1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 struct btrfs_delayed_ref_node *node, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
98 int level, struct btrfs_key *ins);
99 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
100 struct btrfs_root *extent_root, u64 flags,
101 int force);
102 static int find_next_key(struct btrfs_path *path, int level,
103 struct btrfs_key *key);
104 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
105 int dump_block_groups);
106 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
107 u64 num_bytes, int reserve,
108 int delalloc);
109 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
110 u64 num_bytes);
111 int btrfs_pin_extent(struct btrfs_root *root,
112 u64 bytenr, u64 num_bytes, int reserved);
113
114 static noinline int
block_group_cache_done(struct btrfs_block_group_cache * cache)115 block_group_cache_done(struct btrfs_block_group_cache *cache)
116 {
117 smp_mb();
118 return cache->cached == BTRFS_CACHE_FINISHED ||
119 cache->cached == BTRFS_CACHE_ERROR;
120 }
121
block_group_bits(struct btrfs_block_group_cache * cache,u64 bits)122 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
123 {
124 return (cache->flags & bits) == bits;
125 }
126
btrfs_get_block_group(struct btrfs_block_group_cache * cache)127 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
128 {
129 atomic_inc(&cache->count);
130 }
131
btrfs_put_block_group(struct btrfs_block_group_cache * cache)132 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
133 {
134 if (atomic_dec_and_test(&cache->count)) {
135 WARN_ON(cache->pinned > 0);
136 WARN_ON(cache->reserved > 0);
137 kfree(cache->free_space_ctl);
138 kfree(cache);
139 }
140 }
141
142 /*
143 * this adds the block group to the fs_info rb tree for the block group
144 * cache
145 */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group_cache * block_group)146 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
147 struct btrfs_block_group_cache *block_group)
148 {
149 struct rb_node **p;
150 struct rb_node *parent = NULL;
151 struct btrfs_block_group_cache *cache;
152
153 spin_lock(&info->block_group_cache_lock);
154 p = &info->block_group_cache_tree.rb_node;
155
156 while (*p) {
157 parent = *p;
158 cache = rb_entry(parent, struct btrfs_block_group_cache,
159 cache_node);
160 if (block_group->key.objectid < cache->key.objectid) {
161 p = &(*p)->rb_left;
162 } else if (block_group->key.objectid > cache->key.objectid) {
163 p = &(*p)->rb_right;
164 } else {
165 spin_unlock(&info->block_group_cache_lock);
166 return -EEXIST;
167 }
168 }
169
170 rb_link_node(&block_group->cache_node, parent, p);
171 rb_insert_color(&block_group->cache_node,
172 &info->block_group_cache_tree);
173
174 if (info->first_logical_byte > block_group->key.objectid)
175 info->first_logical_byte = block_group->key.objectid;
176
177 spin_unlock(&info->block_group_cache_lock);
178
179 return 0;
180 }
181
182 /*
183 * This will return the block group at or after bytenr if contains is 0, else
184 * it will return the block group that contains the bytenr
185 */
186 static struct btrfs_block_group_cache *
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)187 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
188 int contains)
189 {
190 struct btrfs_block_group_cache *cache, *ret = NULL;
191 struct rb_node *n;
192 u64 end, start;
193
194 spin_lock(&info->block_group_cache_lock);
195 n = info->block_group_cache_tree.rb_node;
196
197 while (n) {
198 cache = rb_entry(n, struct btrfs_block_group_cache,
199 cache_node);
200 end = cache->key.objectid + cache->key.offset - 1;
201 start = cache->key.objectid;
202
203 if (bytenr < start) {
204 if (!contains && (!ret || start < ret->key.objectid))
205 ret = cache;
206 n = n->rb_left;
207 } else if (bytenr > start) {
208 if (contains && bytenr <= end) {
209 ret = cache;
210 break;
211 }
212 n = n->rb_right;
213 } else {
214 ret = cache;
215 break;
216 }
217 }
218 if (ret) {
219 btrfs_get_block_group(ret);
220 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
221 info->first_logical_byte = ret->key.objectid;
222 }
223 spin_unlock(&info->block_group_cache_lock);
224
225 return ret;
226 }
227
add_excluded_extent(struct btrfs_root * root,u64 start,u64 num_bytes)228 static int add_excluded_extent(struct btrfs_root *root,
229 u64 start, u64 num_bytes)
230 {
231 u64 end = start + num_bytes - 1;
232 set_extent_bits(&root->fs_info->freed_extents[0],
233 start, end, EXTENT_UPTODATE, GFP_NOFS);
234 set_extent_bits(&root->fs_info->freed_extents[1],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
236 return 0;
237 }
238
free_excluded_extents(struct btrfs_root * root,struct btrfs_block_group_cache * cache)239 static void free_excluded_extents(struct btrfs_root *root,
240 struct btrfs_block_group_cache *cache)
241 {
242 u64 start, end;
243
244 start = cache->key.objectid;
245 end = start + cache->key.offset - 1;
246
247 clear_extent_bits(&root->fs_info->freed_extents[0],
248 start, end, EXTENT_UPTODATE, GFP_NOFS);
249 clear_extent_bits(&root->fs_info->freed_extents[1],
250 start, end, EXTENT_UPTODATE, GFP_NOFS);
251 }
252
exclude_super_stripes(struct btrfs_root * root,struct btrfs_block_group_cache * cache)253 static int exclude_super_stripes(struct btrfs_root *root,
254 struct btrfs_block_group_cache *cache)
255 {
256 u64 bytenr;
257 u64 *logical;
258 int stripe_len;
259 int i, nr, ret;
260
261 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
262 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
263 cache->bytes_super += stripe_len;
264 ret = add_excluded_extent(root, cache->key.objectid,
265 stripe_len);
266 if (ret)
267 return ret;
268 }
269
270 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
271 bytenr = btrfs_sb_offset(i);
272 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
273 cache->key.objectid, bytenr,
274 0, &logical, &nr, &stripe_len);
275 if (ret)
276 return ret;
277
278 while (nr--) {
279 u64 start, len;
280
281 if (logical[nr] > cache->key.objectid +
282 cache->key.offset)
283 continue;
284
285 if (logical[nr] + stripe_len <= cache->key.objectid)
286 continue;
287
288 start = logical[nr];
289 if (start < cache->key.objectid) {
290 start = cache->key.objectid;
291 len = (logical[nr] + stripe_len) - start;
292 } else {
293 len = min_t(u64, stripe_len,
294 cache->key.objectid +
295 cache->key.offset - start);
296 }
297
298 cache->bytes_super += len;
299 ret = add_excluded_extent(root, start, len);
300 if (ret) {
301 kfree(logical);
302 return ret;
303 }
304 }
305
306 kfree(logical);
307 }
308 return 0;
309 }
310
311 static struct btrfs_caching_control *
get_caching_control(struct btrfs_block_group_cache * cache)312 get_caching_control(struct btrfs_block_group_cache *cache)
313 {
314 struct btrfs_caching_control *ctl;
315
316 spin_lock(&cache->lock);
317 if (!cache->caching_ctl) {
318 spin_unlock(&cache->lock);
319 return NULL;
320 }
321
322 ctl = cache->caching_ctl;
323 atomic_inc(&ctl->count);
324 spin_unlock(&cache->lock);
325 return ctl;
326 }
327
put_caching_control(struct btrfs_caching_control * ctl)328 static void put_caching_control(struct btrfs_caching_control *ctl)
329 {
330 if (atomic_dec_and_test(&ctl->count))
331 kfree(ctl);
332 }
333
334 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_root * root,struct btrfs_block_group_cache * block_group)335 static void fragment_free_space(struct btrfs_root *root,
336 struct btrfs_block_group_cache *block_group)
337 {
338 u64 start = block_group->key.objectid;
339 u64 len = block_group->key.offset;
340 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
341 root->nodesize : root->sectorsize;
342 u64 step = chunk << 1;
343
344 while (len > chunk) {
345 btrfs_remove_free_space(block_group, start, chunk);
346 start += step;
347 if (len < step)
348 len = 0;
349 else
350 len -= step;
351 }
352 }
353 #endif
354
355 /*
356 * this is only called by cache_block_group, since we could have freed extents
357 * we need to check the pinned_extents for any extents that can't be used yet
358 * since their free space will be released as soon as the transaction commits.
359 */
add_new_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_fs_info * info,u64 start,u64 end)360 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
361 struct btrfs_fs_info *info, u64 start, u64 end)
362 {
363 u64 extent_start, extent_end, size, total_added = 0;
364 int ret;
365
366 while (start < end) {
367 ret = find_first_extent_bit(info->pinned_extents, start,
368 &extent_start, &extent_end,
369 EXTENT_DIRTY | EXTENT_UPTODATE,
370 NULL);
371 if (ret)
372 break;
373
374 if (extent_start <= start) {
375 start = extent_end + 1;
376 } else if (extent_start > start && extent_start < end) {
377 size = extent_start - start;
378 total_added += size;
379 ret = btrfs_add_free_space(block_group, start,
380 size);
381 BUG_ON(ret); /* -ENOMEM or logic error */
382 start = extent_end + 1;
383 } else {
384 break;
385 }
386 }
387
388 if (start < end) {
389 size = end - start;
390 total_added += size;
391 ret = btrfs_add_free_space(block_group, start, size);
392 BUG_ON(ret); /* -ENOMEM or logic error */
393 }
394
395 return total_added;
396 }
397
caching_thread(struct btrfs_work * work)398 static noinline void caching_thread(struct btrfs_work *work)
399 {
400 struct btrfs_block_group_cache *block_group;
401 struct btrfs_fs_info *fs_info;
402 struct btrfs_caching_control *caching_ctl;
403 struct btrfs_root *extent_root;
404 struct btrfs_path *path;
405 struct extent_buffer *leaf;
406 struct btrfs_key key;
407 u64 total_found = 0;
408 u64 last = 0;
409 u32 nritems;
410 int ret = -ENOMEM;
411 bool wakeup = true;
412
413 caching_ctl = container_of(work, struct btrfs_caching_control, work);
414 block_group = caching_ctl->block_group;
415 fs_info = block_group->fs_info;
416 extent_root = fs_info->extent_root;
417
418 path = btrfs_alloc_path();
419 if (!path)
420 goto out;
421
422 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
423
424 #ifdef CONFIG_BTRFS_DEBUG
425 /*
426 * If we're fragmenting we don't want to make anybody think we can
427 * allocate from this block group until we've had a chance to fragment
428 * the free space.
429 */
430 if (btrfs_should_fragment_free_space(extent_root, block_group))
431 wakeup = false;
432 #endif
433 /*
434 * We don't want to deadlock with somebody trying to allocate a new
435 * extent for the extent root while also trying to search the extent
436 * root to add free space. So we skip locking and search the commit
437 * root, since its read-only
438 */
439 path->skip_locking = 1;
440 path->search_commit_root = 1;
441 path->reada = 1;
442
443 key.objectid = last;
444 key.offset = 0;
445 key.type = BTRFS_EXTENT_ITEM_KEY;
446 again:
447 mutex_lock(&caching_ctl->mutex);
448 /* need to make sure the commit_root doesn't disappear */
449 down_read(&fs_info->commit_root_sem);
450
451 next:
452 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
453 if (ret < 0)
454 goto err;
455
456 leaf = path->nodes[0];
457 nritems = btrfs_header_nritems(leaf);
458
459 while (1) {
460 if (btrfs_fs_closing(fs_info) > 1) {
461 last = (u64)-1;
462 break;
463 }
464
465 if (path->slots[0] < nritems) {
466 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
467 } else {
468 ret = find_next_key(path, 0, &key);
469 if (ret)
470 break;
471
472 if (need_resched() ||
473 rwsem_is_contended(&fs_info->commit_root_sem)) {
474 if (wakeup)
475 caching_ctl->progress = last;
476 btrfs_release_path(path);
477 up_read(&fs_info->commit_root_sem);
478 mutex_unlock(&caching_ctl->mutex);
479 cond_resched();
480 goto again;
481 }
482
483 ret = btrfs_next_leaf(extent_root, path);
484 if (ret < 0)
485 goto err;
486 if (ret)
487 break;
488 leaf = path->nodes[0];
489 nritems = btrfs_header_nritems(leaf);
490 continue;
491 }
492
493 if (key.objectid < last) {
494 key.objectid = last;
495 key.offset = 0;
496 key.type = BTRFS_EXTENT_ITEM_KEY;
497
498 if (wakeup)
499 caching_ctl->progress = last;
500 btrfs_release_path(path);
501 goto next;
502 }
503
504 if (key.objectid < block_group->key.objectid) {
505 path->slots[0]++;
506 continue;
507 }
508
509 if (key.objectid >= block_group->key.objectid +
510 block_group->key.offset)
511 break;
512
513 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
514 key.type == BTRFS_METADATA_ITEM_KEY) {
515 total_found += add_new_free_space(block_group,
516 fs_info, last,
517 key.objectid);
518 if (key.type == BTRFS_METADATA_ITEM_KEY)
519 last = key.objectid +
520 fs_info->tree_root->nodesize;
521 else
522 last = key.objectid + key.offset;
523
524 if (total_found > (1024 * 1024 * 2)) {
525 total_found = 0;
526 if (wakeup)
527 wake_up(&caching_ctl->wait);
528 }
529 }
530 path->slots[0]++;
531 }
532 ret = 0;
533
534 total_found += add_new_free_space(block_group, fs_info, last,
535 block_group->key.objectid +
536 block_group->key.offset);
537 spin_lock(&block_group->lock);
538 block_group->caching_ctl = NULL;
539 block_group->cached = BTRFS_CACHE_FINISHED;
540 spin_unlock(&block_group->lock);
541
542 #ifdef CONFIG_BTRFS_DEBUG
543 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
544 u64 bytes_used;
545
546 spin_lock(&block_group->space_info->lock);
547 spin_lock(&block_group->lock);
548 bytes_used = block_group->key.offset -
549 btrfs_block_group_used(&block_group->item);
550 block_group->space_info->bytes_used += bytes_used >> 1;
551 spin_unlock(&block_group->lock);
552 spin_unlock(&block_group->space_info->lock);
553 fragment_free_space(extent_root, block_group);
554 }
555 #endif
556
557 caching_ctl->progress = (u64)-1;
558 err:
559 btrfs_free_path(path);
560 up_read(&fs_info->commit_root_sem);
561
562 free_excluded_extents(extent_root, block_group);
563
564 mutex_unlock(&caching_ctl->mutex);
565 out:
566 if (ret) {
567 spin_lock(&block_group->lock);
568 block_group->caching_ctl = NULL;
569 block_group->cached = BTRFS_CACHE_ERROR;
570 spin_unlock(&block_group->lock);
571 }
572 wake_up(&caching_ctl->wait);
573
574 put_caching_control(caching_ctl);
575 btrfs_put_block_group(block_group);
576 }
577
cache_block_group(struct btrfs_block_group_cache * cache,int load_cache_only)578 static int cache_block_group(struct btrfs_block_group_cache *cache,
579 int load_cache_only)
580 {
581 DEFINE_WAIT(wait);
582 struct btrfs_fs_info *fs_info = cache->fs_info;
583 struct btrfs_caching_control *caching_ctl;
584 int ret = 0;
585
586 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
587 if (!caching_ctl)
588 return -ENOMEM;
589
590 INIT_LIST_HEAD(&caching_ctl->list);
591 mutex_init(&caching_ctl->mutex);
592 init_waitqueue_head(&caching_ctl->wait);
593 caching_ctl->block_group = cache;
594 caching_ctl->progress = cache->key.objectid;
595 atomic_set(&caching_ctl->count, 1);
596 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
597 caching_thread, NULL, NULL);
598
599 spin_lock(&cache->lock);
600 /*
601 * This should be a rare occasion, but this could happen I think in the
602 * case where one thread starts to load the space cache info, and then
603 * some other thread starts a transaction commit which tries to do an
604 * allocation while the other thread is still loading the space cache
605 * info. The previous loop should have kept us from choosing this block
606 * group, but if we've moved to the state where we will wait on caching
607 * block groups we need to first check if we're doing a fast load here,
608 * so we can wait for it to finish, otherwise we could end up allocating
609 * from a block group who's cache gets evicted for one reason or
610 * another.
611 */
612 while (cache->cached == BTRFS_CACHE_FAST) {
613 struct btrfs_caching_control *ctl;
614
615 ctl = cache->caching_ctl;
616 atomic_inc(&ctl->count);
617 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
618 spin_unlock(&cache->lock);
619
620 schedule();
621
622 finish_wait(&ctl->wait, &wait);
623 put_caching_control(ctl);
624 spin_lock(&cache->lock);
625 }
626
627 if (cache->cached != BTRFS_CACHE_NO) {
628 spin_unlock(&cache->lock);
629 kfree(caching_ctl);
630 return 0;
631 }
632 WARN_ON(cache->caching_ctl);
633 cache->caching_ctl = caching_ctl;
634 cache->cached = BTRFS_CACHE_FAST;
635 spin_unlock(&cache->lock);
636
637 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
638 mutex_lock(&caching_ctl->mutex);
639 ret = load_free_space_cache(fs_info, cache);
640
641 spin_lock(&cache->lock);
642 if (ret == 1) {
643 cache->caching_ctl = NULL;
644 cache->cached = BTRFS_CACHE_FINISHED;
645 cache->last_byte_to_unpin = (u64)-1;
646 caching_ctl->progress = (u64)-1;
647 } else {
648 if (load_cache_only) {
649 cache->caching_ctl = NULL;
650 cache->cached = BTRFS_CACHE_NO;
651 } else {
652 cache->cached = BTRFS_CACHE_STARTED;
653 cache->has_caching_ctl = 1;
654 }
655 }
656 spin_unlock(&cache->lock);
657 #ifdef CONFIG_BTRFS_DEBUG
658 if (ret == 1 &&
659 btrfs_should_fragment_free_space(fs_info->extent_root,
660 cache)) {
661 u64 bytes_used;
662
663 spin_lock(&cache->space_info->lock);
664 spin_lock(&cache->lock);
665 bytes_used = cache->key.offset -
666 btrfs_block_group_used(&cache->item);
667 cache->space_info->bytes_used += bytes_used >> 1;
668 spin_unlock(&cache->lock);
669 spin_unlock(&cache->space_info->lock);
670 fragment_free_space(fs_info->extent_root, cache);
671 }
672 #endif
673 mutex_unlock(&caching_ctl->mutex);
674
675 wake_up(&caching_ctl->wait);
676 if (ret == 1) {
677 put_caching_control(caching_ctl);
678 free_excluded_extents(fs_info->extent_root, cache);
679 return 0;
680 }
681 } else {
682 /*
683 * We are not going to do the fast caching, set cached to the
684 * appropriate value and wakeup any waiters.
685 */
686 spin_lock(&cache->lock);
687 if (load_cache_only) {
688 cache->caching_ctl = NULL;
689 cache->cached = BTRFS_CACHE_NO;
690 } else {
691 cache->cached = BTRFS_CACHE_STARTED;
692 cache->has_caching_ctl = 1;
693 }
694 spin_unlock(&cache->lock);
695 wake_up(&caching_ctl->wait);
696 }
697
698 if (load_cache_only) {
699 put_caching_control(caching_ctl);
700 return 0;
701 }
702
703 down_write(&fs_info->commit_root_sem);
704 atomic_inc(&caching_ctl->count);
705 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
706 up_write(&fs_info->commit_root_sem);
707
708 btrfs_get_block_group(cache);
709
710 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
711
712 return ret;
713 }
714
715 /*
716 * return the block group that starts at or after bytenr
717 */
718 static struct btrfs_block_group_cache *
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)719 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
720 {
721 struct btrfs_block_group_cache *cache;
722
723 cache = block_group_cache_tree_search(info, bytenr, 0);
724
725 return cache;
726 }
727
728 /*
729 * return the block group that contains the given bytenr
730 */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)731 struct btrfs_block_group_cache *btrfs_lookup_block_group(
732 struct btrfs_fs_info *info,
733 u64 bytenr)
734 {
735 struct btrfs_block_group_cache *cache;
736
737 cache = block_group_cache_tree_search(info, bytenr, 1);
738
739 return cache;
740 }
741
__find_space_info(struct btrfs_fs_info * info,u64 flags)742 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
743 u64 flags)
744 {
745 struct list_head *head = &info->space_info;
746 struct btrfs_space_info *found;
747
748 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
749
750 rcu_read_lock();
751 list_for_each_entry_rcu(found, head, list) {
752 if (found->flags & flags) {
753 rcu_read_unlock();
754 return found;
755 }
756 }
757 rcu_read_unlock();
758 return NULL;
759 }
760
761 /*
762 * after adding space to the filesystem, we need to clear the full flags
763 * on all the space infos.
764 */
btrfs_clear_space_info_full(struct btrfs_fs_info * info)765 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
766 {
767 struct list_head *head = &info->space_info;
768 struct btrfs_space_info *found;
769
770 rcu_read_lock();
771 list_for_each_entry_rcu(found, head, list)
772 found->full = 0;
773 rcu_read_unlock();
774 }
775
776 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_root * root,u64 start,u64 len)777 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
778 {
779 int ret;
780 struct btrfs_key key;
781 struct btrfs_path *path;
782
783 path = btrfs_alloc_path();
784 if (!path)
785 return -ENOMEM;
786
787 key.objectid = start;
788 key.offset = len;
789 key.type = BTRFS_EXTENT_ITEM_KEY;
790 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
791 0, 0);
792 btrfs_free_path(path);
793 return ret;
794 }
795
796 /*
797 * helper function to lookup reference count and flags of a tree block.
798 *
799 * the head node for delayed ref is used to store the sum of all the
800 * reference count modifications queued up in the rbtree. the head
801 * node may also store the extent flags to set. This way you can check
802 * to see what the reference count and extent flags would be if all of
803 * the delayed refs are not processed.
804 */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags)805 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
806 struct btrfs_root *root, u64 bytenr,
807 u64 offset, int metadata, u64 *refs, u64 *flags)
808 {
809 struct btrfs_delayed_ref_head *head;
810 struct btrfs_delayed_ref_root *delayed_refs;
811 struct btrfs_path *path;
812 struct btrfs_extent_item *ei;
813 struct extent_buffer *leaf;
814 struct btrfs_key key;
815 u32 item_size;
816 u64 num_refs;
817 u64 extent_flags;
818 int ret;
819
820 /*
821 * If we don't have skinny metadata, don't bother doing anything
822 * different
823 */
824 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
825 offset = root->nodesize;
826 metadata = 0;
827 }
828
829 path = btrfs_alloc_path();
830 if (!path)
831 return -ENOMEM;
832
833 if (!trans) {
834 path->skip_locking = 1;
835 path->search_commit_root = 1;
836 }
837
838 search_again:
839 key.objectid = bytenr;
840 key.offset = offset;
841 if (metadata)
842 key.type = BTRFS_METADATA_ITEM_KEY;
843 else
844 key.type = BTRFS_EXTENT_ITEM_KEY;
845
846 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
847 &key, path, 0, 0);
848 if (ret < 0)
849 goto out_free;
850
851 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
852 if (path->slots[0]) {
853 path->slots[0]--;
854 btrfs_item_key_to_cpu(path->nodes[0], &key,
855 path->slots[0]);
856 if (key.objectid == bytenr &&
857 key.type == BTRFS_EXTENT_ITEM_KEY &&
858 key.offset == root->nodesize)
859 ret = 0;
860 }
861 }
862
863 if (ret == 0) {
864 leaf = path->nodes[0];
865 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
866 if (item_size >= sizeof(*ei)) {
867 ei = btrfs_item_ptr(leaf, path->slots[0],
868 struct btrfs_extent_item);
869 num_refs = btrfs_extent_refs(leaf, ei);
870 extent_flags = btrfs_extent_flags(leaf, ei);
871 } else {
872 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
873 struct btrfs_extent_item_v0 *ei0;
874 BUG_ON(item_size != sizeof(*ei0));
875 ei0 = btrfs_item_ptr(leaf, path->slots[0],
876 struct btrfs_extent_item_v0);
877 num_refs = btrfs_extent_refs_v0(leaf, ei0);
878 /* FIXME: this isn't correct for data */
879 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
880 #else
881 BUG();
882 #endif
883 }
884 BUG_ON(num_refs == 0);
885 } else {
886 num_refs = 0;
887 extent_flags = 0;
888 ret = 0;
889 }
890
891 if (!trans)
892 goto out;
893
894 delayed_refs = &trans->transaction->delayed_refs;
895 spin_lock(&delayed_refs->lock);
896 head = btrfs_find_delayed_ref_head(trans, bytenr);
897 if (head) {
898 if (!mutex_trylock(&head->mutex)) {
899 atomic_inc(&head->node.refs);
900 spin_unlock(&delayed_refs->lock);
901
902 btrfs_release_path(path);
903
904 /*
905 * Mutex was contended, block until it's released and try
906 * again
907 */
908 mutex_lock(&head->mutex);
909 mutex_unlock(&head->mutex);
910 btrfs_put_delayed_ref(&head->node);
911 goto search_again;
912 }
913 spin_lock(&head->lock);
914 if (head->extent_op && head->extent_op->update_flags)
915 extent_flags |= head->extent_op->flags_to_set;
916 else
917 BUG_ON(num_refs == 0);
918
919 num_refs += head->node.ref_mod;
920 spin_unlock(&head->lock);
921 mutex_unlock(&head->mutex);
922 }
923 spin_unlock(&delayed_refs->lock);
924 out:
925 WARN_ON(num_refs == 0);
926 if (refs)
927 *refs = num_refs;
928 if (flags)
929 *flags = extent_flags;
930 out_free:
931 btrfs_free_path(path);
932 return ret;
933 }
934
935 /*
936 * Back reference rules. Back refs have three main goals:
937 *
938 * 1) differentiate between all holders of references to an extent so that
939 * when a reference is dropped we can make sure it was a valid reference
940 * before freeing the extent.
941 *
942 * 2) Provide enough information to quickly find the holders of an extent
943 * if we notice a given block is corrupted or bad.
944 *
945 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
946 * maintenance. This is actually the same as #2, but with a slightly
947 * different use case.
948 *
949 * There are two kinds of back refs. The implicit back refs is optimized
950 * for pointers in non-shared tree blocks. For a given pointer in a block,
951 * back refs of this kind provide information about the block's owner tree
952 * and the pointer's key. These information allow us to find the block by
953 * b-tree searching. The full back refs is for pointers in tree blocks not
954 * referenced by their owner trees. The location of tree block is recorded
955 * in the back refs. Actually the full back refs is generic, and can be
956 * used in all cases the implicit back refs is used. The major shortcoming
957 * of the full back refs is its overhead. Every time a tree block gets
958 * COWed, we have to update back refs entry for all pointers in it.
959 *
960 * For a newly allocated tree block, we use implicit back refs for
961 * pointers in it. This means most tree related operations only involve
962 * implicit back refs. For a tree block created in old transaction, the
963 * only way to drop a reference to it is COW it. So we can detect the
964 * event that tree block loses its owner tree's reference and do the
965 * back refs conversion.
966 *
967 * When a tree block is COW'd through a tree, there are four cases:
968 *
969 * The reference count of the block is one and the tree is the block's
970 * owner tree. Nothing to do in this case.
971 *
972 * The reference count of the block is one and the tree is not the
973 * block's owner tree. In this case, full back refs is used for pointers
974 * in the block. Remove these full back refs, add implicit back refs for
975 * every pointers in the new block.
976 *
977 * The reference count of the block is greater than one and the tree is
978 * the block's owner tree. In this case, implicit back refs is used for
979 * pointers in the block. Add full back refs for every pointers in the
980 * block, increase lower level extents' reference counts. The original
981 * implicit back refs are entailed to the new block.
982 *
983 * The reference count of the block is greater than one and the tree is
984 * not the block's owner tree. Add implicit back refs for every pointer in
985 * the new block, increase lower level extents' reference count.
986 *
987 * Back Reference Key composing:
988 *
989 * The key objectid corresponds to the first byte in the extent,
990 * The key type is used to differentiate between types of back refs.
991 * There are different meanings of the key offset for different types
992 * of back refs.
993 *
994 * File extents can be referenced by:
995 *
996 * - multiple snapshots, subvolumes, or different generations in one subvol
997 * - different files inside a single subvolume
998 * - different offsets inside a file (bookend extents in file.c)
999 *
1000 * The extent ref structure for the implicit back refs has fields for:
1001 *
1002 * - Objectid of the subvolume root
1003 * - objectid of the file holding the reference
1004 * - original offset in the file
1005 * - how many bookend extents
1006 *
1007 * The key offset for the implicit back refs is hash of the first
1008 * three fields.
1009 *
1010 * The extent ref structure for the full back refs has field for:
1011 *
1012 * - number of pointers in the tree leaf
1013 *
1014 * The key offset for the implicit back refs is the first byte of
1015 * the tree leaf
1016 *
1017 * When a file extent is allocated, The implicit back refs is used.
1018 * the fields are filled in:
1019 *
1020 * (root_key.objectid, inode objectid, offset in file, 1)
1021 *
1022 * When a file extent is removed file truncation, we find the
1023 * corresponding implicit back refs and check the following fields:
1024 *
1025 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1026 *
1027 * Btree extents can be referenced by:
1028 *
1029 * - Different subvolumes
1030 *
1031 * Both the implicit back refs and the full back refs for tree blocks
1032 * only consist of key. The key offset for the implicit back refs is
1033 * objectid of block's owner tree. The key offset for the full back refs
1034 * is the first byte of parent block.
1035 *
1036 * When implicit back refs is used, information about the lowest key and
1037 * level of the tree block are required. These information are stored in
1038 * tree block info structure.
1039 */
1040
1041 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
convert_extent_item_v0(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 owner,u32 extra_size)1042 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1043 struct btrfs_root *root,
1044 struct btrfs_path *path,
1045 u64 owner, u32 extra_size)
1046 {
1047 struct btrfs_extent_item *item;
1048 struct btrfs_extent_item_v0 *ei0;
1049 struct btrfs_extent_ref_v0 *ref0;
1050 struct btrfs_tree_block_info *bi;
1051 struct extent_buffer *leaf;
1052 struct btrfs_key key;
1053 struct btrfs_key found_key;
1054 u32 new_size = sizeof(*item);
1055 u64 refs;
1056 int ret;
1057
1058 leaf = path->nodes[0];
1059 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1060
1061 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1062 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1063 struct btrfs_extent_item_v0);
1064 refs = btrfs_extent_refs_v0(leaf, ei0);
1065
1066 if (owner == (u64)-1) {
1067 while (1) {
1068 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1069 ret = btrfs_next_leaf(root, path);
1070 if (ret < 0)
1071 return ret;
1072 BUG_ON(ret > 0); /* Corruption */
1073 leaf = path->nodes[0];
1074 }
1075 btrfs_item_key_to_cpu(leaf, &found_key,
1076 path->slots[0]);
1077 BUG_ON(key.objectid != found_key.objectid);
1078 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1079 path->slots[0]++;
1080 continue;
1081 }
1082 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1083 struct btrfs_extent_ref_v0);
1084 owner = btrfs_ref_objectid_v0(leaf, ref0);
1085 break;
1086 }
1087 }
1088 btrfs_release_path(path);
1089
1090 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1091 new_size += sizeof(*bi);
1092
1093 new_size -= sizeof(*ei0);
1094 ret = btrfs_search_slot(trans, root, &key, path,
1095 new_size + extra_size, 1);
1096 if (ret < 0)
1097 return ret;
1098 BUG_ON(ret); /* Corruption */
1099
1100 btrfs_extend_item(root, path, new_size);
1101
1102 leaf = path->nodes[0];
1103 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1104 btrfs_set_extent_refs(leaf, item, refs);
1105 /* FIXME: get real generation */
1106 btrfs_set_extent_generation(leaf, item, 0);
1107 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1108 btrfs_set_extent_flags(leaf, item,
1109 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1110 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1111 bi = (struct btrfs_tree_block_info *)(item + 1);
1112 /* FIXME: get first key of the block */
1113 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1114 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1115 } else {
1116 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1117 }
1118 btrfs_mark_buffer_dirty(leaf);
1119 return 0;
1120 }
1121 #endif
1122
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)1123 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1124 {
1125 u32 high_crc = ~(u32)0;
1126 u32 low_crc = ~(u32)0;
1127 __le64 lenum;
1128
1129 lenum = cpu_to_le64(root_objectid);
1130 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1131 lenum = cpu_to_le64(owner);
1132 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1133 lenum = cpu_to_le64(offset);
1134 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1135
1136 return ((u64)high_crc << 31) ^ (u64)low_crc;
1137 }
1138
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)1139 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1140 struct btrfs_extent_data_ref *ref)
1141 {
1142 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1143 btrfs_extent_data_ref_objectid(leaf, ref),
1144 btrfs_extent_data_ref_offset(leaf, ref));
1145 }
1146
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)1147 static int match_extent_data_ref(struct extent_buffer *leaf,
1148 struct btrfs_extent_data_ref *ref,
1149 u64 root_objectid, u64 owner, u64 offset)
1150 {
1151 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1152 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1153 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1154 return 0;
1155 return 1;
1156 }
1157
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)1158 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1159 struct btrfs_root *root,
1160 struct btrfs_path *path,
1161 u64 bytenr, u64 parent,
1162 u64 root_objectid,
1163 u64 owner, u64 offset)
1164 {
1165 struct btrfs_key key;
1166 struct btrfs_extent_data_ref *ref;
1167 struct extent_buffer *leaf;
1168 u32 nritems;
1169 int ret;
1170 int recow;
1171 int err = -ENOENT;
1172
1173 key.objectid = bytenr;
1174 if (parent) {
1175 key.type = BTRFS_SHARED_DATA_REF_KEY;
1176 key.offset = parent;
1177 } else {
1178 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1179 key.offset = hash_extent_data_ref(root_objectid,
1180 owner, offset);
1181 }
1182 again:
1183 recow = 0;
1184 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1185 if (ret < 0) {
1186 err = ret;
1187 goto fail;
1188 }
1189
1190 if (parent) {
1191 if (!ret)
1192 return 0;
1193 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1194 key.type = BTRFS_EXTENT_REF_V0_KEY;
1195 btrfs_release_path(path);
1196 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1197 if (ret < 0) {
1198 err = ret;
1199 goto fail;
1200 }
1201 if (!ret)
1202 return 0;
1203 #endif
1204 goto fail;
1205 }
1206
1207 leaf = path->nodes[0];
1208 nritems = btrfs_header_nritems(leaf);
1209 while (1) {
1210 if (path->slots[0] >= nritems) {
1211 ret = btrfs_next_leaf(root, path);
1212 if (ret < 0)
1213 err = ret;
1214 if (ret)
1215 goto fail;
1216
1217 leaf = path->nodes[0];
1218 nritems = btrfs_header_nritems(leaf);
1219 recow = 1;
1220 }
1221
1222 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1223 if (key.objectid != bytenr ||
1224 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1225 goto fail;
1226
1227 ref = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_data_ref);
1229
1230 if (match_extent_data_ref(leaf, ref, root_objectid,
1231 owner, offset)) {
1232 if (recow) {
1233 btrfs_release_path(path);
1234 goto again;
1235 }
1236 err = 0;
1237 break;
1238 }
1239 path->slots[0]++;
1240 }
1241 fail:
1242 return err;
1243 }
1244
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)1245 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1246 struct btrfs_root *root,
1247 struct btrfs_path *path,
1248 u64 bytenr, u64 parent,
1249 u64 root_objectid, u64 owner,
1250 u64 offset, int refs_to_add)
1251 {
1252 struct btrfs_key key;
1253 struct extent_buffer *leaf;
1254 u32 size;
1255 u32 num_refs;
1256 int ret;
1257
1258 key.objectid = bytenr;
1259 if (parent) {
1260 key.type = BTRFS_SHARED_DATA_REF_KEY;
1261 key.offset = parent;
1262 size = sizeof(struct btrfs_shared_data_ref);
1263 } else {
1264 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1265 key.offset = hash_extent_data_ref(root_objectid,
1266 owner, offset);
1267 size = sizeof(struct btrfs_extent_data_ref);
1268 }
1269
1270 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1271 if (ret && ret != -EEXIST)
1272 goto fail;
1273
1274 leaf = path->nodes[0];
1275 if (parent) {
1276 struct btrfs_shared_data_ref *ref;
1277 ref = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_shared_data_ref);
1279 if (ret == 0) {
1280 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1281 } else {
1282 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1283 num_refs += refs_to_add;
1284 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1285 }
1286 } else {
1287 struct btrfs_extent_data_ref *ref;
1288 while (ret == -EEXIST) {
1289 ref = btrfs_item_ptr(leaf, path->slots[0],
1290 struct btrfs_extent_data_ref);
1291 if (match_extent_data_ref(leaf, ref, root_objectid,
1292 owner, offset))
1293 break;
1294 btrfs_release_path(path);
1295 key.offset++;
1296 ret = btrfs_insert_empty_item(trans, root, path, &key,
1297 size);
1298 if (ret && ret != -EEXIST)
1299 goto fail;
1300
1301 leaf = path->nodes[0];
1302 }
1303 ref = btrfs_item_ptr(leaf, path->slots[0],
1304 struct btrfs_extent_data_ref);
1305 if (ret == 0) {
1306 btrfs_set_extent_data_ref_root(leaf, ref,
1307 root_objectid);
1308 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1309 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1310 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1311 } else {
1312 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1313 num_refs += refs_to_add;
1314 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1315 }
1316 }
1317 btrfs_mark_buffer_dirty(leaf);
1318 ret = 0;
1319 fail:
1320 btrfs_release_path(path);
1321 return ret;
1322 }
1323
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int refs_to_drop,int * last_ref)1324 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1325 struct btrfs_root *root,
1326 struct btrfs_path *path,
1327 int refs_to_drop, int *last_ref)
1328 {
1329 struct btrfs_key key;
1330 struct btrfs_extent_data_ref *ref1 = NULL;
1331 struct btrfs_shared_data_ref *ref2 = NULL;
1332 struct extent_buffer *leaf;
1333 u32 num_refs = 0;
1334 int ret = 0;
1335
1336 leaf = path->nodes[0];
1337 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1338
1339 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1340 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1341 struct btrfs_extent_data_ref);
1342 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1343 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1344 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1345 struct btrfs_shared_data_ref);
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1348 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1349 struct btrfs_extent_ref_v0 *ref0;
1350 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_extent_ref_v0);
1352 num_refs = btrfs_ref_count_v0(leaf, ref0);
1353 #endif
1354 } else {
1355 BUG();
1356 }
1357
1358 BUG_ON(num_refs < refs_to_drop);
1359 num_refs -= refs_to_drop;
1360
1361 if (num_refs == 0) {
1362 ret = btrfs_del_item(trans, root, path);
1363 *last_ref = 1;
1364 } else {
1365 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1366 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1367 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1368 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1369 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1370 else {
1371 struct btrfs_extent_ref_v0 *ref0;
1372 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1373 struct btrfs_extent_ref_v0);
1374 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1375 }
1376 #endif
1377 btrfs_mark_buffer_dirty(leaf);
1378 }
1379 return ret;
1380 }
1381
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)1382 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1383 struct btrfs_extent_inline_ref *iref)
1384 {
1385 struct btrfs_key key;
1386 struct extent_buffer *leaf;
1387 struct btrfs_extent_data_ref *ref1;
1388 struct btrfs_shared_data_ref *ref2;
1389 u32 num_refs = 0;
1390
1391 leaf = path->nodes[0];
1392 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1393 if (iref) {
1394 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1395 BTRFS_EXTENT_DATA_REF_KEY) {
1396 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1397 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1398 } else {
1399 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1400 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1401 }
1402 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1403 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1404 struct btrfs_extent_data_ref);
1405 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1406 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1407 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1408 struct btrfs_shared_data_ref);
1409 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1410 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1411 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1412 struct btrfs_extent_ref_v0 *ref0;
1413 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1414 struct btrfs_extent_ref_v0);
1415 num_refs = btrfs_ref_count_v0(leaf, ref0);
1416 #endif
1417 } else {
1418 WARN_ON(1);
1419 }
1420 return num_refs;
1421 }
1422
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)1423 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1424 struct btrfs_root *root,
1425 struct btrfs_path *path,
1426 u64 bytenr, u64 parent,
1427 u64 root_objectid)
1428 {
1429 struct btrfs_key key;
1430 int ret;
1431
1432 key.objectid = bytenr;
1433 if (parent) {
1434 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1435 key.offset = parent;
1436 } else {
1437 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1438 key.offset = root_objectid;
1439 }
1440
1441 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1442 if (ret > 0)
1443 ret = -ENOENT;
1444 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1445 if (ret == -ENOENT && parent) {
1446 btrfs_release_path(path);
1447 key.type = BTRFS_EXTENT_REF_V0_KEY;
1448 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1449 if (ret > 0)
1450 ret = -ENOENT;
1451 }
1452 #endif
1453 return ret;
1454 }
1455
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)1456 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1457 struct btrfs_root *root,
1458 struct btrfs_path *path,
1459 u64 bytenr, u64 parent,
1460 u64 root_objectid)
1461 {
1462 struct btrfs_key key;
1463 int ret;
1464
1465 key.objectid = bytenr;
1466 if (parent) {
1467 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1468 key.offset = parent;
1469 } else {
1470 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1471 key.offset = root_objectid;
1472 }
1473
1474 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1475 btrfs_release_path(path);
1476 return ret;
1477 }
1478
extent_ref_type(u64 parent,u64 owner)1479 static inline int extent_ref_type(u64 parent, u64 owner)
1480 {
1481 int type;
1482 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1483 if (parent > 0)
1484 type = BTRFS_SHARED_BLOCK_REF_KEY;
1485 else
1486 type = BTRFS_TREE_BLOCK_REF_KEY;
1487 } else {
1488 if (parent > 0)
1489 type = BTRFS_SHARED_DATA_REF_KEY;
1490 else
1491 type = BTRFS_EXTENT_DATA_REF_KEY;
1492 }
1493 return type;
1494 }
1495
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)1496 static int find_next_key(struct btrfs_path *path, int level,
1497 struct btrfs_key *key)
1498
1499 {
1500 for (; level < BTRFS_MAX_LEVEL; level++) {
1501 if (!path->nodes[level])
1502 break;
1503 if (path->slots[level] + 1 >=
1504 btrfs_header_nritems(path->nodes[level]))
1505 continue;
1506 if (level == 0)
1507 btrfs_item_key_to_cpu(path->nodes[level], key,
1508 path->slots[level] + 1);
1509 else
1510 btrfs_node_key_to_cpu(path->nodes[level], key,
1511 path->slots[level] + 1);
1512 return 0;
1513 }
1514 return 1;
1515 }
1516
1517 /*
1518 * look for inline back ref. if back ref is found, *ref_ret is set
1519 * to the address of inline back ref, and 0 is returned.
1520 *
1521 * if back ref isn't found, *ref_ret is set to the address where it
1522 * should be inserted, and -ENOENT is returned.
1523 *
1524 * if insert is true and there are too many inline back refs, the path
1525 * points to the extent item, and -EAGAIN is returned.
