• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27 
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 		      *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 		      *root, struct btrfs_key *ins_key,
32 		      struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 			  struct btrfs_root *root, struct extent_buffer *dst,
35 			  struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 			      struct btrfs_root *root,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 		    int level, int slot);
42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 				 struct extent_buffer *eb);
44 
btrfs_alloc_path(void)45 struct btrfs_path *btrfs_alloc_path(void)
46 {
47 	struct btrfs_path *path;
48 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49 	return path;
50 }
51 
52 /*
53  * set all locked nodes in the path to blocking locks.  This should
54  * be done before scheduling
55  */
btrfs_set_path_blocking(struct btrfs_path * p)56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57 {
58 	int i;
59 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60 		if (!p->nodes[i] || !p->locks[i])
61 			continue;
62 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 		if (p->locks[i] == BTRFS_READ_LOCK)
64 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67 	}
68 }
69 
70 /*
71  * reset all the locked nodes in the patch to spinning locks.
72  *
73  * held is used to keep lockdep happy, when lockdep is enabled
74  * we set held to a blocking lock before we go around and
75  * retake all the spinlocks in the path.  You can safely use NULL
76  * for held
77  */
btrfs_clear_path_blocking(struct btrfs_path * p,struct extent_buffer * held,int held_rw)78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79 					struct extent_buffer *held, int held_rw)
80 {
81 	int i;
82 
83 	if (held) {
84 		btrfs_set_lock_blocking_rw(held, held_rw);
85 		if (held_rw == BTRFS_WRITE_LOCK)
86 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87 		else if (held_rw == BTRFS_READ_LOCK)
88 			held_rw = BTRFS_READ_LOCK_BLOCKING;
89 	}
90 	btrfs_set_path_blocking(p);
91 
92 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
93 		if (p->nodes[i] && p->locks[i]) {
94 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96 				p->locks[i] = BTRFS_WRITE_LOCK;
97 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98 				p->locks[i] = BTRFS_READ_LOCK;
99 		}
100 	}
101 
102 	if (held)
103 		btrfs_clear_lock_blocking_rw(held, held_rw);
104 }
105 
106 /* this also releases the path */
btrfs_free_path(struct btrfs_path * p)107 void btrfs_free_path(struct btrfs_path *p)
108 {
109 	if (!p)
110 		return;
111 	btrfs_release_path(p);
112 	kmem_cache_free(btrfs_path_cachep, p);
113 }
114 
115 /*
116  * path release drops references on the extent buffers in the path
117  * and it drops any locks held by this path
118  *
119  * It is safe to call this on paths that no locks or extent buffers held.
120  */
btrfs_release_path(struct btrfs_path * p)121 noinline void btrfs_release_path(struct btrfs_path *p)
122 {
123 	int i;
124 
125 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
126 		p->slots[i] = 0;
127 		if (!p->nodes[i])
128 			continue;
129 		if (p->locks[i]) {
130 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
131 			p->locks[i] = 0;
132 		}
133 		free_extent_buffer(p->nodes[i]);
134 		p->nodes[i] = NULL;
135 	}
136 }
137 
138 /*
139  * safely gets a reference on the root node of a tree.  A lock
140  * is not taken, so a concurrent writer may put a different node
141  * at the root of the tree.  See btrfs_lock_root_node for the
142  * looping required.
143  *
144  * The extent buffer returned by this has a reference taken, so
145  * it won't disappear.  It may stop being the root of the tree
146  * at any time because there are no locks held.
147  */
btrfs_root_node(struct btrfs_root * root)148 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
149 {
150 	struct extent_buffer *eb;
151 
152 	while (1) {
153 		rcu_read_lock();
154 		eb = rcu_dereference(root->node);
155 
156 		/*
157 		 * RCU really hurts here, we could free up the root node because
158 		 * it was cow'ed but we may not get the new root node yet so do
159 		 * the inc_not_zero dance and if it doesn't work then
160 		 * synchronize_rcu and try again.
161 		 */
162 		if (atomic_inc_not_zero(&eb->refs)) {
163 			rcu_read_unlock();
164 			break;
165 		}
166 		rcu_read_unlock();
167 		synchronize_rcu();
168 	}
169 	return eb;
170 }
171 
172 /* loop around taking references on and locking the root node of the
173  * tree until you end up with a lock on the root.  A locked buffer
174  * is returned, with a reference held.
175  */
btrfs_lock_root_node(struct btrfs_root * root)176 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
177 {
178 	struct extent_buffer *eb;
179 
180 	while (1) {
181 		eb = btrfs_root_node(root);
182 		btrfs_tree_lock(eb);
183 		if (eb == root->node)
184 			break;
185 		btrfs_tree_unlock(eb);
186 		free_extent_buffer(eb);
187 	}
188 	return eb;
189 }
190 
191 /* loop around taking references on and locking the root node of the
192  * tree until you end up with a lock on the root.  A locked buffer
193  * is returned, with a reference held.
194  */
btrfs_read_lock_root_node(struct btrfs_root * root)195 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
196 {
197 	struct extent_buffer *eb;
198 
199 	while (1) {
200 		eb = btrfs_root_node(root);
201 		btrfs_tree_read_lock(eb);
202 		if (eb == root->node)
203 			break;
204 		btrfs_tree_read_unlock(eb);
205 		free_extent_buffer(eb);
206 	}
207 	return eb;
208 }
209 
210 /* cowonly root (everything not a reference counted cow subvolume), just get
211  * put onto a simple dirty list.  transaction.c walks this to make sure they
212  * get properly updated on disk.
213  */
add_root_to_dirty_list(struct btrfs_root * root)214 static void add_root_to_dirty_list(struct btrfs_root *root)
215 {
216 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
217 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
218 		return;
219 
220 	spin_lock(&root->fs_info->trans_lock);
221 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
222 		/* Want the extent tree to be the last on the list */
223 		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
224 			list_move_tail(&root->dirty_list,
225 				       &root->fs_info->dirty_cowonly_roots);
226 		else
227 			list_move(&root->dirty_list,
228 				  &root->fs_info->dirty_cowonly_roots);
229 	}
230 	spin_unlock(&root->fs_info->trans_lock);
231 }
232 
233 /*
234  * used by snapshot creation to make a copy of a root for a tree with
235  * a given objectid.  The buffer with the new root node is returned in
236  * cow_ret, and this func returns zero on success or a negative error code.
237  */
btrfs_copy_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer ** cow_ret,u64 new_root_objectid)238 int btrfs_copy_root(struct btrfs_trans_handle *trans,
239 		      struct btrfs_root *root,
240 		      struct extent_buffer *buf,
241 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
242 {
243 	struct extent_buffer *cow;
244 	int ret = 0;
245 	int level;
246 	struct btrfs_disk_key disk_key;
247 
248 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
249 		trans->transid != root->fs_info->running_transaction->transid);
250 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
251 		trans->transid != root->last_trans);
252 
253 	level = btrfs_header_level(buf);
254 	if (level == 0)
255 		btrfs_item_key(buf, &disk_key, 0);
256 	else
257 		btrfs_node_key(buf, &disk_key, 0);
258 
259 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
260 			&disk_key, level, buf->start, 0);
261 	if (IS_ERR(cow))
262 		return PTR_ERR(cow);
263 
264 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
265 	btrfs_set_header_bytenr(cow, cow->start);
266 	btrfs_set_header_generation(cow, trans->transid);
267 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
268 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
269 				     BTRFS_HEADER_FLAG_RELOC);
270 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
271 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
272 	else
273 		btrfs_set_header_owner(cow, new_root_objectid);
274 
275 	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
276 			    BTRFS_FSID_SIZE);
277 
278 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
279 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
280 		ret = btrfs_inc_ref(trans, root, cow, 1);
281 	else
282 		ret = btrfs_inc_ref(trans, root, cow, 0);
283 
284 	if (ret)
285 		return ret;
286 
287 	btrfs_mark_buffer_dirty(cow);
288 	*cow_ret = cow;
289 	return 0;
290 }
291 
292 enum mod_log_op {
293 	MOD_LOG_KEY_REPLACE,
294 	MOD_LOG_KEY_ADD,
295 	MOD_LOG_KEY_REMOVE,
296 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
297 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
298 	MOD_LOG_MOVE_KEYS,
299 	MOD_LOG_ROOT_REPLACE,
300 };
301 
302 struct tree_mod_move {
303 	int dst_slot;
304 	int nr_items;
305 };
306 
307 struct tree_mod_root {
308 	u64 logical;
309 	u8 level;
310 };
311 
312 struct tree_mod_elem {
313 	struct rb_node node;
314 	u64 index;		/* shifted logical */
315 	u64 seq;
316 	enum mod_log_op op;
317 
318 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
319 	int slot;
320 
321 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
322 	u64 generation;
323 
324 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
325 	struct btrfs_disk_key key;
326 	u64 blockptr;
327 
328 	/* this is used for op == MOD_LOG_MOVE_KEYS */
329 	struct tree_mod_move move;
330 
331 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
332 	struct tree_mod_root old_root;
333 };
334 
335 /*
336  * Pull a new tree mod seq number for our operation.
337  */
btrfs_inc_tree_mod_seq(struct btrfs_fs_info * fs_info)338 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
339 {
340 	return atomic64_inc_return(&fs_info->tree_mod_seq);
341 }
342 
343 /*
344  * This adds a new blocker to the tree mod log's blocker list if the @elem
345  * passed does not already have a sequence number set. So when a caller expects
346  * to record tree modifications, it should ensure to set elem->seq to zero
347  * before calling btrfs_get_tree_mod_seq.
348  * Returns a fresh, unused tree log modification sequence number, even if no new
349  * blocker was added.
350  */
btrfs_get_tree_mod_seq(struct btrfs_fs_info * fs_info,struct seq_list * elem)351 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
352 			   struct seq_list *elem)
353 {
354 	write_lock(&fs_info->tree_mod_log_lock);
355 	if (!elem->seq) {
356 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
357 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
358 	}
359 	write_unlock(&fs_info->tree_mod_log_lock);
360 
361 	return elem->seq;
362 }
363 
btrfs_put_tree_mod_seq(struct btrfs_fs_info * fs_info,struct seq_list * elem)364 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
365 			    struct seq_list *elem)
366 {
367 	struct rb_root *tm_root;
368 	struct rb_node *node;
369 	struct rb_node *next;
370 	struct seq_list *cur_elem;
371 	struct tree_mod_elem *tm;
372 	u64 min_seq = (u64)-1;
373 	u64 seq_putting = elem->seq;
374 
375 	if (!seq_putting)
376 		return;
377 
378 	write_lock(&fs_info->tree_mod_log_lock);
379 	list_del(&elem->list);
380 	elem->seq = 0;
381 
382 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
383 		if (cur_elem->seq < min_seq) {
384 			if (seq_putting > cur_elem->seq) {
385 				/*
386 				 * blocker with lower sequence number exists, we
387 				 * cannot remove anything from the log
388 				 */
389 				write_unlock(&fs_info->tree_mod_log_lock);
390 				return;
391 			}
392 			min_seq = cur_elem->seq;
393 		}
394 	}
395 
396 	/*
397 	 * anything that's lower than the lowest existing (read: blocked)
398 	 * sequence number can be removed from the tree.
399 	 */
400 	tm_root = &fs_info->tree_mod_log;
401 	for (node = rb_first(tm_root); node; node = next) {
402 		next = rb_next(node);
403 		tm = container_of(node, struct tree_mod_elem, node);
404 		if (tm->seq >= min_seq)
405 			continue;
406 		rb_erase(node, tm_root);
407 		kfree(tm);
408 	}
409 	write_unlock(&fs_info->tree_mod_log_lock);
410 }
411 
412 /*
413  * key order of the log:
414  *       index -> sequence
415  *
416  * the index is the shifted logical of the *new* root node for root replace
417  * operations, or the shifted logical of the affected block for all other
418  * operations.
419  *
420  * Note: must be called with write lock for fs_info::tree_mod_log_lock.
421  */
422 static noinline int
__tree_mod_log_insert(struct btrfs_fs_info * fs_info,struct tree_mod_elem * tm)423 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
424 {
425 	struct rb_root *tm_root;
426 	struct rb_node **new;
427 	struct rb_node *parent = NULL;
428 	struct tree_mod_elem *cur;
429 
430 	BUG_ON(!tm);
431 
432 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
433 
434 	tm_root = &fs_info->tree_mod_log;
435 	new = &tm_root->rb_node;
436 	while (*new) {
437 		cur = container_of(*new, struct tree_mod_elem, node);
438 		parent = *new;
439 		if (cur->index < tm->index)
440 			new = &((*new)->rb_left);
441 		else if (cur->index > tm->index)
442 			new = &((*new)->rb_right);
443 		else if (cur->seq < tm->seq)
444 			new = &((*new)->rb_left);
445 		else if (cur->seq > tm->seq)
446 			new = &((*new)->rb_right);
447 		else
448 			return -EEXIST;
449 	}
450 
451 	rb_link_node(&tm->node, parent, new);
452 	rb_insert_color(&tm->node, tm_root);
453 	return 0;
454 }
455 
456 /*
457  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
458  * returns zero with the tree_mod_log_lock acquired. The caller must hold
459  * this until all tree mod log insertions are recorded in the rb tree and then
460  * write unlock fs_info::tree_mod_log_lock.
461  */
tree_mod_dont_log(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)462 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
463 				    struct extent_buffer *eb) {
464 	smp_mb();
465 	if (list_empty(&(fs_info)->tree_mod_seq_list))
466 		return 1;
467 	if (eb && btrfs_header_level(eb) == 0)
468 		return 1;
469 
470 	write_lock(&fs_info->tree_mod_log_lock);
471 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
472 		write_unlock(&fs_info->tree_mod_log_lock);
473 		return 1;
474 	}
475 
476 	return 0;
477 }
478 
479 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
tree_mod_need_log(const struct btrfs_fs_info * fs_info,struct extent_buffer * eb)480 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
481 				    struct extent_buffer *eb)
482 {
483 	smp_mb();
484 	if (list_empty(&(fs_info)->tree_mod_seq_list))
485 		return 0;
486 	if (eb && btrfs_header_level(eb) == 0)
487 		return 0;
488 
489 	return 1;
490 }
491 
492 static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer * eb,int slot,enum mod_log_op op,gfp_t flags)493 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
494 		    enum mod_log_op op, gfp_t flags)
495 {
496 	struct tree_mod_elem *tm;
497 
498 	tm = kzalloc(sizeof(*tm), flags);
499 	if (!tm)
500 		return NULL;
501 
502 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
503 	if (op != MOD_LOG_KEY_ADD) {
504 		btrfs_node_key(eb, &tm->key, slot);
505 		tm->blockptr = btrfs_node_blockptr(eb, slot);
506 	}
507 	tm->op = op;
508 	tm->slot = slot;
509 	tm->generation = btrfs_node_ptr_generation(eb, slot);
510 	RB_CLEAR_NODE(&tm->node);
511 
512 	return tm;
513 }
514 
515 static noinline int
tree_mod_log_insert_key(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,int slot,enum mod_log_op op,gfp_t flags)516 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
517 			struct extent_buffer *eb, int slot,
518 			enum mod_log_op op, gfp_t flags)
519 {
520 	struct tree_mod_elem *tm;
521 	int ret;
522 
523 	if (!tree_mod_need_log(fs_info, eb))
524 		return 0;
525 
526 	tm = alloc_tree_mod_elem(eb, slot, op, flags);
527 	if (!tm)
528 		return -ENOMEM;
529 
530 	if (tree_mod_dont_log(fs_info, eb)) {
531 		kfree(tm);
532 		return 0;
533 	}
534 
535 	ret = __tree_mod_log_insert(fs_info, tm);
536 	write_unlock(&eb->fs_info->tree_mod_log_lock);
537 	if (ret)
538 		kfree(tm);
539 
540 	return ret;
541 }
542 
543 static noinline int
tree_mod_log_insert_move(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,int dst_slot,int src_slot,int nr_items,gfp_t flags)544 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
545 			 struct extent_buffer *eb, int dst_slot, int src_slot,
546 			 int nr_items, gfp_t flags)
547 {
548 	struct tree_mod_elem *tm = NULL;
549 	struct tree_mod_elem **tm_list = NULL;
550 	int ret = 0;
551 	int i;
552 	int locked = 0;
553 
554 	if (!tree_mod_need_log(fs_info, eb))
555 		return 0;
556 
557 	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
558 	if (!tm_list)
559 		return -ENOMEM;
560 
561 	tm = kzalloc(sizeof(*tm), flags);
562 	if (!tm) {
563 		ret = -ENOMEM;
564 		goto free_tms;
565 	}
566 
567 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
568 	tm->slot = src_slot;
569 	tm->move.dst_slot = dst_slot;
570 	tm->move.nr_items = nr_items;
571 	tm->op = MOD_LOG_MOVE_KEYS;
572 
573 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
574 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
575 		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
576 		if (!tm_list[i]) {
577 			ret = -ENOMEM;
578 			goto free_tms;
579 		}
580 	}
581 
582 	if (tree_mod_dont_log(fs_info, eb))
583 		goto free_tms;
584 	locked = 1;
585 
586 	/*
587 	 * When we override something during the move, we log these removals.
588 	 * This can only happen when we move towards the beginning of the
589 	 * buffer, i.e. dst_slot < src_slot.
590 	 */
591 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
592 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
593 		if (ret)
594 			goto free_tms;
595 	}
596 
597 	ret = __tree_mod_log_insert(fs_info, tm);
598 	if (ret)
599 		goto free_tms;
600 	write_unlock(&eb->fs_info->tree_mod_log_lock);
601 	kfree(tm_list);
602 
603 	return 0;
604 free_tms:
605 	for (i = 0; i < nr_items; i++) {
606 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
607 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
608 		kfree(tm_list[i]);
609 	}
610 	if (locked)
611 		write_unlock(&eb->fs_info->tree_mod_log_lock);
612 	kfree(tm_list);
613 	kfree(tm);
614 
615 	return ret;
616 }
617 
618 static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info * fs_info,struct tree_mod_elem ** tm_list,int nritems)619 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
620 		       struct tree_mod_elem **tm_list,
621 		       int nritems)
622 {
623 	int i, j;
624 	int ret;
625 
626 	for (i = nritems - 1; i >= 0; i--) {
627 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
628 		if (ret) {
629 			for (j = nritems - 1; j > i; j--)
630 				rb_erase(&tm_list[j]->node,
631 					 &fs_info->tree_mod_log);
632 			return ret;
633 		}
634 	}
635 
636 	return 0;
637 }
638 
639 static noinline int
tree_mod_log_insert_root(struct btrfs_fs_info * fs_info,struct extent_buffer * old_root,struct extent_buffer * new_root,gfp_t flags,int log_removal)640 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
641 			 struct extent_buffer *old_root,
642 			 struct extent_buffer *new_root, gfp_t flags,
643 			 int log_removal)
644 {
645 	struct tree_mod_elem *tm = NULL;
646 	struct tree_mod_elem **tm_list = NULL;
647 	int nritems = 0;
648 	int ret = 0;
649 	int i;
650 
651 	if (!tree_mod_need_log(fs_info, NULL))
652 		return 0;
653 
654 	if (log_removal && btrfs_header_level(old_root) > 0) {
655 		nritems = btrfs_header_nritems(old_root);
656 		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
657 				  flags);
658 		if (!tm_list) {
659 			ret = -ENOMEM;
660 			goto free_tms;
661 		}
662 		for (i = 0; i < nritems; i++) {
663 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
664 			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
665 			if (!tm_list[i]) {
666 				ret = -ENOMEM;
667 				goto free_tms;
668 			}
669 		}
670 	}
671 
672 	tm = kzalloc(sizeof(*tm), flags);
673 	if (!tm) {
674 		ret = -ENOMEM;
675 		goto free_tms;
676 	}
677 
678 	tm->index = new_root->start >> PAGE_CACHE_SHIFT;
679 	tm->old_root.logical = old_root->start;
680 	tm->old_root.level = btrfs_header_level(old_root);
681 	tm->generation = btrfs_header_generation(old_root);
682 	tm->op = MOD_LOG_ROOT_REPLACE;
683 
684 	if (tree_mod_dont_log(fs_info, NULL))
685 		goto free_tms;
686 
687 	if (tm_list)
688 		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
689 	if (!ret)
690 		ret = __tree_mod_log_insert(fs_info, tm);
691 
692 	write_unlock(&fs_info->tree_mod_log_lock);
693 	if (ret)
694 		goto free_tms;
695 	kfree(tm_list);
696 
697 	return ret;
698 
699 free_tms:
700 	if (tm_list) {
701 		for (i = 0; i < nritems; i++)
702 			kfree(tm_list[i]);
703 		kfree(tm_list);
704 	}
705 	kfree(tm);
706 
707 	return ret;
708 }
709 
710 static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info * fs_info,u64 start,u64 min_seq,int smallest)711 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
712 		      int smallest)
713 {
714 	struct rb_root *tm_root;
715 	struct rb_node *node;
716 	struct tree_mod_elem *cur = NULL;
717 	struct tree_mod_elem *found = NULL;
718 	u64 index = start >> PAGE_CACHE_SHIFT;
719 
720 	read_lock(&fs_info->tree_mod_log_lock);
721 	tm_root = &fs_info->tree_mod_log;
722 	node = tm_root->rb_node;
723 	while (node) {
724 		cur = container_of(node, struct tree_mod_elem, node);
725 		if (cur->index < index) {
726 			node = node->rb_left;
727 		} else if (cur->index > index) {
728 			node = node->rb_right;
729 		} else if (cur->seq < min_seq) {
730 			node = node->rb_left;
731 		} else if (!smallest) {
732 			/* we want the node with the highest seq */
733 			if (found)
734 				BUG_ON(found->seq > cur->seq);
735 			found = cur;
736 			node = node->rb_left;
737 		} else if (cur->seq > min_seq) {
738 			/* we want the node with the smallest seq */
739 			if (found)
740 				BUG_ON(found->seq < cur->seq);
741 			found = cur;
742 			node = node->rb_right;
743 		} else {
744 			found = cur;
745 			break;
746 		}
747 	}
748 	read_unlock(&fs_info->tree_mod_log_lock);
749 
750 	return found;
751 }
752 
753 /*
754  * this returns the element from the log with the smallest time sequence
755  * value that's in the log (the oldest log item). any element with a time
756  * sequence lower than min_seq will be ignored.
757  */
758 static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info * fs_info,u64 start,u64 min_seq)759 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
760 			   u64 min_seq)
761 {
762 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
763 }
764 
765 /*
766  * this returns the element from the log with the largest time sequence
767  * value that's in the log (the most recent log item). any element with
768  * a time sequence lower than min_seq will be ignored.
