPTY;
9381 
9382 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9383 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9384 		return -ENOTEMPTY;
9385 
9386 
9387 	/* check for collisions, even if the  name isn't there */
9388 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9389 			     new_dentry->d_name.name,
9390 			     new_dentry->d_name.len);
9391 
9392 	if (ret) {
9393 		if (ret == -EEXIST) {
9394 			/* we shouldn't get
9395 			 * eexist without a new_inode */
9396 			if (WARN_ON(!new_inode)) {
9397 				return ret;
9398 			}
9399 		} else {
9400 			/* maybe -EOVERFLOW */
9401 			return ret;
9402 		}
9403 	}
9404 	ret = 0;
9405 
9406 	/*
9407 	 * we're using rename to replace one file with another.  Start IO on it
9408 	 * now so  we don't add too much work to the end of the transaction
9409 	 */
9410 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9411 		filemap_flush(old_inode->i_mapping);
9412 
9413 	/* close the racy window with snapshot create/destroy ioctl */
9414 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9415 		down_read(&root->fs_info->subvol_sem);
9416 	/*
9417 	 * We want to reserve the absolute worst case amount of items.  So if
9418 	 * both inodes are subvols and we need to unlink them then that would
9419 	 * require 4 item modifications, but if they are both normal inodes it
9420 	 * would require 5 item modifications, so we'll assume their normal
9421 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9422 	 * should cover the worst case number of items we'll modify.
9423 	 */
9424 	trans = btrfs_start_transaction(root, 11);
9425 	if (IS_ERR(trans)) {
9426                 ret = PTR_ERR(trans);
9427                 goto out_notrans;
9428         }
9429 
9430 	if (dest != root)
9431 		btrfs_record_root_in_trans(trans, dest);
9432 
9433 	ret = btrfs_set_inode_index(new_dir, &index);
9434 	if (ret)
9435 		goto out_fail;
9436 
9437 	BTRFS_I(old_inode)->dir_index = 0ULL;
9438 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9439 		/* force full log commit if subvolume involved. */
9440 		btrfs_set_log_full_commit(root->fs_info, trans);
9441 	} else {
9442 		ret = btrfs_insert_inode_ref(trans, dest,
9443 					     new_dentry->d_name.name,
9444 					     new_dentry->d_name.len,
9445 					     old_ino,
9446 					     btrfs_ino(new_dir), index);
9447 		if (ret)
9448 			goto out_fail;
9449 		/*
9450 		 * this is an ugly little race, but the rename is required
9451 		 * to make sure that if we crash, the inode is either at the
9452 		 * old name or the new one.  pinning the log transaction lets
9453 		 * us make sure we don't allow a log commit to come in after
9454 		 * we unlink the name but before we add the new name back in.
9455 		 */
9456 		btrfs_pin_log_trans(root);
9457 	}
9458 
9459 	inode_inc_iversion(old_dir);
9460 	inode_inc_iversion(new_dir);
9461 	inode_inc_iversion(old_inode);
9462 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9463 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9464 	old_inode->i_ctime = ctime;
9465 
9466 	if (old_dentry->d_parent != new_dentry->d_parent)
9467 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9468 
9469 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9470 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9471 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9472 					old_dentry->d_name.name,
9473 					old_dentry->d_name.len);
9474 	} else {
9475 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9476 					d_inode(old_dentry),
9477 					old_dentry->d_name.name,
9478 					old_dentry->d_name.len);
9479 		if (!ret)
9480 			ret = btrfs_update_inode(trans, root, old_inode);
9481 	}
9482 	if (ret) {
9483 		btrfs_abort_transaction(trans, root, ret);
9484 		goto out_fail;
9485 	}
9486 
9487 	if (new_inode) {