1526 *
1527 * NOTE: inline back refs are ordered in the same way that back ref
1528 * items in the tree are ordered.
1529 */
1530 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)1531 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1532 struct btrfs_root *root,
1533 struct btrfs_path *path,
1534 struct btrfs_extent_inline_ref **ref_ret,
1535 u64 bytenr, u64 num_bytes,
1536 u64 parent, u64 root_objectid,
1537 u64 owner, u64 offset, int insert)
1538 {
1539 struct btrfs_key key;
1540 struct extent_buffer *leaf;
1541 struct btrfs_extent_item *ei;
1542 struct btrfs_extent_inline_ref *iref;
1543 u64 flags;
1544 u64 item_size;
1545 unsigned long ptr;
1546 unsigned long end;
1547 int extra_size;
1548 int type;
1549 int want;
1550 int ret;
1551 int err = 0;
1552 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1553 SKINNY_METADATA);
1554
1555 key.objectid = bytenr;
1556 key.type = BTRFS_EXTENT_ITEM_KEY;
1557 key.offset = num_bytes;
1558
1559 want = extent_ref_type(parent, owner);
1560 if (insert) {
1561 extra_size = btrfs_extent_inline_ref_size(want);
1562 path->keep_locks = 1;
1563 } else
1564 extra_size = -1;
1565
1566 /*
1567 * Owner is our parent level, so we can just add one to get the level
1568 * for the block we are interested in.
1569 */
1570 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1571 key.type = BTRFS_METADATA_ITEM_KEY;
1572 key.offset = owner;
1573 }
1574
1575 again:
1576 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1577 if (ret < 0) {
1578 err = ret;
1579 goto out;
1580 }
1581
1582 /*
1583 * We may be a newly converted file system which still has the old fat
1584 * extent entries for metadata, so try and see if we have one of those.
1585 */
1586 if (ret > 0 && skinny_metadata) {
1587 skinny_metadata = false;
1588 if (path->slots[0]) {
1589 path->slots[0]--;
1590 btrfs_item_key_to_cpu(path->nodes[0], &key,
1591 path->slots[0]);
1592 if (key.objectid == bytenr &&
1593 key.type == BTRFS_EXTENT_ITEM_KEY &&
1594 key.offset == num_bytes)
1595 ret = 0;
1596 }
1597 if (ret) {
1598 key.objectid = bytenr;
1599 key.type = BTRFS_EXTENT_ITEM_KEY;
1600 key.offset = num_bytes;
1601 btrfs_release_path(path);
1602 goto again;
1603 }
1604 }
1605
1606 if (ret && !insert) {
1607 err = -ENOENT;
1608 goto out;
1609 } else if (WARN_ON(ret)) {
1610 err = -EIO;
1611 goto out;
1612 }
1613
1614 leaf = path->nodes[0];
1615 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1616 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1617 if (item_size < sizeof(*ei)) {
1618 if (!insert) {
1619 err = -ENOENT;
1620 goto out;
1621 }
1622 ret = convert_extent_item_v0(trans, root, path, owner,
1623 extra_size);
1624 if (ret < 0) {
1625 err = ret;
1626 goto out;
1627 }
1628 leaf = path->nodes[0];
1629 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1630 }
1631 #endif
1632 BUG_ON(item_size < sizeof(*ei));
1633
1634 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1635 flags = btrfs_extent_flags(leaf, ei);
1636
1637 ptr = (unsigned long)(ei + 1);
1638 end = (unsigned long)ei + item_size;
1639
1640 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1641 ptr += sizeof(struct btrfs_tree_block_info);
1642 BUG_ON(ptr > end);
1643 }
1644
1645 err = -ENOENT;
1646 while (1) {
1647 if (ptr >= end) {
1648 WARN_ON(ptr > end);
1649 break;
1650 }
1651 iref = (struct btrfs_extent_inline_ref *)ptr;
1652 type = btrfs_extent_inline_ref_type(leaf, iref);
1653 if (want < type)
1654 break;
1655 if (want > type) {
1656 ptr += btrfs_extent_inline_ref_size(type);
1657 continue;
1658 }
1659
1660 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1661 struct btrfs_extent_data_ref *dref;
1662 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1663 if (match_extent_data_ref(leaf, dref, root_objectid,
1664 owner, offset)) {
1665 err = 0;
1666 break;
1667 }
1668 if (hash_extent_data_ref_item(leaf, dref) <
1669 hash_extent_data_ref(root_objectid, owner, offset))
1670 break;
1671 } else {
1672 u64 ref_offset;
1673 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1674 if (parent > 0) {
1675 if (parent == ref_offset) {
1676 err = 0;
1677 break;
1678 }
1679 if (ref_offset < parent)
1680 break;
1681 } else {
1682 if (root_objectid == ref_offset) {
1683 err = 0;
1684 break;
1685 }
1686 if (ref_offset < root_objectid)
1687 break;
1688 }
1689 }
1690 ptr += btrfs_extent_inline_ref_size(type);
1691 }
1692 if (err == -ENOENT && insert) {
1693 if (item_size + extra_size >=
1694 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1695 err = -EAGAIN;
1696 goto out;
1697 }
1698 /*
1699 * To add new inline back ref, we have to make sure
1700 * there is no corresponding back ref item.
1701 * For simplicity, we just do not add new inline back
1702 * ref if there is any kind of item for this block
1703 */
1704 if (find_next_key(path, 0, &key) == 0 &&
1705 key.objectid == bytenr &&
1706 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1707 err = -EAGAIN;
1708 goto out;
1709 }
1710 }
1711 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1712 out:
1713 if (insert) {
1714 path->keep_locks = 0;
1715 btrfs_unlock_up_safe(path, 1);
1716 }
1717 return err;
1718 }
1719
1720 /*
1721 * helper to add new inline back ref
1722 */
1723 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1724 void setup_inline_extent_backref(struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref *iref,
1727 u64 parent, u64 root_objectid,
1728 u64 owner, u64 offset, int refs_to_add,
1729 struct btrfs_delayed_extent_op *extent_op)
1730 {
1731 struct extent_buffer *leaf;
1732 struct btrfs_extent_item *ei;
1733 unsigned long ptr;
1734 unsigned long end;
1735 unsigned long item_offset;
1736 u64 refs;
1737 int size;
1738 int type;
1739
1740 leaf = path->nodes[0];
1741 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1742 item_offset = (unsigned long)iref - (unsigned long)ei;
1743
1744 type = extent_ref_type(parent, owner);
1745 size = btrfs_extent_inline_ref_size(type);
1746
1747 btrfs_extend_item(root, path, size);
1748
1749 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1750 refs = btrfs_extent_refs(leaf, ei);
1751 refs += refs_to_add;
1752 btrfs_set_extent_refs(leaf, ei, refs);
1753 if (extent_op)
1754 __run_delayed_extent_op(extent_op, leaf, ei);
1755
1756 ptr = (unsigned long)ei + item_offset;
1757 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1758 if (ptr < end - size)
1759 memmove_extent_buffer(leaf, ptr + size, ptr,
1760 end - size - ptr);
1761
1762 iref = (struct btrfs_extent_inline_ref *)ptr;
1763 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1764 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1765 struct btrfs_extent_data_ref *dref;
1766 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1767 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1768 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1769 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1770 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1771 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1772 struct btrfs_shared_data_ref *sref;
1773 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1774 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1775 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1776 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1777 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1778 } else {
1779 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1780 }
1781 btrfs_mark_buffer_dirty(leaf);
1782 }
1783
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1784 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1785 struct btrfs_root *root,
1786 struct btrfs_path *path,
1787 struct btrfs_extent_inline_ref **ref_ret,
1788 u64 bytenr, u64 num_bytes, u64 parent,
1789 u64 root_objectid, u64 owner, u64 offset)
1790 {
1791 int ret;
1792
1793 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1794 bytenr, num_bytes, parent,
1795 root_objectid, owner, offset, 0);
1796 if (ret != -ENOENT)
1797 return ret;
1798
1799 btrfs_release_path(path);
1800 *ref_ret = NULL;
1801
1802 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1803 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1804 root_objectid);
1805 } else {
1806 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1807 root_objectid, owner, offset);
1808 }
1809 return ret;
1810 }
1811
1812 /*
1813 * helper to update/remove inline back ref
1814 */
1815 static noinline_for_stack
update_inline_extent_backref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op,int * last_ref)1816 void update_inline_extent_backref(struct btrfs_root *root,
1817 struct btrfs_path *path,
1818 struct btrfs_extent_inline_ref *iref,
1819 int refs_to_mod,
1820 struct btrfs_delayed_extent_op *extent_op,
1821 int *last_ref)
1822 {
1823 struct extent_buffer *leaf;
1824 struct btrfs_extent_item *ei;
1825 struct btrfs_extent_data_ref *dref = NULL;
1826 struct btrfs_shared_data_ref *sref = NULL;
1827 unsigned long ptr;
1828 unsigned long end;
1829 u32 item_size;
1830 int size;
1831 int type;
1832 u64 refs;
1833
1834 leaf = path->nodes[0];
1835 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1836 refs = btrfs_extent_refs(leaf, ei);
1837 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1838 refs += refs_to_mod;
1839 btrfs_set_extent_refs(leaf, ei, refs);
1840 if (extent_op)
1841 __run_delayed_extent_op(extent_op, leaf, ei);
1842
1843 type = btrfs_extent_inline_ref_type(leaf, iref);
1844
1845 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1846 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1847 refs = btrfs_extent_data_ref_count(leaf, dref);
1848 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1849 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1850 refs = btrfs_shared_data_ref_count(leaf, sref);
1851 } else {
1852 refs = 1;
1853 BUG_ON(refs_to_mod != -1);
1854 }
1855
1856 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1857 refs += refs_to_mod;
1858
1859 if (refs > 0) {
1860 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1861 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1862 else
1863 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1864 } else {
1865 *last_ref = 1;
1866 size = btrfs_extent_inline_ref_size(type);
1867 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1868 ptr = (unsigned long)iref;
1869 end = (unsigned long)ei + item_size;
1870 if (ptr + size < end)
1871 memmove_extent_buffer(leaf, ptr, ptr + size,
1872 end - ptr - size);
1873 item_size -= size;
1874 btrfs_truncate_item(root, path, item_size, 1);
1875 }
1876 btrfs_mark_buffer_dirty(leaf);
1877 }
1878
1879 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1880 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1881 struct btrfs_root *root,
1882 struct btrfs_path *path,
1883 u64 bytenr, u64 num_bytes, u64 parent,
1884 u64 root_objectid, u64 owner,
1885 u64 offset, int refs_to_add,
1886 struct btrfs_delayed_extent_op *extent_op)
1887 {
1888 struct btrfs_extent_inline_ref *iref;
1889 int ret;
1890
1891 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1892 bytenr, num_bytes, parent,
1893 root_objectid, owner, offset, 1);
1894 if (ret == 0) {
1895 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1896 update_inline_extent_backref(root, path, iref,
1897 refs_to_add, extent_op, NULL);
1898 } else if (ret == -ENOENT) {
1899 setup_inline_extent_backref(root, path, iref, parent,
1900 root_objectid, owner, offset,
1901 refs_to_add, extent_op);
1902 ret = 0;
1903 }
1904 return ret;
1905 }
1906
insert_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)1907 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1908 struct btrfs_root *root,
1909 struct btrfs_path *path,
1910 u64 bytenr, u64 parent, u64 root_objectid,
1911 u64 owner, u64 offset, int refs_to_add)
1912 {
1913 int ret;
1914 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1915 BUG_ON(refs_to_add != 1);
1916 ret = insert_tree_block_ref(trans, root, path, bytenr,
1917 parent, root_objectid);
1918 } else {
1919 ret = insert_extent_data_ref(trans, root, path, bytenr,
1920 parent, root_objectid,
1921 owner, offset, refs_to_add);
1922 }
1923 return ret;
1924 }
1925
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data,int * last_ref)1926 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1927 struct btrfs_root *root,
1928 struct btrfs_path *path,
1929 struct btrfs_extent_inline_ref *iref,
1930 int refs_to_drop, int is_data, int *last_ref)
1931 {
1932 int ret = 0;
1933
1934 BUG_ON(!is_data && refs_to_drop != 1);
1935 if (iref) {
1936 update_inline_extent_backref(root, path, iref,
1937 -refs_to_drop, NULL, last_ref);
1938 } else if (is_data) {
1939 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1940 last_ref);
1941 } else {
1942 *last_ref = 1;
1943 ret = btrfs_del_item(trans, root, path);
1944 }
1945 return ret;
1946 }
1947
1948 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1949 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1950 u64 *discarded_bytes)
1951 {
1952 int j, ret = 0;
1953 u64 bytes_left, end;
1954 u64 aligned_start = ALIGN(start, 1 << 9);
1955
1956 if (WARN_ON(start != aligned_start)) {
1957 len -= aligned_start - start;
1958 len = round_down(len, 1 << 9);
1959 start = aligned_start;
1960 }
1961
1962 *discarded_bytes = 0;
1963
1964 if (!len)
1965 return 0;
1966
1967 end = start + len;
1968 bytes_left = len;
1969
1970 /* Skip any superblocks on this device. */
1971 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1972 u64 sb_start = btrfs_sb_offset(j);
1973 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1974 u64 size = sb_start - start;
1975
1976 if (!in_range(sb_start, start, bytes_left) &&
1977 !in_range(sb_end, start, bytes_left) &&
1978 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1979 continue;
1980
1981 /*
1982 * Superblock spans beginning of range. Adjust start and
1983 * try again.
1984 */
1985 if (sb_start <= start) {
1986 start += sb_end - start;
1987 if (start > end) {
1988 bytes_left = 0;
1989 break;
1990 }
1991 bytes_left = end - start;
1992 continue;
1993 }
1994
1995 if (size) {
1996 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1997 GFP_NOFS, 0);
1998 if (!ret)
1999 *discarded_bytes += size;
2000 else if (ret != -EOPNOTSUPP)
2001 return ret;
2002 }
2003
2004 start = sb_end;
2005 if (start > end) {
2006 bytes_left = 0;
2007 break;
2008 }
2009 bytes_left = end - start;
2010 }
2011
2012 if (bytes_left) {
2013 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2014 GFP_NOFS, 0);
2015 if (!ret)
2016 *discarded_bytes += bytes_left;
2017 }
2018 return ret;
2019 }
2020
btrfs_discard_extent(struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 * actual_bytes)2021 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2022 u64 num_bytes, u64 *actual_bytes)
2023 {
2024 int ret;
2025 u64 discarded_bytes = 0;
2026 struct btrfs_bio *bbio = NULL;
2027
2028
2029 /* Tell the block device(s) that the sectors can be discarded */
2030 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
2031 bytenr, &num_bytes, &bbio, 0);
2032 /* Error condition is -ENOMEM */
2033 if (!ret) {
2034 struct btrfs_bio_stripe *stripe = bbio->stripes;
2035 int i;
2036
2037
2038 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2039 u64 bytes;
2040 if (!stripe->dev->can_discard)
2041 continue;
2042
2043 ret = btrfs_issue_discard(stripe->dev->bdev,
2044 stripe->physical,
2045 stripe->length,
2046 &bytes);
2047 if (!ret)
2048 discarded_bytes += bytes;
2049 else if (ret != -EOPNOTSUPP)
2050 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2051
2052 /*
2053 * Just in case we get back EOPNOTSUPP for some reason,
2054 * just ignore the return value so we don't screw up
2055 * people calling discard_extent.
2056 */
2057 ret = 0;
2058 }
2059 btrfs_put_bbio(bbio);
2060 }
2061
2062 if (actual_bytes)
2063 *actual_bytes = discarded_bytes;
2064
2065
2066 if (ret == -EOPNOTSUPP)
2067 ret = 0;
2068 return ret;
2069 }
2070
2071 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)2072 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2073 struct btrfs_root *root,
2074 u64 bytenr, u64 num_bytes, u64 parent,
2075 u64 root_objectid, u64 owner, u64 offset)
2076 {
2077 int ret;
2078 struct btrfs_fs_info *fs_info = root->fs_info;
2079
2080 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2081 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2082
2083 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2084 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2085 num_bytes,
2086 parent, root_objectid, (int)owner,
2087 BTRFS_ADD_DELAYED_REF, NULL);
2088 } else {
2089 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2090 num_bytes, parent, root_objectid,
2091 owner, offset, 0,
2092 BTRFS_ADD_DELAYED_REF, NULL);
2093 }
2094 return ret;
2095 }
2096
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)2097 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2098 struct btrfs_root *root,
2099 struct btrfs_delayed_ref_node *node,
2100 u64 parent, u64 root_objectid,
2101 u64 owner, u64 offset, int refs_to_add,
2102 struct btrfs_delayed_extent_op *extent_op)
2103 {
2104 struct btrfs_fs_info *fs_info = root->fs_info;
2105 struct btrfs_path *path;
2106 struct extent_buffer *leaf;
2107 struct btrfs_extent_item *item;
2108 struct btrfs_key key;
2109 u64 bytenr = node->bytenr;
2110 u64 num_bytes = node->num_bytes;
2111 u64 refs;
2112 int ret;
2113
2114 path = btrfs_alloc_path();
2115 if (!path)
2116 return -ENOMEM;
2117
2118 path->reada = 1;
2119 path->leave_spinning = 1;
2120 /* this will setup the path even if it fails to insert the back ref */
2121 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2122 bytenr, num_bytes, parent,
2123 root_objectid, owner, offset,
2124 refs_to_add, extent_op);
2125 if ((ret < 0 && ret != -EAGAIN) || !ret)
2126 goto out;
2127
2128 /*
2129 * Ok we had -EAGAIN which means we didn't have space to insert and
2130 * inline extent ref, so just update the reference count and add a
2131 * normal backref.
2132 */
2133 leaf = path->nodes[0];
2134 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2135 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2136 refs = btrfs_extent_refs(leaf, item);
2137 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2138 if (extent_op)
2139 __run_delayed_extent_op(extent_op, leaf, item);
2140
2141 btrfs_mark_buffer_dirty(leaf);
2142 btrfs_release_path(path);
2143
2144 path->reada = 1;
2145 path->leave_spinning = 1;
2146 /* now insert the actual backref */
2147 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2148 path, bytenr, parent, root_objectid,
2149 owner, offset, refs_to_add);
2150 if (ret)
2151 btrfs_abort_transaction(trans, root, ret);
2152 out:
2153 btrfs_free_path(path);
2154 return ret;
2155 }
2156
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2157 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2158 struct btrfs_root *root,
2159 struct btrfs_delayed_ref_node *node,
2160 struct btrfs_delayed_extent_op *extent_op,
2161 int insert_reserved)
2162 {
2163 int ret = 0;
2164 struct btrfs_delayed_data_ref *ref;
2165 struct btrfs_key ins;
2166 u64 parent = 0;
2167 u64 ref_root = 0;
2168 u64 flags = 0;
2169
2170 ins.objectid = node->bytenr;
2171 ins.offset = node->num_bytes;
2172 ins.type = BTRFS_EXTENT_ITEM_KEY;
2173
2174 ref = btrfs_delayed_node_to_data_ref(node);
2175 trace_run_delayed_data_ref(node, ref, node->action);
2176
2177 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2178 parent = ref->parent;
2179 ref_root = ref->root;
2180
2181 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2182 if (extent_op)
2183 flags |= extent_op->flags_to_set;
2184 ret = alloc_reserved_file_extent(trans, root,
2185 parent, ref_root, flags,
2186 ref->objectid, ref->offset,
2187 &ins, node->ref_mod);
2188 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2189 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2190 ref_root, ref->objectid,
2191 ref->offset, node->ref_mod,
2192 extent_op);
2193 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2194 ret = __btrfs_free_extent(trans, root, node, parent,
2195 ref_root, ref->objectid,
2196 ref->offset, node->ref_mod,
2197 extent_op);
2198 } else {
2199 BUG();
2200 }
2201 return ret;
2202 }
2203
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)2204 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2205 struct extent_buffer *leaf,
2206 struct btrfs_extent_item *ei)
2207 {
2208 u64 flags = btrfs_extent_flags(leaf, ei);
2209 if (extent_op->update_flags) {
2210 flags |= extent_op->flags_to_set;
2211 btrfs_set_extent_flags(leaf, ei, flags);
2212 }
2213
2214 if (extent_op->update_key) {
2215 struct btrfs_tree_block_info *bi;
2216 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2217 bi = (struct btrfs_tree_block_info *)(ei + 1);
2218 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2219 }
2220 }
2221
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)2222 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2223 struct btrfs_root *root,
2224 struct btrfs_delayed_ref_node *node,
2225 struct btrfs_delayed_extent_op *extent_op)
2226 {
2227 struct btrfs_key key;
2228 struct btrfs_path *path;
2229 struct btrfs_extent_item *ei;
2230 struct extent_buffer *leaf;
2231 u32 item_size;
2232 int ret;
2233 int err = 0;
2234 int metadata = !extent_op->is_data;
2235
2236 if (trans->aborted)
2237 return 0;
2238
2239 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2240 metadata = 0;
2241
2242 path = btrfs_alloc_path();
2243 if (!path)
2244 return -ENOMEM;
2245
2246 key.objectid = node->bytenr;
2247
2248 if (metadata) {
2249 key.type = BTRFS_METADATA_ITEM_KEY;
2250 key.offset = extent_op->level;
2251 } else {
2252 key.type = BTRFS_EXTENT_ITEM_KEY;
2253 key.offset = node->num_bytes;
2254 }
2255
2256 again:
2257 path->reada = 1;
2258 path->leave_spinning = 1;
2259 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2260 path, 0, 1);
2261 if (ret < 0) {
2262 err = ret;
2263 goto out;
2264 }
2265 if (ret > 0) {
2266 if (metadata) {
2267 if (path->slots[0] > 0) {
2268 path->slots[0]--;
2269 btrfs_item_key_to_cpu(path->nodes[0], &key,
2270 path->slots[0]);
2271 if (key.objectid == node->bytenr &&
2272 key.type == BTRFS_EXTENT_ITEM_KEY &&
2273 key.offset == node->num_bytes)
2274 ret = 0;
2275 }
2276 if (ret > 0) {
2277 btrfs_release_path(path);
2278 metadata = 0;
2279
2280 key.objectid = node->bytenr;
2281 key.offset = node->num_bytes;
2282 key.type = BTRFS_EXTENT_ITEM_KEY;
2283 goto again;
2284 }
2285 } else {
2286 err = -EIO;
2287 goto out;
2288 }
2289 }
2290
2291 leaf = path->nodes[0];
2292 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2293 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2294 if (item_size < sizeof(*ei)) {
2295 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2296 path, (u64)-1, 0);
2297 if (ret < 0) {
2298 err = ret;
2299 goto out;
2300 }
2301 leaf = path->nodes[0];
2302 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2303 }
2304 #endif
2305 BUG_ON(item_size < sizeof(*ei));
2306 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2307 __run_delayed_extent_op(extent_op, leaf, ei);
2308
2309 btrfs_mark_buffer_dirty(leaf);
2310 out:
2311 btrfs_free_path(path);
2312 return err;
2313 }
2314
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2315 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2316 struct btrfs_root *root,
2317 struct btrfs_delayed_ref_node *node,
2318 struct btrfs_delayed_extent_op *extent_op,
2319 int insert_reserved)
2320 {
2321 int ret = 0;
2322 struct btrfs_delayed_tree_ref *ref;
2323 struct btrfs_key ins;
2324 u64 parent = 0;
2325 u64 ref_root = 0;
2326 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2327 SKINNY_METADATA);
2328
2329 ref = btrfs_delayed_node_to_tree_ref(node);
2330 trace_run_delayed_tree_ref(node, ref, node->action);
2331
2332 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2333 parent = ref->parent;
2334 ref_root = ref->root;
2335
2336 ins.objectid = node->bytenr;
2337 if (skinny_metadata) {
2338 ins.offset = ref->level;
2339 ins.type = BTRFS_METADATA_ITEM_KEY;
2340 } else {
2341 ins.offset = node->num_bytes;
2342 ins.type = BTRFS_EXTENT_ITEM_KEY;
2343 }
2344
2345 if (node->ref_mod != 1) {
2346 btrfs_err(root->fs_info,
2347 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2348 node->bytenr, node->ref_mod, node->action, ref_root,
2349 parent);
2350 return -EIO;
2351 }
2352 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2353 BUG_ON(!extent_op || !extent_op->update_flags);
2354 ret = alloc_reserved_tree_block(trans, root,
2355 parent, ref_root,
2356 extent_op->flags_to_set,
2357 &extent_op->key,
2358 ref->level, &ins);
2359 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2360 ret = __btrfs_inc_extent_ref(trans, root, node,
2361 parent, ref_root,
2362 ref->level, 0, 1,
2363 extent_op);
2364 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2365 ret = __btrfs_free_extent(trans, root, node,
2366 parent, ref_root,
2367 ref->level, 0, 1, extent_op);
2368 } else {
2369 BUG();
2370 }
2371 return ret;
2372 }
2373
2374 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2375 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2376 struct btrfs_root *root,
2377 struct btrfs_delayed_ref_node *node,
2378 struct btrfs_delayed_extent_op *extent_op,
2379 int insert_reserved)
2380 {
2381 int ret = 0;
2382
2383 if (trans->aborted) {
2384 if (insert_reserved)
2385 btrfs_pin_extent(root, node->bytenr,
2386 node->num_bytes, 1);
2387 return 0;
2388 }
2389
2390 if (btrfs_delayed_ref_is_head(node)) {
2391 struct btrfs_delayed_ref_head *head;
2392 /*
2393 * we've hit the end of the chain and we were supposed
2394 * to insert this extent into the tree. But, it got
2395 * deleted before we ever needed to insert it, so all
2396 * we have to do is clean up the accounting
2397 */
2398 BUG_ON(extent_op);
2399 head = btrfs_delayed_node_to_head(node);
2400 trace_run_delayed_ref_head(node, head, node->action);
2401
2402 if (insert_reserved) {
2403 btrfs_pin_extent(root, node->bytenr,
2404 node->num_bytes, 1);
2405 if (head->is_data) {
2406 ret = btrfs_del_csums(trans, root,
2407 node->bytenr,
2408 node->num_bytes);
2409 }
2410 }
2411
2412 /* Also free its reserved qgroup space */
2413 btrfs_qgroup_free_delayed_ref(root->fs_info,
2414 head->qgroup_ref_root,
2415 head->qgroup_reserved);
2416 return ret;
2417 }
2418
2419 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2420 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2421 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2422 insert_reserved);
2423 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2424 node->type == BTRFS_SHARED_DATA_REF_KEY)
2425 ret = run_delayed_data_ref(trans, root, node, extent_op,
2426 insert_reserved);
2427 else
2428 BUG();
2429 return ret;
2430 }
2431
2432 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)2433 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2434 {
2435 struct btrfs_delayed_ref_node *ref;
2436
2437 if (list_empty(&head->ref_list))
2438 return NULL;
2439
2440 /*
2441 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2442 * This is to prevent a ref count from going down to zero, which deletes
2443 * the extent item from the extent tree, when there still are references
2444 * to add, which would fail because they would not find the extent item.
2445 */
2446 list_for_each_entry(ref, &head->ref_list, list) {
2447 if (ref->action == BTRFS_ADD_DELAYED_REF)
2448 return ref;
2449 }
2450
2451 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2452 list);
2453 }
2454
2455 /*
2456 * Returns 0 on success or if called with an already aborted transaction.
2457 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2458 */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,unsigned long nr)2459 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2460 struct btrfs_root *root,
2461 unsigned long nr)
2462 {
2463 struct btrfs_delayed_ref_root *delayed_refs;
2464 struct btrfs_delayed_ref_node *ref;
2465 struct btrfs_delayed_ref_head *locked_ref = NULL;
2466 struct btrfs_delayed_extent_op *extent_op;
2467 struct btrfs_fs_info *fs_info = root->fs_info;
2468 ktime_t start = ktime_get();
2469 int ret;
2470 unsigned long count = 0;
2471 unsigned long actual_count = 0;
2472 int must_insert_reserved = 0;
2473
2474 delayed_refs = &trans->transaction->delayed_refs;
2475 while (1) {
2476 if (!locked_ref) {
2477 if (count >= nr)
2478 break;
2479
2480 spin_lock(&delayed_refs->lock);
2481 locked_ref = btrfs_select_ref_head(trans);
2482 if (!locked_ref) {
2483 spin_unlock(&delayed_refs->lock);
2484 break;
2485 }
2486
2487 /* grab the lock that says we are going to process
2488 * all the refs for this head */
2489 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2490 spin_unlock(&delayed_refs->lock);
2491 /*
2492 * we may have dropped the spin lock to get the head
2493 * mutex lock, and that might have given someone else
2494 * time to free the head. If that's true, it has been
2495 * removed from our list and we can move on.
2496 */
2497 if (ret == -EAGAIN) {
2498 locked_ref = NULL;
2499 count++;
2500 continue;
2501 }
2502 }
2503
2504 /*
2505 * We need to try and merge add/drops of the same ref since we
2506 * can run into issues with relocate dropping the implicit ref
2507 * and then it being added back again before the drop can
2508 * finish. If we merged anything we need to re-loop so we can
2509 * get a good ref.
2510 * Or we can get node references of the same type that weren't
2511 * merged when created due to bumps in the tree mod seq, and
2512 * we need to merge them to prevent adding an inline extent
2513 * backref before dropping it (triggering a BUG_ON at
2514 * insert_inline_extent_backref()).
2515 */
2516 spin_lock(&locked_ref->lock);
2517 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2518 locked_ref);
2519
2520 /*
2521 * locked_ref is the head node, so we have to go one
2522 * node back for any delayed ref updates
2523 */
2524 ref = select_delayed_ref(locked_ref);
2525
2526 if (ref && ref->seq &&
2527 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2528 spin_unlock(&locked_ref->lock);
2529 spin_lock(&delayed_refs->lock);
2530 locked_ref->processing = 0;
2531 delayed_refs->num_heads_ready++;
2532 spin_unlock(&delayed_refs->lock);
2533 btrfs_delayed_ref_unlock(locked_ref);
2534 locked_ref = NULL;
2535 cond_resched();
2536 count++;
2537 continue;
2538 }
2539
2540 /*
2541 * record the must insert reserved flag before we
2542 * drop the spin lock.
2543 */
2544 must_insert_reserved = locked_ref->must_insert_reserved;
2545 locked_ref->must_insert_reserved = 0;
2546
2547 extent_op = locked_ref->extent_op;
2548 locked_ref->extent_op = NULL;
2549
2550 if (!ref) {
2551
2552
2553 /* All delayed refs have been processed, Go ahead
2554 * and send the head node to run_one_delayed_ref,
2555 * so that any accounting fixes can happen
2556 */
2557 ref = &locked_ref->node;
2558
2559 if (extent_op && must_insert_reserved) {
2560 btrfs_free_delayed_extent_op(extent_op);
2561 extent_op = NULL;
2562 }
2563
2564 if (extent_op) {
2565 spin_unlock(&locked_ref->lock);
2566 ret = run_delayed_extent_op(trans, root,
2567 ref, extent_op);
2568 btrfs_free_delayed_extent_op(extent_op);
2569
2570 if (ret) {
2571 /*
2572 * Need to reset must_insert_reserved if
2573 * there was an error so the abort stuff
2574 * can cleanup the reserved space
2575 * properly.
2576 */
2577 if (must_insert_reserved)
2578 locked_ref->must_insert_reserved = 1;
2579 spin_lock(&delayed_refs->lock);
2580 locked_ref->processing = 0;
2581 delayed_refs->num_heads_ready++;
2582 spin_unlock(&delayed_refs->lock);
2583 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2584 btrfs_delayed_ref_unlock(locked_ref);
2585 return ret;
2586 }
2587 continue;
2588 }
2589
2590 /*
2591 * Need to drop our head ref lock and re-aqcuire the
2592 * delayed ref lock and then re-check to make sure
2593 * nobody got added.
2594 */
2595 spin_unlock(&locked_ref->lock);
2596 spin_lock(&delayed_refs->lock);
2597 spin_lock(&locked_ref->lock);
2598 if (!list_empty(&locked_ref->ref_list) ||
2599 locked_ref->extent_op) {
2600 spin_unlock(&locked_ref->lock);
2601 spin_unlock(&delayed_refs->lock);
2602 continue;
2603 }
2604 ref->in_tree = 0;
2605 delayed_refs->num_heads--;
2606 rb_erase(&locked_ref->href_node,
2607 &delayed_refs->href_root);
2608 spin_unlock(&delayed_refs->lock);
2609 } else {
2610 actual_count++;
2611 ref->in_tree = 0;
2612 list_del(&ref->list);
2613 }
2614 atomic_dec(&delayed_refs->num_entries);
2615
2616 if (!btrfs_delayed_ref_is_head(ref)) {
2617 /*
2618 * when we play the delayed ref, also correct the
2619 * ref_mod on head
2620 */
2621 switch (ref->action) {
2622 case BTRFS_ADD_DELAYED_REF:
2623 case BTRFS_ADD_DELAYED_EXTENT:
2624 locked_ref->node.ref_mod -= ref->ref_mod;
2625 break;
2626 case BTRFS_DROP_DELAYED_REF:
2627 locked_ref->node.ref_mod += ref->ref_mod;
2628 break;
2629 default:
2630 WARN_ON(1);
2631 }
2632 }
2633 spin_unlock(&locked_ref->lock);
2634
2635 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2636 must_insert_reserved);
2637
2638 btrfs_free_delayed_extent_op(extent_op);
2639 if (ret) {
2640 locked_ref->processing = 0;
2641 btrfs_delayed_ref_unlock(locked_ref);
2642 btrfs_put_delayed_ref(ref);
2643 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2644 return ret;
2645 }
2646
2647 /*
2648 * If this node is a head, that means all the refs in this head
2649 * have been dealt with, and we will pick the next head to deal
2650 * with, so we must unlock the head and drop it from the cluster
2651 * list before we release it.
2652 */
2653 if (btrfs_delayed_ref_is_head(ref)) {
2654 if (locked_ref->is_data &&
2655 locked_ref->total_ref_mod < 0) {
2656 spin_lock(&delayed_refs->lock);
2657 delayed_refs->pending_csums -= ref->num_bytes;
2658 spin_unlock(&delayed_refs->lock);
2659 }
2660 btrfs_delayed_ref_unlock(locked_ref);
2661 locked_ref = NULL;
2662 }
2663 btrfs_put_delayed_ref(ref);
2664 count++;
2665 cond_resched();
2666 }
2667
2668 /*
2669 * We don't want to include ref heads since we can have empty ref heads
2670 * and those will drastically skew our runtime down since we just do
2671 * accounting, no actual extent tree updates.
2672 */
2673 if (actual_count > 0) {
2674 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2675 u64 avg;
2676
2677 /*
2678 * We weigh the current average higher than our current runtime
2679 * to avoid large swings in the average.
2680 */
2681 spin_lock(&delayed_refs->lock);
2682 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2683 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2684 spin_unlock(&delayed_refs->lock);
2685 }
2686 return 0;
2687 }
2688
2689 #ifdef SCRAMBLE_DELAYED_REFS
2690 /*
2691 * Normally delayed refs get processed in ascending bytenr order. This
2692 * correlates in most cases to the order added. To expose dependencies on this
2693 * order, we start to process the tree in the middle instead of the beginning
2694 */
find_middle(struct rb_root * root)2695 static u64 find_middle(struct rb_root *root)
2696 {
2697 struct rb_node *n = root->rb_node;
2698 struct btrfs_delayed_ref_node *entry;
2699 int alt = 1;
2700 u64 middle;
2701 u64 first = 0, last = 0;
2702
2703 n = rb_first(root);
2704 if (n) {
2705 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2706 first = entry->bytenr;
2707 }
2708 n = rb_last(root);
2709 if (n) {
2710 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2711 last = entry->bytenr;
2712 }
2713 n = root->rb_node;
2714
2715 while (n) {
2716 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2717 WARN_ON(!entry->in_tree);
2718
2719 middle = entry->bytenr;
2720
2721 if (alt)
2722 n = n->rb_left;
2723 else
2724 n = n->rb_right;
2725
2726 alt = 1 - alt;
2727 }
2728 return middle;
2729 }
2730 #endif
2731
heads_to_leaves(struct btrfs_root * root,u64 heads)2732 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2733 {
2734 u64 num_bytes;
2735
2736 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2737 sizeof(struct btrfs_extent_inline_ref));
2738 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2739 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2740
2741 /*
2742 * We don't ever fill up leaves all the way so multiply by 2 just to be
2743 * closer to what we're really going to want to ouse.
2744 */
2745 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2746 }
2747
2748 /*
2749 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2750 * would require to store the csums for that many bytes.
2751 */
btrfs_csum_bytes_to_leaves(struct btrfs_root * root,u64 csum_bytes)2752 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2753 {
2754 u64 csum_size;
2755 u64 num_csums_per_leaf;
2756 u64 num_csums;
2757
2758 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2759 num_csums_per_leaf = div64_u64(csum_size,
2760 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2761 num_csums = div64_u64(csum_bytes, root->sectorsize);
2762 num_csums += num_csums_per_leaf - 1;
2763 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2764 return num_csums;
2765 }
2766
btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root)2767 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2768 struct btrfs_root *root)
2769 {
2770 struct btrfs_block_rsv *global_rsv;
2771 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2772 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2773 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2774 u64 num_bytes, num_dirty_bgs_bytes;
2775 int ret = 0;
2776
2777 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2778 num_heads = heads_to_leaves(root, num_heads);
2779 if (num_heads > 1)
2780 num_bytes += (num_heads - 1) * root->nodesize;
2781 num_bytes <<= 1;
2782 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2783 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2784 num_dirty_bgs);
2785 global_rsv = &root->fs_info->global_block_rsv;
2786
2787 /*
2788 * If we can't allocate any more chunks lets make sure we have _lots_ of
2789 * wiggle room since running delayed refs can create more delayed refs.
2790 */
2791 if (global_rsv->space_info->full) {
2792 num_dirty_bgs_bytes <<= 1;
2793 num_bytes <<= 1;
2794 }
2795
2796 spin_lock(&global_rsv->lock);
2797 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2798 ret = 1;
2799 spin_unlock(&global_rsv->lock);
2800 return ret;
2801 }
2802
btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root)2803 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2804 struct btrfs_root *root)
2805 {
2806 struct btrfs_fs_info *fs_info = root->fs_info;
2807 u64 num_entries =
2808 atomic_read(&trans->transaction->delayed_refs.num_entries);
2809 u64 avg_runtime;
2810 u64 val;
2811
2812 smp_mb();
2813 avg_runtime = fs_info->avg_delayed_ref_runtime;
2814 val = num_entries * avg_runtime;
2815 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2816 return 1;
2817 if (val >= NSEC_PER_SEC / 2)
2818 return 2;
2819
2820 return btrfs_check_space_for_delayed_refs(trans, root);
2821 }
2822
2823 struct async_delayed_refs {
2824 struct btrfs_root *root;
2825 int count;
2826 int error;
2827 int sync;
2828 struct completion wait;
2829 struct btrfs_work work;
2830 };
2831
delayed_ref_async_start(struct btrfs_work * work)2832 static void delayed_ref_async_start(struct btrfs_work *work)
2833 {
2834 struct async_delayed_refs *async;
2835 struct btrfs_trans_handle *trans;
2836 int ret;
2837
2838 async = container_of(work, struct async_delayed_refs, work);
2839
2840 trans = btrfs_join_transaction(async->root);
2841 if (IS_ERR(trans)) {
2842 async->error = PTR_ERR(trans);
2843 goto done;
2844 }
2845
2846 /*
2847 * trans->sync means that when we call end_transaciton, we won't
2848 * wait on delayed refs
2849 */
2850 trans->sync = true;
2851 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2852 if (ret)
2853 async->error = ret;
2854
2855 ret = btrfs_end_transaction(trans, async->root);
2856 if (ret && !async->error)
2857 async->error = ret;
2858 done:
2859 if (async->sync)
2860 complete(&async->wait);
2861 else
2862 kfree(async);
2863 }
2864
btrfs_async_run_delayed_refs(struct btrfs_root * root,unsigned long count,int wait)2865 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2866 unsigned long count, int wait)
2867 {
2868 struct async_delayed_refs *async;
2869 int ret;
2870
2871 async = kmalloc(sizeof(*async), GFP_NOFS);
2872 if (!async)
2873 return -ENOMEM;
2874
2875 async->root = root->fs_info->tree_root;
2876 async->count = count;
2877 async->error = 0;
2878 if (wait)
2879 async->sync = 1;
2880 else
2881 async->sync = 0;
2882 init_completion(&async->wait);
2883
2884 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2885 delayed_ref_async_start, NULL, NULL);
2886
2887 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2888
2889 if (wait) {
2890 wait_for_completion(&async->wait);
2891 ret = async->error;
2892 kfree(async);
2893 return ret;
2894 }
2895 return 0;
2896 }
2897
2898 /*
2899 * this starts processing the delayed reference count updates and
2900 * extent insertions we have queued up so far. count can be
2901 * 0, which means to process everything in the tree at the start
2902 * of the run (but not newly added entries), or it can be some target
2903 * number you'd like to process.
