1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "tree-log.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "hash.h"
29 #include "inode-map.h"
30
31 /* magic values for the inode_only field in btrfs_log_inode:
32 *
33 * LOG_INODE_ALL means to log everything
34 * LOG_INODE_EXISTS means to log just enough to recreate the inode
35 * during log replay
36 */
37 #define LOG_INODE_ALL 0
38 #define LOG_INODE_EXISTS 1
39
40 /*
41 * directory trouble cases
42 *
43 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
44 * log, we must force a full commit before doing an fsync of the directory
45 * where the unlink was done.
46 * ---> record transid of last unlink/rename per directory
47 *
48 * mkdir foo/some_dir
49 * normal commit
50 * rename foo/some_dir foo2/some_dir
51 * mkdir foo/some_dir
52 * fsync foo/some_dir/some_file
53 *
54 * The fsync above will unlink the original some_dir without recording
55 * it in its new location (foo2). After a crash, some_dir will be gone
56 * unless the fsync of some_file forces a full commit
57 *
58 * 2) we must log any new names for any file or dir that is in the fsync
59 * log. ---> check inode while renaming/linking.
60 *
61 * 2a) we must log any new names for any file or dir during rename
62 * when the directory they are being removed from was logged.
63 * ---> check inode and old parent dir during rename
64 *
65 * 2a is actually the more important variant. With the extra logging
66 * a crash might unlink the old name without recreating the new one
67 *
68 * 3) after a crash, we must go through any directories with a link count
69 * of zero and redo the rm -rf
70 *
71 * mkdir f1/foo
72 * normal commit
73 * rm -rf f1/foo
74 * fsync(f1)
75 *
76 * The directory f1 was fully removed from the FS, but fsync was never
77 * called on f1, only its parent dir. After a crash the rm -rf must
78 * be replayed. This must be able to recurse down the entire
79 * directory tree. The inode link count fixup code takes care of the
80 * ugly details.
81 */
82
83 /*
84 * stages for the tree walking. The first
85 * stage (0) is to only pin down the blocks we find
86 * the second stage (1) is to make sure that all the inodes
87 * we find in the log are created in the subvolume.
88 *
89 * The last stage is to deal with directories and links and extents
90 * and all the other fun semantics
91 */
92 #define LOG_WALK_PIN_ONLY 0
93 #define LOG_WALK_REPLAY_INODES 1
94 #define LOG_WALK_REPLAY_DIR_INDEX 2
95 #define LOG_WALK_REPLAY_ALL 3
96
97 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode,
99 int inode_only,
100 const loff_t start,
101 const loff_t end,
102 struct btrfs_log_ctx *ctx);
103 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_path *path, u64 objectid);
106 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
107 struct btrfs_root *root,
108 struct btrfs_root *log,
109 struct btrfs_path *path,
110 u64 dirid, int del_all);
111
112 /*
113 * tree logging is a special write ahead log used to make sure that
114 * fsyncs and O_SYNCs can happen without doing full tree commits.
115 *
116 * Full tree commits are expensive because they require commonly
117 * modified blocks to be recowed, creating many dirty pages in the
118 * extent tree an 4x-6x higher write load than ext3.
119 *
120 * Instead of doing a tree commit on every fsync, we use the
121 * key ranges and transaction ids to find items for a given file or directory
122 * that have changed in this transaction. Those items are copied into
123 * a special tree (one per subvolume root), that tree is written to disk
124 * and then the fsync is considered complete.
125 *
126 * After a crash, items are copied out of the log-tree back into the
127 * subvolume tree. Any file data extents found are recorded in the extent
128 * allocation tree, and the log-tree freed.
129 *
130 * The log tree is read three times, once to pin down all the extents it is
131 * using in ram and once, once to create all the inodes logged in the tree
132 * and once to do all the other items.
133 */
134
135 /*
136 * start a sub transaction and setup the log tree
137 * this increments the log tree writer count to make the people
138 * syncing the tree wait for us to finish
139 */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)140 static int start_log_trans(struct btrfs_trans_handle *trans,
141 struct btrfs_root *root,
142 struct btrfs_log_ctx *ctx)
143 {
144 int ret = 0;
145
146 mutex_lock(&root->log_mutex);
147
148 if (root->log_root) {
149 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
150 ret = -EAGAIN;
151 goto out;
152 }
153
154 if (!root->log_start_pid) {
155 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
156 root->log_start_pid = current->pid;
157 } else if (root->log_start_pid != current->pid) {
158 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
159 }
160 } else {
161 mutex_lock(&root->fs_info->tree_log_mutex);
162 if (!root->fs_info->log_root_tree)
163 ret = btrfs_init_log_root_tree(trans, root->fs_info);
164 mutex_unlock(&root->fs_info->tree_log_mutex);
165 if (ret)
166 goto out;
167
168 ret = btrfs_add_log_tree(trans, root);
169 if (ret)
170 goto out;
171
172 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
173 root->log_start_pid = current->pid;
174 }
175
176 atomic_inc(&root->log_batch);
177 atomic_inc(&root->log_writers);
178 if (ctx) {
179 int index = root->log_transid % 2;
180 list_add_tail(&ctx->list, &root->log_ctxs[index]);
181 ctx->log_transid = root->log_transid;
182 }
183
184 out:
185 mutex_unlock(&root->log_mutex);
186 return ret;
187 }
188
189 /*
190 * returns 0 if there was a log transaction running and we were able
191 * to join, or returns -ENOENT if there were not transactions
192 * in progress
193 */
join_running_log_trans(struct btrfs_root * root)194 static int join_running_log_trans(struct btrfs_root *root)
195 {
196 int ret = -ENOENT;
197
198 smp_mb();
199 if (!root->log_root)
200 return -ENOENT;
201
202 mutex_lock(&root->log_mutex);
203 if (root->log_root) {
204 ret = 0;
205 atomic_inc(&root->log_writers);
206 }
207 mutex_unlock(&root->log_mutex);
208 return ret;
209 }
210
211 /*
212 * This either makes the current running log transaction wait
213 * until you call btrfs_end_log_trans() or it makes any future
214 * log transactions wait until you call btrfs_end_log_trans()
215 */
btrfs_pin_log_trans(struct btrfs_root * root)216 int btrfs_pin_log_trans(struct btrfs_root *root)
217 {
218 int ret = -ENOENT;
219
220 mutex_lock(&root->log_mutex);
221 atomic_inc(&root->log_writers);
222 mutex_unlock(&root->log_mutex);
223 return ret;
224 }
225
226 /*
227 * indicate we're done making changes to the log tree
228 * and wake up anyone waiting to do a sync
229 */
btrfs_end_log_trans(struct btrfs_root * root)230 void btrfs_end_log_trans(struct btrfs_root *root)
231 {
232 if (atomic_dec_and_test(&root->log_writers)) {
233 /*
234 * Implicit memory barrier after atomic_dec_and_test
235 */
236 if (waitqueue_active(&root->log_writer_wait))
237 wake_up(&root->log_writer_wait);
238 }
239 }
240
241
242 /*
243 * the walk control struct is used to pass state down the chain when
244 * processing the log tree. The stage field tells us which part
245 * of the log tree processing we are currently doing. The others
246 * are state fields used for that specific part
247 */
248 struct walk_control {
249 /* should we free the extent on disk when done? This is used
250 * at transaction commit time while freeing a log tree
251 */
252 int free;
253
254 /* should we write out the extent buffer? This is used
255 * while flushing the log tree to disk during a sync
256 */
257 int write;
258
259 /* should we wait for the extent buffer io to finish? Also used
260 * while flushing the log tree to disk for a sync
261 */
262 int wait;
263
264 /* pin only walk, we record which extents on disk belong to the
265 * log trees
266 */
267 int pin;
268
269 /* what stage of the replay code we're currently in */
270 int stage;
271
272 /* the root we are currently replaying */
273 struct btrfs_root *replay_dest;
274
275 /* the trans handle for the current replay */
276 struct btrfs_trans_handle *trans;
277
278 /* the function that gets used to process blocks we find in the
279 * tree. Note the extent_buffer might not be up to date when it is
280 * passed in, and it must be checked or read if you need the data
281 * inside it
282 */
283 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
284 struct walk_control *wc, u64 gen);
285 };
286
287 /*
288 * process_func used to pin down extents, write them or wait on them
289 */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen)290 static int process_one_buffer(struct btrfs_root *log,
291 struct extent_buffer *eb,
292 struct walk_control *wc, u64 gen)
293 {
294 int ret = 0;
295
296 /*
297 * If this fs is mixed then we need to be able to process the leaves to
298 * pin down any logged extents, so we have to read the block.
299 */
300 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
301 ret = btrfs_read_buffer(eb, gen);
302 if (ret)
303 return ret;
304 }
305
306 if (wc->pin)
307 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
308 eb->start, eb->len);
309
310 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
311 if (wc->pin && btrfs_header_level(eb) == 0)
312 ret = btrfs_exclude_logged_extents(log, eb);
313 if (wc->write)
314 btrfs_write_tree_block(eb);
315 if (wc->wait)
316 btrfs_wait_tree_block_writeback(eb);
317 }
318 return ret;
319 }
320
321 /*
322 * Item overwrite used by replay and tree logging. eb, slot and key all refer
323 * to the src data we are copying out.
324 *
325 * root is the tree we are copying into, and path is a scratch
326 * path for use in this function (it should be released on entry and
327 * will be released on exit).
328 *
329 * If the key is already in the destination tree the existing item is
330 * overwritten. If the existing item isn't big enough, it is extended.
331 * If it is too large, it is truncated.
332 *
333 * If the key isn't in the destination yet, a new item is inserted.
334 */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)335 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
336 struct btrfs_root *root,
337 struct btrfs_path *path,
338 struct extent_buffer *eb, int slot,
339 struct btrfs_key *key)
340 {
341 int ret;
342 u32 item_size;
343 u64 saved_i_size = 0;
344 int save_old_i_size = 0;
345 unsigned long src_ptr;
346 unsigned long dst_ptr;
347 int overwrite_root = 0;
348 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
349
350 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
351 overwrite_root = 1;
352
353 item_size = btrfs_item_size_nr(eb, slot);
354 src_ptr = btrfs_item_ptr_offset(eb, slot);
355
356 /* look for the key in the destination tree */
357 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
358 if (ret < 0)
359 return ret;
360
361 if (ret == 0) {
362 char *src_copy;
363 char *dst_copy;
364 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
365 path->slots[0]);
366 if (dst_size != item_size)
367 goto insert;
368
369 if (item_size == 0) {
370 btrfs_release_path(path);
371 return 0;
372 }
373 dst_copy = kmalloc(item_size, GFP_NOFS);
374 src_copy = kmalloc(item_size, GFP_NOFS);
375 if (!dst_copy || !src_copy) {
376 btrfs_release_path(path);
377 kfree(dst_copy);
378 kfree(src_copy);
379 return -ENOMEM;
380 }
381
382 read_extent_buffer(eb, src_copy, src_ptr, item_size);
383
384 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
385 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
386 item_size);
387 ret = memcmp(dst_copy, src_copy, item_size);
388
389 kfree(dst_copy);
390 kfree(src_copy);
391 /*
392 * they have the same contents, just return, this saves
393 * us from cowing blocks in the destination tree and doing
394 * extra writes that may not have been done by a previous
395 * sync
396 */
397 if (ret == 0) {
398 btrfs_release_path(path);
399 return 0;
400 }
401
402 /*
403 * We need to load the old nbytes into the inode so when we
404 * replay the extents we've logged we get the right nbytes.
405 */
406 if (inode_item) {
407 struct btrfs_inode_item *item;
408 u64 nbytes;
409 u32 mode;
410
411 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
412 struct btrfs_inode_item);
413 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
414 item = btrfs_item_ptr(eb, slot,
415 struct btrfs_inode_item);
416 btrfs_set_inode_nbytes(eb, item, nbytes);
417
418 /*
419 * If this is a directory we need to reset the i_size to
420 * 0 so that we can set it up properly when replaying
421 * the rest of the items in this log.
422 */
423 mode = btrfs_inode_mode(eb, item);
424 if (S_ISDIR(mode))
425 btrfs_set_inode_size(eb, item, 0);
426 }
427 } else if (inode_item) {
428 struct btrfs_inode_item *item;
429 u32 mode;
430
431 /*
432 * New inode, set nbytes to 0 so that the nbytes comes out
433 * properly when we replay the extents.
434 */
435 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
436 btrfs_set_inode_nbytes(eb, item, 0);
437
438 /*
439 * If this is a directory we need to reset the i_size to 0 so
440 * that we can set it up properly when replaying the rest of
441 * the items in this log.
442 */
443 mode = btrfs_inode_mode(eb, item);
444 if (S_ISDIR(mode))
445 btrfs_set_inode_size(eb, item, 0);
446 }
447 insert:
448 btrfs_release_path(path);
449 /* try to insert the key into the destination tree */
450 path->skip_release_on_error = 1;
451 ret = btrfs_insert_empty_item(trans, root, path,
452 key, item_size);
453 path->skip_release_on_error = 0;
454
455 /* make sure any existing item is the correct size */
456 if (ret == -EEXIST || ret == -EOVERFLOW) {
457 u32 found_size;
458 found_size = btrfs_item_size_nr(path->nodes[0],
459 path->slots[0]);
460 if (found_size > item_size)
461 btrfs_truncate_item(root, path, item_size, 1);
462 else if (found_size < item_size)
463 btrfs_extend_item(root, path,
464 item_size - found_size);
465 } else if (ret) {
466 return ret;
467 }
468 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
469 path->slots[0]);
470
471 /* don't overwrite an existing inode if the generation number
472 * was logged as zero. This is done when the tree logging code
473 * is just logging an inode to make sure it exists after recovery.
474 *
475 * Also, don't overwrite i_size on directories during replay.
476 * log replay inserts and removes directory items based on the
477 * state of the tree found in the subvolume, and i_size is modified
478 * as it goes
479 */
480 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
481 struct btrfs_inode_item *src_item;
482 struct btrfs_inode_item *dst_item;
483
484 src_item = (struct btrfs_inode_item *)src_ptr;
485 dst_item = (struct btrfs_inode_item *)dst_ptr;
486
487 if (btrfs_inode_generation(eb, src_item) == 0) {
488 struct extent_buffer *dst_eb = path->nodes[0];
489 const u64 ino_size = btrfs_inode_size(eb, src_item);
490
491 /*
492 * For regular files an ino_size == 0 is used only when
493 * logging that an inode exists, as part of a directory
494 * fsync, and the inode wasn't fsynced before. In this
495 * case don't set the size of the inode in the fs/subvol
496 * tree, otherwise we would be throwing valid data away.
497 */
498 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
499 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
500 ino_size != 0) {
501 struct btrfs_map_token token;
502
503 btrfs_init_map_token(&token);
504 btrfs_set_token_inode_size(dst_eb, dst_item,
505 ino_size, &token);
506 }
507 goto no_copy;
508 }
509
510 if (overwrite_root &&
511 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
512 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
513 save_old_i_size = 1;
514 saved_i_size = btrfs_inode_size(path->nodes[0],
515 dst_item);
516 }
517 }
518
519 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
520 src_ptr, item_size);
521
522 if (save_old_i_size) {
523 struct btrfs_inode_item *dst_item;
524 dst_item = (struct btrfs_inode_item *)dst_ptr;
525 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
526 }
527
528 /* make sure the generation is filled in */
529 if (key->type == BTRFS_INODE_ITEM_KEY) {
530 struct btrfs_inode_item *dst_item;
531 dst_item = (struct btrfs_inode_item *)dst_ptr;
532 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
533 btrfs_set_inode_generation(path->nodes[0], dst_item,
534 trans->transid);
535 }
536 }
537 no_copy:
538 btrfs_mark_buffer_dirty(path->nodes[0]);
539 btrfs_release_path(path);
540 return 0;
541 }
542
543 /*
544 * simple helper to read an inode off the disk from a given root
545 * This can only be called for subvolume roots and not for the log
546 */
read_one_inode(struct btrfs_root * root,u64 objectid)547 static noinline struct inode *read_one_inode(struct btrfs_root *root,
548 u64 objectid)
549 {
550 struct btrfs_key key;
551 struct inode *inode;
552
553 key.objectid = objectid;
554 key.type = BTRFS_INODE_ITEM_KEY;
555 key.offset = 0;
556 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
557 if (IS_ERR(inode)) {
558 inode = NULL;
559 } else if (is_bad_inode(inode)) {
560 iput(inode);
561 inode = NULL;
562 }
563 return inode;
564 }
565
566 /* replays a single extent in 'eb' at 'slot' with 'key' into the
567 * subvolume 'root'. path is released on entry and should be released
568 * on exit.