769  */
770 static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info * fs_info,u64 start,u64 min_seq)771 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
772 {
773 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
774 }
775 
776 static noinline int
tree_mod_log_eb_copy(struct btrfs_fs_info * fs_info,struct extent_buffer * dst,struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,int nr_items)777 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
778 		     struct extent_buffer *src, unsigned long dst_offset,
779 		     unsigned long src_offset, int nr_items)
780 {
781 	int ret = 0;
782 	struct tree_mod_elem **tm_list = NULL;
783 	struct tree_mod_elem **tm_list_add, **tm_list_rem;
784 	int i;
785 	int locked = 0;
786 
787 	if (!tree_mod_need_log(fs_info, NULL))
788 		return 0;
789 
790 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
791 		return 0;
792 
793 	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
794 			  GFP_NOFS);
795 	if (!tm_list)
796 		return -ENOMEM;
797 
798 	tm_list_add = tm_list;
799 	tm_list_rem = tm_list + nr_items;
800 	for (i = 0; i < nr_items; i++) {
801 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
802 		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
803 		if (!tm_list_rem[i]) {
804 			ret = -ENOMEM;
805 			goto free_tms;
806 		}
807 
808 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
809 		    MOD_LOG_KEY_ADD, GFP_NOFS);
810 		if (!tm_list_add[i]) {
811 			ret = -ENOMEM;
812 			goto free_tms;
813 		}
814 	}
815 
816 	if (tree_mod_dont_log(fs_info, NULL))
817 		goto free_tms;
818 	locked = 1;
819 
820 	for (i = 0; i < nr_items; i++) {
821 		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
822 		if (ret)
823 			goto free_tms;
824 		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
825 		if (ret)
826 			goto free_tms;
827 	}
828 
829 	write_unlock(&fs_info->tree_mod_log_lock);
830 	kfree(tm_list);
831 
832 	return 0;
833 
834 free_tms:
835 	for (i = 0; i < nr_items * 2; i++) {
836 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
837 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
838 		kfree(tm_list[i]);
839 	}
840 	if (locked)
841 		write_unlock(&fs_info->tree_mod_log_lock);
842 	kfree(tm_list);
843 
844 	return ret;
845 }
846 
847 static inline void
tree_mod_log_eb_move(struct btrfs_fs_info * fs_info,struct extent_buffer * dst,int dst_offset,int src_offset,int nr_items)848 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
849 		     int dst_offset, int src_offset, int nr_items)
850 {
851 	int ret;
852 	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
853 				       nr_items, GFP_NOFS);
854 	BUG_ON(ret < 0);
855 }
856 
857 static noinline void
tree_mod_log_set_node_key(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,int slot,int atomic)858 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
859 			  struct extent_buffer *eb, int slot, int atomic)
860 {
861 	int ret;
862 
863 	ret = tree_mod_log_insert_key(fs_info, eb, slot,
864 					MOD_LOG_KEY_REPLACE,
865 					atomic ? GFP_ATOMIC : GFP_NOFS);
866 	BUG_ON(ret < 0);
867 }
868 
869 static noinline int
tree_mod_log_free_eb(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)870 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
871 {
872 	struct tree_mod_elem **tm_list = NULL;
873 	int nritems = 0;
874 	int i;
875 	int ret = 0;
876 
877 	if (btrfs_header_level(eb) == 0)
878 		return 0;
879 
880 	if (!tree_mod_need_log(fs_info, NULL))
881 		return 0;
882 
883 	nritems = btrfs_header_nritems(eb);
884 	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
885 	if (!tm_list)
886 		return -ENOMEM;
887 
888 	for (i = 0; i < nritems; i++) {
889 		tm_list[i] = alloc_tree_mod_elem(eb, i,
890 		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
891 		if (!tm_list[i]) {
892 			ret = -ENOMEM;
893 			goto free_tms;
894 		}
895 	}
896 
897 	if (tree_mod_dont_log(fs_info, eb))
898 		goto free_tms;
899 
900 	ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
901 	write_unlock(&eb->fs_info->tree_mod_log_lock);
902 	if (ret)
903 		goto free_tms;
904 	kfree(tm_list);
905 
906 	return 0;
907 
908 free_tms:
909 	for (i = 0; i < nritems; i++)
910 		kfree(tm_list[i]);
911 	kfree(tm_list);
912 
913 	return ret;
914 }
915 
916 static noinline void
tree_mod_log_set_root_pointer(struct btrfs_root * root,struct extent_buffer * new_root_node,int log_removal)917 tree_mod_log_set_root_pointer(struct btrfs_root *root,
918 			      struct extent_buffer *new_root_node,
919 			      int log_removal)
920 {
921 	int ret;
922 	ret = tree_mod_log_insert_root(root->fs_info, root->node,
923 				       new_root_node, GFP_NOFS, log_removal);
924 	BUG_ON(ret < 0);
925 }
926 
927 /*
928  * check if the tree block can be shared by multiple trees
929  */
btrfs_block_can_be_shared(struct btrfs_root * root,struct extent_buffer * buf)930 int btrfs_block_can_be_shared(struct btrfs_root *root,
931 			      struct extent_buffer *buf)
932 {
933 	/*
934 	 * Tree blocks not in refernece counted trees and tree roots
935 	 * are never shared. If a block was allocated after the last
936 	 * snapshot and the block was not allocated by tree relocation,
937 	 * we know the block is not shared.
938 	 */
939 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
940 	    buf != root->node && buf != root->commit_root &&
941 	    (btrfs_header_generation(buf) <=
942 	     btrfs_root_last_snapshot(&root->root_item) ||
943 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
944 		return 1;
945 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
946 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
947 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
948 		return 1;
949 #endif
950 	return 0;
951 }
952 
update_ref_for_cow(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow,int * last_ref)953 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
954 				       struct btrfs_root *root,
955 				       struct extent_buffer *buf,
956 				       struct extent_buffer *cow,
957 				       int *last_ref)
958 {
959 	u64 refs;
960 	u64 owner;
961 	u64 flags;
962 	u64 new_flags = 0;
963 	int ret;
964 
965 	/*
966 	 * Backrefs update rules:
967 	 *
968 	 * Always use full backrefs for extent pointers in tree block
969 	 * allocated by tree relocation.
970 	 *
971 	 * If a shared tree block is no longer referenced by its owner
972 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
973 	 * use full backrefs for extent pointers in tree block.
974 	 *
975 	 * If a tree block is been relocating
976 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
977 	 * use full backrefs for extent pointers in tree block.
978 	 * The reason for this is some operations (such as drop tree)
979 	 * are only allowed for blocks use full backrefs.
980 	 */
981 
982 	if (btrfs_block_can_be_shared(root, buf)) {
983 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
984 					       btrfs_header_level(buf), 1,
985 					       &refs, &flags);
986 		if (ret)
987 			return ret;
988 		if (refs == 0) {
989 			ret = -EROFS;
990 			btrfs_std_error(root->fs_info, ret, NULL);
991 			return ret;
992 		}
993 	} else {
994 		refs = 1;
995 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
996 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
997 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
998 		else
999 			flags = 0;
1000 	}
1001 
1002 	owner = btrfs_header_owner(buf);
1003 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1004 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1005 
1006 	if (refs > 1) {
1007 		if ((owner == root->root_key.objectid ||
1008 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1009 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1010 			ret = btrfs_inc_ref(trans, root, buf, 1);
1011 			BUG_ON(ret); /* -ENOMEM */
1012 
1013 			if (root->root_key.objectid ==
1014 			    BTRFS_TREE_RELOC_OBJECTID) {
1015 				ret = btrfs_dec_ref(trans, root, buf, 0);
1016 				BUG_ON(ret); /* -ENOMEM */
1017 				ret = btrfs_inc_ref(trans, root, cow, 1);
1018 				BUG_ON(ret); /* -ENOMEM */
1019 			}
1020 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1021 		} else {
1022 
1023 			if (root->root_key.objectid ==
1024 			    BTRFS_TREE_RELOC_OBJECTID)
1025 				ret = btrfs_inc_ref(trans, root, cow, 1);
1026 			else
1027 				ret = btrfs_inc_ref(trans, root, cow, 0);
1028 			BUG_ON(ret); /* -ENOMEM */
1029 		}
1030 		if (new_flags != 0) {
1031 			int level = btrfs_header_level(buf);
1032 
1033 			ret = btrfs_set_disk_extent_flags(trans, root,
1034 							  buf->start,
1035 							  buf->len,
1036 							  new_flags, level, 0);
1037 			if (ret)
1038 				return ret;
1039 		}
1040 	} else {
1041 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1042 			if (root->root_key.objectid ==
1043 			    BTRFS_TREE_RELOC_OBJECTID)
1044 				ret = btrfs_inc_ref(trans, root, cow, 1);
1045 			else
1046 				ret = btrfs_inc_ref(trans, root, cow, 0);
1047 			BUG_ON(ret); /* -ENOMEM */
1048 			ret = btrfs_dec_ref(trans, root, buf, 1);
1049 			BUG_ON(ret); /* -ENOMEM */
1050 		}
1051 		clean_tree_block(trans, root->fs_info, buf);
1052 		*last_ref = 1;
1053 	}
1054 	return 0;
1055 }
1056 
1057 /*
1058  * does the dirty work in cow of a single block.  The parent block (if
1059  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1060  * dirty and returned locked.  If you modify the block it needs to be marked
1061  * dirty again.
1062  *
1063  * search_start -- an allocation hint for the new block
1064  *
1065  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1066  * bytes the allocator should try to find free next to the block it returns.
1067  * This is just a hint and may be ignored by the allocator.
1068  */
__btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,u64 search_start,u64 empty_size)1069 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1070 			     struct btrfs_root *root,
1071 			     struct extent_buffer *buf,
1072 			     struct extent_buffer *parent, int parent_slot,
1073 			     struct extent_buffer **cow_ret,
1074 			     u64 search_start, u64 empty_size)
1075 {
1076 	struct btrfs_disk_key disk_key;
1077 	struct extent_buffer *cow;
1078 	int level, ret;
1079 	int last_ref = 0;
1080 	int unlock_orig = 0;
1081 	u64 parent_start;
1082 
1083 	if (*cow_ret == buf)
1084 		unlock_orig = 1;
1085 
1086 	btrfs_assert_tree_locked(buf);
1087 
1088 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1089 		trans->transid != root->fs_info->running_transaction->transid);
1090 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1091 		trans->transid != root->last_trans);
1092 
1093 	level = btrfs_header_level(buf);
1094 
1095 	if (level == 0)
1096 		btrfs_item_key(buf, &disk_key, 0);
1097 	else
1098 		btrfs_node_key(buf, &disk_key, 0);
1099 
1100 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1101 		if (parent)
1102 			parent_start = parent->start;
1103 		else
1104 			parent_start = 0;
1105 	} else
1106 		parent_start = 0;
1107 
1108 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
1109 			root->root_key.objectid, &disk_key, level,
1110 			search_start, empty_size);
1111 	if (IS_ERR(cow))
1112 		return PTR_ERR(cow);
1113 
1114 	/* cow is set to blocking by btrfs_init_new_buffer */
1115 
1116 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
1117 	btrfs_set_header_bytenr(cow, cow->start);
1118 	btrfs_set_header_generation(cow, trans->transid);
1119 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1120 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1121 				     BTRFS_HEADER_FLAG_RELOC);
1122 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1123 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1124 	else
1125 		btrfs_set_header_owner(cow, root->root_key.objectid);
1126 
1127 	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1128 			    BTRFS_FSID_SIZE);
1129 
1130 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1131 	if (ret) {
1132 		btrfs_tree_unlock(cow);
1133 		free_extent_buffer(cow);
1134 		btrfs_abort_transaction(trans, root, ret);
1135 		return ret;
1136 	}
1137 
1138 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1139 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1140 		if (ret) {
1141 			btrfs_tree_unlock(cow);
1142 			free_extent_buffer(cow);
1143 			btrfs_abort_transaction(trans, root, ret);
1144 			return ret;
1145 		}
1146 	}
1147 
1148 	if (buf == root->node) {
1149 		WARN_ON(parent && parent != buf);
1150 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1151 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1152 			parent_start = buf->start;
1153 		else
1154 			parent_start = 0;
1155 
1156 		extent_buffer_get(cow);
1157 		tree_mod_log_set_root_pointer(root, cow, 1);
1158 		rcu_assign_pointer(root->node, cow);
1159 
1160 		btrfs_free_tree_block(trans, root, buf, parent_start,
1161 				      last_ref);
1162 		free_extent_buffer(buf);
1163 		add_root_to_dirty_list(root);
1164 	} else {
1165 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1166 			parent_start = parent->start;
1167 		else
1168 			parent_start = 0;
1169 
1170 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1171 		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1172 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1173 		btrfs_set_node_blockptr(parent, parent_slot,
1174 					cow->start);
1175 		btrfs_set_node_ptr_generation(parent, parent_slot,
1176 					      trans->transid);
1177 		btrfs_mark_buffer_dirty(parent);
1178 		if (last_ref) {
1179 			ret = tree_mod_log_free_eb(root->fs_info, buf);
1180 			if (ret) {
1181 				btrfs_tree_unlock(cow);
1182 				free_extent_buffer(cow);
1183 				btrfs_abort_transaction(trans, root, ret);
1184 				return ret;
1185 			}
1186 		}
1187 		btrfs_free_tree_block(trans, root, buf, parent_start,
1188 				      last_ref);
1189 	}
1190 	if (unlock_orig)
1191 		btrfs_tree_unlock(buf);
1192 	free_extent_buffer_stale(buf);
1193 	btrfs_mark_buffer_dirty(cow);
1194 	*cow_ret = cow;
1195 	return 0;
1196 }
1197 
1198 /*
1199  * returns the logical address of the oldest predecessor of the given root.
1200  * entries older than time_seq are ignored.
1201  */
1202 static struct tree_mod_elem *
__tree_mod_log_oldest_root(struct btrfs_fs_info * fs_info,struct extent_buffer * eb_root,u64 time_seq)1203 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1204 			   struct extent_buffer *eb_root, u64 time_seq)
1205 {
1206 	struct tree_mod_elem *tm;
1207 	struct tree_mod_elem *found = NULL;
1208 	u64 root_logical = eb_root->start;
1209 	int looped = 0;
1210 
1211 	if (!time_seq)
1212 		return NULL;
1213 
1214 	/*
1215 	 * the very last operation that's logged for a root is the replacement
1216 	 * operation (if it is replaced at all). this has the index of the *new*
1217 	 * root, making it the very first operation that's logged for this root.
1218 	 */
1219 	while (1) {
1220 		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1221 						time_seq);
1222 		if (!looped && !tm)
1223 			return NULL;
1224 		/*
1225 		 * if there are no tree operation for the oldest root, we simply
1226 		 * return it. this should only happen if that (old) root is at
1227 		 * level 0.
1228 		 */
1229 		if (!tm)
1230 			break;
1231 
1232 		/*
1233 		 * if there's an operation that's not a root replacement, we
1234 		 * found the oldest version of our root. normally, we'll find a
1235 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1236 		 */
1237 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1238 			break;
1239 
1240 		found = tm;
1241 		root_logical = tm->old_root.logical;
1242 		looped = 1;
1243 	}
1244 
1245 	/* if there's no old root to return, return what we found instead */
1246 	if (!found)
1247 		found = tm;
1248 
1249 	return found;
1250 }
1251 
1252 /*
1253  * tm is a pointer to the first operation to rewind within eb. then, all
1254  * previous operations will be rewinded (until we reach something older than
1255  * time_seq).
1256  */
1257 static void
__tree_mod_log_rewind(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,u64 time_seq,struct tree_mod_elem * first_tm)1258 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1259 		      u64 time_seq, struct tree_mod_elem *first_tm)
1260 {
1261 	u32 n;
1262 	struct rb_node *next;
1263 	struct tree_mod_elem *tm = first_tm;
1264 	unsigned long o_dst;
1265 	unsigned long o_src;
1266 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1267 
1268 	n = btrfs_header_nritems(eb);
1269 	read_lock(&fs_info->tree_mod_log_lock);
1270 	while (tm && tm->seq >= time_seq) {
1271 		/*
1272 		 * all the operations are recorded with the operator used for
1273 		 * the modification. as we're going backwards, we do the
1274 		 * opposite of each operation here.
1275 		 */
1276 		switch (tm->op) {
1277 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1278 			BUG_ON(tm->slot < n);
1279 			/* Fallthrough */
1280 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1281 		case MOD_LOG_KEY_REMOVE:
1282 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1283 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1284 			btrfs_set_node_ptr_generation(eb, tm->slot,
1285 						      tm->generation);
1286 			n++;
1287 			break;
1288 		case MOD_LOG_KEY_REPLACE:
1289 			BUG_ON(tm->slot >= n);
1290 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1291 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1292 			btrfs_set_node_ptr_generation(eb, tm->slot,
1293 						      tm->generation);
1294 			break;
1295 		case MOD_LOG_KEY_ADD:
1296 			/* if a move operation is needed it's in the log */
1297 			n--;
1298 			break;
1299 		case MOD_LOG_MOVE_KEYS:
1300 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1301 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1302 			memmove_extent_buffer(eb, o_dst, o_src,
1303 					      tm->move.nr_items * p_size);
1304 			break;
1305 		case MOD_LOG_ROOT_REPLACE:
1306 			/*
1307 			 * this operation is special. for roots, this must be
1308 			 * handled explicitly before rewinding.
1309 			 * for non-roots, this operation may exist if the node
1310 			 * was a root: root A -> child B; then A gets empty and
1311 			 * B is promoted to the new root. in the mod log, we'll
1312 			 * have a root-replace operation for B, a tree block
1313 			 * that is no root. we simply ignore that operation.
1314 			 */
1315 			break;
1316 		}
1317 		next = rb_next(&tm->node);
1318 		if (!next)
1319 			break;
1320 		tm = container_of(next, struct tree_mod_elem, node);
1321 		if (tm->index != first_tm->index)
1322 			break;
1323 	}
1324 	read_unlock(&fs_info->tree_mod_log_lock);
1325 	btrfs_set_header_nritems(eb, n);
1326 }
1327 
1328 /*
1329  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1330  * is returned. If rewind operations happen, a fresh buffer is returned. The
1331  * returned buffer is always read-locked. If the returned buffer is not the
1332  * input buffer, the lock on the input buffer is released and the input buffer
1333  * is freed (its refcount is decremented).
1334  */
1335 static struct extent_buffer *
tree_mod_log_rewind(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct extent_buffer * eb,u64 time_seq)1336 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1337 		    struct extent_buffer *eb, u64 time_seq)
1338 {
1339 	struct extent_buffer *eb_rewin;
1340 	struct tree_mod_elem *tm;
1341 
1342 	if (!time_seq)
1343 		return eb;
1344 
1345 	if (btrfs_header_level(eb) == 0)
1346 		return eb;
1347 
1348 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1349 	if (!tm)
1350 		return eb;
1351 
1352 	btrfs_set_path_blocking(path);
1353 	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1354 
1355 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1356 		BUG_ON(tm->slot != 0);
1357 		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1358 		if (!eb_rewin) {
1359 			btrfs_tree_read_unlock_blocking(eb);
1360 			free_extent_buffer(eb);
1361 			return NULL;
1362 		}
1363 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1364 		btrfs_set_header_backref_rev(eb_rewin,
1365 					     btrfs_header_backref_rev(eb));
1366 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1367 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1368 	} else {
1369 		eb_rewin = btrfs_clone_extent_buffer(eb);
1370 		if (!eb_rewin) {
1371 			btrfs_tree_read_unlock_blocking(eb);
1372 			free_extent_buffer(eb);
1373 			return NULL;
1374 		}
1375 	}
1376 
1377 	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1378 	btrfs_tree_read_unlock_blocking(eb);
1379 	free_extent_buffer(eb);
1380 
1381 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
1382 				       eb_rewin, btrfs_header_level(eb_rewin));
1383 	btrfs_tree_read_lock(eb_rewin);
1384 	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1385 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1386 		BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1387 
1388 	return eb_rewin;
1389 }
1390 
1391 /*
1392  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1393  * value. If there are no changes, the current root->root_node is returned. If
1394  * anything changed in between, there's a fresh buffer allocated on which the
1395  * rewind operations are done. In any case, the returned buffer is read locked.
1396  * Returns NULL on error (with no locks held).
1397  */
1398 static inline struct extent_buffer *
get_old_root(struct btrfs_root * root,u64 time_seq)1399 get_old_root(struct btrfs_root *root, u64 time_seq)
1400 {
1401 	struct tree_mod_elem *tm;
1402 	struct extent_buffer *eb = NULL;
1403 	struct extent_buffer *eb_root;
1404 	u64 eb_root_owner = 0;
1405 	struct extent_buffer *old;
1406 	struct tree_mod_root *old_root = NULL;
1407 	u64 old_generation = 0;
1408 	u64 logical;
1409 
1410 	eb_root = btrfs_read_lock_root_node(root);
1411 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1412 	if (!tm)
1413 		return eb_root;
1414 
1415 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1416 		old_root = &tm->old_root;
1417 		old_generation = tm->generation;
1418 		logical = old_root->logical;
1419 	} else {
1420 		logical = eb_root->start;
1421 	}
1422 
1423 	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1424 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1425 		btrfs_tree_read_unlock(eb_root);
1426 		free_extent_buffer(eb_root);
1427 		old = read_tree_block(root, logical, 0);
1428 		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1429 			if (!IS_ERR(old))
1430 				free_extent_buffer(old);
1431 			btrfs_warn(root->fs_info,
1432 				"failed to read tree block %llu from get_old_root", logical);
1433 		} else {
1434 			btrfs_tree_read_lock(old);
1435 			eb = btrfs_clone_extent_buffer(old);
1436 			btrfs_tree_read_unlock(old);
1437 			free_extent_buffer(old);
1438 		}
1439 	} else if (old_root) {
1440 		eb_root_owner = btrfs_header_owner(eb_root);
1441 		btrfs_tree_read_unlock(eb_root);
1442 		free_extent_buffer(eb_root);
1443 		eb = alloc_dummy_extent_buffer(root->fs_info, logical);
1444 	} else {
1445 		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1446 		eb = btrfs_clone_extent_buffer(eb_root);
1447 		btrfs_tree_read_unlock_blocking(eb_root);
1448 		free_extent_buffer(eb_root);
1449 	}
1450 
1451 	if (!eb)
1452 		return NULL;
1453 	if (old_root) {
1454 		btrfs_set_header_bytenr(eb, eb->start);
1455 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1456 		btrfs_set_header_owner(eb, eb_root_owner);
1457 		btrfs_set_header_level(eb, old_root->level);
1458 		btrfs_set_header_generation(eb, old_generation);
1459 	}
1460 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
1461 				       btrfs_header_level(eb));
1462 	btrfs_tree_read_lock(eb);
1463 	if (tm)
1464 		__tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1465 	else
1466 		WARN_ON(btrfs_header_level(eb) != 0);
1467 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1468 
1469 	return eb;
1470 }
1471 
btrfs_old_root_level(struct btrfs_root * root,u64 time_seq)1472 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1473 {
1474 	struct tree_mod_elem *tm;
1475 	int level;
1476 	struct extent_buffer *eb_root = btrfs_root_node(root);
1477 
1478 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1479 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1480 		level = tm->old_root.level;
1481 	} else {
1482 		level = btrfs_header_level(eb_root);
1483 	}
1484 	free_extent_buffer(eb_root);
1485 
1486 	return level;
1487 }
1488 
should_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)1489 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1490 				   struct btrfs_root *root,
1491 				   struct extent_buffer *buf)
1492 {
1493 	if (btrfs_test_is_dummy_root(root))
1494 		return 0;
1495 
1496 	/* ensure we can see the force_cow */
1497 	smp_rmb();
1498 
1499 	/*
1500 	 * We do not need to cow a block if
1501 	 * 1) this block is not created or changed in this transaction;
1502 	 * 2) this block does not belong to TREE_RELOC tree;
1503 	 * 3) the root is not forced COW.
1504 	 *
1505 	 * What is forced COW:
1506 	 *    when we create snapshot during commiting the transaction,
1507 	 *    after we've finished coping src root, we must COW the shared
1508 	 *    block to ensure the metadata consistency.
1509 	 */
1510 	if (btrfs_header_generation(buf) == trans->transid &&
1511 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1512 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1513 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1514 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1515 		return 0;
1516 	return 1;
1517 }
1518 
1519 /*
1520  * cows a single block, see __btrfs_cow_block for the real work.