2904 *
2905 * Returns 0 on success or if called with an aborted transaction
2906 * Returns <0 on error and aborts the transaction
2907 */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,unsigned long count)2908 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2909 struct btrfs_root *root, unsigned long count)
2910 {
2911 struct rb_node *node;
2912 struct btrfs_delayed_ref_root *delayed_refs;
2913 struct btrfs_delayed_ref_head *head;
2914 int ret;
2915 int run_all = count == (unsigned long)-1;
2916 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2917
2918 /* We'll clean this up in btrfs_cleanup_transaction */
2919 if (trans->aborted)
2920 return 0;
2921
2922 if (root == root->fs_info->extent_root)
2923 root = root->fs_info->tree_root;
2924
2925 delayed_refs = &trans->transaction->delayed_refs;
2926 if (count == 0)
2927 count = atomic_read(&delayed_refs->num_entries) * 2;
2928
2929 again:
2930 #ifdef SCRAMBLE_DELAYED_REFS
2931 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2932 #endif
2933 trans->can_flush_pending_bgs = false;
2934 ret = __btrfs_run_delayed_refs(trans, root, count);
2935 if (ret < 0) {
2936 btrfs_abort_transaction(trans, root, ret);
2937 return ret;
2938 }
2939
2940 if (run_all) {
2941 if (!list_empty(&trans->new_bgs))
2942 btrfs_create_pending_block_groups(trans, root);
2943
2944 spin_lock(&delayed_refs->lock);
2945 node = rb_first(&delayed_refs->href_root);
2946 if (!node) {
2947 spin_unlock(&delayed_refs->lock);
2948 goto out;
2949 }
2950 count = (unsigned long)-1;
2951
2952 while (node) {
2953 head = rb_entry(node, struct btrfs_delayed_ref_head,
2954 href_node);
2955 if (btrfs_delayed_ref_is_head(&head->node)) {
2956 struct btrfs_delayed_ref_node *ref;
2957
2958 ref = &head->node;
2959 atomic_inc(&ref->refs);
2960
2961 spin_unlock(&delayed_refs->lock);
2962 /*
2963 * Mutex was contended, block until it's
2964 * released and try again
2965 */
2966 mutex_lock(&head->mutex);
2967 mutex_unlock(&head->mutex);
2968
2969 btrfs_put_delayed_ref(ref);
2970 cond_resched();
2971 goto again;
2972 } else {
2973 WARN_ON(1);
2974 }
2975 node = rb_next(node);
2976 }
2977 spin_unlock(&delayed_refs->lock);
2978 cond_resched();
2979 goto again;
2980 }
2981 out:
2982 assert_qgroups_uptodate(trans);
2983 trans->can_flush_pending_bgs = can_flush_pending_bgs;
2984 return 0;
2985 }
2986
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 flags,int level,int is_data)2987 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2988 struct btrfs_root *root,
2989 u64 bytenr, u64 num_bytes, u64 flags,
2990 int level, int is_data)
2991 {
2992 struct btrfs_delayed_extent_op *extent_op;
2993 int ret;
2994
2995 extent_op = btrfs_alloc_delayed_extent_op();
2996 if (!extent_op)
2997 return -ENOMEM;
2998
2999 extent_op->flags_to_set = flags;
3000 extent_op->update_flags = 1;
3001 extent_op->update_key = 0;
3002 extent_op->is_data = is_data ? 1 : 0;
3003 extent_op->level = level;
3004
3005 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3006 num_bytes, extent_op);
3007 if (ret)
3008 btrfs_free_delayed_extent_op(extent_op);
3009 return ret;
3010 }
3011
check_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)3012 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3013 struct btrfs_root *root,
3014 struct btrfs_path *path,
3015 u64 objectid, u64 offset, u64 bytenr)
3016 {
3017 struct btrfs_delayed_ref_head *head;
3018 struct btrfs_delayed_ref_node *ref;
3019 struct btrfs_delayed_data_ref *data_ref;
3020 struct btrfs_delayed_ref_root *delayed_refs;
3021 int ret = 0;
3022
3023 delayed_refs = &trans->transaction->delayed_refs;
3024 spin_lock(&delayed_refs->lock);
3025 head = btrfs_find_delayed_ref_head(trans, bytenr);
3026 if (!head) {
3027 spin_unlock(&delayed_refs->lock);
3028 return 0;
3029 }
3030
3031 if (!mutex_trylock(&head->mutex)) {
3032 atomic_inc(&head->node.refs);
3033 spin_unlock(&delayed_refs->lock);
3034
3035 btrfs_release_path(path);
3036
3037 /*
3038 * Mutex was contended, block until it's released and let
3039 * caller try again
3040 */
3041 mutex_lock(&head->mutex);
3042 mutex_unlock(&head->mutex);
3043 btrfs_put_delayed_ref(&head->node);
3044 return -EAGAIN;
3045 }
3046 spin_unlock(&delayed_refs->lock);
3047
3048 spin_lock(&head->lock);
3049 list_for_each_entry(ref, &head->ref_list, list) {
3050 /* If it's a shared ref we know a cross reference exists */
3051 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3052 ret = 1;
3053 break;
3054 }
3055
3056 data_ref = btrfs_delayed_node_to_data_ref(ref);
3057
3058 /*
3059 * If our ref doesn't match the one we're currently looking at
3060 * then we have a cross reference.
3061 */
3062 if (data_ref->root != root->root_key.objectid ||
3063 data_ref->objectid != objectid ||
3064 data_ref->offset != offset) {
3065 ret = 1;
3066 break;
3067 }
3068 }
3069 spin_unlock(&head->lock);
3070 mutex_unlock(&head->mutex);
3071 return ret;
3072 }
3073
check_committed_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)3074 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3075 struct btrfs_root *root,
3076 struct btrfs_path *path,
3077 u64 objectid, u64 offset, u64 bytenr)
3078 {
3079 struct btrfs_root *extent_root = root->fs_info->extent_root;
3080 struct extent_buffer *leaf;
3081 struct btrfs_extent_data_ref *ref;
3082 struct btrfs_extent_inline_ref *iref;
3083 struct btrfs_extent_item *ei;
3084 struct btrfs_key key;
3085 u32 item_size;
3086 int ret;
3087
3088 key.objectid = bytenr;
3089 key.offset = (u64)-1;
3090 key.type = BTRFS_EXTENT_ITEM_KEY;
3091
3092 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3093 if (ret < 0)
3094 goto out;
3095 BUG_ON(ret == 0); /* Corruption */
3096
3097 ret = -ENOENT;
3098 if (path->slots[0] == 0)
3099 goto out;
3100
3101 path->slots[0]--;
3102 leaf = path->nodes[0];
3103 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3104
3105 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3106 goto out;
3107
3108 ret = 1;
3109 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3110 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3111 if (item_size < sizeof(*ei)) {
3112 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3113 goto out;
3114 }
3115 #endif
3116 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3117
3118 if (item_size != sizeof(*ei) +
3119 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3120 goto out;
3121
3122 if (btrfs_extent_generation(leaf, ei) <=
3123 btrfs_root_last_snapshot(&root->root_item))
3124 goto out;
3125
3126 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3127 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3128 BTRFS_EXTENT_DATA_REF_KEY)
3129 goto out;
3130
3131 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3132 if (btrfs_extent_refs(leaf, ei) !=
3133 btrfs_extent_data_ref_count(leaf, ref) ||
3134 btrfs_extent_data_ref_root(leaf, ref) !=
3135 root->root_key.objectid ||
3136 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3137 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3138 goto out;
3139
3140 ret = 0;
3141 out:
3142 return ret;
3143 }
3144
btrfs_cross_ref_exist(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr)3145 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3146 struct btrfs_root *root,
3147 u64 objectid, u64 offset, u64 bytenr)
3148 {
3149 struct btrfs_path *path;
3150 int ret;
3151 int ret2;
3152
3153 path = btrfs_alloc_path();
3154 if (!path)
3155 return -ENOENT;
3156
3157 do {
3158 ret = check_committed_ref(trans, root, path, objectid,
3159 offset, bytenr);
3160 if (ret && ret != -ENOENT)
3161 goto out;
3162
3163 ret2 = check_delayed_ref(trans, root, path, objectid,
3164 offset, bytenr);
3165 } while (ret2 == -EAGAIN);
3166
3167 if (ret2 && ret2 != -ENOENT) {
3168 ret = ret2;
3169 goto out;
3170 }
3171
3172 if (ret != -ENOENT || ret2 != -ENOENT)
3173 ret = 0;
3174 out:
3175 btrfs_free_path(path);
3176 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3177 WARN_ON(ret > 0);
3178 return ret;
3179 }
3180
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)3181 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3182 struct btrfs_root *root,
3183 struct extent_buffer *buf,
3184 int full_backref, int inc)
3185 {
3186 u64 bytenr;
3187 u64 num_bytes;
3188 u64 parent;
3189 u64 ref_root;
3190 u32 nritems;
3191 struct btrfs_key key;
3192 struct btrfs_file_extent_item *fi;
3193 int i;
3194 int level;
3195 int ret = 0;
3196 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3197 u64, u64, u64, u64, u64, u64);
3198
3199
3200 if (btrfs_test_is_dummy_root(root))
3201 return 0;
3202
3203 ref_root = btrfs_header_owner(buf);
3204 nritems = btrfs_header_nritems(buf);
3205 level = btrfs_header_level(buf);
3206
3207 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3208 return 0;
3209
3210 if (inc)
3211 process_func = btrfs_inc_extent_ref;
3212 else
3213 process_func = btrfs_free_extent;
3214
3215 if (full_backref)
3216 parent = buf->start;
3217 else
3218 parent = 0;
3219
3220 for (i = 0; i < nritems; i++) {
3221 if (level == 0) {
3222 btrfs_item_key_to_cpu(buf, &key, i);
3223 if (key.type != BTRFS_EXTENT_DATA_KEY)
3224 continue;
3225 fi = btrfs_item_ptr(buf, i,
3226 struct btrfs_file_extent_item);
3227 if (btrfs_file_extent_type(buf, fi) ==
3228 BTRFS_FILE_EXTENT_INLINE)
3229 continue;
3230 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3231 if (bytenr == 0)
3232 continue;
3233
3234 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3235 key.offset -= btrfs_file_extent_offset(buf, fi);
3236 ret = process_func(trans, root, bytenr, num_bytes,
3237 parent, ref_root, key.objectid,
3238 key.offset);
3239 if (ret)
3240 goto fail;
3241 } else {
3242 bytenr = btrfs_node_blockptr(buf, i);
3243 num_bytes = root->nodesize;
3244 ret = process_func(trans, root, bytenr, num_bytes,
3245 parent, ref_root, level - 1, 0);
3246 if (ret)
3247 goto fail;
3248 }
3249 }
3250 return 0;
3251 fail:
3252 return ret;
3253 }
3254
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)3255 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3256 struct extent_buffer *buf, int full_backref)
3257 {
3258 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3259 }
3260
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)3261 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3262 struct extent_buffer *buf, int full_backref)
3263 {
3264 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3265 }
3266
write_one_cache_group(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_block_group_cache * cache)3267 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3268 struct btrfs_root *root,
3269 struct btrfs_path *path,
3270 struct btrfs_block_group_cache *cache)
3271 {
3272 int ret;
3273 struct btrfs_root *extent_root = root->fs_info->extent_root;
3274 unsigned long bi;
3275 struct extent_buffer *leaf;
3276
3277 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3278 if (ret) {
3279 if (ret > 0)
3280 ret = -ENOENT;
3281 goto fail;
3282 }
3283
3284 leaf = path->nodes[0];
3285 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3286 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3287 btrfs_mark_buffer_dirty(leaf);
3288 fail:
3289 btrfs_release_path(path);
3290 return ret;
3291
3292 }
3293
3294 static struct btrfs_block_group_cache *
next_block_group(struct btrfs_root * root,struct btrfs_block_group_cache * cache)3295 next_block_group(struct btrfs_root *root,
3296 struct btrfs_block_group_cache *cache)
3297 {
3298 struct rb_node *node;
3299
3300 spin_lock(&root->fs_info->block_group_cache_lock);
3301
3302 /* If our block group was removed, we need a full search. */
3303 if (RB_EMPTY_NODE(&cache->cache_node)) {
3304 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3305
3306 spin_unlock(&root->fs_info->block_group_cache_lock);
3307 btrfs_put_block_group(cache);
3308 cache = btrfs_lookup_first_block_group(root->fs_info,
3309 next_bytenr);
3310 return cache;
3311 }
3312 node = rb_next(&cache->cache_node);
3313 btrfs_put_block_group(cache);
3314 if (node) {
3315 cache = rb_entry(node, struct btrfs_block_group_cache,
3316 cache_node);
3317 btrfs_get_block_group(cache);
3318 } else
3319 cache = NULL;
3320 spin_unlock(&root->fs_info->block_group_cache_lock);
3321 return cache;
3322 }
3323
cache_save_setup(struct btrfs_block_group_cache * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)3324 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3325 struct btrfs_trans_handle *trans,
3326 struct btrfs_path *path)
3327 {
3328 struct btrfs_root *root = block_group->fs_info->tree_root;
3329 struct inode *inode = NULL;
3330 u64 alloc_hint = 0;
3331 int dcs = BTRFS_DC_ERROR;
3332 u64 num_pages = 0;
3333 int retries = 0;
3334 int ret = 0;
3335
3336 /*
3337 * If this block group is smaller than 100 megs don't bother caching the
3338 * block group.
3339 */
3340 if (block_group->key.offset < (100 * 1024 * 1024)) {
3341 spin_lock(&block_group->lock);
3342 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3343 spin_unlock(&block_group->lock);
3344 return 0;
3345 }
3346
3347 if (trans->aborted)
3348 return 0;
3349 again:
3350 inode = lookup_free_space_inode(root, block_group, path);
3351 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3352 ret = PTR_ERR(inode);
3353 btrfs_release_path(path);
3354 goto out;
3355 }
3356
3357 if (IS_ERR(inode)) {
3358 BUG_ON(retries);
3359 retries++;
3360
3361 if (block_group->ro)
3362 goto out_free;
3363
3364 ret = create_free_space_inode(root, trans, block_group, path);
3365 if (ret)
3366 goto out_free;
3367 goto again;
3368 }
3369
3370 /*
3371 * We want to set the generation to 0, that way if anything goes wrong
3372 * from here on out we know not to trust this cache when we load up next
3373 * time.
3374 */
3375 BTRFS_I(inode)->generation = 0;
3376 ret = btrfs_update_inode(trans, root, inode);
3377 if (ret) {
3378 /*
3379 * So theoretically we could recover from this, simply set the
3380 * super cache generation to 0 so we know to invalidate the
3381 * cache, but then we'd have to keep track of the block groups
3382 * that fail this way so we know we _have_ to reset this cache
3383 * before the next commit or risk reading stale cache. So to
3384 * limit our exposure to horrible edge cases lets just abort the
3385 * transaction, this only happens in really bad situations
3386 * anyway.
3387 */
3388 btrfs_abort_transaction(trans, root, ret);
3389 goto out_put;
3390 }
3391 WARN_ON(ret);
3392
3393 /* We've already setup this transaction, go ahead and exit */
3394 if (block_group->cache_generation == trans->transid &&
3395 i_size_read(inode)) {
3396 dcs = BTRFS_DC_SETUP;
3397 goto out_put;
3398 }
3399
3400 if (i_size_read(inode) > 0) {
3401 ret = btrfs_check_trunc_cache_free_space(root,
3402 &root->fs_info->global_block_rsv);
3403 if (ret)
3404 goto out_put;
3405
3406 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3407 if (ret)
3408 goto out_put;
3409 }
3410
3411 spin_lock(&block_group->lock);
3412 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3413 !btrfs_test_opt(root, SPACE_CACHE)) {
3414 /*
3415 * don't bother trying to write stuff out _if_
3416 * a) we're not cached,
3417 * b) we're with nospace_cache mount option.
3418 */
3419 dcs = BTRFS_DC_WRITTEN;
3420 spin_unlock(&block_group->lock);
3421 goto out_put;
3422 }
3423 spin_unlock(&block_group->lock);
3424
3425 /*
3426 * We hit an ENOSPC when setting up the cache in this transaction, just
3427 * skip doing the setup, we've already cleared the cache so we're safe.
3428 */
3429 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3430 ret = -ENOSPC;
3431 goto out_put;
3432 }
3433
3434 /*
3435 * Try to preallocate enough space based on how big the block group is.
3436 * Keep in mind this has to include any pinned space which could end up
3437 * taking up quite a bit since it's not folded into the other space
3438 * cache.
3439 */
3440 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3441 if (!num_pages)
3442 num_pages = 1;
3443
3444 num_pages *= 16;
3445 num_pages *= PAGE_CACHE_SIZE;
3446
3447 ret = btrfs_check_data_free_space(inode, 0, num_pages);
3448 if (ret)
3449 goto out_put;
3450
3451 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3452 num_pages, num_pages,
3453 &alloc_hint);
3454 /*
3455 * Our cache requires contiguous chunks so that we don't modify a bunch
3456 * of metadata or split extents when writing the cache out, which means
3457 * we can enospc if we are heavily fragmented in addition to just normal
3458 * out of space conditions. So if we hit this just skip setting up any
3459 * other block groups for this transaction, maybe we'll unpin enough
3460 * space the next time around.
3461 */
3462 if (!ret)
3463 dcs = BTRFS_DC_SETUP;
3464 else if (ret == -ENOSPC)
3465 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3466 btrfs_free_reserved_data_space(inode, 0, num_pages);
3467
3468 out_put:
3469 iput(inode);
3470 out_free:
3471 btrfs_release_path(path);
3472 out:
3473 spin_lock(&block_group->lock);
3474 if (!ret && dcs == BTRFS_DC_SETUP)
3475 block_group->cache_generation = trans->transid;
3476 block_group->disk_cache_state = dcs;
3477 spin_unlock(&block_group->lock);
3478
3479 return ret;
3480 }
3481
btrfs_setup_space_cache(struct btrfs_trans_handle * trans,struct btrfs_root * root)3482 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3483 struct btrfs_root *root)
3484 {
3485 struct btrfs_block_group_cache *cache, *tmp;
3486 struct btrfs_transaction *cur_trans = trans->transaction;
3487 struct btrfs_path *path;
3488
3489 if (list_empty(&cur_trans->dirty_bgs) ||
3490 !btrfs_test_opt(root, SPACE_CACHE))
3491 return 0;
3492
3493 path = btrfs_alloc_path();
3494 if (!path)
3495 return -ENOMEM;
3496
3497 /* Could add new block groups, use _safe just in case */
3498 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3499 dirty_list) {
3500 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3501 cache_save_setup(cache, trans, path);
3502 }
3503
3504 btrfs_free_path(path);
3505 return 0;
3506 }
3507
3508 /*
3509 * transaction commit does final block group cache writeback during a
3510 * critical section where nothing is allowed to change the FS. This is
3511 * required in order for the cache to actually match the block group,
3512 * but can introduce a lot of latency into the commit.
3513 *
3514 * So, btrfs_start_dirty_block_groups is here to kick off block group
3515 * cache IO. There's a chance we'll have to redo some of it if the
3516 * block group changes again during the commit, but it greatly reduces
3517 * the commit latency by getting rid of the easy block groups while
3518 * we're still allowing others to join the commit.
3519 */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans,struct btrfs_root * root)3520 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3521 struct btrfs_root *root)
3522 {
3523 struct btrfs_block_group_cache *cache;
3524 struct btrfs_transaction *cur_trans = trans->transaction;
3525 int ret = 0;
3526 int should_put;
3527 struct btrfs_path *path = NULL;
3528 LIST_HEAD(dirty);
3529 struct list_head *io = &cur_trans->io_bgs;
3530 int num_started = 0;
3531 int loops = 0;
3532
3533 spin_lock(&cur_trans->dirty_bgs_lock);
3534 if (list_empty(&cur_trans->dirty_bgs)) {
3535 spin_unlock(&cur_trans->dirty_bgs_lock);
3536 return 0;
3537 }
3538 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3539 spin_unlock(&cur_trans->dirty_bgs_lock);
3540
3541 again:
3542 /*
3543 * make sure all the block groups on our dirty list actually
3544 * exist
3545 */
3546 btrfs_create_pending_block_groups(trans, root);
3547
3548 if (!path) {
3549 path = btrfs_alloc_path();
3550 if (!path)
3551 return -ENOMEM;
3552 }
3553
3554 /*
3555 * cache_write_mutex is here only to save us from balance or automatic
3556 * removal of empty block groups deleting this block group while we are
3557 * writing out the cache
3558 */
3559 mutex_lock(&trans->transaction->cache_write_mutex);
3560 while (!list_empty(&dirty)) {
3561 cache = list_first_entry(&dirty,
3562 struct btrfs_block_group_cache,
3563 dirty_list);
3564 /*
3565 * this can happen if something re-dirties a block
3566 * group that is already under IO. Just wait for it to
3567 * finish and then do it all again
3568 */
3569 if (!list_empty(&cache->io_list)) {
3570 list_del_init(&cache->io_list);
3571 btrfs_wait_cache_io(root, trans, cache,
3572 &cache->io_ctl, path,
3573 cache->key.objectid);
3574 btrfs_put_block_group(cache);
3575 }
3576
3577
3578 /*
3579 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3580 * if it should update the cache_state. Don't delete
3581 * until after we wait.
3582 *
3583 * Since we're not running in the commit critical section
3584 * we need the dirty_bgs_lock to protect from update_block_group
3585 */
3586 spin_lock(&cur_trans->dirty_bgs_lock);
3587 list_del_init(&cache->dirty_list);
3588 spin_unlock(&cur_trans->dirty_bgs_lock);
3589
3590 should_put = 1;
3591
3592 cache_save_setup(cache, trans, path);
3593
3594 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3595 cache->io_ctl.inode = NULL;
3596 ret = btrfs_write_out_cache(root, trans, cache, path);
3597 if (ret == 0 && cache->io_ctl.inode) {
3598 num_started++;
3599 should_put = 0;
3600
3601 /*
3602 * the cache_write_mutex is protecting
3603 * the io_list
3604 */
3605 list_add_tail(&cache->io_list, io);
3606 } else {
3607 /*
3608 * if we failed to write the cache, the
3609 * generation will be bad and life goes on
3610 */
3611 ret = 0;
3612 }
3613 }
3614 if (!ret) {
3615 ret = write_one_cache_group(trans, root, path, cache);
3616 /*
3617 * Our block group might still be attached to the list
3618 * of new block groups in the transaction handle of some
3619 * other task (struct btrfs_trans_handle->new_bgs). This
3620 * means its block group item isn't yet in the extent
3621 * tree. If this happens ignore the error, as we will
3622 * try again later in the critical section of the
3623 * transaction commit.
3624 */
3625 if (ret == -ENOENT) {
3626 ret = 0;
3627 spin_lock(&cur_trans->dirty_bgs_lock);
3628 if (list_empty(&cache->dirty_list)) {
3629 list_add_tail(&cache->dirty_list,
3630 &cur_trans->dirty_bgs);
3631 btrfs_get_block_group(cache);
3632 }
3633 spin_unlock(&cur_trans->dirty_bgs_lock);
3634 } else if (ret) {
3635 btrfs_abort_transaction(trans, root, ret);
3636 }
3637 }
3638
3639 /* if its not on the io list, we need to put the block group */
3640 if (should_put)
3641 btrfs_put_block_group(cache);
3642
3643 if (ret)
3644 break;
3645
3646 /*
3647 * Avoid blocking other tasks for too long. It might even save
3648 * us from writing caches for block groups that are going to be
3649 * removed.
3650 */
3651 mutex_unlock(&trans->transaction->cache_write_mutex);
3652 mutex_lock(&trans->transaction->cache_write_mutex);
3653 }
3654 mutex_unlock(&trans->transaction->cache_write_mutex);
3655
3656 /*
3657 * go through delayed refs for all the stuff we've just kicked off
3658 * and then loop back (just once)
3659 */
3660 ret = btrfs_run_delayed_refs(trans, root, 0);
3661 if (!ret && loops == 0) {
3662 loops++;
3663 spin_lock(&cur_trans->dirty_bgs_lock);
3664 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3665 /*
3666 * dirty_bgs_lock protects us from concurrent block group
3667 * deletes too (not just cache_write_mutex).
3668 */
3669 if (!list_empty(&dirty)) {
3670 spin_unlock(&cur_trans->dirty_bgs_lock);
3671 goto again;
3672 }
3673 spin_unlock(&cur_trans->dirty_bgs_lock);
3674 }
3675
3676 btrfs_free_path(path);
3677 return ret;
3678 }
3679
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans,struct btrfs_root * root)3680 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3681 struct btrfs_root *root)
3682 {
3683 struct btrfs_block_group_cache *cache;
3684 struct btrfs_transaction *cur_trans = trans->transaction;
3685 int ret = 0;
3686 int should_put;
3687 struct btrfs_path *path;
3688 struct list_head *io = &cur_trans->io_bgs;
3689 int num_started = 0;
3690
3691 path = btrfs_alloc_path();
3692 if (!path)
3693 return -ENOMEM;
3694
3695 /*
3696 * We don't need the lock here since we are protected by the transaction
3697 * commit. We want to do the cache_save_setup first and then run the
3698 * delayed refs to make sure we have the best chance at doing this all
3699 * in one shot.
3700 */
3701 while (!list_empty(&cur_trans->dirty_bgs)) {
3702 cache = list_first_entry(&cur_trans->dirty_bgs,
3703 struct btrfs_block_group_cache,
3704 dirty_list);
3705
3706 /*
3707 * this can happen if cache_save_setup re-dirties a block
3708 * group that is already under IO. Just wait for it to
3709 * finish and then do it all again
3710 */
3711 if (!list_empty(&cache->io_list)) {
3712 list_del_init(&cache->io_list);
3713 btrfs_wait_cache_io(root, trans, cache,
3714 &cache->io_ctl, path,
3715 cache->key.objectid);
3716 btrfs_put_block_group(cache);
3717 }
3718
3719 /*
3720 * don't remove from the dirty list until after we've waited
3721 * on any pending IO
3722 */
3723 list_del_init(&cache->dirty_list);
3724 should_put = 1;
3725
3726 cache_save_setup(cache, trans, path);
3727
3728 if (!ret)
3729 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3730
3731 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3732 cache->io_ctl.inode = NULL;
3733 ret = btrfs_write_out_cache(root, trans, cache, path);
3734 if (ret == 0 && cache->io_ctl.inode) {
3735 num_started++;
3736 should_put = 0;
3737 list_add_tail(&cache->io_list, io);
3738 } else {
3739 /*
3740 * if we failed to write the cache, the
3741 * generation will be bad and life goes on
3742 */
3743 ret = 0;
3744 }
3745 }
3746 if (!ret) {
3747 ret = write_one_cache_group(trans, root, path, cache);
3748 if (ret)
3749 btrfs_abort_transaction(trans, root, ret);
3750 }
3751
3752 /* if its not on the io list, we need to put the block group */
3753 if (should_put)
3754 btrfs_put_block_group(cache);
3755 }
3756
3757 while (!list_empty(io)) {
3758 cache = list_first_entry(io, struct btrfs_block_group_cache,
3759 io_list);
3760 list_del_init(&cache->io_list);
3761 btrfs_wait_cache_io(root, trans, cache,
3762 &cache->io_ctl, path, cache->key.objectid);
3763 btrfs_put_block_group(cache);
3764 }
3765
3766 btrfs_free_path(path);
3767 return ret;
3768 }
3769
btrfs_extent_readonly(struct btrfs_root * root,u64 bytenr)3770 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3771 {
3772 struct btrfs_block_group_cache *block_group;
3773 int readonly = 0;
3774
3775 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3776 if (!block_group || block_group->ro)
3777 readonly = 1;
3778 if (block_group)
3779 btrfs_put_block_group(block_group);
3780 return readonly;
3781 }
3782
alloc_name(u64 flags)3783 static const char *alloc_name(u64 flags)
3784 {
3785 switch (flags) {
3786 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3787 return "mixed";
3788 case BTRFS_BLOCK_GROUP_METADATA:
3789 return "metadata";
3790 case BTRFS_BLOCK_GROUP_DATA:
3791 return "data";
3792 case BTRFS_BLOCK_GROUP_SYSTEM:
3793 return "system";
3794 default:
3795 WARN_ON(1);
3796 return "invalid-combination";
3797 };
3798 }
3799
update_space_info(struct btrfs_fs_info * info,u64 flags,u64 total_bytes,u64 bytes_used,struct btrfs_space_info ** space_info)3800 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3801 u64 total_bytes, u64 bytes_used,
3802 struct btrfs_space_info **space_info)
3803 {
3804 struct btrfs_space_info *found;
3805 int i;
3806 int factor;
3807 int ret;
3808
3809 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3810 BTRFS_BLOCK_GROUP_RAID10))
3811 factor = 2;
3812 else
3813 factor = 1;
3814
3815 found = __find_space_info(info, flags);
3816 if (found) {
3817 spin_lock(&found->lock);
3818 found->total_bytes += total_bytes;
3819 found->disk_total += total_bytes * factor;
3820 found->bytes_used += bytes_used;
3821 found->disk_used += bytes_used * factor;
3822 if (total_bytes > 0)
3823 found->full = 0;
3824 spin_unlock(&found->lock);
3825 *space_info = found;
3826 return 0;
3827 }
3828 found = kzalloc(sizeof(*found), GFP_NOFS);
3829 if (!found)
3830 return -ENOMEM;
3831
3832 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3833 if (ret) {
3834 kfree(found);
3835 return ret;
3836 }
3837
3838 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3839 INIT_LIST_HEAD(&found->block_groups[i]);
3840 init_rwsem(&found->groups_sem);
3841 spin_lock_init(&found->lock);
3842 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3843 found->total_bytes = total_bytes;
3844 found->disk_total = total_bytes * factor;
3845 found->bytes_used = bytes_used;
3846 found->disk_used = bytes_used * factor;
3847 found->bytes_pinned = 0;
3848 found->bytes_reserved = 0;
3849 found->bytes_readonly = 0;
3850 found->bytes_may_use = 0;
3851 found->full = 0;
3852 found->max_extent_size = 0;
3853 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3854 found->chunk_alloc = 0;
3855 found->flush = 0;
3856 init_waitqueue_head(&found->wait);
3857 INIT_LIST_HEAD(&found->ro_bgs);
3858
3859 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3860 info->space_info_kobj, "%s",
3861 alloc_name(found->flags));
3862 if (ret) {
3863 percpu_counter_destroy(&found->total_bytes_pinned);
3864 kfree(found);
3865 return ret;
3866 }
3867
3868 *space_info = found;
3869 list_add_rcu(&found->list, &info->space_info);
3870 if (flags & BTRFS_BLOCK_GROUP_DATA)
3871 info->data_sinfo = found;
3872
3873 return ret;
3874 }
3875
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)3876 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3877 {
3878 u64 extra_flags = chunk_to_extended(flags) &
3879 BTRFS_EXTENDED_PROFILE_MASK;
3880
3881 write_seqlock(&fs_info->profiles_lock);
3882 if (flags & BTRFS_BLOCK_GROUP_DATA)
3883 fs_info->avail_data_alloc_bits |= extra_flags;
3884 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3885 fs_info->avail_metadata_alloc_bits |= extra_flags;
3886 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3887 fs_info->avail_system_alloc_bits |= extra_flags;
3888 write_sequnlock(&fs_info->profiles_lock);
3889 }
3890
3891 /*
3892 * returns target flags in extended format or 0 if restripe for this
3893 * chunk_type is not in progress
3894 *
3895 * should be called with either volume_mutex or balance_lock held
3896 */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)3897 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3898 {
3899 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3900 u64 target = 0;
3901
3902 if (!bctl)
3903 return 0;
3904
3905 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3906 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3907 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3908 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3909 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3910 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3911 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3912 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3913 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3914 }
3915
3916 return target;
3917 }
3918
3919 /*
3920 * @flags: available profiles in extended format (see ctree.h)
3921 *
3922 * Returns reduced profile in chunk format. If profile changing is in
3923 * progress (either running or paused) picks the target profile (if it's
3924 * already available), otherwise falls back to plain reducing.
3925 */
btrfs_reduce_alloc_profile(struct btrfs_root * root,u64 flags)3926 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3927 {
3928 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3929 u64 target;
3930 u64 raid_type;
3931 u64 allowed = 0;
3932
3933 /*
3934 * see if restripe for this chunk_type is in progress, if so
3935 * try to reduce to the target profile
3936 */
3937 spin_lock(&root->fs_info->balance_lock);
3938 target = get_restripe_target(root->fs_info, flags);
3939 if (target) {
3940 /* pick target profile only if it's already available */
3941 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3942 spin_unlock(&root->fs_info->balance_lock);
3943 return extended_to_chunk(target);
3944 }
3945 }
3946 spin_unlock(&root->fs_info->balance_lock);
3947
3948 /* First, mask out the RAID levels which aren't possible */
3949 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3950 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3951 allowed |= btrfs_raid_group[raid_type];
3952 }
3953 allowed &= flags;
3954
3955 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3956 allowed = BTRFS_BLOCK_GROUP_RAID6;
3957 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
3958 allowed = BTRFS_BLOCK_GROUP_RAID5;
3959 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
3960 allowed = BTRFS_BLOCK_GROUP_RAID10;
3961 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
3962 allowed = BTRFS_BLOCK_GROUP_RAID1;
3963 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
3964 allowed = BTRFS_BLOCK_GROUP_RAID0;
3965
3966 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
3967
3968 return extended_to_chunk(flags | allowed);
3969 }
3970
get_alloc_profile(struct btrfs_root * root,u64 orig_flags)3971 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3972 {
3973 unsigned seq;
3974 u64 flags;
3975
3976 do {
3977 flags = orig_flags;
3978 seq = read_seqbegin(&root->fs_info->profiles_lock);
3979
3980 if (flags & BTRFS_BLOCK_GROUP_DATA)
3981 flags |= root->fs_info->avail_data_alloc_bits;
3982 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3983 flags |= root->fs_info->avail_system_alloc_bits;
3984 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3985 flags |= root->fs_info->avail_metadata_alloc_bits;
3986 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3987
3988 return btrfs_reduce_alloc_profile(root, flags);
3989 }
3990
btrfs_get_alloc_profile(struct btrfs_root * root,int data)3991 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3992 {
3993 u64 flags;
3994 u64 ret;
3995
3996 if (data)
3997 flags = BTRFS_BLOCK_GROUP_DATA;
3998 else if (root == root->fs_info->chunk_root)
3999 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4000 else
4001 flags = BTRFS_BLOCK_GROUP_METADATA;
4002
4003 ret = get_alloc_profile(root, flags);
4004 return ret;
4005 }
4006
btrfs_alloc_data_chunk_ondemand(struct inode * inode,u64 bytes)4007 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4008 {
4009 struct btrfs_space_info *data_sinfo;
4010 struct btrfs_root *root = BTRFS_I(inode)->root;
4011 struct btrfs_fs_info *fs_info = root->fs_info;
4012 u64 used;
4013 int ret = 0;
4014 int need_commit = 2;
4015 int have_pinned_space;
4016
4017 /* make sure bytes are sectorsize aligned */
4018 bytes = ALIGN(bytes, root->sectorsize);
4019
4020 if (btrfs_is_free_space_inode(inode)) {
4021 need_commit = 0;
4022 ASSERT(current->journal_info);
4023 }
4024
4025 data_sinfo = fs_info->data_sinfo;
4026 if (!data_sinfo)
4027 goto alloc;
4028
4029 again:
4030 /* make sure we have enough space to handle the data first */
4031 spin_lock(&data_sinfo->lock);
4032 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4033 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4034 data_sinfo->bytes_may_use;
4035
4036 if (used + bytes > data_sinfo->total_bytes) {
4037 struct btrfs_trans_handle *trans;
4038
4039 /*
4040 * if we don't have enough free bytes in this space then we need
4041 * to alloc a new chunk.
4042 */
4043 if (!data_sinfo->full) {
4044 u64 alloc_target;
4045
4046 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4047 spin_unlock(&data_sinfo->lock);
4048 alloc:
4049 alloc_target = btrfs_get_alloc_profile(root, 1);
4050 /*
4051 * It is ugly that we don't call nolock join
4052 * transaction for the free space inode case here.
4053 * But it is safe because we only do the data space
4054 * reservation for the free space cache in the
4055 * transaction context, the common join transaction
4056 * just increase the counter of the current transaction
4057 * handler, doesn't try to acquire the trans_lock of
4058 * the fs.
4059 */
4060 trans = btrfs_join_transaction(root);
4061 if (IS_ERR(trans))
4062 return PTR_ERR(trans);
4063
4064 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4065 alloc_target,
4066 CHUNK_ALLOC_NO_FORCE);
4067 btrfs_end_transaction(trans, root);
4068 if (ret < 0) {
4069 if (ret != -ENOSPC)
4070 return ret;
4071 else {
4072 have_pinned_space = 1;
4073 goto commit_trans;
4074 }
4075 }
4076
4077 if (!data_sinfo)
4078 data_sinfo = fs_info->data_sinfo;
4079
4080 goto again;
4081 }
4082
4083 /*
4084 * If we don't have enough pinned space to deal with this
4085 * allocation, and no removed chunk in current transaction,
4086 * don't bother committing the transaction.
4087 */
4088 have_pinned_space = percpu_counter_compare(
4089 &data_sinfo->total_bytes_pinned,
4090 used + bytes - data_sinfo->total_bytes);
4091 spin_unlock(&data_sinfo->lock);
4092
4093 /* commit the current transaction and try again */
4094 commit_trans:
4095 if (need_commit &&
4096 !atomic_read(&root->fs_info->open_ioctl_trans)) {
4097 need_commit--;
4098
4099 if (need_commit > 0) {
4100 btrfs_start_delalloc_roots(fs_info, 0, -1);
4101 btrfs_wait_ordered_roots(fs_info, -1);
4102 }
4103
4104 trans = btrfs_join_transaction(root);
4105 if (IS_ERR(trans))
4106 return PTR_ERR(trans);
4107 if (have_pinned_space >= 0 ||
4108 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4109 &trans->transaction->flags) ||
4110 need_commit > 0) {
4111 ret = btrfs_commit_transaction(trans, root);
4112 if (ret)
4113 return ret;
4114 /*
4115 * The cleaner kthread might still be doing iput
4116 * operations. Wait for it to finish so that
4117 * more space is released.
4118 */
4119 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4120 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4121 goto again;
4122 } else {
4123 btrfs_end_transaction(trans, root);
4124 }
4125 }
4126
4127 trace_btrfs_space_reservation(root->fs_info,
4128 "space_info:enospc",
4129 data_sinfo->flags, bytes, 1);
4130 return -ENOSPC;
4131 }
4132 data_sinfo->bytes_may_use += bytes;
4133 trace_btrfs_space_reservation(root->fs_info, "space_info",
4134 data_sinfo->flags, bytes, 1);
4135 spin_unlock(&data_sinfo->lock);
4136
4137 return 0;
4138 }
4139
4140 /*
4141 * New check_data_free_space() with ability for precious data reservation
4142 * Will replace old btrfs_check_data_free_space(), but for patch split,
4143 * add a new function first and then replace it.
4144 */
btrfs_check_data_free_space(struct inode * inode,u64 start,u64 len)4145 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4146 {
4147 struct btrfs_root *root = BTRFS_I(inode)->root;
4148 int ret;
4149
4150 /* align the range */
4151 len = round_up(start + len, root->sectorsize) -
4152 round_down(start, root->sectorsize);
4153 start = round_down(start, root->sectorsize);
4154
4155 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4156 if (ret < 0)
4157 return ret;
4158
4159 /*
4160 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4161 *
4162 * TODO: Find a good method to avoid reserve data space for NOCOW
4163 * range, but don't impact performance on quota disable case.
4164 */
4165 ret = btrfs_qgroup_reserve_data(inode, start, len);
4166 return ret;
4167 }
4168
4169 /*
4170 * Called if we need to clear a data reservation for this inode
4171 * Normally in a error case.
4172 *
4173 * This one will *NOT* use accurate qgroup reserved space API, just for case
4174 * which we can't sleep and is sure it won't affect qgroup reserved space.
4175 * Like clear_bit_hook().
4176 */
btrfs_free_reserved_data_space_noquota(struct inode * inode,u64 start,u64 len)4177 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4178 u64 len)
4179 {
4180 struct btrfs_root *root = BTRFS_I(inode)->root;
4181 struct btrfs_space_info *data_sinfo;
4182
4183 /* Make sure the range is aligned to sectorsize */
4184 len = round_up(start + len, root->sectorsize) -
4185 round_down(start, root->sectorsize);
4186 start = round_down(start, root->sectorsize);
4187
4188 data_sinfo = root->fs_info->data_sinfo;
4189 spin_lock(&data_sinfo->lock);
4190 if (WARN_ON(data_sinfo->bytes_may_use < len))
4191 data_sinfo->bytes_may_use = 0;
4192 else
4193 data_sinfo->bytes_may_use -= len;
4194 trace_btrfs_space_reservation(root->fs_info, "space_info",
4195 data_sinfo->flags, len, 0);
4196 spin_unlock(&data_sinfo->lock);
4197 }
4198
4199 /*
4200 * Called if we need to clear a data reservation for this inode
4201 * Normally in a error case.
4202 *
4203 * This one will handle the per-indoe data rsv map for accurate reserved
4204 * space framework.
4205 */
btrfs_free_reserved_data_space(struct inode * inode,u64 start,u64 len)4206 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4207 {
4208 btrfs_free_reserved_data_space_noquota(inode, start, len);
4209 btrfs_qgroup_free_data(inode, start, len);
4210 }
4211
force_metadata_allocation(struct btrfs_fs_info * info)4212 static void force_metadata_allocation(struct btrfs_fs_info *info)
4213 {
4214 struct list_head *head = &info->space_info;
4215 struct btrfs_space_info *found;
4216
4217 rcu_read_lock();
4218 list_for_each_entry_rcu(found, head, list) {
4219 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4220 found->force_alloc = CHUNK_ALLOC_FORCE;
4221 }
4222 rcu_read_unlock();
4223 }
4224
calc_global_rsv_need_space(struct btrfs_block_rsv * global)4225 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4226 {
4227 return (global->size << 1);
4228 }
4229
should_alloc_chunk(struct btrfs_root * root,struct btrfs_space_info * sinfo,int force)4230 static int should_alloc_chunk(struct btrfs_root *root,
4231 struct btrfs_space_info *sinfo, int force)
4232 {
4233 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4234 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4235 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4236 u64 thresh;
4237
4238 if (force == CHUNK_ALLOC_FORCE)
4239 return 1;
4240
4241 /*
4242 * We need to take into account the global rsv because for all intents
4243 * and purposes it's used space. Don't worry about locking the
4244 * global_rsv, it doesn't change except when the transaction commits.
4245 */
4246 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4247 num_allocated += calc_global_rsv_need_space(global_rsv);
4248
4249 /*
4250 * in limited mode, we want to have some free space up to
4251 * about 1% of the FS size.
4252 */
4253 if (force == CHUNK_ALLOC_LIMITED) {
4254 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4255 thresh = max_t(u64, 64 * 1024 * 1024,
4256 div_factor_fine(thresh, 1));
4257
4258 if (num_bytes - num_allocated < thresh)
4259 return 1;
4260 }
4261
4262 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4263 return 0;
4264 return 1;
4265 }
4266
get_profile_num_devs(struct btrfs_root * root,u64 type)4267 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4268 {
4269 u64 num_dev;
4270
4271 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4272 BTRFS_BLOCK_GROUP_RAID0 |
4273 BTRFS_BLOCK_GROUP_RAID5 |
4274 BTRFS_BLOCK_GROUP_RAID6))
4275 num_dev = root->fs_info->fs_devices->rw_devices;
4276 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4277 num_dev = 2;
4278 else
4279 num_dev = 1; /* DUP or single */
4280
4281 return num_dev;
4282 }
4283
4284 /*
4285 * If @is_allocation is true, reserve space in the system space info necessary
4286 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4287 * removing a chunk.
4288 */
check_system_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 type)4289 void check_system_chunk(struct btrfs_trans_handle *trans,
4290 struct btrfs_root *root,
4291 u64 type)
4292 {
4293 struct btrfs_space_info *info;
4294 u64 left;
4295 u64 thresh;
4296 int ret = 0;
4297 u64 num_devs;
4298
4299 /*
4300 * Needed because we can end up allocating a system chunk and for an
4301 * atomic and race free space reservation in the chunk block reserve.
4302 */
4303 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4304
4305 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4306 spin_lock(&info->lock);
4307 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4308 info->bytes_reserved - info->bytes_readonly -
4309 info->bytes_may_use;
4310 spin_unlock(&info->lock);
4311
4312 num_devs = get_profile_num_devs(root, type);
4313
4314 /* num_devs device items to update and 1 chunk item to add or remove */
4315 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4316 btrfs_calc_trans_metadata_size(root, 1);
4317
4318 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4319 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4320 left, thresh, type);
4321 dump_space_info(info, 0, 0);
4322 }
4323
4324 if (left < thresh) {
4325 u64 flags;
4326
4327 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4328 /*
4329 * Ignore failure to create system chunk. We might end up not
4330 * needing it, as we might not need to COW all nodes/leafs from
4331 * the paths we visit in the chunk tree (they were already COWed
4332 * or created in the current transaction for example).