569 *
570 * extents in the log tree have not been allocated out of the extent
571 * tree yet. So, this completes the allocation, taking a reference
572 * as required if the extent already exists or creating a new extent
573 * if it isn't in the extent allocation tree yet.
574 *
575 * The extent is inserted into the file, dropping any existing extents
576 * from the file that overlap the new one.
577 */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)578 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
579 struct btrfs_root *root,
580 struct btrfs_path *path,
581 struct extent_buffer *eb, int slot,
582 struct btrfs_key *key)
583 {
584 int found_type;
585 u64 extent_end;
586 u64 start = key->offset;
587 u64 nbytes = 0;
588 struct btrfs_file_extent_item *item;
589 struct inode *inode = NULL;
590 unsigned long size;
591 int ret = 0;
592
593 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
594 found_type = btrfs_file_extent_type(eb, item);
595
596 if (found_type == BTRFS_FILE_EXTENT_REG ||
597 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
598 nbytes = btrfs_file_extent_num_bytes(eb, item);
599 extent_end = start + nbytes;
600
601 /*
602 * We don't add to the inodes nbytes if we are prealloc or a
603 * hole.
604 */
605 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
606 nbytes = 0;
607 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
608 size = btrfs_file_extent_inline_len(eb, slot, item);
609 nbytes = btrfs_file_extent_ram_bytes(eb, item);
610 extent_end = ALIGN(start + size, root->sectorsize);
611 } else {
612 ret = 0;
613 goto out;
614 }
615
616 inode = read_one_inode(root, key->objectid);
617 if (!inode) {
618 ret = -EIO;
619 goto out;
620 }
621
622 /*
623 * first check to see if we already have this extent in the
624 * file. This must be done before the btrfs_drop_extents run
625 * so we don't try to drop this extent.
626 */
627 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
628 start, 0);
629
630 if (ret == 0 &&
631 (found_type == BTRFS_FILE_EXTENT_REG ||
632 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
633 struct btrfs_file_extent_item cmp1;
634 struct btrfs_file_extent_item cmp2;
635 struct btrfs_file_extent_item *existing;
636 struct extent_buffer *leaf;
637
638 leaf = path->nodes[0];
639 existing = btrfs_item_ptr(leaf, path->slots[0],
640 struct btrfs_file_extent_item);
641
642 read_extent_buffer(eb, &cmp1, (unsigned long)item,
643 sizeof(cmp1));
644 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
645 sizeof(cmp2));
646
647 /*
648 * we already have a pointer to this exact extent,
649 * we don't have to do anything
650 */
651 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
652 btrfs_release_path(path);
653 goto out;
654 }
655 }
656 btrfs_release_path(path);
657
658 /* drop any overlapping extents */
659 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
660 if (ret)
661 goto out;
662
663 if (found_type == BTRFS_FILE_EXTENT_REG ||
664 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
665 u64 offset;
666 unsigned long dest_offset;
667 struct btrfs_key ins;
668
669 ret = btrfs_insert_empty_item(trans, root, path, key,
670 sizeof(*item));
671 if (ret)
672 goto out;
673 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
674 path->slots[0]);
675 copy_extent_buffer(path->nodes[0], eb, dest_offset,
676 (unsigned long)item, sizeof(*item));
677
678 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
679 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
680 ins.type = BTRFS_EXTENT_ITEM_KEY;
681 offset = key->offset - btrfs_file_extent_offset(eb, item);
682
683 if (ins.objectid > 0) {
684 u64 csum_start;
685 u64 csum_end;
686 LIST_HEAD(ordered_sums);
687 /*
688 * is this extent already allocated in the extent
689 * allocation tree? If so, just add a reference
690 */
691 ret = btrfs_lookup_data_extent(root, ins.objectid,
692 ins.offset);
693 if (ret == 0) {
694 ret = btrfs_inc_extent_ref(trans, root,
695 ins.objectid, ins.offset,
696 0, root->root_key.objectid,
697 key->objectid, offset);
698 if (ret)
699 goto out;
700 } else {
701 /*
702 * insert the extent pointer in the extent
703 * allocation tree
704 */
705 ret = btrfs_alloc_logged_file_extent(trans,
706 root, root->root_key.objectid,
707 key->objectid, offset, &ins);
708 if (ret)
709 goto out;
710 }
711 btrfs_release_path(path);
712
713 if (btrfs_file_extent_compression(eb, item)) {
714 csum_start = ins.objectid;
715 csum_end = csum_start + ins.offset;
716 } else {
717 csum_start = ins.objectid +
718 btrfs_file_extent_offset(eb, item);
719 csum_end = csum_start +
720 btrfs_file_extent_num_bytes(eb, item);
721 }
722
723 ret = btrfs_lookup_csums_range(root->log_root,
724 csum_start, csum_end - 1,
725 &ordered_sums, 0);
726 if (ret)
727 goto out;
728 /*
729 * Now delete all existing cums in the csum root that
730 * cover our range. We do this because we can have an
731 * extent that is completely referenced by one file
732 * extent item and partially referenced by another
733 * file extent item (like after using the clone or
734 * extent_same ioctls). In this case if we end up doing
735 * the replay of the one that partially references the
736 * extent first, and we do not do the csum deletion
737 * below, we can get 2 csum items in the csum tree that
738 * overlap each other. For example, imagine our log has
739 * the two following file extent items:
740 *
741 * key (257 EXTENT_DATA 409600)
742 * extent data disk byte 12845056 nr 102400
743 * extent data offset 20480 nr 20480 ram 102400
744 *
745 * key (257 EXTENT_DATA 819200)
746 * extent data disk byte 12845056 nr 102400
747 * extent data offset 0 nr 102400 ram 102400
748 *
749 * Where the second one fully references the 100K extent
750 * that starts at disk byte 12845056, and the log tree
751 * has a single csum item that covers the entire range
752 * of the extent:
753 *
754 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
755 *
756 * After the first file extent item is replayed, the
757 * csum tree gets the following csum item:
758 *
759 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
760 *
761 * Which covers the 20K sub-range starting at offset 20K
762 * of our extent. Now when we replay the second file
763 * extent item, if we do not delete existing csum items
764 * that cover any of its blocks, we end up getting two
765 * csum items in our csum tree that overlap each other:
766 *
767 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
768 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
769 *
770 * Which is a problem, because after this anyone trying
771 * to lookup up for the checksum of any block of our
772 * extent starting at an offset of 40K or higher, will
773 * end up looking at the second csum item only, which
774 * does not contain the checksum for any block starting
775 * at offset 40K or higher of our extent.
776 */
777 while (!list_empty(&ordered_sums)) {
778 struct btrfs_ordered_sum *sums;
779 sums = list_entry(ordered_sums.next,
780 struct btrfs_ordered_sum,
781 list);
782 if (!ret)
783 ret = btrfs_del_csums(trans,
784 root->fs_info->csum_root,
785 sums->bytenr,
786 sums->len);
787 if (!ret)
788 ret = btrfs_csum_file_blocks(trans,
789 root->fs_info->csum_root,
790 sums);
791 list_del(&sums->list);
792 kfree(sums);
793 }
794 if (ret)
795 goto out;
796 } else {
797 btrfs_release_path(path);
798 }
799 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
800 /* inline extents are easy, we just overwrite them */
801 ret = overwrite_item(trans, root, path, eb, slot, key);
802 if (ret)
803 goto out;
804 }
805
806 inode_add_bytes(inode, nbytes);
807 ret = btrfs_update_inode(trans, root, inode);
808 out:
809 if (inode)
810 iput(inode);
811 return ret;
812 }
813
814 /*
815 * when cleaning up conflicts between the directory names in the
816 * subvolume, directory names in the log and directory names in the
817 * inode back references, we may have to unlink inodes from directories.
818 *
819 * This is a helper function to do the unlink of a specific directory
820 * item
821 */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct inode * dir,struct btrfs_dir_item * di)822 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
823 struct btrfs_root *root,
824 struct btrfs_path *path,
825 struct inode *dir,
826 struct btrfs_dir_item *di)
827 {
828 struct inode *inode;
829 char *name;
830 int name_len;
831 struct extent_buffer *leaf;
832 struct btrfs_key location;
833 int ret;
834
835 leaf = path->nodes[0];
836
837 btrfs_dir_item_key_to_cpu(leaf, di, &location);
838 name_len = btrfs_dir_name_len(leaf, di);
839 name = kmalloc(name_len, GFP_NOFS);
840 if (!name)
841 return -ENOMEM;
842
843 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
844 btrfs_release_path(path);
845
846 inode = read_one_inode(root, location.objectid);
847 if (!inode) {
848 ret = -EIO;
849 goto out;
850 }
851
852 ret = link_to_fixup_dir(trans, root, path, location.objectid);
853 if (ret)
854 goto out;
855
856 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
857 if (ret)
858 goto out;
859 else
860 ret = btrfs_run_delayed_items(trans, root);
861 out:
862 kfree(name);
863 iput(inode);
864 return ret;
865 }
866
867 /*
868 * helper function to see if a given name and sequence number found
869 * in an inode back reference are already in a directory and correctly
870 * point to this inode
871 */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,const char * name,int name_len)872 static noinline int inode_in_dir(struct btrfs_root *root,
873 struct btrfs_path *path,
874 u64 dirid, u64 objectid, u64 index,
875 const char *name, int name_len)
876 {
877 struct btrfs_dir_item *di;
878 struct btrfs_key location;
879 int match = 0;
880
881 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
882 index, name, name_len, 0);
883 if (di && !IS_ERR(di)) {
884 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
885 if (location.objectid != objectid)
886 goto out;
887 } else
888 goto out;
889 btrfs_release_path(path);
890
891 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
892 if (di && !IS_ERR(di)) {
893 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
894 if (location.objectid != objectid)
895 goto out;
896 } else
897 goto out;
898 match = 1;
899 out:
900 btrfs_release_path(path);
901 return match;
902 }
903
904 /*
905 * helper function to check a log tree for a named back reference in
906 * an inode. This is used to decide if a back reference that is
907 * found in the subvolume conflicts with what we find in the log.
908 *
909 * inode backreferences may have multiple refs in a single item,
910 * during replay we process one reference at a time, and we don't
911 * want to delete valid links to a file from the subvolume if that
912 * link is also in the log.
913 */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const char * name,int namelen)914 static noinline int backref_in_log(struct btrfs_root *log,
915 struct btrfs_key *key,
916 u64 ref_objectid,
917 const char *name, int namelen)
918 {
919 struct btrfs_path *path;
920 struct btrfs_inode_ref *ref;
921 unsigned long ptr;
922 unsigned long ptr_end;
923 unsigned long name_ptr;
924 int found_name_len;
925 int item_size;
926 int ret;
927 int match = 0;
928
929 path = btrfs_alloc_path();
930 if (!path)
931 return -ENOMEM;
932
933 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
934 if (ret != 0)
935 goto out;
936
937 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
938
939 if (key->type == BTRFS_INODE_EXTREF_KEY) {
940 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
941 name, namelen, NULL))
942 match = 1;
943
944 goto out;
945 }
946
947 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
948 ptr_end = ptr + item_size;
949 while (ptr < ptr_end) {
950 ref = (struct btrfs_inode_ref *)ptr;
951 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
952 if (found_name_len == namelen) {
953 name_ptr = (unsigned long)(ref + 1);
954 ret = memcmp_extent_buffer(path->nodes[0], name,
955 name_ptr, namelen);
956 if (ret == 0) {
957 match = 1;
958 goto out;
959 }
960 }
961 ptr = (unsigned long)(ref + 1) + found_name_len;
962 }
963 out:
964 btrfs_free_path(path);
965 return match;
966 }
967
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct inode * dir,struct inode * inode,struct extent_buffer * eb,u64 inode_objectid,u64 parent_objectid,u64 ref_index,char * name,int namelen,int * search_done)968 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
969 struct btrfs_root *root,
970 struct btrfs_path *path,
971 struct btrfs_root *log_root,
972 struct inode *dir, struct inode *inode,
973 struct extent_buffer *eb,
974 u64 inode_objectid, u64 parent_objectid,
975 u64 ref_index, char *name, int namelen,
976 int *search_done)
977 {
978 int ret;
979 char *victim_name;
980 int victim_name_len;
981 struct extent_buffer *leaf;
982 struct btrfs_dir_item *di;
983 struct btrfs_key search_key;
984 struct btrfs_inode_extref *extref;
985
986 again:
987 /* Search old style refs */
988 search_key.objectid = inode_objectid;
989 search_key.type = BTRFS_INODE_REF_KEY;
990 search_key.offset = parent_objectid;
991 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
992 if (ret == 0) {
993 struct btrfs_inode_ref *victim_ref;
994 unsigned long ptr;
995 unsigned long ptr_end;
996
997 leaf = path->nodes[0];
998
999 /* are we trying to overwrite a back ref for the root directory
1000 * if so, just jump out, we're done
1001 */
1002 if (search_key.objectid == search_key.offset)
1003 return 1;
1004
1005 /* check all the names in this back reference to see
1006 * if they are in the log. if so, we allow them to stay
1007 * otherwise they must be unlinked as a conflict
1008 */
1009 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1010 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1011 while (ptr < ptr_end) {
1012 victim_ref = (struct btrfs_inode_ref *)ptr;
1013 victim_name_len = btrfs_inode_ref_name_len(leaf,
1014 victim_ref);
1015 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1016 if (!victim_name)
1017 return -ENOMEM;
1018
1019 read_extent_buffer(leaf, victim_name,
1020 (unsigned long)(victim_ref + 1),
1021 victim_name_len);
1022
1023 if (!backref_in_log(log_root, &search_key,
1024 parent_objectid,
1025 victim_name,
1026 victim_name_len)) {
1027 inc_nlink(inode);
1028 btrfs_release_path(path);
1029
1030 ret = btrfs_unlink_inode(trans, root, dir,
1031 inode, victim_name,
1032 victim_name_len);
1033 kfree(victim_name);
1034 if (ret)
1035 return ret;
1036 ret = btrfs_run_delayed_items(trans, root);
1037 if (ret)
1038 return ret;
1039 *search_done = 1;
1040 goto again;
1041 }
1042 kfree(victim_name);
1043
1044 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1045 }
1046
1047 /*
1048 * NOTE: we have searched root tree and checked the
1049 * coresponding ref, it does not need to check again.
1050 */
1051 *search_done = 1;
1052 }
1053 btrfs_release_path(path);
1054
1055 /* Same search but for extended refs */
1056 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1057 inode_objectid, parent_objectid, 0,
1058 0);
1059 if (!IS_ERR_OR_NULL(extref)) {
1060 u32 item_size;
1061 u32 cur_offset = 0;
1062 unsigned long base;
1063 struct inode *victim_parent;
1064
1065 leaf = path->nodes[0];
1066
1067 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1068 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1069
1070 while (cur_offset < item_size) {
1071 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1072
1073 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1074
1075 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1076 goto next;
1077
1078 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1079 if (!victim_name)
1080 return -ENOMEM;
1081 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1082 victim_name_len);
1083
1084 search_key.objectid = inode_objectid;
1085 search_key.type = BTRFS_INODE_EXTREF_KEY;
1086 search_key.offset = btrfs_extref_hash(parent_objectid,
1087 victim_name,
1088 victim_name_len);
1089 ret = 0;
1090 if (!backref_in_log(log_root, &search_key,
1091 parent_objectid, victim_name,
1092 victim_name_len)) {
1093 ret = -ENOENT;
1094 victim_parent = read_one_inode(root,
1095 parent_objectid);
1096 if (victim_parent) {
1097 inc_nlink(inode);
1098 btrfs_release_path(path);
1099
1100 ret = btrfs_unlink_inode(trans, root,
1101 victim_parent,
1102 inode,
1103 victim_name,
1104 victim_name_len);
1105 if (!ret)
1106 ret = btrfs_run_delayed_items(
1107 trans, root);
1108 }
1109 iput(victim_parent);
1110 kfree(victim_name);
1111 if (ret)
1112 return ret;
1113 *search_done = 1;
1114 goto again;
1115 }
1116 kfree(victim_name);
1117 if (ret)
1118 return ret;
1119 next:
1120 cur_offset += victim_name_len + sizeof(*extref);
1121 }
1122 *search_done = 1;
1123 }
1124 btrfs_release_path(path);
1125
1126 /* look for a conflicting sequence number */
1127 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1128 ref_index, name, namelen, 0);
1129 if (di && !IS_ERR(di)) {
1130 ret = drop_one_dir_item(trans, root, path, dir, di);
1131 if (ret)
1132 return ret;
1133 }
1134 btrfs_release_path(path);
1135
1136 /* look for a conflicing name */
1137 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1138 name, namelen, 0);
1139 if (di && !IS_ERR(di)) {
1140 ret = drop_one_dir_item(trans, root, path, dir, di);
1141 if (ret)
1142 return ret;
1143 }
1144 btrfs_release_path(path);
1145
1146 return 0;
1147 }
1148
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index,u64 * parent_objectid)1149 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1150 u32 *namelen, char **name, u64 *index,
1151 u64 *parent_objectid)
1152 {
1153 struct btrfs_inode_extref *extref;
1154
1155 extref = (struct btrfs_inode_extref *)ref_ptr;
1156
1157 *namelen = btrfs_inode_extref_name_len(eb, extref);
1158 *name = kmalloc(*namelen, GFP_NOFS);
1159 if (*name == NULL)
1160 return -ENOMEM;
1161
1162 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1163 *namelen);
1164
1165 *index = btrfs_inode_extref_index(eb, extref);
1166 if (parent_objectid)
1167 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1168
1169 return 0;
1170 }
1171
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index)1172 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1173 u32 *namelen, char **name, u64 *index)
1174 {
1175 struct btrfs_inode_ref *ref;
1176
1177 ref = (struct btrfs_inode_ref *)ref_ptr;
1178
1179 *namelen = btrfs_inode_ref_name_len(eb, ref);
1180 *name = kmalloc(*namelen, GFP_NOFS);
1181 if (*name == NULL)
1182 return -ENOMEM;
1183
1184 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1185
1186 *index = btrfs_inode_ref_index(eb, ref);
1187
1188 return 0;
1189 }
1190
1191 /*
1192 * replay one inode back reference item found in the log tree.