1521  * This version of it has extra checks so that a block isn't cow'd more than
1522  * once per transaction, as long as it hasn't been written yet
1523  */
btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret)1524 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1525 		    struct btrfs_root *root, struct extent_buffer *buf,
1526 		    struct extent_buffer *parent, int parent_slot,
1527 		    struct extent_buffer **cow_ret)
1528 {
1529 	u64 search_start;
1530 	int ret;
1531 
1532 	if (trans->transaction != root->fs_info->running_transaction)
1533 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1534 		       trans->transid,
1535 		       root->fs_info->running_transaction->transid);
1536 
1537 	if (trans->transid != root->fs_info->generation)
1538 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1539 		       trans->transid, root->fs_info->generation);
1540 
1541 	if (!should_cow_block(trans, root, buf)) {
1542 		trans->dirty = true;
1543 		*cow_ret = buf;
1544 		return 0;
1545 	}
1546 
1547 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1548 
1549 	if (parent)
1550 		btrfs_set_lock_blocking(parent);
1551 	btrfs_set_lock_blocking(buf);
1552 
1553 	ret = __btrfs_cow_block(trans, root, buf, parent,
1554 				 parent_slot, cow_ret, search_start, 0);
1555 
1556 	trace_btrfs_cow_block(root, buf, *cow_ret);
1557 
1558 	return ret;
1559 }
1560 
1561 /*
1562  * helper function for defrag to decide if two blocks pointed to by a
1563  * node are actually close by
1564  */
close_blocks(u64 blocknr,u64 other,u32 blocksize)1565 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1566 {
1567 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1568 		return 1;
1569 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1570 		return 1;
1571 	return 0;
1572 }
1573 
1574 /*
1575  * compare two keys in a memcmp fashion
1576  */
comp_keys(struct btrfs_disk_key * disk,struct btrfs_key * k2)1577 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1578 {
1579 	struct btrfs_key k1;
1580 
1581 	btrfs_disk_key_to_cpu(&k1, disk);
1582 
1583 	return btrfs_comp_cpu_keys(&k1, k2);
1584 }
1585 
1586 /*
1587  * same as comp_keys only with two btrfs_key's
1588  */
btrfs_comp_cpu_keys(struct btrfs_key * k1,struct btrfs_key * k2)1589 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1590 {
1591 	if (k1->objectid > k2->objectid)
1592 		return 1;
1593 	if (k1->objectid < k2->objectid)
1594 		return -1;
1595 	if (k1->type > k2->type)
1596 		return 1;
1597 	if (k1->type < k2->type)
1598 		return -1;
1599 	if (k1->offset > k2->offset)
1600 		return 1;
1601 	if (k1->offset < k2->offset)
1602 		return -1;
1603 	return 0;
1604 }
1605 
1606 /*
1607  * this is used by the defrag code to go through all the
1608  * leaves pointed to by a node and reallocate them so that
1609  * disk order is close to key order
1610  */
btrfs_realloc_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * parent,int start_slot,u64 * last_ret,struct btrfs_key * progress)1611 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1612 		       struct btrfs_root *root, struct extent_buffer *parent,
1613 		       int start_slot, u64 *last_ret,
1614 		       struct btrfs_key *progress)
1615 {
1616 	struct extent_buffer *cur;
1617 	u64 blocknr;
1618 	u64 gen;
1619 	u64 search_start = *last_ret;
1620 	u64 last_block = 0;
1621 	u64 other;
1622 	u32 parent_nritems;
1623 	int end_slot;
1624 	int i;
1625 	int err = 0;
1626 	int parent_level;
1627 	int uptodate;
1628 	u32 blocksize;
1629 	int progress_passed = 0;
1630 	struct btrfs_disk_key disk_key;
1631 
1632 	parent_level = btrfs_header_level(parent);
1633 
1634 	WARN_ON(trans->transaction != root->fs_info->running_transaction);
1635 	WARN_ON(trans->transid != root->fs_info->generation);
1636 
1637 	parent_nritems = btrfs_header_nritems(parent);
1638 	blocksize = root->nodesize;
1639 	end_slot = parent_nritems - 1;
1640 
1641 	if (parent_nritems <= 1)
1642 		return 0;
1643 
1644 	btrfs_set_lock_blocking(parent);
1645 
1646 	for (i = start_slot; i <= end_slot; i++) {
1647 		int close = 1;
1648 
1649 		btrfs_node_key(parent, &disk_key, i);
1650 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1651 			continue;
1652 
1653 		progress_passed = 1;
1654 		blocknr = btrfs_node_blockptr(parent, i);
1655 		gen = btrfs_node_ptr_generation(parent, i);
1656 		if (last_block == 0)
1657 			last_block = blocknr;
1658 
1659 		if (i > 0) {
1660 			other = btrfs_node_blockptr(parent, i - 1);
1661 			close = close_blocks(blocknr, other, blocksize);
1662 		}
1663 		if (!close && i < end_slot) {
1664 			other = btrfs_node_blockptr(parent, i + 1);
1665 			close = close_blocks(blocknr, other, blocksize);
1666 		}
1667 		if (close) {
1668 			last_block = blocknr;
1669 			continue;
1670 		}
1671 
1672 		cur = btrfs_find_tree_block(root->fs_info, blocknr);
1673 		if (cur)
1674 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1675 		else
1676 			uptodate = 0;
1677 		if (!cur || !uptodate) {
1678 			if (!cur) {
1679 				cur = read_tree_block(root, blocknr, gen);
1680 				if (IS_ERR(cur)) {
1681 					return PTR_ERR(cur);
1682 				} else if (!extent_buffer_uptodate(cur)) {
1683 					free_extent_buffer(cur);
1684 					return -EIO;
1685 				}
1686 			} else if (!uptodate) {
1687 				err = btrfs_read_buffer(cur, gen);
1688 				if (err) {
1689 					free_extent_buffer(cur);
1690 					return err;
1691 				}
1692 			}
1693 		}
1694 		if (search_start == 0)
1695 			search_start = last_block;
1696 
1697 		btrfs_tree_lock(cur);
1698 		btrfs_set_lock_blocking(cur);
1699 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1700 					&cur, search_start,
1701 					min(16 * blocksize,
1702 					    (end_slot - i) * blocksize));
1703 		if (err) {
1704 			btrfs_tree_unlock(cur);
1705 			free_extent_buffer(cur);
1706 			break;
1707 		}
1708 		search_start = cur->start;
1709 		last_block = cur->start;
1710 		*last_ret = search_start;
1711 		btrfs_tree_unlock(cur);
1712 		free_extent_buffer(cur);
1713 	}
1714 	return err;
1715 }
1716 
1717 
1718 /*
1719  * search for key in the extent_buffer.  The items start at offset p,
1720  * and they are item_size apart.  There are 'max' items in p.
1721  *
1722  * the slot in the array is returned via slot, and it points to
1723  * the place where you would insert key if it is not found in
1724  * the array.
1725  *
1726  * slot may point to max if the key is bigger than all of the keys
1727  */
generic_bin_search(struct extent_buffer * eb,unsigned long p,int item_size,struct btrfs_key * key,int max,int * slot)1728 static noinline int generic_bin_search(struct extent_buffer *eb,
1729 				       unsigned long p,
1730 				       int item_size, struct btrfs_key *key,
1731 				       int max, int *slot)
1732 {
1733 	int low = 0;
1734 	int high = max;
1735 	int mid;
1736 	int ret;
1737 	struct btrfs_disk_key *tmp = NULL;
1738 	struct btrfs_disk_key unaligned;
1739 	unsigned long offset;
1740 	char *kaddr = NULL;
1741 	unsigned long map_start = 0;
1742 	unsigned long map_len = 0;
1743 	int err;
1744 
1745 	while (low < high) {
1746 		mid = (low + high) / 2;
1747 		offset = p + mid * item_size;
1748 
1749 		if (!kaddr || offset < map_start ||
1750 		    (offset + sizeof(struct btrfs_disk_key)) >
1751 		    map_start + map_len) {
1752 
1753 			err = map_private_extent_buffer(eb, offset,
1754 						sizeof(struct btrfs_disk_key),
1755 						&kaddr, &map_start, &map_len);
1756 
1757 			if (!err) {
1758 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1759 							map_start);
1760 			} else {
1761 				read_extent_buffer(eb, &unaligned,
1762 						   offset, sizeof(unaligned));
1763 				tmp = &unaligned;
1764 			}
1765 
1766 		} else {
1767 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1768 							map_start);
1769 		}
1770 		ret = comp_keys(tmp, key);
1771 
1772 		if (ret < 0)
1773 			low = mid + 1;
1774 		else if (ret > 0)
1775 			high = mid;
1776 		else {
1777 			*slot = mid;
1778 			return 0;
1779 		}
1780 	}
1781 	*slot = low;
1782 	return 1;
1783 }
1784 
1785 /*
1786  * simple bin_search frontend that does the right thing for
1787  * leaves vs nodes
1788  */
bin_search(struct extent_buffer * eb,struct btrfs_key * key,int level,int * slot)1789 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1790 		      int level, int *slot)
1791 {
1792 	if (level == 0)
1793 		return generic_bin_search(eb,
1794 					  offsetof(struct btrfs_leaf, items),
1795 					  sizeof(struct btrfs_item),
1796 					  key, btrfs_header_nritems(eb),
1797 					  slot);
1798 	else
1799 		return generic_bin_search(eb,
1800 					  offsetof(struct btrfs_node, ptrs),
1801 					  sizeof(struct btrfs_key_ptr),
1802 					  key, btrfs_header_nritems(eb),
1803 					  slot);
1804 }
1805 
btrfs_bin_search(struct extent_buffer * eb,struct btrfs_key * key,int level,int * slot)1806 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1807 		     int level, int *slot)
1808 {
1809 	return bin_search(eb, key, level, slot);
1810 }
1811 
root_add_used(struct btrfs_root * root,u32 size)1812 static void root_add_used(struct btrfs_root *root, u32 size)
1813 {
1814 	spin_lock(&root->accounting_lock);
1815 	btrfs_set_root_used(&root->root_item,
1816 			    btrfs_root_used(&root->root_item) + size);
1817 	spin_unlock(&root->accounting_lock);
1818 }
1819 
root_sub_used(struct btrfs_root * root,u32 size)1820 static void root_sub_used(struct btrfs_root *root, u32 size)
1821 {
1822 	spin_lock(&root->accounting_lock);
1823 	btrfs_set_root_used(&root->root_item,
1824 			    btrfs_root_used(&root->root_item) - size);
1825 	spin_unlock(&root->accounting_lock);
1826 }
1827 
1828 /* given a node and slot number, this reads the blocks it points to.  The
1829  * extent buffer is returned with a reference taken (but unlocked).
1830  * NULL is returned on error.
1831  */
read_node_slot(struct btrfs_root * root,struct extent_buffer * parent,int slot)1832 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1833 				   struct extent_buffer *parent, int slot)
1834 {
1835 	int level = btrfs_header_level(parent);
1836 	struct extent_buffer *eb;
1837 
1838 	if (slot < 0)
1839 		return NULL;
1840 	if (slot >= btrfs_header_nritems(parent))
1841 		return NULL;
1842 
1843 	BUG_ON(level == 0);
1844 
1845 	eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1846 			     btrfs_node_ptr_generation(parent, slot));
1847 	if (IS_ERR(eb) || !extent_buffer_uptodate(eb)) {
1848 		if (!IS_ERR(eb))
1849 			free_extent_buffer(eb);
1850 		eb = NULL;
1851 	}
1852 
1853 	return eb;
1854 }
1855 
1856 /*
1857  * node level balancing, used to make sure nodes are in proper order for
1858  * item deletion.  We balance from the top down, so we have to make sure
1859  * that a deletion won't leave an node completely empty later on.
1860  */
balance_level(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1861 static noinline int balance_level(struct btrfs_trans_handle *trans,
1862 			 struct btrfs_root *root,
1863 			 struct btrfs_path *path, int level)
1864 {
1865 	struct extent_buffer *right = NULL;
1866 	struct extent_buffer *mid;
1867 	struct extent_buffer *left = NULL;
1868 	struct extent_buffer *parent = NULL;
1869 	int ret = 0;
1870 	int wret;
1871 	int pslot;
1872 	int orig_slot = path->slots[level];
1873 	u64 orig_ptr;
1874 
1875 	if (level == 0)
1876 		return 0;
1877 
1878 	mid = path->nodes[level];
1879 
1880 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1881 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1882 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1883 
1884 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1885 
1886 	if (level < BTRFS_MAX_LEVEL - 1) {
1887 		parent = path->nodes[level + 1];
1888 		pslot = path->slots[level + 1];
1889 	}
1890 
1891 	/*
1892 	 * deal with the case where there is only one pointer in the root
1893 	 * by promoting the node below to a root
1894 	 */
1895 	if (!parent) {
1896 		struct extent_buffer *child;
1897 
1898 		if (btrfs_header_nritems(mid) != 1)
1899 			return 0;
1900 
1901 		/* promote the child to a root */
1902 		child = read_node_slot(root, mid, 0);
1903 		if (!child) {
1904 			ret = -EROFS;
1905 			btrfs_std_error(root->fs_info, ret, NULL);
1906 			goto enospc;
1907 		}
1908 
1909 		btrfs_tree_lock(child);
1910 		btrfs_set_lock_blocking(child);
1911 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1912 		if (ret) {
1913 			btrfs_tree_unlock(child);
1914 			free_extent_buffer(child);
1915 			goto enospc;
1916 		}
1917 
1918 		tree_mod_log_set_root_pointer(root, child, 1);
1919 		rcu_assign_pointer(root->node, child);
1920 
1921 		add_root_to_dirty_list(root);
1922 		btrfs_tree_unlock(child);
1923 
1924 		path->locks[level] = 0;
1925 		path->nodes[level] = NULL;
1926 		clean_tree_block(trans, root->fs_info, mid);
1927 		btrfs_tree_unlock(mid);
1928 		/* once for the path */
1929 		free_extent_buffer(mid);
1930 
1931 		root_sub_used(root, mid->len);
1932 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1933 		/* once for the root ptr */
1934 		free_extent_buffer_stale(mid);
1935 		return 0;
1936 	}
1937 	if (btrfs_header_nritems(mid) >
1938 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1939 		return 0;
1940 
1941 	left = read_node_slot(root, parent, pslot - 1);
1942 	if (left) {
1943 		btrfs_tree_lock(left);
1944 		btrfs_set_lock_blocking(left);
1945 		wret = btrfs_cow_block(trans, root, left,
1946 				       parent, pslot - 1, &left);
1947 		if (wret) {
1948 			ret = wret;
1949 			goto enospc;
1950 		}
1951 	}
1952 	right = read_node_slot(root, parent, pslot + 1);
1953 	if (right) {
1954 		btrfs_tree_lock(right);
1955 		btrfs_set_lock_blocking(right);
1956 		wret = btrfs_cow_block(trans, root, right,
1957 				       parent, pslot + 1, &right);
1958 		if (wret) {
1959 			ret = wret;
1960 			goto enospc;
1961 		}
1962 	}
1963 
1964 	/* first, try to make some room in the middle buffer */
1965 	if (left) {
1966 		orig_slot += btrfs_header_nritems(left);
1967 		wret = push_node_left(trans, root, left, mid, 1);
1968 		if (wret < 0)
1969 			ret = wret;
1970 	}
1971 
1972 	/*
1973 	 * then try to empty the right most buffer into the middle
1974 	 */
1975 	if (right) {
1976 		wret = push_node_left(trans, root, mid, right, 1);
1977 		if (wret < 0 && wret != -ENOSPC)
1978 			ret = wret;
1979 		if (btrfs_header_nritems(right) == 0) {
1980 			clean_tree_block(trans, root->fs_info, right);
1981 			btrfs_tree_unlock(right);
1982 			del_ptr(root, path, level + 1, pslot + 1);
1983 			root_sub_used(root, right->len);
1984 			btrfs_free_tree_block(trans, root, right, 0, 1);
1985 			free_extent_buffer_stale(right);
1986 			right = NULL;
1987 		} else {
1988 			struct btrfs_disk_key right_key;
1989 			btrfs_node_key(right, &right_key, 0);
1990 			tree_mod_log_set_node_key(root->fs_info, parent,
1991 						  pslot + 1, 0);
1992 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1993 			btrfs_mark_buffer_dirty(parent);
1994 		}
1995 	}
1996 	if (btrfs_header_nritems(mid) == 1) {
1997 		/*
1998 		 * we're not allowed to leave a node with one item in the
1999 		 * tree during a delete.  A deletion from lower in the tree
2000 		 * could try to delete the only pointer in this node.
2001 		 * So, pull some keys from the left.
2002 		 * There has to be a left pointer at this point because
2003 		 * otherwise we would have pulled some pointers from the
2004 		 * right
2005 		 */
2006 		if (!left) {
2007 			ret = -EROFS;
2008 			btrfs_std_error(root->fs_info, ret, NULL);
2009 			goto enospc;
2010 		}
2011 		wret = balance_node_right(trans, root, mid, left);
2012 		if (wret < 0) {
2013 			ret = wret;
2014 			goto enospc;
2015 		}
2016 		if (wret == 1) {
2017 			wret = push_node_left(trans, root, left, mid, 1);
2018 			if (wret < 0)
2019 				ret = wret;
2020 		}
2021 		BUG_ON(wret == 1);
2022 	}
2023 	if (btrfs_header_nritems(mid) == 0) {
2024 		clean_tree_block(trans, root->fs_info, mid);
2025 		btrfs_tree_unlock(mid);
2026 		del_ptr(root, path, level + 1, pslot);
2027 		root_sub_used(root, mid->len);
2028 		btrfs_free_tree_block(trans, root, mid, 0, 1);
2029 		free_extent_buffer_stale(mid);
2030 		mid = NULL;
2031 	} else {
2032 		/* update the parent key to reflect our changes */
2033 		struct btrfs_disk_key mid_key;
2034 		btrfs_node_key(mid, &mid_key, 0);
2035 		tree_mod_log_set_node_key(root->fs_info, parent,
2036 					  pslot, 0);
2037 		btrfs_set_node_key(parent, &mid_key, pslot);
2038 		btrfs_mark_buffer_dirty(parent);
2039 	}
2040 
2041 	/* update the path */
2042 	if (left) {
2043 		if (btrfs_header_nritems(left) > orig_slot) {
2044 			extent_buffer_get(left);
2045 			/* left was locked after cow */
2046 			path->nodes[level] = left;
2047 			path->slots[level + 1] -= 1;
2048 			path->slots[level] = orig_slot;
2049 			if (mid) {
2050 				btrfs_tree_unlock(mid);
2051 				free_extent_buffer(mid);
2052 			}
2053 		} else {
2054 			orig_slot -= btrfs_header_nritems(left);
2055 			path->slots[level] = orig_slot;
2056 		}
2057 	}
2058 	/* double check we haven't messed things up */
2059 	if (orig_ptr !=
2060 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2061 		BUG();
2062 enospc:
2063 	if (right) {
2064 		btrfs_tree_unlock(right);
2065 		free_extent_buffer(right);
2066 	}
2067 	if (left) {
2068 		if (path->nodes[level] != left)
2069 			btrfs_tree_unlock(left);
2070 		free_extent_buffer(left);
2071 	}
2072 	return ret;
2073 }
2074 
2075 /* Node balancing for insertion.  Here we only split or push nodes around
2076  * when they are completely full.  This is also done top down, so we
2077  * have to be pessimistic.
2078  */
push_nodes_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2079 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2080 					  struct btrfs_root *root,
2081 					  struct btrfs_path *path, int level)
2082 {
2083 	struct extent_buffer *right = NULL;
2084 	struct extent_buffer *mid;
2085 	struct extent_buffer *left = NULL;
2086 	struct extent_buffer *parent = NULL;
2087 	int ret = 0;
2088 	int wret;
2089 	int pslot;
2090 	int orig_slot = path->slots[level];
2091 
2092 	if (level == 0)
2093 		return 1;
2094 
2095 	mid = path->nodes[level];
2096 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2097 
2098 	if (level < BTRFS_MAX_LEVEL - 1) {
2099 		parent = path->nodes[level + 1];
2100 		pslot = path->slots[level + 1];
2101 	}
2102 
2103 	if (!parent)
2104 		return 1;
2105 
2106 	left = read_node_slot(root, parent, pslot - 1);
2107 
2108 	/* first, try to make some room in the middle buffer */
2109 	if (left) {
2110 		u32 left_nr;
2111 
2112 		btrfs_tree_lock(left);
2113 		btrfs_set_lock_blocking(left);
2114 
2115 		left_nr = btrfs_header_nritems(left);
2116 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2117 			wret = 1;
2118 		} else {
2119 			ret = btrfs_cow_block(trans, root, left, parent,
2120 					      pslot - 1, &left);
2121 			if (ret)
2122 				wret = 1;
2123 			else {
2124 				wret = push_node_left(trans, root,
2125 						      left, mid, 0);
2126 			}
2127 		}
2128 		if (wret < 0)
2129 			ret = wret;
2130 		if (wret == 0) {
2131 			struct btrfs_disk_key disk_key;
2132 			orig_slot += left_nr;
2133 			btrfs_node_key(mid, &disk_key, 0);
2134 			tree_mod_log_set_node_key(root->fs_info, parent,
2135 						  pslot, 0);
2136 			btrfs_set_node_key(parent, &disk_key, pslot);
2137 			btrfs_mark_buffer_dirty(parent);
2138 			if (btrfs_header_nritems(left) > orig_slot) {
2139 				path->nodes[level] = left;
2140 				path->slots[level + 1] -= 1;
2141 				path->slots[level] = orig_slot;
2142 				btrfs_tree_unlock(mid);
2143 				free_extent_buffer(mid);
2144 			} else {
2145 				orig_slot -=
2146 					btrfs_header_nritems(left);
2147 				path->slots[level] = orig_slot;
2148 				btrfs_tree_unlock(left);
2149 				free_extent_buffer(left);
2150 			}
2151 			return 0;
2152 		}
2153 		btrfs_tree_unlock(left);
2154 		free_extent_buffer(left);
2155 	}
2156 	right = read_node_slot(root, parent, pslot + 1);
2157 
2158 	/*
2159 	 * then try to empty the right most buffer into the middle
2160 	 */
2161 	if (right) {
2162 		u32 right_nr;
2163 
2164 		btrfs_tree_lock(right);
2165 		btrfs_set_lock_blocking(right);
2166 
2167 		right_nr = btrfs_header_nritems(right);
2168 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2169 			wret = 1;
2170 		} else {
2171 			ret = btrfs_cow_block(trans, root, right,
2172 					      parent, pslot + 1,
2173 					      &right);
2174 			if (ret)
2175 				wret = 1;
2176 			else {
2177 				wret = balance_node_right(trans, root,
2178 							  right, mid);
2179 			}
2180 		}
2181 		if (wret < 0)
2182 			ret = wret;
2183 		if (wret == 0) {
2184 			struct btrfs_disk_key disk_key;
2185 
2186 			btrfs_node_key(right, &disk_key, 0);
2187 			tree_mod_log_set_node_key(root->fs_info, parent,
2188 						  pslot + 1, 0);
2189 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2190 			btrfs_mark_buffer_dirty(parent);
2191 
2192 			if (btrfs_header_nritems(mid) <= orig_slot) {
2193 				path->nodes[level] = right;
2194 				path->slots[level + 1] += 1;
2195 				path->slots[level] = orig_slot -
2196 					btrfs_header_nritems(mid);
2197 				btrfs_tree_unlock(mid);
2198 				free_extent_buffer(mid);
2199 			} else {
2200 				btrfs_tree_unlock(right);
2201 				free_extent_buffer(right);
2202 			}
2203 			return 0;
2204 		}
2205 		btrfs_tree_unlock(right);
2206 		free_extent_buffer(right);
2207 	}
2208 	return 1;
2209 }
2210 
2211 /*
2212  * readahead one full node of leaves, finding things that are close
2213  * to the block in 'slot', and triggering ra on them.
2214  */
reada_for_search(struct btrfs_root * root,struct btrfs_path * path,int level,int slot,u64 objectid)2215 static void reada_for_search(struct btrfs_root *root,
2216 			     struct btrfs_path *path,
2217 			     int level, int slot, u64 objectid)
2218 {
2219 	struct extent_buffer *node;
2220 	struct btrfs_disk_key disk_key;
2221 	u32 nritems;
2222 	u64 search;
2223 	u64 target;
2224 	u64 nread = 0;
2225 	u64 gen;
2226 	int direction = path->reada;
2227 	struct extent_buffer *eb;
2228 	u32 nr;
2229 	u32 blocksize;
2230 	u32 nscan = 0;
2231 
2232 	if (level != 1)
2233 		return;
2234 
2235 	if (!path->nodes[level])
2236 		return;
2237 
2238 	node = path->nodes[level];
2239 
2240 	search = btrfs_node_blockptr(node, slot);
2241 	blocksize = root->nodesize;
2242 	eb = btrfs_find_tree_block(root->fs_info, search);
2243 	if (eb) {
2244 		free_extent_buffer(eb);
2245 		return;
2246 	}
2247 
2248 	target = search;
2249 
2250 	nritems = btrfs_header_nritems(node);
2251 	nr = slot;
2252 
2253 	while (1) {
2254 		if (direction < 0) {
2255 			if (nr == 0)
2256 				break;
2257 			nr--;
2258 		} else if (direction > 0) {
2259 			nr++;
2260 			if (nr >= nritems)
2261 				break;
2262 		}
2263 		if (path->reada < 0 && objectid) {
2264 			btrfs_node_key(node, &disk_key, nr);
2265 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2266 				break;
2267 		}
2268 		search = btrfs_node_blockptr(node, nr);
2269 		if ((search <= target && target - search <= 65536) ||
2270 		    (search > target && search - target <= 65536)) {
2271 			gen = btrfs_node_ptr_generation(node, nr);
2272 			readahead_tree_block(root, search);
2273 			nread += blocksize;
2274 		}
2275 		nscan++;
2276 		if ((nread > 65536 || nscan > 32))
2277 			break;
2278 	}
2279 }
2280 
reada_for_balance(struct btrfs_root * root,struct btrfs_path * path,int level)2281 static noinline void reada_for_balance(struct btrfs_root *root,
2282 				       struct btrfs_path *path, int level)
2283 {
2284 	int slot;
2285 	int nritems;
2286 	struct extent_buffer *parent;
2287 	struct extent_buffer *eb;
2288 	u64 gen;
2289 	u64 block1 = 0;
2290 	u64 block2 = 0;
2291 
2292 	parent = path->nodes[level + 1];
2293 	if (!parent)
2294 		return;
2295 
2296 	nritems = btrfs_header_nritems(parent);
2297 	slot = path->slots[level + 1];
2298 
2299 	if (slot > 0) {
2300 		block1 = btrfs_node_blockptr(parent, slot - 1);
2301 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2302 		eb = btrfs_find_tree_block(root->fs_info, block1);
2303 		/*
2304 		 * if we get -eagain from btrfs_buffer_uptodate, we
2305 		 * don't want to return eagain here.  That will loop
2306 		 * forever
2307 		 */
2308 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2309 			block1 = 0;
2310 		free_extent_buffer(eb);
2311 	}
2312 	if (slot + 1 < nritems) {
2313 		block2 = btrfs_node_blockptr(parent, slot + 1);
2314 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2315 		eb = btrfs_find_tree_block(root->fs_info, block2);
2316 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2317 			block2 = 0;
2318 		free_extent_buffer(eb);
2319 	}
2320 
2321 	if (block1)
2322 		readahead_tree_block(root, block1);
2323 	if (block2)
2324 		readahead_tree_block(root, block2);
2325 }
2326 
2327 
2328 /*
2329  * when we walk down the tree, it is usually safe to unlock the higher layers
2330  * in the tree.  The exceptions are when our path goes through slot 0, because
2331  * operations on the tree might require changing key pointers higher up in the
2332  * tree.