9488 		inode_inc_iversion(new_inode);
9489 		new_inode->i_ctime = CURRENT_TIME;
9490 		if (unlikely(btrfs_ino(new_inode) ==
9491 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9492 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9493 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
9494 						root_objectid,
9495 						new_dentry->d_name.name,
9496 						new_dentry->d_name.len);
9497 			BUG_ON(new_inode->i_nlink == 0);
9498 		} else {
9499 			ret = btrfs_unlink_inode(trans, dest, new_dir,
9500 						 d_inode(new_dentry),
9501 						 new_dentry->d_name.name,
9502 						 new_dentry->d_name.len);
9503 		}
9504 		if (!ret && new_inode->i_nlink == 0)
9505 			ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9506 		if (ret) {
9507 			btrfs_abort_transaction(trans, root, ret);
9508 			goto out_fail;
9509 		}
9510 	}
9511 
9512 	ret = btrfs_add_link(trans, new_dir, old_inode,
9513 			     new_dentry->d_name.name,
9514 			     new_dentry->d_name.len, 0, index);
9515 	if (ret) {
9516 		btrfs_abort_transaction(trans, root, ret);
9517 		goto out_fail;
9518 	}
9519 
9520 	if (old_inode->i_nlink == 1)
9521 		BTRFS_I(old_inode)->dir_index = index;
9522 
9523 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9524 		struct dentry *parent = new_dentry->d_parent;
9525 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9526 		btrfs_end_log_trans(root);
9527 	}
9528 out_fail:
9529 	btrfs_end_transaction(trans, root);
9530 out_notrans:
9531 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9532 		up_read(&root->fs_info->subvol_sem);
9533 
9534 	return ret;
9535 }
9536 
btrfs_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9537 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9538 			 struct inode *new_dir, struct dentry *new_dentry,
9539 			 unsigned int flags)
9540 {
9541 	if (flags & ~RENAME_NOREPLACE)
9542 		return -EINVAL;
9543 
9544 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9545 }
9546 
btrfs_run_delalloc_work(struct btrfs_work * work)9547 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9548 {
9549 	struct btrfs_delalloc_work *delalloc_work;
9550 	struct inode *inode;
9551 
9552 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9553 				     work);
9554 	inode = delalloc_work->inode;
9555 	if (delalloc_work->wait) {
9556 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
9557 	} else {
9558 		filemap_flush(inode->i_mapping);
9559 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9560 			     &BTRFS_I(inode)->runtime_flags))
9561 			filemap_flush(inode->i_mapping);
9562 	}
9563 
9564 	if (delalloc_work->delay_iput)
9565 		btrfs_add_delayed_iput(inode);
9566 	else
9567 		iput(inode);
9568 	complete(&delalloc_work->completion);
9569 }
9570 
btrfs_alloc_delalloc_work(struct inode * inode,int wait,int delay_iput)9571 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9572 						    int wait, int delay_iput)
9573 {
9574 	struct btrfs_delalloc_work *work;
9575 
9576 	work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9577 	if (!work)
9578 		return NULL;
9579 
9580 	init_completion(&work->completion);
9581 	INIT_LIST_HEAD(&work->list);
9582 	work->inode = inode;
9583 	work->wait = wait;
9584 	work->delay_iput = delay_iput;
9585 	WARN_ON_ONCE(!inode);
9586 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9587 			btrfs_run_delalloc_work, NULL, NULL);
9588 
9589 	return work;
9590 }
9591 
btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work * work)9592 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9593 {
9594 	wait_for_completion(&work->completion);
9595 	kmem_cache_free(btrfs_delalloc_work_cachep, work);
9596 }
9597 
9598 /*
9599  * some fairly slow code that needs optimization. This walks the list
9600  * of all the inodes with pending delalloc and forces them to disk.