1193 * eb, slot and key refer to the buffer and key found in the log tree.
1194 * root is the destination we are replaying into, and path is for temp
1195 * use by this function. (it should be released on return).
1196 */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1197 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1198 struct btrfs_root *root,
1199 struct btrfs_root *log,
1200 struct btrfs_path *path,
1201 struct extent_buffer *eb, int slot,
1202 struct btrfs_key *key)
1203 {
1204 struct inode *dir = NULL;
1205 struct inode *inode = NULL;
1206 unsigned long ref_ptr;
1207 unsigned long ref_end;
1208 char *name = NULL;
1209 int namelen;
1210 int ret;
1211 int search_done = 0;
1212 int log_ref_ver = 0;
1213 u64 parent_objectid;
1214 u64 inode_objectid;
1215 u64 ref_index = 0;
1216 int ref_struct_size;
1217
1218 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1219 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1220
1221 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1222 struct btrfs_inode_extref *r;
1223
1224 ref_struct_size = sizeof(struct btrfs_inode_extref);
1225 log_ref_ver = 1;
1226 r = (struct btrfs_inode_extref *)ref_ptr;
1227 parent_objectid = btrfs_inode_extref_parent(eb, r);
1228 } else {
1229 ref_struct_size = sizeof(struct btrfs_inode_ref);
1230 parent_objectid = key->offset;
1231 }
1232 inode_objectid = key->objectid;
1233
1234 /*
1235 * it is possible that we didn't log all the parent directories
1236 * for a given inode. If we don't find the dir, just don't
1237 * copy the back ref in. The link count fixup code will take
1238 * care of the rest
1239 */
1240 dir = read_one_inode(root, parent_objectid);
1241 if (!dir) {
1242 ret = -ENOENT;
1243 goto out;
1244 }
1245
1246 inode = read_one_inode(root, inode_objectid);
1247 if (!inode) {
1248 ret = -EIO;
1249 goto out;
1250 }
1251
1252 while (ref_ptr < ref_end) {
1253 if (log_ref_ver) {
1254 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1255 &ref_index, &parent_objectid);
1256 /*
1257 * parent object can change from one array
1258 * item to another.
1259 */
1260 if (!dir)
1261 dir = read_one_inode(root, parent_objectid);
1262 if (!dir) {
1263 ret = -ENOENT;
1264 goto out;
1265 }
1266 } else {
1267 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1268 &ref_index);
1269 }
1270 if (ret)
1271 goto out;
1272
1273 /* if we already have a perfect match, we're done */
1274 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1275 ref_index, name, namelen)) {
1276 /*
1277 * look for a conflicting back reference in the
1278 * metadata. if we find one we have to unlink that name
1279 * of the file before we add our new link. Later on, we
1280 * overwrite any existing back reference, and we don't
1281 * want to create dangling pointers in the directory.
1282 */
1283
1284 if (!search_done) {
1285 ret = __add_inode_ref(trans, root, path, log,
1286 dir, inode, eb,
1287 inode_objectid,
1288 parent_objectid,
1289 ref_index, name, namelen,
1290 &search_done);
1291 if (ret) {
1292 if (ret == 1)
1293 ret = 0;
1294 goto out;
1295 }
1296 }
1297
1298 /* insert our name */
1299 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1300 0, ref_index);
1301 if (ret)
1302 goto out;
1303
1304 btrfs_update_inode(trans, root, inode);
1305 }
1306
1307 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1308 kfree(name);
1309 name = NULL;
1310 if (log_ref_ver) {
1311 iput(dir);
1312 dir = NULL;
1313 }
1314 }
1315
1316 /* finally write the back reference in the inode */
1317 ret = overwrite_item(trans, root, path, eb, slot, key);
1318 out:
1319 btrfs_release_path(path);
1320 kfree(name);
1321 iput(dir);
1322 iput(inode);
1323 return ret;
1324 }
1325
insert_orphan_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 ino)1326 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1327 struct btrfs_root *root, u64 ino)
1328 {
1329 int ret;
1330
1331 ret = btrfs_insert_orphan_item(trans, root, ino);
1332 if (ret == -EEXIST)
1333 ret = 0;
1334
1335 return ret;
1336 }
1337
count_inode_extrefs(struct btrfs_root * root,struct inode * inode,struct btrfs_path * path)1338 static int count_inode_extrefs(struct btrfs_root *root,
1339 struct inode *inode, struct btrfs_path *path)
1340 {
1341 int ret = 0;
1342 int name_len;
1343 unsigned int nlink = 0;
1344 u32 item_size;
1345 u32 cur_offset = 0;
1346 u64 inode_objectid = btrfs_ino(inode);
1347 u64 offset = 0;
1348 unsigned long ptr;
1349 struct btrfs_inode_extref *extref;
1350 struct extent_buffer *leaf;
1351
1352 while (1) {
1353 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1354 &extref, &offset);
1355 if (ret)
1356 break;
1357
1358 leaf = path->nodes[0];
1359 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1360 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1361 cur_offset = 0;
1362
1363 while (cur_offset < item_size) {
1364 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1365 name_len = btrfs_inode_extref_name_len(leaf, extref);
1366
1367 nlink++;
1368
1369 cur_offset += name_len + sizeof(*extref);
1370 }
1371
1372 offset++;
1373 btrfs_release_path(path);
1374 }
1375 btrfs_release_path(path);
1376
1377 if (ret < 0 && ret != -ENOENT)
1378 return ret;
1379 return nlink;
1380 }
1381
count_inode_refs(struct btrfs_root * root,struct inode * inode,struct btrfs_path * path)1382 static int count_inode_refs(struct btrfs_root *root,
1383 struct inode *inode, struct btrfs_path *path)
1384 {
1385 int ret;
1386 struct btrfs_key key;
1387 unsigned int nlink = 0;
1388 unsigned long ptr;
1389 unsigned long ptr_end;
1390 int name_len;
1391 u64 ino = btrfs_ino(inode);
1392
1393 key.objectid = ino;
1394 key.type = BTRFS_INODE_REF_KEY;
1395 key.offset = (u64)-1;
1396
1397 while (1) {
1398 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1399 if (ret < 0)
1400 break;
1401 if (ret > 0) {
1402 if (path->slots[0] == 0)
1403 break;
1404 path->slots[0]--;
1405 }
1406 process_slot:
1407 btrfs_item_key_to_cpu(path->nodes[0], &key,
1408 path->slots[0]);
1409 if (key.objectid != ino ||
1410 key.type != BTRFS_INODE_REF_KEY)
1411 break;
1412 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1413 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1414 path->slots[0]);
1415 while (ptr < ptr_end) {
1416 struct btrfs_inode_ref *ref;
1417
1418 ref = (struct btrfs_inode_ref *)ptr;
1419 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1420 ref);
1421 ptr = (unsigned long)(ref + 1) + name_len;
1422 nlink++;
1423 }
1424
1425 if (key.offset == 0)
1426 break;
1427 if (path->slots[0] > 0) {
1428 path->slots[0]--;
1429 goto process_slot;
1430 }
1431 key.offset--;
1432 btrfs_release_path(path);
1433 }
1434 btrfs_release_path(path);
1435
1436 return nlink;
1437 }
1438
1439 /*
1440 * There are a few corners where the link count of the file can't
1441 * be properly maintained during replay. So, instead of adding
1442 * lots of complexity to the log code, we just scan the backrefs
1443 * for any file that has been through replay.
1444 *
1445 * The scan will update the link count on the inode to reflect the
1446 * number of back refs found. If it goes down to zero, the iput
1447 * will free the inode.
1448 */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1449 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1450 struct btrfs_root *root,
1451 struct inode *inode)
1452 {
1453 struct btrfs_path *path;
1454 int ret;
1455 u64 nlink = 0;
1456 u64 ino = btrfs_ino(inode);
1457
1458 path = btrfs_alloc_path();
1459 if (!path)
1460 return -ENOMEM;
1461
1462 ret = count_inode_refs(root, inode, path);
1463 if (ret < 0)
1464 goto out;
1465
1466 nlink = ret;
1467
1468 ret = count_inode_extrefs(root, inode, path);
1469 if (ret < 0)
1470 goto out;
1471
1472 nlink += ret;
1473
1474 ret = 0;
1475
1476 if (nlink != inode->i_nlink) {
1477 set_nlink(inode, nlink);
1478 btrfs_update_inode(trans, root, inode);
1479 }
1480 BTRFS_I(inode)->index_cnt = (u64)-1;
1481
1482 if (inode->i_nlink == 0) {
1483 if (S_ISDIR(inode->i_mode)) {
1484 ret = replay_dir_deletes(trans, root, NULL, path,
1485 ino, 1);
1486 if (ret)
1487 goto out;
1488 }
1489 ret = insert_orphan_item(trans, root, ino);
1490 }
1491
1492 out:
1493 btrfs_free_path(path);
1494 return ret;
1495 }
1496
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1497 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1498 struct btrfs_root *root,
1499 struct btrfs_path *path)
1500 {
1501 int ret;
1502 struct btrfs_key key;
1503 struct inode *inode;
1504
1505 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1506 key.type = BTRFS_ORPHAN_ITEM_KEY;
1507 key.offset = (u64)-1;
1508 while (1) {
1509 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1510 if (ret < 0)
1511 break;
1512
1513 if (ret == 1) {
1514 ret = 0;
1515 if (path->slots[0] == 0)
1516 break;
1517 path->slots[0]--;
1518 }
1519
1520 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1521 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1522 key.type != BTRFS_ORPHAN_ITEM_KEY)
1523 break;
1524
1525 ret = btrfs_del_item(trans, root, path);
1526 if (ret)
1527 break;
1528
1529 btrfs_release_path(path);
1530 inode = read_one_inode(root, key.offset);
1531 if (!inode) {
1532 ret = -EIO;
1533 break;
1534 }
1535
1536 ret = fixup_inode_link_count(trans, root, inode);
1537 iput(inode);
1538 if (ret)
1539 break;
1540
1541 /*
1542 * fixup on a directory may create new entries,
1543 * make sure we always look for the highset possible
1544 * offset
1545 */
1546 key.offset = (u64)-1;
1547 }
1548 btrfs_release_path(path);
1549 return ret;
1550 }
1551
1552
1553 /*
1554 * record a given inode in the fixup dir so we can check its link
1555 * count when replay is done. The link count is incremented here
1556 * so the inode won't go away until we check it
1557 */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1558 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1559 struct btrfs_root *root,
1560 struct btrfs_path *path,
1561 u64 objectid)
1562 {
1563 struct btrfs_key key;
1564 int ret = 0;
1565 struct inode *inode;
1566
1567 inode = read_one_inode(root, objectid);
1568 if (!inode)
1569 return -EIO;
1570
1571 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1572 key.type = BTRFS_ORPHAN_ITEM_KEY;
1573 key.offset = objectid;
1574
1575 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1576
1577 btrfs_release_path(path);
1578 if (ret == 0) {
1579 if (!inode->i_nlink)
1580 set_nlink(inode, 1);
1581 else
1582 inc_nlink(inode);
1583 ret = btrfs_update_inode(trans, root, inode);
1584 } else if (ret == -EEXIST) {
1585 ret = 0;
1586 }
1587 iput(inode);
1588
1589 return ret;
1590 }
1591
1592 /*
1593 * when replaying the log for a directory, we only insert names
1594 * for inodes that actually exist. This means an fsync on a directory
1595 * does not implicitly fsync all the new files in it
1596 */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,char * name,int name_len,struct btrfs_key * location)1597 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1598 struct btrfs_root *root,
1599 u64 dirid, u64 index,
1600 char *name, int name_len,
1601 struct btrfs_key *location)
1602 {
1603 struct inode *inode;
1604 struct inode *dir;
1605 int ret;
1606
1607 inode = read_one_inode(root, location->objectid);
1608 if (!inode)
1609 return -ENOENT;
1610
1611 dir = read_one_inode(root, dirid);
1612 if (!dir) {
1613 iput(inode);
1614 return -EIO;
1615 }
1616
1617 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1618
1619 /* FIXME, put inode into FIXUP list */
1620
1621 iput(inode);
1622 iput(dir);
1623 return ret;
1624 }
1625
1626 /*
1627 * Return true if an inode reference exists in the log for the given name,
1628 * inode and parent inode.
1629 */
name_in_log_ref(struct btrfs_root * log_root,const char * name,const int name_len,const u64 dirid,const u64 ino)1630 static bool name_in_log_ref(struct btrfs_root *log_root,
1631 const char *name, const int name_len,
1632 const u64 dirid, const u64 ino)
1633 {
1634 struct btrfs_key search_key;
1635
1636 search_key.objectid = ino;
1637 search_key.type = BTRFS_INODE_REF_KEY;
1638 search_key.offset = dirid;
1639 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1640 return true;
1641
1642 search_key.type = BTRFS_INODE_EXTREF_KEY;
1643 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1644 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1645 return true;
1646
1647 return false;
1648 }
1649
1650 /*
1651 * take a single entry in a log directory item and replay it into
1652 * the subvolume.
1653 *
1654 * if a conflicting item exists in the subdirectory already,
1655 * the inode it points to is unlinked and put into the link count
1656 * fix up tree.
1657 *
1658 * If a name from the log points to a file or directory that does
1659 * not exist in the FS, it is skipped. fsyncs on directories
1660 * do not force down inodes inside that directory, just changes to the
1661 * names or unlinks in a directory.
1662 *
1663 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1664 * non-existing inode) and 1 if the name was replayed.