4333 */
4334 ret = btrfs_alloc_chunk(trans, root, flags);
4335 }
4336
4337 if (!ret) {
4338 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4339 &root->fs_info->chunk_block_rsv,
4340 thresh, BTRFS_RESERVE_NO_FLUSH);
4341 if (!ret)
4342 trans->chunk_bytes_reserved += thresh;
4343 }
4344 }
4345
do_chunk_alloc(struct btrfs_trans_handle * trans,struct btrfs_root * extent_root,u64 flags,int force)4346 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4347 struct btrfs_root *extent_root, u64 flags, int force)
4348 {
4349 struct btrfs_space_info *space_info;
4350 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4351 int wait_for_alloc = 0;
4352 int ret = 0;
4353
4354 /* Don't re-enter if we're already allocating a chunk */
4355 if (trans->allocating_chunk)
4356 return -ENOSPC;
4357
4358 space_info = __find_space_info(extent_root->fs_info, flags);
4359 if (!space_info) {
4360 ret = update_space_info(extent_root->fs_info, flags,
4361 0, 0, &space_info);
4362 BUG_ON(ret); /* -ENOMEM */
4363 }
4364 BUG_ON(!space_info); /* Logic error */
4365
4366 again:
4367 spin_lock(&space_info->lock);
4368 if (force < space_info->force_alloc)
4369 force = space_info->force_alloc;
4370 if (space_info->full) {
4371 if (should_alloc_chunk(extent_root, space_info, force))
4372 ret = -ENOSPC;
4373 else
4374 ret = 0;
4375 spin_unlock(&space_info->lock);
4376 return ret;
4377 }
4378
4379 if (!should_alloc_chunk(extent_root, space_info, force)) {
4380 spin_unlock(&space_info->lock);
4381 return 0;
4382 } else if (space_info->chunk_alloc) {
4383 wait_for_alloc = 1;
4384 } else {
4385 space_info->chunk_alloc = 1;
4386 }
4387
4388 spin_unlock(&space_info->lock);
4389
4390 mutex_lock(&fs_info->chunk_mutex);
4391
4392 /*
4393 * The chunk_mutex is held throughout the entirety of a chunk
4394 * allocation, so once we've acquired the chunk_mutex we know that the
4395 * other guy is done and we need to recheck and see if we should
4396 * allocate.
4397 */
4398 if (wait_for_alloc) {
4399 mutex_unlock(&fs_info->chunk_mutex);
4400 wait_for_alloc = 0;
4401 cond_resched();
4402 goto again;
4403 }
4404
4405 trans->allocating_chunk = true;
4406
4407 /*
4408 * If we have mixed data/metadata chunks we want to make sure we keep
4409 * allocating mixed chunks instead of individual chunks.
4410 */
4411 if (btrfs_mixed_space_info(space_info))
4412 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4413
4414 /*
4415 * if we're doing a data chunk, go ahead and make sure that
4416 * we keep a reasonable number of metadata chunks allocated in the
4417 * FS as well.
4418 */
4419 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4420 fs_info->data_chunk_allocations++;
4421 if (!(fs_info->data_chunk_allocations %
4422 fs_info->metadata_ratio))
4423 force_metadata_allocation(fs_info);
4424 }
4425
4426 /*
4427 * Check if we have enough space in SYSTEM chunk because we may need
4428 * to update devices.
4429 */
4430 check_system_chunk(trans, extent_root, flags);
4431
4432 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4433 trans->allocating_chunk = false;
4434
4435 spin_lock(&space_info->lock);
4436 if (ret < 0 && ret != -ENOSPC)
4437 goto out;
4438 if (ret)
4439 space_info->full = 1;
4440 else
4441 ret = 1;
4442
4443 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4444 out:
4445 space_info->chunk_alloc = 0;
4446 spin_unlock(&space_info->lock);
4447 mutex_unlock(&fs_info->chunk_mutex);
4448 /*
4449 * When we allocate a new chunk we reserve space in the chunk block
4450 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4451 * add new nodes/leafs to it if we end up needing to do it when
4452 * inserting the chunk item and updating device items as part of the
4453 * second phase of chunk allocation, performed by
4454 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4455 * large number of new block groups to create in our transaction
4456 * handle's new_bgs list to avoid exhausting the chunk block reserve
4457 * in extreme cases - like having a single transaction create many new
4458 * block groups when starting to write out the free space caches of all
4459 * the block groups that were made dirty during the lifetime of the
4460 * transaction.
4461 */
4462 if (trans->can_flush_pending_bgs &&
4463 trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
4464 btrfs_create_pending_block_groups(trans, trans->root);
4465 btrfs_trans_release_chunk_metadata(trans);
4466 }
4467 return ret;
4468 }
4469
can_overcommit(struct btrfs_root * root,struct btrfs_space_info * space_info,u64 bytes,enum btrfs_reserve_flush_enum flush)4470 static int can_overcommit(struct btrfs_root *root,
4471 struct btrfs_space_info *space_info, u64 bytes,
4472 enum btrfs_reserve_flush_enum flush)
4473 {
4474 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4475 u64 profile = btrfs_get_alloc_profile(root, 0);
4476 u64 space_size;
4477 u64 avail;
4478 u64 used;
4479
4480 used = space_info->bytes_used + space_info->bytes_reserved +
4481 space_info->bytes_pinned + space_info->bytes_readonly;
4482
4483 /*
4484 * We only want to allow over committing if we have lots of actual space
4485 * free, but if we don't have enough space to handle the global reserve
4486 * space then we could end up having a real enospc problem when trying
4487 * to allocate a chunk or some other such important allocation.
4488 */
4489 spin_lock(&global_rsv->lock);
4490 space_size = calc_global_rsv_need_space(global_rsv);
4491 spin_unlock(&global_rsv->lock);
4492 if (used + space_size >= space_info->total_bytes)
4493 return 0;
4494
4495 used += space_info->bytes_may_use;
4496
4497 spin_lock(&root->fs_info->free_chunk_lock);
4498 avail = root->fs_info->free_chunk_space;
4499 spin_unlock(&root->fs_info->free_chunk_lock);
4500
4501 /*
4502 * If we have dup, raid1 or raid10 then only half of the free
4503 * space is actually useable. For raid56, the space info used
4504 * doesn't include the parity drive, so we don't have to
4505 * change the math
4506 */
4507 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4508 BTRFS_BLOCK_GROUP_RAID1 |
4509 BTRFS_BLOCK_GROUP_RAID10))
4510 avail >>= 1;
4511
4512 /*
4513 * If we aren't flushing all things, let us overcommit up to
4514 * 1/2th of the space. If we can flush, don't let us overcommit
4515 * too much, let it overcommit up to 1/8 of the space.
4516 */
4517 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4518 avail >>= 3;
4519 else
4520 avail >>= 1;
4521
4522 if (used + bytes < space_info->total_bytes + avail)
4523 return 1;
4524 return 0;
4525 }
4526
btrfs_writeback_inodes_sb_nr(struct btrfs_root * root,unsigned long nr_pages,int nr_items)4527 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4528 unsigned long nr_pages, int nr_items)
4529 {
4530 struct super_block *sb = root->fs_info->sb;
4531
4532 if (down_read_trylock(&sb->s_umount)) {
4533 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4534 up_read(&sb->s_umount);
4535 } else {
4536 /*
4537 * We needn't worry the filesystem going from r/w to r/o though
4538 * we don't acquire ->s_umount mutex, because the filesystem
4539 * should guarantee the delalloc inodes list be empty after
4540 * the filesystem is readonly(all dirty pages are written to
4541 * the disk).
4542 */
4543 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4544 if (!current->journal_info)
4545 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4546 }
4547 }
4548
calc_reclaim_items_nr(struct btrfs_root * root,u64 to_reclaim)4549 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4550 {
4551 u64 bytes;
4552 int nr;
4553
4554 bytes = btrfs_calc_trans_metadata_size(root, 1);
4555 nr = (int)div64_u64(to_reclaim, bytes);
4556 if (!nr)
4557 nr = 1;
4558 return nr;
4559 }
4560
4561 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4562
4563 /*
4564 * shrink metadata reservation for delalloc
4565 */
shrink_delalloc(struct btrfs_root * root,u64 to_reclaim,u64 orig,bool wait_ordered)4566 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4567 bool wait_ordered)
4568 {
4569 struct btrfs_block_rsv *block_rsv;
4570 struct btrfs_space_info *space_info;
4571 struct btrfs_trans_handle *trans;
4572 u64 delalloc_bytes;
4573 u64 max_reclaim;
4574 long time_left;
4575 unsigned long nr_pages;
4576 int loops;
4577 int items;
4578 enum btrfs_reserve_flush_enum flush;
4579
4580 /* Calc the number of the pages we need flush for space reservation */
4581 items = calc_reclaim_items_nr(root, to_reclaim);
4582 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4583
4584 trans = (struct btrfs_trans_handle *)current->journal_info;
4585 block_rsv = &root->fs_info->delalloc_block_rsv;
4586 space_info = block_rsv->space_info;
4587
4588 delalloc_bytes = percpu_counter_sum_positive(
4589 &root->fs_info->delalloc_bytes);
4590 if (delalloc_bytes == 0) {
4591 if (trans)
4592 return;
4593 if (wait_ordered)
4594 btrfs_wait_ordered_roots(root->fs_info, items);
4595 return;
4596 }
4597
4598 loops = 0;
4599 while (delalloc_bytes && loops < 3) {
4600 max_reclaim = min(delalloc_bytes, to_reclaim);
4601 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4602 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4603 /*
4604 * We need to wait for the async pages to actually start before
4605 * we do anything.
4606 */
4607 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4608 if (!max_reclaim)
4609 goto skip_async;
4610
4611 if (max_reclaim <= nr_pages)
4612 max_reclaim = 0;
4613 else
4614 max_reclaim -= nr_pages;
4615
4616 wait_event(root->fs_info->async_submit_wait,
4617 atomic_read(&root->fs_info->async_delalloc_pages) <=
4618 (int)max_reclaim);
4619 skip_async:
4620 if (!trans)
4621 flush = BTRFS_RESERVE_FLUSH_ALL;
4622 else
4623 flush = BTRFS_RESERVE_NO_FLUSH;
4624 spin_lock(&space_info->lock);
4625 if (can_overcommit(root, space_info, orig, flush)) {
4626 spin_unlock(&space_info->lock);
4627 break;
4628 }
4629 spin_unlock(&space_info->lock);
4630
4631 loops++;
4632 if (wait_ordered && !trans) {
4633 btrfs_wait_ordered_roots(root->fs_info, items);
4634 } else {
4635 time_left = schedule_timeout_killable(1);
4636 if (time_left)
4637 break;
4638 }
4639 delalloc_bytes = percpu_counter_sum_positive(
4640 &root->fs_info->delalloc_bytes);
4641 }
4642 }
4643
4644 /**
4645 * maybe_commit_transaction - possibly commit the transaction if its ok to
4646 * @root - the root we're allocating for
4647 * @bytes - the number of bytes we want to reserve
4648 * @force - force the commit
4649 *
4650 * This will check to make sure that committing the transaction will actually
4651 * get us somewhere and then commit the transaction if it does. Otherwise it
4652 * will return -ENOSPC.
4653 */
may_commit_transaction(struct btrfs_root * root,struct btrfs_space_info * space_info,u64 bytes,int force)4654 static int may_commit_transaction(struct btrfs_root *root,
4655 struct btrfs_space_info *space_info,
4656 u64 bytes, int force)
4657 {
4658 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4659 struct btrfs_trans_handle *trans;
4660
4661 trans = (struct btrfs_trans_handle *)current->journal_info;
4662 if (trans)
4663 return -EAGAIN;
4664
4665 if (force)
4666 goto commit;
4667
4668 /* See if there is enough pinned space to make this reservation */
4669 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4670 bytes) >= 0)
4671 goto commit;
4672
4673 /*
4674 * See if there is some space in the delayed insertion reservation for
4675 * this reservation.
4676 */
4677 if (space_info != delayed_rsv->space_info)
4678 return -ENOSPC;
4679
4680 spin_lock(&delayed_rsv->lock);
4681 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4682 bytes - delayed_rsv->size) >= 0) {
4683 spin_unlock(&delayed_rsv->lock);
4684 return -ENOSPC;
4685 }
4686 spin_unlock(&delayed_rsv->lock);
4687
4688 commit:
4689 trans = btrfs_join_transaction(root);
4690 if (IS_ERR(trans))
4691 return -ENOSPC;
4692
4693 return btrfs_commit_transaction(trans, root);
4694 }
4695
4696 enum flush_state {
4697 FLUSH_DELAYED_ITEMS_NR = 1,
4698 FLUSH_DELAYED_ITEMS = 2,
4699 FLUSH_DELALLOC = 3,
4700 FLUSH_DELALLOC_WAIT = 4,
4701 ALLOC_CHUNK = 5,
4702 COMMIT_TRANS = 6,
4703 };
4704
flush_space(struct btrfs_root * root,struct btrfs_space_info * space_info,u64 num_bytes,u64 orig_bytes,int state)4705 static int flush_space(struct btrfs_root *root,
4706 struct btrfs_space_info *space_info, u64 num_bytes,
4707 u64 orig_bytes, int state)
4708 {
4709 struct btrfs_trans_handle *trans;
4710 int nr;
4711 int ret = 0;
4712
4713 switch (state) {
4714 case FLUSH_DELAYED_ITEMS_NR:
4715 case FLUSH_DELAYED_ITEMS:
4716 if (state == FLUSH_DELAYED_ITEMS_NR)
4717 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4718 else
4719 nr = -1;
4720
4721 trans = btrfs_join_transaction(root);
4722 if (IS_ERR(trans)) {
4723 ret = PTR_ERR(trans);
4724 break;
4725 }
4726 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4727 btrfs_end_transaction(trans, root);
4728 break;
4729 case FLUSH_DELALLOC:
4730 case FLUSH_DELALLOC_WAIT:
4731 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4732 state == FLUSH_DELALLOC_WAIT);
4733 break;
4734 case ALLOC_CHUNK:
4735 trans = btrfs_join_transaction(root);
4736 if (IS_ERR(trans)) {
4737 ret = PTR_ERR(trans);
4738 break;
4739 }
4740 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4741 btrfs_get_alloc_profile(root, 0),
4742 CHUNK_ALLOC_NO_FORCE);
4743 btrfs_end_transaction(trans, root);
4744 if (ret == -ENOSPC)
4745 ret = 0;
4746 break;
4747 case COMMIT_TRANS:
4748 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4749 break;
4750 default:
4751 ret = -ENOSPC;
4752 break;
4753 }
4754
4755 return ret;
4756 }
4757
4758 static inline u64
btrfs_calc_reclaim_metadata_size(struct btrfs_root * root,struct btrfs_space_info * space_info)4759 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4760 struct btrfs_space_info *space_info)
4761 {
4762 u64 used;
4763 u64 expected;
4764 u64 to_reclaim;
4765
4766 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4767 16 * 1024 * 1024);
4768 spin_lock(&space_info->lock);
4769 if (can_overcommit(root, space_info, to_reclaim,
4770 BTRFS_RESERVE_FLUSH_ALL)) {
4771 to_reclaim = 0;
4772 goto out;
4773 }
4774
4775 used = space_info->bytes_used + space_info->bytes_reserved +
4776 space_info->bytes_pinned + space_info->bytes_readonly +
4777 space_info->bytes_may_use;
4778 if (can_overcommit(root, space_info, 1024 * 1024,
4779 BTRFS_RESERVE_FLUSH_ALL))
4780 expected = div_factor_fine(space_info->total_bytes, 95);
4781 else
4782 expected = div_factor_fine(space_info->total_bytes, 90);
4783
4784 if (used > expected)
4785 to_reclaim = used - expected;
4786 else
4787 to_reclaim = 0;
4788 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4789 space_info->bytes_reserved);
4790 out:
4791 spin_unlock(&space_info->lock);
4792
4793 return to_reclaim;
4794 }
4795
need_do_async_reclaim(struct btrfs_space_info * space_info,struct btrfs_fs_info * fs_info,u64 used)4796 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4797 struct btrfs_fs_info *fs_info, u64 used)
4798 {
4799 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4800
4801 /* If we're just plain full then async reclaim just slows us down. */
4802 if (space_info->bytes_used >= thresh)
4803 return 0;
4804
4805 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4806 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4807 }
4808
btrfs_need_do_async_reclaim(struct btrfs_space_info * space_info,struct btrfs_fs_info * fs_info,int flush_state)4809 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4810 struct btrfs_fs_info *fs_info,
4811 int flush_state)
4812 {
4813 u64 used;
4814
4815 spin_lock(&space_info->lock);
4816 /*
4817 * We run out of space and have not got any free space via flush_space,
4818 * so don't bother doing async reclaim.
4819 */
4820 if (flush_state > COMMIT_TRANS && space_info->full) {
4821 spin_unlock(&space_info->lock);
4822 return 0;
4823 }
4824
4825 used = space_info->bytes_used + space_info->bytes_reserved +
4826 space_info->bytes_pinned + space_info->bytes_readonly +
4827 space_info->bytes_may_use;
4828 if (need_do_async_reclaim(space_info, fs_info, used)) {
4829 spin_unlock(&space_info->lock);
4830 return 1;
4831 }
4832 spin_unlock(&space_info->lock);
4833
4834 return 0;
4835 }
4836
btrfs_async_reclaim_metadata_space(struct work_struct * work)4837 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4838 {
4839 struct btrfs_fs_info *fs_info;
4840 struct btrfs_space_info *space_info;
4841 u64 to_reclaim;
4842 int flush_state;
4843
4844 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4845 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4846
4847 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4848 space_info);
4849 if (!to_reclaim)
4850 return;
4851
4852 flush_state = FLUSH_DELAYED_ITEMS_NR;
4853 do {
4854 flush_space(fs_info->fs_root, space_info, to_reclaim,
4855 to_reclaim, flush_state);
4856 flush_state++;
4857 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4858 flush_state))
4859 return;
4860 } while (flush_state < COMMIT_TRANS);
4861 }
4862
btrfs_init_async_reclaim_work(struct work_struct * work)4863 void btrfs_init_async_reclaim_work(struct work_struct *work)
4864 {
4865 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4866 }
4867
4868 /**
4869 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4870 * @root - the root we're allocating for
4871 * @block_rsv - the block_rsv we're allocating for
4872 * @orig_bytes - the number of bytes we want
4873 * @flush - whether or not we can flush to make our reservation
4874 *
4875 * This will reserve orgi_bytes number of bytes from the space info associated
4876 * with the block_rsv. If there is not enough space it will make an attempt to
4877 * flush out space to make room. It will do this by flushing delalloc if
4878 * possible or committing the transaction. If flush is 0 then no attempts to
4879 * regain reservations will be made and this will fail if there is not enough
4880 * space already.
4881 */
reserve_metadata_bytes(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)4882 static int reserve_metadata_bytes(struct btrfs_root *root,
4883 struct btrfs_block_rsv *block_rsv,
4884 u64 orig_bytes,
4885 enum btrfs_reserve_flush_enum flush)
4886 {
4887 struct btrfs_space_info *space_info = block_rsv->space_info;
4888 u64 used;
4889 u64 num_bytes = orig_bytes;
4890 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4891 int ret = 0;
4892 bool flushing = false;
4893
4894 again:
4895 ret = 0;
4896 spin_lock(&space_info->lock);
4897 /*
4898 * We only want to wait if somebody other than us is flushing and we
4899 * are actually allowed to flush all things.
4900 */
4901 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4902 space_info->flush) {
4903 spin_unlock(&space_info->lock);
4904 /*
4905 * If we have a trans handle we can't wait because the flusher
4906 * may have to commit the transaction, which would mean we would
4907 * deadlock since we are waiting for the flusher to finish, but
4908 * hold the current transaction open.
4909 */
4910 if (current->journal_info)
4911 return -EAGAIN;
4912 ret = wait_event_killable(space_info->wait, !space_info->flush);
4913 /* Must have been killed, return */
4914 if (ret)
4915 return -EINTR;
4916
4917 spin_lock(&space_info->lock);
4918 }
4919
4920 ret = -ENOSPC;
4921 used = space_info->bytes_used + space_info->bytes_reserved +
4922 space_info->bytes_pinned + space_info->bytes_readonly +
4923 space_info->bytes_may_use;
4924
4925 /*
4926 * The idea here is that we've not already over-reserved the block group
4927 * then we can go ahead and save our reservation first and then start
4928 * flushing if we need to. Otherwise if we've already overcommitted
4929 * lets start flushing stuff first and then come back and try to make
4930 * our reservation.
4931 */
4932 if (used <= space_info->total_bytes) {
4933 if (used + orig_bytes <= space_info->total_bytes) {
4934 space_info->bytes_may_use += orig_bytes;
4935 trace_btrfs_space_reservation(root->fs_info,
4936 "space_info", space_info->flags, orig_bytes, 1);
4937 ret = 0;
4938 } else {
4939 /*
4940 * Ok set num_bytes to orig_bytes since we aren't
4941 * overocmmitted, this way we only try and reclaim what
4942 * we need.
4943 */
4944 num_bytes = orig_bytes;
4945 }
4946 } else {
4947 /*
4948 * Ok we're over committed, set num_bytes to the overcommitted
4949 * amount plus the amount of bytes that we need for this
4950 * reservation.
4951 */
4952 num_bytes = used - space_info->total_bytes +
4953 (orig_bytes * 2);
4954 }
4955
4956 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4957 space_info->bytes_may_use += orig_bytes;
4958 trace_btrfs_space_reservation(root->fs_info, "space_info",
4959 space_info->flags, orig_bytes,
4960 1);
4961 ret = 0;
4962 }
4963
4964 /*
4965 * Couldn't make our reservation, save our place so while we're trying
4966 * to reclaim space we can actually use it instead of somebody else
4967 * stealing it from us.
4968 *
4969 * We make the other tasks wait for the flush only when we can flush
4970 * all things.
4971 */
4972 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4973 flushing = true;
4974 space_info->flush = 1;
4975 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4976 used += orig_bytes;
4977 /*
4978 * We will do the space reservation dance during log replay,
4979 * which means we won't have fs_info->fs_root set, so don't do
4980 * the async reclaim as we will panic.
4981 */
4982 if (!root->fs_info->log_root_recovering &&
4983 need_do_async_reclaim(space_info, root->fs_info, used) &&
4984 !work_busy(&root->fs_info->async_reclaim_work))
4985 queue_work(system_unbound_wq,
4986 &root->fs_info->async_reclaim_work);
4987 }
4988 spin_unlock(&space_info->lock);
4989
4990 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4991 goto out;
4992
4993 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4994 flush_state);
4995 flush_state++;
4996
4997 /*
4998 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4999 * would happen. So skip delalloc flush.
5000 */
5001 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5002 (flush_state == FLUSH_DELALLOC ||
5003 flush_state == FLUSH_DELALLOC_WAIT))
5004 flush_state = ALLOC_CHUNK;
5005
5006 if (!ret)
5007 goto again;
5008 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5009 flush_state < COMMIT_TRANS)
5010 goto again;
5011 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
5012 flush_state <= COMMIT_TRANS)
5013 goto again;
5014
5015 out:
5016 if (ret == -ENOSPC &&
5017 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5018 struct btrfs_block_rsv *global_rsv =
5019 &root->fs_info->global_block_rsv;
5020
5021 if (block_rsv != global_rsv &&
5022 !block_rsv_use_bytes(global_rsv, orig_bytes))
5023 ret = 0;
5024 }
5025 if (ret == -ENOSPC)
5026 trace_btrfs_space_reservation(root->fs_info,
5027 "space_info:enospc",
5028 space_info->flags, orig_bytes, 1);
5029 if (flushing) {
5030 spin_lock(&space_info->lock);
5031 space_info->flush = 0;
5032 wake_up_all(&space_info->wait);
5033 spin_unlock(&space_info->lock);
5034 }
5035 return ret;
5036 }
5037
get_block_rsv(const struct btrfs_trans_handle * trans,const struct btrfs_root * root)5038 static struct btrfs_block_rsv *get_block_rsv(
5039 const struct btrfs_trans_handle *trans,
5040 const struct btrfs_root *root)
5041 {
5042 struct btrfs_block_rsv *block_rsv = NULL;
5043
5044 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5045 (root == root->fs_info->csum_root && trans->adding_csums) ||
5046 (root == root->fs_info->uuid_root))
5047 block_rsv = trans->block_rsv;
5048
5049 if (!block_rsv)
5050 block_rsv = root->block_rsv;
5051
5052 if (!block_rsv)
5053 block_rsv = &root->fs_info->empty_block_rsv;
5054
5055 return block_rsv;
5056 }
5057
block_rsv_use_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes)5058 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5059 u64 num_bytes)
5060 {
5061 int ret = -ENOSPC;
5062 spin_lock(&block_rsv->lock);
5063 if (block_rsv->reserved >= num_bytes) {
5064 block_rsv->reserved -= num_bytes;
5065 if (block_rsv->reserved < block_rsv->size)
5066 block_rsv->full = 0;
5067 ret = 0;
5068 }
5069 spin_unlock(&block_rsv->lock);
5070 return ret;
5071 }
5072
block_rsv_add_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes,int update_size)5073 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5074 u64 num_bytes, int update_size)
5075 {
5076 spin_lock(&block_rsv->lock);
5077 block_rsv->reserved += num_bytes;
5078 if (update_size)
5079 block_rsv->size += num_bytes;
5080 else if (block_rsv->reserved >= block_rsv->size)
5081 block_rsv->full = 1;
5082 spin_unlock(&block_rsv->lock);
5083 }
5084
btrfs_cond_migrate_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * dest,u64 num_bytes,int min_factor)5085 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5086 struct btrfs_block_rsv *dest, u64 num_bytes,
5087 int min_factor)
5088 {
5089 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5090 u64 min_bytes;
5091
5092 if (global_rsv->space_info != dest->space_info)
5093 return -ENOSPC;
5094
5095 spin_lock(&global_rsv->lock);
5096 min_bytes = div_factor(global_rsv->size, min_factor);
5097 if (global_rsv->reserved < min_bytes + num_bytes) {
5098 spin_unlock(&global_rsv->lock);
5099 return -ENOSPC;
5100 }
5101 global_rsv->reserved -= num_bytes;
5102 if (global_rsv->reserved < global_rsv->size)
5103 global_rsv->full = 0;
5104 spin_unlock(&global_rsv->lock);
5105
5106 block_rsv_add_bytes(dest, num_bytes, 1);
5107 return 0;
5108 }
5109
block_rsv_release_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,struct btrfs_block_rsv * dest,u64 num_bytes)5110 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5111 struct btrfs_block_rsv *block_rsv,
5112 struct btrfs_block_rsv *dest, u64 num_bytes)
5113 {
5114 struct btrfs_space_info *space_info = block_rsv->space_info;
5115
5116 spin_lock(&block_rsv->lock);
5117 if (num_bytes == (u64)-1)
5118 num_bytes = block_rsv->size;
5119 block_rsv->size -= num_bytes;
5120 if (block_rsv->reserved >= block_rsv->size) {
5121 num_bytes = block_rsv->reserved - block_rsv->size;
5122 block_rsv->reserved = block_rsv->size;
5123 block_rsv->full = 1;
5124 } else {
5125 num_bytes = 0;
5126 }
5127 spin_unlock(&block_rsv->lock);
5128
5129 if (num_bytes > 0) {
5130 if (dest) {
5131 spin_lock(&dest->lock);
5132 if (!dest->full) {
5133 u64 bytes_to_add;
5134
5135 bytes_to_add = dest->size - dest->reserved;
5136 bytes_to_add = min(num_bytes, bytes_to_add);
5137 dest->reserved += bytes_to_add;
5138 if (dest->reserved >= dest->size)
5139 dest->full = 1;
5140 num_bytes -= bytes_to_add;
5141 }
5142 spin_unlock(&dest->lock);
5143 }
5144 if (num_bytes) {
5145 spin_lock(&space_info->lock);
5146 space_info->bytes_may_use -= num_bytes;
5147 trace_btrfs_space_reservation(fs_info, "space_info",
5148 space_info->flags, num_bytes, 0);
5149 spin_unlock(&space_info->lock);
5150 }
5151 }
5152 }
5153
block_rsv_migrate_bytes(struct btrfs_block_rsv * src,struct btrfs_block_rsv * dst,u64 num_bytes)5154 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5155 struct btrfs_block_rsv *dst, u64 num_bytes)
5156 {
5157 int ret;
5158
5159 ret = block_rsv_use_bytes(src, num_bytes);
5160 if (ret)
5161 return ret;
5162
5163 block_rsv_add_bytes(dst, num_bytes, 1);
5164 return 0;
5165 }
5166
btrfs_init_block_rsv(struct btrfs_block_rsv * rsv,unsigned short type)5167 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5168 {
5169 memset(rsv, 0, sizeof(*rsv));
5170 spin_lock_init(&rsv->lock);
5171 rsv->type = type;
5172 }
5173
btrfs_alloc_block_rsv(struct btrfs_root * root,unsigned short type)5174 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5175 unsigned short type)
5176 {
5177 struct btrfs_block_rsv *block_rsv;
5178 struct btrfs_fs_info *fs_info = root->fs_info;
5179
5180 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5181 if (!block_rsv)
5182 return NULL;
5183
5184 btrfs_init_block_rsv(block_rsv, type);
5185 block_rsv->space_info = __find_space_info(fs_info,
5186 BTRFS_BLOCK_GROUP_METADATA);
5187 return block_rsv;
5188 }
5189
btrfs_free_block_rsv(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5190 void btrfs_free_block_rsv(struct btrfs_root *root,
5191 struct btrfs_block_rsv *rsv)
5192 {
5193 if (!rsv)
5194 return;
5195 btrfs_block_rsv_release(root, rsv, (u64)-1);
5196 kfree(rsv);
5197 }
5198
__btrfs_free_block_rsv(struct btrfs_block_rsv * rsv)5199 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5200 {
5201 kfree(rsv);
5202 }
5203
btrfs_block_rsv_add(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 num_bytes,enum btrfs_reserve_flush_enum flush)5204 int btrfs_block_rsv_add(struct btrfs_root *root,
5205 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5206 enum btrfs_reserve_flush_enum flush)
5207 {
5208 int ret;
5209
5210 if (num_bytes == 0)
5211 return 0;
5212
5213 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5214 if (!ret) {
5215 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5216 return 0;
5217 }
5218
5219 return ret;
5220 }
5221
btrfs_block_rsv_check(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,int min_factor)5222 int btrfs_block_rsv_check(struct btrfs_root *root,
5223 struct btrfs_block_rsv *block_rsv, int min_factor)
5224 {
5225 u64 num_bytes = 0;
5226 int ret = -ENOSPC;
5227
5228 if (!block_rsv)
5229 return 0;
5230
5231 spin_lock(&block_rsv->lock);
5232 num_bytes = div_factor(block_rsv->size, min_factor);
5233 if (block_rsv->reserved >= num_bytes)
5234 ret = 0;
5235 spin_unlock(&block_rsv->lock);
5236
5237 return ret;
5238 }
5239
btrfs_block_rsv_refill(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 min_reserved,enum btrfs_reserve_flush_enum flush)5240 int btrfs_block_rsv_refill(struct btrfs_root *root,
5241 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5242 enum btrfs_reserve_flush_enum flush)
5243 {
5244 u64 num_bytes = 0;
5245 int ret = -ENOSPC;
5246
5247 if (!block_rsv)
5248 return 0;
5249
5250 spin_lock(&block_rsv->lock);
5251 num_bytes = min_reserved;
5252 if (block_rsv->reserved >= num_bytes)
5253 ret = 0;
5254 else
5255 num_bytes -= block_rsv->reserved;
5256 spin_unlock(&block_rsv->lock);
5257
5258 if (!ret)
5259 return 0;
5260
5261 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5262 if (!ret) {
5263 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5264 return 0;
5265 }
5266
5267 return ret;
5268 }
5269
btrfs_block_rsv_migrate(struct btrfs_block_rsv * src_rsv,struct btrfs_block_rsv * dst_rsv,u64 num_bytes)5270 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5271 struct btrfs_block_rsv *dst_rsv,
5272 u64 num_bytes)
5273 {
5274 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5275 }
5276
btrfs_block_rsv_release(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 num_bytes)5277 void btrfs_block_rsv_release(struct btrfs_root *root,
5278 struct btrfs_block_rsv *block_rsv,
5279 u64 num_bytes)
5280 {
5281 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5282 if (global_rsv == block_rsv ||
5283 block_rsv->space_info != global_rsv->space_info)
5284 global_rsv = NULL;
5285 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5286 num_bytes);
5287 }
5288
5289 /*
5290 * helper to calculate size of global block reservation.
5291 * the desired value is sum of space used by extent tree,
5292 * checksum tree and root tree
5293 */
calc_global_metadata_size(struct btrfs_fs_info * fs_info)5294 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5295 {
5296 struct btrfs_space_info *sinfo;
5297 u64 num_bytes;
5298 u64 meta_used;
5299 u64 data_used;
5300 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5301
5302 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5303 spin_lock(&sinfo->lock);
5304 data_used = sinfo->bytes_used;
5305 spin_unlock(&sinfo->lock);
5306
5307 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5308 spin_lock(&sinfo->lock);
5309 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5310 data_used = 0;
5311 meta_used = sinfo->bytes_used;
5312 spin_unlock(&sinfo->lock);
5313
5314 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5315 csum_size * 2;
5316 num_bytes += div_u64(data_used + meta_used, 50);
5317
5318 if (num_bytes * 3 > meta_used)
5319 num_bytes = div_u64(meta_used, 3);
5320
5321 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5322 }
5323
update_global_block_rsv(struct btrfs_fs_info * fs_info)5324 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5325 {
5326 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5327 struct btrfs_space_info *sinfo = block_rsv->space_info;
5328 u64 num_bytes;
5329
5330 num_bytes = calc_global_metadata_size(fs_info);
5331
5332 spin_lock(&sinfo->lock);
5333 spin_lock(&block_rsv->lock);
5334
5335 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5336
5337 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5338 sinfo->bytes_reserved + sinfo->bytes_readonly +
5339 sinfo->bytes_may_use;
5340
5341 if (sinfo->total_bytes > num_bytes) {
5342 num_bytes = sinfo->total_bytes - num_bytes;
5343 block_rsv->reserved += num_bytes;
5344 sinfo->bytes_may_use += num_bytes;
5345 trace_btrfs_space_reservation(fs_info, "space_info",
5346 sinfo->flags, num_bytes, 1);
5347 }
5348
5349 if (block_rsv->reserved >= block_rsv->size) {
5350 num_bytes = block_rsv->reserved - block_rsv->size;
5351 sinfo->bytes_may_use -= num_bytes;
5352 trace_btrfs_space_reservation(fs_info, "space_info",
5353 sinfo->flags, num_bytes, 0);
5354 block_rsv->reserved = block_rsv->size;
5355 block_rsv->full = 1;
5356 }
5357
5358 spin_unlock(&block_rsv->lock);
5359 spin_unlock(&sinfo->lock);
5360 }
5361
init_global_block_rsv(struct btrfs_fs_info * fs_info)5362 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5363 {
5364 struct btrfs_space_info *space_info;
5365
5366 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5367 fs_info->chunk_block_rsv.space_info = space_info;
5368
5369 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5370 fs_info->global_block_rsv.space_info = space_info;
5371 fs_info->delalloc_block_rsv.space_info = space_info;
5372 fs_info->trans_block_rsv.space_info = space_info;
5373 fs_info->empty_block_rsv.space_info = space_info;
5374 fs_info->delayed_block_rsv.space_info = space_info;
5375
5376 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5377 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5378 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5379 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5380 if (fs_info->quota_root)
5381 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5382 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5383
5384 update_global_block_rsv(fs_info);
5385 }
5386
release_global_block_rsv(struct btrfs_fs_info * fs_info)5387 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5388 {
5389 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5390 (u64)-1);
5391 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5392 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5393 WARN_ON(fs_info->trans_block_rsv.size > 0);
5394 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5395 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5396 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5397 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5398 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5399 }
5400
btrfs_trans_release_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root)5401 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5402 struct btrfs_root *root)
5403 {
5404 if (!trans->block_rsv)
5405 return;
5406
5407 if (!trans->bytes_reserved)
5408 return;
5409
5410 trace_btrfs_space_reservation(root->fs_info, "transaction",
5411 trans->transid, trans->bytes_reserved, 0);
5412 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5413 trans->bytes_reserved = 0;
5414 }
5415
5416 /*
5417 * To be called after all the new block groups attached to the transaction
5418 * handle have been created (btrfs_create_pending_block_groups()).
5419 */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)5420 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5421 {
5422 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5423
5424 if (!trans->chunk_bytes_reserved)
5425 return;
5426
5427 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5428
5429 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5430 trans->chunk_bytes_reserved);
5431 trans->chunk_bytes_reserved = 0;
5432 }
5433
5434 /* Can only return 0 or -ENOSPC */
btrfs_orphan_reserve_metadata(struct btrfs_trans_handle * trans,struct inode * inode)5435 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5436 struct inode *inode)
5437 {
5438 struct btrfs_root *root = BTRFS_I(inode)->root;
5439 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5440 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5441
5442 /*
5443 * We need to hold space in order to delete our orphan item once we've
5444 * added it, so this takes the reservation so we can release it later
5445 * when we are truly done with the orphan item.
5446 */
5447 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5448 trace_btrfs_space_reservation(root->fs_info, "orphan",
5449 btrfs_ino(inode), num_bytes, 1);
5450 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5451 }
5452
btrfs_orphan_release_metadata(struct inode * inode)5453 void btrfs_orphan_release_metadata(struct inode *inode)
5454 {
5455 struct btrfs_root *root = BTRFS_I(inode)->root;
5456 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5457 trace_btrfs_space_reservation(root->fs_info, "orphan",
5458 btrfs_ino(inode), num_bytes, 0);
5459 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5460 }
5461
5462 /*
5463 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5464 * root: the root of the parent directory
5465 * rsv: block reservation
5466 * items: the number of items that we need do reservation
5467 * qgroup_reserved: used to return the reserved size in qgroup
5468 *
5469 * This function is used to reserve the space for snapshot/subvolume
5470 * creation and deletion. Those operations are different with the
5471 * common file/directory operations, they change two fs/file trees
5472 * and root tree, the number of items that the qgroup reserves is
5473 * different with the free space reservation. So we can not use
5474 * the space reseravtion mechanism in start_transaction().
5475 */
btrfs_subvolume_reserve_metadata(struct btrfs_root * root,struct btrfs_block_rsv * rsv,int items,u64 * qgroup_reserved,bool use_global_rsv)5476 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5477 struct btrfs_block_rsv *rsv,
5478 int items,
5479 u64 *qgroup_reserved,
5480 bool use_global_rsv)
5481 {
5482 u64 num_bytes;
5483 int ret;
5484 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5485
5486 if (root->fs_info->quota_enabled) {
5487 /* One for parent inode, two for dir entries */
5488 num_bytes = 3 * root->nodesize;
5489 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5490 if (ret)
5491 return ret;
5492 } else {
5493 num_bytes = 0;
5494 }
5495
5496 *qgroup_reserved = num_bytes;
5497
5498 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5499 rsv->space_info = __find_space_info(root->fs_info,
5500 BTRFS_BLOCK_GROUP_METADATA);
5501 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5502 BTRFS_RESERVE_FLUSH_ALL);
5503
5504 if (ret == -ENOSPC && use_global_rsv)
5505 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5506
5507 if (ret && *qgroup_reserved)
5508 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5509
5510 return ret;
5511 }
5512
btrfs_subvolume_release_metadata(struct btrfs_root * root,struct btrfs_block_rsv * rsv,u64 qgroup_reserved)5513 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5514 struct btrfs_block_rsv *rsv,
5515 u64 qgroup_reserved)
5516 {
5517 btrfs_block_rsv_release(root, rsv, (u64)-1);
5518 }
5519
5520 /**
5521 * drop_outstanding_extent - drop an outstanding extent
5522 * @inode: the inode we're dropping the extent for
5523 * @num_bytes: the number of bytes we're relaseing.
5524 *
5525 * This is called when we are freeing up an outstanding extent, either called
5526 * after an error or after an extent is written. This will return the number of
5527 * reserved extents that need to be freed. This must be called with
5528 * BTRFS_I(inode)->lock held.
5529 */
drop_outstanding_extent(struct inode * inode,u64 num_bytes)5530 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5531 {
5532 unsigned drop_inode_space = 0;
5533 unsigned dropped_extents = 0;
5534 unsigned num_extents = 0;
5535
5536 num_extents = (unsigned)div64_u64(num_bytes +
5537 BTRFS_MAX_EXTENT_SIZE - 1,
5538 BTRFS_MAX_EXTENT_SIZE);
5539 ASSERT(num_extents);
5540 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5541 BTRFS_I(inode)->outstanding_extents -= num_extents;
5542
5543 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5544 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5545 &BTRFS_I(inode)->runtime_flags))
5546 drop_inode_space = 1;
5547
5548 /*
5549 * If we have more or the same amount of outsanding extents than we have
5550 * reserved then we need to leave the reserved extents count alone.
5551 */
5552 if (BTRFS_I(inode)->outstanding_extents >=
5553 BTRFS_I(inode)->reserved_extents)
5554 return drop_inode_space;
5555
5556 dropped_extents = BTRFS_I(inode)->reserved_extents -
5557 BTRFS_I(inode)->outstanding_extents;
5558 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5559 return dropped_extents + drop_inode_space;
5560 }
5561
5562 /**
5563 * calc_csum_metadata_size - return the amount of metada space that must be
5564 * reserved/free'd for the given bytes.
5565 * @inode: the inode we're manipulating
5566 * @num_bytes: the number of bytes in question
5567 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5568 *
5569 * This adjusts the number of csum_bytes in the inode and then returns the
5570 * correct amount of metadata that must either be reserved or freed. We
5571 * calculate how many checksums we can fit into one leaf and then divide the
5572 * number of bytes that will need to be checksumed by this value to figure out
5573 * how many checksums will be required. If we are adding bytes then the number
5574 * may go up and we will return the number of additional bytes that must be
5575 * reserved. If it is going down we will return the number of bytes that must
5576 * be freed.
5577 *
5578 * This must be called with BTRFS_I(inode)->lock held.