2333  *
2334  * callers might also have set path->keep_locks, which tells this code to keep
2335  * the lock if the path points to the last slot in the block.  This is part of
2336  * walking through the tree, and selecting the next slot in the higher block.
2337  *
2338  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2339  * if lowest_unlock is 1, level 0 won't be unlocked
2340  */
unlock_up(struct btrfs_path * path,int level,int lowest_unlock,int min_write_lock_level,int * write_lock_level)2341 static noinline void unlock_up(struct btrfs_path *path, int level,
2342 			       int lowest_unlock, int min_write_lock_level,
2343 			       int *write_lock_level)
2344 {
2345 	int i;
2346 	int skip_level = level;
2347 	int no_skips = 0;
2348 	struct extent_buffer *t;
2349 
2350 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2351 		if (!path->nodes[i])
2352 			break;
2353 		if (!path->locks[i])
2354 			break;
2355 		if (!no_skips && path->slots[i] == 0) {
2356 			skip_level = i + 1;
2357 			continue;
2358 		}
2359 		if (!no_skips && path->keep_locks) {
2360 			u32 nritems;
2361 			t = path->nodes[i];
2362 			nritems = btrfs_header_nritems(t);
2363 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2364 				skip_level = i + 1;
2365 				continue;
2366 			}
2367 		}
2368 		if (skip_level < i && i >= lowest_unlock)
2369 			no_skips = 1;
2370 
2371 		t = path->nodes[i];
2372 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2373 			btrfs_tree_unlock_rw(t, path->locks[i]);
2374 			path->locks[i] = 0;
2375 			if (write_lock_level &&
2376 			    i > min_write_lock_level &&
2377 			    i <= *write_lock_level) {
2378 				*write_lock_level = i - 1;
2379 			}
2380 		}
2381 	}
2382 }
2383 
2384 /*
2385  * This releases any locks held in the path starting at level and
2386  * going all the way up to the root.
2387  *
2388  * btrfs_search_slot will keep the lock held on higher nodes in a few
2389  * corner cases, such as COW of the block at slot zero in the node.  This
2390  * ignores those rules, and it should only be called when there are no
2391  * more updates to be done higher up in the tree.
2392  */
btrfs_unlock_up_safe(struct btrfs_path * path,int level)2393 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2394 {
2395 	int i;
2396 
2397 	if (path->keep_locks)
2398 		return;
2399 
2400 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2401 		if (!path->nodes[i])
2402 			continue;
2403 		if (!path->locks[i])
2404 			continue;
2405 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2406 		path->locks[i] = 0;
2407 	}
2408 }
2409 
2410 /*
2411  * helper function for btrfs_search_slot.  The goal is to find a block
2412  * in cache without setting the path to blocking.  If we find the block
2413  * we return zero and the path is unchanged.
2414  *
2415  * If we can't find the block, we set the path blocking and do some
2416  * reada.  -EAGAIN is returned and the search must be repeated.
2417  */
2418 static int
read_block_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer ** eb_ret,int level,int slot,struct btrfs_key * key,u64 time_seq)2419 read_block_for_search(struct btrfs_trans_handle *trans,
2420 		       struct btrfs_root *root, struct btrfs_path *p,
2421 		       struct extent_buffer **eb_ret, int level, int slot,
2422 		       struct btrfs_key *key, u64 time_seq)
2423 {
2424 	u64 blocknr;
2425 	u64 gen;
2426 	struct extent_buffer *b = *eb_ret;
2427 	struct extent_buffer *tmp;
2428 	int ret;
2429 
2430 	blocknr = btrfs_node_blockptr(b, slot);
2431 	gen = btrfs_node_ptr_generation(b, slot);
2432 
2433 	tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2434 	if (tmp) {
2435 		/* first we do an atomic uptodate check */
2436 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2437 			*eb_ret = tmp;
2438 			return 0;
2439 		}
2440 
2441 		/* the pages were up to date, but we failed
2442 		 * the generation number check.  Do a full
2443 		 * read for the generation number that is correct.
2444 		 * We must do this without dropping locks so
2445 		 * we can trust our generation number
2446 		 */
2447 		btrfs_set_path_blocking(p);
2448 
2449 		/* now we're allowed to do a blocking uptodate check */
2450 		ret = btrfs_read_buffer(tmp, gen);
2451 		if (!ret) {
2452 			*eb_ret = tmp;
2453 			return 0;
2454 		}
2455 		free_extent_buffer(tmp);
2456 		btrfs_release_path(p);
2457 		return -EIO;
2458 	}
2459 
2460 	/*
2461 	 * reduce lock contention at high levels
2462 	 * of the btree by dropping locks before
2463 	 * we read.  Don't release the lock on the current
2464 	 * level because we need to walk this node to figure
2465 	 * out which blocks to read.
2466 	 */
2467 	btrfs_unlock_up_safe(p, level + 1);
2468 	btrfs_set_path_blocking(p);
2469 
2470 	free_extent_buffer(tmp);
2471 	if (p->reada)
2472 		reada_for_search(root, p, level, slot, key->objectid);
2473 
2474 	ret = -EAGAIN;
2475 	tmp = read_tree_block(root, blocknr, gen);
2476 	if (!IS_ERR(tmp)) {
2477 		/*
2478 		 * If the read above didn't mark this buffer up to date,
2479 		 * it will never end up being up to date.  Set ret to EIO now
2480 		 * and give up so that our caller doesn't loop forever
2481 		 * on our EAGAINs.
2482 		 */
2483 		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2484 			ret = -EIO;
2485 		free_extent_buffer(tmp);
2486 	}
2487 
2488 	btrfs_release_path(p);
2489 	return ret;
2490 }
2491 
2492 /*
2493  * helper function for btrfs_search_slot.  This does all of the checks
2494  * for node-level blocks and does any balancing required based on
2495  * the ins_len.
2496  *
2497  * If no extra work was required, zero is returned.  If we had to
2498  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2499  * start over
2500  */
2501 static int
setup_nodes_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer * b,int level,int ins_len,int * write_lock_level)2502 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2503 		       struct btrfs_root *root, struct btrfs_path *p,
2504 		       struct extent_buffer *b, int level, int ins_len,
2505 		       int *write_lock_level)
2506 {
2507 	int ret;
2508 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2509 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2510 		int sret;
2511 
2512 		if (*write_lock_level < level + 1) {
2513 			*write_lock_level = level + 1;
2514 			btrfs_release_path(p);
2515 			goto again;
2516 		}
2517 
2518 		btrfs_set_path_blocking(p);
2519 		reada_for_balance(root, p, level);
2520 		sret = split_node(trans, root, p, level);
2521 		btrfs_clear_path_blocking(p, NULL, 0);
2522 
2523 		BUG_ON(sret > 0);
2524 		if (sret) {
2525 			ret = sret;
2526 			goto done;
2527 		}
2528 		b = p->nodes[level];
2529 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2530 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2531 		int sret;
2532 
2533 		if (*write_lock_level < level + 1) {
2534 			*write_lock_level = level + 1;
2535 			btrfs_release_path(p);
2536 			goto again;
2537 		}
2538 
2539 		btrfs_set_path_blocking(p);
2540 		reada_for_balance(root, p, level);
2541 		sret = balance_level(trans, root, p, level);
2542 		btrfs_clear_path_blocking(p, NULL, 0);
2543 
2544 		if (sret) {
2545 			ret = sret;
2546 			goto done;
2547 		}
2548 		b = p->nodes[level];
2549 		if (!b) {
2550 			btrfs_release_path(p);
2551 			goto again;
2552 		}
2553 		BUG_ON(btrfs_header_nritems(b) == 1);
2554 	}
2555 	return 0;
2556 
2557 again:
2558 	ret = -EAGAIN;
2559 done:
2560 	return ret;
2561 }
2562 
key_search_validate(struct extent_buffer * b,struct btrfs_key * key,int level)2563 static void key_search_validate(struct extent_buffer *b,
2564 				struct btrfs_key *key,
2565 				int level)
2566 {
2567 #ifdef CONFIG_BTRFS_ASSERT
2568 	struct btrfs_disk_key disk_key;
2569 
2570 	btrfs_cpu_key_to_disk(&disk_key, key);
2571 
2572 	if (level == 0)
2573 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2574 		    offsetof(struct btrfs_leaf, items[0].key),
2575 		    sizeof(disk_key)));
2576 	else
2577 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2578 		    offsetof(struct btrfs_node, ptrs[0].key),
2579 		    sizeof(disk_key)));
2580 #endif
2581 }
2582 
key_search(struct extent_buffer * b,struct btrfs_key * key,int level,int * prev_cmp,int * slot)2583 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2584 		      int level, int *prev_cmp, int *slot)
2585 {
2586 	if (*prev_cmp != 0) {
2587 		*prev_cmp = bin_search(b, key, level, slot);
2588 		return *prev_cmp;
2589 	}
2590 
2591 	key_search_validate(b, key, level);
2592 	*slot = 0;
2593 
2594 	return 0;
2595 }
2596 
btrfs_find_item(struct btrfs_root * fs_root,struct btrfs_path * path,u64 iobjectid,u64 ioff,u8 key_type,struct btrfs_key * found_key)2597 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2598 		u64 iobjectid, u64 ioff, u8 key_type,
2599 		struct btrfs_key *found_key)
2600 {
2601 	int ret;
2602 	struct btrfs_key key;
2603 	struct extent_buffer *eb;
2604 
2605 	ASSERT(path);
2606 	ASSERT(found_key);
2607 
2608 	key.type = key_type;
2609 	key.objectid = iobjectid;
2610 	key.offset = ioff;
2611 
2612 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2613 	if (ret < 0)
2614 		return ret;
2615 
2616 	eb = path->nodes[0];
2617 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2618 		ret = btrfs_next_leaf(fs_root, path);
2619 		if (ret)
2620 			return ret;
2621 		eb = path->nodes[0];
2622 	}
2623 
2624 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2625 	if (found_key->type != key.type ||
2626 			found_key->objectid != key.objectid)
2627 		return 1;
2628 
2629 	return 0;
2630 }
2631 
2632 /*
2633  * look for key in the tree.  path is filled in with nodes along the way
2634  * if key is found, we return zero and you can find the item in the leaf
2635  * level of the path (level 0)
2636  *
2637  * If the key isn't found, the path points to the slot where it should
2638  * be inserted, and 1 is returned.  If there are other errors during the
2639  * search a negative error number is returned.
2640  *
2641  * if ins_len > 0, nodes and leaves will be split as we walk down the
2642  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2643  * possible)
2644  */
btrfs_search_slot(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * p,int ins_len,int cow)2645 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2646 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2647 		      ins_len, int cow)
2648 {
2649 	struct extent_buffer *b;
2650 	int slot;
2651 	int ret;
2652 	int err;
2653 	int level;
2654 	int lowest_unlock = 1;
2655 	int root_lock;
2656 	/* everything at write_lock_level or lower must be write locked */
2657 	int write_lock_level = 0;
2658 	u8 lowest_level = 0;
2659 	int min_write_lock_level;
2660 	int prev_cmp;
2661 
2662 	lowest_level = p->lowest_level;
2663 	WARN_ON(lowest_level && ins_len > 0);
2664 	WARN_ON(p->nodes[0] != NULL);
2665 	BUG_ON(!cow && ins_len);
2666 
2667 	if (ins_len < 0) {
2668 		lowest_unlock = 2;
2669 
2670 		/* when we are removing items, we might have to go up to level
2671 		 * two as we update tree pointers  Make sure we keep write
2672 		 * for those levels as well
2673 		 */
2674 		write_lock_level = 2;
2675 	} else if (ins_len > 0) {
2676 		/*
2677 		 * for inserting items, make sure we have a write lock on
2678 		 * level 1 so we can update keys
2679 		 */
2680 		write_lock_level = 1;
2681 	}
2682 
2683 	if (!cow)
2684 		write_lock_level = -1;
2685 
2686 	if (cow && (p->keep_locks || p->lowest_level))
2687 		write_lock_level = BTRFS_MAX_LEVEL;
2688 
2689 	min_write_lock_level = write_lock_level;
2690 
2691 again:
2692 	prev_cmp = -1;
2693 	/*
2694 	 * we try very hard to do read locks on the root
2695 	 */
2696 	root_lock = BTRFS_READ_LOCK;
2697 	level = 0;
2698 	if (p->search_commit_root) {
2699 		/*
2700 		 * the commit roots are read only
2701 		 * so we always do read locks
2702 		 */
2703 		if (p->need_commit_sem)
2704 			down_read(&root->fs_info->commit_root_sem);
2705 		b = root->commit_root;
2706 		extent_buffer_get(b);
2707 		level = btrfs_header_level(b);
2708 		if (p->need_commit_sem)
2709 			up_read(&root->fs_info->commit_root_sem);
2710 		if (!p->skip_locking)
2711 			btrfs_tree_read_lock(b);
2712 	} else {
2713 		if (p->skip_locking) {
2714 			b = btrfs_root_node(root);
2715 			level = btrfs_header_level(b);
2716 		} else {
2717 			/* we don't know the level of the root node
2718 			 * until we actually have it read locked
2719 			 */
2720 			b = btrfs_read_lock_root_node(root);
2721 			level = btrfs_header_level(b);
2722 			if (level <= write_lock_level) {
2723 				/* whoops, must trade for write lock */
2724 				btrfs_tree_read_unlock(b);
2725 				free_extent_buffer(b);
2726 				b = btrfs_lock_root_node(root);
2727 				root_lock = BTRFS_WRITE_LOCK;
2728 
2729 				/* the level might have changed, check again */
2730 				level = btrfs_header_level(b);
2731 			}
2732 		}
2733 	}
2734 	p->nodes[level] = b;
2735 	if (!p->skip_locking)
2736 		p->locks[level] = root_lock;
2737 
2738 	while (b) {
2739 		level = btrfs_header_level(b);
2740 
2741 		/*
2742 		 * setup the path here so we can release it under lock
2743 		 * contention with the cow code
2744 		 */
2745 		if (cow) {
2746 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2747 
2748 			/*
2749 			 * if we don't really need to cow this block
2750 			 * then we don't want to set the path blocking,
2751 			 * so we test it here
2752 			 */
2753 			if (!should_cow_block(trans, root, b)) {
2754 				trans->dirty = true;
2755 				goto cow_done;
2756 			}
2757 
2758 			/*
2759 			 * must have write locks on this node and the
2760 			 * parent
2761 			 */
2762 			if (level > write_lock_level ||
2763 			    (level + 1 > write_lock_level &&
2764 			    level + 1 < BTRFS_MAX_LEVEL &&
2765 			    p->nodes[level + 1])) {
2766 				write_lock_level = level + 1;
2767 				btrfs_release_path(p);
2768 				goto again;
2769 			}
2770 
2771 			btrfs_set_path_blocking(p);
2772 			if (last_level)
2773 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2774 						      &b);
2775 			else
2776 				err = btrfs_cow_block(trans, root, b,
2777 						      p->nodes[level + 1],
2778 						      p->slots[level + 1], &b);
2779 			if (err) {
2780 				ret = err;
2781 				goto done;
2782 			}
2783 		}
2784 cow_done:
2785 		p->nodes[level] = b;
2786 		btrfs_clear_path_blocking(p, NULL, 0);
2787 
2788 		/*
2789 		 * we have a lock on b and as long as we aren't changing
2790 		 * the tree, there is no way to for the items in b to change.
2791 		 * It is safe to drop the lock on our parent before we
2792 		 * go through the expensive btree search on b.
2793 		 *
2794 		 * If we're inserting or deleting (ins_len != 0), then we might
2795 		 * be changing slot zero, which may require changing the parent.
2796 		 * So, we can't drop the lock until after we know which slot
2797 		 * we're operating on.
2798 		 */
2799 		if (!ins_len && !p->keep_locks) {
2800 			int u = level + 1;
2801 
2802 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2803 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2804 				p->locks[u] = 0;
2805 			}
2806 		}
2807 
2808 		ret = key_search(b, key, level, &prev_cmp, &slot);
2809 
2810 		if (level != 0) {
2811 			int dec = 0;
2812 			if (ret && slot > 0) {
2813 				dec = 1;
2814 				slot -= 1;
2815 			}
2816 			p->slots[level] = slot;
2817 			err = setup_nodes_for_search(trans, root, p, b, level,
2818 					     ins_len, &write_lock_level);
2819 			if (err == -EAGAIN)
2820 				goto again;
2821 			if (err) {
2822 				ret = err;
2823 				goto done;
2824 			}
2825 			b = p->nodes[level];
2826 			slot = p->slots[level];
2827 
2828 			/*
2829 			 * slot 0 is special, if we change the key
2830 			 * we have to update the parent pointer
2831 			 * which means we must have a write lock
2832 			 * on the parent
2833 			 */
2834 			if (slot == 0 && ins_len &&
2835 			    write_lock_level < level + 1) {
2836 				write_lock_level = level + 1;
2837 				btrfs_release_path(p);
2838 				goto again;
2839 			}
2840 
2841 			unlock_up(p, level, lowest_unlock,
2842 				  min_write_lock_level, &write_lock_level);
2843 
2844 			if (level == lowest_level) {
2845 				if (dec)
2846 					p->slots[level]++;
2847 				goto done;
2848 			}
2849 
2850 			err = read_block_for_search(trans, root, p,
2851 						    &b, level, slot, key, 0);
2852 			if (err == -EAGAIN)
2853 				goto again;
2854 			if (err) {
2855 				ret = err;
2856 				goto done;
2857 			}
2858 
2859 			if (!p->skip_locking) {
2860 				level = btrfs_header_level(b);
2861 				if (level <= write_lock_level) {
2862 					err = btrfs_try_tree_write_lock(b);
2863 					if (!err) {
2864 						btrfs_set_path_blocking(p);
2865 						btrfs_tree_lock(b);
2866 						btrfs_clear_path_blocking(p, b,
2867 								  BTRFS_WRITE_LOCK);
2868 					}
2869 					p->locks[level] = BTRFS_WRITE_LOCK;
2870 				} else {
2871 					err = btrfs_tree_read_lock_atomic(b);
2872 					if (!err) {
2873 						btrfs_set_path_blocking(p);
2874 						btrfs_tree_read_lock(b);
2875 						btrfs_clear_path_blocking(p, b,
2876 								  BTRFS_READ_LOCK);
2877 					}
2878 					p->locks[level] = BTRFS_READ_LOCK;
2879 				}
2880 				p->nodes[level] = b;
2881 			}
2882 		} else {
2883 			p->slots[level] = slot;
2884 			if (ins_len > 0 &&
2885 			    btrfs_leaf_free_space(root, b) < ins_len) {
2886 				if (write_lock_level < 1) {
2887 					write_lock_level = 1;
2888 					btrfs_release_path(p);
2889 					goto again;
2890 				}
2891 
2892 				btrfs_set_path_blocking(p);
2893 				err = split_leaf(trans, root, key,
2894 						 p, ins_len, ret == 0);
2895 				btrfs_clear_path_blocking(p, NULL, 0);
2896 
2897 				BUG_ON(err > 0);
2898 				if (err) {
2899 					ret = err;
2900 					goto done;
2901 				}
2902 			}
2903 			if (!p->search_for_split)
2904 				unlock_up(p, level, lowest_unlock,
2905 					  min_write_lock_level, &write_lock_level);
2906 			goto done;
2907 		}
2908 	}
2909 	ret = 1;
2910 done:
2911 	/*
2912 	 * we don't really know what they plan on doing with the path
2913 	 * from here on, so for now just mark it as blocking
2914 	 */
2915 	if (!p->leave_spinning)
2916 		btrfs_set_path_blocking(p);
2917 	if (ret < 0 && !p->skip_release_on_error)
2918 		btrfs_release_path(p);
2919 	return ret;
2920 }
2921 
2922 /*
2923  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2924  * current state of the tree together with the operations recorded in the tree
2925  * modification log to search for the key in a previous version of this tree, as
2926  * denoted by the time_seq parameter.
2927  *
2928  * Naturally, there is no support for insert, delete or cow operations.
2929  *
2930  * The resulting path and return value will be set up as if we called
2931  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2932  */
btrfs_search_old_slot(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * p,u64 time_seq)2933 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2934 			  struct btrfs_path *p, u64 time_seq)
2935 {
2936 	struct extent_buffer *b;
2937 	int slot;
2938 	int ret;
2939 	int err;
2940 	int level;
2941 	int lowest_unlock = 1;
2942 	u8 lowest_level = 0;
2943 	int prev_cmp = -1;
2944 
2945 	lowest_level = p->lowest_level;
2946 	WARN_ON(p->nodes[0] != NULL);
2947 
2948 	if (p->search_commit_root) {
2949 		BUG_ON(time_seq);
2950 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2951 	}
2952 
2953 again:
2954 	b = get_old_root(root, time_seq);
2955 	if (!b) {
2956 		ret = -EIO;
2957 		goto done;
2958 	}
2959 	level = btrfs_header_level(b);
2960 	p->locks[level] = BTRFS_READ_LOCK;
2961 
2962 	while (b) {
2963 		level = btrfs_header_level(b);
2964 		p->nodes[level] = b;
2965 		btrfs_clear_path_blocking(p, NULL, 0);
2966 
2967 		/*
2968 		 * we have a lock on b and as long as we aren't changing
2969 		 * the tree, there is no way to for the items in b to change.
2970 		 * It is safe to drop the lock on our parent before we
2971 		 * go through the expensive btree search on b.
2972 		 */
2973 		btrfs_unlock_up_safe(p, level + 1);
2974 
2975 		/*
2976 		 * Since we can unwind eb's we want to do a real search every
2977 		 * time.
2978 		 */
2979 		prev_cmp = -1;
2980 		ret = key_search(b, key, level, &prev_cmp, &slot);
2981 
2982 		if (level != 0) {
2983 			int dec = 0;
2984 			if (ret && slot > 0) {
2985 				dec = 1;
2986 				slot -= 1;
2987 			}
2988 			p->slots[level] = slot;
2989 			unlock_up(p, level, lowest_unlock, 0, NULL);
2990 
2991 			if (level == lowest_level) {
2992 				if (dec)
2993 					p->slots[level]++;
2994 				goto done;
2995 			}
2996 
2997 			err = read_block_for_search(NULL, root, p, &b, level,
2998 						    slot, key, time_seq);
2999 			if (err == -EAGAIN)
3000 				goto again;
3001 			if (err) {
3002 				ret = err;
3003 				goto done;
3004 			}
3005 
3006 			level = btrfs_header_level(b);
3007 			err = btrfs_tree_read_lock_atomic(b);
3008 			if (!err) {
3009 				btrfs_set_path_blocking(p);
3010 				btrfs_tree_read_lock(b);
3011 				btrfs_clear_path_blocking(p, b,
3012 							  BTRFS_READ_LOCK);
3013 			}
3014 			b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3015 			if (!b) {
3016 				ret = -ENOMEM;
3017 				goto done;
3018 			}
3019 			p->locks[level] = BTRFS_READ_LOCK;
3020 			p->nodes[level] = b;
3021 		} else {
3022 			p->slots[level] = slot;
3023 			unlock_up(p, level, lowest_unlock, 0, NULL);
3024 			goto done;
3025 		}
3026 	}
3027 	ret = 1;
3028 done:
3029 	if (!p->leave_spinning)
3030 		btrfs_set_path_blocking(p);
3031 	if (ret < 0)
3032 		btrfs_release_path(p);
3033 
3034 	return ret;
3035 }
3036 
3037 /*
3038  * helper to use instead of search slot if no exact match is needed but
3039  * instead the next or previous item should be returned.