1665 */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1666 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1667 struct btrfs_root *root,
1668 struct btrfs_path *path,
1669 struct extent_buffer *eb,
1670 struct btrfs_dir_item *di,
1671 struct btrfs_key *key)
1672 {
1673 char *name;
1674 int name_len;
1675 struct btrfs_dir_item *dst_di;
1676 struct btrfs_key found_key;
1677 struct btrfs_key log_key;
1678 struct inode *dir;
1679 u8 log_type;
1680 int exists;
1681 int ret = 0;
1682 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1683 bool name_added = false;
1684
1685 dir = read_one_inode(root, key->objectid);
1686 if (!dir)
1687 return -EIO;
1688
1689 name_len = btrfs_dir_name_len(eb, di);
1690 name = kmalloc(name_len, GFP_NOFS);
1691 if (!name) {
1692 ret = -ENOMEM;
1693 goto out;
1694 }
1695
1696 log_type = btrfs_dir_type(eb, di);
1697 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1698 name_len);
1699
1700 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1701 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1702 if (exists == 0)
1703 exists = 1;
1704 else
1705 exists = 0;
1706 btrfs_release_path(path);
1707
1708 if (key->type == BTRFS_DIR_ITEM_KEY) {
1709 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1710 name, name_len, 1);
1711 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1712 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1713 key->objectid,
1714 key->offset, name,
1715 name_len, 1);
1716 } else {
1717 /* Corruption */
1718 ret = -EINVAL;
1719 goto out;
1720 }
1721 if (IS_ERR_OR_NULL(dst_di)) {
1722 /* we need a sequence number to insert, so we only
1723 * do inserts for the BTRFS_DIR_INDEX_KEY types
1724 */
1725 if (key->type != BTRFS_DIR_INDEX_KEY)
1726 goto out;
1727 goto insert;
1728 }
1729
1730 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1731 /* the existing item matches the logged item */
1732 if (found_key.objectid == log_key.objectid &&
1733 found_key.type == log_key.type &&
1734 found_key.offset == log_key.offset &&
1735 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1736 update_size = false;
1737 goto out;
1738 }
1739
1740 /*
1741 * don't drop the conflicting directory entry if the inode
1742 * for the new entry doesn't exist
1743 */
1744 if (!exists)
1745 goto out;
1746
1747 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1748 if (ret)
1749 goto out;
1750
1751 if (key->type == BTRFS_DIR_INDEX_KEY)
1752 goto insert;
1753 out:
1754 btrfs_release_path(path);
1755 if (!ret && update_size) {
1756 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1757 ret = btrfs_update_inode(trans, root, dir);
1758 }
1759 kfree(name);
1760 iput(dir);
1761 if (!ret && name_added)
1762 ret = 1;
1763 return ret;
1764
1765 insert:
1766 if (name_in_log_ref(root->log_root, name, name_len,
1767 key->objectid, log_key.objectid)) {
1768 /* The dentry will be added later. */
1769 ret = 0;
1770 update_size = false;
1771 goto out;
1772 }
1773 btrfs_release_path(path);
1774 ret = insert_one_name(trans, root, key->objectid, key->offset,
1775 name, name_len, &log_key);
1776 if (ret && ret != -ENOENT && ret != -EEXIST)
1777 goto out;
1778 if (!ret)
1779 name_added = true;
1780 update_size = false;
1781 ret = 0;
1782 goto out;
1783 }
1784
1785 /*
1786 * find all the names in a directory item and reconcile them into
1787 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1788 * one name in a directory item, but the same code gets used for
1789 * both directory index types
1790 */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1791 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1792 struct btrfs_root *root,
1793 struct btrfs_path *path,
1794 struct extent_buffer *eb, int slot,
1795 struct btrfs_key *key)
1796 {
1797 int ret = 0;
1798 u32 item_size = btrfs_item_size_nr(eb, slot);
1799 struct btrfs_dir_item *di;
1800 int name_len;
1801 unsigned long ptr;
1802 unsigned long ptr_end;
1803 struct btrfs_path *fixup_path = NULL;
1804
1805 ptr = btrfs_item_ptr_offset(eb, slot);
1806 ptr_end = ptr + item_size;
1807 while (ptr < ptr_end) {
1808 di = (struct btrfs_dir_item *)ptr;
1809 if (verify_dir_item(root, eb, di))
1810 return -EIO;
1811 name_len = btrfs_dir_name_len(eb, di);
1812 ret = replay_one_name(trans, root, path, eb, di, key);
1813 if (ret < 0)
1814 break;
1815 ptr = (unsigned long)(di + 1);
1816 ptr += name_len;
1817
1818 /*
1819 * If this entry refers to a non-directory (directories can not
1820 * have a link count > 1) and it was added in the transaction
1821 * that was not committed, make sure we fixup the link count of
1822 * the inode it the entry points to. Otherwise something like
1823 * the following would result in a directory pointing to an
1824 * inode with a wrong link that does not account for this dir
1825 * entry:
1826 *
1827 * mkdir testdir
1828 * touch testdir/foo
1829 * touch testdir/bar
1830 * sync
1831 *
1832 * ln testdir/bar testdir/bar_link
1833 * ln testdir/foo testdir/foo_link
1834 * xfs_io -c "fsync" testdir/bar
1835 *
1836 * <power failure>
1837 *
1838 * mount fs, log replay happens
1839 *
1840 * File foo would remain with a link count of 1 when it has two
1841 * entries pointing to it in the directory testdir. This would
1842 * make it impossible to ever delete the parent directory has
1843 * it would result in stale dentries that can never be deleted.
1844 */
1845 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1846 struct btrfs_key di_key;
1847
1848 if (!fixup_path) {
1849 fixup_path = btrfs_alloc_path();
1850 if (!fixup_path) {
1851 ret = -ENOMEM;
1852 break;
1853 }
1854 }
1855
1856 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1857 ret = link_to_fixup_dir(trans, root, fixup_path,
1858 di_key.objectid);
1859 if (ret)
1860 break;
1861 }
1862 ret = 0;
1863 }
1864 btrfs_free_path(fixup_path);
1865 return ret;
1866 }
1867
1868 /*
1869 * directory replay has two parts. There are the standard directory
1870 * items in the log copied from the subvolume, and range items
1871 * created in the log while the subvolume was logged.
1872 *
1873 * The range items tell us which parts of the key space the log
1874 * is authoritative for. During replay, if a key in the subvolume
1875 * directory is in a logged range item, but not actually in the log
1876 * that means it was deleted from the directory before the fsync
1877 * and should be removed.
1878 */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,int key_type,u64 * start_ret,u64 * end_ret)1879 static noinline int find_dir_range(struct btrfs_root *root,
1880 struct btrfs_path *path,
1881 u64 dirid, int key_type,
1882 u64 *start_ret, u64 *end_ret)
1883 {
1884 struct btrfs_key key;
1885 u64 found_end;
1886 struct btrfs_dir_log_item *item;
1887 int ret;
1888 int nritems;
1889
1890 if (*start_ret == (u64)-1)
1891 return 1;
1892
1893 key.objectid = dirid;
1894 key.type = key_type;
1895 key.offset = *start_ret;
1896
1897 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1898 if (ret < 0)
1899 goto out;
1900 if (ret > 0) {
1901 if (path->slots[0] == 0)
1902 goto out;
1903 path->slots[0]--;
1904 }
1905 if (ret != 0)
1906 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1907
1908 if (key.type != key_type || key.objectid != dirid) {
1909 ret = 1;
1910 goto next;
1911 }
1912 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1913 struct btrfs_dir_log_item);
1914 found_end = btrfs_dir_log_end(path->nodes[0], item);
1915
1916 if (*start_ret >= key.offset && *start_ret <= found_end) {
1917 ret = 0;
1918 *start_ret = key.offset;
1919 *end_ret = found_end;
1920 goto out;
1921 }
1922 ret = 1;
1923 next:
1924 /* check the next slot in the tree to see if it is a valid item */
1925 nritems = btrfs_header_nritems(path->nodes[0]);
1926 path->slots[0]++;
1927 if (path->slots[0] >= nritems) {
1928 ret = btrfs_next_leaf(root, path);
1929 if (ret)
1930 goto out;
1931 }
1932
1933 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1934
1935 if (key.type != key_type || key.objectid != dirid) {
1936 ret = 1;
1937 goto out;
1938 }
1939 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1940 struct btrfs_dir_log_item);
1941 found_end = btrfs_dir_log_end(path->nodes[0], item);
1942 *start_ret = key.offset;
1943 *end_ret = found_end;
1944 ret = 0;
1945 out:
1946 btrfs_release_path(path);
1947 return ret;
1948 }
1949
1950 /*
1951 * this looks for a given directory item in the log. If the directory
1952 * item is not in the log, the item is removed and the inode it points
1953 * to is unlinked
1954 */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct inode * dir,struct btrfs_key * dir_key)1955 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1956 struct btrfs_root *root,
1957 struct btrfs_root *log,
1958 struct btrfs_path *path,
1959 struct btrfs_path *log_path,
1960 struct inode *dir,
1961 struct btrfs_key *dir_key)
1962 {
1963 int ret;
1964 struct extent_buffer *eb;
1965 int slot;
1966 u32 item_size;
1967 struct btrfs_dir_item *di;
1968 struct btrfs_dir_item *log_di;
1969 int name_len;
1970 unsigned long ptr;
1971 unsigned long ptr_end;
1972 char *name;
1973 struct inode *inode;
1974 struct btrfs_key location;
1975
1976 again:
1977 eb = path->nodes[0];
1978 slot = path->slots[0];
1979 item_size = btrfs_item_size_nr(eb, slot);
1980 ptr = btrfs_item_ptr_offset(eb, slot);
1981 ptr_end = ptr + item_size;
1982 while (ptr < ptr_end) {
1983 di = (struct btrfs_dir_item *)ptr;
1984 if (verify_dir_item(root, eb, di)) {
1985 ret = -EIO;
1986 goto out;
1987 }
1988
1989 name_len = btrfs_dir_name_len(eb, di);
1990 name = kmalloc(name_len, GFP_NOFS);
1991 if (!name) {
1992 ret = -ENOMEM;
1993 goto out;
1994 }
1995 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1996 name_len);
1997 log_di = NULL;
1998 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1999 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2000 dir_key->objectid,
2001 name, name_len, 0);
2002 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2003 log_di = btrfs_lookup_dir_index_item(trans, log,
2004 log_path,
2005 dir_key->objectid,
2006 dir_key->offset,
2007 name, name_len, 0);
2008 }
2009 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2010 btrfs_dir_item_key_to_cpu(eb, di, &location);
2011 btrfs_release_path(path);
2012 btrfs_release_path(log_path);
2013 inode = read_one_inode(root, location.objectid);
2014 if (!inode) {
2015 kfree(name);
2016 return -EIO;
2017 }
2018
2019 ret = link_to_fixup_dir(trans, root,
2020 path, location.objectid);
2021 if (ret) {
2022 kfree(name);
2023 iput(inode);
2024 goto out;
2025 }
2026
2027 inc_nlink(inode);
2028 ret = btrfs_unlink_inode(trans, root, dir, inode,
2029 name, name_len);
2030 if (!ret)
2031 ret = btrfs_run_delayed_items(trans, root);
2032 kfree(name);
2033 iput(inode);
2034 if (ret)
2035 goto out;
2036
2037 /* there might still be more names under this key
2038 * check and repeat if required
2039 */
2040 ret = btrfs_search_slot(NULL, root, dir_key, path,
2041 0, 0);
2042 if (ret == 0)
2043 goto again;
2044 ret = 0;
2045 goto out;
2046 } else if (IS_ERR(log_di)) {
2047 kfree(name);
2048 return PTR_ERR(log_di);
2049 }
2050 btrfs_release_path(log_path);
2051 kfree(name);
2052
2053 ptr = (unsigned long)(di + 1);
2054 ptr += name_len;
2055 }
2056 ret = 0;
2057 out:
2058 btrfs_release_path(path);
2059 btrfs_release_path(log_path);
2060 return ret;
2061 }
2062
replay_xattr_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,const u64 ino)2063 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2064 struct btrfs_root *root,
2065 struct btrfs_root *log,
2066 struct btrfs_path *path,
2067 const u64 ino)
2068 {
2069 struct btrfs_key search_key;
2070 struct btrfs_path *log_path;
2071 int i;
2072 int nritems;
2073 int ret;
2074
2075 log_path = btrfs_alloc_path();
2076 if (!log_path)
2077 return -ENOMEM;
2078
2079 search_key.objectid = ino;
2080 search_key.type = BTRFS_XATTR_ITEM_KEY;
2081 search_key.offset = 0;
2082 again:
2083 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2084 if (ret < 0)
2085 goto out;
2086 process_leaf:
2087 nritems = btrfs_header_nritems(path->nodes[0]);
2088 for (i = path->slots[0]; i < nritems; i++) {
2089 struct btrfs_key key;
2090 struct btrfs_dir_item *di;
2091 struct btrfs_dir_item *log_di;
2092 u32 total_size;
2093 u32 cur;
2094
2095 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2096 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2097 ret = 0;
2098 goto out;
2099 }
2100
2101 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2102 total_size = btrfs_item_size_nr(path->nodes[0], i);
2103 cur = 0;
2104 while (cur < total_size) {
2105 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2106 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2107 u32 this_len = sizeof(*di) + name_len + data_len;
2108 char *name;
2109
2110 name = kmalloc(name_len, GFP_NOFS);
2111 if (!name) {
2112 ret = -ENOMEM;
2113 goto out;
2114 }
2115 read_extent_buffer(path->nodes[0], name,
2116 (unsigned long)(di + 1), name_len);
2117
2118 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2119 name, name_len, 0);
2120 btrfs_release_path(log_path);
2121 if (!log_di) {
2122 /* Doesn't exist in log tree, so delete it. */
2123 btrfs_release_path(path);
2124 di = btrfs_lookup_xattr(trans, root, path, ino,
2125 name, name_len, -1);
2126 kfree(name);
2127 if (IS_ERR(di)) {
2128 ret = PTR_ERR(di);
2129 goto out;
2130 }
2131 ASSERT(di);
2132 ret = btrfs_delete_one_dir_name(trans, root,
2133 path, di);
2134 if (ret)
2135 goto out;
2136 btrfs_release_path(path);
2137 search_key = key;
2138 goto again;
2139 }
2140 kfree(name);
2141 if (IS_ERR(log_di)) {
2142 ret = PTR_ERR(log_di);
2143 goto out;
2144 }
2145 cur += this_len;
2146 di = (struct btrfs_dir_item *)((char *)di + this_len);
2147 }
2148 }
2149 ret = btrfs_next_leaf(root, path);
2150 if (ret > 0)
2151 ret = 0;
2152 else if (ret == 0)
2153 goto process_leaf;
2154 out:
2155 btrfs_free_path(log_path);
2156 btrfs_release_path(path);
2157 return ret;
2158 }
2159
2160
2161 /*
2162 * deletion replay happens before we copy any new directory items
2163 * out of the log or out of backreferences from inodes. It
2164 * scans the log to find ranges of keys that log is authoritative for,
2165 * and then scans the directory to find items in those ranges that are
2166 * not present in the log.
2167 *
2168 * Anything we don't find in the log is unlinked and removed from the
2169 * directory.
2170 */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)2171 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2172 struct btrfs_root *root,
2173 struct btrfs_root *log,
2174 struct btrfs_path *path,
2175 u64 dirid, int del_all)
2176 {
2177 u64 range_start;
2178 u64 range_end;
2179 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2180 int ret = 0;
2181 struct btrfs_key dir_key;
2182 struct btrfs_key found_key;
2183 struct btrfs_path *log_path;
2184 struct inode *dir;
2185
2186 dir_key.objectid = dirid;
2187 dir_key.type = BTRFS_DIR_ITEM_KEY;
2188 log_path = btrfs_alloc_path();
2189 if (!log_path)
2190 return -ENOMEM;
2191
2192 dir = read_one_inode(root, dirid);
2193 /* it isn't an error if the inode isn't there, that can happen
2194 * because we replay the deletes before we copy in the inode item
2195 * from the log
2196 */
2197 if (!dir) {
2198 btrfs_free_path(log_path);
2199 return 0;
2200 }
2201 again:
2202 range_start = 0;
2203 range_end = 0;
2204 while (1) {
2205 if (del_all)
2206 range_end = (u64)-1;
2207 else {
2208 ret = find_dir_range(log, path, dirid, key_type,
2209 &range_start, &range_end);
2210 if (ret < 0)
2211 goto out;
2212 else if (ret > 0)
2213 break;
2214 }
2215
2216 dir_key.offset = range_start;
2217 while (1) {
2218 int nritems;
2219 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2220 0, 0);
2221 if (ret < 0)
2222 goto out;
2223
2224 nritems = btrfs_header_nritems(path->nodes[0]);
2225 if (path->slots[0] >= nritems) {
2226 ret = btrfs_next_leaf(root, path);
2227 if (ret == 1)
2228 break;
2229 else if (ret < 0)
2230 goto out;
2231 }
2232 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2233 path->slots[0]);
2234 if (found_key.objectid != dirid ||
2235 found_key.type != dir_key.type)
2236 goto next_type;
2237
2238 if (found_key.offset > range_end)
2239 break;
2240
2241 ret = check_item_in_log(trans, root, log, path,
2242 log_path, dir,
2243 &found_key);
2244 if (ret)
2245 goto out;
2246 if (found_key.offset == (u64)-1)
2247 break;
2248 dir_key.offset = found_key.offset + 1;
2249 }
2250 btrfs_release_path(path);
2251 if (range_end == (u64)-1)
2252 break;
2253 range_start = range_end + 1;
2254 }
2255
2256 next_type:
2257 ret = 0;
2258 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2259 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2260 dir_key.type = BTRFS_DIR_INDEX_KEY;
2261 btrfs_release_path(path);
2262 goto again;
2263 }
2264 out:
2265 btrfs_release_path(path);
2266 btrfs_free_path(log_path);
2267 iput(dir);
2268 return ret;
2269 }
2270
2271 /*
2272 * the process_func used to replay items from the log tree. This
2273 * gets called in two different stages. The first stage just looks
2274 * for inodes and makes sure they are all copied into the subvolume.