9601  */
__start_delalloc_inodes(struct btrfs_root * root,int delay_iput,int nr)9602 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9603 				   int nr)
9604 {
9605 	struct btrfs_inode *binode;
9606 	struct inode *inode;
9607 	struct btrfs_delalloc_work *work, *next;
9608 	struct list_head works;
9609 	struct list_head splice;
9610 	int ret = 0;
9611 
9612 	INIT_LIST_HEAD(&works);
9613 	INIT_LIST_HEAD(&splice);
9614 
9615 	mutex_lock(&root->delalloc_mutex);
9616 	spin_lock(&root->delalloc_lock);
9617 	list_splice_init(&root->delalloc_inodes, &splice);
9618 	while (!list_empty(&splice)) {
9619 		binode = list_entry(splice.next, struct btrfs_inode,
9620 				    delalloc_inodes);
9621 
9622 		list_move_tail(&binode->delalloc_inodes,
9623 			       &root->delalloc_inodes);
9624 		inode = igrab(&binode->vfs_inode);
9625 		if (!inode) {
9626 			cond_resched_lock(&root->delalloc_lock);
9627 			continue;
9628 		}
9629 		spin_unlock(&root->delalloc_lock);
9630 
9631 		work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
9632 		if (!work) {
9633 			if (delay_iput)
9634 				btrfs_add_delayed_iput(inode);
9635 			else
9636 				iput(inode);
9637 			ret = -ENOMEM;
9638 			goto out;
9639 		}
9640 		list_add_tail(&work->list, &works);
9641 		btrfs_queue_work(root->fs_info->flush_workers,
9642 				 &work->work);
9643 		ret++;
9644 		if (nr != -1 && ret >= nr)
9645 			goto out;
9646 		cond_resched();
9647 		spin_lock(&root->delalloc_lock);
9648 	}
9649 	spin_unlock(&root->delalloc_lock);
9650 
9651 out:
9652 	list_for_each_entry_safe(work, next, &works, list) {
9653 		list_del_init(&work->list);
9654 		btrfs_wait_and_free_delalloc_work(work);
9655 	}
9656 
9657 	if (!list_empty_careful(&splice)) {
9658 		spin_lock(&root->delalloc_lock);
9659 		list_splice_tail(&splice, &root->delalloc_inodes);
9660 		spin_unlock(&root->delalloc_lock);
9661 	}
9662 	mutex_unlock(&root->delalloc_mutex);
9663 	return ret;
9664 }
9665 
btrfs_start_delalloc_inodes(struct btrfs_root * root,int delay_iput)9666 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9667 {
9668 	int ret;
9669 
9670 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9671 		return -EROFS;
9672 
9673 	ret = __start_delalloc_inodes(root, delay_iput, -1);
9674 	if (ret > 0)
9675 		ret = 0;
9676 	/*
9677 	 * the filemap_flush will queue IO into the worker threads, but
9678 	 * we have to make sure the IO is actually started and that
9679 	 * ordered extents get created before we return
9680 	 */
9681 	atomic_inc(&root->fs_info->async_submit_draining);
9682 	while (atomic_read(&root->fs_info->nr_async_submits) ||
9683 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
9684 		wait_event(root->fs_info->async_submit_wait,
9685 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9686 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9687 	}
9688 	atomic_dec(&root->fs_info->async_submit_draining);
9689 	return ret;
9690 }
9691 
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,int delay_iput,int nr)9692 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9693 			       int nr)
9694 {
9695 	struct btrfs_root *root;
9696 	struct list_head splice;
9697 	int ret;
9698 