3040  * When find_higher is true, the next higher item is returned, the next lower
3041  * otherwise.
3042  * When return_any and find_higher are both true, and no higher item is found,
3043  * return the next lower instead.
3044  * When return_any is true and find_higher is false, and no lower item is found,
3045  * return the next higher instead.
3046  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3047  * < 0 on error
3048  */
btrfs_search_slot_for_read(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * p,int find_higher,int return_any)3049 int btrfs_search_slot_for_read(struct btrfs_root *root,
3050 			       struct btrfs_key *key, struct btrfs_path *p,
3051 			       int find_higher, int return_any)
3052 {
3053 	int ret;
3054 	struct extent_buffer *leaf;
3055 
3056 again:
3057 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3058 	if (ret <= 0)
3059 		return ret;
3060 	/*
3061 	 * a return value of 1 means the path is at the position where the
3062 	 * item should be inserted. Normally this is the next bigger item,
3063 	 * but in case the previous item is the last in a leaf, path points
3064 	 * to the first free slot in the previous leaf, i.e. at an invalid
3065 	 * item.
3066 	 */
3067 	leaf = p->nodes[0];
3068 
3069 	if (find_higher) {
3070 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3071 			ret = btrfs_next_leaf(root, p);
3072 			if (ret <= 0)
3073 				return ret;
3074 			if (!return_any)
3075 				return 1;
3076 			/*
3077 			 * no higher item found, return the next
3078 			 * lower instead
3079 			 */
3080 			return_any = 0;
3081 			find_higher = 0;
3082 			btrfs_release_path(p);
3083 			goto again;
3084 		}
3085 	} else {
3086 		if (p->slots[0] == 0) {
3087 			ret = btrfs_prev_leaf(root, p);
3088 			if (ret < 0)
3089 				return ret;
3090 			if (!ret) {
3091 				leaf = p->nodes[0];
3092 				if (p->slots[0] == btrfs_header_nritems(leaf))
3093 					p->slots[0]--;
3094 				return 0;
3095 			}
3096 			if (!return_any)
3097 				return 1;
3098 			/*
3099 			 * no lower item found, return the next
3100 			 * higher instead
3101 			 */
3102 			return_any = 0;
3103 			find_higher = 1;
3104 			btrfs_release_path(p);
3105 			goto again;
3106 		} else {
3107 			--p->slots[0];
3108 		}
3109 	}
3110 	return 0;
3111 }
3112 
3113 /*
3114  * adjust the pointers going up the tree, starting at level
3115  * making sure the right key of each node is points to 'key'.
3116  * This is used after shifting pointers to the left, so it stops
3117  * fixing up pointers when a given leaf/node is not in slot 0 of the
3118  * higher levels
3119  *
3120  */
fixup_low_keys(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_disk_key * key,int level)3121 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3122 			   struct btrfs_path *path,
3123 			   struct btrfs_disk_key *key, int level)
3124 {
3125 	int i;
3126 	struct extent_buffer *t;
3127 
3128 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3129 		int tslot = path->slots[i];
3130 		if (!path->nodes[i])
3131 			break;
3132 		t = path->nodes[i];
3133 		tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3134 		btrfs_set_node_key(t, key, tslot);
3135 		btrfs_mark_buffer_dirty(path->nodes[i]);
3136 		if (tslot != 0)
3137 			break;
3138 	}
3139 }
3140 
3141 /*
3142  * update item key.
3143  *
3144  * This function isn't completely safe. It's the caller's responsibility
3145  * that the new key won't break the order
3146  */
btrfs_set_item_key_safe(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * new_key)3147 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3148 			     struct btrfs_path *path,
3149 			     struct btrfs_key *new_key)
3150 {
3151 	struct btrfs_disk_key disk_key;
3152 	struct extent_buffer *eb;
3153 	int slot;
3154 
3155 	eb = path->nodes[0];
3156 	slot = path->slots[0];
3157 	if (slot > 0) {
3158 		btrfs_item_key(eb, &disk_key, slot - 1);
3159 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3160 	}
3161 	if (slot < btrfs_header_nritems(eb) - 1) {
3162 		btrfs_item_key(eb, &disk_key, slot + 1);
3163 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3164 	}
3165 
3166 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3167 	btrfs_set_item_key(eb, &disk_key, slot);
3168 	btrfs_mark_buffer_dirty(eb);
3169 	if (slot == 0)
3170 		fixup_low_keys(fs_info, path, &disk_key, 1);
3171 }
3172 
3173 /*
3174  * try to push data from one node into the next node left in the
3175  * tree.
3176  *
3177  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3178  * error, and > 0 if there was no room in the left hand block.
3179  */
push_node_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * dst,struct extent_buffer * src,int empty)3180 static int push_node_left(struct btrfs_trans_handle *trans,
3181 			  struct btrfs_root *root, struct extent_buffer *dst,
3182 			  struct extent_buffer *src, int empty)
3183 {
3184 	int push_items = 0;
3185 	int src_nritems;
3186 	int dst_nritems;
3187 	int ret = 0;
3188 
3189 	src_nritems = btrfs_header_nritems(src);
3190 	dst_nritems = btrfs_header_nritems(dst);
3191 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3192 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3193 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3194 
3195 	if (!empty && src_nritems <= 8)
3196 		return 1;
3197 
3198 	if (push_items <= 0)
3199 		return 1;
3200 
3201 	if (empty) {
3202 		push_items = min(src_nritems, push_items);
3203 		if (push_items < src_nritems) {
3204 			/* leave at least 8 pointers in the node if
3205 			 * we aren't going to empty it
3206 			 */
3207 			if (src_nritems - push_items < 8) {
3208 				if (push_items <= 8)
3209 					return 1;
3210 				push_items -= 8;
3211 			}
3212 		}
3213 	} else
3214 		push_items = min(src_nritems - 8, push_items);
3215 
3216 	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3217 				   push_items);
3218 	if (ret) {
3219 		btrfs_abort_transaction(trans, root, ret);
3220 		return ret;
3221 	}
3222 	copy_extent_buffer(dst, src,
3223 			   btrfs_node_key_ptr_offset(dst_nritems),
3224 			   btrfs_node_key_ptr_offset(0),
3225 			   push_items * sizeof(struct btrfs_key_ptr));
3226 
3227 	if (push_items < src_nritems) {
3228 		/*
3229 		 * don't call tree_mod_log_eb_move here, key removal was already
3230 		 * fully logged by tree_mod_log_eb_copy above.
3231 		 */
3232 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3233 				      btrfs_node_key_ptr_offset(push_items),
3234 				      (src_nritems - push_items) *
3235 				      sizeof(struct btrfs_key_ptr));
3236 	}
3237 	btrfs_set_header_nritems(src, src_nritems - push_items);
3238 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3239 	btrfs_mark_buffer_dirty(src);
3240 	btrfs_mark_buffer_dirty(dst);
3241 
3242 	return ret;
3243 }
3244 
3245 /*
3246  * try to push data from one node into the next node right in the
3247  * tree.
3248  *
3249  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3250  * error, and > 0 if there was no room in the right hand block.
3251  *
3252  * this will  only push up to 1/2 the contents of the left node over
3253  */
balance_node_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * dst,struct extent_buffer * src)3254 static int balance_node_right(struct btrfs_trans_handle *trans,
3255 			      struct btrfs_root *root,
3256 			      struct extent_buffer *dst,
3257 			      struct extent_buffer *src)
3258 {
3259 	int push_items = 0;
3260 	int max_push;
3261 	int src_nritems;
3262 	int dst_nritems;
3263 	int ret = 0;
3264 
3265 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3266 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3267 
3268 	src_nritems = btrfs_header_nritems(src);
3269 	dst_nritems = btrfs_header_nritems(dst);
3270 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3271 	if (push_items <= 0)
3272 		return 1;
3273 
3274 	if (src_nritems < 4)
3275 		return 1;
3276 
3277 	max_push = src_nritems / 2 + 1;
3278 	/* don't try to empty the node */
3279 	if (max_push >= src_nritems)
3280 		return 1;
3281 
3282 	if (max_push < push_items)
3283 		push_items = max_push;
3284 
3285 	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3286 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3287 				      btrfs_node_key_ptr_offset(0),
3288 				      (dst_nritems) *
3289 				      sizeof(struct btrfs_key_ptr));
3290 
3291 	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3292 				   src_nritems - push_items, push_items);
3293 	if (ret) {
3294 		btrfs_abort_transaction(trans, root, ret);
3295 		return ret;
3296 	}
3297 	copy_extent_buffer(dst, src,
3298 			   btrfs_node_key_ptr_offset(0),
3299 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3300 			   push_items * sizeof(struct btrfs_key_ptr));
3301 
3302 	btrfs_set_header_nritems(src, src_nritems - push_items);
3303 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3304 
3305 	btrfs_mark_buffer_dirty(src);
3306 	btrfs_mark_buffer_dirty(dst);
3307 
3308 	return ret;
3309 }
3310 
3311 /*
3312  * helper function to insert a new root level in the tree.
3313  * A new node is allocated, and a single item is inserted to
3314  * point to the existing root
3315  *
3316  * returns zero on success or < 0 on failure.
3317  */
insert_new_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)3318 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3319 			   struct btrfs_root *root,
3320 			   struct btrfs_path *path, int level)
3321 {
3322 	u64 lower_gen;
3323 	struct extent_buffer *lower;
3324 	struct extent_buffer *c;
3325 	struct extent_buffer *old;
3326 	struct btrfs_disk_key lower_key;
3327 
3328 	BUG_ON(path->nodes[level]);
3329 	BUG_ON(path->nodes[level-1] != root->node);
3330 
3331 	lower = path->nodes[level-1];
3332 	if (level == 1)
3333 		btrfs_item_key(lower, &lower_key, 0);
3334 	else
3335 		btrfs_node_key(lower, &lower_key, 0);
3336 
3337 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3338 				   &lower_key, level, root->node->start, 0);
3339 	if (IS_ERR(c))
3340 		return PTR_ERR(c);
3341 
3342 	root_add_used(root, root->nodesize);
3343 
3344 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3345 	btrfs_set_header_nritems(c, 1);
3346 	btrfs_set_header_level(c, level);
3347 	btrfs_set_header_bytenr(c, c->start);
3348 	btrfs_set_header_generation(c, trans->transid);
3349 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3350 	btrfs_set_header_owner(c, root->root_key.objectid);
3351 
3352 	write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3353 			    BTRFS_FSID_SIZE);
3354 
3355 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3356 			    btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3357 
3358 	btrfs_set_node_key(c, &lower_key, 0);
3359 	btrfs_set_node_blockptr(c, 0, lower->start);
3360 	lower_gen = btrfs_header_generation(lower);
3361 	WARN_ON(lower_gen != trans->transid);
3362 
3363 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3364 
3365 	btrfs_mark_buffer_dirty(c);
3366 
3367 	old = root->node;
3368 	tree_mod_log_set_root_pointer(root, c, 0);
3369 	rcu_assign_pointer(root->node, c);
3370 
3371 	/* the super has an extra ref to root->node */
3372 	free_extent_buffer(old);
3373 
3374 	add_root_to_dirty_list(root);
3375 	extent_buffer_get(c);
3376 	path->nodes[level] = c;
3377 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3378 	path->slots[level] = 0;
3379 	return 0;
3380 }
3381 
3382 /*
3383  * worker function to insert a single pointer in a node.
3384  * the node should have enough room for the pointer already
3385  *
3386  * slot and level indicate where you want the key to go, and
3387  * blocknr is the block the key points to.
3388  */
insert_ptr(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_disk_key * key,u64 bytenr,int slot,int level)3389 static void insert_ptr(struct btrfs_trans_handle *trans,
3390 		       struct btrfs_root *root, struct btrfs_path *path,
3391 		       struct btrfs_disk_key *key, u64 bytenr,
3392 		       int slot, int level)
3393 {
3394 	struct extent_buffer *lower;
3395 	int nritems;
3396 	int ret;
3397 
3398 	BUG_ON(!path->nodes[level]);
3399 	btrfs_assert_tree_locked(path->nodes[level]);
3400 	lower = path->nodes[level];
3401 	nritems = btrfs_header_nritems(lower);
3402 	BUG_ON(slot > nritems);
3403 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3404 	if (slot != nritems) {
3405 		if (level)
3406 			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3407 					     slot, nritems - slot);
3408 		memmove_extent_buffer(lower,
3409 			      btrfs_node_key_ptr_offset(slot + 1),
3410 			      btrfs_node_key_ptr_offset(slot),
3411 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3412 	}
3413 	if (level) {
3414 		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3415 					      MOD_LOG_KEY_ADD, GFP_NOFS);
3416 		BUG_ON(ret < 0);
3417 	}
3418 	btrfs_set_node_key(lower, key, slot);
3419 	btrfs_set_node_blockptr(lower, slot, bytenr);
3420 	WARN_ON(trans->transid == 0);
3421 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3422 	btrfs_set_header_nritems(lower, nritems + 1);
3423 	btrfs_mark_buffer_dirty(lower);
3424 }
3425 
3426 /*
3427  * split the node at the specified level in path in two.
3428  * The path is corrected to point to the appropriate node after the split
3429  *
3430  * Before splitting this tries to make some room in the node by pushing
3431  * left and right, if either one works, it returns right away.
3432  *
3433  * returns 0 on success and < 0 on failure
3434  */
split_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)3435 static noinline int split_node(struct btrfs_trans_handle *trans,
3436 			       struct btrfs_root *root,
3437 			       struct btrfs_path *path, int level)
3438 {
3439 	struct extent_buffer *c;
3440 	struct extent_buffer *split;
3441 	struct btrfs_disk_key disk_key;
3442 	int mid;
3443 	int ret;
3444 	u32 c_nritems;
3445 
3446 	c = path->nodes[level];
3447 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3448 	if (c == root->node) {
3449 		/*
3450 		 * trying to split the root, lets make a new one
3451 		 *
3452 		 * tree mod log: We don't log_removal old root in
3453 		 * insert_new_root, because that root buffer will be kept as a
3454 		 * normal node. We are going to log removal of half of the
3455 		 * elements below with tree_mod_log_eb_copy. We're holding a
3456 		 * tree lock on the buffer, which is why we cannot race with
3457 		 * other tree_mod_log users.
3458 		 */
3459 		ret = insert_new_root(trans, root, path, level + 1);
3460 		if (ret)
3461 			return ret;
3462 	} else {
3463 		ret = push_nodes_for_insert(trans, root, path, level);
3464 		c = path->nodes[level];
3465 		if (!ret && btrfs_header_nritems(c) <
3466 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3467 			return 0;
3468 		if (ret < 0)
3469 			return ret;
3470 	}
3471 
3472 	c_nritems = btrfs_header_nritems(c);
3473 	mid = (c_nritems + 1) / 2;
3474 	btrfs_node_key(c, &disk_key, mid);
3475 
3476 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3477 			&disk_key, level, c->start, 0);
3478 	if (IS_ERR(split))
3479 		return PTR_ERR(split);
3480 
3481 	root_add_used(root, root->nodesize);
3482 
3483 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3484 	btrfs_set_header_level(split, btrfs_header_level(c));
3485 	btrfs_set_header_bytenr(split, split->start);
3486 	btrfs_set_header_generation(split, trans->transid);
3487 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3488 	btrfs_set_header_owner(split, root->root_key.objectid);
3489 	write_extent_buffer(split, root->fs_info->fsid,
3490 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
3491 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3492 			    btrfs_header_chunk_tree_uuid(split),
3493 			    BTRFS_UUID_SIZE);
3494 
3495 	ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3496 				   mid, c_nritems - mid);
3497 	if (ret) {
3498 		btrfs_abort_transaction(trans, root, ret);
3499 		return ret;
3500 	}
3501 	copy_extent_buffer(split, c,
3502 			   btrfs_node_key_ptr_offset(0),
3503 			   btrfs_node_key_ptr_offset(mid),
3504 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3505 	btrfs_set_header_nritems(split, c_nritems - mid);
3506 	btrfs_set_header_nritems(c, mid);
3507 	ret = 0;
3508 
3509 	btrfs_mark_buffer_dirty(c);
3510 	btrfs_mark_buffer_dirty(split);
3511 
3512 	insert_ptr(trans, root, path, &disk_key, split->start,
3513 		   path->slots[level + 1] + 1, level + 1);
3514 
3515 	if (path->slots[level] >= mid) {
3516 		path->slots[level] -= mid;
3517 		btrfs_tree_unlock(c);
3518 		free_extent_buffer(c);
3519 		path->nodes[level] = split;
3520 		path->slots[level + 1] += 1;
3521 	} else {
3522 		btrfs_tree_unlock(split);
3523 		free_extent_buffer(split);
3524 	}
3525 	return ret;
3526 }
3527 
3528 /*
3529  * how many bytes are required to store the items in a leaf.  start
3530  * and nr indicate which items in the leaf to check.  This totals up the
3531  * space used both by the item structs and the item data
3532  */
leaf_space_used(struct extent_buffer * l,int start,int nr)3533 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3534 {
3535 	struct btrfs_item *start_item;
3536 	struct btrfs_item *end_item;
3537 	struct btrfs_map_token token;
3538 	int data_len;
3539 	int nritems = btrfs_header_nritems(l);
3540 	int end = min(nritems, start + nr) - 1;
3541 
3542 	if (!nr)
3543 		return 0;
3544 	btrfs_init_map_token(&token);
3545 	start_item = btrfs_item_nr(start);
3546 	end_item = btrfs_item_nr(end);
3547 	data_len = btrfs_token_item_offset(l, start_item, &token) +
3548 		btrfs_token_item_size(l, start_item, &token);
3549 	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3550 	data_len += sizeof(struct btrfs_item) * nr;
3551 	WARN_ON(data_len < 0);
3552 	return data_len;
3553 }
3554 
3555 /*
3556  * The space between the end of the leaf items and
3557  * the start of the leaf data.  IOW, how much room
3558  * the leaf has left for both items and data
3559  */
btrfs_leaf_free_space(struct btrfs_root * root,struct extent_buffer * leaf)3560 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3561 				   struct extent_buffer *leaf)
3562 {
3563 	int nritems = btrfs_header_nritems(leaf);
3564 	int ret;
3565 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3566 	if (ret < 0) {
3567 		btrfs_crit(root->fs_info,
3568 			"leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3569 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3570 		       leaf_space_used(leaf, 0, nritems), nritems);
3571 	}
3572 	return ret;
3573 }
3574 
3575 /*
3576  * min slot controls the lowest index we're willing to push to the
3577  * right.  We'll push up to and including min_slot, but no lower
3578  */
__push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * right,int free_space,u32 left_nritems,u32 min_slot)3579 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3580 				      struct btrfs_root *root,
3581 				      struct btrfs_path *path,
3582 				      int data_size, int empty,
3583 				      struct extent_buffer *right,
3584 				      int free_space, u32 left_nritems,
3585 				      u32 min_slot)
3586 {
3587 	struct extent_buffer *left = path->nodes[0];
3588 	struct extent_buffer *upper = path->nodes[1];
3589 	struct btrfs_map_token token;
3590 	struct btrfs_disk_key disk_key;
3591 	int slot;
3592 	u32 i;
3593 	int push_space = 0;
3594 	int push_items = 0;
3595 	struct btrfs_item *item;
3596 	u32 nr;
3597 	u32 right_nritems;
3598 	u32 data_end;
3599 	u32 this_item_size;
3600 
3601 	btrfs_init_map_token(&token);
3602 
3603 	if (empty)
3604 		nr = 0;
3605 	else
3606 		nr = max_t(u32, 1, min_slot);
3607 
3608 	if (path->slots[0] >= left_nritems)
3609 		push_space += data_size;
3610 
3611 	slot = path->slots[1];
3612 	i = left_nritems - 1;
3613 	while (i >= nr) {
3614 		item = btrfs_item_nr(i);
3615 
3616 		if (!empty && push_items > 0) {
3617 			if (path->slots[0] > i)
3618 				break;
3619 			if (path->slots[0] == i) {
3620 				int space = btrfs_leaf_free_space(root, left);
3621 				if (space + push_space * 2 > free_space)
3622 					break;
3623 			}
3624 		}
3625 
3626 		if (path->slots[0] == i)
3627 			push_space += data_size;
3628 
3629 		this_item_size = btrfs_item_size(left, item);
3630 		if (this_item_size + sizeof(*item) + push_space > free_space)
3631 			break;
3632 
3633 		push_items++;
3634 		push_space += this_item_size + sizeof(*item);
3635 		if (i == 0)
3636 			break;
3637 		i--;
3638 	}
3639 
3640 	if (push_items == 0)
3641 		goto out_unlock;
3642 
3643 	WARN_ON(!empty && push_items == left_nritems);
3644 
3645 	/* push left to right */
3646 	right_nritems = btrfs_header_nritems(right);
3647 
3648 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3649 	push_space -= leaf_data_end(root, left);
3650 
3651 	/* make room in the right data area */
3652 	data_end = leaf_data_end(root, right);
3653 	memmove_extent_buffer(right,
3654 			      btrfs_leaf_data(right) + data_end - push_space,
3655 			      btrfs_leaf_data(right) + data_end,
3656 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
3657 
3658 	/* copy from the left data area */
3659 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3660 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3661 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
3662 		     push_space);
3663 
3664 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3665 			      btrfs_item_nr_offset(0),
3666 			      right_nritems * sizeof(struct btrfs_item));
3667 
3668 	/* copy the items from left to right */
3669 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3670 		   btrfs_item_nr_offset(left_nritems - push_items),
3671 		   push_items * sizeof(struct btrfs_item));
3672 
3673 	/* update the item pointers */
3674 	right_nritems += push_items;
3675 	btrfs_set_header_nritems(right, right_nritems);
3676 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3677 	for (i = 0; i < right_nritems; i++) {
3678 		item = btrfs_item_nr(i);
3679 		push_space -= btrfs_token_item_size(right, item, &token);
3680 		btrfs_set_token_item_offset(right, item, push_space, &token);
3681 	}
3682 
3683 	left_nritems -= push_items;
3684 	btrfs_set_header_nritems(left, left_nritems);
3685 
3686 	if (left_nritems)
3687 		btrfs_mark_buffer_dirty(left);
3688 	else
3689 		clean_tree_block(trans, root->fs_info, left);
3690 
3691 	btrfs_mark_buffer_dirty(right);
3692 
3693 	btrfs_item_key(right, &disk_key, 0);
3694 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3695 	btrfs_mark_buffer_dirty(upper);
3696 
3697 	/* then fixup the leaf pointer in the path */
3698 	if (path->slots[0] >= left_nritems) {
3699 		path->slots[0] -= left_nritems;
3700 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3701 			clean_tree_block(trans, root->fs_info, path->nodes[0]);
3702 		btrfs_tree_unlock(path->nodes[0]);
3703 		free_extent_buffer(path->nodes[0]);
3704 		path->nodes[0] = right;
3705 		path->slots[1] += 1;
3706 	} else {
3707 		btrfs_tree_unlock(right);
3708 		free_extent_buffer(right);
3709 	}
3710 	return 0;
3711 
3712 out_unlock:
3713 	btrfs_tree_unlock(right);
3714 	free_extent_buffer(right);
3715 	return 1;
3716 }
3717 
3718 /*
3719  * push some data in the path leaf to the right, trying to free up at
3720  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3721  *
3722  * returns 1 if the push failed because the other node didn't have enough
3723  * room, 0 if everything worked out and < 0 if there were major errors.