2275 *
2276 * The second stage copies all the other item types from the log into
2277 * the subvolume. The two stage approach is slower, but gets rid of
2278 * lots of complexity around inodes referencing other inodes that exist
2279 * only in the log (references come from either directory items or inode
2280 * back refs).
2281 */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen)2282 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2283 struct walk_control *wc, u64 gen)
2284 {
2285 int nritems;
2286 struct btrfs_path *path;
2287 struct btrfs_root *root = wc->replay_dest;
2288 struct btrfs_key key;
2289 int level;
2290 int i;
2291 int ret;
2292
2293 ret = btrfs_read_buffer(eb, gen);
2294 if (ret)
2295 return ret;
2296
2297 level = btrfs_header_level(eb);
2298
2299 if (level != 0)
2300 return 0;
2301
2302 path = btrfs_alloc_path();
2303 if (!path)
2304 return -ENOMEM;
2305
2306 nritems = btrfs_header_nritems(eb);
2307 for (i = 0; i < nritems; i++) {
2308 btrfs_item_key_to_cpu(eb, &key, i);
2309
2310 /* inode keys are done during the first stage */
2311 if (key.type == BTRFS_INODE_ITEM_KEY &&
2312 wc->stage == LOG_WALK_REPLAY_INODES) {
2313 struct btrfs_inode_item *inode_item;
2314 u32 mode;
2315
2316 inode_item = btrfs_item_ptr(eb, i,
2317 struct btrfs_inode_item);
2318 ret = replay_xattr_deletes(wc->trans, root, log,
2319 path, key.objectid);
2320 if (ret)
2321 break;
2322 mode = btrfs_inode_mode(eb, inode_item);
2323 if (S_ISDIR(mode)) {
2324 ret = replay_dir_deletes(wc->trans,
2325 root, log, path, key.objectid, 0);
2326 if (ret)
2327 break;
2328 }
2329 ret = overwrite_item(wc->trans, root, path,
2330 eb, i, &key);
2331 if (ret)
2332 break;
2333
2334 /* for regular files, make sure corresponding
2335 * orhpan item exist. extents past the new EOF
2336 * will be truncated later by orphan cleanup.
2337 */
2338 if (S_ISREG(mode)) {
2339 ret = insert_orphan_item(wc->trans, root,
2340 key.objectid);
2341 if (ret)
2342 break;
2343 }
2344
2345 ret = link_to_fixup_dir(wc->trans, root,
2346 path, key.objectid);
2347 if (ret)
2348 break;
2349 }
2350
2351 if (key.type == BTRFS_DIR_INDEX_KEY &&
2352 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2353 ret = replay_one_dir_item(wc->trans, root, path,
2354 eb, i, &key);
2355 if (ret)
2356 break;
2357 }
2358
2359 if (wc->stage < LOG_WALK_REPLAY_ALL)
2360 continue;
2361
2362 /* these keys are simply copied */
2363 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2364 ret = overwrite_item(wc->trans, root, path,
2365 eb, i, &key);
2366 if (ret)
2367 break;
2368 } else if (key.type == BTRFS_INODE_REF_KEY ||
2369 key.type == BTRFS_INODE_EXTREF_KEY) {
2370 ret = add_inode_ref(wc->trans, root, log, path,
2371 eb, i, &key);
2372 if (ret && ret != -ENOENT)
2373 break;
2374 ret = 0;
2375 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2376 ret = replay_one_extent(wc->trans, root, path,
2377 eb, i, &key);
2378 if (ret)
2379 break;
2380 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2381 ret = replay_one_dir_item(wc->trans, root, path,
2382 eb, i, &key);
2383 if (ret)
2384 break;
2385 }
2386 }
2387 btrfs_free_path(path);
2388 return ret;
2389 }
2390
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2391 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2392 struct btrfs_root *root,
2393 struct btrfs_path *path, int *level,
2394 struct walk_control *wc)
2395 {
2396 u64 root_owner;
2397 u64 bytenr;
2398 u64 ptr_gen;
2399 struct extent_buffer *next;
2400 struct extent_buffer *cur;
2401 struct extent_buffer *parent;
2402 u32 blocksize;
2403 int ret = 0;
2404
2405 WARN_ON(*level < 0);
2406 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2407
2408 while (*level > 0) {
2409 WARN_ON(*level < 0);
2410 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2411 cur = path->nodes[*level];
2412
2413 WARN_ON(btrfs_header_level(cur) != *level);
2414
2415 if (path->slots[*level] >=
2416 btrfs_header_nritems(cur))
2417 break;
2418
2419 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2420 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2421 blocksize = root->nodesize;
2422
2423 parent = path->nodes[*level];
2424 root_owner = btrfs_header_owner(parent);
2425
2426 next = btrfs_find_create_tree_block(root, bytenr);
2427 if (!next)
2428 return -ENOMEM;
2429
2430 if (*level == 1) {
2431 ret = wc->process_func(root, next, wc, ptr_gen);
2432 if (ret) {
2433 free_extent_buffer(next);
2434 return ret;
2435 }
2436
2437 path->slots[*level]++;
2438 if (wc->free) {
2439 ret = btrfs_read_buffer(next, ptr_gen);
2440 if (ret) {
2441 free_extent_buffer(next);
2442 return ret;
2443 }
2444
2445 if (trans) {
2446 btrfs_tree_lock(next);
2447 btrfs_set_lock_blocking(next);
2448 clean_tree_block(trans, root->fs_info,
2449 next);
2450 btrfs_wait_tree_block_writeback(next);
2451 btrfs_tree_unlock(next);
2452 } else {
2453 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2454 clear_extent_buffer_dirty(next);
2455 }
2456
2457 WARN_ON(root_owner !=
2458 BTRFS_TREE_LOG_OBJECTID);
2459 ret = btrfs_free_and_pin_reserved_extent(root,
2460 bytenr, blocksize);
2461 if (ret) {
2462 free_extent_buffer(next);
2463 return ret;
2464 }
2465 }
2466 free_extent_buffer(next);
2467 continue;
2468 }
2469 ret = btrfs_read_buffer(next, ptr_gen);
2470 if (ret) {
2471 free_extent_buffer(next);
2472 return ret;
2473 }
2474
2475 WARN_ON(*level <= 0);
2476 if (path->nodes[*level-1])
2477 free_extent_buffer(path->nodes[*level-1]);
2478 path->nodes[*level-1] = next;
2479 *level = btrfs_header_level(next);
2480 path->slots[*level] = 0;
2481 cond_resched();
2482 }
2483 WARN_ON(*level < 0);
2484 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2485
2486 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2487
2488 cond_resched();
2489 return 0;
2490 }
2491
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2492 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2493 struct btrfs_root *root,
2494 struct btrfs_path *path, int *level,
2495 struct walk_control *wc)
2496 {
2497 u64 root_owner;
2498 int i;
2499 int slot;
2500 int ret;
2501
2502 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2503 slot = path->slots[i];
2504 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2505 path->slots[i]++;
2506 *level = i;
2507 WARN_ON(*level == 0);
2508 return 0;
2509 } else {
2510 struct extent_buffer *parent;
2511 if (path->nodes[*level] == root->node)
2512 parent = path->nodes[*level];
2513 else
2514 parent = path->nodes[*level + 1];
2515
2516 root_owner = btrfs_header_owner(parent);
2517 ret = wc->process_func(root, path->nodes[*level], wc,
2518 btrfs_header_generation(path->nodes[*level]));
2519 if (ret)
2520 return ret;
2521
2522 if (wc->free) {
2523 struct extent_buffer *next;
2524
2525 next = path->nodes[*level];
2526
2527 if (trans) {
2528 btrfs_tree_lock(next);
2529 btrfs_set_lock_blocking(next);
2530 clean_tree_block(trans, root->fs_info,
2531 next);
2532 btrfs_wait_tree_block_writeback(next);
2533 btrfs_tree_unlock(next);
2534 } else {
2535 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2536 clear_extent_buffer_dirty(next);
2537 }
2538
2539 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2540 ret = btrfs_free_and_pin_reserved_extent(root,
2541 path->nodes[*level]->start,
2542 path->nodes[*level]->len);
2543 if (ret)
2544 return ret;
2545 }
2546 free_extent_buffer(path->nodes[*level]);
2547 path->nodes[*level] = NULL;
2548 *level = i + 1;
2549 }
2550 }
2551 return 1;
2552 }
2553
2554 /*
2555 * drop the reference count on the tree rooted at 'snap'. This traverses
2556 * the tree freeing any blocks that have a ref count of zero after being
2557 * decremented.
2558 */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2559 static int walk_log_tree(struct btrfs_trans_handle *trans,
2560 struct btrfs_root *log, struct walk_control *wc)
2561 {
2562 int ret = 0;
2563 int wret;
2564 int level;
2565 struct btrfs_path *path;
2566 int orig_level;
2567
2568 path = btrfs_alloc_path();
2569 if (!path)
2570 return -ENOMEM;
2571
2572 level = btrfs_header_level(log->node);
2573 orig_level = level;
2574 path->nodes[level] = log->node;
2575 extent_buffer_get(log->node);
2576 path->slots[level] = 0;
2577
2578 while (1) {
2579 wret = walk_down_log_tree(trans, log, path, &level, wc);
2580 if (wret > 0)
2581 break;
2582 if (wret < 0) {
2583 ret = wret;
2584 goto out;
2585 }
2586
2587 wret = walk_up_log_tree(trans, log, path, &level, wc);
2588 if (wret > 0)
2589 break;
2590 if (wret < 0) {
2591 ret = wret;
2592 goto out;
2593 }
2594 }
2595
2596 /* was the root node processed? if not, catch it here */
2597 if (path->nodes[orig_level]) {
2598 ret = wc->process_func(log, path->nodes[orig_level], wc,
2599 btrfs_header_generation(path->nodes[orig_level]));
2600 if (ret)
2601 goto out;
2602 if (wc->free) {
2603 struct extent_buffer *next;
2604
2605 next = path->nodes[orig_level];
2606
2607 if (trans) {
2608 btrfs_tree_lock(next);
2609 btrfs_set_lock_blocking(next);
2610 clean_tree_block(trans, log->fs_info, next);
2611 btrfs_wait_tree_block_writeback(next);
2612 btrfs_tree_unlock(next);
2613 } else {
2614 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2615 clear_extent_buffer_dirty(next);
2616 }
2617
2618 WARN_ON(log->root_key.objectid !=
2619 BTRFS_TREE_LOG_OBJECTID);
2620 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2621 next->len);
2622 if (ret)
2623 goto out;
2624 }
2625 }
2626
2627 out:
2628 btrfs_free_path(path);
2629 return ret;
2630 }
2631
2632 /*
2633 * helper function to update the item for a given subvolumes log root
2634 * in the tree of log roots
2635 */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log)2636 static int update_log_root(struct btrfs_trans_handle *trans,
2637 struct btrfs_root *log)
2638 {
2639 int ret;
2640
2641 if (log->log_transid == 1) {
2642 /* insert root item on the first sync */
2643 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2644 &log->root_key, &log->root_item);
2645 } else {
2646 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2647 &log->root_key, &log->root_item);
2648 }
2649 return ret;
2650 }
2651
wait_log_commit(struct btrfs_root * root,int transid)2652 static void wait_log_commit(struct btrfs_root *root, int transid)
2653 {
2654 DEFINE_WAIT(wait);
2655 int index = transid % 2;
2656
2657 /*
2658 * we only allow two pending log transactions at a time,
2659 * so we know that if ours is more than 2 older than the
2660 * current transaction, we're done
2661 */
2662 do {
2663 prepare_to_wait(&root->log_commit_wait[index],
2664 &wait, TASK_UNINTERRUPTIBLE);
2665 mutex_unlock(&root->log_mutex);
2666
2667 if (root->log_transid_committed < transid &&
2668 atomic_read(&root->log_commit[index]))
2669 schedule();
2670
2671 finish_wait(&root->log_commit_wait[index], &wait);
2672 mutex_lock(&root->log_mutex);
2673 } while (root->log_transid_committed < transid &&
2674 atomic_read(&root->log_commit[index]));
2675 }
2676
wait_for_writer(struct btrfs_root * root)2677 static void wait_for_writer(struct btrfs_root *root)
2678 {
2679 DEFINE_WAIT(wait);
2680
2681 while (atomic_read(&root->log_writers)) {
2682 prepare_to_wait(&root->log_writer_wait,
2683 &wait, TASK_UNINTERRUPTIBLE);
2684 mutex_unlock(&root->log_mutex);
2685 if (atomic_read(&root->log_writers))
2686 schedule();
2687 finish_wait(&root->log_writer_wait, &wait);
2688 mutex_lock(&root->log_mutex);
2689 }
2690 }
2691
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)2692 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2693 struct btrfs_log_ctx *ctx)
2694 {
2695 if (!ctx)
2696 return;
2697
2698 mutex_lock(&root->log_mutex);
2699 list_del_init(&ctx->list);
2700 mutex_unlock(&root->log_mutex);
2701 }
2702
2703 /*
2704 * Invoked in log mutex context, or be sure there is no other task which
2705 * can access the list.
2706 */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)2707 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2708 int index, int error)
2709 {
2710 struct btrfs_log_ctx *ctx;
2711 struct btrfs_log_ctx *safe;
2712
2713 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2714 list_del_init(&ctx->list);
2715 ctx->log_ret = error;
2716 }
2717
2718 INIT_LIST_HEAD(&root->log_ctxs[index]);
2719 }
2720
2721 /*
2722 * btrfs_sync_log does sends a given tree log down to the disk and
2723 * updates the super blocks to record it. When this call is done,
2724 * you know that any inodes previously logged are safely on disk only
2725 * if it returns 0.
2726 *
2727 * Any other return value means you need to call btrfs_commit_transaction.
2728 * Some of the edge cases for fsyncing directories that have had unlinks
2729 * or renames done in the past mean that sometimes the only safe
2730 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2731 * that has happened.
2732 */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)2733 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2734 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2735 {
2736 int index1;
2737 int index2;
2738 int mark;
2739 int ret;
2740 struct btrfs_root *log = root->log_root;
2741 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2742 int log_transid = 0;
2743 struct btrfs_log_ctx root_log_ctx;
2744 struct blk_plug plug;
2745
2746 mutex_lock(&root->log_mutex);
2747 log_transid = ctx->log_transid;
2748 if (root->log_transid_committed >= log_transid) {
2749 mutex_unlock(&root->log_mutex);
2750 return ctx->log_ret;
2751 }
2752
2753 index1 = log_transid % 2;
2754 if (atomic_read(&root->log_commit[index1])) {
2755 wait_log_commit(root, log_transid);
2756 mutex_unlock(&root->log_mutex);
2757 return ctx->log_ret;
2758 }
2759 ASSERT(log_transid == root->log_transid);
2760 atomic_set(&root->log_commit[index1], 1);
2761
2762 /* wait for previous tree log sync to complete */
2763 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2764 wait_log_commit(root, log_transid - 1);
2765
2766 while (1) {
2767 int batch = atomic_read(&root->log_batch);
2768 /* when we're on an ssd, just kick the log commit out */
2769 if (!btrfs_test_opt(root, SSD) &&
2770 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2771 mutex_unlock(&root->log_mutex);
2772 schedule_timeout_uninterruptible(1);
2773 mutex_lock(&root->log_mutex);
2774 }
2775 wait_for_writer(root);
2776 if (batch == atomic_read(&root->log_batch))
2777 break;
2778 }
2779
2780 /* bail out if we need to do a full commit */
2781 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2782 ret = -EAGAIN;
2783 btrfs_free_logged_extents(log, log_transid);
2784 mutex_unlock(&root->log_mutex);
2785 goto out;
2786 }
2787
2788 if (log_transid % 2 == 0)
2789 mark = EXTENT_DIRTY;
2790 else
2791 mark = EXTENT_NEW;
2792
2793 /* we start IO on all the marked extents here, but we don't actually
2794 * wait for them until later.