5579 */
calc_csum_metadata_size(struct inode * inode,u64 num_bytes,int reserve)5580 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5581 int reserve)
5582 {
5583 struct btrfs_root *root = BTRFS_I(inode)->root;
5584 u64 old_csums, num_csums;
5585
5586 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5587 BTRFS_I(inode)->csum_bytes == 0)
5588 return 0;
5589
5590 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5591 if (reserve)
5592 BTRFS_I(inode)->csum_bytes += num_bytes;
5593 else
5594 BTRFS_I(inode)->csum_bytes -= num_bytes;
5595 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5596
5597 /* No change, no need to reserve more */
5598 if (old_csums == num_csums)
5599 return 0;
5600
5601 if (reserve)
5602 return btrfs_calc_trans_metadata_size(root,
5603 num_csums - old_csums);
5604
5605 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5606 }
5607
btrfs_delalloc_reserve_metadata(struct inode * inode,u64 num_bytes)5608 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5609 {
5610 struct btrfs_root *root = BTRFS_I(inode)->root;
5611 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5612 u64 to_reserve = 0;
5613 u64 csum_bytes;
5614 unsigned nr_extents = 0;
5615 int extra_reserve = 0;
5616 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5617 int ret = 0;
5618 bool delalloc_lock = true;
5619 u64 to_free = 0;
5620 unsigned dropped;
5621
5622 /* If we are a free space inode we need to not flush since we will be in
5623 * the middle of a transaction commit. We also don't need the delalloc
5624 * mutex since we won't race with anybody. We need this mostly to make
5625 * lockdep shut its filthy mouth.
5626 */
5627 if (btrfs_is_free_space_inode(inode)) {
5628 flush = BTRFS_RESERVE_NO_FLUSH;
5629 delalloc_lock = false;
5630 }
5631
5632 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5633 btrfs_transaction_in_commit(root->fs_info))
5634 schedule_timeout(1);
5635
5636 if (delalloc_lock)
5637 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5638
5639 num_bytes = ALIGN(num_bytes, root->sectorsize);
5640
5641 spin_lock(&BTRFS_I(inode)->lock);
5642 nr_extents = (unsigned)div64_u64(num_bytes +
5643 BTRFS_MAX_EXTENT_SIZE - 1,
5644 BTRFS_MAX_EXTENT_SIZE);
5645 BTRFS_I(inode)->outstanding_extents += nr_extents;
5646 nr_extents = 0;
5647
5648 if (BTRFS_I(inode)->outstanding_extents >
5649 BTRFS_I(inode)->reserved_extents)
5650 nr_extents = BTRFS_I(inode)->outstanding_extents -
5651 BTRFS_I(inode)->reserved_extents;
5652
5653 /*
5654 * Add an item to reserve for updating the inode when we complete the
5655 * delalloc io.
5656 */
5657 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5658 &BTRFS_I(inode)->runtime_flags)) {
5659 nr_extents++;
5660 extra_reserve = 1;
5661 }
5662
5663 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5664 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5665 csum_bytes = BTRFS_I(inode)->csum_bytes;
5666 spin_unlock(&BTRFS_I(inode)->lock);
5667
5668 if (root->fs_info->quota_enabled) {
5669 ret = btrfs_qgroup_reserve_meta(root,
5670 nr_extents * root->nodesize);
5671 if (ret)
5672 goto out_fail;
5673 }
5674
5675 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5676 if (unlikely(ret)) {
5677 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5678 goto out_fail;
5679 }
5680
5681 spin_lock(&BTRFS_I(inode)->lock);
5682 if (extra_reserve) {
5683 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5684 &BTRFS_I(inode)->runtime_flags);
5685 nr_extents--;
5686 }
5687 BTRFS_I(inode)->reserved_extents += nr_extents;
5688 spin_unlock(&BTRFS_I(inode)->lock);
5689
5690 if (delalloc_lock)
5691 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5692
5693 if (to_reserve)
5694 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5695 btrfs_ino(inode), to_reserve, 1);
5696 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5697
5698 return 0;
5699
5700 out_fail:
5701 spin_lock(&BTRFS_I(inode)->lock);
5702 dropped = drop_outstanding_extent(inode, num_bytes);
5703 /*
5704 * If the inodes csum_bytes is the same as the original
5705 * csum_bytes then we know we haven't raced with any free()ers
5706 * so we can just reduce our inodes csum bytes and carry on.
5707 */
5708 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5709 calc_csum_metadata_size(inode, num_bytes, 0);
5710 } else {
5711 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5712 u64 bytes;
5713
5714 /*
5715 * This is tricky, but first we need to figure out how much we
5716 * free'd from any free-ers that occured during this
5717 * reservation, so we reset ->csum_bytes to the csum_bytes
5718 * before we dropped our lock, and then call the free for the
5719 * number of bytes that were freed while we were trying our
5720 * reservation.
5721 */
5722 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5723 BTRFS_I(inode)->csum_bytes = csum_bytes;
5724 to_free = calc_csum_metadata_size(inode, bytes, 0);
5725
5726
5727 /*
5728 * Now we need to see how much we would have freed had we not
5729 * been making this reservation and our ->csum_bytes were not
5730 * artificially inflated.
5731 */
5732 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5733 bytes = csum_bytes - orig_csum_bytes;
5734 bytes = calc_csum_metadata_size(inode, bytes, 0);
5735
5736 /*
5737 * Now reset ->csum_bytes to what it should be. If bytes is
5738 * more than to_free then we would have free'd more space had we
5739 * not had an artificially high ->csum_bytes, so we need to free
5740 * the remainder. If bytes is the same or less then we don't
5741 * need to do anything, the other free-ers did the correct
5742 * thing.
5743 */
5744 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5745 if (bytes > to_free)
5746 to_free = bytes - to_free;
5747 else
5748 to_free = 0;
5749 }
5750 spin_unlock(&BTRFS_I(inode)->lock);
5751 if (dropped)
5752 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5753
5754 if (to_free) {
5755 btrfs_block_rsv_release(root, block_rsv, to_free);
5756 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5757 btrfs_ino(inode), to_free, 0);
5758 }
5759 if (delalloc_lock)
5760 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5761 return ret;
5762 }
5763
5764 /**
5765 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5766 * @inode: the inode to release the reservation for
5767 * @num_bytes: the number of bytes we're releasing
5768 *
5769 * This will release the metadata reservation for an inode. This can be called
5770 * once we complete IO for a given set of bytes to release their metadata
5771 * reservations.
5772 */
btrfs_delalloc_release_metadata(struct inode * inode,u64 num_bytes)5773 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5774 {
5775 struct btrfs_root *root = BTRFS_I(inode)->root;
5776 u64 to_free = 0;
5777 unsigned dropped;
5778
5779 num_bytes = ALIGN(num_bytes, root->sectorsize);
5780 spin_lock(&BTRFS_I(inode)->lock);
5781 dropped = drop_outstanding_extent(inode, num_bytes);
5782
5783 if (num_bytes)
5784 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5785 spin_unlock(&BTRFS_I(inode)->lock);
5786 if (dropped > 0)
5787 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5788
5789 if (btrfs_test_is_dummy_root(root))
5790 return;
5791
5792 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5793 btrfs_ino(inode), to_free, 0);
5794
5795 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5796 to_free);
5797 }
5798
5799 /**
5800 * btrfs_delalloc_reserve_space - reserve data and metadata space for
5801 * delalloc
5802 * @inode: inode we're writing to
5803 * @start: start range we are writing to
5804 * @len: how long the range we are writing to
5805 *
5806 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5807 *
5808 * This will do the following things
5809 *
5810 * o reserve space in data space info for num bytes
5811 * and reserve precious corresponding qgroup space
5812 * (Done in check_data_free_space)
5813 *
5814 * o reserve space for metadata space, based on the number of outstanding
5815 * extents and how much csums will be needed
5816 * also reserve metadata space in a per root over-reserve method.
5817 * o add to the inodes->delalloc_bytes
5818 * o add it to the fs_info's delalloc inodes list.
5819 * (Above 3 all done in delalloc_reserve_metadata)
5820 *
5821 * Return 0 for success
5822 * Return <0 for error(-ENOSPC or -EQUOT)
5823 */
btrfs_delalloc_reserve_space(struct inode * inode,u64 start,u64 len)5824 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
5825 {
5826 int ret;
5827
5828 ret = btrfs_check_data_free_space(inode, start, len);
5829 if (ret < 0)
5830 return ret;
5831 ret = btrfs_delalloc_reserve_metadata(inode, len);
5832 if (ret < 0)
5833 btrfs_free_reserved_data_space(inode, start, len);
5834 return ret;
5835 }
5836
5837 /**
5838 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5839 * @inode: inode we're releasing space for
5840 * @start: start position of the space already reserved
5841 * @len: the len of the space already reserved
5842 *
5843 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5844 * called in the case that we don't need the metadata AND data reservations
5845 * anymore. So if there is an error or we insert an inline extent.
5846 *
5847 * This function will release the metadata space that was not used and will
5848 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5849 * list if there are no delalloc bytes left.
5850 * Also it will handle the qgroup reserved space.
5851 */
btrfs_delalloc_release_space(struct inode * inode,u64 start,u64 len)5852 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
5853 {
5854 btrfs_delalloc_release_metadata(inode, len);
5855 btrfs_free_reserved_data_space(inode, start, len);
5856 }
5857
update_block_group(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,int alloc)5858 static int update_block_group(struct btrfs_trans_handle *trans,
5859 struct btrfs_root *root, u64 bytenr,
5860 u64 num_bytes, int alloc)
5861 {
5862 struct btrfs_block_group_cache *cache = NULL;
5863 struct btrfs_fs_info *info = root->fs_info;
5864 u64 total = num_bytes;
5865 u64 old_val;
5866 u64 byte_in_group;
5867 int factor;
5868
5869 /* block accounting for super block */
5870 spin_lock(&info->delalloc_root_lock);
5871 old_val = btrfs_super_bytes_used(info->super_copy);
5872 if (alloc)
5873 old_val += num_bytes;
5874 else
5875 old_val -= num_bytes;
5876 btrfs_set_super_bytes_used(info->super_copy, old_val);
5877 spin_unlock(&info->delalloc_root_lock);
5878
5879 while (total) {
5880 cache = btrfs_lookup_block_group(info, bytenr);
5881 if (!cache)
5882 return -ENOENT;
5883 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5884 BTRFS_BLOCK_GROUP_RAID1 |
5885 BTRFS_BLOCK_GROUP_RAID10))
5886 factor = 2;
5887 else
5888 factor = 1;
5889 /*
5890 * If this block group has free space cache written out, we
5891 * need to make sure to load it if we are removing space. This
5892 * is because we need the unpinning stage to actually add the
5893 * space back to the block group, otherwise we will leak space.
5894 */
5895 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5896 cache_block_group(cache, 1);
5897
5898 byte_in_group = bytenr - cache->key.objectid;
5899 WARN_ON(byte_in_group > cache->key.offset);
5900
5901 spin_lock(&cache->space_info->lock);
5902 spin_lock(&cache->lock);
5903
5904 if (btrfs_test_opt(root, SPACE_CACHE) &&
5905 cache->disk_cache_state < BTRFS_DC_CLEAR)
5906 cache->disk_cache_state = BTRFS_DC_CLEAR;
5907
5908 old_val = btrfs_block_group_used(&cache->item);
5909 num_bytes = min(total, cache->key.offset - byte_in_group);
5910 if (alloc) {
5911 old_val += num_bytes;
5912 btrfs_set_block_group_used(&cache->item, old_val);
5913 cache->reserved -= num_bytes;
5914 cache->space_info->bytes_reserved -= num_bytes;
5915 cache->space_info->bytes_used += num_bytes;
5916 cache->space_info->disk_used += num_bytes * factor;
5917 spin_unlock(&cache->lock);
5918 spin_unlock(&cache->space_info->lock);
5919 } else {
5920 old_val -= num_bytes;
5921 btrfs_set_block_group_used(&cache->item, old_val);
5922 cache->pinned += num_bytes;
5923 cache->space_info->bytes_pinned += num_bytes;
5924 cache->space_info->bytes_used -= num_bytes;
5925 cache->space_info->disk_used -= num_bytes * factor;
5926 spin_unlock(&cache->lock);
5927 spin_unlock(&cache->space_info->lock);
5928
5929 set_extent_dirty(info->pinned_extents,
5930 bytenr, bytenr + num_bytes - 1,
5931 GFP_NOFS | __GFP_NOFAIL);
5932 }
5933
5934 spin_lock(&trans->transaction->dirty_bgs_lock);
5935 if (list_empty(&cache->dirty_list)) {
5936 list_add_tail(&cache->dirty_list,
5937 &trans->transaction->dirty_bgs);
5938 trans->transaction->num_dirty_bgs++;
5939 btrfs_get_block_group(cache);
5940 }
5941 spin_unlock(&trans->transaction->dirty_bgs_lock);
5942
5943 /*
5944 * No longer have used bytes in this block group, queue it for
5945 * deletion. We do this after adding the block group to the
5946 * dirty list to avoid races between cleaner kthread and space
5947 * cache writeout.
5948 */
5949 if (!alloc && old_val == 0) {
5950 spin_lock(&info->unused_bgs_lock);
5951 if (list_empty(&cache->bg_list)) {
5952 btrfs_get_block_group(cache);
5953 list_add_tail(&cache->bg_list,
5954 &info->unused_bgs);
5955 }
5956 spin_unlock(&info->unused_bgs_lock);
5957 }
5958
5959 btrfs_put_block_group(cache);
5960 total -= num_bytes;
5961 bytenr += num_bytes;
5962 }
5963 return 0;
5964 }
5965
first_logical_byte(struct btrfs_root * root,u64 search_start)5966 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5967 {
5968 struct btrfs_block_group_cache *cache;
5969 u64 bytenr;
5970
5971 spin_lock(&root->fs_info->block_group_cache_lock);
5972 bytenr = root->fs_info->first_logical_byte;
5973 spin_unlock(&root->fs_info->block_group_cache_lock);
5974
5975 if (bytenr < (u64)-1)
5976 return bytenr;
5977
5978 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5979 if (!cache)
5980 return 0;
5981
5982 bytenr = cache->key.objectid;
5983 btrfs_put_block_group(cache);
5984
5985 return bytenr;
5986 }
5987
pin_down_extent(struct btrfs_root * root,struct btrfs_block_group_cache * cache,u64 bytenr,u64 num_bytes,int reserved)5988 static int pin_down_extent(struct btrfs_root *root,
5989 struct btrfs_block_group_cache *cache,
5990 u64 bytenr, u64 num_bytes, int reserved)
5991 {
5992 spin_lock(&cache->space_info->lock);
5993 spin_lock(&cache->lock);
5994 cache->pinned += num_bytes;
5995 cache->space_info->bytes_pinned += num_bytes;
5996 if (reserved) {
5997 cache->reserved -= num_bytes;
5998 cache->space_info->bytes_reserved -= num_bytes;
5999 }
6000 spin_unlock(&cache->lock);
6001 spin_unlock(&cache->space_info->lock);
6002
6003 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6004 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6005 if (reserved)
6006 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
6007 return 0;
6008 }
6009
6010 /*
6011 * this function must be called within transaction
6012 */
btrfs_pin_extent(struct btrfs_root * root,u64 bytenr,u64 num_bytes,int reserved)6013 int btrfs_pin_extent(struct btrfs_root *root,
6014 u64 bytenr, u64 num_bytes, int reserved)
6015 {
6016 struct btrfs_block_group_cache *cache;
6017
6018 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6019 BUG_ON(!cache); /* Logic error */
6020
6021 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6022
6023 btrfs_put_block_group(cache);
6024 return 0;
6025 }
6026
6027 /*
6028 * this function must be called within transaction
6029 */
btrfs_pin_extent_for_log_replay(struct btrfs_root * root,u64 bytenr,u64 num_bytes)6030 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6031 u64 bytenr, u64 num_bytes)
6032 {
6033 struct btrfs_block_group_cache *cache;
6034 int ret;
6035
6036 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6037 if (!cache)
6038 return -EINVAL;
6039
6040 /*
6041 * pull in the free space cache (if any) so that our pin
6042 * removes the free space from the cache. We have load_only set
6043 * to one because the slow code to read in the free extents does check
6044 * the pinned extents.
6045 */
6046 cache_block_group(cache, 1);
6047
6048 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6049
6050 /* remove us from the free space cache (if we're there at all) */
6051 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6052 btrfs_put_block_group(cache);
6053 return ret;
6054 }
6055
__exclude_logged_extent(struct btrfs_root * root,u64 start,u64 num_bytes)6056 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6057 {
6058 int ret;
6059 struct btrfs_block_group_cache *block_group;
6060 struct btrfs_caching_control *caching_ctl;
6061
6062 block_group = btrfs_lookup_block_group(root->fs_info, start);
6063 if (!block_group)
6064 return -EINVAL;
6065
6066 cache_block_group(block_group, 0);
6067 caching_ctl = get_caching_control(block_group);
6068
6069 if (!caching_ctl) {
6070 /* Logic error */
6071 BUG_ON(!block_group_cache_done(block_group));
6072 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6073 } else {
6074 mutex_lock(&caching_ctl->mutex);
6075
6076 if (start >= caching_ctl->progress) {
6077 ret = add_excluded_extent(root, start, num_bytes);
6078 } else if (start + num_bytes <= caching_ctl->progress) {
6079 ret = btrfs_remove_free_space(block_group,
6080 start, num_bytes);
6081 } else {
6082 num_bytes = caching_ctl->progress - start;
6083 ret = btrfs_remove_free_space(block_group,
6084 start, num_bytes);
6085 if (ret)
6086 goto out_lock;
6087
6088 num_bytes = (start + num_bytes) -
6089 caching_ctl->progress;
6090 start = caching_ctl->progress;
6091 ret = add_excluded_extent(root, start, num_bytes);
6092 }
6093 out_lock:
6094 mutex_unlock(&caching_ctl->mutex);
6095 put_caching_control(caching_ctl);
6096 }
6097 btrfs_put_block_group(block_group);
6098 return ret;
6099 }
6100
btrfs_exclude_logged_extents(struct btrfs_root * log,struct extent_buffer * eb)6101 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6102 struct extent_buffer *eb)
6103 {
6104 struct btrfs_file_extent_item *item;
6105 struct btrfs_key key;
6106 int found_type;
6107 int i;
6108
6109 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6110 return 0;
6111
6112 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6113 btrfs_item_key_to_cpu(eb, &key, i);
6114 if (key.type != BTRFS_EXTENT_DATA_KEY)
6115 continue;
6116 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6117 found_type = btrfs_file_extent_type(eb, item);
6118 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6119 continue;
6120 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6121 continue;
6122 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6123 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6124 __exclude_logged_extent(log, key.objectid, key.offset);
6125 }
6126
6127 return 0;
6128 }
6129
6130 /**
6131 * btrfs_update_reserved_bytes - update the block_group and space info counters
6132 * @cache: The cache we are manipulating
6133 * @num_bytes: The number of bytes in question
6134 * @reserve: One of the reservation enums
6135 * @delalloc: The blocks are allocated for the delalloc write
6136 *
6137 * This is called by the allocator when it reserves space, or by somebody who is
6138 * freeing space that was never actually used on disk. For example if you
6139 * reserve some space for a new leaf in transaction A and before transaction A
6140 * commits you free that leaf, you call this with reserve set to 0 in order to
6141 * clear the reservation.
6142 *
6143 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6144 * ENOSPC accounting. For data we handle the reservation through clearing the
6145 * delalloc bits in the io_tree. We have to do this since we could end up
6146 * allocating less disk space for the amount of data we have reserved in the
6147 * case of compression.
6148 *
6149 * If this is a reservation and the block group has become read only we cannot
6150 * make the reservation and return -EAGAIN, otherwise this function always
6151 * succeeds.
6152 */
btrfs_update_reserved_bytes(struct btrfs_block_group_cache * cache,u64 num_bytes,int reserve,int delalloc)6153 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6154 u64 num_bytes, int reserve, int delalloc)
6155 {
6156 struct btrfs_space_info *space_info = cache->space_info;
6157 int ret = 0;
6158
6159 spin_lock(&space_info->lock);
6160 spin_lock(&cache->lock);
6161 if (reserve != RESERVE_FREE) {
6162 if (cache->ro) {
6163 ret = -EAGAIN;
6164 } else {
6165 cache->reserved += num_bytes;
6166 space_info->bytes_reserved += num_bytes;
6167 if (reserve == RESERVE_ALLOC) {
6168 trace_btrfs_space_reservation(cache->fs_info,
6169 "space_info", space_info->flags,
6170 num_bytes, 0);
6171 space_info->bytes_may_use -= num_bytes;
6172 }
6173
6174 if (delalloc)
6175 cache->delalloc_bytes += num_bytes;
6176 }
6177 } else {
6178 if (cache->ro)
6179 space_info->bytes_readonly += num_bytes;
6180 cache->reserved -= num_bytes;
6181 space_info->bytes_reserved -= num_bytes;
6182
6183 if (delalloc)
6184 cache->delalloc_bytes -= num_bytes;
6185 }
6186 spin_unlock(&cache->lock);
6187 spin_unlock(&space_info->lock);
6188 return ret;
6189 }
6190
btrfs_prepare_extent_commit(struct btrfs_trans_handle * trans,struct btrfs_root * root)6191 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6192 struct btrfs_root *root)
6193 {
6194 struct btrfs_fs_info *fs_info = root->fs_info;
6195 struct btrfs_caching_control *next;
6196 struct btrfs_caching_control *caching_ctl;
6197 struct btrfs_block_group_cache *cache;
6198
6199 down_write(&fs_info->commit_root_sem);
6200
6201 list_for_each_entry_safe(caching_ctl, next,
6202 &fs_info->caching_block_groups, list) {
6203 cache = caching_ctl->block_group;
6204 if (block_group_cache_done(cache)) {
6205 cache->last_byte_to_unpin = (u64)-1;
6206 list_del_init(&caching_ctl->list);
6207 put_caching_control(caching_ctl);
6208 } else {
6209 cache->last_byte_to_unpin = caching_ctl->progress;
6210 }
6211 }
6212
6213 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6214 fs_info->pinned_extents = &fs_info->freed_extents[1];
6215 else
6216 fs_info->pinned_extents = &fs_info->freed_extents[0];
6217
6218 up_write(&fs_info->commit_root_sem);
6219
6220 update_global_block_rsv(fs_info);
6221 }
6222
6223 /*
6224 * Returns the free cluster for the given space info and sets empty_cluster to
6225 * what it should be based on the mount options.
6226 */
6227 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_root * root,struct btrfs_space_info * space_info,u64 * empty_cluster)6228 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6229 u64 *empty_cluster)
6230 {
6231 struct btrfs_free_cluster *ret = NULL;
6232 bool ssd = btrfs_test_opt(root, SSD);
6233
6234 *empty_cluster = 0;
6235 if (btrfs_mixed_space_info(space_info))
6236 return ret;
6237
6238 if (ssd)
6239 *empty_cluster = 2 * 1024 * 1024;
6240 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6241 ret = &root->fs_info->meta_alloc_cluster;
6242 if (!ssd)
6243 *empty_cluster = 64 * 1024;
6244 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6245 ret = &root->fs_info->data_alloc_cluster;
6246 }
6247
6248 return ret;
6249 }
6250
unpin_extent_range(struct btrfs_root * root,u64 start,u64 end,const bool return_free_space)6251 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6252 const bool return_free_space)
6253 {
6254 struct btrfs_fs_info *fs_info = root->fs_info;
6255 struct btrfs_block_group_cache *cache = NULL;
6256 struct btrfs_space_info *space_info;
6257 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6258 struct btrfs_free_cluster *cluster = NULL;
6259 u64 len;
6260 u64 total_unpinned = 0;
6261 u64 empty_cluster = 0;
6262 bool readonly;
6263
6264 while (start <= end) {
6265 readonly = false;
6266 if (!cache ||
6267 start >= cache->key.objectid + cache->key.offset) {
6268 if (cache)
6269 btrfs_put_block_group(cache);
6270 total_unpinned = 0;
6271 cache = btrfs_lookup_block_group(fs_info, start);
6272 BUG_ON(!cache); /* Logic error */
6273
6274 cluster = fetch_cluster_info(root,
6275 cache->space_info,
6276 &empty_cluster);
6277 empty_cluster <<= 1;
6278 }
6279
6280 len = cache->key.objectid + cache->key.offset - start;
6281 len = min(len, end + 1 - start);
6282
6283 if (start < cache->last_byte_to_unpin) {
6284 len = min(len, cache->last_byte_to_unpin - start);
6285 if (return_free_space)
6286 btrfs_add_free_space(cache, start, len);
6287 }
6288
6289 start += len;
6290 total_unpinned += len;
6291 space_info = cache->space_info;
6292
6293 /*
6294 * If this space cluster has been marked as fragmented and we've
6295 * unpinned enough in this block group to potentially allow a
6296 * cluster to be created inside of it go ahead and clear the
6297 * fragmented check.
6298 */
6299 if (cluster && cluster->fragmented &&
6300 total_unpinned > empty_cluster) {
6301 spin_lock(&cluster->lock);
6302 cluster->fragmented = 0;
6303 spin_unlock(&cluster->lock);
6304 }
6305
6306 spin_lock(&space_info->lock);
6307 spin_lock(&cache->lock);
6308 cache->pinned -= len;
6309 space_info->bytes_pinned -= len;
6310 space_info->max_extent_size = 0;
6311 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6312 if (cache->ro) {
6313 space_info->bytes_readonly += len;
6314 readonly = true;
6315 }
6316 spin_unlock(&cache->lock);
6317 if (!readonly && global_rsv->space_info == space_info) {
6318 spin_lock(&global_rsv->lock);
6319 if (!global_rsv->full) {
6320 len = min(len, global_rsv->size -
6321 global_rsv->reserved);
6322 global_rsv->reserved += len;
6323 space_info->bytes_may_use += len;
6324 if (global_rsv->reserved >= global_rsv->size)
6325 global_rsv->full = 1;
6326 }
6327 spin_unlock(&global_rsv->lock);
6328 }
6329 spin_unlock(&space_info->lock);
6330 }
6331
6332 if (cache)
6333 btrfs_put_block_group(cache);
6334 return 0;
6335 }
6336
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans,struct btrfs_root * root)6337 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6338 struct btrfs_root *root)
6339 {
6340 struct btrfs_fs_info *fs_info = root->fs_info;
6341 struct btrfs_block_group_cache *block_group, *tmp;
6342 struct list_head *deleted_bgs;
6343 struct extent_io_tree *unpin;
6344 u64 start;
6345 u64 end;
6346 int ret;
6347
6348 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6349 unpin = &fs_info->freed_extents[1];
6350 else
6351 unpin = &fs_info->freed_extents[0];
6352
6353 while (!trans->aborted) {
6354 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6355 ret = find_first_extent_bit(unpin, 0, &start, &end,
6356 EXTENT_DIRTY, NULL);
6357 if (ret) {
6358 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6359 break;
6360 }
6361
6362 if (btrfs_test_opt(root, DISCARD))
6363 ret = btrfs_discard_extent(root, start,
6364 end + 1 - start, NULL);
6365
6366 clear_extent_dirty(unpin, start, end, GFP_NOFS);
6367 unpin_extent_range(root, start, end, true);
6368 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6369 cond_resched();
6370 }
6371
6372 /*
6373 * Transaction is finished. We don't need the lock anymore. We
6374 * do need to clean up the block groups in case of a transaction
6375 * abort.
6376 */
6377 deleted_bgs = &trans->transaction->deleted_bgs;
6378 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6379 u64 trimmed = 0;
6380
6381 ret = -EROFS;
6382 if (!trans->aborted)
6383 ret = btrfs_discard_extent(root,
6384 block_group->key.objectid,
6385 block_group->key.offset,
6386 &trimmed);
6387
6388 list_del_init(&block_group->bg_list);
6389 btrfs_put_block_group_trimming(block_group);
6390 btrfs_put_block_group(block_group);
6391
6392 if (ret) {
6393 const char *errstr = btrfs_decode_error(ret);
6394 btrfs_warn(fs_info,
6395 "Discard failed while removing blockgroup: errno=%d %s\n",
6396 ret, errstr);
6397 }
6398 }
6399
6400 return 0;
6401 }
6402
add_pinned_bytes(struct btrfs_fs_info * fs_info,u64 num_bytes,u64 owner,u64 root_objectid)6403 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6404 u64 owner, u64 root_objectid)
6405 {
6406 struct btrfs_space_info *space_info;
6407 u64 flags;
6408
6409 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6410 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6411 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6412 else
6413 flags = BTRFS_BLOCK_GROUP_METADATA;
6414 } else {
6415 flags = BTRFS_BLOCK_GROUP_DATA;
6416 }
6417
6418 space_info = __find_space_info(fs_info, flags);
6419 BUG_ON(!space_info); /* Logic bug */
6420 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6421 }
6422
6423
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner_objectid,u64 owner_offset,int refs_to_drop,struct btrfs_delayed_extent_op * extent_op)6424 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6425 struct btrfs_root *root,
6426 struct btrfs_delayed_ref_node *node, u64 parent,
6427 u64 root_objectid, u64 owner_objectid,
6428 u64 owner_offset, int refs_to_drop,
6429 struct btrfs_delayed_extent_op *extent_op)
6430 {
6431 struct btrfs_key key;
6432 struct btrfs_path *path;
6433 struct btrfs_fs_info *info = root->fs_info;
6434 struct btrfs_root *extent_root = info->extent_root;
6435 struct extent_buffer *leaf;
6436 struct btrfs_extent_item *ei;
6437 struct btrfs_extent_inline_ref *iref;
6438 int ret;
6439 int is_data;
6440 int extent_slot = 0;
6441 int found_extent = 0;
6442 int num_to_del = 1;
6443 u32 item_size;
6444 u64 refs;
6445 u64 bytenr = node->bytenr;
6446 u64 num_bytes = node->num_bytes;
6447 int last_ref = 0;
6448 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6449 SKINNY_METADATA);
6450
6451 path = btrfs_alloc_path();
6452 if (!path)
6453 return -ENOMEM;
6454
6455 path->reada = 1;
6456 path->leave_spinning = 1;
6457
6458 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6459 BUG_ON(!is_data && refs_to_drop != 1);
6460
6461 if (is_data)
6462 skinny_metadata = 0;
6463
6464 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6465 bytenr, num_bytes, parent,
6466 root_objectid, owner_objectid,
6467 owner_offset);
6468 if (ret == 0) {
6469 extent_slot = path->slots[0];
6470 while (extent_slot >= 0) {
6471 btrfs_item_key_to_cpu(path->nodes[0], &key,
6472 extent_slot);
6473 if (key.objectid != bytenr)
6474 break;
6475 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6476 key.offset == num_bytes) {
6477 found_extent = 1;
6478 break;
6479 }
6480 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6481 key.offset == owner_objectid) {
6482 found_extent = 1;
6483 break;
6484 }
6485 if (path->slots[0] - extent_slot > 5)
6486 break;
6487 extent_slot--;
6488 }
6489 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6490 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6491 if (found_extent && item_size < sizeof(*ei))
6492 found_extent = 0;
6493 #endif
6494 if (!found_extent) {
6495 BUG_ON(iref);
6496 ret = remove_extent_backref(trans, extent_root, path,
6497 NULL, refs_to_drop,
6498 is_data, &last_ref);
6499 if (ret) {
6500 btrfs_abort_transaction(trans, extent_root, ret);
6501 goto out;
6502 }
6503 btrfs_release_path(path);
6504 path->leave_spinning = 1;
6505
6506 key.objectid = bytenr;
6507 key.type = BTRFS_EXTENT_ITEM_KEY;
6508 key.offset = num_bytes;
6509
6510 if (!is_data && skinny_metadata) {
6511 key.type = BTRFS_METADATA_ITEM_KEY;
6512 key.offset = owner_objectid;
6513 }
6514
6515 ret = btrfs_search_slot(trans, extent_root,
6516 &key, path, -1, 1);
6517 if (ret > 0 && skinny_metadata && path->slots[0]) {
6518 /*
6519 * Couldn't find our skinny metadata item,
6520 * see if we have ye olde extent item.
6521 */
6522 path->slots[0]--;
6523 btrfs_item_key_to_cpu(path->nodes[0], &key,
6524 path->slots[0]);
6525 if (key.objectid == bytenr &&
6526 key.type == BTRFS_EXTENT_ITEM_KEY &&
6527 key.offset == num_bytes)
6528 ret = 0;
6529 }
6530
6531 if (ret > 0 && skinny_metadata) {
6532 skinny_metadata = false;
6533 key.objectid = bytenr;
6534 key.type = BTRFS_EXTENT_ITEM_KEY;
6535 key.offset = num_bytes;
6536 btrfs_release_path(path);
6537 ret = btrfs_search_slot(trans, extent_root,
6538 &key, path, -1, 1);
6539 }
6540
6541 if (ret) {
6542 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6543 ret, bytenr);
6544 if (ret > 0)
6545 btrfs_print_leaf(extent_root,
6546 path->nodes[0]);
6547 }
6548 if (ret < 0) {
6549 btrfs_abort_transaction(trans, extent_root, ret);
6550 goto out;
6551 }
6552 extent_slot = path->slots[0];
6553 }
6554 } else if (WARN_ON(ret == -ENOENT)) {
6555 btrfs_print_leaf(extent_root, path->nodes[0]);
6556 btrfs_err(info,
6557 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6558 bytenr, parent, root_objectid, owner_objectid,
6559 owner_offset);
6560 btrfs_abort_transaction(trans, extent_root, ret);
6561 goto out;
6562 } else {
6563 btrfs_abort_transaction(trans, extent_root, ret);
6564 goto out;
6565 }
6566
6567 leaf = path->nodes[0];
6568 item_size = btrfs_item_size_nr(leaf, extent_slot);
6569 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6570 if (item_size < sizeof(*ei)) {
6571 BUG_ON(found_extent || extent_slot != path->slots[0]);
6572 ret = convert_extent_item_v0(trans, extent_root, path,
6573 owner_objectid, 0);
6574 if (ret < 0) {
6575 btrfs_abort_transaction(trans, extent_root, ret);
6576 goto out;
6577 }
6578
6579 btrfs_release_path(path);
6580 path->leave_spinning = 1;
6581
6582 key.objectid = bytenr;
6583 key.type = BTRFS_EXTENT_ITEM_KEY;
6584 key.offset = num_bytes;
6585
6586 ret = btrfs_search_slot(trans, extent_root, &key, path,
6587 -1, 1);
6588 if (ret) {
6589 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6590 ret, bytenr);
6591 btrfs_print_leaf(extent_root, path->nodes[0]);
6592 }
6593 if (ret < 0) {
6594 btrfs_abort_transaction(trans, extent_root, ret);
6595 goto out;
6596 }
6597
6598 extent_slot = path->slots[0];
6599 leaf = path->nodes[0];
6600 item_size = btrfs_item_size_nr(leaf, extent_slot);
6601 }
6602 #endif
6603 BUG_ON(item_size < sizeof(*ei));
6604 ei = btrfs_item_ptr(leaf, extent_slot,
6605 struct btrfs_extent_item);
6606 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6607 key.type == BTRFS_EXTENT_ITEM_KEY) {
6608 struct btrfs_tree_block_info *bi;
6609 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6610 bi = (struct btrfs_tree_block_info *)(ei + 1);
6611 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6612 }
6613
6614 refs = btrfs_extent_refs(leaf, ei);
6615 if (refs < refs_to_drop) {
6616 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6617 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6618 ret = -EINVAL;
6619 btrfs_abort_transaction(trans, extent_root, ret);
6620 goto out;
6621 }
6622 refs -= refs_to_drop;
6623
6624 if (refs > 0) {
6625 if (extent_op)
6626 __run_delayed_extent_op(extent_op, leaf, ei);
6627 /*
6628 * In the case of inline back ref, reference count will
6629 * be updated by remove_extent_backref
6630 */
6631 if (iref) {
6632 BUG_ON(!found_extent);
6633 } else {
6634 btrfs_set_extent_refs(leaf, ei, refs);
6635 btrfs_mark_buffer_dirty(leaf);
6636 }
6637 if (found_extent) {
6638 ret = remove_extent_backref(trans, extent_root, path,
6639 iref, refs_to_drop,
6640 is_data, &last_ref);
6641 if (ret) {
6642 btrfs_abort_transaction(trans, extent_root, ret);
6643 goto out;
6644 }
6645 }
6646 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6647 root_objectid);
6648 } else {
6649 if (found_extent) {
6650 BUG_ON(is_data && refs_to_drop !=
6651 extent_data_ref_count(path, iref));
6652 if (iref) {
6653 BUG_ON(path->slots[0] != extent_slot);
6654 } else {
6655 BUG_ON(path->slots[0] != extent_slot + 1);
6656 path->slots[0] = extent_slot;
6657 num_to_del = 2;
6658 }
6659 }
6660
6661 last_ref = 1;
6662 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6663 num_to_del);
6664 if (ret) {
6665 btrfs_abort_transaction(trans, extent_root, ret);
6666 goto out;
6667 }
6668 btrfs_release_path(path);
6669
6670 if (is_data) {
6671 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6672 if (ret) {
6673 btrfs_abort_transaction(trans, extent_root, ret);
6674 goto out;
6675 }
6676 }
6677
6678 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6679 if (ret) {
6680 btrfs_abort_transaction(trans, extent_root, ret);
6681 goto out;
6682 }
6683 }
6684 btrfs_release_path(path);
6685
6686 out:
6687 btrfs_free_path(path);
6688 return ret;
6689 }
6690
6691 /*
6692 * when we free an block, it is possible (and likely) that we free the last
6693 * delayed ref for that extent as well. This searches the delayed ref tree for
6694 * a given extent, and if there are no other delayed refs to be processed, it
6695 * removes it from the tree.
6696 */
check_ref_cleanup(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr)6697 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6698 struct btrfs_root *root, u64 bytenr)
6699 {
6700 struct btrfs_delayed_ref_head *head;
6701 struct btrfs_delayed_ref_root *delayed_refs;
6702 int ret = 0;
6703
6704 delayed_refs = &trans->transaction->delayed_refs;
6705 spin_lock(&delayed_refs->lock);
6706 head = btrfs_find_delayed_ref_head(trans, bytenr);
6707 if (!head)
6708 goto out_delayed_unlock;
6709
6710 spin_lock(&head->lock);
6711 if (!list_empty(&head->ref_list))
6712 goto out;
6713
6714 if (head->extent_op) {
6715 if (!head->must_insert_reserved)
6716 goto out;
6717 btrfs_free_delayed_extent_op(head->extent_op);
6718 head->extent_op = NULL;
6719 }
6720
6721 /*
6722 * waiting for the lock here would deadlock. If someone else has it
6723 * locked they are already in the process of dropping it anyway
6724 */
6725 if (!mutex_trylock(&head->mutex))
6726 goto out;
6727
6728 /*
6729 * at this point we have a head with no other entries. Go
6730 * ahead and process it.
6731 */
6732 head->node.in_tree = 0;
6733 rb_erase(&head->href_node, &delayed_refs->href_root);
6734
6735 atomic_dec(&delayed_refs->num_entries);
6736
6737 /*
6738 * we don't take a ref on the node because we're removing it from the
6739 * tree, so we just steal the ref the tree was holding.
6740 */
6741 delayed_refs->num_heads--;
6742 if (head->processing == 0)
6743 delayed_refs->num_heads_ready--;
6744 head->processing = 0;
6745 spin_unlock(&head->lock);
6746 spin_unlock(&delayed_refs->lock);
6747
6748 BUG_ON(head->extent_op);
6749 if (head->must_insert_reserved)
6750 ret = 1;
6751
6752 mutex_unlock(&head->mutex);
6753 btrfs_put_delayed_ref(&head->node);
6754 return ret;
6755 out:
6756 spin_unlock(&head->lock);
6757
6758 out_delayed_unlock:
6759 spin_unlock(&delayed_refs->lock);
6760 return 0;
6761 }
6762
btrfs_free_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,u64 parent,int last_ref)6763 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6764 struct btrfs_root *root,
6765 struct extent_buffer *buf,
6766 u64 parent, int last_ref)
6767 {
6768 int pin = 1;
6769 int ret;
6770
6771 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6772 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6773 buf->start, buf->len,
6774 parent, root->root_key.objectid,
6775 btrfs_header_level(buf),
6776 BTRFS_DROP_DELAYED_REF, NULL);
6777 BUG_ON(ret); /* -ENOMEM */
6778 }
6779
6780 if (!last_ref)
6781 return;
6782
6783 if (btrfs_header_generation(buf) == trans->transid) {
6784 struct btrfs_block_group_cache *cache;
6785
6786 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6787 ret = check_ref_cleanup(trans, root, buf->start);
6788 if (!ret)
6789 goto out;
6790 }
6791
6792 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6793
6794 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6795 pin_down_extent(root, cache, buf->start, buf->len, 1);
6796 btrfs_put_block_group(cache);
6797 goto out;
6798 }
6799
6800 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6801
6802 btrfs_add_free_space(cache, buf->start, buf->len);
6803 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6804 btrfs_put_block_group(cache);
6805 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6806 pin = 0;
6807 }
6808 out:
6809 if (pin)
6810 add_pinned_bytes(root->fs_info, buf->len,
6811 btrfs_header_level(buf),
6812 root->root_key.objectid);
6813
6814 /*
6815 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6816 * anymore.
6817 */
6818 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6819 }
6820
6821 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)6822 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6823 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6824 u64 owner, u64 offset)
6825 {
6826 int ret;
6827 struct btrfs_fs_info *fs_info = root->fs_info;
6828
6829 if (btrfs_test_is_dummy_root(root))
6830 return 0;
6831
6832 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6833
6834 /*
6835 * tree log blocks never actually go into the extent allocation
6836 * tree, just update pinning info and exit early.
6837 */
6838 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6839 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6840 /* unlocks the pinned mutex */
6841 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6842 ret = 0;
6843 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6844 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6845 num_bytes,
6846 parent, root_objectid, (int)owner,
6847 BTRFS_DROP_DELAYED_REF, NULL);
6848 } else {
6849 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6850 num_bytes,
6851 parent, root_objectid, owner,
6852 offset, 0,
6853 BTRFS_DROP_DELAYED_REF, NULL);
6854 }
6855 return ret;
6856 }
6857
6858 /*
6859 * when we wait for progress in the block group caching, its because
6860 * our allocation attempt failed at least once. So, we must sleep
6861 * and let some progress happen before we try again.
6862 *
6863 * This function will sleep at least once waiting for new free space to
6864 * show up, and then it will check the block group free space numbers
6865 * for our min num_bytes. Another option is to have it go ahead
6866 * and look in the rbtree for a free extent of a given size, but this
6867 * is a good start.
6868 *
6869 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6870 * any of the information in this block group.