3724  *
3725  * this will push starting from min_slot to the end of the leaf.  It won't
3726  * push any slot lower than min_slot
3727  */
push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 min_slot)3728 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3729 			   *root, struct btrfs_path *path,
3730 			   int min_data_size, int data_size,
3731 			   int empty, u32 min_slot)
3732 {
3733 	struct extent_buffer *left = path->nodes[0];
3734 	struct extent_buffer *right;
3735 	struct extent_buffer *upper;
3736 	int slot;
3737 	int free_space;
3738 	u32 left_nritems;
3739 	int ret;
3740 
3741 	if (!path->nodes[1])
3742 		return 1;
3743 
3744 	slot = path->slots[1];
3745 	upper = path->nodes[1];
3746 	if (slot >= btrfs_header_nritems(upper) - 1)
3747 		return 1;
3748 
3749 	btrfs_assert_tree_locked(path->nodes[1]);
3750 
3751 	right = read_node_slot(root, upper, slot + 1);
3752 	if (right == NULL)
3753 		return 1;
3754 
3755 	btrfs_tree_lock(right);
3756 	btrfs_set_lock_blocking(right);
3757 
3758 	free_space = btrfs_leaf_free_space(root, right);
3759 	if (free_space < data_size)
3760 		goto out_unlock;
3761 
3762 	/* cow and double check */
3763 	ret = btrfs_cow_block(trans, root, right, upper,
3764 			      slot + 1, &right);
3765 	if (ret)
3766 		goto out_unlock;
3767 
3768 	free_space = btrfs_leaf_free_space(root, right);
3769 	if (free_space < data_size)
3770 		goto out_unlock;
3771 
3772 	left_nritems = btrfs_header_nritems(left);
3773 	if (left_nritems == 0)
3774 		goto out_unlock;
3775 
3776 	if (path->slots[0] == left_nritems && !empty) {
3777 		/* Key greater than all keys in the leaf, right neighbor has
3778 		 * enough room for it and we're not emptying our leaf to delete
3779 		 * it, therefore use right neighbor to insert the new item and
3780 		 * no need to touch/dirty our left leaft. */
3781 		btrfs_tree_unlock(left);
3782 		free_extent_buffer(left);
3783 		path->nodes[0] = right;
3784 		path->slots[0] = 0;
3785 		path->slots[1]++;
3786 		return 0;
3787 	}
3788 
3789 	return __push_leaf_right(trans, root, path, min_data_size, empty,
3790 				right, free_space, left_nritems, min_slot);
3791 out_unlock:
3792 	btrfs_tree_unlock(right);
3793 	free_extent_buffer(right);
3794 	return 1;
3795 }
3796 
3797 /*
3798  * push some data in the path leaf to the left, trying to free up at
3799  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3800  *
3801  * max_slot can put a limit on how far into the leaf we'll push items.  The
3802  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3803  * items
3804  */
__push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * left,int free_space,u32 right_nritems,u32 max_slot)3805 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3806 				     struct btrfs_root *root,
3807 				     struct btrfs_path *path, int data_size,
3808 				     int empty, struct extent_buffer *left,
3809 				     int free_space, u32 right_nritems,
3810 				     u32 max_slot)
3811 {
3812 	struct btrfs_disk_key disk_key;
3813 	struct extent_buffer *right = path->nodes[0];
3814 	int i;
3815 	int push_space = 0;
3816 	int push_items = 0;
3817 	struct btrfs_item *item;
3818 	u32 old_left_nritems;
3819 	u32 nr;
3820 	int ret = 0;
3821 	u32 this_item_size;
3822 	u32 old_left_item_size;
3823 	struct btrfs_map_token token;
3824 
3825 	btrfs_init_map_token(&token);
3826 
3827 	if (empty)
3828 		nr = min(right_nritems, max_slot);
3829 	else
3830 		nr = min(right_nritems - 1, max_slot);
3831 
3832 	for (i = 0; i < nr; i++) {
3833 		item = btrfs_item_nr(i);
3834 
3835 		if (!empty && push_items > 0) {
3836 			if (path->slots[0] < i)
3837 				break;
3838 			if (path->slots[0] == i) {
3839 				int space = btrfs_leaf_free_space(root, right);
3840 				if (space + push_space * 2 > free_space)
3841 					break;
3842 			}
3843 		}
3844 
3845 		if (path->slots[0] == i)
3846 			push_space += data_size;
3847 
3848 		this_item_size = btrfs_item_size(right, item);
3849 		if (this_item_size + sizeof(*item) + push_space > free_space)
3850 			break;
3851 
3852 		push_items++;
3853 		push_space += this_item_size + sizeof(*item);
3854 	}
3855 
3856 	if (push_items == 0) {
3857 		ret = 1;
3858 		goto out;
3859 	}
3860 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3861 
3862 	/* push data from right to left */
3863 	copy_extent_buffer(left, right,
3864 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3865 			   btrfs_item_nr_offset(0),
3866 			   push_items * sizeof(struct btrfs_item));
3867 
3868 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
3869 		     btrfs_item_offset_nr(right, push_items - 1);
3870 
3871 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3872 		     leaf_data_end(root, left) - push_space,
3873 		     btrfs_leaf_data(right) +
3874 		     btrfs_item_offset_nr(right, push_items - 1),
3875 		     push_space);
3876 	old_left_nritems = btrfs_header_nritems(left);
3877 	BUG_ON(old_left_nritems <= 0);
3878 
3879 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3880 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3881 		u32 ioff;
3882 
3883 		item = btrfs_item_nr(i);
3884 
3885 		ioff = btrfs_token_item_offset(left, item, &token);
3886 		btrfs_set_token_item_offset(left, item,
3887 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3888 		      &token);
3889 	}
3890 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3891 
3892 	/* fixup right node */
3893 	if (push_items > right_nritems)
3894 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3895 		       right_nritems);
3896 
3897 	if (push_items < right_nritems) {
3898 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3899 						  leaf_data_end(root, right);
3900 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3901 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3902 				      btrfs_leaf_data(right) +
3903 				      leaf_data_end(root, right), push_space);
3904 
3905 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3906 			      btrfs_item_nr_offset(push_items),
3907 			     (btrfs_header_nritems(right) - push_items) *
3908 			     sizeof(struct btrfs_item));
3909 	}
3910 	right_nritems -= push_items;
3911 	btrfs_set_header_nritems(right, right_nritems);
3912 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3913 	for (i = 0; i < right_nritems; i++) {
3914 		item = btrfs_item_nr(i);
3915 
3916 		push_space = push_space - btrfs_token_item_size(right,
3917 								item, &token);
3918 		btrfs_set_token_item_offset(right, item, push_space, &token);
3919 	}
3920 
3921 	btrfs_mark_buffer_dirty(left);
3922 	if (right_nritems)
3923 		btrfs_mark_buffer_dirty(right);
3924 	else
3925 		clean_tree_block(trans, root->fs_info, right);
3926 
3927 	btrfs_item_key(right, &disk_key, 0);
3928 	fixup_low_keys(root->fs_info, path, &disk_key, 1);
3929 
3930 	/* then fixup the leaf pointer in the path */
3931 	if (path->slots[0] < push_items) {
3932 		path->slots[0] += old_left_nritems;
3933 		btrfs_tree_unlock(path->nodes[0]);
3934 		free_extent_buffer(path->nodes[0]);
3935 		path->nodes[0] = left;
3936 		path->slots[1] -= 1;
3937 	} else {
3938 		btrfs_tree_unlock(left);
3939 		free_extent_buffer(left);
3940 		path->slots[0] -= push_items;
3941 	}
3942 	BUG_ON(path->slots[0] < 0);
3943 	return ret;
3944 out:
3945 	btrfs_tree_unlock(left);
3946 	free_extent_buffer(left);
3947 	return ret;
3948 }
3949 
3950 /*
3951  * push some data in the path leaf to the left, trying to free up at
3952  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3953  *
3954  * max_slot can put a limit on how far into the leaf we'll push items.  The
3955  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3956  * items
3957  */
push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 max_slot)3958 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3959 			  *root, struct btrfs_path *path, int min_data_size,
3960 			  int data_size, int empty, u32 max_slot)
3961 {
3962 	struct extent_buffer *right = path->nodes[0];
3963 	struct extent_buffer *left;
3964 	int slot;
3965 	int free_space;
3966 	u32 right_nritems;
3967 	int ret = 0;
3968 
3969 	slot = path->slots[1];
3970 	if (slot == 0)
3971 		return 1;
3972 	if (!path->nodes[1])
3973 		return 1;
3974 
3975 	right_nritems = btrfs_header_nritems(right);
3976 	if (right_nritems == 0)
3977 		return 1;
3978 
3979 	btrfs_assert_tree_locked(path->nodes[1]);
3980 
3981 	left = read_node_slot(root, path->nodes[1], slot - 1);
3982 	if (left == NULL)
3983 		return 1;
3984 
3985 	btrfs_tree_lock(left);
3986 	btrfs_set_lock_blocking(left);
3987 
3988 	free_space = btrfs_leaf_free_space(root, left);
3989 	if (free_space < data_size) {
3990 		ret = 1;
3991 		goto out;
3992 	}
3993 
3994 	/* cow and double check */
3995 	ret = btrfs_cow_block(trans, root, left,
3996 			      path->nodes[1], slot - 1, &left);
3997 	if (ret) {
3998 		/* we hit -ENOSPC, but it isn't fatal here */
3999 		if (ret == -ENOSPC)
4000 			ret = 1;
4001 		goto out;
4002 	}
4003 
4004 	free_space = btrfs_leaf_free_space(root, left);
4005 	if (free_space < data_size) {
4006 		ret = 1;
4007 		goto out;
4008 	}
4009 
4010 	return __push_leaf_left(trans, root, path, min_data_size,
4011 			       empty, left, free_space, right_nritems,
4012 			       max_slot);
4013 out:
4014 	btrfs_tree_unlock(left);
4015 	free_extent_buffer(left);
4016 	return ret;
4017 }
4018 
4019 /*
4020  * split the path's leaf in two, making sure there is at least data_size
4021  * available for the resulting leaf level of the path.
4022  */
copy_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * l,struct extent_buffer * right,int slot,int mid,int nritems)4023 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4024 				    struct btrfs_root *root,
4025 				    struct btrfs_path *path,
4026 				    struct extent_buffer *l,
4027 				    struct extent_buffer *right,
4028 				    int slot, int mid, int nritems)
4029 {
4030 	int data_copy_size;
4031 	int rt_data_off;
4032 	int i;
4033 	struct btrfs_disk_key disk_key;
4034 	struct btrfs_map_token token;
4035 
4036 	btrfs_init_map_token(&token);
4037 
4038 	nritems = nritems - mid;
4039 	btrfs_set_header_nritems(right, nritems);
4040 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4041 
4042 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4043 			   btrfs_item_nr_offset(mid),
4044 			   nritems * sizeof(struct btrfs_item));
4045 
4046 	copy_extent_buffer(right, l,
4047 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4048 		     data_copy_size, btrfs_leaf_data(l) +
4049 		     leaf_data_end(root, l), data_copy_size);
4050 
4051 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4052 		      btrfs_item_end_nr(l, mid);
4053 
4054 	for (i = 0; i < nritems; i++) {
4055 		struct btrfs_item *item = btrfs_item_nr(i);
4056 		u32 ioff;
4057 
4058 		ioff = btrfs_token_item_offset(right, item, &token);
4059 		btrfs_set_token_item_offset(right, item,
4060 					    ioff + rt_data_off, &token);
4061 	}
4062 
4063 	btrfs_set_header_nritems(l, mid);
4064 	btrfs_item_key(right, &disk_key, 0);
4065 	insert_ptr(trans, root, path, &disk_key, right->start,
4066 		   path->slots[1] + 1, 1);
4067 
4068 	btrfs_mark_buffer_dirty(right);
4069 	btrfs_mark_buffer_dirty(l);
4070 	BUG_ON(path->slots[0] != slot);
4071 
4072 	if (mid <= slot) {
4073 		btrfs_tree_unlock(path->nodes[0]);
4074 		free_extent_buffer(path->nodes[0]);
4075 		path->nodes[0] = right;
4076 		path->slots[0] -= mid;
4077 		path->slots[1] += 1;
4078 	} else {
4079 		btrfs_tree_unlock(right);
4080 		free_extent_buffer(right);
4081 	}
4082 
4083 	BUG_ON(path->slots[0] < 0);
4084 }
4085 
4086 /*
4087  * double splits happen when we need to insert a big item in the middle
4088  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4089  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4090  *          A                 B                 C
4091  *
4092  * We avoid this by trying to push the items on either side of our target
4093  * into the adjacent leaves.  If all goes well we can avoid the double split
4094  * completely.
4095  */
push_for_double_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size)4096 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4097 					  struct btrfs_root *root,
4098 					  struct btrfs_path *path,
4099 					  int data_size)
4100 {
4101 	int ret;
4102 	int progress = 0;
4103 	int slot;
4104 	u32 nritems;
4105 	int space_needed = data_size;
4106 
4107 	slot = path->slots[0];
4108 	if (slot < btrfs_header_nritems(path->nodes[0]))
4109 		space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4110 
4111 	/*
4112 	 * try to push all the items after our slot into the
4113 	 * right leaf
4114 	 */
4115 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4116 	if (ret < 0)
4117 		return ret;
4118 
4119 	if (ret == 0)
4120 		progress++;
4121 
4122 	nritems = btrfs_header_nritems(path->nodes[0]);
4123 	/*
4124 	 * our goal is to get our slot at the start or end of a leaf.  If
4125 	 * we've done so we're done
4126 	 */
4127 	if (path->slots[0] == 0 || path->slots[0] == nritems)
4128 		return 0;
4129 
4130 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4131 		return 0;
4132 
4133 	/* try to push all the items before our slot into the next leaf */
4134 	slot = path->slots[0];
4135 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4136 	if (ret < 0)
4137 		return ret;
4138 
4139 	if (ret == 0)
4140 		progress++;
4141 
4142 	if (progress)
4143 		return 0;
4144 	return 1;
4145 }
4146 
4147 /*
4148  * split the path's leaf in two, making sure there is at least data_size
4149  * available for the resulting leaf level of the path.
4150  *
4151  * returns 0 if all went well and < 0 on failure.
4152  */
split_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * ins_key,struct btrfs_path * path,int data_size,int extend)4153 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4154 			       struct btrfs_root *root,
4155 			       struct btrfs_key *ins_key,
4156 			       struct btrfs_path *path, int data_size,
4157 			       int extend)
4158 {
4159 	struct btrfs_disk_key disk_key;
4160 	struct extent_buffer *l;
4161 	u32 nritems;
4162 	int mid;
4163 	int slot;
4164 	struct extent_buffer *right;
4165 	struct btrfs_fs_info *fs_info = root->fs_info;
4166 	int ret = 0;
4167 	int wret;
4168 	int split;
4169 	int num_doubles = 0;
4170 	int tried_avoid_double = 0;
4171 
4172 	l = path->nodes[0];
4173 	slot = path->slots[0];
4174 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4175 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4176 		return -EOVERFLOW;
4177 
4178 	/* first try to make some room by pushing left and right */
4179 	if (data_size && path->nodes[1]) {
4180 		int space_needed = data_size;
4181 
4182 		if (slot < btrfs_header_nritems(l))
4183 			space_needed -= btrfs_leaf_free_space(root, l);
4184 
4185 		wret = push_leaf_right(trans, root, path, space_needed,
4186 				       space_needed, 0, 0);
4187 		if (wret < 0)
4188 			return wret;
4189 		if (wret) {
4190 			wret = push_leaf_left(trans, root, path, space_needed,
4191 					      space_needed, 0, (u32)-1);
4192 			if (wret < 0)
4193 				return wret;
4194 		}
4195 		l = path->nodes[0];
4196 
4197 		/* did the pushes work? */
4198 		if (btrfs_leaf_free_space(root, l) >= data_size)
4199 			return 0;
4200 	}
4201 
4202 	if (!path->nodes[1]) {
4203 		ret = insert_new_root(trans, root, path, 1);
4204 		if (ret)
4205 			return ret;
4206 	}
4207 again:
4208 	split = 1;
4209 	l = path->nodes[0];
4210 	slot = path->slots[0];
4211 	nritems = btrfs_header_nritems(l);
4212 	mid = (nritems + 1) / 2;
4213 
4214 	if (mid <= slot) {
4215 		if (nritems == 1 ||
4216 		    leaf_space_used(l, mid, nritems - mid) + data_size >
4217 			BTRFS_LEAF_DATA_SIZE(root)) {
4218 			if (slot >= nritems) {
4219 				split = 0;
4220 			} else {
4221 				mid = slot;
4222 				if (mid != nritems &&
4223 				    leaf_space_used(l, mid, nritems - mid) +
4224 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4225 					if (data_size && !tried_avoid_double)
4226 						goto push_for_double;
4227 					split = 2;
4228 				}
4229 			}
4230 		}
4231 	} else {
4232 		if (leaf_space_used(l, 0, mid) + data_size >
4233 			BTRFS_LEAF_DATA_SIZE(root)) {
4234 			if (!extend && data_size && slot == 0) {
4235 				split = 0;
4236 			} else if ((extend || !data_size) && slot == 0) {
4237 				mid = 1;
4238 			} else {
4239 				mid = slot;
4240 				if (mid != nritems &&
4241 				    leaf_space_used(l, mid, nritems - mid) +
4242 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4243 					if (data_size && !tried_avoid_double)
4244 						goto push_for_double;
4245 					split = 2;
4246 				}
4247 			}
4248 		}
4249 	}
4250 
4251 	if (split == 0)
4252 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4253 	else
4254 		btrfs_item_key(l, &disk_key, mid);
4255 
4256 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4257 			&disk_key, 0, l->start, 0);
4258 	if (IS_ERR(right))
4259 		return PTR_ERR(right);
4260 
4261 	root_add_used(root, root->nodesize);
4262 
4263 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4264 	btrfs_set_header_bytenr(right, right->start);
4265 	btrfs_set_header_generation(right, trans->transid);
4266 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4267 	btrfs_set_header_owner(right, root->root_key.objectid);
4268 	btrfs_set_header_level(right, 0);
4269 	write_extent_buffer(right, fs_info->fsid,
4270 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
4271 
4272 	write_extent_buffer(right, fs_info->chunk_tree_uuid,
4273 			    btrfs_header_chunk_tree_uuid(right),
4274 			    BTRFS_UUID_SIZE);
4275 
4276 	if (split == 0) {
4277 		if (mid <= slot) {
4278 			btrfs_set_header_nritems(right, 0);
4279 			insert_ptr(trans, root, path, &disk_key, right->start,
4280 				   path->slots[1] + 1, 1);
4281 			btrfs_tree_unlock(path->nodes[0]);
4282 			free_extent_buffer(path->nodes[0]);
4283 			path->nodes[0] = right;
4284 			path->slots[0] = 0;
4285 			path->slots[1] += 1;
4286 		} else {
4287 			btrfs_set_header_nritems(right, 0);
4288 			insert_ptr(trans, root, path, &disk_key, right->start,
4289 					  path->slots[1], 1);
4290 			btrfs_tree_unlock(path->nodes[0]);
4291 			free_extent_buffer(path->nodes[0]);
4292 			path->nodes[0] = right;
4293 			path->slots[0] = 0;
4294 			if (path->slots[1] == 0)
4295 				fixup_low_keys(fs_info, path, &disk_key, 1);
4296 		}
4297 		btrfs_mark_buffer_dirty(right);
4298 		return ret;
4299 	}
4300 
4301 	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4302 
4303 	if (split == 2) {
4304 		BUG_ON(num_doubles != 0);
4305 		num_doubles++;
4306 		goto again;
4307 	}
4308 
4309 	return 0;
4310 
4311 push_for_double:
4312 	push_for_double_split(trans, root, path, data_size);
4313 	tried_avoid_double = 1;
4314 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4315 		return 0;
4316 	goto again;
4317 }
4318 
setup_leaf_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int ins_len)4319 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4320 					 struct btrfs_root *root,
4321 					 struct btrfs_path *path, int ins_len)
4322 {
4323 	struct btrfs_key key;
4324 	struct extent_buffer *leaf;
4325 	struct btrfs_file_extent_item *fi;
4326 	u64 extent_len = 0;
4327 	u32 item_size;
4328 	int ret;
4329 
4330 	leaf = path->nodes[0];
4331 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4332 
4333 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4334 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4335 
4336 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4337 		return 0;
4338 
4339 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4340 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4341 		fi = btrfs_item_ptr(leaf, path->slots[0],
4342 				    struct btrfs_file_extent_item);
4343 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4344 	}
4345 	btrfs_release_path(path);
4346 
4347 	path->keep_locks = 1;
4348 	path->search_for_split = 1;
4349 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4350 	path->search_for_split = 0;
4351 	if (ret > 0)
4352 		ret = -EAGAIN;
4353 	if (ret < 0)
4354 		goto err;
4355 
4356 	ret = -EAGAIN;
4357 	leaf = path->nodes[0];
4358 	/* if our item isn't there, return now */
4359 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4360 		goto err;
4361 
4362 	/* the leaf has  changed, it now has room.  return now */
4363 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4364 		goto err;
4365 
4366 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4367 		fi = btrfs_item_ptr(leaf, path->slots[0],
4368 				    struct btrfs_file_extent_item);
4369 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4370 			goto err;
4371 	}
4372 
4373 	btrfs_set_path_blocking(path);
4374 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4375 	if (ret)
4376 		goto err;
4377 
4378 	path->keep_locks = 0;
4379 	btrfs_unlock_up_safe(path, 1);
4380 	return 0;
4381 err:
4382 	path->keep_locks = 0;
4383 	return ret;
4384 }
4385 
split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * new_key,unsigned long split_offset)4386 static noinline int split_item(struct btrfs_trans_handle *trans,
4387 			       struct btrfs_root *root,
4388 			       struct btrfs_path *path,
4389 			       struct btrfs_key *new_key,
4390 			       unsigned long split_offset)
4391 {
4392 	struct extent_buffer *leaf;
4393 	struct btrfs_item *item;
4394 	struct btrfs_item *new_item;
4395 	int slot;
4396 	char *buf;
4397 	u32 nritems;
4398 	u32 item_size;
4399 	u32 orig_offset;
4400 	struct btrfs_disk_key disk_key;
4401 
4402 	leaf = path->nodes[0];
4403 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4404 
4405 	btrfs_set_path_blocking(path);
4406 
4407 	item = btrfs_item_nr(path->slots[0]);
4408 	orig_offset = btrfs_item_offset(leaf, item);
4409 	item_size = btrfs_item_size(leaf, item);
4410 
4411 	buf = kmalloc(item_size, GFP_NOFS);
4412 	if (!buf)
4413 		return -ENOMEM;
4414 
4415 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4416 			    path->slots[0]), item_size);
4417 
4418 	slot = path->slots[0] + 1;
4419 	nritems = btrfs_header_nritems(leaf);
4420 	if (slot != nritems) {
4421 		/* shift the items */
4422 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4423 				btrfs_item_nr_offset(slot),
4424 				(nritems - slot) * sizeof(struct btrfs_item));
4425 	}
4426 
4427 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4428 	btrfs_set_item_key(leaf, &disk_key, slot);
4429 
4430 	new_item = btrfs_item_nr(slot);
4431 
4432 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4433 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4434 
4435 	btrfs_set_item_offset(leaf, item,
4436 			      orig_offset + item_size - split_offset);
4437 	btrfs_set_item_size(leaf, item, split_offset);
4438 
4439 	btrfs_set_header_nritems(leaf, nritems + 1);
4440 
4441 	/* write the data for the start of the original item */
4442 	write_extent_buffer(leaf, buf,
4443 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4444 			    split_offset);
4445 
4446 	/* write the data for the new item */
4447 	write_extent_buffer(leaf, buf + split_offset,
4448 			    btrfs_item_ptr_offset(leaf, slot),
4449 			    item_size - split_offset);
4450 	btrfs_mark_buffer_dirty(leaf);
4451 
4452 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4453 	kfree(buf);
4454 	return 0;
4455 }
4456 
4457 /*
4458  * This function splits a single item into two items,
4459  * giving 'new_key' to the new item and splitting the
4460  * old one at split_offset (from the start of the item).
4461  *
4462  * The path may be released by this operation.  After
4463  * the split, the path is pointing to the old item.  The
4464  * new item is going to be in the same node as the old one.
4465  *
4466  * Note, the item being split must be smaller enough to live alone on
4467  * a tree block with room for one extra struct btrfs_item
4468  *
4469  * This allows us to split the item in place, keeping a lock on the
4470  * leaf the entire time.