9699 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9700 		return -EROFS;
9701 
9702 	INIT_LIST_HEAD(&splice);
9703 
9704 	mutex_lock(&fs_info->delalloc_root_mutex);
9705 	spin_lock(&fs_info->delalloc_root_lock);
9706 	list_splice_init(&fs_info->delalloc_roots, &splice);
9707 	while (!list_empty(&splice) && nr) {
9708 		root = list_first_entry(&splice, struct btrfs_root,
9709 					delalloc_root);
9710 		root = btrfs_grab_fs_root(root);
9711 		BUG_ON(!root);
9712 		list_move_tail(&root->delalloc_root,
9713 			       &fs_info->delalloc_roots);
9714 		spin_unlock(&fs_info->delalloc_root_lock);
9715 
9716 		ret = __start_delalloc_inodes(root, delay_iput, nr);
9717 		btrfs_put_fs_root(root);
9718 		if (ret < 0)
9719 			goto out;
9720 
9721 		if (nr != -1) {
9722 			nr -= ret;
9723 			WARN_ON(nr < 0);
9724 		}
9725 		spin_lock(&fs_info->delalloc_root_lock);
9726 	}
9727 	spin_unlock(&fs_info->delalloc_root_lock);
9728 
9729 	ret = 0;
9730 	atomic_inc(&fs_info->async_submit_draining);
9731 	while (atomic_read(&fs_info->nr_async_submits) ||
9732 	      atomic_read(&fs_info->async_delalloc_pages)) {
9733 		wait_event(fs_info->async_submit_wait,
9734 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
9735 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
9736 	}
9737 	atomic_dec(&fs_info->async_submit_draining);
9738 out:
9739 	if (!list_empty_careful(&splice)) {
9740 		spin_lock(&fs_info->delalloc_root_lock);
9741 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9742 		spin_unlock(&fs_info->delalloc_root_lock);
9743 	}
9744 	mutex_unlock(&fs_info->delalloc_root_mutex);
9745 	return ret;
9746 }
9747 
btrfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)9748 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9749 			 const char *symname)
9750 {
9751 	struct btrfs_trans_handle *trans;
9752 	struct btrfs_root *root = BTRFS_I(dir)->root;
9753 	struct btrfs_path *path;
9754 	struct btrfs_key key;
9755 	struct inode *inode = NULL;
9756 	int err;
9757 	int drop_inode = 0;
9758 	u64 objectid;
9759 	u64 index = 0;
9760 	int name_len;
9761 	int datasize;
9762 	unsigned long ptr;
9763 	struct btrfs_file_extent_item *ei;
9764 	struct extent_buffer *leaf;
9765 
9766 	name_len = strlen(symname);
9767 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9768 		return -ENAMETOOLONG;
9769 
9770 	/*
9771 	 * 2 items for inode item and ref
9772 	 * 2 items for dir items
9773 	 * 1 item for updating parent inode item
9774 	 * 1 item for the inline extent item
9775 	 * 1 item for xattr if selinux is on
9776 	 */
9777 	trans = btrfs_start_transaction(root, 7);
9778 	if (IS_ERR(trans))
9779 		return PTR_ERR(trans);
9780 
9781 	err = btrfs_find_free_ino(root, &objectid);
9782 	if (err)
9783 		goto out_unlock;
9784 
9785 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9786 				dentry->d_name.len, btrfs_ino(dir), objectid,
9787 				S_IFLNK|S_IRWXUGO, &index);
9788 	if (IS_ERR(inode)) {
9789 		err = PTR_ERR(inode);
9790 		goto out_unlock;
9791 	}
9792 
9793 	/*
9794 	* If the active LSM wants to access the inode during
9795 	* d_instantiate it needs these. Smack checks to see
9796 	* if the filesystem supports xattrs by looking at the
9797 	* ops vector.