6871 */
6872 static noinline void
wait_block_group_cache_progress(struct btrfs_block_group_cache * cache,u64 num_bytes)6873 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6874 u64 num_bytes)
6875 {
6876 struct btrfs_caching_control *caching_ctl;
6877
6878 caching_ctl = get_caching_control(cache);
6879 if (!caching_ctl)
6880 return;
6881
6882 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6883 (cache->free_space_ctl->free_space >= num_bytes));
6884
6885 put_caching_control(caching_ctl);
6886 }
6887
6888 static noinline int
wait_block_group_cache_done(struct btrfs_block_group_cache * cache)6889 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6890 {
6891 struct btrfs_caching_control *caching_ctl;
6892 int ret = 0;
6893
6894 caching_ctl = get_caching_control(cache);
6895 if (!caching_ctl)
6896 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6897
6898 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6899 if (cache->cached == BTRFS_CACHE_ERROR)
6900 ret = -EIO;
6901 put_caching_control(caching_ctl);
6902 return ret;
6903 }
6904
__get_raid_index(u64 flags)6905 int __get_raid_index(u64 flags)
6906 {
6907 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6908 return BTRFS_RAID_RAID10;
6909 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6910 return BTRFS_RAID_RAID1;
6911 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6912 return BTRFS_RAID_DUP;
6913 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6914 return BTRFS_RAID_RAID0;
6915 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6916 return BTRFS_RAID_RAID5;
6917 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6918 return BTRFS_RAID_RAID6;
6919
6920 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6921 }
6922
get_block_group_index(struct btrfs_block_group_cache * cache)6923 int get_block_group_index(struct btrfs_block_group_cache *cache)
6924 {
6925 return __get_raid_index(cache->flags);
6926 }
6927
6928 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6929 [BTRFS_RAID_RAID10] = "raid10",
6930 [BTRFS_RAID_RAID1] = "raid1",
6931 [BTRFS_RAID_DUP] = "dup",
6932 [BTRFS_RAID_RAID0] = "raid0",
6933 [BTRFS_RAID_SINGLE] = "single",
6934 [BTRFS_RAID_RAID5] = "raid5",
6935 [BTRFS_RAID_RAID6] = "raid6",
6936 };
6937
get_raid_name(enum btrfs_raid_types type)6938 static const char *get_raid_name(enum btrfs_raid_types type)
6939 {
6940 if (type >= BTRFS_NR_RAID_TYPES)
6941 return NULL;
6942
6943 return btrfs_raid_type_names[type];
6944 }
6945
6946 enum btrfs_loop_type {
6947 LOOP_CACHING_NOWAIT = 0,
6948 LOOP_CACHING_WAIT = 1,
6949 LOOP_ALLOC_CHUNK = 2,
6950 LOOP_NO_EMPTY_SIZE = 3,
6951 };
6952
6953 static inline void
btrfs_lock_block_group(struct btrfs_block_group_cache * cache,int delalloc)6954 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6955 int delalloc)
6956 {
6957 if (delalloc)
6958 down_read(&cache->data_rwsem);
6959 }
6960
6961 static inline void
btrfs_grab_block_group(struct btrfs_block_group_cache * cache,int delalloc)6962 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6963 int delalloc)
6964 {
6965 btrfs_get_block_group(cache);
6966 if (delalloc)
6967 down_read(&cache->data_rwsem);
6968 }
6969
6970 static struct btrfs_block_group_cache *
btrfs_lock_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,int delalloc)6971 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6972 struct btrfs_free_cluster *cluster,
6973 int delalloc)
6974 {
6975 struct btrfs_block_group_cache *used_bg;
6976 bool locked = false;
6977 again:
6978 spin_lock(&cluster->refill_lock);
6979 if (locked) {
6980 if (used_bg == cluster->block_group)
6981 return used_bg;
6982
6983 up_read(&used_bg->data_rwsem);
6984 btrfs_put_block_group(used_bg);
6985 }
6986
6987 used_bg = cluster->block_group;
6988 if (!used_bg)
6989 return NULL;
6990
6991 if (used_bg == block_group)
6992 return used_bg;
6993
6994 btrfs_get_block_group(used_bg);
6995
6996 if (!delalloc)
6997 return used_bg;
6998
6999 if (down_read_trylock(&used_bg->data_rwsem))
7000 return used_bg;
7001
7002 spin_unlock(&cluster->refill_lock);
7003 down_read(&used_bg->data_rwsem);
7004 locked = true;
7005 goto again;
7006 }
7007
7008 static inline void
btrfs_release_block_group(struct btrfs_block_group_cache * cache,int delalloc)7009 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7010 int delalloc)
7011 {
7012 if (delalloc)
7013 up_read(&cache->data_rwsem);
7014 btrfs_put_block_group(cache);
7015 }
7016
7017 /*
7018 * walks the btree of allocated extents and find a hole of a given size.
7019 * The key ins is changed to record the hole:
7020 * ins->objectid == start position
7021 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7022 * ins->offset == the size of the hole.
7023 * Any available blocks before search_start are skipped.
7024 *
7025 * If there is no suitable free space, we will record the max size of
7026 * the free space extent currently.
7027 */
find_free_extent(struct btrfs_root * orig_root,u64 num_bytes,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,u64 flags,int delalloc)7028 static noinline int find_free_extent(struct btrfs_root *orig_root,
7029 u64 num_bytes, u64 empty_size,
7030 u64 hint_byte, struct btrfs_key *ins,
7031 u64 flags, int delalloc)
7032 {
7033 int ret = 0;
7034 struct btrfs_root *root = orig_root->fs_info->extent_root;
7035 struct btrfs_free_cluster *last_ptr = NULL;
7036 struct btrfs_block_group_cache *block_group = NULL;
7037 u64 search_start = 0;
7038 u64 max_extent_size = 0;
7039 u64 empty_cluster = 0;
7040 struct btrfs_space_info *space_info;
7041 int loop = 0;
7042 int index = __get_raid_index(flags);
7043 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
7044 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
7045 bool failed_cluster_refill = false;
7046 bool failed_alloc = false;
7047 bool use_cluster = true;
7048 bool have_caching_bg = false;
7049 bool orig_have_caching_bg = false;
7050 bool full_search = false;
7051
7052 WARN_ON(num_bytes < root->sectorsize);
7053 ins->type = BTRFS_EXTENT_ITEM_KEY;
7054 ins->objectid = 0;
7055 ins->offset = 0;
7056
7057 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7058
7059 space_info = __find_space_info(root->fs_info, flags);
7060 if (!space_info) {
7061 btrfs_err(root->fs_info, "No space info for %llu", flags);
7062 return -ENOSPC;
7063 }
7064
7065 /*
7066 * If our free space is heavily fragmented we may not be able to make
7067 * big contiguous allocations, so instead of doing the expensive search
7068 * for free space, simply return ENOSPC with our max_extent_size so we
7069 * can go ahead and search for a more manageable chunk.
7070 *
7071 * If our max_extent_size is large enough for our allocation simply
7072 * disable clustering since we will likely not be able to find enough
7073 * space to create a cluster and induce latency trying.
7074 */
7075 if (unlikely(space_info->max_extent_size)) {
7076 spin_lock(&space_info->lock);
7077 if (space_info->max_extent_size &&
7078 num_bytes > space_info->max_extent_size) {
7079 ins->offset = space_info->max_extent_size;
7080 spin_unlock(&space_info->lock);
7081 return -ENOSPC;
7082 } else if (space_info->max_extent_size) {
7083 use_cluster = false;
7084 }
7085 spin_unlock(&space_info->lock);
7086 }
7087
7088 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7089 if (last_ptr) {
7090 spin_lock(&last_ptr->lock);
7091 if (last_ptr->block_group)
7092 hint_byte = last_ptr->window_start;
7093 if (last_ptr->fragmented) {
7094 /*
7095 * We still set window_start so we can keep track of the
7096 * last place we found an allocation to try and save
7097 * some time.
7098 */
7099 hint_byte = last_ptr->window_start;
7100 use_cluster = false;
7101 }
7102 spin_unlock(&last_ptr->lock);
7103 }
7104
7105 search_start = max(search_start, first_logical_byte(root, 0));
7106 search_start = max(search_start, hint_byte);
7107 if (search_start == hint_byte) {
7108 block_group = btrfs_lookup_block_group(root->fs_info,
7109 search_start);
7110 /*
7111 * we don't want to use the block group if it doesn't match our
7112 * allocation bits, or if its not cached.
7113 *
7114 * However if we are re-searching with an ideal block group
7115 * picked out then we don't care that the block group is cached.
7116 */
7117 if (block_group && block_group_bits(block_group, flags) &&
7118 block_group->cached != BTRFS_CACHE_NO) {
7119 down_read(&space_info->groups_sem);
7120 if (list_empty(&block_group->list) ||
7121 block_group->ro) {
7122 /*
7123 * someone is removing this block group,
7124 * we can't jump into the have_block_group
7125 * target because our list pointers are not
7126 * valid
7127 */
7128 btrfs_put_block_group(block_group);
7129 up_read(&space_info->groups_sem);
7130 } else {
7131 index = get_block_group_index(block_group);
7132 btrfs_lock_block_group(block_group, delalloc);
7133 goto have_block_group;
7134 }
7135 } else if (block_group) {
7136 btrfs_put_block_group(block_group);
7137 }
7138 }
7139 search:
7140 have_caching_bg = false;
7141 if (index == 0 || index == __get_raid_index(flags))
7142 full_search = true;
7143 down_read(&space_info->groups_sem);
7144 list_for_each_entry(block_group, &space_info->block_groups[index],
7145 list) {
7146 u64 offset;
7147 int cached;
7148
7149 btrfs_grab_block_group(block_group, delalloc);
7150 search_start = block_group->key.objectid;
7151
7152 /*
7153 * this can happen if we end up cycling through all the
7154 * raid types, but we want to make sure we only allocate
7155 * for the proper type.
7156 */
7157 if (!block_group_bits(block_group, flags)) {
7158 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7159 BTRFS_BLOCK_GROUP_RAID1 |
7160 BTRFS_BLOCK_GROUP_RAID5 |
7161 BTRFS_BLOCK_GROUP_RAID6 |
7162 BTRFS_BLOCK_GROUP_RAID10;
7163
7164 /*
7165 * if they asked for extra copies and this block group
7166 * doesn't provide them, bail. This does allow us to
7167 * fill raid0 from raid1.
7168 */
7169 if ((flags & extra) && !(block_group->flags & extra))
7170 goto loop;
7171
7172 /*
7173 * This block group has different flags than we want.
7174 * It's possible that we have MIXED_GROUP flag but no
7175 * block group is mixed. Just skip such block group.
7176 */
7177 btrfs_release_block_group(block_group, delalloc);
7178 continue;
7179 }
7180
7181 have_block_group:
7182 cached = block_group_cache_done(block_group);
7183 if (unlikely(!cached)) {
7184 have_caching_bg = true;
7185 ret = cache_block_group(block_group, 0);
7186 BUG_ON(ret < 0);
7187 ret = 0;
7188 }
7189
7190 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7191 goto loop;
7192 if (unlikely(block_group->ro))
7193 goto loop;
7194
7195 /*
7196 * Ok we want to try and use the cluster allocator, so
7197 * lets look there
7198 */
7199 if (last_ptr && use_cluster) {
7200 struct btrfs_block_group_cache *used_block_group;
7201 unsigned long aligned_cluster;
7202 /*
7203 * the refill lock keeps out other
7204 * people trying to start a new cluster
7205 */
7206 used_block_group = btrfs_lock_cluster(block_group,
7207 last_ptr,
7208 delalloc);
7209 if (!used_block_group)
7210 goto refill_cluster;
7211
7212 if (used_block_group != block_group &&
7213 (used_block_group->ro ||
7214 !block_group_bits(used_block_group, flags)))
7215 goto release_cluster;
7216
7217 offset = btrfs_alloc_from_cluster(used_block_group,
7218 last_ptr,
7219 num_bytes,
7220 used_block_group->key.objectid,
7221 &max_extent_size);
7222 if (offset) {
7223 /* we have a block, we're done */
7224 spin_unlock(&last_ptr->refill_lock);
7225 trace_btrfs_reserve_extent_cluster(root,
7226 used_block_group,
7227 search_start, num_bytes);
7228 if (used_block_group != block_group) {
7229 btrfs_release_block_group(block_group,
7230 delalloc);
7231 block_group = used_block_group;
7232 }
7233 goto checks;
7234 }
7235
7236 WARN_ON(last_ptr->block_group != used_block_group);
7237 release_cluster:
7238 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7239 * set up a new clusters, so lets just skip it
7240 * and let the allocator find whatever block
7241 * it can find. If we reach this point, we
7242 * will have tried the cluster allocator
7243 * plenty of times and not have found
7244 * anything, so we are likely way too
7245 * fragmented for the clustering stuff to find
7246 * anything.
7247 *
7248 * However, if the cluster is taken from the
7249 * current block group, release the cluster
7250 * first, so that we stand a better chance of
7251 * succeeding in the unclustered
7252 * allocation. */
7253 if (loop >= LOOP_NO_EMPTY_SIZE &&
7254 used_block_group != block_group) {
7255 spin_unlock(&last_ptr->refill_lock);
7256 btrfs_release_block_group(used_block_group,
7257 delalloc);
7258 goto unclustered_alloc;
7259 }
7260
7261 /*
7262 * this cluster didn't work out, free it and
7263 * start over
7264 */
7265 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7266
7267 if (used_block_group != block_group)
7268 btrfs_release_block_group(used_block_group,
7269 delalloc);
7270 refill_cluster:
7271 if (loop >= LOOP_NO_EMPTY_SIZE) {
7272 spin_unlock(&last_ptr->refill_lock);
7273 goto unclustered_alloc;
7274 }
7275
7276 aligned_cluster = max_t(unsigned long,
7277 empty_cluster + empty_size,
7278 block_group->full_stripe_len);
7279
7280 /* allocate a cluster in this block group */
7281 ret = btrfs_find_space_cluster(root, block_group,
7282 last_ptr, search_start,
7283 num_bytes,
7284 aligned_cluster);
7285 if (ret == 0) {
7286 /*
7287 * now pull our allocation out of this
7288 * cluster
7289 */
7290 offset = btrfs_alloc_from_cluster(block_group,
7291 last_ptr,
7292 num_bytes,
7293 search_start,
7294 &max_extent_size);
7295 if (offset) {
7296 /* we found one, proceed */
7297 spin_unlock(&last_ptr->refill_lock);
7298 trace_btrfs_reserve_extent_cluster(root,
7299 block_group, search_start,
7300 num_bytes);
7301 goto checks;
7302 }
7303 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7304 && !failed_cluster_refill) {
7305 spin_unlock(&last_ptr->refill_lock);
7306
7307 failed_cluster_refill = true;
7308 wait_block_group_cache_progress(block_group,
7309 num_bytes + empty_cluster + empty_size);
7310 goto have_block_group;
7311 }
7312
7313 /*
7314 * at this point we either didn't find a cluster
7315 * or we weren't able to allocate a block from our
7316 * cluster. Free the cluster we've been trying
7317 * to use, and go to the next block group
7318 */
7319 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7320 spin_unlock(&last_ptr->refill_lock);
7321 goto loop;
7322 }
7323
7324 unclustered_alloc:
7325 /*
7326 * We are doing an unclustered alloc, set the fragmented flag so
7327 * we don't bother trying to setup a cluster again until we get
7328 * more space.
7329 */
7330 if (unlikely(last_ptr)) {
7331 spin_lock(&last_ptr->lock);
7332 last_ptr->fragmented = 1;
7333 spin_unlock(&last_ptr->lock);
7334 }
7335 spin_lock(&block_group->free_space_ctl->tree_lock);
7336 if (cached &&
7337 block_group->free_space_ctl->free_space <
7338 num_bytes + empty_cluster + empty_size) {
7339 if (block_group->free_space_ctl->free_space >
7340 max_extent_size)
7341 max_extent_size =
7342 block_group->free_space_ctl->free_space;
7343 spin_unlock(&block_group->free_space_ctl->tree_lock);
7344 goto loop;
7345 }
7346 spin_unlock(&block_group->free_space_ctl->tree_lock);
7347
7348 offset = btrfs_find_space_for_alloc(block_group, search_start,
7349 num_bytes, empty_size,
7350 &max_extent_size);
7351 /*
7352 * If we didn't find a chunk, and we haven't failed on this
7353 * block group before, and this block group is in the middle of
7354 * caching and we are ok with waiting, then go ahead and wait
7355 * for progress to be made, and set failed_alloc to true.
7356 *
7357 * If failed_alloc is true then we've already waited on this
7358 * block group once and should move on to the next block group.
7359 */
7360 if (!offset && !failed_alloc && !cached &&
7361 loop > LOOP_CACHING_NOWAIT) {
7362 wait_block_group_cache_progress(block_group,
7363 num_bytes + empty_size);
7364 failed_alloc = true;
7365 goto have_block_group;
7366 } else if (!offset) {
7367 goto loop;
7368 }
7369 checks:
7370 search_start = ALIGN(offset, root->stripesize);
7371
7372 /* move on to the next group */
7373 if (search_start + num_bytes >
7374 block_group->key.objectid + block_group->key.offset) {
7375 btrfs_add_free_space(block_group, offset, num_bytes);
7376 goto loop;
7377 }
7378
7379 if (offset < search_start)
7380 btrfs_add_free_space(block_group, offset,
7381 search_start - offset);
7382 BUG_ON(offset > search_start);
7383
7384 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7385 alloc_type, delalloc);
7386 if (ret == -EAGAIN) {
7387 btrfs_add_free_space(block_group, offset, num_bytes);
7388 goto loop;
7389 }
7390
7391 /* we are all good, lets return */
7392 ins->objectid = search_start;
7393 ins->offset = num_bytes;
7394
7395 trace_btrfs_reserve_extent(orig_root, block_group,
7396 search_start, num_bytes);
7397 btrfs_release_block_group(block_group, delalloc);
7398 break;
7399 loop:
7400 failed_cluster_refill = false;
7401 failed_alloc = false;
7402 BUG_ON(index != get_block_group_index(block_group));
7403 btrfs_release_block_group(block_group, delalloc);
7404 }
7405 up_read(&space_info->groups_sem);
7406
7407 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7408 && !orig_have_caching_bg)
7409 orig_have_caching_bg = true;
7410
7411 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7412 goto search;
7413
7414 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7415 goto search;
7416
7417 /*
7418 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7419 * caching kthreads as we move along
7420 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7421 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7422 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7423 * again
7424 */
7425 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7426 index = 0;
7427 if (loop == LOOP_CACHING_NOWAIT) {
7428 /*
7429 * We want to skip the LOOP_CACHING_WAIT step if we
7430 * don't have any unached bgs and we've alrelady done a
7431 * full search through.
7432 */
7433 if (orig_have_caching_bg || !full_search)
7434 loop = LOOP_CACHING_WAIT;
7435 else
7436 loop = LOOP_ALLOC_CHUNK;
7437 } else {
7438 loop++;
7439 }
7440
7441 if (loop == LOOP_ALLOC_CHUNK) {
7442 struct btrfs_trans_handle *trans;
7443 int exist = 0;
7444
7445 trans = current->journal_info;
7446 if (trans)
7447 exist = 1;
7448 else
7449 trans = btrfs_join_transaction(root);
7450
7451 if (IS_ERR(trans)) {
7452 ret = PTR_ERR(trans);
7453 goto out;
7454 }
7455
7456 ret = do_chunk_alloc(trans, root, flags,
7457 CHUNK_ALLOC_FORCE);
7458
7459 /*
7460 * If we can't allocate a new chunk we've already looped
7461 * through at least once, move on to the NO_EMPTY_SIZE
7462 * case.
7463 */
7464 if (ret == -ENOSPC)
7465 loop = LOOP_NO_EMPTY_SIZE;
7466
7467 /*
7468 * Do not bail out on ENOSPC since we
7469 * can do more things.
7470 */
7471 if (ret < 0 && ret != -ENOSPC)
7472 btrfs_abort_transaction(trans,
7473 root, ret);
7474 else
7475 ret = 0;
7476 if (!exist)
7477 btrfs_end_transaction(trans, root);
7478 if (ret)
7479 goto out;
7480 }
7481
7482 if (loop == LOOP_NO_EMPTY_SIZE) {
7483 /*
7484 * Don't loop again if we already have no empty_size and
7485 * no empty_cluster.
7486 */
7487 if (empty_size == 0 &&
7488 empty_cluster == 0) {
7489 ret = -ENOSPC;
7490 goto out;
7491 }
7492 empty_size = 0;
7493 empty_cluster = 0;
7494 }
7495
7496 goto search;
7497 } else if (!ins->objectid) {
7498 ret = -ENOSPC;
7499 } else if (ins->objectid) {
7500 if (!use_cluster && last_ptr) {
7501 spin_lock(&last_ptr->lock);
7502 last_ptr->window_start = ins->objectid;
7503 spin_unlock(&last_ptr->lock);
7504 }
7505 ret = 0;
7506 }
7507 out:
7508 if (ret == -ENOSPC) {
7509 spin_lock(&space_info->lock);
7510 space_info->max_extent_size = max_extent_size;
7511 spin_unlock(&space_info->lock);
7512 ins->offset = max_extent_size;
7513 }
7514 return ret;
7515 }
7516
dump_space_info(struct btrfs_space_info * info,u64 bytes,int dump_block_groups)7517 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7518 int dump_block_groups)
7519 {
7520 struct btrfs_block_group_cache *cache;
7521 int index = 0;
7522
7523 spin_lock(&info->lock);
7524 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7525 info->flags,
7526 info->total_bytes - info->bytes_used - info->bytes_pinned -
7527 info->bytes_reserved - info->bytes_readonly,
7528 (info->full) ? "" : "not ");
7529 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7530 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7531 info->total_bytes, info->bytes_used, info->bytes_pinned,
7532 info->bytes_reserved, info->bytes_may_use,
7533 info->bytes_readonly);
7534 spin_unlock(&info->lock);
7535
7536 if (!dump_block_groups)
7537 return;
7538
7539 down_read(&info->groups_sem);
7540 again:
7541 list_for_each_entry(cache, &info->block_groups[index], list) {
7542 spin_lock(&cache->lock);
7543 printk(KERN_INFO "BTRFS: "
7544 "block group %llu has %llu bytes, "
7545 "%llu used %llu pinned %llu reserved %s\n",
7546 cache->key.objectid, cache->key.offset,
7547 btrfs_block_group_used(&cache->item), cache->pinned,
7548 cache->reserved, cache->ro ? "[readonly]" : "");
7549 btrfs_dump_free_space(cache, bytes);
7550 spin_unlock(&cache->lock);
7551 }
7552 if (++index < BTRFS_NR_RAID_TYPES)
7553 goto again;
7554 up_read(&info->groups_sem);
7555 }
7556
btrfs_reserve_extent(struct btrfs_root * root,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)7557 int btrfs_reserve_extent(struct btrfs_root *root,
7558 u64 num_bytes, u64 min_alloc_size,
7559 u64 empty_size, u64 hint_byte,
7560 struct btrfs_key *ins, int is_data, int delalloc)
7561 {
7562 bool final_tried = num_bytes == min_alloc_size;
7563 u64 flags;
7564 int ret;
7565
7566 flags = btrfs_get_alloc_profile(root, is_data);
7567 again:
7568 WARN_ON(num_bytes < root->sectorsize);
7569 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7570 flags, delalloc);
7571
7572 if (ret == -ENOSPC) {
7573 if (!final_tried && ins->offset) {
7574 num_bytes = min(num_bytes >> 1, ins->offset);
7575 num_bytes = round_down(num_bytes, root->sectorsize);
7576 num_bytes = max(num_bytes, min_alloc_size);
7577 if (num_bytes == min_alloc_size)
7578 final_tried = true;
7579 goto again;
7580 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7581 struct btrfs_space_info *sinfo;
7582
7583 sinfo = __find_space_info(root->fs_info, flags);
7584 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7585 flags, num_bytes);
7586 if (sinfo)
7587 dump_space_info(sinfo, num_bytes, 1);
7588 }
7589 }
7590
7591 return ret;
7592 }
7593
__btrfs_free_reserved_extent(struct btrfs_root * root,u64 start,u64 len,int pin,int delalloc)7594 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7595 u64 start, u64 len,
7596 int pin, int delalloc)
7597 {
7598 struct btrfs_block_group_cache *cache;
7599 int ret = 0;
7600
7601 cache = btrfs_lookup_block_group(root->fs_info, start);
7602 if (!cache) {
7603 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7604 start);
7605 return -ENOSPC;
7606 }
7607
7608 if (pin)
7609 pin_down_extent(root, cache, start, len, 1);
7610 else {
7611 if (btrfs_test_opt(root, DISCARD))
7612 ret = btrfs_discard_extent(root, start, len, NULL);
7613 btrfs_add_free_space(cache, start, len);
7614 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7615 }
7616
7617 btrfs_put_block_group(cache);
7618
7619 trace_btrfs_reserved_extent_free(root, start, len);
7620
7621 return ret;
7622 }
7623
btrfs_free_reserved_extent(struct btrfs_root * root,u64 start,u64 len,int delalloc)7624 int btrfs_free_reserved_extent(struct btrfs_root *root,
7625 u64 start, u64 len, int delalloc)
7626 {
7627 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7628 }
7629
btrfs_free_and_pin_reserved_extent(struct btrfs_root * root,u64 start,u64 len)7630 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7631 u64 start, u64 len)
7632 {
7633 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7634 }
7635
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod)7636 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7637 struct btrfs_root *root,
7638 u64 parent, u64 root_objectid,
7639 u64 flags, u64 owner, u64 offset,
7640 struct btrfs_key *ins, int ref_mod)
7641 {
7642 int ret;
7643 struct btrfs_fs_info *fs_info = root->fs_info;
7644 struct btrfs_extent_item *extent_item;
7645 struct btrfs_extent_inline_ref *iref;
7646 struct btrfs_path *path;
7647 struct extent_buffer *leaf;
7648 int type;
7649 u32 size;
7650
7651 if (parent > 0)
7652 type = BTRFS_SHARED_DATA_REF_KEY;
7653 else
7654 type = BTRFS_EXTENT_DATA_REF_KEY;
7655
7656 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7657
7658 path = btrfs_alloc_path();
7659 if (!path)
7660 return -ENOMEM;
7661
7662 path->leave_spinning = 1;
7663 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7664 ins, size);
7665 if (ret) {
7666 btrfs_free_path(path);
7667 return ret;
7668 }
7669
7670 leaf = path->nodes[0];
7671 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7672 struct btrfs_extent_item);
7673 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7674 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7675 btrfs_set_extent_flags(leaf, extent_item,
7676 flags | BTRFS_EXTENT_FLAG_DATA);
7677
7678 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7679 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7680 if (parent > 0) {
7681 struct btrfs_shared_data_ref *ref;
7682 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7683 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7684 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7685 } else {
7686 struct btrfs_extent_data_ref *ref;
7687 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7688 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7689 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7690 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7691 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7692 }
7693
7694 btrfs_mark_buffer_dirty(path->nodes[0]);
7695 btrfs_free_path(path);
7696
7697 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7698 if (ret) { /* -ENOENT, logic error */
7699 btrfs_err(fs_info, "update block group failed for %llu %llu",
7700 ins->objectid, ins->offset);
7701 BUG();
7702 }
7703 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7704 return ret;
7705 }
7706
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,u64 flags,struct btrfs_disk_key * key,int level,struct btrfs_key * ins)7707 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7708 struct btrfs_root *root,
7709 u64 parent, u64 root_objectid,
7710 u64 flags, struct btrfs_disk_key *key,
7711 int level, struct btrfs_key *ins)
7712 {
7713 int ret;
7714 struct btrfs_fs_info *fs_info = root->fs_info;
7715 struct btrfs_extent_item *extent_item;
7716 struct btrfs_tree_block_info *block_info;
7717 struct btrfs_extent_inline_ref *iref;
7718 struct btrfs_path *path;
7719 struct extent_buffer *leaf;
7720 u32 size = sizeof(*extent_item) + sizeof(*iref);
7721 u64 num_bytes = ins->offset;
7722 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7723 SKINNY_METADATA);
7724
7725 if (!skinny_metadata)
7726 size += sizeof(*block_info);
7727
7728 path = btrfs_alloc_path();
7729 if (!path) {
7730 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7731 root->nodesize);
7732 return -ENOMEM;
7733 }
7734
7735 path->leave_spinning = 1;
7736 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7737 ins, size);
7738 if (ret) {
7739 btrfs_free_path(path);
7740 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7741 root->nodesize);
7742 return ret;
7743 }
7744
7745 leaf = path->nodes[0];
7746 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7747 struct btrfs_extent_item);
7748 btrfs_set_extent_refs(leaf, extent_item, 1);
7749 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7750 btrfs_set_extent_flags(leaf, extent_item,
7751 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7752
7753 if (skinny_metadata) {
7754 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7755 num_bytes = root->nodesize;
7756 } else {
7757 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7758 btrfs_set_tree_block_key(leaf, block_info, key);
7759 btrfs_set_tree_block_level(leaf, block_info, level);
7760 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7761 }
7762
7763 if (parent > 0) {
7764 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7765 btrfs_set_extent_inline_ref_type(leaf, iref,
7766 BTRFS_SHARED_BLOCK_REF_KEY);
7767 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7768 } else {
7769 btrfs_set_extent_inline_ref_type(leaf, iref,
7770 BTRFS_TREE_BLOCK_REF_KEY);
7771 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7772 }
7773
7774 btrfs_mark_buffer_dirty(leaf);
7775 btrfs_free_path(path);
7776
7777 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7778 1);
7779 if (ret) { /* -ENOENT, logic error */
7780 btrfs_err(fs_info, "update block group failed for %llu %llu",
7781 ins->objectid, ins->offset);
7782 BUG();
7783 }
7784
7785 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7786 return ret;
7787 }
7788
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 root_objectid,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)7789 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7790 struct btrfs_root *root,
7791 u64 root_objectid, u64 owner,
7792 u64 offset, u64 ram_bytes,
7793 struct btrfs_key *ins)
7794 {
7795 int ret;
7796
7797 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7798
7799 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7800 ins->offset, 0,
7801 root_objectid, owner, offset,
7802 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7803 NULL);
7804 return ret;
7805 }
7806
7807 /*
7808 * this is used by the tree logging recovery code. It records that
7809 * an extent has been allocated and makes sure to clear the free
7810 * space cache bits as well
7811 */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)7812 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7813 struct btrfs_root *root,
7814 u64 root_objectid, u64 owner, u64 offset,
7815 struct btrfs_key *ins)
7816 {
7817 int ret;
7818 struct btrfs_block_group_cache *block_group;
7819
7820 /*
7821 * Mixed block groups will exclude before processing the log so we only
7822 * need to do the exlude dance if this fs isn't mixed.
7823 */
7824 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7825 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7826 if (ret)
7827 return ret;
7828 }
7829
7830 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7831 if (!block_group)
7832 return -EINVAL;
7833
7834 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7835 RESERVE_ALLOC_NO_ACCOUNT, 0);
7836 BUG_ON(ret); /* logic error */
7837 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7838 0, owner, offset, ins, 1);
7839 btrfs_put_block_group(block_group);
7840 return ret;
7841 }
7842
7843 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level)7844 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7845 u64 bytenr, int level)
7846 {
7847 struct extent_buffer *buf;
7848
7849 buf = btrfs_find_create_tree_block(root, bytenr);
7850 if (!buf)
7851 return ERR_PTR(-ENOMEM);
7852
7853 /*
7854 * Extra safety check in case the extent tree is corrupted and extent
7855 * allocator chooses to use a tree block which is already used and
7856 * locked.
7857 */
7858 if (buf->lock_owner == current->pid) {
7859 btrfs_err_rl(root->fs_info,
7860 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
7861 buf->start, btrfs_header_owner(buf), current->pid);
7862 free_extent_buffer(buf);
7863 return ERR_PTR(-EUCLEAN);
7864 }
7865
7866 btrfs_set_header_generation(buf, trans->transid);
7867 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7868 btrfs_tree_lock(buf);
7869 clean_tree_block(trans, root->fs_info, buf);
7870 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7871
7872 btrfs_set_lock_blocking(buf);
7873 btrfs_set_buffer_uptodate(buf);
7874
7875 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7876 buf->log_index = root->log_transid % 2;
7877 /*
7878 * we allow two log transactions at a time, use different
7879 * EXENT bit to differentiate dirty pages.
7880 */
7881 if (buf->log_index == 0)
7882 set_extent_dirty(&root->dirty_log_pages, buf->start,
7883 buf->start + buf->len - 1, GFP_NOFS);
7884 else
7885 set_extent_new(&root->dirty_log_pages, buf->start,
7886 buf->start + buf->len - 1, GFP_NOFS);
7887 } else {
7888 buf->log_index = -1;
7889 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7890 buf->start + buf->len - 1, GFP_NOFS);
7891 }
7892 trans->dirty = true;
7893 /* this returns a buffer locked for blocking */
7894 return buf;
7895 }
7896
7897 static struct btrfs_block_rsv *
use_block_rsv(struct btrfs_trans_handle * trans,struct btrfs_root * root,u32 blocksize)7898 use_block_rsv(struct btrfs_trans_handle *trans,
7899 struct btrfs_root *root, u32 blocksize)
7900 {
7901 struct btrfs_block_rsv *block_rsv;
7902 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7903 int ret;
7904 bool global_updated = false;
7905
7906 block_rsv = get_block_rsv(trans, root);
7907
7908 if (unlikely(block_rsv->size == 0))
7909 goto try_reserve;
7910 again:
7911 ret = block_rsv_use_bytes(block_rsv, blocksize);
7912 if (!ret)
7913 return block_rsv;
7914
7915 if (block_rsv->failfast)
7916 return ERR_PTR(ret);
7917
7918 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7919 global_updated = true;
7920 update_global_block_rsv(root->fs_info);
7921 goto again;
7922 }
7923
7924 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7925 static DEFINE_RATELIMIT_STATE(_rs,
7926 DEFAULT_RATELIMIT_INTERVAL * 10,
7927 /*DEFAULT_RATELIMIT_BURST*/ 1);
7928 if (__ratelimit(&_rs))
7929 WARN(1, KERN_DEBUG
7930 "BTRFS: block rsv returned %d\n", ret);
7931 }
7932 try_reserve:
7933 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7934 BTRFS_RESERVE_NO_FLUSH);
7935 if (!ret)
7936 return block_rsv;
7937 /*
7938 * If we couldn't reserve metadata bytes try and use some from
7939 * the global reserve if its space type is the same as the global
7940 * reservation.
7941 */
7942 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7943 block_rsv->space_info == global_rsv->space_info) {
7944 ret = block_rsv_use_bytes(global_rsv, blocksize);
7945 if (!ret)
7946 return global_rsv;
7947 }
7948 return ERR_PTR(ret);
7949 }
7950
unuse_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u32 blocksize)7951 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7952 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7953 {
7954 block_rsv_add_bytes(block_rsv, blocksize, 0);
7955 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7956 }
7957
7958 /*
7959 * finds a free extent and does all the dirty work required for allocation
7960 * returns the tree buffer or an ERR_PTR on error.
7961 */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size)7962 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7963 struct btrfs_root *root,
7964 u64 parent, u64 root_objectid,
7965 struct btrfs_disk_key *key, int level,
7966 u64 hint, u64 empty_size)
7967 {
7968 struct btrfs_key ins;
7969 struct btrfs_block_rsv *block_rsv;
7970 struct extent_buffer *buf;
7971 struct btrfs_delayed_extent_op *extent_op;
7972 u64 flags = 0;
7973 int ret;
7974 u32 blocksize = root->nodesize;
7975 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7976 SKINNY_METADATA);
7977
7978 if (btrfs_test_is_dummy_root(root)) {
7979 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7980 level);
7981 if (!IS_ERR(buf))
7982 root->alloc_bytenr += blocksize;
7983 return buf;
7984 }
7985
7986 block_rsv = use_block_rsv(trans, root, blocksize);
7987 if (IS_ERR(block_rsv))
7988 return ERR_CAST(block_rsv);
7989
7990 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7991 empty_size, hint, &ins, 0, 0);
7992 if (ret)
7993 goto out_unuse;
7994
7995 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7996 if (IS_ERR(buf)) {
7997 ret = PTR_ERR(buf);
7998 goto out_free_reserved;
7999 }
8000
8001 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8002 if (parent == 0)
8003 parent = ins.objectid;
8004 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8005 } else
8006 BUG_ON(parent > 0);
8007
8008 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8009 extent_op = btrfs_alloc_delayed_extent_op();
8010 if (!extent_op) {
8011 ret = -ENOMEM;
8012 goto out_free_buf;
8013 }
8014 if (key)
8015 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8016 else
8017 memset(&extent_op->key, 0, sizeof(extent_op->key));
8018 extent_op->flags_to_set = flags;
8019 if (skinny_metadata)
8020 extent_op->update_key = 0;
8021 else
8022 extent_op->update_key = 1;
8023 extent_op->update_flags = 1;
8024 extent_op->is_data = 0;
8025 extent_op->level = level;
8026
8027 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8028 ins.objectid, ins.offset,
8029 parent, root_objectid, level,
8030 BTRFS_ADD_DELAYED_EXTENT,
8031 extent_op);
8032 if (ret)
8033 goto out_free_delayed;
8034 }
8035 return buf;
8036
8037 out_free_delayed:
8038 btrfs_free_delayed_extent_op(extent_op);
8039 out_free_buf:
8040 free_extent_buffer(buf);
8041 out_free_reserved:
8042 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8043 out_unuse:
8044 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8045 return ERR_PTR(ret);
8046 }
8047
8048 struct walk_control {
8049 u64 refs[BTRFS_MAX_LEVEL];
8050 u64 flags[BTRFS_MAX_LEVEL];
8051 struct btrfs_key update_progress;
8052 int stage;
8053 int level;
8054 int shared_level;
8055 int update_ref;
8056 int keep_locks;
8057 int reada_slot;
8058 int reada_count;
8059 int for_reloc;
8060 };
8061
8062 #define DROP_REFERENCE 1
8063 #define UPDATE_BACKREF 2
8064
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)8065 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8066 struct btrfs_root *root,
8067 struct walk_control *wc,
8068 struct btrfs_path *path)
8069 {
8070 u64 bytenr;
8071 u64 generation;
8072 u64 refs;
8073 u64 flags;
8074 u32 nritems;
8075 u32 blocksize;
8076 struct btrfs_key key;
8077 struct extent_buffer *eb;
8078 int ret;
8079 int slot;
8080 int nread = 0;
8081
8082 if (path->slots[wc->level] < wc->reada_slot) {
8083 wc->reada_count = wc->reada_count * 2 / 3;
8084 wc->reada_count = max(wc->reada_count, 2);
8085 } else {
8086 wc->reada_count = wc->reada_count * 3 / 2;
8087 wc->reada_count = min_t(int, wc->reada_count,
8088 BTRFS_NODEPTRS_PER_BLOCK(root));
8089 }
8090
8091 eb = path->nodes[wc->level];
8092 nritems = btrfs_header_nritems(eb);
8093 blocksize = root->nodesize;
8094
8095 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8096 if (nread >= wc->reada_count)
8097 break;
8098
8099 cond_resched();
8100 bytenr = btrfs_node_blockptr(eb, slot);
8101 generation = btrfs_node_ptr_generation(eb, slot);
8102
8103 if (slot == path->slots[wc->level])
8104 goto reada;
8105
8106 if (wc->stage == UPDATE_BACKREF &&
8107 generation <= root->root_key.offset)
8108 continue;
8109
8110 /* We don't lock the tree block, it's OK to be racy here */
8111 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8112 wc->level - 1, 1, &refs,
8113 &flags);
8114 /* We don't care about errors in readahead. */
8115 if (ret < 0)
8116 continue;
8117 BUG_ON(refs == 0);
8118
8119 if (wc->stage == DROP_REFERENCE) {
8120 if (refs == 1)
8121 goto reada;
8122
8123 if (wc->level == 1 &&
8124 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8125 continue;
8126 if (!wc->update_ref ||
8127 generation <= root->root_key.offset)
8128 continue;
8129 btrfs_node_key_to_cpu(eb, &key, slot);
8130 ret = btrfs_comp_cpu_keys(&key,
8131 &wc->update_progress);
8132 if (ret < 0)
8133 continue;
8134 } else {
8135 if (wc->level == 1 &&
8136 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8137 continue;
8138 }
8139 reada:
8140 readahead_tree_block(root, bytenr);
8141 nread++;
8142 }
8143 wc->reada_slot = slot;
8144 }
8145
8146 /*
8147 * These may not be seen by the usual inc/dec ref code so we have to
8148 * add them here.
8149 */
record_one_subtree_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes)8150 static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8151 struct btrfs_root *root, u64 bytenr,
8152 u64 num_bytes)
8153 {
8154 struct btrfs_qgroup_extent_record *qrecord;
8155 struct btrfs_delayed_ref_root *delayed_refs;
8156
8157 qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8158 if (!qrecord)
8159 return -ENOMEM;
8160
8161 qrecord->bytenr = bytenr;
8162 qrecord->num_bytes = num_bytes;
8163 qrecord->old_roots = NULL;
8164
8165 delayed_refs = &trans->transaction->delayed_refs;
8166 spin_lock(&delayed_refs->lock);
8167 if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8168 kfree(qrecord);
8169 spin_unlock(&delayed_refs->lock);
8170
8171 return 0;
8172 }
8173
account_leaf_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * eb)8174 static int account_leaf_items(struct btrfs_trans_handle *trans,
8175 struct btrfs_root *root,
8176 struct extent_buffer *eb)
8177 {
8178 int nr = btrfs_header_nritems(eb);
8179 int i, extent_type, ret;
8180 struct btrfs_key key;
8181 struct btrfs_file_extent_item *fi;
8182 u64 bytenr, num_bytes;
8183
8184 /* We can be called directly from walk_up_proc() */
8185 if (!root->fs_info->quota_enabled)
8186 return 0;
8187
8188 for (i = 0; i < nr; i++) {
8189 btrfs_item_key_to_cpu(eb, &key, i);
8190
8191 if (key.type != BTRFS_EXTENT_DATA_KEY)
8192 continue;
8193
8194 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8195 /* filter out non qgroup-accountable extents */
8196 extent_type = btrfs_file_extent_type(eb, fi);
8197
8198 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8199 continue;
8200
8201 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8202 if (!bytenr)
8203 continue;
8204
8205 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8206
8207 ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8208 if (ret)
8209 return ret;
8210 }
8211 return 0;
8212 }
8213
8214 /*
8215 * Walk up the tree from the bottom, freeing leaves and any interior
8216 * nodes which have had all slots visited. If a node (leaf or
8217 * interior) is freed, the node above it will have it's slot
8218 * incremented. The root node will never be freed.
8219 *
8220 * At the end of this function, we should have a path which has all
8221 * slots incremented to the next position for a search. If we need to
8222 * read a new node it will be NULL and the node above it will have the
8223 * correct slot selected for a later read.
8224 *
8225 * If we increment the root nodes slot counter past the number of
8226 * elements, 1 is returned to signal completion of the search.
8227 */
adjust_slots_upwards(struct btrfs_root * root,struct btrfs_path * path,int root_level)8228 static int adjust_slots_upwards(struct btrfs_root *root,
8229 struct btrfs_path *path, int root_level)
8230 {
8231 int level = 0;
8232 int nr, slot;
8233 struct extent_buffer *eb;
8234
8235 if (root_level == 0)
8236 return 1;
8237
8238 while (level <= root_level) {
8239 eb = path->nodes[level];
8240 nr = btrfs_header_nritems(eb);
8241 path->slots[level]++;
8242 slot = path->slots[level];
8243 if (slot >= nr || level == 0) {
8244 /*
8245 * Don't free the root - we will detect this
8246 * condition after our loop and return a
8247 * positive value for caller to stop walking the tree.