4471  */
btrfs_split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * new_key,unsigned long split_offset)4472 int btrfs_split_item(struct btrfs_trans_handle *trans,
4473 		     struct btrfs_root *root,
4474 		     struct btrfs_path *path,
4475 		     struct btrfs_key *new_key,
4476 		     unsigned long split_offset)
4477 {
4478 	int ret;
4479 	ret = setup_leaf_for_split(trans, root, path,
4480 				   sizeof(struct btrfs_item));
4481 	if (ret)
4482 		return ret;
4483 
4484 	ret = split_item(trans, root, path, new_key, split_offset);
4485 	return ret;
4486 }
4487 
4488 /*
4489  * This function duplicate a item, giving 'new_key' to the new item.
4490  * It guarantees both items live in the same tree leaf and the new item
4491  * is contiguous with the original item.
4492  *
4493  * This allows us to split file extent in place, keeping a lock on the
4494  * leaf the entire time.
4495  */
btrfs_duplicate_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * new_key)4496 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4497 			 struct btrfs_root *root,
4498 			 struct btrfs_path *path,
4499 			 struct btrfs_key *new_key)
4500 {
4501 	struct extent_buffer *leaf;
4502 	int ret;
4503 	u32 item_size;
4504 
4505 	leaf = path->nodes[0];
4506 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4507 	ret = setup_leaf_for_split(trans, root, path,
4508 				   item_size + sizeof(struct btrfs_item));
4509 	if (ret)
4510 		return ret;
4511 
4512 	path->slots[0]++;
4513 	setup_items_for_insert(root, path, new_key, &item_size,
4514 			       item_size, item_size +
4515 			       sizeof(struct btrfs_item), 1);
4516 	leaf = path->nodes[0];
4517 	memcpy_extent_buffer(leaf,
4518 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4519 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4520 			     item_size);
4521 	return 0;
4522 }
4523 
4524 /*
4525  * make the item pointed to by the path smaller.  new_size indicates
4526  * how small to make it, and from_end tells us if we just chop bytes
4527  * off the end of the item or if we shift the item to chop bytes off
4528  * the front.
4529  */
btrfs_truncate_item(struct btrfs_root * root,struct btrfs_path * path,u32 new_size,int from_end)4530 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4531 			 u32 new_size, int from_end)
4532 {
4533 	int slot;
4534 	struct extent_buffer *leaf;
4535 	struct btrfs_item *item;
4536 	u32 nritems;
4537 	unsigned int data_end;
4538 	unsigned int old_data_start;
4539 	unsigned int old_size;
4540 	unsigned int size_diff;
4541 	int i;
4542 	struct btrfs_map_token token;
4543 
4544 	btrfs_init_map_token(&token);
4545 
4546 	leaf = path->nodes[0];
4547 	slot = path->slots[0];
4548 
4549 	old_size = btrfs_item_size_nr(leaf, slot);
4550 	if (old_size == new_size)
4551 		return;
4552 
4553 	nritems = btrfs_header_nritems(leaf);
4554 	data_end = leaf_data_end(root, leaf);
4555 
4556 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4557 
4558 	size_diff = old_size - new_size;
4559 
4560 	BUG_ON(slot < 0);
4561 	BUG_ON(slot >= nritems);
4562 
4563 	/*
4564 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4565 	 */
4566 	/* first correct the data pointers */
4567 	for (i = slot; i < nritems; i++) {
4568 		u32 ioff;
4569 		item = btrfs_item_nr(i);
4570 
4571 		ioff = btrfs_token_item_offset(leaf, item, &token);
4572 		btrfs_set_token_item_offset(leaf, item,
4573 					    ioff + size_diff, &token);
4574 	}
4575 
4576 	/* shift the data */
4577 	if (from_end) {
4578 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4579 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4580 			      data_end, old_data_start + new_size - data_end);
4581 	} else {
4582 		struct btrfs_disk_key disk_key;
4583 		u64 offset;
4584 
4585 		btrfs_item_key(leaf, &disk_key, slot);
4586 
4587 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4588 			unsigned long ptr;
4589 			struct btrfs_file_extent_item *fi;
4590 
4591 			fi = btrfs_item_ptr(leaf, slot,
4592 					    struct btrfs_file_extent_item);
4593 			fi = (struct btrfs_file_extent_item *)(
4594 			     (unsigned long)fi - size_diff);
4595 
4596 			if (btrfs_file_extent_type(leaf, fi) ==
4597 			    BTRFS_FILE_EXTENT_INLINE) {
4598 				ptr = btrfs_item_ptr_offset(leaf, slot);
4599 				memmove_extent_buffer(leaf, ptr,
4600 				      (unsigned long)fi,
4601 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4602 			}
4603 		}
4604 
4605 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4606 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4607 			      data_end, old_data_start - data_end);
4608 
4609 		offset = btrfs_disk_key_offset(&disk_key);
4610 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4611 		btrfs_set_item_key(leaf, &disk_key, slot);
4612 		if (slot == 0)
4613 			fixup_low_keys(root->fs_info, path, &disk_key, 1);
4614 	}
4615 
4616 	item = btrfs_item_nr(slot);
4617 	btrfs_set_item_size(leaf, item, new_size);
4618 	btrfs_mark_buffer_dirty(leaf);
4619 
4620 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4621 		btrfs_print_leaf(root, leaf);
4622 		BUG();
4623 	}
4624 }
4625 
4626 /*
4627  * make the item pointed to by the path bigger, data_size is the added size.
4628  */
btrfs_extend_item(struct btrfs_root * root,struct btrfs_path * path,u32 data_size)4629 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4630 		       u32 data_size)
4631 {
4632 	int slot;
4633 	struct extent_buffer *leaf;
4634 	struct btrfs_item *item;
4635 	u32 nritems;
4636 	unsigned int data_end;
4637 	unsigned int old_data;
4638 	unsigned int old_size;
4639 	int i;
4640 	struct btrfs_map_token token;
4641 
4642 	btrfs_init_map_token(&token);
4643 
4644 	leaf = path->nodes[0];
4645 
4646 	nritems = btrfs_header_nritems(leaf);
4647 	data_end = leaf_data_end(root, leaf);
4648 
4649 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
4650 		btrfs_print_leaf(root, leaf);
4651 		BUG();
4652 	}
4653 	slot = path->slots[0];
4654 	old_data = btrfs_item_end_nr(leaf, slot);
4655 
4656 	BUG_ON(slot < 0);
4657 	if (slot >= nritems) {
4658 		btrfs_print_leaf(root, leaf);
4659 		btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4660 		       slot, nritems);
4661 		BUG_ON(1);
4662 	}
4663 
4664 	/*
4665 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4666 	 */
4667 	/* first correct the data pointers */
4668 	for (i = slot; i < nritems; i++) {
4669 		u32 ioff;
4670 		item = btrfs_item_nr(i);
4671 
4672 		ioff = btrfs_token_item_offset(leaf, item, &token);
4673 		btrfs_set_token_item_offset(leaf, item,
4674 					    ioff - data_size, &token);
4675 	}
4676 
4677 	/* shift the data */
4678 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4679 		      data_end - data_size, btrfs_leaf_data(leaf) +
4680 		      data_end, old_data - data_end);
4681 
4682 	data_end = old_data;
4683 	old_size = btrfs_item_size_nr(leaf, slot);
4684 	item = btrfs_item_nr(slot);
4685 	btrfs_set_item_size(leaf, item, old_size + data_size);
4686 	btrfs_mark_buffer_dirty(leaf);
4687 
4688 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4689 		btrfs_print_leaf(root, leaf);
4690 		BUG();
4691 	}
4692 }
4693 
4694 /*
4695  * this is a helper for btrfs_insert_empty_items, the main goal here is
4696  * to save stack depth by doing the bulk of the work in a function
4697  * that doesn't call btrfs_search_slot
4698  */
setup_items_for_insert(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * cpu_key,u32 * data_size,u32 total_data,u32 total_size,int nr)4699 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4700 			    struct btrfs_key *cpu_key, u32 *data_size,
4701 			    u32 total_data, u32 total_size, int nr)
4702 {
4703 	struct btrfs_item *item;
4704 	int i;
4705 	u32 nritems;
4706 	unsigned int data_end;
4707 	struct btrfs_disk_key disk_key;
4708 	struct extent_buffer *leaf;
4709 	int slot;
4710 	struct btrfs_map_token token;
4711 
4712 	if (path->slots[0] == 0) {
4713 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4714 		fixup_low_keys(root->fs_info, path, &disk_key, 1);
4715 	}
4716 	btrfs_unlock_up_safe(path, 1);
4717 
4718 	btrfs_init_map_token(&token);
4719 
4720 	leaf = path->nodes[0];
4721 	slot = path->slots[0];
4722 
4723 	nritems = btrfs_header_nritems(leaf);
4724 	data_end = leaf_data_end(root, leaf);
4725 
4726 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4727 		btrfs_print_leaf(root, leaf);
4728 		btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4729 		       total_size, btrfs_leaf_free_space(root, leaf));
4730 		BUG();
4731 	}
4732 
4733 	if (slot != nritems) {
4734 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4735 
4736 		if (old_data < data_end) {
4737 			btrfs_print_leaf(root, leaf);
4738 			btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4739 			       slot, old_data, data_end);
4740 			BUG_ON(1);
4741 		}
4742 		/*
4743 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4744 		 */
4745 		/* first correct the data pointers */
4746 		for (i = slot; i < nritems; i++) {
4747 			u32 ioff;
4748 
4749 			item = btrfs_item_nr( i);
4750 			ioff = btrfs_token_item_offset(leaf, item, &token);
4751 			btrfs_set_token_item_offset(leaf, item,
4752 						    ioff - total_data, &token);
4753 		}
4754 		/* shift the items */
4755 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4756 			      btrfs_item_nr_offset(slot),
4757 			      (nritems - slot) * sizeof(struct btrfs_item));
4758 
4759 		/* shift the data */
4760 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4761 			      data_end - total_data, btrfs_leaf_data(leaf) +
4762 			      data_end, old_data - data_end);
4763 		data_end = old_data;
4764 	}
4765 
4766 	/* setup the item for the new data */
4767 	for (i = 0; i < nr; i++) {
4768 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4769 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4770 		item = btrfs_item_nr(slot + i);
4771 		btrfs_set_token_item_offset(leaf, item,
4772 					    data_end - data_size[i], &token);
4773 		data_end -= data_size[i];
4774 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4775 	}
4776 
4777 	btrfs_set_header_nritems(leaf, nritems + nr);
4778 	btrfs_mark_buffer_dirty(leaf);
4779 
4780 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4781 		btrfs_print_leaf(root, leaf);
4782 		BUG();
4783 	}
4784 }
4785 
4786 /*
4787  * Given a key and some data, insert items into the tree.
4788  * This does all the path init required, making room in the tree if needed.
4789  */
btrfs_insert_empty_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * cpu_key,u32 * data_size,int nr)4790 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4791 			    struct btrfs_root *root,
4792 			    struct btrfs_path *path,
4793 			    struct btrfs_key *cpu_key, u32 *data_size,
4794 			    int nr)
4795 {
4796 	int ret = 0;
4797 	int slot;
4798 	int i;
4799 	u32 total_size = 0;
4800 	u32 total_data = 0;
4801 
4802 	for (i = 0; i < nr; i++)
4803 		total_data += data_size[i];
4804 
4805 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4806 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4807 	if (ret == 0)
4808 		return -EEXIST;
4809 	if (ret < 0)
4810 		return ret;
4811 
4812 	slot = path->slots[0];
4813 	BUG_ON(slot < 0);
4814 
4815 	setup_items_for_insert(root, path, cpu_key, data_size,
4816 			       total_data, total_size, nr);
4817 	return 0;
4818 }
4819 
4820 /*
4821  * Given a key and some data, insert an item into the tree.
4822  * This does all the path init required, making room in the tree if needed.
4823  */
btrfs_insert_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * cpu_key,void * data,u32 data_size)4824 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4825 		      *root, struct btrfs_key *cpu_key, void *data, u32
4826 		      data_size)
4827 {
4828 	int ret = 0;
4829 	struct btrfs_path *path;
4830 	struct extent_buffer *leaf;
4831 	unsigned long ptr;
4832 
4833 	path = btrfs_alloc_path();
4834 	if (!path)
4835 		return -ENOMEM;
4836 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4837 	if (!ret) {
4838 		leaf = path->nodes[0];
4839 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4840 		write_extent_buffer(leaf, data, ptr, data_size);
4841 		btrfs_mark_buffer_dirty(leaf);
4842 	}
4843 	btrfs_free_path(path);
4844 	return ret;
4845 }
4846 
4847 /*
4848  * delete the pointer from a given node.
4849  *
4850  * the tree should have been previously balanced so the deletion does not
4851  * empty a node.
4852  */
del_ptr(struct btrfs_root * root,struct btrfs_path * path,int level,int slot)4853 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4854 		    int level, int slot)
4855 {
4856 	struct extent_buffer *parent = path->nodes[level];
4857 	u32 nritems;
4858 	int ret;
4859 
4860 	nritems = btrfs_header_nritems(parent);
4861 	if (slot != nritems - 1) {
4862 		if (level)
4863 			tree_mod_log_eb_move(root->fs_info, parent, slot,
4864 					     slot + 1, nritems - slot - 1);
4865 		memmove_extent_buffer(parent,
4866 			      btrfs_node_key_ptr_offset(slot),
4867 			      btrfs_node_key_ptr_offset(slot + 1),
4868 			      sizeof(struct btrfs_key_ptr) *
4869 			      (nritems - slot - 1));
4870 	} else if (level) {
4871 		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4872 					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4873 		BUG_ON(ret < 0);
4874 	}
4875 
4876 	nritems--;
4877 	btrfs_set_header_nritems(parent, nritems);
4878 	if (nritems == 0 && parent == root->node) {
4879 		BUG_ON(btrfs_header_level(root->node) != 1);
4880 		/* just turn the root into a leaf and break */
4881 		btrfs_set_header_level(root->node, 0);
4882 	} else if (slot == 0) {
4883 		struct btrfs_disk_key disk_key;
4884 
4885 		btrfs_node_key(parent, &disk_key, 0);
4886 		fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4887 	}
4888 	btrfs_mark_buffer_dirty(parent);
4889 }
4890 
4891 /*
4892  * a helper function to delete the leaf pointed to by path->slots[1] and
4893  * path->nodes[1].
4894  *
4895  * This deletes the pointer in path->nodes[1] and frees the leaf
4896  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4897  *
4898  * The path must have already been setup for deleting the leaf, including
4899  * all the proper balancing.  path->nodes[1] must be locked.
4900  */
btrfs_del_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * leaf)4901 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4902 				    struct btrfs_root *root,
4903 				    struct btrfs_path *path,
4904 				    struct extent_buffer *leaf)
4905 {
4906 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4907 	del_ptr(root, path, 1, path->slots[1]);
4908 
4909 	/*
4910 	 * btrfs_free_extent is expensive, we want to make sure we
4911 	 * aren't holding any locks when we call it
4912 	 */
4913 	btrfs_unlock_up_safe(path, 0);
4914 
4915 	root_sub_used(root, leaf->len);
4916 
4917 	extent_buffer_get(leaf);
4918 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4919 	free_extent_buffer_stale(leaf);
4920 }
4921 /*
4922  * delete the item at the leaf level in path.  If that empties
4923  * the leaf, remove it from the tree
4924  */
btrfs_del_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int slot,int nr)4925 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4926 		    struct btrfs_path *path, int slot, int nr)
4927 {
4928 	struct extent_buffer *leaf;
4929 	struct btrfs_item *item;
4930 	u32 last_off;
4931 	u32 dsize = 0;
4932 	int ret = 0;
4933 	int wret;
4934 	int i;
4935 	u32 nritems;
4936 	struct btrfs_map_token token;
4937 
4938 	btrfs_init_map_token(&token);
4939 
4940 	leaf = path->nodes[0];
4941 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4942 
4943 	for (i = 0; i < nr; i++)
4944 		dsize += btrfs_item_size_nr(leaf, slot + i);
4945 
4946 	nritems = btrfs_header_nritems(leaf);
4947 
4948 	if (slot + nr != nritems) {
4949 		int data_end = leaf_data_end(root, leaf);
4950 
4951 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4952 			      data_end + dsize,
4953 			      btrfs_leaf_data(leaf) + data_end,
4954 			      last_off - data_end);
4955 
4956 		for (i = slot + nr; i < nritems; i++) {
4957 			u32 ioff;
4958 
4959 			item = btrfs_item_nr(i);
4960 			ioff = btrfs_token_item_offset(leaf, item, &token);
4961 			btrfs_set_token_item_offset(leaf, item,
4962 						    ioff + dsize, &token);
4963 		}
4964 
4965 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4966 			      btrfs_item_nr_offset(slot + nr),
4967 			      sizeof(struct btrfs_item) *
4968 			      (nritems - slot - nr));
4969 	}
4970 	btrfs_set_header_nritems(leaf, nritems - nr);
4971 	nritems -= nr;
4972 
4973 	/* delete the leaf if we've emptied it */
4974 	if (nritems == 0) {
4975 		if (leaf == root->node) {
4976 			btrfs_set_header_level(leaf, 0);
4977 		} else {
4978 			btrfs_set_path_blocking(path);
4979 			clean_tree_block(trans, root->fs_info, leaf);
4980 			btrfs_del_leaf(trans, root, path, leaf);
4981 		}
4982 	} else {
4983 		int used = leaf_space_used(leaf, 0, nritems);
4984 		if (slot == 0) {
4985 			struct btrfs_disk_key disk_key;
4986 
4987 			btrfs_item_key(leaf, &disk_key, 0);
4988 			fixup_low_keys(root->fs_info, path, &disk_key, 1);
4989 		}
4990 
4991 		/* delete the leaf if it is mostly empty */
4992 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4993 			/* push_leaf_left fixes the path.
4994 			 * make sure the path still points to our leaf
4995 			 * for possible call to del_ptr below
4996 			 */
4997 			slot = path->slots[1];
4998 			extent_buffer_get(leaf);
4999 
5000 			btrfs_set_path_blocking(path);
5001 			wret = push_leaf_left(trans, root, path, 1, 1,
5002 					      1, (u32)-1);
5003 			if (wret < 0 && wret != -ENOSPC)
5004 				ret = wret;
5005 
5006 			if (path->nodes[0] == leaf &&
5007 			    btrfs_header_nritems(leaf)) {
5008 				wret = push_leaf_right(trans, root, path, 1,
5009 						       1, 1, 0);
5010 				if (wret < 0 && wret != -ENOSPC)
5011 					ret = wret;
5012 			}
5013 
5014 			if (btrfs_header_nritems(leaf) == 0) {
5015 				path->slots[1] = slot;
5016 				btrfs_del_leaf(trans, root, path, leaf);
5017 				free_extent_buffer(leaf);
5018 				ret = 0;
5019 			} else {
5020 				/* if we're still in the path, make sure
5021 				 * we're dirty.  Otherwise, one of the
5022 				 * push_leaf functions must have already
5023 				 * dirtied this buffer
5024 				 */
5025 				if (path->nodes[0] == leaf)
5026 					btrfs_mark_buffer_dirty(leaf);
5027 				free_extent_buffer(leaf);
5028 			}
5029 		} else {
5030 			btrfs_mark_buffer_dirty(leaf);
5031 		}
5032 	}
5033 	return ret;
5034 }
5035 
5036 /*
5037  * search the tree again to find a leaf with lesser keys
5038  * returns 0 if it found something or 1 if there are no lesser leaves.
5039  * returns < 0 on io errors.
5040  *
5041  * This may release the path, and so you may lose any locks held at the
5042  * time you call it.
5043  */
btrfs_prev_leaf(struct btrfs_root * root,struct btrfs_path * path)5044 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5045 {
5046 	struct btrfs_key key;
5047 	struct btrfs_disk_key found_key;
5048 	int ret;
5049 
5050 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5051 
5052 	if (key.offset > 0) {
5053 		key.offset--;
5054 	} else if (key.type > 0) {
5055 		key.type--;
5056 		key.offset = (u64)-1;
5057 	} else if (key.objectid > 0) {
5058 		key.objectid--;
5059 		key.type = (u8)-1;
5060 		key.offset = (u64)-1;
5061 	} else {
5062 		return 1;
5063 	}
5064 
5065 	btrfs_release_path(path);
5066 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5067 	if (ret < 0)
5068 		return ret;
5069 	btrfs_item_key(path->nodes[0], &found_key, 0);
5070 	ret = comp_keys(&found_key, &key);
5071 	/*
5072 	 * We might have had an item with the previous key in the tree right
5073 	 * before we released our path. And after we released our path, that
5074 	 * item might have been pushed to the first slot (0) of the leaf we
5075 	 * were holding due to a tree balance. Alternatively, an item with the
5076 	 * previous key can exist as the only element of a leaf (big fat item).
5077 	 * Therefore account for these 2 cases, so that our callers (like
5078 	 * btrfs_previous_item) don't miss an existing item with a key matching
5079 	 * the previous key we computed above.
5080 	 */
5081 	if (ret <= 0)
5082 		return 0;
5083 	return 1;
5084 }
5085 
5086 /*
5087  * A helper function to walk down the tree starting at min_key, and looking
5088  * for nodes or leaves that are have a minimum transaction id.
5089  * This is used by the btree defrag code, and tree logging
5090  *
5091  * This does not cow, but it does stuff the starting key it finds back
5092  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5093  * key and get a writable path.
5094  *
5095  * This does lock as it descends, and path->keep_locks should be set
5096  * to 1 by the caller.
5097  *
5098  * This honors path->lowest_level to prevent descent past a given level
5099  * of the tree.
5100  *
5101  * min_trans indicates the oldest transaction that you are interested
5102  * in walking through.  Any nodes or leaves older than min_trans are
5103  * skipped over (without reading them).
5104  *
5105  * returns zero if something useful was found, < 0 on error and 1 if there
5106  * was nothing in the tree that matched the search criteria.
5107  */
btrfs_search_forward(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_path * path,u64 min_trans)5108 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5109 			 struct btrfs_path *path,
5110 			 u64 min_trans)
5111 {
5112 	struct extent_buffer *cur;
5113 	struct btrfs_key found_key;
5114 	int slot;
5115 	int sret;
5116 	u32 nritems;
5117 	int level;
5118 	int ret = 1;
5119 	int keep_locks = path->keep_locks;
5120 
5121 	path->keep_locks = 1;
5122 again:
5123 	cur = btrfs_read_lock_root_node(root);
5124 	level = btrfs_header_level(cur);
5125 	WARN_ON(path->nodes[level]);
5126 	path->nodes[level] = cur;
5127 	path->locks[level] = BTRFS_READ_LOCK;
5128 
5129 	if (btrfs_header_generation(cur) < min_trans) {
5130 		ret = 1;
5131 		goto out;
5132 	}
5133 	while (1) {
5134 		nritems = btrfs_header_nritems(cur);
5135 		level = btrfs_header_level(cur);
5136 		sret = bin_search(cur, min_key, level, &slot);
5137 
5138 		/* at the lowest level, we're done, setup the path and exit */
5139 		if (level == path->lowest_level) {
5140 			if (slot >= nritems)
5141 				goto find_next_key;
5142 			ret = 0;
5143 			path->slots[level] = slot;
5144 			btrfs_item_key_to_cpu(cur, &found_key, slot);
5145 			goto out;
5146 		}
5147 		if (sret && slot > 0)
5148 			slot--;
5149 		/*
5150 		 * check this node pointer against the min_trans parameters.
5151 		 * If it is too old, old, skip to the next one.