9798 	*/
9799 	inode->i_fop = &btrfs_file_operations;
9800 	inode->i_op = &btrfs_file_inode_operations;
9801 	inode->i_mapping->a_ops = &btrfs_aops;
9802 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9803 
9804 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9805 	if (err)
9806 		goto out_unlock_inode;
9807 
9808 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9809 	if (err)
9810 		goto out_unlock_inode;
9811 
9812 	path = btrfs_alloc_path();
9813 	if (!path) {
9814 		err = -ENOMEM;
9815 		goto out_unlock_inode;
9816 	}
9817 	key.objectid = btrfs_ino(inode);
9818 	key.offset = 0;
9819 	key.type = BTRFS_EXTENT_DATA_KEY;
9820 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9821 	err = btrfs_insert_empty_item(trans, root, path, &key,
9822 				      datasize);
9823 	if (err) {
9824 		btrfs_free_path(path);
9825 		goto out_unlock_inode;
9826 	}
9827 	leaf = path->nodes[0];
9828 	ei = btrfs_item_ptr(leaf, path->slots[0],
9829 			    struct btrfs_file_extent_item);
9830 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9831 	btrfs_set_file_extent_type(leaf, ei,
9832 				   BTRFS_FILE_EXTENT_INLINE);
9833 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9834 	btrfs_set_file_extent_compression(leaf, ei, 0);
9835 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9836 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9837 
9838 	ptr = btrfs_file_extent_inline_start(ei);
9839 	write_extent_buffer(leaf, symname, ptr, name_len);
9840 	btrfs_mark_buffer_dirty(leaf);
9841 	btrfs_free_path(path);
9842 
9843 	inode->i_op = &btrfs_symlink_inode_operations;
9844 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
9845 	inode_set_bytes(inode, name_len);
9846 	btrfs_i_size_write(inode, name_len);
9847 	err = btrfs_update_inode(trans, root, inode);
9848 	if (err) {
9849 		drop_inode = 1;
9850 		goto out_unlock_inode;
9851 	}
9852 
9853 	d_instantiate_new(dentry, inode);
9854 
9855 out_unlock:
9856 	btrfs_end_transaction(trans, root);
9857 	if (drop_inode) {
9858 		inode_dec_link_count(inode);
9859 		iput(inode);
9860 	}
9861 	btrfs_btree_balance_dirty(root);
9862 	return err;
9863 
9864 out_unlock_inode:
9865 	drop_inode = 1;
9866 	unlock_new_inode(inode);
9867 	goto out_unlock;
9868 }
9869 
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)9870 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9871 				       u64 start, u64 num_bytes, u64 min_size,
9872 				       loff_t actual_len, u64 *alloc_hint,
9873 				       struct btrfs_trans_handle *trans)
9874 {
9875 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9876 	struct extent_map *em;
9877 	struct btrfs_root *root = BTRFS_I(inode)->root;
9878 	struct btrfs_key ins;
9879 	u64 cur_offset = start;
9880 	u64 i_size;
9881 	u64 cur_bytes;
9882 	u64 last_alloc = (u64)-1;
9883 	int ret = 0;
9884 	bool own_trans = true;
9885 
9886 	if (trans)
9887 		own_trans = false;
9888 	while (num_bytes > 0) {
9889 		if (own_trans) {
9890 			trans = btrfs_start_transaction(root, 3);
9891 			if (IS_ERR(trans)) {
9892 				ret = PTR_ERR(trans);
9893 				break;
9894 			}
9895 		}
9896 
9897 		cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9898 		cur_bytes = max(cur_bytes, min_size);
9899 		/*
9900 		 * If we are severely fragmented we could end up with really
9901 		 * small allocations, so if the allocator is returning small
9902 		 * chunks lets make its job easier by only searching for those
9903 		 * sized chunks.
9904 		 */
9905 		cur_bytes = min(cur_bytes, last_alloc);
9906 		ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9907 					   *alloc_hint, &ins, 1, 0);
9908 		if (ret) {
9909 			if (own_trans)
9910 				btrfs_end_transaction(trans, root);
9911 			break;
9912 		}
9913 
9914 		last_alloc = ins.offset;
9915 		ret = insert_reserved_file_extent(trans, inode,
9916 						  cur_offset, ins.objectid,
9917 						  ins.offset, ins.offset,
9918 						  ins.offset, 0, 0, 0,
9919 						  BTRFS_FILE_EXTENT_PREALLOC);
9920 		if (ret) {
9921 			btrfs_free_reserved_extent(root, ins.objectid,
9922 						   ins.offset, 0);
9923 			btrfs_abort_transaction(trans, root, ret);
9924 			if (own_trans)