8248 */
8249 if (level != root_level) {
8250 btrfs_tree_unlock_rw(eb, path->locks[level]);
8251 path->locks[level] = 0;
8252
8253 free_extent_buffer(eb);
8254 path->nodes[level] = NULL;
8255 path->slots[level] = 0;
8256 }
8257 } else {
8258 /*
8259 * We have a valid slot to walk back down
8260 * from. Stop here so caller can process these
8261 * new nodes.
8262 */
8263 break;
8264 }
8265
8266 level++;
8267 }
8268
8269 eb = path->nodes[root_level];
8270 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8271 return 1;
8272
8273 return 0;
8274 }
8275
8276 /*
8277 * root_eb is the subtree root and is locked before this function is called.
8278 */
account_shared_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * root_eb,u64 root_gen,int root_level)8279 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8280 struct btrfs_root *root,
8281 struct extent_buffer *root_eb,
8282 u64 root_gen,
8283 int root_level)
8284 {
8285 int ret = 0;
8286 int level;
8287 struct extent_buffer *eb = root_eb;
8288 struct btrfs_path *path = NULL;
8289
8290 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8291 BUG_ON(root_eb == NULL);
8292
8293 if (!root->fs_info->quota_enabled)
8294 return 0;
8295
8296 if (!extent_buffer_uptodate(root_eb)) {
8297 ret = btrfs_read_buffer(root_eb, root_gen);
8298 if (ret)
8299 goto out;
8300 }
8301
8302 if (root_level == 0) {
8303 ret = account_leaf_items(trans, root, root_eb);
8304 goto out;
8305 }
8306
8307 path = btrfs_alloc_path();
8308 if (!path)
8309 return -ENOMEM;
8310
8311 /*
8312 * Walk down the tree. Missing extent blocks are filled in as
8313 * we go. Metadata is accounted every time we read a new
8314 * extent block.
8315 *
8316 * When we reach a leaf, we account for file extent items in it,
8317 * walk back up the tree (adjusting slot pointers as we go)
8318 * and restart the search process.
8319 */
8320 extent_buffer_get(root_eb); /* For path */
8321 path->nodes[root_level] = root_eb;
8322 path->slots[root_level] = 0;
8323 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8324 walk_down:
8325 level = root_level;
8326 while (level >= 0) {
8327 if (path->nodes[level] == NULL) {
8328 int parent_slot;
8329 u64 child_gen;
8330 u64 child_bytenr;
8331
8332 /* We need to get child blockptr/gen from
8333 * parent before we can read it. */
8334 eb = path->nodes[level + 1];
8335 parent_slot = path->slots[level + 1];
8336 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8337 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8338
8339 eb = read_tree_block(root, child_bytenr, child_gen);
8340 if (IS_ERR(eb)) {
8341 ret = PTR_ERR(eb);
8342 goto out;
8343 } else if (!extent_buffer_uptodate(eb)) {
8344 free_extent_buffer(eb);
8345 ret = -EIO;
8346 goto out;
8347 }
8348
8349 path->nodes[level] = eb;
8350 path->slots[level] = 0;
8351
8352 btrfs_tree_read_lock(eb);
8353 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8354 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8355
8356 ret = record_one_subtree_extent(trans, root, child_bytenr,
8357 root->nodesize);
8358 if (ret)
8359 goto out;
8360 }
8361
8362 if (level == 0) {
8363 ret = account_leaf_items(trans, root, path->nodes[level]);
8364 if (ret)
8365 goto out;
8366
8367 /* Nonzero return here means we completed our search */
8368 ret = adjust_slots_upwards(root, path, root_level);
8369 if (ret)
8370 break;
8371
8372 /* Restart search with new slots */
8373 goto walk_down;
8374 }
8375
8376 level--;
8377 }
8378
8379 ret = 0;
8380 out:
8381 btrfs_free_path(path);
8382
8383 return ret;
8384 }
8385
8386 /*
8387 * helper to process tree block while walking down the tree.
8388 *
8389 * when wc->stage == UPDATE_BACKREF, this function updates
8390 * back refs for pointers in the block.
8391 *
8392 * NOTE: return value 1 means we should stop walking down.
8393 */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int lookup_info)8394 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8395 struct btrfs_root *root,
8396 struct btrfs_path *path,
8397 struct walk_control *wc, int lookup_info)
8398 {
8399 int level = wc->level;
8400 struct extent_buffer *eb = path->nodes[level];
8401 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8402 int ret;
8403
8404 if (wc->stage == UPDATE_BACKREF &&
8405 btrfs_header_owner(eb) != root->root_key.objectid)
8406 return 1;
8407
8408 /*
8409 * when reference count of tree block is 1, it won't increase
8410 * again. once full backref flag is set, we never clear it.
8411 */
8412 if (lookup_info &&
8413 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8414 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8415 BUG_ON(!path->locks[level]);
8416 ret = btrfs_lookup_extent_info(trans, root,
8417 eb->start, level, 1,
8418 &wc->refs[level],
8419 &wc->flags[level]);
8420 BUG_ON(ret == -ENOMEM);
8421 if (ret)
8422 return ret;
8423 BUG_ON(wc->refs[level] == 0);
8424 }
8425
8426 if (wc->stage == DROP_REFERENCE) {
8427 if (wc->refs[level] > 1)
8428 return 1;
8429
8430 if (path->locks[level] && !wc->keep_locks) {
8431 btrfs_tree_unlock_rw(eb, path->locks[level]);
8432 path->locks[level] = 0;
8433 }
8434 return 0;
8435 }
8436
8437 /* wc->stage == UPDATE_BACKREF */
8438 if (!(wc->flags[level] & flag)) {
8439 BUG_ON(!path->locks[level]);
8440 ret = btrfs_inc_ref(trans, root, eb, 1);
8441 BUG_ON(ret); /* -ENOMEM */
8442 ret = btrfs_dec_ref(trans, root, eb, 0);
8443 BUG_ON(ret); /* -ENOMEM */
8444 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8445 eb->len, flag,
8446 btrfs_header_level(eb), 0);
8447 BUG_ON(ret); /* -ENOMEM */
8448 wc->flags[level] |= flag;
8449 }
8450
8451 /*
8452 * the block is shared by multiple trees, so it's not good to
8453 * keep the tree lock
8454 */
8455 if (path->locks[level] && level > 0) {
8456 btrfs_tree_unlock_rw(eb, path->locks[level]);
8457 path->locks[level] = 0;
8458 }
8459 return 0;
8460 }
8461
8462 /*
8463 * helper to process tree block pointer.
8464 *
8465 * when wc->stage == DROP_REFERENCE, this function checks
8466 * reference count of the block pointed to. if the block
8467 * is shared and we need update back refs for the subtree
8468 * rooted at the block, this function changes wc->stage to
8469 * UPDATE_BACKREF. if the block is shared and there is no
8470 * need to update back, this function drops the reference
8471 * to the block.
8472 *
8473 * NOTE: return value 1 means we should stop walking down.
8474 */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int * lookup_info)8475 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8476 struct btrfs_root *root,
8477 struct btrfs_path *path,
8478 struct walk_control *wc, int *lookup_info)
8479 {
8480 u64 bytenr;
8481 u64 generation;
8482 u64 parent;
8483 u32 blocksize;
8484 struct btrfs_key key;
8485 struct extent_buffer *next;
8486 int level = wc->level;
8487 int reada = 0;
8488 int ret = 0;
8489 bool need_account = false;
8490
8491 generation = btrfs_node_ptr_generation(path->nodes[level],
8492 path->slots[level]);
8493 /*
8494 * if the lower level block was created before the snapshot
8495 * was created, we know there is no need to update back refs
8496 * for the subtree
8497 */
8498 if (wc->stage == UPDATE_BACKREF &&
8499 generation <= root->root_key.offset) {
8500 *lookup_info = 1;
8501 return 1;
8502 }
8503
8504 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8505 blocksize = root->nodesize;
8506
8507 next = btrfs_find_tree_block(root->fs_info, bytenr);
8508 if (!next) {
8509 next = btrfs_find_create_tree_block(root, bytenr);
8510 if (!next)
8511 return -ENOMEM;
8512 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8513 level - 1);
8514 reada = 1;
8515 }
8516 btrfs_tree_lock(next);
8517 btrfs_set_lock_blocking(next);
8518
8519 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8520 &wc->refs[level - 1],
8521 &wc->flags[level - 1]);
8522 if (ret < 0)
8523 goto out_unlock;
8524
8525 if (unlikely(wc->refs[level - 1] == 0)) {
8526 btrfs_err(root->fs_info, "Missing references.");
8527 ret = -EIO;
8528 goto out_unlock;
8529 }
8530 *lookup_info = 0;
8531
8532 if (wc->stage == DROP_REFERENCE) {
8533 if (wc->refs[level - 1] > 1) {
8534 need_account = true;
8535 if (level == 1 &&
8536 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8537 goto skip;
8538
8539 if (!wc->update_ref ||
8540 generation <= root->root_key.offset)
8541 goto skip;
8542
8543 btrfs_node_key_to_cpu(path->nodes[level], &key,
8544 path->slots[level]);
8545 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8546 if (ret < 0)
8547 goto skip;
8548
8549 wc->stage = UPDATE_BACKREF;
8550 wc->shared_level = level - 1;
8551 }
8552 } else {
8553 if (level == 1 &&
8554 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8555 goto skip;
8556 }
8557
8558 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8559 btrfs_tree_unlock(next);
8560 free_extent_buffer(next);
8561 next = NULL;
8562 *lookup_info = 1;
8563 }
8564
8565 if (!next) {
8566 if (reada && level == 1)
8567 reada_walk_down(trans, root, wc, path);
8568 next = read_tree_block(root, bytenr, generation);
8569 if (IS_ERR(next)) {
8570 return PTR_ERR(next);
8571 } else if (!extent_buffer_uptodate(next)) {
8572 free_extent_buffer(next);
8573 return -EIO;
8574 }
8575 btrfs_tree_lock(next);
8576 btrfs_set_lock_blocking(next);
8577 }
8578
8579 level--;
8580 ASSERT(level == btrfs_header_level(next));
8581 if (level != btrfs_header_level(next)) {
8582 btrfs_err(root->fs_info, "mismatched level");
8583 ret = -EIO;
8584 goto out_unlock;
8585 }
8586 path->nodes[level] = next;
8587 path->slots[level] = 0;
8588 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8589 wc->level = level;
8590 if (wc->level == 1)
8591 wc->reada_slot = 0;
8592 return 0;
8593 skip:
8594 wc->refs[level - 1] = 0;
8595 wc->flags[level - 1] = 0;
8596 if (wc->stage == DROP_REFERENCE) {
8597 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8598 parent = path->nodes[level]->start;
8599 } else {
8600 ASSERT(root->root_key.objectid ==
8601 btrfs_header_owner(path->nodes[level]));
8602 if (root->root_key.objectid !=
8603 btrfs_header_owner(path->nodes[level])) {
8604 btrfs_err(root->fs_info,
8605 "mismatched block owner");
8606 ret = -EIO;
8607 goto out_unlock;
8608 }
8609 parent = 0;
8610 }
8611
8612 if (need_account) {
8613 ret = account_shared_subtree(trans, root, next,
8614 generation, level - 1);
8615 if (ret) {
8616 btrfs_err_rl(root->fs_info,
8617 "Error "
8618 "%d accounting shared subtree. Quota "
8619 "is out of sync, rescan required.",
8620 ret);
8621 }
8622 }
8623 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8624 root->root_key.objectid, level - 1, 0);
8625 if (ret)
8626 goto out_unlock;
8627 }
8628
8629 *lookup_info = 1;
8630 ret = 1;
8631
8632 out_unlock:
8633 btrfs_tree_unlock(next);
8634 free_extent_buffer(next);
8635
8636 return ret;
8637 }
8638
8639 /*
8640 * helper to process tree block while walking up the tree.
8641 *
8642 * when wc->stage == DROP_REFERENCE, this function drops
8643 * reference count on the block.
8644 *
8645 * when wc->stage == UPDATE_BACKREF, this function changes
8646 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8647 * to UPDATE_BACKREF previously while processing the block.
8648 *
8649 * NOTE: return value 1 means we should stop walking up.
8650 */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)8651 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8652 struct btrfs_root *root,
8653 struct btrfs_path *path,
8654 struct walk_control *wc)
8655 {
8656 int ret;
8657 int level = wc->level;
8658 struct extent_buffer *eb = path->nodes[level];
8659 u64 parent = 0;
8660
8661 if (wc->stage == UPDATE_BACKREF) {
8662 BUG_ON(wc->shared_level < level);
8663 if (level < wc->shared_level)
8664 goto out;
8665
8666 ret = find_next_key(path, level + 1, &wc->update_progress);
8667 if (ret > 0)
8668 wc->update_ref = 0;
8669
8670 wc->stage = DROP_REFERENCE;
8671 wc->shared_level = -1;
8672 path->slots[level] = 0;
8673
8674 /*
8675 * check reference count again if the block isn't locked.
8676 * we should start walking down the tree again if reference
8677 * count is one.
8678 */
8679 if (!path->locks[level]) {
8680 BUG_ON(level == 0);
8681 btrfs_tree_lock(eb);
8682 btrfs_set_lock_blocking(eb);
8683 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8684
8685 ret = btrfs_lookup_extent_info(trans, root,
8686 eb->start, level, 1,
8687 &wc->refs[level],
8688 &wc->flags[level]);
8689 if (ret < 0) {
8690 btrfs_tree_unlock_rw(eb, path->locks[level]);
8691 path->locks[level] = 0;
8692 return ret;
8693 }
8694 BUG_ON(wc->refs[level] == 0);
8695 if (wc->refs[level] == 1) {
8696 btrfs_tree_unlock_rw(eb, path->locks[level]);
8697 path->locks[level] = 0;
8698 return 1;
8699 }
8700 }
8701 }
8702
8703 /* wc->stage == DROP_REFERENCE */
8704 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8705
8706 if (wc->refs[level] == 1) {
8707 if (level == 0) {
8708 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8709 ret = btrfs_dec_ref(trans, root, eb, 1);
8710 else
8711 ret = btrfs_dec_ref(trans, root, eb, 0);
8712 BUG_ON(ret); /* -ENOMEM */
8713 ret = account_leaf_items(trans, root, eb);
8714 if (ret) {
8715 btrfs_err_rl(root->fs_info,
8716 "error "
8717 "%d accounting leaf items. Quota "
8718 "is out of sync, rescan required.",
8719 ret);
8720 }
8721 }
8722 /* make block locked assertion in clean_tree_block happy */
8723 if (!path->locks[level] &&
8724 btrfs_header_generation(eb) == trans->transid) {
8725 btrfs_tree_lock(eb);
8726 btrfs_set_lock_blocking(eb);
8727 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8728 }
8729 clean_tree_block(trans, root->fs_info, eb);
8730 }
8731
8732 if (eb == root->node) {
8733 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8734 parent = eb->start;
8735 else if (root->root_key.objectid != btrfs_header_owner(eb))
8736 goto owner_mismatch;
8737 } else {
8738 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8739 parent = path->nodes[level + 1]->start;
8740 else if (root->root_key.objectid !=
8741 btrfs_header_owner(path->nodes[level + 1]))
8742 goto owner_mismatch;
8743 }
8744
8745 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8746 out:
8747 wc->refs[level] = 0;
8748 wc->flags[level] = 0;
8749 return 0;
8750
8751 owner_mismatch:
8752 btrfs_err_rl(root->fs_info, "unexpected tree owner, have %llu expect %llu",
8753 btrfs_header_owner(eb), root->root_key.objectid);
8754 return -EUCLEAN;
8755 }
8756
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)8757 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8758 struct btrfs_root *root,
8759 struct btrfs_path *path,
8760 struct walk_control *wc)
8761 {
8762 int level = wc->level;
8763 int lookup_info = 1;
8764 int ret;
8765
8766 while (level >= 0) {
8767 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8768 if (ret > 0)
8769 break;
8770
8771 if (level == 0)
8772 break;
8773
8774 if (path->slots[level] >=
8775 btrfs_header_nritems(path->nodes[level]))
8776 break;
8777
8778 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8779 if (ret > 0) {
8780 path->slots[level]++;
8781 continue;
8782 } else if (ret < 0)
8783 return ret;
8784 level = wc->level;
8785 }
8786 return 0;
8787 }
8788
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)8789 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8790 struct btrfs_root *root,
8791 struct btrfs_path *path,
8792 struct walk_control *wc, int max_level)
8793 {
8794 int level = wc->level;
8795 int ret;
8796
8797 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8798 while (level < max_level && path->nodes[level]) {
8799 wc->level = level;
8800 if (path->slots[level] + 1 <
8801 btrfs_header_nritems(path->nodes[level])) {
8802 path->slots[level]++;
8803 return 0;
8804 } else {
8805 ret = walk_up_proc(trans, root, path, wc);
8806 if (ret > 0)
8807 return 0;
8808 if (ret < 0)
8809 return ret;
8810
8811 if (path->locks[level]) {
8812 btrfs_tree_unlock_rw(path->nodes[level],
8813 path->locks[level]);
8814 path->locks[level] = 0;
8815 }
8816 free_extent_buffer(path->nodes[level]);
8817 path->nodes[level] = NULL;
8818 level++;
8819 }
8820 }
8821 return 1;
8822 }
8823
8824 /*
8825 * drop a subvolume tree.
8826 *
8827 * this function traverses the tree freeing any blocks that only
8828 * referenced by the tree.
8829 *
8830 * when a shared tree block is found. this function decreases its
8831 * reference count by one. if update_ref is true, this function
8832 * also make sure backrefs for the shared block and all lower level
8833 * blocks are properly updated.
8834 *
8835 * If called with for_reloc == 0, may exit early with -EAGAIN
8836 */
btrfs_drop_snapshot(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,int update_ref,int for_reloc)8837 int btrfs_drop_snapshot(struct btrfs_root *root,
8838 struct btrfs_block_rsv *block_rsv, int update_ref,
8839 int for_reloc)
8840 {
8841 struct btrfs_path *path;
8842 struct btrfs_trans_handle *trans;
8843 struct btrfs_root *tree_root = root->fs_info->tree_root;
8844 struct btrfs_root_item *root_item = &root->root_item;
8845 struct walk_control *wc;
8846 struct btrfs_key key;
8847 int err = 0;
8848 int ret;
8849 int level;
8850 bool root_dropped = false;
8851
8852 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8853
8854 path = btrfs_alloc_path();
8855 if (!path) {
8856 err = -ENOMEM;
8857 goto out;
8858 }
8859
8860 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8861 if (!wc) {
8862 btrfs_free_path(path);
8863 err = -ENOMEM;
8864 goto out;
8865 }
8866
8867 trans = btrfs_start_transaction(tree_root, 0);
8868 if (IS_ERR(trans)) {
8869 err = PTR_ERR(trans);
8870 goto out_free;
8871 }
8872
8873 if (block_rsv)
8874 trans->block_rsv = block_rsv;
8875
8876 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8877 level = btrfs_header_level(root->node);
8878 path->nodes[level] = btrfs_lock_root_node(root);
8879 btrfs_set_lock_blocking(path->nodes[level]);
8880 path->slots[level] = 0;
8881 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8882 memset(&wc->update_progress, 0,
8883 sizeof(wc->update_progress));
8884 } else {
8885 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8886 memcpy(&wc->update_progress, &key,
8887 sizeof(wc->update_progress));
8888
8889 level = root_item->drop_level;
8890 BUG_ON(level == 0);
8891 path->lowest_level = level;
8892 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8893 path->lowest_level = 0;
8894 if (ret < 0) {
8895 err = ret;
8896 goto out_end_trans;
8897 }
8898 WARN_ON(ret > 0);
8899
8900 /*
8901 * unlock our path, this is safe because only this
8902 * function is allowed to delete this snapshot
8903 */
8904 btrfs_unlock_up_safe(path, 0);
8905
8906 level = btrfs_header_level(root->node);
8907 while (1) {
8908 btrfs_tree_lock(path->nodes[level]);
8909 btrfs_set_lock_blocking(path->nodes[level]);
8910 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8911
8912 ret = btrfs_lookup_extent_info(trans, root,
8913 path->nodes[level]->start,
8914 level, 1, &wc->refs[level],
8915 &wc->flags[level]);
8916 if (ret < 0) {
8917 err = ret;
8918 goto out_end_trans;
8919 }
8920 BUG_ON(wc->refs[level] == 0);
8921
8922 if (level == root_item->drop_level)
8923 break;
8924
8925 btrfs_tree_unlock(path->nodes[level]);
8926 path->locks[level] = 0;
8927 WARN_ON(wc->refs[level] != 1);
8928 level--;
8929 }
8930 }
8931
8932 wc->level = level;
8933 wc->shared_level = -1;
8934 wc->stage = DROP_REFERENCE;
8935 wc->update_ref = update_ref;
8936 wc->keep_locks = 0;
8937 wc->for_reloc = for_reloc;
8938 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8939
8940 while (1) {
8941
8942 ret = walk_down_tree(trans, root, path, wc);
8943 if (ret < 0) {
8944 err = ret;
8945 break;
8946 }
8947
8948 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8949 if (ret < 0) {
8950 err = ret;
8951 break;
8952 }
8953
8954 if (ret > 0) {
8955 BUG_ON(wc->stage != DROP_REFERENCE);
8956 break;
8957 }
8958
8959 if (wc->stage == DROP_REFERENCE) {
8960 level = wc->level;
8961 btrfs_node_key(path->nodes[level],
8962 &root_item->drop_progress,
8963 path->slots[level]);
8964 root_item->drop_level = level;
8965 }
8966
8967 BUG_ON(wc->level == 0);
8968 if (btrfs_should_end_transaction(trans, tree_root) ||
8969 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8970 ret = btrfs_update_root(trans, tree_root,
8971 &root->root_key,
8972 root_item);
8973 if (ret) {
8974 btrfs_abort_transaction(trans, tree_root, ret);
8975 err = ret;
8976 goto out_end_trans;
8977 }
8978
8979 btrfs_end_transaction_throttle(trans, tree_root);
8980 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8981 pr_debug("BTRFS: drop snapshot early exit\n");
8982 err = -EAGAIN;
8983 goto out_free;
8984 }
8985
8986 trans = btrfs_start_transaction(tree_root, 0);
8987 if (IS_ERR(trans)) {
8988 err = PTR_ERR(trans);
8989 goto out_free;
8990 }
8991 if (block_rsv)
8992 trans->block_rsv = block_rsv;
8993 }
8994 }
8995 btrfs_release_path(path);
8996 if (err)
8997 goto out_end_trans;
8998
8999 ret = btrfs_del_root(trans, tree_root, &root->root_key);
9000 if (ret) {
9001 btrfs_abort_transaction(trans, tree_root, ret);
9002 goto out_end_trans;
9003 }
9004
9005 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9006 ret = btrfs_find_root(tree_root, &root->root_key, path,
9007 NULL, NULL);
9008 if (ret < 0) {
9009 btrfs_abort_transaction(trans, tree_root, ret);
9010 err = ret;
9011 goto out_end_trans;
9012 } else if (ret > 0) {
9013 /* if we fail to delete the orphan item this time
9014 * around, it'll get picked up the next time.
9015 *
9016 * The most common failure here is just -ENOENT.
9017 */
9018 btrfs_del_orphan_item(trans, tree_root,
9019 root->root_key.objectid);
9020 }
9021 }
9022
9023 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9024 btrfs_add_dropped_root(trans, root);
9025 } else {
9026 free_extent_buffer(root->node);
9027 free_extent_buffer(root->commit_root);
9028 btrfs_put_fs_root(root);
9029 }
9030 root_dropped = true;
9031 out_end_trans:
9032 btrfs_end_transaction_throttle(trans, tree_root);
9033 out_free:
9034 kfree(wc);
9035 btrfs_free_path(path);
9036 out:
9037 /*
9038 * So if we need to stop dropping the snapshot for whatever reason we
9039 * need to make sure to add it back to the dead root list so that we
9040 * keep trying to do the work later. This also cleans up roots if we
9041 * don't have it in the radix (like when we recover after a power fail
9042 * or unmount) so we don't leak memory.
9043 */
9044 if (!for_reloc && root_dropped == false)
9045 btrfs_add_dead_root(root);
9046 if (err && err != -EAGAIN)
9047 btrfs_std_error(root->fs_info, err, NULL);
9048 return err;
9049 }
9050
9051 /*
9052 * drop subtree rooted at tree block 'node'.
9053 *
9054 * NOTE: this function will unlock and release tree block 'node'
9055 * only used by relocation code
9056 */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)9057 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9058 struct btrfs_root *root,
9059 struct extent_buffer *node,
9060 struct extent_buffer *parent)
9061 {
9062 struct btrfs_path *path;
9063 struct walk_control *wc;
9064 int level;
9065 int parent_level;
9066 int ret = 0;
9067 int wret;
9068
9069 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9070
9071 path = btrfs_alloc_path();
9072 if (!path)
9073 return -ENOMEM;
9074
9075 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9076 if (!wc) {
9077 btrfs_free_path(path);
9078 return -ENOMEM;
9079 }
9080
9081 btrfs_assert_tree_locked(parent);
9082 parent_level = btrfs_header_level(parent);
9083 extent_buffer_get(parent);
9084 path->nodes[parent_level] = parent;
9085 path->slots[parent_level] = btrfs_header_nritems(parent);
9086
9087 btrfs_assert_tree_locked(node);
9088 level = btrfs_header_level(node);
9089 path->nodes[level] = node;
9090 path->slots[level] = 0;
9091 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9092
9093 wc->refs[parent_level] = 1;
9094 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9095 wc->level = level;
9096 wc->shared_level = -1;
9097 wc->stage = DROP_REFERENCE;
9098 wc->update_ref = 0;
9099 wc->keep_locks = 1;
9100 wc->for_reloc = 1;
9101 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9102
9103 while (1) {
9104 wret = walk_down_tree(trans, root, path, wc);
9105 if (wret < 0) {
9106 ret = wret;
9107 break;
9108 }
9109
9110 wret = walk_up_tree(trans, root, path, wc, parent_level);
9111 if (wret < 0)
9112 ret = wret;
9113 if (wret != 0)
9114 break;
9115 }
9116
9117 kfree(wc);
9118 btrfs_free_path(path);
9119 return ret;
9120 }
9121
update_block_group_flags(struct btrfs_root * root,u64 flags)9122 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9123 {
9124 u64 num_devices;
9125 u64 stripped;
9126
9127 /*
9128 * if restripe for this chunk_type is on pick target profile and
9129 * return, otherwise do the usual balance
9130 */
9131 stripped = get_restripe_target(root->fs_info, flags);
9132 if (stripped)
9133 return extended_to_chunk(stripped);
9134
9135 num_devices = root->fs_info->fs_devices->rw_devices;
9136
9137 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9138 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9139 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9140
9141 if (num_devices == 1) {
9142 stripped |= BTRFS_BLOCK_GROUP_DUP;
9143 stripped = flags & ~stripped;
9144
9145 /* turn raid0 into single device chunks */
9146 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9147 return stripped;
9148
9149 /* turn mirroring into duplication */
9150 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9151 BTRFS_BLOCK_GROUP_RAID10))
9152 return stripped | BTRFS_BLOCK_GROUP_DUP;
9153 } else {
9154 /* they already had raid on here, just return */
9155 if (flags & stripped)
9156 return flags;
9157
9158 stripped |= BTRFS_BLOCK_GROUP_DUP;
9159 stripped = flags & ~stripped;
9160
9161 /* switch duplicated blocks with raid1 */
9162 if (flags & BTRFS_BLOCK_GROUP_DUP)
9163 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9164
9165 /* this is drive concat, leave it alone */
9166 }
9167
9168 return flags;
9169 }
9170
inc_block_group_ro(struct btrfs_block_group_cache * cache,int force)9171 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9172 {
9173 struct btrfs_space_info *sinfo = cache->space_info;
9174 u64 num_bytes;
9175 u64 min_allocable_bytes;
9176 int ret = -ENOSPC;
9177
9178 /*
9179 * We need some metadata space and system metadata space for
9180 * allocating chunks in some corner cases until we force to set
9181 * it to be readonly.
9182 */
9183 if ((sinfo->flags &
9184 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9185 !force)
9186 min_allocable_bytes = 1 * 1024 * 1024;
9187 else
9188 min_allocable_bytes = 0;
9189
9190 spin_lock(&sinfo->lock);
9191 spin_lock(&cache->lock);
9192
9193 if (cache->ro) {
9194 cache->ro++;
9195 ret = 0;
9196 goto out;
9197 }
9198
9199 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9200 cache->bytes_super - btrfs_block_group_used(&cache->item);
9201
9202 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9203 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9204 min_allocable_bytes <= sinfo->total_bytes) {
9205 sinfo->bytes_readonly += num_bytes;
9206 cache->ro++;
9207 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9208 ret = 0;
9209 }
9210 out:
9211 spin_unlock(&cache->lock);
9212 spin_unlock(&sinfo->lock);
9213 return ret;
9214 }
9215
btrfs_inc_block_group_ro(struct btrfs_root * root,struct btrfs_block_group_cache * cache)9216 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9217 struct btrfs_block_group_cache *cache)
9218
9219 {
9220 struct btrfs_trans_handle *trans;
9221 u64 alloc_flags;
9222 int ret;
9223
9224 again:
9225 trans = btrfs_join_transaction(root);
9226 if (IS_ERR(trans))
9227 return PTR_ERR(trans);
9228
9229 /*
9230 * we're not allowed to set block groups readonly after the dirty
9231 * block groups cache has started writing. If it already started,
9232 * back off and let this transaction commit
9233 */
9234 mutex_lock(&root->fs_info->ro_block_group_mutex);
9235 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9236 u64 transid = trans->transid;
9237
9238 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9239 btrfs_end_transaction(trans, root);
9240
9241 ret = btrfs_wait_for_commit(root, transid);
9242 if (ret)
9243 return ret;
9244 goto again;
9245 }
9246
9247 /*
9248 * if we are changing raid levels, try to allocate a corresponding
9249 * block group with the new raid level.
9250 */
9251 alloc_flags = update_block_group_flags(root, cache->flags);
9252 if (alloc_flags != cache->flags) {
9253 ret = do_chunk_alloc(trans, root, alloc_flags,
9254 CHUNK_ALLOC_FORCE);
9255 /*
9256 * ENOSPC is allowed here, we may have enough space
9257 * already allocated at the new raid level to
9258 * carry on
9259 */
9260 if (ret == -ENOSPC)
9261 ret = 0;
9262 if (ret < 0)
9263 goto out;
9264 }
9265
9266 ret = inc_block_group_ro(cache, 0);
9267 if (!ret)
9268 goto out;
9269 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9270 ret = do_chunk_alloc(trans, root, alloc_flags,
9271 CHUNK_ALLOC_FORCE);
9272 if (ret < 0)
9273 goto out;
9274 ret = inc_block_group_ro(cache, 0);
9275 out:
9276 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9277 alloc_flags = update_block_group_flags(root, cache->flags);
9278 lock_chunks(root->fs_info->chunk_root);
9279 check_system_chunk(trans, root, alloc_flags);
9280 unlock_chunks(root->fs_info->chunk_root);
9281 }
9282 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9283
9284 btrfs_end_transaction(trans, root);
9285 return ret;
9286 }
9287
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 type)9288 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9289 struct btrfs_root *root, u64 type)
9290 {
9291 u64 alloc_flags = get_alloc_profile(root, type);
9292 return do_chunk_alloc(trans, root, alloc_flags,
9293 CHUNK_ALLOC_FORCE);
9294 }
9295
9296 /*
9297 * helper to account the unused space of all the readonly block group in the
9298 * space_info. takes mirrors into account.
9299 */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)9300 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9301 {
9302 struct btrfs_block_group_cache *block_group;
9303 u64 free_bytes = 0;
9304 int factor;
9305
9306 /* It's df, we don't care if it's racey */
9307 if (list_empty(&sinfo->ro_bgs))
9308 return 0;
9309
9310 spin_lock(&sinfo->lock);
9311 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9312 spin_lock(&block_group->lock);
9313
9314 if (!block_group->ro) {
9315 spin_unlock(&block_group->lock);
9316 continue;
9317 }
9318
9319 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9320 BTRFS_BLOCK_GROUP_RAID10 |
9321 BTRFS_BLOCK_GROUP_DUP))
9322 factor = 2;
9323 else
9324 factor = 1;
9325
9326 free_bytes += (block_group->key.offset -
9327 btrfs_block_group_used(&block_group->item)) *
9328 factor;
9329
9330 spin_unlock(&block_group->lock);
9331 }
9332 spin_unlock(&sinfo->lock);
9333
9334 return free_bytes;
9335 }
9336
btrfs_dec_block_group_ro(struct btrfs_root * root,struct btrfs_block_group_cache * cache)9337 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9338 struct btrfs_block_group_cache *cache)
9339 {
9340 struct btrfs_space_info *sinfo = cache->space_info;
9341 u64 num_bytes;
9342
9343 BUG_ON(!cache->ro);
9344
9345 spin_lock(&sinfo->lock);
9346 spin_lock(&cache->lock);
9347 if (!--cache->ro) {
9348 num_bytes = cache->key.offset - cache->reserved -
9349 cache->pinned - cache->bytes_super -
9350 btrfs_block_group_used(&cache->item);
9351 sinfo->bytes_readonly -= num_bytes;
9352 list_del_init(&cache->ro_list);
9353 }
9354 spin_unlock(&cache->lock);
9355 spin_unlock(&sinfo->lock);
9356 }
9357
9358 /*
9359 * checks to see if its even possible to relocate this block group.
9360 *
9361 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9362 * ok to go ahead and try.
9363 */
btrfs_can_relocate(struct btrfs_root * root,u64 bytenr)9364 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9365 {
9366 struct btrfs_block_group_cache *block_group;
9367 struct btrfs_space_info *space_info;
9368 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9369 struct btrfs_device *device;
9370 struct btrfs_trans_handle *trans;
9371 u64 min_free;
9372 u64 dev_min = 1;
9373 u64 dev_nr = 0;
9374 u64 target;
9375 int index;
9376 int full = 0;
9377 int ret = 0;
9378
9379 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9380
9381 /* odd, couldn't find the block group, leave it alone */
9382 if (!block_group)
9383 return -1;
9384
9385 min_free = btrfs_block_group_used(&block_group->item);
9386
9387 /* no bytes used, we're good */
9388 if (!min_free)
9389 goto out;
9390
9391 space_info = block_group->space_info;
9392 spin_lock(&space_info->lock);
9393
9394 full = space_info->full;
9395
9396 /*
9397 * if this is the last block group we have in this space, we can't
9398 * relocate it unless we're able to allocate a new chunk below.
9399 *
9400 * Otherwise, we need to make sure we have room in the space to handle
9401 * all of the extents from this block group. If we can, we're good
9402 */
9403 if ((space_info->total_bytes != block_group->key.offset) &&
9404 (space_info->bytes_used + space_info->bytes_reserved +
9405 space_info->bytes_pinned + space_info->bytes_readonly +
9406 min_free < space_info->total_bytes)) {
9407 spin_unlock(&space_info->lock);
9408 goto out;
9409 }
9410 spin_unlock(&space_info->lock);
9411
9412 /*
9413 * ok we don't have enough space, but maybe we have free space on our
9414 * devices to allocate new chunks for relocation, so loop through our
9415 * alloc devices and guess if we have enough space. if this block
9416 * group is going to be restriped, run checks against the target
9417 * profile instead of the current one.
9418 */
9419 ret = -1;
9420
9421 /*
9422 * index:
9423 * 0: raid10
9424 * 1: raid1
9425 * 2: dup
9426 * 3: raid0
9427 * 4: single
9428 */
9429 target = get_restripe_target(root->fs_info, block_group->flags);
9430 if (target) {
9431 index = __get_raid_index(extended_to_chunk(target));
9432 } else {
9433 /*
9434 * this is just a balance, so if we were marked as full
9435 * we know there is no space for a new chunk
9436 */
9437 if (full)
9438 goto out;
9439
9440 index = get_block_group_index(block_group);
9441 }
9442
9443 if (index == BTRFS_RAID_RAID10) {
9444 dev_min = 4;
9445 /* Divide by 2 */
9446 min_free >>= 1;
9447 } else if (index == BTRFS_RAID_RAID1) {
9448 dev_min = 2;
9449 } else if (index == BTRFS_RAID_DUP) {
9450 /* Multiply by 2 */
9451 min_free <<= 1;
9452 } else if (index == BTRFS_RAID_RAID0) {
9453 dev_min = fs_devices->rw_devices;
9454 min_free = div64_u64(min_free, dev_min);
9455 }
9456
9457 /* We need to do this so that we can look at pending chunks */
9458 trans = btrfs_join_transaction(root);
9459 if (IS_ERR(trans)) {
9460 ret = PTR_ERR(trans);
9461 goto out;
9462 }
9463
9464 mutex_lock(&root->fs_info->chunk_mutex);
9465 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9466 u64 dev_offset;
9467
9468 /*
9469 * check to make sure we can actually find a chunk with enough
9470 * space to fit our block group in.
9471 */
9472 if (device->total_bytes > device->bytes_used + min_free &&
9473 !device->is_tgtdev_for_dev_replace) {
9474 ret = find_free_dev_extent(trans, device, min_free,
9475 &dev_offset, NULL);
9476 if (!ret)
9477 dev_nr++;
9478
9479 if (dev_nr >= dev_min)
9480 break;
9481
9482 ret = -1;
9483 }
9484 }
9485 mutex_unlock(&root->fs_info->chunk_mutex);
9486 btrfs_end_transaction(trans, root);
9487 out:
9488 btrfs_put_block_group(block_group);
9489 return ret;
9490 }
9491
find_first_block_group(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key)9492 static int find_first_block_group(struct btrfs_root *root,
9493 struct btrfs_path *path, struct btrfs_key *key)
9494 {
9495 int ret = 0;
9496 struct btrfs_key found_key;
9497 struct extent_buffer *leaf;
9498 struct btrfs_block_group_item bg;
9499 u64 flags;
9500 int slot;
9501
9502 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9503 if (ret < 0)
9504 goto out;
9505
9506 while (1) {
9507 slot = path->slots[0];
9508 leaf = path->nodes[0];
9509 if (slot >= btrfs_header_nritems(leaf)) {
9510 ret = btrfs_next_leaf(root, path);
9511 if (ret == 0)
9512 continue;
9513 if (ret < 0)
9514 goto out;
9515 break;
9516 }
9517 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9518
9519 if (found_key.objectid >= key->objectid &&
9520 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9521 struct extent_map_tree *em_tree;
9522 struct extent_map *em;
9523
9524 em_tree = &root->fs_info->mapping_tree.map_tree;
9525 read_lock(&em_tree->lock);
9526 em = lookup_extent_mapping(em_tree, found_key.objectid,
9527 found_key.offset);
9528 read_unlock(&em_tree->lock);
9529 if (!em) {
9530 btrfs_err(root->fs_info,
9531 "logical %llu len %llu found bg but no related chunk",
9532 found_key.objectid, found_key.offset);
9533 ret = -ENOENT;
9534 } else if (em->start != found_key.objectid ||
9535 em->len != found_key.offset) {
9536 btrfs_err(root->fs_info,
9537 "block group %llu len %llu mismatch with chunk %llu len %llu",
9538 found_key.objectid, found_key.offset,
9539 em->start, em->len);
9540 ret = -EUCLEAN;
9541 } else {
9542 read_extent_buffer(leaf, &bg,
9543 btrfs_item_ptr_offset(leaf, slot),
9544 sizeof(bg));
9545 flags = btrfs_block_group_flags(&bg) &
9546 BTRFS_BLOCK_GROUP_TYPE_MASK;
9547
9548 if (flags != (em->map_lookup->type &
9549 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9550 btrfs_err(root->fs_info,
9551 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9552 found_key.objectid,
9553 found_key.offset, flags,
9554 (BTRFS_BLOCK_GROUP_TYPE_MASK &
9555 em->map_lookup->type));
9556 ret = -EUCLEAN;
9557 } else {
9558 ret = 0;
9559 }
9560 }
9561 free_extent_map(em);
9562 goto out;
9563 }
9564 path->slots[0]++;
9565 }
9566 out:
9567 return ret;
9568 }
9569
btrfs_put_block_group_cache(struct btrfs_fs_info * info)9570 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9571 {
9572 struct btrfs_block_group_cache *block_group;
9573 u64 last = 0;
9574
9575 while (1) {
9576 struct inode *inode;
9577
9578 block_group = btrfs_lookup_first_block_group(info, last);
9579 while (block_group) {
9580 wait_block_group_cache_done(block_group);
9581 spin_lock(&block_group->lock);
9582 if (block_group->iref)
9583 break;
9584 spin_unlock(&block_group->lock);
9585 block_group = next_block_group(info->tree_root,
9586 block_group);
9587 }
9588 if (!block_group) {
9589 if (last == 0)
9590 break;
9591 last = 0;
9592 continue;
9593 }
9594
9595 inode = block_group->inode;
9596 block_group->iref = 0;
9597 block_group->inode = NULL;
9598 spin_unlock(&block_group->lock);
9599 iput(inode);
9600 last = block_group->key.objectid + block_group->key.offset;
9601 btrfs_put_block_group(block_group);
9602 }
9603 }
9604
btrfs_free_block_groups(struct btrfs_fs_info * info)9605 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9606 {
9607 struct btrfs_block_group_cache *block_group;
9608 struct btrfs_space_info *space_info;
9609 struct btrfs_caching_control *caching_ctl;
9610 struct rb_node *n;
9611
9612 down_write(&info->commit_root_sem);
9613 while (!list_empty(&info->caching_block_groups)) {
9614 caching_ctl = list_entry(info->caching_block_groups.next,
9615 struct btrfs_caching_control, list);
9616 list_del(&caching_ctl->list);
9617 put_caching_control(caching_ctl);
9618 }
9619 up_write(&info->commit_root_sem);
9620
9621 spin_lock(&info->unused_bgs_lock);
9622 while (!list_empty(&info->unused_bgs)) {
9623 block_group = list_first_entry(&info->unused_bgs,
9624 struct btrfs_block_group_cache,
9625 bg_list);
9626 list_del_init(&block_group->bg_list);
9627 btrfs_put_block_group(block_group);
9628 }
9629 spin_unlock(&info->unused_bgs_lock);
9630
9631 spin_lock(&info->block_group_cache_lock);
9632 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9633 block_group = rb_entry(n, struct btrfs_block_group_cache,
9634 cache_node);
9635 rb_erase(&block_group->cache_node,
9636 &info->block_group_cache_tree);
9637 RB_CLEAR_NODE(&block_group->cache_node);
9638 spin_unlock(&info->block_group_cache_lock);
9639
9640 down_write(&block_group->space_info->groups_sem);
9641 list_del(&block_group->list);
9642 up_write(&block_group->space_info->groups_sem);
9643
9644 if (block_group->cached == BTRFS_CACHE_STARTED)
9645 wait_block_group_cache_done(block_group);
9646
9647 /*
9648 * We haven't cached this block group, which means we could
9649 * possibly have excluded extents on this block group.