5152 		 */
5153 		while (slot < nritems) {
5154 			u64 gen;
5155 
5156 			gen = btrfs_node_ptr_generation(cur, slot);
5157 			if (gen < min_trans) {
5158 				slot++;
5159 				continue;
5160 			}
5161 			break;
5162 		}
5163 find_next_key:
5164 		/*
5165 		 * we didn't find a candidate key in this node, walk forward
5166 		 * and find another one
5167 		 */
5168 		if (slot >= nritems) {
5169 			path->slots[level] = slot;
5170 			btrfs_set_path_blocking(path);
5171 			sret = btrfs_find_next_key(root, path, min_key, level,
5172 						  min_trans);
5173 			if (sret == 0) {
5174 				btrfs_release_path(path);
5175 				goto again;
5176 			} else {
5177 				goto out;
5178 			}
5179 		}
5180 		/* save our key for returning back */
5181 		btrfs_node_key_to_cpu(cur, &found_key, slot);
5182 		path->slots[level] = slot;
5183 		if (level == path->lowest_level) {
5184 			ret = 0;
5185 			goto out;
5186 		}
5187 		btrfs_set_path_blocking(path);
5188 		cur = read_node_slot(root, cur, slot);
5189 		BUG_ON(!cur); /* -ENOMEM */
5190 
5191 		btrfs_tree_read_lock(cur);
5192 
5193 		path->locks[level - 1] = BTRFS_READ_LOCK;
5194 		path->nodes[level - 1] = cur;
5195 		unlock_up(path, level, 1, 0, NULL);
5196 		btrfs_clear_path_blocking(path, NULL, 0);
5197 	}
5198 out:
5199 	path->keep_locks = keep_locks;
5200 	if (ret == 0) {
5201 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5202 		btrfs_set_path_blocking(path);
5203 		memcpy(min_key, &found_key, sizeof(found_key));
5204 	}
5205 	return ret;
5206 }
5207 
tree_move_down(struct btrfs_root * root,struct btrfs_path * path,int * level,int root_level)5208 static void tree_move_down(struct btrfs_root *root,
5209 			   struct btrfs_path *path,
5210 			   int *level, int root_level)
5211 {
5212 	BUG_ON(*level == 0);
5213 	path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5214 					path->slots[*level]);
5215 	path->slots[*level - 1] = 0;
5216 	(*level)--;
5217 }
5218 
tree_move_next_or_upnext(struct btrfs_root * root,struct btrfs_path * path,int * level,int root_level)5219 static int tree_move_next_or_upnext(struct btrfs_root *root,
5220 				    struct btrfs_path *path,
5221 				    int *level, int root_level)
5222 {
5223 	int ret = 0;
5224 	int nritems;
5225 	nritems = btrfs_header_nritems(path->nodes[*level]);
5226 
5227 	path->slots[*level]++;
5228 
5229 	while (path->slots[*level] >= nritems) {
5230 		if (*level == root_level)
5231 			return -1;
5232 
5233 		/* move upnext */
5234 		path->slots[*level] = 0;
5235 		free_extent_buffer(path->nodes[*level]);
5236 		path->nodes[*level] = NULL;
5237 		(*level)++;
5238 		path->slots[*level]++;
5239 
5240 		nritems = btrfs_header_nritems(path->nodes[*level]);
5241 		ret = 1;
5242 	}
5243 	return ret;
5244 }
5245 
5246 /*
5247  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5248  * or down.
5249  */
tree_advance(struct btrfs_root * root,struct btrfs_path * path,int * level,int root_level,int allow_down,struct btrfs_key * key)5250 static int tree_advance(struct btrfs_root *root,
5251 			struct btrfs_path *path,
5252 			int *level, int root_level,
5253 			int allow_down,
5254 			struct btrfs_key *key)
5255 {
5256 	int ret;
5257 
5258 	if (*level == 0 || !allow_down) {
5259 		ret = tree_move_next_or_upnext(root, path, level, root_level);
5260 	} else {
5261 		tree_move_down(root, path, level, root_level);
5262 		ret = 0;
5263 	}
5264 	if (ret >= 0) {
5265 		if (*level == 0)
5266 			btrfs_item_key_to_cpu(path->nodes[*level], key,
5267 					path->slots[*level]);
5268 		else
5269 			btrfs_node_key_to_cpu(path->nodes[*level], key,
5270 					path->slots[*level]);
5271 	}
5272 	return ret;
5273 }
5274 
tree_compare_item(struct btrfs_root * left_root,struct btrfs_path * left_path,struct btrfs_path * right_path,char * tmp_buf)5275 static int tree_compare_item(struct btrfs_root *left_root,
5276 			     struct btrfs_path *left_path,
5277 			     struct btrfs_path *right_path,
5278 			     char *tmp_buf)
5279 {
5280 	int cmp;
5281 	int len1, len2;
5282 	unsigned long off1, off2;
5283 
5284 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5285 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5286 	if (len1 != len2)
5287 		return 1;
5288 
5289 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5290 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5291 				right_path->slots[0]);
5292 
5293 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5294 
5295 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5296 	if (cmp)
5297 		return 1;
5298 	return 0;
5299 }
5300 
5301 #define ADVANCE 1
5302 #define ADVANCE_ONLY_NEXT -1
5303 
5304 /*
5305  * This function compares two trees and calls the provided callback for
5306  * every changed/new/deleted item it finds.
5307  * If shared tree blocks are encountered, whole subtrees are skipped, making
5308  * the compare pretty fast on snapshotted subvolumes.
5309  *
5310  * This currently works on commit roots only. As commit roots are read only,
5311  * we don't do any locking. The commit roots are protected with transactions.
5312  * Transactions are ended and rejoined when a commit is tried in between.
5313  *
5314  * This function checks for modifications done to the trees while comparing.
5315  * If it detects a change, it aborts immediately.
5316  */
btrfs_compare_trees(struct btrfs_root * left_root,struct btrfs_root * right_root,btrfs_changed_cb_t changed_cb,void * ctx)5317 int btrfs_compare_trees(struct btrfs_root *left_root,
5318 			struct btrfs_root *right_root,
5319 			btrfs_changed_cb_t changed_cb, void *ctx)
5320 {
5321 	int ret;
5322 	int cmp;
5323 	struct btrfs_path *left_path = NULL;
5324 	struct btrfs_path *right_path = NULL;
5325 	struct btrfs_key left_key;
5326 	struct btrfs_key right_key;
5327 	char *tmp_buf = NULL;
5328 	int left_root_level;
5329 	int right_root_level;
5330 	int left_level;
5331 	int right_level;
5332 	int left_end_reached;
5333 	int right_end_reached;
5334 	int advance_left;
5335 	int advance_right;
5336 	u64 left_blockptr;
5337 	u64 right_blockptr;
5338 	u64 left_gen;
5339 	u64 right_gen;
5340 
5341 	left_path = btrfs_alloc_path();
5342 	if (!left_path) {
5343 		ret = -ENOMEM;
5344 		goto out;
5345 	}
5346 	right_path = btrfs_alloc_path();
5347 	if (!right_path) {
5348 		ret = -ENOMEM;
5349 		goto out;
5350 	}
5351 
5352 	tmp_buf = kmalloc(left_root->nodesize, GFP_NOFS);
5353 	if (!tmp_buf) {
5354 		ret = -ENOMEM;
5355 		goto out;
5356 	}
5357 
5358 	left_path->search_commit_root = 1;
5359 	left_path->skip_locking = 1;
5360 	right_path->search_commit_root = 1;
5361 	right_path->skip_locking = 1;
5362 
5363 	/*
5364 	 * Strategy: Go to the first items of both trees. Then do
5365 	 *
5366 	 * If both trees are at level 0
5367 	 *   Compare keys of current items
5368 	 *     If left < right treat left item as new, advance left tree
5369 	 *       and repeat
5370 	 *     If left > right treat right item as deleted, advance right tree
5371 	 *       and repeat
5372 	 *     If left == right do deep compare of items, treat as changed if
5373 	 *       needed, advance both trees and repeat
5374 	 * If both trees are at the same level but not at level 0
5375 	 *   Compare keys of current nodes/leafs
5376 	 *     If left < right advance left tree and repeat
5377 	 *     If left > right advance right tree and repeat
5378 	 *     If left == right compare blockptrs of the next nodes/leafs
5379 	 *       If they match advance both trees but stay at the same level
5380 	 *         and repeat
5381 	 *       If they don't match advance both trees while allowing to go
5382 	 *         deeper and repeat
5383 	 * If tree levels are different
5384 	 *   Advance the tree that needs it and repeat
5385 	 *
5386 	 * Advancing a tree means:
5387 	 *   If we are at level 0, try to go to the next slot. If that's not
5388 	 *   possible, go one level up and repeat. Stop when we found a level
5389 	 *   where we could go to the next slot. We may at this point be on a
5390 	 *   node or a leaf.
5391 	 *
5392 	 *   If we are not at level 0 and not on shared tree blocks, go one
5393 	 *   level deeper.
5394 	 *
5395 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5396 	 *   the right if possible or go up and right.
5397 	 */
5398 
5399 	down_read(&left_root->fs_info->commit_root_sem);
5400 	left_level = btrfs_header_level(left_root->commit_root);
5401 	left_root_level = left_level;
5402 	left_path->nodes[left_level] = left_root->commit_root;
5403 	extent_buffer_get(left_path->nodes[left_level]);
5404 
5405 	right_level = btrfs_header_level(right_root->commit_root);
5406 	right_root_level = right_level;
5407 	right_path->nodes[right_level] = right_root->commit_root;
5408 	extent_buffer_get(right_path->nodes[right_level]);
5409 	up_read(&left_root->fs_info->commit_root_sem);
5410 
5411 	if (left_level == 0)
5412 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5413 				&left_key, left_path->slots[left_level]);
5414 	else
5415 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5416 				&left_key, left_path->slots[left_level]);
5417 	if (right_level == 0)
5418 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5419 				&right_key, right_path->slots[right_level]);
5420 	else
5421 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5422 				&right_key, right_path->slots[right_level]);
5423 
5424 	left_end_reached = right_end_reached = 0;
5425 	advance_left = advance_right = 0;
5426 
5427 	while (1) {
5428 		cond_resched();
5429 		if (advance_left && !left_end_reached) {
5430 			ret = tree_advance(left_root, left_path, &left_level,
5431 					left_root_level,
5432 					advance_left != ADVANCE_ONLY_NEXT,
5433 					&left_key);
5434 			if (ret < 0)
5435 				left_end_reached = ADVANCE;
5436 			advance_left = 0;
5437 		}
5438 		if (advance_right && !right_end_reached) {
5439 			ret = tree_advance(right_root, right_path, &right_level,
5440 					right_root_level,
5441 					advance_right != ADVANCE_ONLY_NEXT,
5442 					&right_key);
5443 			if (ret < 0)
5444 				right_end_reached = ADVANCE;
5445 			advance_right = 0;
5446 		}
5447 
5448 		if (left_end_reached && right_end_reached) {
5449 			ret = 0;
5450 			goto out;
5451 		} else if (left_end_reached) {
5452 			if (right_level == 0) {
5453 				ret = changed_cb(left_root, right_root,
5454 						left_path, right_path,
5455 						&right_key,
5456 						BTRFS_COMPARE_TREE_DELETED,
5457 						ctx);
5458 				if (ret < 0)
5459 					goto out;
5460 			}
5461 			advance_right = ADVANCE;
5462 			continue;
5463 		} else if (right_end_reached) {
5464 			if (left_level == 0) {
5465 				ret = changed_cb(left_root, right_root,
5466 						left_path, right_path,
5467 						&left_key,
5468 						BTRFS_COMPARE_TREE_NEW,
5469 						ctx);
5470 				if (ret < 0)
5471 					goto out;
5472 			}
5473 			advance_left = ADVANCE;
5474 			continue;
5475 		}
5476 
5477 		if (left_level == 0 && right_level == 0) {
5478 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5479 			if (cmp < 0) {
5480 				ret = changed_cb(left_root, right_root,
5481 						left_path, right_path,
5482 						&left_key,
5483 						BTRFS_COMPARE_TREE_NEW,
5484 						ctx);
5485 				if (ret < 0)
5486 					goto out;
5487 				advance_left = ADVANCE;
5488 			} else if (cmp > 0) {
5489 				ret = changed_cb(left_root, right_root,
5490 						left_path, right_path,
5491 						&right_key,
5492 						BTRFS_COMPARE_TREE_DELETED,
5493 						ctx);
5494 				if (ret < 0)
5495 					goto out;
5496 				advance_right = ADVANCE;
5497 			} else {
5498 				enum btrfs_compare_tree_result result;
5499 
5500 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5501 				ret = tree_compare_item(left_root, left_path,
5502 						right_path, tmp_buf);
5503 				if (ret)
5504 					result = BTRFS_COMPARE_TREE_CHANGED;
5505 				else
5506 					result = BTRFS_COMPARE_TREE_SAME;
5507 				ret = changed_cb(left_root, right_root,
5508 						 left_path, right_path,
5509 						 &left_key, result, ctx);
5510 				if (ret < 0)
5511 					goto out;
5512 				advance_left = ADVANCE;
5513 				advance_right = ADVANCE;
5514 			}
5515 		} else if (left_level == right_level) {
5516 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5517 			if (cmp < 0) {
5518 				advance_left = ADVANCE;
5519 			} else if (cmp > 0) {
5520 				advance_right = ADVANCE;
5521 			} else {
5522 				left_blockptr = btrfs_node_blockptr(
5523 						left_path->nodes[left_level],
5524 						left_path->slots[left_level]);
5525 				right_blockptr = btrfs_node_blockptr(
5526 						right_path->nodes[right_level],
5527 						right_path->slots[right_level]);
5528 				left_gen = btrfs_node_ptr_generation(
5529 						left_path->nodes[left_level],
5530 						left_path->slots[left_level]);
5531 				right_gen = btrfs_node_ptr_generation(
5532 						right_path->nodes[right_level],
5533 						right_path->slots[right_level]);
5534 				if (left_blockptr == right_blockptr &&
5535 				    left_gen == right_gen) {
5536 					/*
5537 					 * As we're on a shared block, don't
5538 					 * allow to go deeper.
5539 					 */
5540 					advance_left = ADVANCE_ONLY_NEXT;
5541 					advance_right = ADVANCE_ONLY_NEXT;
5542 				} else {
5543 					advance_left = ADVANCE;
5544 					advance_right = ADVANCE;
5545 				}
5546 			}
5547 		} else if (left_level < right_level) {
5548 			advance_right = ADVANCE;
5549 		} else {
5550 			advance_left = ADVANCE;
5551 		}
5552 	}
5553 
5554 out:
5555 	btrfs_free_path(left_path);
5556 	btrfs_free_path(right_path);
5557 	kfree(tmp_buf);
5558 	return ret;
5559 }
5560 
5561 /*
5562  * this is similar to btrfs_next_leaf, but does not try to preserve
5563  * and fixup the path.  It looks for and returns the next key in the
5564  * tree based on the current path and the min_trans parameters.
5565  *
5566  * 0 is returned if another key is found, < 0 if there are any errors
5567  * and 1 is returned if there are no higher keys in the tree
5568  *
5569  * path->keep_locks should be set to 1 on the search made before
5570  * calling this function.
5571  */
btrfs_find_next_key(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,int level,u64 min_trans)5572 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5573 			struct btrfs_key *key, int level, u64 min_trans)
5574 {
5575 	int slot;
5576 	struct extent_buffer *c;
5577 
5578 	WARN_ON(!path->keep_locks);
5579 	while (level < BTRFS_MAX_LEVEL) {
5580 		if (!path->nodes[level])
5581 			return 1;
5582 
5583 		slot = path->slots[level] + 1;
5584 		c = path->nodes[level];
5585 next:
5586 		if (slot >= btrfs_header_nritems(c)) {
5587 			int ret;
5588 			int orig_lowest;
5589 			struct btrfs_key cur_key;
5590 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5591 			    !path->nodes[level + 1])
5592 				return 1;
5593 
5594 			if (path->locks[level + 1]) {
5595 				level++;
5596 				continue;
5597 			}
5598 
5599 			slot = btrfs_header_nritems(c) - 1;
5600 			if (level == 0)
5601 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5602 			else
5603 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5604 
5605 			orig_lowest = path->lowest_level;
5606 			btrfs_release_path(path);
5607 			path->lowest_level = level;
5608 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5609 						0, 0);
5610 			path->lowest_level = orig_lowest;
5611 			if (ret < 0)
5612 				return ret;
5613 
5614 			c = path->nodes[level];
5615 			slot = path->slots[level];
5616 			if (ret == 0)
5617 				slot++;
5618 			goto next;
5619 		}
5620 
5621 		if (level == 0)
5622 			btrfs_item_key_to_cpu(c, key, slot);
5623 		else {
5624 			u64 gen = btrfs_node_ptr_generation(c, slot);
5625 
5626 			if (gen < min_trans) {
5627 				slot++;
5628 				goto next;
5629 			}
5630 			btrfs_node_key_to_cpu(c, key, slot);
5631 		}
5632 		return 0;
5633 	}
5634 	return 1;
5635 }
5636 
5637 /*
5638  * search the tree again to find a leaf with greater keys
5639  * returns 0 if it found something or 1 if there are no greater leaves.
5640  * returns < 0 on io errors.
5641  */
btrfs_next_leaf(struct btrfs_root * root,struct btrfs_path * path)5642 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5643 {
5644 	return btrfs_next_old_leaf(root, path, 0);
5645 }
5646 
btrfs_next_old_leaf(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)5647 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5648 			u64 time_seq)
5649 {
5650 	int slot;
5651 	int level;
5652 	struct extent_buffer *c;
5653 	struct extent_buffer *next;
5654 	struct btrfs_key key;
5655 	u32 nritems;
5656 	int ret;
5657 	int old_spinning = path->leave_spinning;
5658 	int next_rw_lock = 0;
5659 
5660 	nritems = btrfs_header_nritems(path->nodes[0]);
5661 	if (nritems == 0)
5662 		return 1;
5663 
5664 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5665 again:
5666 	level = 1;
5667 	next = NULL;
5668 	next_rw_lock = 0;
5669 	btrfs_release_path(path);
5670 
5671 	path->keep_locks = 1;
5672 	path->leave_spinning = 1;
5673 
5674 	if (time_seq)
5675 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5676 	else
5677 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5678 	path->keep_locks = 0;
5679 
5680 	if (ret < 0)
5681 		return ret;
5682 
5683 	nritems = btrfs_header_nritems(path->nodes[0]);
5684 	/*
5685 	 * by releasing the path above we dropped all our locks.  A balance
5686 	 * could have added more items next to the key that used to be
5687 	 * at the very end of the block.  So, check again here and
5688 	 * advance the path if there are now more items available.
5689 	 */
5690 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5691 		if (ret == 0)
5692 			path->slots[0]++;
5693 		ret = 0;
5694 		goto done;
5695 	}
5696 	/*
5697 	 * So the above check misses one case:
5698 	 * - after releasing the path above, someone has removed the item that
5699 	 *   used to be at the very end of the block, and balance between leafs
5700 	 *   gets another one with bigger key.offset to replace it.
5701 	 *
5702 	 * This one should be returned as well, or we can get leaf corruption
5703 	 * later(esp. in __btrfs_drop_extents()).
5704 	 *
5705 	 * And a bit more explanation about this check,
5706 	 * with ret > 0, the key isn't found, the path points to the slot
5707 	 * where it should be inserted, so the path->slots[0] item must be the
5708 	 * bigger one.
5709 	 */
5710 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5711 		ret = 0;
5712 		goto done;
5713 	}
5714 
5715 	while (level < BTRFS_MAX_LEVEL) {
5716 		if (!path->nodes[level]) {
5717 			ret = 1;
5718 			goto done;
5719 		}
5720 
5721 		slot = path->slots[level] + 1;
5722 		c = path->nodes[level];
5723 		if (slot >= btrfs_header_nritems(c)) {
5724 			level++;
5725 			if (level == BTRFS_MAX_LEVEL) {
5726 				ret = 1;
5727 				goto done;
5728 			}
5729 			continue;
5730 		}
5731 
5732 		if (next) {
5733 			btrfs_tree_unlock_rw(next, next_rw_lock);
5734 			free_extent_buffer(next);
5735 		}
5736 
5737 		next = c;
5738 		next_rw_lock = path->locks[level];
5739 		ret = read_block_for_search(NULL, root, path, &next, level,
5740 					    slot, &key, 0);
5741 		if (ret == -EAGAIN)
5742 			goto again;
5743 
5744 		if (ret < 0) {
5745 			btrfs_release_path(path);
5746 			goto done;
5747 		}
5748 
5749 		if (!path->skip_locking) {
5750 			ret = btrfs_try_tree_read_lock(next);
5751 			if (!ret && time_seq) {
5752 				/*
5753 				 * If we don't get the lock, we may be racing
5754 				 * with push_leaf_left, holding that lock while
5755 				 * itself waiting for the leaf we've currently
5756 				 * locked. To solve this situation, we give up
5757 				 * on our lock and cycle.
5758 				 */
5759 				free_extent_buffer(next);
5760 				btrfs_release_path(path);
5761 				cond_resched();
5762 				goto again;
5763 			}
5764 			if (!ret) {
5765 				btrfs_set_path_blocking(path);
5766 				btrfs_tree_read_lock(next);
5767 				btrfs_clear_path_blocking(path, next,
5768 							  BTRFS_READ_LOCK);
5769 			}
5770 			next_rw_lock = BTRFS_READ_LOCK;
5771 		}
5772 		break;
5773 	}
5774 	path->slots[level] = slot;
5775 	while (1) {
5776 		level--;
5777 		c = path->nodes[level];
5778 		if (path->locks[level])
5779 			btrfs_tree_unlock_rw(c, path->locks[level]);
5780 
5781 		free_extent_buffer(c);
5782 		path->nodes[level] = next;
5783 		path->slots[level] = 0;
5784 		if (!path->skip_locking)
5785 			path->locks[level] = next_rw_lock;
5786 		if (!level)
5787 			break;
5788 
5789 		ret = read_block_for_search(NULL, root, path, &next, level,
5790 					    0, &key, 0);
5791 		if (ret == -EAGAIN)
5792 			goto again;
5793 
5794 		if (ret < 0) {
5795 			btrfs_release_path(path);
5796 			goto done;
5797 		}
5798 
5799 		if (!path->skip_locking) {
5800 			ret = btrfs_try_tree_read_lock(next);
5801 			if (!ret) {
5802 				btrfs_set_path_blocking(path);
5803 				btrfs_tree_read_lock(next);
5804 				btrfs_clear_path_blocking(path, next,
5805 							  BTRFS_READ_LOCK);
5806 			}
5807 			next_rw_lock = BTRFS_READ_LOCK;
5808 		}
5809 	}
5810 	ret = 0;
5811 done:
5812 	unlock_up(path, 0, 1, 0, NULL);
5813 	path->leave_spinning = old_spinning;
5814 	if (!old_spinning)
5815 		btrfs_set_path_blocking(path);
5816 
5817 	return ret;
5818 }
5819 
5820 /*
5821  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5822  * searching until it gets past min_objectid or finds an item of 'type'
5823  *
5824  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5825  */
btrfs_previous_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid,int type)5826 int btrfs_previous_item(struct btrfs_root *root,
5827 			struct btrfs_path *path, u64 min_objectid,
5828 			int type)
5829 {
5830 	struct btrfs_key found_key;
5831 	struct extent_buffer *leaf;
5832 	u32 nritems;
5833 	int ret;
5834 
5835 	while (1) {
5836 		if (path->slots[0] == 0) {
5837 			btrfs_set_path_blocking(path);
5838 			ret = btrfs_prev_leaf(root, path);
5839 			if (ret != 0)
5840 				return ret;
5841 		} else {
5842 			path->slots[0]--;
5843 		}
5844 		leaf = path->nodes[0];
5845 		nritems = btrfs_header_nritems(leaf);
5846 		if (nritems == 0)
5847 			return 1;
5848 		if (path->slots[0] == nritems)
5849 			path->slots[0]--;
5850 
5851 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5852 		if (found_key.objectid < min_objectid)
5853 			break;
5854 		if (found_key.type == type)
5855 			return 0;
5856 		if (found_key.objectid == min_objectid &&
5857 		    found_key.type < type)
5858 			break;
5859 	}
5860 	return 1;
5861 }
5862 
5863 /*
5864  * search in extent tree to find a previous Metadata/Data extent item with
5865  * min objecitd.
5866  *
5867  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5868  */
btrfs_previous_extent_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid)5869 int btrfs_previous_extent_item(struct btrfs_root *root,
5870 			struct btrfs_path *path, u64 min_objectid)
5871 {
5872 	struct btrfs_key found_key;
5873 	struct extent_buffer *leaf;
5874 	u32 nritems;
5875 	int ret;
5876 
5877 	while (1) {
5878 		if (path->slots[0] == 0) {
5879 			btrfs_set_path_blocking(path);
5880 			ret = btrfs_prev_leaf(root, path);
5881 			if (ret != 0)
5882 				return ret;
5883 		} else {
5884 			path->slots[0]--;
5885 		}
5886 		leaf = path->nodes[0];
5887 		nritems = btrfs_header_nritems(leaf);
5888 		if (nritems == 0)
5889 			return 1;
5890 		if (path->slots[0] == nritems)
5891 			path->slots[0]--;
5892 
5893 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5894 		if (found_key.objectid < min_objectid)
5895 			break;
5896 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5897 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5898 			return 0;
5899 		if (found_key.objectid == min_objectid &&
5900 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5901 			break;
5902 	}
5903 	return 1;
5904 }
5905