9925 				btrfs_end_transaction(trans, root);
9926 			break;
9927 		}
9928 
9929 		btrfs_drop_extent_cache(inode, cur_offset,
9930 					cur_offset + ins.offset -1, 0);
9931 
9932 		em = alloc_extent_map();
9933 		if (!em) {
9934 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9935 				&BTRFS_I(inode)->runtime_flags);
9936 			goto next;
9937 		}
9938 
9939 		em->start = cur_offset;
9940 		em->orig_start = cur_offset;
9941 		em->len = ins.offset;
9942 		em->block_start = ins.objectid;
9943 		em->block_len = ins.offset;
9944 		em->orig_block_len = ins.offset;
9945 		em->ram_bytes = ins.offset;
9946 		em->bdev = root->fs_info->fs_devices->latest_bdev;
9947 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9948 		em->generation = trans->transid;
9949 
9950 		while (1) {
9951 			write_lock(&em_tree->lock);
9952 			ret = add_extent_mapping(em_tree, em, 1);
9953 			write_unlock(&em_tree->lock);
9954 			if (ret != -EEXIST)
9955 				break;
9956 			btrfs_drop_extent_cache(inode, cur_offset,
9957 						cur_offset + ins.offset - 1,
9958 						0);
9959 		}
9960 		free_extent_map(em);
9961 next:
9962 		num_bytes -= ins.offset;
9963 		cur_offset += ins.offset;
9964 		*alloc_hint = ins.objectid + ins.offset;
9965 
9966 		inode_inc_iversion(inode);
9967 		inode->i_ctime = CURRENT_TIME;
9968 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9969 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9970 		    (actual_len > inode->i_size) &&
9971 		    (cur_offset > inode->i_size)) {
9972 			if (cur_offset > actual_len)
9973 				i_size = actual_len;
9974 			else
9975 				i_size = cur_offset;
9976 			i_size_write(inode, i_size);
9977 			btrfs_ordered_update_i_size(inode, i_size, NULL);
9978 		}
9979 
9980 		ret = btrfs_update_inode(trans, root, inode);
9981 
9982 		if (ret) {
9983 			btrfs_abort_transaction(trans, root, ret);
9984 			if (own_trans)
9985 				btrfs_end_transaction(trans, root);
9986 			break;
9987 		}
9988 
9989 		if (own_trans)
9990 			btrfs_end_transaction(trans, root);
9991 	}
9992 	return ret;
9993 }
9994 
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9995 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9996 			      u64 start, u64 num_bytes, u64 min_size,
9997 			      loff_t actual_len, u64 *alloc_hint)
9998 {
9999 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10000 					   min_size, actual_len, alloc_hint,
10001 					   NULL);
10002 }
10003 
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10004 int btrfs_prealloc_file_range_trans(struct inode *inode,
10005 				    struct btrfs_trans_handle *trans, int mode,
10006 				    u64 start, u64 num_bytes, u64 min_size,
10007 				    loff_t actual_len, u64 *alloc_hint)
10008 {
10009 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10010 					   min_size, actual_len, alloc_hint, trans);
10011 }
10012 
btrfs_set_page_dirty(struct page * page)10013 static int btrfs_set_page_dirty(struct page *page)
10014 {
10015 	return __set_page_dirty_nobuffers(page);
10016 }
10017 
btrfs_permission(struct inode * inode,int mask)10018 static int btrfs_permission(struct inode *inode, int mask)
10019 {
10020 	struct btrfs_root *root = BTRFS_I(inode)->root;
10021 	umode_t mode = inode->i_mode;
10022 
10023 	if (mask & MAY_WRITE &&
10024 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10025 		if (btrfs_root_readonly(root))
10026 			return -EROFS;
10027 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10028 			return -EACCES;
10029 	}
10030 	return generic_permission(inode, mask);
10031 }
10032 
btrfs_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)10033 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10034 {
10035 	struct btrfs_trans_handle *trans;
10036 	struct btrfs_root *root = BTRFS_I(dir)->root;
10037 	struct inode *inode = NULL;
10038 	u64 objectid;
10039 	u64 index;
10040 	int ret = 0;
10041 
10042 	/*
10043 	 * 5 units required for adding orphan entry
10044 	 */
10045 	trans = btrfs_start_transaction(root, 5);
10046 	if (IS_ERR(trans))
10047 		return PTR_ERR(trans);
10048 
10049 	ret = btrfs_find_free_ino(root, &objectid);
10050 	if (ret)
10051 		goto out;
10052 