2795 */
2796 blk_start_plug(&plug);
2797 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2798 if (ret) {
2799 blk_finish_plug(&plug);
2800 btrfs_abort_transaction(trans, root, ret);
2801 btrfs_free_logged_extents(log, log_transid);
2802 btrfs_set_log_full_commit(root->fs_info, trans);
2803 mutex_unlock(&root->log_mutex);
2804 goto out;
2805 }
2806
2807 btrfs_set_root_node(&log->root_item, log->node);
2808
2809 root->log_transid++;
2810 log->log_transid = root->log_transid;
2811 root->log_start_pid = 0;
2812 /*
2813 * Update or create log root item under the root's log_mutex to prevent
2814 * races with concurrent log syncs that can lead to failure to update
2815 * log root item because it was not created yet.
2816 */
2817 ret = update_log_root(trans, log);
2818 /*
2819 * IO has been started, blocks of the log tree have WRITTEN flag set
2820 * in their headers. new modifications of the log will be written to
2821 * new positions. so it's safe to allow log writers to go in.
2822 */
2823 mutex_unlock(&root->log_mutex);
2824
2825 btrfs_init_log_ctx(&root_log_ctx);
2826
2827 mutex_lock(&log_root_tree->log_mutex);
2828 atomic_inc(&log_root_tree->log_batch);
2829 atomic_inc(&log_root_tree->log_writers);
2830
2831 index2 = log_root_tree->log_transid % 2;
2832 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2833 root_log_ctx.log_transid = log_root_tree->log_transid;
2834
2835 mutex_unlock(&log_root_tree->log_mutex);
2836
2837 mutex_lock(&log_root_tree->log_mutex);
2838 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2839 /*
2840 * Implicit memory barrier after atomic_dec_and_test
2841 */
2842 if (waitqueue_active(&log_root_tree->log_writer_wait))
2843 wake_up(&log_root_tree->log_writer_wait);
2844 }
2845
2846 if (ret) {
2847 if (!list_empty(&root_log_ctx.list))
2848 list_del_init(&root_log_ctx.list);
2849
2850 blk_finish_plug(&plug);
2851 btrfs_set_log_full_commit(root->fs_info, trans);
2852
2853 if (ret != -ENOSPC) {
2854 btrfs_abort_transaction(trans, root, ret);
2855 mutex_unlock(&log_root_tree->log_mutex);
2856 goto out;
2857 }
2858 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2859 btrfs_free_logged_extents(log, log_transid);
2860 mutex_unlock(&log_root_tree->log_mutex);
2861 ret = -EAGAIN;
2862 goto out;
2863 }
2864
2865 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2866 blk_finish_plug(&plug);
2867 list_del_init(&root_log_ctx.list);
2868 mutex_unlock(&log_root_tree->log_mutex);
2869 ret = root_log_ctx.log_ret;
2870 goto out;
2871 }
2872
2873 index2 = root_log_ctx.log_transid % 2;
2874 if (atomic_read(&log_root_tree->log_commit[index2])) {
2875 blk_finish_plug(&plug);
2876 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2877 mark);
2878 btrfs_wait_logged_extents(trans, log, log_transid);
2879 wait_log_commit(log_root_tree,
2880 root_log_ctx.log_transid);
2881 mutex_unlock(&log_root_tree->log_mutex);
2882 if (!ret)
2883 ret = root_log_ctx.log_ret;
2884 goto out;
2885 }
2886 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2887 atomic_set(&log_root_tree->log_commit[index2], 1);
2888
2889 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2890 wait_log_commit(log_root_tree,
2891 root_log_ctx.log_transid - 1);
2892 }
2893
2894 wait_for_writer(log_root_tree);
2895
2896 /*
2897 * now that we've moved on to the tree of log tree roots,
2898 * check the full commit flag again
2899 */
2900 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2901 blk_finish_plug(&plug);
2902 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2903 btrfs_free_logged_extents(log, log_transid);
2904 mutex_unlock(&log_root_tree->log_mutex);
2905 ret = -EAGAIN;
2906 goto out_wake_log_root;
2907 }
2908
2909 ret = btrfs_write_marked_extents(log_root_tree,
2910 &log_root_tree->dirty_log_pages,
2911 EXTENT_DIRTY | EXTENT_NEW);
2912 blk_finish_plug(&plug);
2913 if (ret) {
2914 btrfs_set_log_full_commit(root->fs_info, trans);
2915 btrfs_abort_transaction(trans, root, ret);
2916 btrfs_free_logged_extents(log, log_transid);
2917 mutex_unlock(&log_root_tree->log_mutex);
2918 goto out_wake_log_root;
2919 }
2920 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2921 if (!ret)
2922 ret = btrfs_wait_marked_extents(log_root_tree,
2923 &log_root_tree->dirty_log_pages,
2924 EXTENT_NEW | EXTENT_DIRTY);
2925 if (ret) {
2926 btrfs_set_log_full_commit(root->fs_info, trans);
2927 btrfs_free_logged_extents(log, log_transid);
2928 mutex_unlock(&log_root_tree->log_mutex);
2929 goto out_wake_log_root;
2930 }
2931 btrfs_wait_logged_extents(trans, log, log_transid);
2932
2933 btrfs_set_super_log_root(root->fs_info->super_for_commit,
2934 log_root_tree->node->start);
2935 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2936 btrfs_header_level(log_root_tree->node));
2937
2938 log_root_tree->log_transid++;
2939 mutex_unlock(&log_root_tree->log_mutex);
2940
2941 /*
2942 * nobody else is going to jump in and write the the ctree
2943 * super here because the log_commit atomic below is protecting
2944 * us. We must be called with a transaction handle pinning
2945 * the running transaction open, so a full commit can't hop
2946 * in and cause problems either.
2947 */
2948 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2949 if (ret) {
2950 btrfs_set_log_full_commit(root->fs_info, trans);
2951 btrfs_abort_transaction(trans, root, ret);
2952 goto out_wake_log_root;
2953 }
2954
2955 mutex_lock(&root->log_mutex);
2956 if (root->last_log_commit < log_transid)
2957 root->last_log_commit = log_transid;
2958 mutex_unlock(&root->log_mutex);
2959
2960 out_wake_log_root:
2961 mutex_lock(&log_root_tree->log_mutex);
2962 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2963
2964 log_root_tree->log_transid_committed++;
2965 atomic_set(&log_root_tree->log_commit[index2], 0);
2966 mutex_unlock(&log_root_tree->log_mutex);
2967
2968 /*
2969 * The barrier before waitqueue_active is needed so all the updates
2970 * above are seen by the woken threads. It might not be necessary, but
2971 * proving that seems to be hard.
2972 */
2973 smp_mb();
2974 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2975 wake_up(&log_root_tree->log_commit_wait[index2]);
2976 out:
2977 mutex_lock(&root->log_mutex);
2978 btrfs_remove_all_log_ctxs(root, index1, ret);
2979 root->log_transid_committed++;
2980 atomic_set(&root->log_commit[index1], 0);
2981 mutex_unlock(&root->log_mutex);
2982
2983 /*
2984 * The barrier before waitqueue_active is needed so all the updates
2985 * above are seen by the woken threads. It might not be necessary, but
2986 * proving that seems to be hard.
2987 */
2988 smp_mb();
2989 if (waitqueue_active(&root->log_commit_wait[index1]))
2990 wake_up(&root->log_commit_wait[index1]);
2991 return ret;
2992 }
2993
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)2994 static void free_log_tree(struct btrfs_trans_handle *trans,
2995 struct btrfs_root *log)
2996 {
2997 int ret;
2998 u64 start;
2999 u64 end;
3000 struct walk_control wc = {
3001 .free = 1,
3002 .process_func = process_one_buffer
3003 };
3004
3005 ret = walk_log_tree(trans, log, &wc);
3006 /* I don't think this can happen but just in case */
3007 if (ret)
3008 btrfs_abort_transaction(trans, log, ret);
3009
3010 while (1) {
3011 ret = find_first_extent_bit(&log->dirty_log_pages,
3012 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
3013 NULL);
3014 if (ret)
3015 break;
3016
3017 clear_extent_bits(&log->dirty_log_pages, start, end,
3018 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
3019 }
3020
3021 /*
3022 * We may have short-circuited the log tree with the full commit logic
3023 * and left ordered extents on our list, so clear these out to keep us
3024 * from leaking inodes and memory.
3025 */
3026 btrfs_free_logged_extents(log, 0);
3027 btrfs_free_logged_extents(log, 1);
3028
3029 free_extent_buffer(log->node);
3030 kfree(log);
3031 }
3032
3033 /*
3034 * free all the extents used by the tree log. This should be called
3035 * at commit time of the full transaction
3036 */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3037 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3038 {
3039 if (root->log_root) {
3040 free_log_tree(trans, root->log_root);
3041 root->log_root = NULL;
3042 }
3043 return 0;
3044 }
3045
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3046 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3047 struct btrfs_fs_info *fs_info)
3048 {
3049 if (fs_info->log_root_tree) {
3050 free_log_tree(trans, fs_info->log_root_tree);
3051 fs_info->log_root_tree = NULL;
3052 }
3053 return 0;
3054 }
3055
3056 /*
3057 * If both a file and directory are logged, and unlinks or renames are
3058 * mixed in, we have a few interesting corners:
3059 *
3060 * create file X in dir Y
3061 * link file X to X.link in dir Y
3062 * fsync file X
3063 * unlink file X but leave X.link
3064 * fsync dir Y
3065 *
3066 * After a crash we would expect only X.link to exist. But file X
3067 * didn't get fsync'd again so the log has back refs for X and X.link.
3068 *
3069 * We solve this by removing directory entries and inode backrefs from the
3070 * log when a file that was logged in the current transaction is
3071 * unlinked. Any later fsync will include the updated log entries, and
3072 * we'll be able to reconstruct the proper directory items from backrefs.
3073 *
3074 * This optimizations allows us to avoid relogging the entire inode
3075 * or the entire directory.
3076 */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct inode * dir,u64 index)3077 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3078 struct btrfs_root *root,
3079 const char *name, int name_len,
3080 struct inode *dir, u64 index)
3081 {
3082 struct btrfs_root *log;
3083 struct btrfs_dir_item *di;
3084 struct btrfs_path *path;
3085 int ret;
3086 int err = 0;
3087 int bytes_del = 0;
3088 u64 dir_ino = btrfs_ino(dir);
3089
3090 if (BTRFS_I(dir)->logged_trans < trans->transid)
3091 return 0;
3092
3093 ret = join_running_log_trans(root);
3094 if (ret)
3095 return 0;
3096
3097 mutex_lock(&BTRFS_I(dir)->log_mutex);
3098
3099 log = root->log_root;
3100 path = btrfs_alloc_path();
3101 if (!path) {
3102 err = -ENOMEM;
3103 goto out_unlock;
3104 }
3105
3106 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3107 name, name_len, -1);
3108 if (IS_ERR(di)) {
3109 err = PTR_ERR(di);
3110 goto fail;
3111 }
3112 if (di) {
3113 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3114 bytes_del += name_len;
3115 if (ret) {
3116 err = ret;
3117 goto fail;
3118 }
3119 }
3120 btrfs_release_path(path);
3121 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3122 index, name, name_len, -1);
3123 if (IS_ERR(di)) {
3124 err = PTR_ERR(di);
3125 goto fail;
3126 }
3127 if (di) {
3128 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3129 bytes_del += name_len;
3130 if (ret) {
3131 err = ret;
3132 goto fail;
3133 }
3134 }
3135
3136 /* update the directory size in the log to reflect the names
3137 * we have removed
3138 */
3139 if (bytes_del) {
3140 struct btrfs_key key;
3141
3142 key.objectid = dir_ino;
3143 key.offset = 0;
3144 key.type = BTRFS_INODE_ITEM_KEY;
3145 btrfs_release_path(path);
3146
3147 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3148 if (ret < 0) {
3149 err = ret;
3150 goto fail;
3151 }
3152 if (ret == 0) {
3153 struct btrfs_inode_item *item;
3154 u64 i_size;
3155
3156 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3157 struct btrfs_inode_item);
3158 i_size = btrfs_inode_size(path->nodes[0], item);
3159 if (i_size > bytes_del)
3160 i_size -= bytes_del;
3161 else
3162 i_size = 0;
3163 btrfs_set_inode_size(path->nodes[0], item, i_size);
3164 btrfs_mark_buffer_dirty(path->nodes[0]);
3165 } else
3166 ret = 0;
3167 btrfs_release_path(path);
3168 }
3169 fail:
3170 btrfs_free_path(path);
3171 out_unlock:
3172 mutex_unlock(&BTRFS_I(dir)->log_mutex);
3173 if (err == -ENOSPC) {
3174 btrfs_set_log_full_commit(root->fs_info, trans);
3175 err = 0;
3176 } else if (err < 0 && err != -ENOENT) {
3177 /* ENOENT can be returned if the entry hasn't been fsynced yet */
3178 btrfs_abort_transaction(trans, root, err);
3179 }
3180
3181 btrfs_end_log_trans(root);
3182
3183 return err;
3184 }
3185
3186 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct inode * inode,u64 dirid)3187 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3188 struct btrfs_root *root,
3189 const char *name, int name_len,
3190 struct inode *inode, u64 dirid)
3191 {
3192 struct btrfs_root *log;
3193 u64 index;
3194 int ret;
3195
3196 if (BTRFS_I(inode)->logged_trans < trans->transid)
3197 return 0;
3198
3199 ret = join_running_log_trans(root);
3200 if (ret)
3201 return 0;
3202 log = root->log_root;
3203 mutex_lock(&BTRFS_I(inode)->log_mutex);
3204
3205 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3206 dirid, &index);
3207 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3208 if (ret == -ENOSPC) {
3209 btrfs_set_log_full_commit(root->fs_info, trans);
3210 ret = 0;
3211 } else if (ret < 0 && ret != -ENOENT)
3212 btrfs_abort_transaction(trans, root, ret);
3213 btrfs_end_log_trans(root);
3214
3215 return ret;
3216 }
3217
3218 /*
3219 * creates a range item in the log for 'dirid'. first_offset and
3220 * last_offset tell us which parts of the key space the log should
3221 * be considered authoritative for.
3222 */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,int key_type,u64 dirid,u64 first_offset,u64 last_offset)3223 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3224 struct btrfs_root *log,
3225 struct btrfs_path *path,
3226 int key_type, u64 dirid,
3227 u64 first_offset, u64 last_offset)
3228 {
3229 int ret;
3230 struct btrfs_key key;
3231 struct btrfs_dir_log_item *item;
3232
3233 key.objectid = dirid;
3234 key.offset = first_offset;
3235 if (key_type == BTRFS_DIR_ITEM_KEY)
3236 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3237 else
3238 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3239 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3240 if (ret)
3241 return ret;
3242
3243 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3244 struct btrfs_dir_log_item);
3245 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3246 btrfs_mark_buffer_dirty(path->nodes[0]);
3247 btrfs_release_path(path);
3248 return 0;
3249 }
3250
3251 /*
3252 * log all the items included in the current transaction for a given
3253 * directory. This also creates the range items in the log tree required
3254 * to replay anything deleted before the fsync
3255 */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,int key_type,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)3256 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3257 struct btrfs_root *root, struct inode *inode,
3258 struct btrfs_path *path,
3259 struct btrfs_path *dst_path, int key_type,
3260 struct btrfs_log_ctx *ctx,
3261 u64 min_offset, u64 *last_offset_ret)
3262 {
3263 struct btrfs_key min_key;
3264 struct btrfs_root *log = root->log_root;
3265 struct extent_buffer *src;
3266 int err = 0;
3267 int ret;
3268 int i;
3269 int nritems;
3270 u64 first_offset = min_offset;
3271 u64 last_offset = (u64)-1;
3272 u64 ino = btrfs_ino(inode);
3273
3274 log = root->log_root;
3275
3276 min_key.objectid = ino;
3277 min_key.type = key_type;
3278 min_key.offset = min_offset;
3279
3280 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3281
3282 /*
3283 * we didn't find anything from this transaction, see if there
3284 * is anything at all
3285 */
3286 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3287 min_key.objectid = ino;
3288 min_key.type = key_type;
3289 min_key.offset = (u64)-1;
3290 btrfs_release_path(path);
3291 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3292 if (ret < 0) {
3293 btrfs_release_path(path);
3294 return ret;
3295 }
3296 ret = btrfs_previous_item(root, path, ino, key_type);
3297
3298 /* if ret == 0 there are items for this type,
3299 * create a range to tell us the last key of this type.
3300 * otherwise, there are no items in this directory after
3301 * *min_offset, and we create a range to indicate that.