9650 */
9651 if (block_group->cached == BTRFS_CACHE_NO ||
9652 block_group->cached == BTRFS_CACHE_ERROR)
9653 free_excluded_extents(info->extent_root, block_group);
9654
9655 btrfs_remove_free_space_cache(block_group);
9656 btrfs_put_block_group(block_group);
9657
9658 spin_lock(&info->block_group_cache_lock);
9659 }
9660 spin_unlock(&info->block_group_cache_lock);
9661
9662 /* now that all the block groups are freed, go through and
9663 * free all the space_info structs. This is only called during
9664 * the final stages of unmount, and so we know nobody is
9665 * using them. We call synchronize_rcu() once before we start,
9666 * just to be on the safe side.
9667 */
9668 synchronize_rcu();
9669
9670 release_global_block_rsv(info);
9671
9672 while (!list_empty(&info->space_info)) {
9673 int i;
9674
9675 space_info = list_entry(info->space_info.next,
9676 struct btrfs_space_info,
9677 list);
9678 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9679 if (WARN_ON(space_info->bytes_pinned > 0 ||
9680 space_info->bytes_reserved > 0 ||
9681 space_info->bytes_may_use > 0)) {
9682 dump_space_info(space_info, 0, 0);
9683 }
9684 }
9685 list_del(&space_info->list);
9686 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9687 struct kobject *kobj;
9688 kobj = space_info->block_group_kobjs[i];
9689 space_info->block_group_kobjs[i] = NULL;
9690 if (kobj) {
9691 kobject_del(kobj);
9692 kobject_put(kobj);
9693 }
9694 }
9695 kobject_del(&space_info->kobj);
9696 kobject_put(&space_info->kobj);
9697 }
9698 return 0;
9699 }
9700
__link_block_group(struct btrfs_space_info * space_info,struct btrfs_block_group_cache * cache)9701 static void __link_block_group(struct btrfs_space_info *space_info,
9702 struct btrfs_block_group_cache *cache)
9703 {
9704 int index = get_block_group_index(cache);
9705 bool first = false;
9706
9707 down_write(&space_info->groups_sem);
9708 if (list_empty(&space_info->block_groups[index]))
9709 first = true;
9710 list_add_tail(&cache->list, &space_info->block_groups[index]);
9711 up_write(&space_info->groups_sem);
9712
9713 if (first) {
9714 struct raid_kobject *rkobj;
9715 int ret;
9716
9717 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9718 if (!rkobj)
9719 goto out_err;
9720 rkobj->raid_type = index;
9721 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9722 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9723 "%s", get_raid_name(index));
9724 if (ret) {
9725 kobject_put(&rkobj->kobj);
9726 goto out_err;
9727 }
9728 space_info->block_group_kobjs[index] = &rkobj->kobj;
9729 }
9730
9731 return;
9732 out_err:
9733 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9734 }
9735
9736 static struct btrfs_block_group_cache *
btrfs_create_block_group_cache(struct btrfs_root * root,u64 start,u64 size)9737 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9738 {
9739 struct btrfs_block_group_cache *cache;
9740
9741 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9742 if (!cache)
9743 return NULL;
9744
9745 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9746 GFP_NOFS);
9747 if (!cache->free_space_ctl) {
9748 kfree(cache);
9749 return NULL;
9750 }
9751
9752 cache->key.objectid = start;
9753 cache->key.offset = size;
9754 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9755
9756 cache->sectorsize = root->sectorsize;
9757 cache->fs_info = root->fs_info;
9758 cache->full_stripe_len = btrfs_full_stripe_len(root,
9759 &root->fs_info->mapping_tree,
9760 start);
9761 atomic_set(&cache->count, 1);
9762 spin_lock_init(&cache->lock);
9763 init_rwsem(&cache->data_rwsem);
9764 INIT_LIST_HEAD(&cache->list);
9765 INIT_LIST_HEAD(&cache->cluster_list);
9766 INIT_LIST_HEAD(&cache->bg_list);
9767 INIT_LIST_HEAD(&cache->ro_list);
9768 INIT_LIST_HEAD(&cache->dirty_list);
9769 INIT_LIST_HEAD(&cache->io_list);
9770 btrfs_init_free_space_ctl(cache);
9771 atomic_set(&cache->trimming, 0);
9772
9773 return cache;
9774 }
9775
9776
9777 /*
9778 * Iterate all chunks and verify that each of them has the corresponding block
9779 * group
9780 */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)9781 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
9782 {
9783 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
9784 struct extent_map *em;
9785 struct btrfs_block_group_cache *bg;
9786 u64 start = 0;
9787 int ret = 0;
9788
9789 while (1) {
9790 read_lock(&map_tree->map_tree.lock);
9791 /*
9792 * lookup_extent_mapping will return the first extent map
9793 * intersecting the range, so setting @len to 1 is enough to
9794 * get the first chunk.
9795 */
9796 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
9797 read_unlock(&map_tree->map_tree.lock);
9798 if (!em)
9799 break;
9800
9801 bg = btrfs_lookup_block_group(fs_info, em->start);
9802 if (!bg) {
9803 btrfs_err(fs_info,
9804 "chunk start=%llu len=%llu doesn't have corresponding block group",
9805 em->start, em->len);
9806 ret = -EUCLEAN;
9807 free_extent_map(em);
9808 break;
9809 }
9810 if (bg->key.objectid != em->start ||
9811 bg->key.offset != em->len ||
9812 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
9813 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9814 btrfs_err(fs_info,
9815 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
9816 em->start, em->len,
9817 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
9818 bg->key.objectid, bg->key.offset,
9819 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
9820 ret = -EUCLEAN;
9821 free_extent_map(em);
9822 btrfs_put_block_group(bg);
9823 break;
9824 }
9825 start = em->start + em->len;
9826 free_extent_map(em);
9827 btrfs_put_block_group(bg);
9828 }
9829 return ret;
9830 }
9831
btrfs_read_block_groups(struct btrfs_root * root)9832 int btrfs_read_block_groups(struct btrfs_root *root)
9833 {
9834 struct btrfs_path *path;
9835 int ret;
9836 struct btrfs_block_group_cache *cache;
9837 struct btrfs_fs_info *info = root->fs_info;
9838 struct btrfs_space_info *space_info;
9839 struct btrfs_key key;
9840 struct btrfs_key found_key;
9841 struct extent_buffer *leaf;
9842 int need_clear = 0;
9843 u64 cache_gen;
9844 u64 feature;
9845 int mixed;
9846
9847 feature = btrfs_super_incompat_flags(info->super_copy);
9848 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9849
9850 root = info->extent_root;
9851 key.objectid = 0;
9852 key.offset = 0;
9853 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9854 path = btrfs_alloc_path();
9855 if (!path)
9856 return -ENOMEM;
9857 path->reada = 1;
9858
9859 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9860 if (btrfs_test_opt(root, SPACE_CACHE) &&
9861 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9862 need_clear = 1;
9863 if (btrfs_test_opt(root, CLEAR_CACHE))
9864 need_clear = 1;
9865
9866 while (1) {
9867 ret = find_first_block_group(root, path, &key);
9868 if (ret > 0)
9869 break;
9870 if (ret != 0)
9871 goto error;
9872
9873 leaf = path->nodes[0];
9874 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9875
9876 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9877 found_key.offset);
9878 if (!cache) {
9879 ret = -ENOMEM;
9880 goto error;
9881 }
9882
9883 if (need_clear) {
9884 /*
9885 * When we mount with old space cache, we need to
9886 * set BTRFS_DC_CLEAR and set dirty flag.
9887 *
9888 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9889 * truncate the old free space cache inode and
9890 * setup a new one.
9891 * b) Setting 'dirty flag' makes sure that we flush
9892 * the new space cache info onto disk.
9893 */
9894 if (btrfs_test_opt(root, SPACE_CACHE))
9895 cache->disk_cache_state = BTRFS_DC_CLEAR;
9896 }
9897
9898 read_extent_buffer(leaf, &cache->item,
9899 btrfs_item_ptr_offset(leaf, path->slots[0]),
9900 sizeof(cache->item));
9901 cache->flags = btrfs_block_group_flags(&cache->item);
9902 if (!mixed &&
9903 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
9904 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
9905 btrfs_err(info,
9906 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
9907 cache->key.objectid);
9908 btrfs_put_block_group(cache);
9909 ret = -EINVAL;
9910 goto error;
9911 }
9912
9913 key.objectid = found_key.objectid + found_key.offset;
9914 btrfs_release_path(path);
9915
9916 /*
9917 * We need to exclude the super stripes now so that the space
9918 * info has super bytes accounted for, otherwise we'll think
9919 * we have more space than we actually do.
9920 */
9921 ret = exclude_super_stripes(root, cache);
9922 if (ret) {
9923 /*
9924 * We may have excluded something, so call this just in
9925 * case.
9926 */
9927 free_excluded_extents(root, cache);
9928 btrfs_put_block_group(cache);
9929 goto error;
9930 }
9931
9932 /*
9933 * check for two cases, either we are full, and therefore
9934 * don't need to bother with the caching work since we won't
9935 * find any space, or we are empty, and we can just add all
9936 * the space in and be done with it. This saves us _alot_ of
9937 * time, particularly in the full case.
9938 */
9939 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9940 cache->last_byte_to_unpin = (u64)-1;
9941 cache->cached = BTRFS_CACHE_FINISHED;
9942 free_excluded_extents(root, cache);
9943 } else if (btrfs_block_group_used(&cache->item) == 0) {
9944 cache->last_byte_to_unpin = (u64)-1;
9945 cache->cached = BTRFS_CACHE_FINISHED;
9946 add_new_free_space(cache, root->fs_info,
9947 found_key.objectid,
9948 found_key.objectid +
9949 found_key.offset);
9950 free_excluded_extents(root, cache);
9951 }
9952
9953 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9954 if (ret) {
9955 btrfs_remove_free_space_cache(cache);
9956 btrfs_put_block_group(cache);
9957 goto error;
9958 }
9959
9960 ret = update_space_info(info, cache->flags, found_key.offset,
9961 btrfs_block_group_used(&cache->item),
9962 &space_info);
9963 if (ret) {
9964 btrfs_remove_free_space_cache(cache);
9965 spin_lock(&info->block_group_cache_lock);
9966 rb_erase(&cache->cache_node,
9967 &info->block_group_cache_tree);
9968 RB_CLEAR_NODE(&cache->cache_node);
9969 spin_unlock(&info->block_group_cache_lock);
9970 btrfs_put_block_group(cache);
9971 goto error;
9972 }
9973
9974 cache->space_info = space_info;
9975 spin_lock(&cache->space_info->lock);
9976 cache->space_info->bytes_readonly += cache->bytes_super;
9977 spin_unlock(&cache->space_info->lock);
9978
9979 __link_block_group(space_info, cache);
9980
9981 set_avail_alloc_bits(root->fs_info, cache->flags);
9982 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9983 inc_block_group_ro(cache, 1);
9984 } else if (btrfs_block_group_used(&cache->item) == 0) {
9985 spin_lock(&info->unused_bgs_lock);
9986 /* Should always be true but just in case. */
9987 if (list_empty(&cache->bg_list)) {
9988 btrfs_get_block_group(cache);
9989 list_add_tail(&cache->bg_list,
9990 &info->unused_bgs);
9991 }
9992 spin_unlock(&info->unused_bgs_lock);
9993 }
9994 }
9995
9996 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9997 if (!(get_alloc_profile(root, space_info->flags) &
9998 (BTRFS_BLOCK_GROUP_RAID10 |
9999 BTRFS_BLOCK_GROUP_RAID1 |
10000 BTRFS_BLOCK_GROUP_RAID5 |
10001 BTRFS_BLOCK_GROUP_RAID6 |
10002 BTRFS_BLOCK_GROUP_DUP)))
10003 continue;
10004 /*
10005 * avoid allocating from un-mirrored block group if there are
10006 * mirrored block groups.
10007 */
10008 list_for_each_entry(cache,
10009 &space_info->block_groups[BTRFS_RAID_RAID0],
10010 list)
10011 inc_block_group_ro(cache, 1);
10012 list_for_each_entry(cache,
10013 &space_info->block_groups[BTRFS_RAID_SINGLE],
10014 list)
10015 inc_block_group_ro(cache, 1);
10016 }
10017
10018 init_global_block_rsv(info);
10019 ret = check_chunk_block_group_mappings(info);
10020 error:
10021 btrfs_free_path(path);
10022 return ret;
10023 }
10024
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans,struct btrfs_root * root)10025 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10026 struct btrfs_root *root)
10027 {
10028 struct btrfs_block_group_cache *block_group;
10029 struct btrfs_root *extent_root = root->fs_info->extent_root;
10030 struct btrfs_block_group_item item;
10031 struct btrfs_key key;
10032 int ret = 0;
10033 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10034
10035 trans->can_flush_pending_bgs = false;
10036 while (!list_empty(&trans->new_bgs)) {
10037 block_group = list_first_entry(&trans->new_bgs,
10038 struct btrfs_block_group_cache,
10039 bg_list);
10040 if (ret)
10041 goto next;
10042
10043 spin_lock(&block_group->lock);
10044 memcpy(&item, &block_group->item, sizeof(item));
10045 memcpy(&key, &block_group->key, sizeof(key));
10046 spin_unlock(&block_group->lock);
10047
10048 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10049 sizeof(item));
10050 if (ret)
10051 btrfs_abort_transaction(trans, extent_root, ret);
10052 ret = btrfs_finish_chunk_alloc(trans, extent_root,
10053 key.objectid, key.offset);
10054 if (ret)
10055 btrfs_abort_transaction(trans, extent_root, ret);
10056 next:
10057 list_del_init(&block_group->bg_list);
10058 }
10059 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10060 }
10061
btrfs_make_block_group(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytes_used,u64 type,u64 chunk_objectid,u64 chunk_offset,u64 size)10062 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10063 struct btrfs_root *root, u64 bytes_used,
10064 u64 type, u64 chunk_objectid, u64 chunk_offset,
10065 u64 size)
10066 {
10067 int ret;
10068 struct btrfs_root *extent_root;
10069 struct btrfs_block_group_cache *cache;
10070
10071 extent_root = root->fs_info->extent_root;
10072
10073 btrfs_set_log_full_commit(root->fs_info, trans);
10074
10075 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
10076 if (!cache)
10077 return -ENOMEM;
10078
10079 btrfs_set_block_group_used(&cache->item, bytes_used);
10080 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10081 btrfs_set_block_group_flags(&cache->item, type);
10082
10083 cache->flags = type;
10084 cache->last_byte_to_unpin = (u64)-1;
10085 cache->cached = BTRFS_CACHE_FINISHED;
10086 ret = exclude_super_stripes(root, cache);
10087 if (ret) {
10088 /*
10089 * We may have excluded something, so call this just in
10090 * case.
10091 */
10092 free_excluded_extents(root, cache);
10093 btrfs_put_block_group(cache);
10094 return ret;
10095 }
10096
10097 add_new_free_space(cache, root->fs_info, chunk_offset,
10098 chunk_offset + size);
10099
10100 free_excluded_extents(root, cache);
10101
10102 #ifdef CONFIG_BTRFS_DEBUG
10103 if (btrfs_should_fragment_free_space(root, cache)) {
10104 u64 new_bytes_used = size - bytes_used;
10105
10106 bytes_used += new_bytes_used >> 1;
10107 fragment_free_space(root, cache);
10108 }
10109 #endif
10110 /*
10111 * Call to ensure the corresponding space_info object is created and
10112 * assigned to our block group, but don't update its counters just yet.
10113 * We want our bg to be added to the rbtree with its ->space_info set.
10114 */
10115 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
10116 &cache->space_info);
10117 if (ret) {
10118 btrfs_remove_free_space_cache(cache);
10119 btrfs_put_block_group(cache);
10120 return ret;
10121 }
10122
10123 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10124 if (ret) {
10125 btrfs_remove_free_space_cache(cache);
10126 btrfs_put_block_group(cache);
10127 return ret;
10128 }
10129
10130 /*
10131 * Now that our block group has its ->space_info set and is inserted in
10132 * the rbtree, update the space info's counters.
10133 */
10134 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10135 &cache->space_info);
10136 if (ret) {
10137 btrfs_remove_free_space_cache(cache);
10138 spin_lock(&root->fs_info->block_group_cache_lock);
10139 rb_erase(&cache->cache_node,
10140 &root->fs_info->block_group_cache_tree);
10141 RB_CLEAR_NODE(&cache->cache_node);
10142 spin_unlock(&root->fs_info->block_group_cache_lock);
10143 btrfs_put_block_group(cache);
10144 return ret;
10145 }
10146 update_global_block_rsv(root->fs_info);
10147
10148 spin_lock(&cache->space_info->lock);
10149 cache->space_info->bytes_readonly += cache->bytes_super;
10150 spin_unlock(&cache->space_info->lock);
10151
10152 __link_block_group(cache->space_info, cache);
10153
10154 list_add_tail(&cache->bg_list, &trans->new_bgs);
10155
10156 set_avail_alloc_bits(extent_root->fs_info, type);
10157
10158 return 0;
10159 }
10160
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)10161 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10162 {
10163 u64 extra_flags = chunk_to_extended(flags) &
10164 BTRFS_EXTENDED_PROFILE_MASK;
10165
10166 write_seqlock(&fs_info->profiles_lock);
10167 if (flags & BTRFS_BLOCK_GROUP_DATA)
10168 fs_info->avail_data_alloc_bits &= ~extra_flags;
10169 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10170 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10171 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10172 fs_info->avail_system_alloc_bits &= ~extra_flags;
10173 write_sequnlock(&fs_info->profiles_lock);
10174 }
10175
btrfs_remove_block_group(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 group_start,struct extent_map * em)10176 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10177 struct btrfs_root *root, u64 group_start,
10178 struct extent_map *em)
10179 {
10180 struct btrfs_path *path;
10181 struct btrfs_block_group_cache *block_group;
10182 struct btrfs_free_cluster *cluster;
10183 struct btrfs_root *tree_root = root->fs_info->tree_root;
10184 struct btrfs_key key;
10185 struct inode *inode;
10186 struct kobject *kobj = NULL;
10187 int ret;
10188 int index;
10189 int factor;
10190 struct btrfs_caching_control *caching_ctl = NULL;
10191 bool remove_em;
10192
10193 root = root->fs_info->extent_root;
10194
10195 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10196 BUG_ON(!block_group);
10197 BUG_ON(!block_group->ro);
10198
10199 /*
10200 * Free the reserved super bytes from this block group before
10201 * remove it.
10202 */
10203 free_excluded_extents(root, block_group);
10204
10205 memcpy(&key, &block_group->key, sizeof(key));
10206 index = get_block_group_index(block_group);
10207 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10208 BTRFS_BLOCK_GROUP_RAID1 |
10209 BTRFS_BLOCK_GROUP_RAID10))
10210 factor = 2;
10211 else
10212 factor = 1;
10213
10214 /* make sure this block group isn't part of an allocation cluster */
10215 cluster = &root->fs_info->data_alloc_cluster;
10216 spin_lock(&cluster->refill_lock);
10217 btrfs_return_cluster_to_free_space(block_group, cluster);
10218 spin_unlock(&cluster->refill_lock);
10219
10220 /*
10221 * make sure this block group isn't part of a metadata
10222 * allocation cluster
10223 */
10224 cluster = &root->fs_info->meta_alloc_cluster;
10225 spin_lock(&cluster->refill_lock);
10226 btrfs_return_cluster_to_free_space(block_group, cluster);
10227 spin_unlock(&cluster->refill_lock);
10228
10229 path = btrfs_alloc_path();
10230 if (!path) {
10231 ret = -ENOMEM;
10232 goto out;
10233 }
10234
10235 /*
10236 * get the inode first so any iput calls done for the io_list
10237 * aren't the final iput (no unlinks allowed now)
10238 */
10239 inode = lookup_free_space_inode(tree_root, block_group, path);
10240
10241 mutex_lock(&trans->transaction->cache_write_mutex);
10242 /*
10243 * make sure our free spache cache IO is done before remove the
10244 * free space inode
10245 */
10246 spin_lock(&trans->transaction->dirty_bgs_lock);
10247 if (!list_empty(&block_group->io_list)) {
10248 list_del_init(&block_group->io_list);
10249
10250 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10251
10252 spin_unlock(&trans->transaction->dirty_bgs_lock);
10253 btrfs_wait_cache_io(root, trans, block_group,
10254 &block_group->io_ctl, path,
10255 block_group->key.objectid);
10256 btrfs_put_block_group(block_group);
10257 spin_lock(&trans->transaction->dirty_bgs_lock);
10258 }
10259
10260 if (!list_empty(&block_group->dirty_list)) {
10261 list_del_init(&block_group->dirty_list);
10262 btrfs_put_block_group(block_group);
10263 }
10264 spin_unlock(&trans->transaction->dirty_bgs_lock);
10265 mutex_unlock(&trans->transaction->cache_write_mutex);
10266
10267 if (!IS_ERR(inode)) {
10268 ret = btrfs_orphan_add(trans, inode);
10269 if (ret) {
10270 btrfs_add_delayed_iput(inode);
10271 goto out;
10272 }
10273 clear_nlink(inode);
10274 /* One for the block groups ref */
10275 spin_lock(&block_group->lock);
10276 if (block_group->iref) {
10277 block_group->iref = 0;
10278 block_group->inode = NULL;
10279 spin_unlock(&block_group->lock);
10280 iput(inode);
10281 } else {
10282 spin_unlock(&block_group->lock);
10283 }
10284 /* One for our lookup ref */
10285 btrfs_add_delayed_iput(inode);
10286 }
10287
10288 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10289 key.offset = block_group->key.objectid;
10290 key.type = 0;
10291
10292 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10293 if (ret < 0)
10294 goto out;
10295 if (ret > 0)
10296 btrfs_release_path(path);
10297 if (ret == 0) {
10298 ret = btrfs_del_item(trans, tree_root, path);
10299 if (ret)
10300 goto out;
10301 btrfs_release_path(path);
10302 }
10303
10304 spin_lock(&root->fs_info->block_group_cache_lock);
10305 rb_erase(&block_group->cache_node,
10306 &root->fs_info->block_group_cache_tree);
10307 RB_CLEAR_NODE(&block_group->cache_node);
10308
10309 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10310 root->fs_info->first_logical_byte = (u64)-1;
10311 spin_unlock(&root->fs_info->block_group_cache_lock);
10312
10313 down_write(&block_group->space_info->groups_sem);
10314 /*
10315 * we must use list_del_init so people can check to see if they
10316 * are still on the list after taking the semaphore
10317 */
10318 list_del_init(&block_group->list);
10319 if (list_empty(&block_group->space_info->block_groups[index])) {
10320 kobj = block_group->space_info->block_group_kobjs[index];
10321 block_group->space_info->block_group_kobjs[index] = NULL;
10322 clear_avail_alloc_bits(root->fs_info, block_group->flags);
10323 }
10324 up_write(&block_group->space_info->groups_sem);
10325 if (kobj) {
10326 kobject_del(kobj);
10327 kobject_put(kobj);
10328 }
10329
10330 if (block_group->has_caching_ctl)
10331 caching_ctl = get_caching_control(block_group);
10332 if (block_group->cached == BTRFS_CACHE_STARTED)
10333 wait_block_group_cache_done(block_group);
10334 if (block_group->has_caching_ctl) {
10335 down_write(&root->fs_info->commit_root_sem);
10336 if (!caching_ctl) {
10337 struct btrfs_caching_control *ctl;
10338
10339 list_for_each_entry(ctl,
10340 &root->fs_info->caching_block_groups, list)
10341 if (ctl->block_group == block_group) {
10342 caching_ctl = ctl;
10343 atomic_inc(&caching_ctl->count);
10344 break;
10345 }
10346 }
10347 if (caching_ctl)
10348 list_del_init(&caching_ctl->list);
10349 up_write(&root->fs_info->commit_root_sem);
10350 if (caching_ctl) {
10351 /* Once for the caching bgs list and once for us. */
10352 put_caching_control(caching_ctl);
10353 put_caching_control(caching_ctl);
10354 }
10355 }
10356
10357 spin_lock(&trans->transaction->dirty_bgs_lock);
10358 if (!list_empty(&block_group->dirty_list)) {
10359 WARN_ON(1);
10360 }
10361 if (!list_empty(&block_group->io_list)) {
10362 WARN_ON(1);
10363 }
10364 spin_unlock(&trans->transaction->dirty_bgs_lock);
10365 btrfs_remove_free_space_cache(block_group);
10366
10367 spin_lock(&block_group->space_info->lock);
10368 list_del_init(&block_group->ro_list);
10369
10370 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10371 WARN_ON(block_group->space_info->total_bytes
10372 < block_group->key.offset);
10373 WARN_ON(block_group->space_info->bytes_readonly
10374 < block_group->key.offset);
10375 WARN_ON(block_group->space_info->disk_total
10376 < block_group->key.offset * factor);
10377 }
10378 block_group->space_info->total_bytes -= block_group->key.offset;
10379 block_group->space_info->bytes_readonly -= block_group->key.offset;
10380 block_group->space_info->disk_total -= block_group->key.offset * factor;
10381
10382 spin_unlock(&block_group->space_info->lock);
10383
10384 memcpy(&key, &block_group->key, sizeof(key));
10385
10386 lock_chunks(root);
10387 if (!list_empty(&em->list)) {
10388 /* We're in the transaction->pending_chunks list. */
10389 free_extent_map(em);
10390 }
10391 spin_lock(&block_group->lock);
10392 block_group->removed = 1;
10393 /*
10394 * At this point trimming can't start on this block group, because we
10395 * removed the block group from the tree fs_info->block_group_cache_tree
10396 * so no one can't find it anymore and even if someone already got this
10397 * block group before we removed it from the rbtree, they have already
10398 * incremented block_group->trimming - if they didn't, they won't find
10399 * any free space entries because we already removed them all when we
10400 * called btrfs_remove_free_space_cache().
10401 *
10402 * And we must not remove the extent map from the fs_info->mapping_tree
10403 * to prevent the same logical address range and physical device space
10404 * ranges from being reused for a new block group. This is because our
10405 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10406 * completely transactionless, so while it is trimming a range the
10407 * currently running transaction might finish and a new one start,
10408 * allowing for new block groups to be created that can reuse the same
10409 * physical device locations unless we take this special care.
10410 *
10411 * There may also be an implicit trim operation if the file system
10412 * is mounted with -odiscard. The same protections must remain
10413 * in place until the extents have been discarded completely when
10414 * the transaction commit has completed.
10415 */
10416 remove_em = (atomic_read(&block_group->trimming) == 0);
10417 /*
10418 * Make sure a trimmer task always sees the em in the pinned_chunks list
10419 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10420 * before checking block_group->removed).
10421 */
10422 if (!remove_em) {
10423 /*
10424 * Our em might be in trans->transaction->pending_chunks which
10425 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10426 * and so is the fs_info->pinned_chunks list.
10427 *
10428 * So at this point we must be holding the chunk_mutex to avoid
10429 * any races with chunk allocation (more specifically at
10430 * volumes.c:contains_pending_extent()), to ensure it always
10431 * sees the em, either in the pending_chunks list or in the
10432 * pinned_chunks list.
10433 */
10434 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10435 }
10436 spin_unlock(&block_group->lock);
10437
10438 if (remove_em) {
10439 struct extent_map_tree *em_tree;
10440
10441 em_tree = &root->fs_info->mapping_tree.map_tree;
10442 write_lock(&em_tree->lock);
10443 /*
10444 * The em might be in the pending_chunks list, so make sure the
10445 * chunk mutex is locked, since remove_extent_mapping() will
10446 * delete us from that list.
10447 */
10448 remove_extent_mapping(em_tree, em);
10449 write_unlock(&em_tree->lock);
10450 /* once for the tree */
10451 free_extent_map(em);
10452 }
10453
10454 unlock_chunks(root);
10455
10456 btrfs_put_block_group(block_group);
10457 btrfs_put_block_group(block_group);
10458
10459 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10460 if (ret > 0)
10461 ret = -EIO;
10462 if (ret < 0)
10463 goto out;
10464
10465 ret = btrfs_del_item(trans, root, path);
10466 out:
10467 btrfs_free_path(path);
10468 return ret;
10469 }
10470
10471 struct btrfs_trans_handle *
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)10472 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10473 const u64 chunk_offset)
10474 {
10475 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10476 struct extent_map *em;
10477 struct map_lookup *map;
10478 unsigned int num_items;
10479
10480 read_lock(&em_tree->lock);
10481 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10482 read_unlock(&em_tree->lock);
10483 ASSERT(em && em->start == chunk_offset);
10484
10485 /*
10486 * We need to reserve 3 + N units from the metadata space info in order
10487 * to remove a block group (done at btrfs_remove_chunk() and at
10488 * btrfs_remove_block_group()), which are used for:
10489 *
10490 * 1 unit for adding the free space inode's orphan (located in the tree
10491 * of tree roots).
10492 * 1 unit for deleting the block group item (located in the extent
10493 * tree).
10494 * 1 unit for deleting the free space item (located in tree of tree
10495 * roots).
10496 * N units for deleting N device extent items corresponding to each
10497 * stripe (located in the device tree).
10498 *
10499 * In order to remove a block group we also need to reserve units in the
10500 * system space info in order to update the chunk tree (update one or
10501 * more device items and remove one chunk item), but this is done at
10502 * btrfs_remove_chunk() through a call to check_system_chunk().
10503 */
10504 map = em->map_lookup;
10505 num_items = 3 + map->num_stripes;
10506 free_extent_map(em);
10507
10508 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10509 num_items, 1);
10510 }
10511
10512 /*
10513 * Process the unused_bgs list and remove any that don't have any allocated
10514 * space inside of them.
10515 */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)10516 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10517 {
10518 struct btrfs_block_group_cache *block_group;
10519 struct btrfs_space_info *space_info;
10520 struct btrfs_root *root = fs_info->extent_root;
10521 struct btrfs_trans_handle *trans;
10522 int ret = 0;
10523
10524 if (!fs_info->open)
10525 return;
10526
10527 spin_lock(&fs_info->unused_bgs_lock);
10528 while (!list_empty(&fs_info->unused_bgs)) {
10529 u64 start, end;
10530 int trimming;
10531
10532 block_group = list_first_entry(&fs_info->unused_bgs,
10533 struct btrfs_block_group_cache,
10534 bg_list);
10535 list_del_init(&block_group->bg_list);
10536
10537 space_info = block_group->space_info;
10538
10539 if (ret || btrfs_mixed_space_info(space_info)) {
10540 btrfs_put_block_group(block_group);
10541 continue;
10542 }
10543 spin_unlock(&fs_info->unused_bgs_lock);
10544
10545 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10546
10547 /* Don't want to race with allocators so take the groups_sem */
10548 down_write(&space_info->groups_sem);
10549 spin_lock(&block_group->lock);
10550 if (block_group->reserved || block_group->pinned ||
10551 btrfs_block_group_used(&block_group->item) ||
10552 block_group->ro ||
10553 list_is_singular(&block_group->list)) {
10554 /*
10555 * We want to bail if we made new allocations or have
10556 * outstanding allocations in this block group. We do
10557 * the ro check in case balance is currently acting on
10558 * this block group.
10559 */
10560 spin_unlock(&block_group->lock);
10561 up_write(&space_info->groups_sem);
10562 goto next;
10563 }
10564 spin_unlock(&block_group->lock);
10565
10566 /* We don't want to force the issue, only flip if it's ok. */
10567 ret = inc_block_group_ro(block_group, 0);
10568 up_write(&space_info->groups_sem);
10569 if (ret < 0) {
10570 ret = 0;
10571 goto next;
10572 }
10573
10574 /*
10575 * Want to do this before we do anything else so we can recover
10576 * properly if we fail to join the transaction.
10577 */
10578 trans = btrfs_start_trans_remove_block_group(fs_info,
10579 block_group->key.objectid);
10580 if (IS_ERR(trans)) {
10581 btrfs_dec_block_group_ro(root, block_group);
10582 ret = PTR_ERR(trans);
10583 goto next;
10584 }
10585
10586 /*
10587 * We could have pending pinned extents for this block group,
10588 * just delete them, we don't care about them anymore.
10589 */
10590 start = block_group->key.objectid;
10591 end = start + block_group->key.offset - 1;
10592 /*
10593 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10594 * btrfs_finish_extent_commit(). If we are at transaction N,
10595 * another task might be running finish_extent_commit() for the
10596 * previous transaction N - 1, and have seen a range belonging
10597 * to the block group in freed_extents[] before we were able to
10598 * clear the whole block group range from freed_extents[]. This
10599 * means that task can lookup for the block group after we
10600 * unpinned it from freed_extents[] and removed it, leading to
10601 * a BUG_ON() at btrfs_unpin_extent_range().
10602 */
10603 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10604 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10605 EXTENT_DIRTY, GFP_NOFS);
10606 if (ret) {
10607 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10608 btrfs_dec_block_group_ro(root, block_group);
10609 goto end_trans;
10610 }
10611 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10612 EXTENT_DIRTY, GFP_NOFS);
10613 if (ret) {
10614 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10615 btrfs_dec_block_group_ro(root, block_group);
10616 goto end_trans;
10617 }
10618 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10619
10620 /* Reset pinned so btrfs_put_block_group doesn't complain */
10621 spin_lock(&space_info->lock);
10622 spin_lock(&block_group->lock);
10623
10624 space_info->bytes_pinned -= block_group->pinned;
10625 space_info->bytes_readonly += block_group->pinned;
10626 percpu_counter_add(&space_info->total_bytes_pinned,
10627 -block_group->pinned);
10628 block_group->pinned = 0;
10629
10630 spin_unlock(&block_group->lock);
10631 spin_unlock(&space_info->lock);
10632
10633 /* DISCARD can flip during remount */
10634 trimming = btrfs_test_opt(root, DISCARD);
10635
10636 /* Implicit trim during transaction commit. */
10637 if (trimming)
10638 btrfs_get_block_group_trimming(block_group);
10639
10640 /*
10641 * Btrfs_remove_chunk will abort the transaction if things go
10642 * horribly wrong.
10643 */
10644 ret = btrfs_remove_chunk(trans, root,
10645 block_group->key.objectid);
10646
10647 if (ret) {
10648 if (trimming)
10649 btrfs_put_block_group_trimming(block_group);
10650 goto end_trans;
10651 }
10652
10653 /*
10654 * If we're not mounted with -odiscard, we can just forget
10655 * about this block group. Otherwise we'll need to wait
10656 * until transaction commit to do the actual discard.
10657 */
10658 if (trimming) {
10659 spin_lock(&fs_info->unused_bgs_lock);
10660 /*
10661 * A concurrent scrub might have added us to the list
10662 * fs_info->unused_bgs, so use a list_move operation
10663 * to add the block group to the deleted_bgs list.
10664 */
10665 list_move(&block_group->bg_list,
10666 &trans->transaction->deleted_bgs);
10667 spin_unlock(&fs_info->unused_bgs_lock);
10668 btrfs_get_block_group(block_group);
10669 }
10670 end_trans:
10671 btrfs_end_transaction(trans, root);
10672 next:
10673 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10674 btrfs_put_block_group(block_group);
10675 spin_lock(&fs_info->unused_bgs_lock);
10676 }
10677 spin_unlock(&fs_info->unused_bgs_lock);
10678 }
10679
btrfs_init_space_info(struct btrfs_fs_info * fs_info)10680 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10681 {
10682 struct btrfs_space_info *space_info;
10683 struct btrfs_super_block *disk_super;
10684 u64 features;
10685 u64 flags;
10686 int mixed = 0;
10687 int ret;
10688
10689 disk_super = fs_info->super_copy;
10690 if (!btrfs_super_root(disk_super))
10691 return -EINVAL;
10692
10693 features = btrfs_super_incompat_flags(disk_super);
10694 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10695 mixed = 1;
10696
10697 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10698 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10699 if (ret)
10700 goto out;
10701
10702 if (mixed) {
10703 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10704 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10705 } else {
10706 flags = BTRFS_BLOCK_GROUP_METADATA;
10707 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10708 if (ret)
10709 goto out;
10710
10711 flags = BTRFS_BLOCK_GROUP_DATA;
10712 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10713 }
10714 out:
10715 return ret;
10716 }
10717
btrfs_error_unpin_extent_range(struct btrfs_root * root,u64 start,u64 end)10718 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10719 {
10720 return unpin_extent_range(root, start, end, false);
10721 }
10722
10723 /*
10724 * It used to be that old block groups would be left around forever.
10725 * Iterating over them would be enough to trim unused space. Since we
10726 * now automatically remove them, we also need to iterate over unallocated
10727 * space.
10728 *
10729 * We don't want a transaction for this since the discard may take a
10730 * substantial amount of time. We don't require that a transaction be
10731 * running, but we do need to take a running transaction into account
10732 * to ensure that we're not discarding chunks that were released in
10733 * the current transaction.
10734 *
10735 * Holding the chunks lock will prevent other threads from allocating
10736 * or releasing chunks, but it won't prevent a running transaction
10737 * from committing and releasing the memory that the pending chunks
10738 * list head uses. For that, we need to take a reference to the
10739 * transaction.
10740 */
btrfs_trim_free_extents(struct btrfs_device * device,struct fstrim_range * range,u64 * trimmed)10741 static int btrfs_trim_free_extents(struct btrfs_device *device,
10742 struct fstrim_range *range, u64 *trimmed)
10743 {
10744 u64 start = range->start, len = 0;
10745 int ret;
10746
10747 *trimmed = 0;
10748
10749 /* Discard not supported = nothing to do. */
10750 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
10751 return 0;
10752
10753 /* Not writeable = nothing to do. */
10754 if (!device->writeable)
10755 return 0;
10756
10757 /* No free space = nothing to do. */
10758 if (device->total_bytes <= device->bytes_used)
10759 return 0;
10760
10761 ret = 0;
10762
10763 while (1) {
10764 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10765 struct btrfs_transaction *trans;
10766 u64 bytes;
10767
10768 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10769 if (ret)
10770 return ret;
10771
10772 down_read(&fs_info->commit_root_sem);
10773
10774 spin_lock(&fs_info->trans_lock);
10775 trans = fs_info->running_transaction;
10776 if (trans)
10777 atomic_inc(&trans->use_count);
10778 spin_unlock(&fs_info->trans_lock);
10779
10780 ret = find_free_dev_extent_start(trans, device, range->minlen,
10781 start, &start, &len);
10782 if (trans)
10783 btrfs_put_transaction(trans);
10784
10785 if (ret) {
10786 up_read(&fs_info->commit_root_sem);
10787 mutex_unlock(&fs_info->chunk_mutex);
10788 if (ret == -ENOSPC)
10789 ret = 0;
10790 break;
10791 }
10792
10793 /* If we are out of the passed range break */
10794 if (start > range->start + range->len - 1) {
10795 mutex_unlock(&fs_info->chunk_mutex);
10796 ret = 0;
10797 break;
10798 }
10799
10800 start = max(range->start, start);
10801 len = min(range->len, len);
10802
10803 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10804 up_read(&fs_info->commit_root_sem);
10805 mutex_unlock(&fs_info->chunk_mutex);
10806
10807 if (ret)
10808 break;
10809
10810 start += len;
10811 *trimmed += bytes;
10812
10813 /* We've trimmed enough */
10814 if (*trimmed >= range->len)
10815 break;
10816
10817 if (fatal_signal_pending(current)) {
10818 ret = -ERESTARTSYS;
10819 break;
10820 }
10821
10822 cond_resched();
10823 }
10824
10825 return ret;
10826 }
10827
btrfs_trim_fs(struct btrfs_root * root,struct fstrim_range * range)10828 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10829 {
10830 struct btrfs_fs_info *fs_info = root->fs_info;
10831 struct btrfs_block_group_cache *cache = NULL;
10832 struct btrfs_device *device;
10833 struct list_head *devices;
10834 u64 group_trimmed;
10835 u64 start;
10836 u64 end;
10837 u64 trimmed = 0;
10838 int ret = 0;
10839
10840 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10841 while (cache) {
10842 if (cache->key.objectid >= (range->start + range->len)) {
10843 btrfs_put_block_group(cache);
10844 break;
10845 }
10846
10847 start = max(range->start, cache->key.objectid);
10848 end = min(range->start + range->len,
10849 cache->key.objectid + cache->key.offset);
10850
10851 if (end - start >= range->minlen) {
10852 if (!block_group_cache_done(cache)) {
10853 ret = cache_block_group(cache, 0);
10854 if (ret) {
10855 btrfs_put_block_group(cache);
10856 break;
10857 }
10858 ret = wait_block_group_cache_done(cache);
10859 if (ret) {
10860 btrfs_put_block_group(cache);
10861 break;
10862 }
10863 }
10864 ret = btrfs_trim_block_group(cache,
10865 &group_trimmed,
10866 start,
10867 end,
10868 range->minlen);
10869
10870 trimmed += group_trimmed;
10871 if (ret) {
10872 btrfs_put_block_group(cache);
10873 break;
10874 }
10875 }
10876
10877 cache = next_block_group(fs_info->tree_root, cache);
10878 }
10879
10880 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10881 devices = &root->fs_info->fs_devices->devices;
10882 list_for_each_entry(device, devices, dev_list) {
10883 ret = btrfs_trim_free_extents(device, range, &group_trimmed);
10884 if (ret)
10885 break;
10886
10887 trimmed += group_trimmed;
10888 }
10889 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10890
10891 range->len = trimmed;
10892 return ret;
10893 }
10894
10895 /*
10896 * btrfs_{start,end}_write_no_snapshoting() are similar to
10897 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10898 * data into the page cache through nocow before the subvolume is snapshoted,
10899 * but flush the data into disk after the snapshot creation, or to prevent
10900 * operations while snapshoting is ongoing and that cause the snapshot to be
10901 * inconsistent (writes followed by expanding truncates for example).
10902 */
btrfs_end_write_no_snapshoting(struct btrfs_root * root)10903 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10904 {
10905 percpu_counter_dec(&root->subv_writers->counter);
10906 /*
10907 * Make sure counter is updated before we wake up waiters.
10908 */
10909 smp_mb();
10910 if (waitqueue_active(&root->subv_writers->wait))
10911 wake_up(&root->subv_writers->wait);
10912 }
10913
btrfs_start_write_no_snapshoting(struct btrfs_root * root)10914 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10915 {
10916 if (atomic_read(&root->will_be_snapshoted))
10917 return 0;
10918
10919 percpu_counter_inc(&root->subv_writers->counter);
10920 /*
10921 * Make sure counter is updated before we check for snapshot creation.
10922 */
10923 smp_mb();
10924 if (atomic_read(&root->will_be_snapshoted)) {
10925 btrfs_end_write_no_snapshoting(root);
10926 return 0;
10927 }
10928 return 1;
10929 }
10930