10053 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10054 				btrfs_ino(dir), objectid, mode, &index);
10055 	if (IS_ERR(inode)) {
10056 		ret = PTR_ERR(inode);
10057 		inode = NULL;
10058 		goto out;
10059 	}
10060 
10061 	inode->i_fop = &btrfs_file_operations;
10062 	inode->i_op = &btrfs_file_inode_operations;
10063 
10064 	inode->i_mapping->a_ops = &btrfs_aops;
10065 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10066 
10067 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10068 	if (ret)
10069 		goto out_inode;
10070 
10071 	ret = btrfs_update_inode(trans, root, inode);
10072 	if (ret)
10073 		goto out_inode;
10074 	ret = btrfs_orphan_add(trans, inode);
10075 	if (ret)
10076 		goto out_inode;
10077 
10078 	/*
10079 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10080 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10081 	 * through:
10082 	 *
10083 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10084 	 */
10085 	set_nlink(inode, 1);
10086 	unlock_new_inode(inode);
10087 	d_tmpfile(dentry, inode);
10088 	mark_inode_dirty(inode);
10089 
10090 out:
10091 	btrfs_end_transaction(trans, root);
10092 	if (ret)
10093 		iput(inode);
10094 	btrfs_balance_delayed_items(root);
10095 	btrfs_btree_balance_dirty(root);
10096 	return ret;
10097 
10098 out_inode:
10099 	unlock_new_inode(inode);
10100 	goto out;
10101 
10102 }
10103 
10104 /* Inspired by filemap_check_errors() */
btrfs_inode_check_errors(struct inode * inode)10105 int btrfs_inode_check_errors(struct inode *inode)
10106 {
10107 	int ret = 0;
10108 
10109 	if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10110 	    test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10111 		ret = -ENOSPC;
10112 	if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10113 	    test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10114 		ret = -EIO;
10115 
10116 	return ret;
10117 }
10118 
10119 static const struct inode_operations btrfs_dir_inode_operations = {
10120 	.getattr	= btrfs_getattr,
10121 	.lookup		= btrfs_lookup,
10122 	.create		= btrfs_create,
10123 	.unlink		= btrfs_unlink,
10124 	.link		= btrfs_link,
10125 	.mkdir		= btrfs_mkdir,
10126 	.rmdir		= btrfs_rmdir,
10127 	.rename2	= btrfs_rename2,
10128 	.symlink	= btrfs_symlink,
10129 	.setattr	= btrfs_setattr,
10130 	.mknod		= btrfs_mknod,
10131 	.setxattr	= btrfs_setxattr,
10132 	.getxattr	= btrfs_getxattr,
10133 	.listxattr	= btrfs_listxattr,
10134 	.removexattr	= btrfs_removexattr,
10135 	.permission	= btrfs_permission,
10136 	.get_acl	= btrfs_get_acl,
10137 	.set_acl	= btrfs_set_acl,
10138 	.update_time	= btrfs_update_time,
10139 	.tmpfile        = btrfs_tmpfile,
10140 };
10141 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10142 	.lookup		= btrfs_lookup,
10143 	.permission	= btrfs_permission,
10144 	.get_acl	= btrfs_get_acl,
10145 	.set_acl	= btrfs_set_acl,
10146 	.update_time	= btrfs_update_time,
10147 };
10148 
10149 static const struct file_operations btrfs_dir_file_operations = {
10150 	.llseek		= generic_file_llseek,
10151 	.read		= generic_read_dir,
10152 	.iterate	= btrfs_real_readdir,
10153 	.unlocked_ioctl	= btrfs_ioctl,
10154 #ifdef CONFIG_COMPAT
10155 	.compat_ioctl	= btrfs_ioctl,
10156 #endif
10157 	.release        = btrfs_release_file,
10158 	.fsync		= btrfs_sync_file,
10159 };
10160 
10161 static struct extent_io_ops btrfs_extent_io_ops = {
10162 	.fill_delalloc = run_delalloc_range,
10163 	.submit_bio_hook = btrfs_submit_bio_hook,
10164 	.merge_bio_hook = btrfs_merge_bio_hook,
10165 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10166 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10167 	.writepage_start_hook = btrfs_writepage_start_hook,
10168 	.set_bit_hook = btrfs_set_bit_hook,
10169 	.clear_bit_hook = btrfs_clear_bit_hook,
10170 	.merge_extent_hook = btrfs_merge_extent_hook,
10171 	.split_extent_hook = btrfs_split_extent_hook,
10172 };
10173 
10174 /*
10175  * btrfs doesn't support the bmap operation because swapfiles
10176  * use bmap to make a mapping of extents in the file.  They assume
10177  * these extents won't change over the life of the file and they
10178  * use the bmap result to do IO directly to the drive.