3302 */
3303 if (ret == 0) {
3304 struct btrfs_key tmp;
3305 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3306 path->slots[0]);
3307 if (key_type == tmp.type)
3308 first_offset = max(min_offset, tmp.offset) + 1;
3309 }
3310 goto done;
3311 }
3312
3313 /* go backward to find any previous key */
3314 ret = btrfs_previous_item(root, path, ino, key_type);
3315 if (ret == 0) {
3316 struct btrfs_key tmp;
3317 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3318 if (key_type == tmp.type) {
3319 first_offset = tmp.offset;
3320 ret = overwrite_item(trans, log, dst_path,
3321 path->nodes[0], path->slots[0],
3322 &tmp);
3323 if (ret) {
3324 err = ret;
3325 goto done;
3326 }
3327 }
3328 }
3329 btrfs_release_path(path);
3330
3331 /*
3332 * Find the first key from this transaction again. See the note for
3333 * log_new_dir_dentries, if we're logging a directory recursively we
3334 * won't be holding its i_mutex, which means we can modify the directory
3335 * while we're logging it. If we remove an entry between our first
3336 * search and this search we'll not find the key again and can just
3337 * bail.
3338 */
3339 search:
3340 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3341 if (ret != 0)
3342 goto done;
3343
3344 /*
3345 * we have a block from this transaction, log every item in it
3346 * from our directory
3347 */
3348 while (1) {
3349 struct btrfs_key tmp;
3350 src = path->nodes[0];
3351 nritems = btrfs_header_nritems(src);
3352 for (i = path->slots[0]; i < nritems; i++) {
3353 struct btrfs_dir_item *di;
3354
3355 btrfs_item_key_to_cpu(src, &min_key, i);
3356
3357 if (min_key.objectid != ino || min_key.type != key_type)
3358 goto done;
3359
3360 if (need_resched()) {
3361 btrfs_release_path(path);
3362 cond_resched();
3363 goto search;
3364 }
3365
3366 ret = overwrite_item(trans, log, dst_path, src, i,
3367 &min_key);
3368 if (ret) {
3369 err = ret;
3370 goto done;
3371 }
3372
3373 /*
3374 * We must make sure that when we log a directory entry,
3375 * the corresponding inode, after log replay, has a
3376 * matching link count. For example:
3377 *
3378 * touch foo
3379 * mkdir mydir
3380 * sync
3381 * ln foo mydir/bar
3382 * xfs_io -c "fsync" mydir
3383 * <crash>
3384 * <mount fs and log replay>
3385 *
3386 * Would result in a fsync log that when replayed, our
3387 * file inode would have a link count of 1, but we get
3388 * two directory entries pointing to the same inode.
3389 * After removing one of the names, it would not be
3390 * possible to remove the other name, which resulted
3391 * always in stale file handle errors, and would not
3392 * be possible to rmdir the parent directory, since
3393 * its i_size could never decrement to the value
3394 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3395 */
3396 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3397 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3398 if (ctx &&
3399 (btrfs_dir_transid(src, di) == trans->transid ||
3400 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3401 tmp.type != BTRFS_ROOT_ITEM_KEY)
3402 ctx->log_new_dentries = true;
3403 }
3404 path->slots[0] = nritems;
3405
3406 /*
3407 * look ahead to the next item and see if it is also
3408 * from this directory and from this transaction
3409 */
3410 ret = btrfs_next_leaf(root, path);
3411 if (ret) {
3412 if (ret == 1)
3413 last_offset = (u64)-1;
3414 else
3415 err = ret;
3416 goto done;
3417 }
3418 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3419 if (tmp.objectid != ino || tmp.type != key_type) {
3420 last_offset = (u64)-1;
3421 goto done;
3422 }
3423 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3424 ret = overwrite_item(trans, log, dst_path,
3425 path->nodes[0], path->slots[0],
3426 &tmp);
3427 if (ret)
3428 err = ret;
3429 else
3430 last_offset = tmp.offset;
3431 goto done;
3432 }
3433 }
3434 done:
3435 btrfs_release_path(path);
3436 btrfs_release_path(dst_path);
3437
3438 if (err == 0) {
3439 *last_offset_ret = last_offset;
3440 /*
3441 * insert the log range keys to indicate where the log
3442 * is valid
3443 */
3444 ret = insert_dir_log_key(trans, log, path, key_type,
3445 ino, first_offset, last_offset);
3446 if (ret)
3447 err = ret;
3448 }
3449 return err;
3450 }
3451
3452 /*
3453 * logging directories is very similar to logging inodes, We find all the items
3454 * from the current transaction and write them to the log.
3455 *
3456 * The recovery code scans the directory in the subvolume, and if it finds a
3457 * key in the range logged that is not present in the log tree, then it means
3458 * that dir entry was unlinked during the transaction.
3459 *
3460 * In order for that scan to work, we must include one key smaller than
3461 * the smallest logged by this transaction and one key larger than the largest
3462 * key logged by this transaction.
3463 */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)3464 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3465 struct btrfs_root *root, struct inode *inode,
3466 struct btrfs_path *path,
3467 struct btrfs_path *dst_path,
3468 struct btrfs_log_ctx *ctx)
3469 {
3470 u64 min_key;
3471 u64 max_key;
3472 int ret;
3473 int key_type = BTRFS_DIR_ITEM_KEY;
3474
3475 again:
3476 min_key = 0;
3477 max_key = 0;
3478 while (1) {
3479 ret = log_dir_items(trans, root, inode, path,
3480 dst_path, key_type, ctx, min_key,
3481 &max_key);
3482 if (ret)
3483 return ret;
3484 if (max_key == (u64)-1)
3485 break;
3486 min_key = max_key + 1;
3487 }
3488
3489 if (key_type == BTRFS_DIR_ITEM_KEY) {
3490 key_type = BTRFS_DIR_INDEX_KEY;
3491 goto again;
3492 }
3493 return 0;
3494 }
3495
3496 /*
3497 * a helper function to drop items from the log before we relog an
3498 * inode. max_key_type indicates the highest item type to remove.
3499 * This cannot be run for file data extents because it does not
3500 * free the extents they point to.
3501 */
drop_objectid_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 objectid,int max_key_type)3502 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3503 struct btrfs_root *log,
3504 struct btrfs_path *path,
3505 u64 objectid, int max_key_type)
3506 {
3507 int ret;
3508 struct btrfs_key key;
3509 struct btrfs_key found_key;
3510 int start_slot;
3511
3512 key.objectid = objectid;
3513 key.type = max_key_type;
3514 key.offset = (u64)-1;
3515
3516 while (1) {
3517 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3518 BUG_ON(ret == 0); /* Logic error */
3519 if (ret < 0)
3520 break;
3521
3522 if (path->slots[0] == 0)
3523 break;
3524
3525 path->slots[0]--;
3526 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3527 path->slots[0]);
3528
3529 if (found_key.objectid != objectid)
3530 break;
3531
3532 found_key.offset = 0;
3533 found_key.type = 0;
3534 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3535 &start_slot);
3536
3537 ret = btrfs_del_items(trans, log, path, start_slot,
3538 path->slots[0] - start_slot + 1);
3539 /*
3540 * If start slot isn't 0 then we don't need to re-search, we've
3541 * found the last guy with the objectid in this tree.
3542 */
3543 if (ret || start_slot != 0)
3544 break;
3545 btrfs_release_path(path);
3546 }
3547 btrfs_release_path(path);
3548 if (ret > 0)
3549 ret = 0;
3550 return ret;
3551 }
3552
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only,u64 logged_isize)3553 static void fill_inode_item(struct btrfs_trans_handle *trans,
3554 struct extent_buffer *leaf,
3555 struct btrfs_inode_item *item,
3556 struct inode *inode, int log_inode_only,
3557 u64 logged_isize)
3558 {
3559 struct btrfs_map_token token;
3560
3561 btrfs_init_map_token(&token);
3562
3563 if (log_inode_only) {
3564 /* set the generation to zero so the recover code
3565 * can tell the difference between an logging
3566 * just to say 'this inode exists' and a logging
3567 * to say 'update this inode with these values'
3568 */
3569 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3570 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3571 } else {
3572 btrfs_set_token_inode_generation(leaf, item,
3573 BTRFS_I(inode)->generation,
3574 &token);
3575 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3576 }
3577
3578 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3579 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3580 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3581 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3582
3583 btrfs_set_token_timespec_sec(leaf, &item->atime,
3584 inode->i_atime.tv_sec, &token);
3585 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3586 inode->i_atime.tv_nsec, &token);
3587
3588 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3589 inode->i_mtime.tv_sec, &token);
3590 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3591 inode->i_mtime.tv_nsec, &token);
3592
3593 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3594 inode->i_ctime.tv_sec, &token);
3595 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3596 inode->i_ctime.tv_nsec, &token);
3597
3598 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3599 &token);
3600
3601 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3602 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3603 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3604 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3605 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3606 }
3607
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct inode * inode)3608 static int log_inode_item(struct btrfs_trans_handle *trans,
3609 struct btrfs_root *log, struct btrfs_path *path,
3610 struct inode *inode)
3611 {
3612 struct btrfs_inode_item *inode_item;
3613 int ret;
3614
3615 ret = btrfs_insert_empty_item(trans, log, path,
3616 &BTRFS_I(inode)->location,
3617 sizeof(*inode_item));
3618 if (ret && ret != -EEXIST)
3619 return ret;
3620 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3621 struct btrfs_inode_item);
3622 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
3623 btrfs_release_path(path);
3624 return 0;
3625 }
3626
copy_items(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,u64 * last_extent,int start_slot,int nr,int inode_only,u64 logged_isize)3627 static noinline int copy_items(struct btrfs_trans_handle *trans,
3628 struct inode *inode,
3629 struct btrfs_path *dst_path,
3630 struct btrfs_path *src_path, u64 *last_extent,
3631 int start_slot, int nr, int inode_only,
3632 u64 logged_isize)
3633 {
3634 unsigned long src_offset;
3635 unsigned long dst_offset;
3636 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3637 struct btrfs_file_extent_item *extent;
3638 struct btrfs_inode_item *inode_item;
3639 struct extent_buffer *src = src_path->nodes[0];
3640 struct btrfs_key first_key, last_key, key;
3641 int ret;
3642 struct btrfs_key *ins_keys;
3643 u32 *ins_sizes;
3644 char *ins_data;
3645 int i;
3646 struct list_head ordered_sums;
3647 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3648 bool has_extents = false;
3649 bool need_find_last_extent = true;
3650 bool done = false;
3651
3652 INIT_LIST_HEAD(&ordered_sums);
3653
3654 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3655 nr * sizeof(u32), GFP_NOFS);
3656 if (!ins_data)
3657 return -ENOMEM;
3658
3659 first_key.objectid = (u64)-1;
3660
3661 ins_sizes = (u32 *)ins_data;
3662 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3663
3664 for (i = 0; i < nr; i++) {
3665 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3666 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3667 }
3668 ret = btrfs_insert_empty_items(trans, log, dst_path,
3669 ins_keys, ins_sizes, nr);
3670 if (ret) {
3671 kfree(ins_data);
3672 return ret;
3673 }
3674
3675 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3676 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3677 dst_path->slots[0]);
3678
3679 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3680
3681 if ((i == (nr - 1)))
3682 last_key = ins_keys[i];
3683
3684 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3685 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3686 dst_path->slots[0],
3687 struct btrfs_inode_item);
3688 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3689 inode, inode_only == LOG_INODE_EXISTS,
3690 logged_isize);
3691 } else {
3692 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3693 src_offset, ins_sizes[i]);
3694 }
3695
3696 /*
3697 * We set need_find_last_extent here in case we know we were
3698 * processing other items and then walk into the first extent in
3699 * the inode. If we don't hit an extent then nothing changes,
3700 * we'll do the last search the next time around.
3701 */
3702 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3703 has_extents = true;
3704 if (first_key.objectid == (u64)-1)
3705 first_key = ins_keys[i];
3706 } else {
3707 need_find_last_extent = false;
3708 }
3709
3710 /* take a reference on file data extents so that truncates
3711 * or deletes of this inode don't have to relog the inode
3712 * again
3713 */
3714 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3715 !skip_csum) {
3716 int found_type;
3717 extent = btrfs_item_ptr(src, start_slot + i,
3718 struct btrfs_file_extent_item);
3719
3720 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3721 continue;
3722
3723 found_type = btrfs_file_extent_type(src, extent);
3724 if (found_type == BTRFS_FILE_EXTENT_REG) {
3725 u64 ds, dl, cs, cl;
3726 ds = btrfs_file_extent_disk_bytenr(src,
3727 extent);
3728 /* ds == 0 is a hole */
3729 if (ds == 0)
3730 continue;
3731
3732 dl = btrfs_file_extent_disk_num_bytes(src,
3733 extent);
3734 cs = btrfs_file_extent_offset(src, extent);
3735 cl = btrfs_file_extent_num_bytes(src,
3736 extent);
3737 if (btrfs_file_extent_compression(src,
3738 extent)) {
3739 cs = 0;
3740 cl = dl;
3741 }
3742
3743 ret = btrfs_lookup_csums_range(
3744 log->fs_info->csum_root,
3745 ds + cs, ds + cs + cl - 1,
3746 &ordered_sums, 0);
3747 if (ret)
3748 break;
3749 }
3750 }
3751 }
3752
3753 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3754 btrfs_release_path(dst_path);
3755 kfree(ins_data);
3756
3757 /*
3758 * we have to do this after the loop above to avoid changing the
3759 * log tree while trying to change the log tree.
3760 */
3761 while (!list_empty(&ordered_sums)) {
3762 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3763 struct btrfs_ordered_sum,
3764 list);
3765 if (!ret)
3766 ret = btrfs_csum_file_blocks(trans, log, sums);
3767 list_del(&sums->list);
3768 kfree(sums);
3769 }
3770
3771 if (!has_extents)
3772 return ret;
3773
3774 if (need_find_last_extent && *last_extent == first_key.offset) {
3775 /*
3776 * We don't have any leafs between our current one and the one
3777 * we processed before that can have file extent items for our
3778 * inode (and have a generation number smaller than our current
3779 * transaction id).
3780 */
3781 need_find_last_extent = false;
3782 }
3783
3784 /*
3785 * Because we use btrfs_search_forward we could skip leaves that were
3786 * not modified and then assume *last_extent is valid when it really
3787 * isn't. So back up to the previous leaf and read the end of the last
3788 * extent before we go and fill in holes.
3789 */
3790 if (need_find_last_extent) {
3791 u64 len;
3792
3793 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3794 if (ret < 0)
3795 return ret;
3796 if (ret)
3797 goto fill_holes;
3798 if (src_path->slots[0])
3799 src_path->slots[0]--;
3800 src = src_path->nodes[0];
3801 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3802 if (key.objectid != btrfs_ino(inode) ||
3803 key.type != BTRFS_EXTENT_DATA_KEY)
3804 goto fill_holes;
3805 extent = btrfs_item_ptr(src, src_path->slots[0],
3806 struct btrfs_file_extent_item);
3807 if (btrfs_file_extent_type(src, extent) ==
3808 BTRFS_FILE_EXTENT_INLINE) {
3809 len = btrfs_file_extent_inline_len(src,
3810 src_path->slots[0],
3811 extent);
3812 *last_extent = ALIGN(key.offset + len,
3813 log->sectorsize);
3814 } else {
3815 len = btrfs_file_extent_num_bytes(src, extent);
3816 *last_extent = key.offset + len;
3817 }
3818 }
3819 fill_holes:
3820 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3821 * things could have happened
3822 *
3823 * 1) A merge could have happened, so we could currently be on a leaf
3824 * that holds what we were copying in the first place.
3825 * 2) A split could have happened, and now not all of the items we want
3826 * are on the same leaf.
3827 *
3828 * So we need to adjust how we search for holes, we need to drop the
3829 * path and re-search for the first extent key we found, and then walk
3830 * forward until we hit the last one we copied.
3831 */
3832 if (need_find_last_extent) {
3833 /* btrfs_prev_leaf could return 1 without releasing the path */
3834 btrfs_release_path(src_path);
3835 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3836 src_path, 0, 0);
3837 if (ret < 0)
3838 return ret;
3839 ASSERT(ret == 0);
3840 src = src_path->nodes[0];
3841 i = src_path->slots[0];
3842 } else {
3843 i = start_slot;
3844 }
3845
3846 /*
3847 * Ok so here we need to go through and fill in any holes we may have
3848 * to make sure that holes are punched for those areas in case they had
3849 * extents previously.