10179  *
10180  * the btrfs bmap call would return logical addresses that aren't
10181  * suitable for IO and they also will change frequently as COW
10182  * operations happen.  So, swapfile + btrfs == corruption.
10183  *
10184  * For now we're avoiding this by dropping bmap.
10185  */
10186 static const struct address_space_operations btrfs_aops = {
10187 	.readpage	= btrfs_readpage,
10188 	.writepage	= btrfs_writepage,
10189 	.writepages	= btrfs_writepages,
10190 	.readpages	= btrfs_readpages,
10191 	.direct_IO	= btrfs_direct_IO,
10192 	.invalidatepage = btrfs_invalidatepage,
10193 	.releasepage	= btrfs_releasepage,
10194 	.set_page_dirty	= btrfs_set_page_dirty,
10195 	.error_remove_page = generic_error_remove_page,
10196 };
10197 
10198 static const struct address_space_operations btrfs_symlink_aops = {
10199 	.readpage	= btrfs_readpage,
10200 	.writepage	= btrfs_writepage,
10201 	.invalidatepage = btrfs_invalidatepage,
10202 	.releasepage	= btrfs_releasepage,
10203 };
10204 
10205 static const struct inode_operations btrfs_file_inode_operations = {
10206 	.getattr	= btrfs_getattr,
10207 	.setattr	= btrfs_setattr,
10208 	.setxattr	= btrfs_setxattr,
10209 	.getxattr	= btrfs_getxattr,
10210 	.listxattr      = btrfs_listxattr,
10211 	.removexattr	= btrfs_removexattr,
10212 	.permission	= btrfs_permission,
10213 	.fiemap		= btrfs_fiemap,
10214 	.get_acl	= btrfs_get_acl,
10215 	.set_acl	= btrfs_set_acl,
10216 	.update_time	= btrfs_update_time,
10217 };
10218 static const struct inode_operations btrfs_special_inode_operations = {
10219 	.getattr	= btrfs_getattr,
10220 	.setattr	= btrfs_setattr,
10221 	.permission	= btrfs_permission,
10222 	.setxattr	= btrfs_setxattr,
10223 	.getxattr	= btrfs_getxattr,
10224 	.listxattr	= btrfs_listxattr,
10225 	.removexattr	= btrfs_removexattr,
10226 	.get_acl	= btrfs_get_acl,
10227 	.set_acl	= btrfs_set_acl,
10228 	.update_time	= btrfs_update_time,
10229 };
10230 static const struct inode_operations btrfs_symlink_inode_operations = {
10231 	.readlink	= generic_readlink,
10232 	.follow_link	= page_follow_link_light,
10233 	.put_link	= page_put_link,
10234 	.getattr	= btrfs_getattr,
10235 	.setattr	= btrfs_setattr,
10236 	.permission	= btrfs_permission,
10237 	.setxattr	= btrfs_setxattr,
10238 	.getxattr	= btrfs_getxattr,
10239 	.listxattr	= btrfs_listxattr,
10240 	.removexattr	= btrfs_removexattr,
10241 	.update_time	= btrfs_update_time,
10242 };
10243 
10244 const struct dentry_operations btrfs_dentry_operations = {
10245 	.d_delete	= btrfs_dentry_delete,
10246 	.d_release	= btrfs_dentry_release,
10247 };
10248