3850 */
3851 while (!done) {
3852 u64 offset, len;
3853 u64 extent_end;
3854
3855 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3856 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3857 if (ret < 0)
3858 return ret;
3859 ASSERT(ret == 0);
3860 src = src_path->nodes[0];
3861 i = 0;
3862 need_find_last_extent = true;
3863 }
3864
3865 btrfs_item_key_to_cpu(src, &key, i);
3866 if (!btrfs_comp_cpu_keys(&key, &last_key))
3867 done = true;
3868 if (key.objectid != btrfs_ino(inode) ||
3869 key.type != BTRFS_EXTENT_DATA_KEY) {
3870 i++;
3871 continue;
3872 }
3873 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3874 if (btrfs_file_extent_type(src, extent) ==
3875 BTRFS_FILE_EXTENT_INLINE) {
3876 len = btrfs_file_extent_inline_len(src, i, extent);
3877 extent_end = ALIGN(key.offset + len, log->sectorsize);
3878 } else {
3879 len = btrfs_file_extent_num_bytes(src, extent);
3880 extent_end = key.offset + len;
3881 }
3882 i++;
3883
3884 if (*last_extent == key.offset) {
3885 *last_extent = extent_end;
3886 continue;
3887 }
3888 offset = *last_extent;
3889 len = key.offset - *last_extent;
3890 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3891 offset, 0, 0, len, 0, len, 0,
3892 0, 0);
3893 if (ret)
3894 break;
3895 *last_extent = extent_end;
3896 }
3897 /*
3898 * Need to let the callers know we dropped the path so they should
3899 * re-search.
3900 */
3901 if (!ret && need_find_last_extent)
3902 ret = 1;
3903 return ret;
3904 }
3905
extent_cmp(void * priv,struct list_head * a,struct list_head * b)3906 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3907 {
3908 struct extent_map *em1, *em2;
3909
3910 em1 = list_entry(a, struct extent_map, list);
3911 em2 = list_entry(b, struct extent_map, list);
3912
3913 if (em1->start < em2->start)
3914 return -1;
3915 else if (em1->start > em2->start)
3916 return 1;
3917 return 0;
3918 }
3919
wait_ordered_extents(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_root * root,const struct extent_map * em,const struct list_head * logged_list,bool * ordered_io_error)3920 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3921 struct inode *inode,
3922 struct btrfs_root *root,
3923 const struct extent_map *em,
3924 const struct list_head *logged_list,
3925 bool *ordered_io_error)
3926 {
3927 struct btrfs_ordered_extent *ordered;
3928 struct btrfs_root *log = root->log_root;
3929 u64 mod_start = em->mod_start;
3930 u64 mod_len = em->mod_len;
3931 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3932 u64 csum_offset;
3933 u64 csum_len;
3934 LIST_HEAD(ordered_sums);
3935 int ret = 0;
3936
3937 *ordered_io_error = false;
3938
3939 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3940 em->block_start == EXTENT_MAP_HOLE)
3941 return 0;
3942
3943 /*
3944 * Wait far any ordered extent that covers our extent map. If it
3945 * finishes without an error, first check and see if our csums are on
3946 * our outstanding ordered extents.
3947 */
3948 list_for_each_entry(ordered, logged_list, log_list) {
3949 struct btrfs_ordered_sum *sum;
3950
3951 if (!mod_len)
3952 break;
3953
3954 if (ordered->file_offset + ordered->len <= mod_start ||
3955 mod_start + mod_len <= ordered->file_offset)
3956 continue;
3957
3958 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3959 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3960 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3961 const u64 start = ordered->file_offset;
3962 const u64 end = ordered->file_offset + ordered->len - 1;
3963
3964 WARN_ON(ordered->inode != inode);
3965 filemap_fdatawrite_range(inode->i_mapping, start, end);
3966 }
3967
3968 wait_event(ordered->wait,
3969 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3970 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3971
3972 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3973 /*
3974 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3975 * i_mapping flags, so that the next fsync won't get
3976 * an outdated io error too.
3977 */
3978 btrfs_inode_check_errors(inode);
3979 *ordered_io_error = true;
3980 break;
3981 }
3982 /*
3983 * We are going to copy all the csums on this ordered extent, so
3984 * go ahead and adjust mod_start and mod_len in case this
3985 * ordered extent has already been logged.
3986 */
3987 if (ordered->file_offset > mod_start) {
3988 if (ordered->file_offset + ordered->len >=
3989 mod_start + mod_len)
3990 mod_len = ordered->file_offset - mod_start;
3991 /*
3992 * If we have this case
3993 *
3994 * |--------- logged extent ---------|
3995 * |----- ordered extent ----|
3996 *
3997 * Just don't mess with mod_start and mod_len, we'll
3998 * just end up logging more csums than we need and it
3999 * will be ok.
4000 */
4001 } else {
4002 if (ordered->file_offset + ordered->len <
4003 mod_start + mod_len) {
4004 mod_len = (mod_start + mod_len) -
4005 (ordered->file_offset + ordered->len);
4006 mod_start = ordered->file_offset +
4007 ordered->len;
4008 } else {
4009 mod_len = 0;
4010 }
4011 }
4012
4013 if (skip_csum)
4014 continue;
4015
4016 /*
4017 * To keep us from looping for the above case of an ordered
4018 * extent that falls inside of the logged extent.
4019 */
4020 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4021 &ordered->flags))
4022 continue;
4023
4024 list_for_each_entry(sum, &ordered->list, list) {
4025 ret = btrfs_csum_file_blocks(trans, log, sum);
4026 if (ret)
4027 break;
4028 }
4029 }
4030
4031 if (*ordered_io_error || !mod_len || ret || skip_csum)
4032 return ret;
4033
4034 if (em->compress_type) {
4035 csum_offset = 0;
4036 csum_len = max(em->block_len, em->orig_block_len);
4037 } else {
4038 csum_offset = mod_start - em->start;
4039 csum_len = mod_len;
4040 }
4041
4042 /* block start is already adjusted for the file extent offset. */
4043 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
4044 em->block_start + csum_offset,
4045 em->block_start + csum_offset +
4046 csum_len - 1, &ordered_sums, 0);
4047 if (ret)
4048 return ret;
4049
4050 while (!list_empty(&ordered_sums)) {
4051 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4052 struct btrfs_ordered_sum,
4053 list);
4054 if (!ret)
4055 ret = btrfs_csum_file_blocks(trans, log, sums);
4056 list_del(&sums->list);
4057 kfree(sums);
4058 }
4059
4060 return ret;
4061 }
4062
log_one_extent(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_root * root,const struct extent_map * em,struct btrfs_path * path,const struct list_head * logged_list,struct btrfs_log_ctx * ctx)4063 static int log_one_extent(struct btrfs_trans_handle *trans,
4064 struct inode *inode, struct btrfs_root *root,
4065 const struct extent_map *em,
4066 struct btrfs_path *path,
4067 const struct list_head *logged_list,
4068 struct btrfs_log_ctx *ctx)
4069 {
4070 struct btrfs_root *log = root->log_root;
4071 struct btrfs_file_extent_item *fi;
4072 struct extent_buffer *leaf;
4073 struct btrfs_map_token token;
4074 struct btrfs_key key;
4075 u64 extent_offset = em->start - em->orig_start;
4076 u64 block_len;
4077 int ret;
4078 int extent_inserted = 0;
4079 bool ordered_io_err = false;
4080
4081 ret = wait_ordered_extents(trans, inode, root, em, logged_list,
4082 &ordered_io_err);
4083 if (ret)
4084 return ret;
4085
4086 if (ordered_io_err) {
4087 ctx->io_err = -EIO;
4088 return 0;
4089 }
4090
4091 btrfs_init_map_token(&token);
4092
4093 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4094 em->start + em->len, NULL, 0, 1,
4095 sizeof(*fi), &extent_inserted);
4096 if (ret)
4097 return ret;
4098
4099 if (!extent_inserted) {
4100 key.objectid = btrfs_ino(inode);
4101 key.type = BTRFS_EXTENT_DATA_KEY;
4102 key.offset = em->start;
4103
4104 ret = btrfs_insert_empty_item(trans, log, path, &key,
4105 sizeof(*fi));
4106 if (ret)
4107 return ret;
4108 }
4109 leaf = path->nodes[0];
4110 fi = btrfs_item_ptr(leaf, path->slots[0],
4111 struct btrfs_file_extent_item);
4112
4113 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4114 &token);
4115 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4116 btrfs_set_token_file_extent_type(leaf, fi,
4117 BTRFS_FILE_EXTENT_PREALLOC,
4118 &token);
4119 else
4120 btrfs_set_token_file_extent_type(leaf, fi,
4121 BTRFS_FILE_EXTENT_REG,
4122 &token);
4123
4124 block_len = max(em->block_len, em->orig_block_len);
4125 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4126 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4127 em->block_start,
4128 &token);
4129 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4130 &token);
4131 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4132 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4133 em->block_start -
4134 extent_offset, &token);
4135 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4136 &token);
4137 } else {
4138 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4139 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4140 &token);
4141 }
4142
4143 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4144 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4145 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4146 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4147 &token);
4148 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4149 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4150 btrfs_mark_buffer_dirty(leaf);
4151
4152 btrfs_release_path(path);
4153
4154 return ret;
4155 }
4156
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,struct list_head * logged_list,struct btrfs_log_ctx * ctx)4157 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4158 struct btrfs_root *root,
4159 struct inode *inode,
4160 struct btrfs_path *path,
4161 struct list_head *logged_list,
4162 struct btrfs_log_ctx *ctx)
4163 {
4164 struct extent_map *em, *n;
4165 struct list_head extents;
4166 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4167 u64 test_gen;
4168 int ret = 0;
4169 int num = 0;
4170
4171 INIT_LIST_HEAD(&extents);
4172
4173 write_lock(&tree->lock);
4174 test_gen = root->fs_info->last_trans_committed;
4175
4176 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4177 list_del_init(&em->list);
4178
4179 /*
4180 * Just an arbitrary number, this can be really CPU intensive
4181 * once we start getting a lot of extents, and really once we
4182 * have a bunch of extents we just want to commit since it will
4183 * be faster.
4184 */
4185 if (++num > 32768) {
4186 list_del_init(&tree->modified_extents);
4187 ret = -EFBIG;
4188 goto process;
4189 }
4190
4191 if (em->generation <= test_gen)
4192 continue;
4193 /* Need a ref to keep it from getting evicted from cache */
4194 atomic_inc(&em->refs);
4195 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4196 list_add_tail(&em->list, &extents);
4197 num++;
4198 }
4199
4200 list_sort(NULL, &extents, extent_cmp);
4201
4202 process:
4203 while (!list_empty(&extents)) {
4204 em = list_entry(extents.next, struct extent_map, list);
4205
4206 list_del_init(&em->list);
4207
4208 /*
4209 * If we had an error we just need to delete everybody from our
4210 * private list.
4211 */
4212 if (ret) {
4213 clear_em_logging(tree, em);
4214 free_extent_map(em);
4215 continue;
4216 }
4217
4218 write_unlock(&tree->lock);
4219
4220 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4221 ctx);
4222 write_lock(&tree->lock);
4223 clear_em_logging(tree, em);
4224 free_extent_map(em);
4225 }
4226 WARN_ON(!list_empty(&extents));
4227 write_unlock(&tree->lock);
4228
4229 btrfs_release_path(path);
4230 return ret;
4231 }
4232
logged_inode_size(struct btrfs_root * log,struct inode * inode,struct btrfs_path * path,u64 * size_ret)4233 static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4234 struct btrfs_path *path, u64 *size_ret)
4235 {
4236 struct btrfs_key key;
4237 int ret;
4238
4239 key.objectid = btrfs_ino(inode);
4240 key.type = BTRFS_INODE_ITEM_KEY;
4241 key.offset = 0;
4242
4243 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4244 if (ret < 0) {
4245 return ret;
4246 } else if (ret > 0) {
4247 *size_ret = 0;
4248 } else {
4249 struct btrfs_inode_item *item;
4250
4251 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4252 struct btrfs_inode_item);
4253 *size_ret = btrfs_inode_size(path->nodes[0], item);
4254 }
4255
4256 btrfs_release_path(path);
4257 return 0;
4258 }
4259
4260 /*
4261 * At the moment we always log all xattrs. This is to figure out at log replay
4262 * time which xattrs must have their deletion replayed. If a xattr is missing
4263 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4264 * because if a xattr is deleted, the inode is fsynced and a power failure
4265 * happens, causing the log to be replayed the next time the fs is mounted,
4266 * we want the xattr to not exist anymore (same behaviour as other filesystems
4267 * with a journal, ext3/4, xfs, f2fs, etc).
4268 */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path)4269 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4270 struct btrfs_root *root,
4271 struct inode *inode,
4272 struct btrfs_path *path,
4273 struct btrfs_path *dst_path)
4274 {
4275 int ret;
4276 struct btrfs_key key;
4277 const u64 ino = btrfs_ino(inode);
4278 int ins_nr = 0;
4279 int start_slot = 0;
4280
4281 key.objectid = ino;
4282 key.type = BTRFS_XATTR_ITEM_KEY;
4283 key.offset = 0;
4284
4285 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4286 if (ret < 0)
4287 return ret;
4288
4289 while (true) {
4290 int slot = path->slots[0];
4291 struct extent_buffer *leaf = path->nodes[0];
4292 int nritems = btrfs_header_nritems(leaf);
4293
4294 if (slot >= nritems) {
4295 if (ins_nr > 0) {
4296 u64 last_extent = 0;
4297
4298 ret = copy_items(trans, inode, dst_path, path,
4299 &last_extent, start_slot,
4300 ins_nr, 1, 0);
4301 /* can't be 1, extent items aren't processed */
4302 ASSERT(ret <= 0);
4303 if (ret < 0)
4304 return ret;
4305 ins_nr = 0;
4306 }
4307 ret = btrfs_next_leaf(root, path);
4308 if (ret < 0)
4309 return ret;
4310 else if (ret > 0)
4311 break;
4312 continue;
4313 }
4314
4315 btrfs_item_key_to_cpu(leaf, &key, slot);
4316 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4317 break;
4318
4319 if (ins_nr == 0)
4320 start_slot = slot;
4321 ins_nr++;
4322 path->slots[0]++;
4323 cond_resched();
4324 }
4325 if (ins_nr > 0) {
4326 u64 last_extent = 0;
4327
4328 ret = copy_items(trans, inode, dst_path, path,
4329 &last_extent, start_slot,
4330 ins_nr, 1, 0);
4331 /* can't be 1, extent items aren't processed */
4332 ASSERT(ret <= 0);
4333 if (ret < 0)
4334 return ret;
4335 }
4336
4337 return 0;
4338 }
4339
4340 /*
4341 * If the no holes feature is enabled we need to make sure any hole between the
4342 * last extent and the i_size of our inode is explicitly marked in the log. This
4343 * is to make sure that doing something like:
4344 *
4345 * 1) create file with 128Kb of data
4346 * 2) truncate file to 64Kb
4347 * 3) truncate file to 256Kb
4348 * 4) fsync file
4349 * 5) <crash/power failure>
4350 * 6) mount fs and trigger log replay
4351 *
4352 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4353 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4354 * file correspond to a hole. The presence of explicit holes in a log tree is
4355 * what guarantees that log replay will remove/adjust file extent items in the
4356 * fs/subvol tree.
4357 *
4358 * Here we do not need to care about holes between extents, that is already done
4359 * by copy_items(). We also only need to do this in the full sync path, where we
4360 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4361 * lookup the list of modified extent maps and if any represents a hole, we
4362 * insert a corresponding extent representing a hole in the log tree.
4363 */
btrfs_log_trailing_hole(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path)4364 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4365 struct btrfs_root *root,
4366 struct inode *inode,
4367 struct btrfs_path *path)
4368 {
4369 int ret;
4370 struct btrfs_key key;
4371 u64 hole_start;
4372 u64 hole_size;
4373 struct extent_buffer *leaf;
4374 struct btrfs_root *log = root->log_root;
4375 const u64 ino = btrfs_ino(inode);
4376 const u64 i_size = i_size_read(inode);
4377
4378 if (!btrfs_fs_incompat(root->fs_info, NO_HOLES))
4379 return 0;
4380
4381 key.objectid = ino;
4382 key.type = BTRFS_EXTENT_DATA_KEY;
4383 key.offset = (u64)-1;
4384
4385 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4386 ASSERT(ret != 0);
4387 if (ret < 0)
4388 return ret;
4389
4390 ASSERT(path->slots[0] > 0);
4391 path->slots[0]--;
4392 leaf = path->nodes[0];
4393 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4394
4395 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4396 /* inode does not have any extents */
4397 hole_start = 0;
4398 hole_size = i_size;
4399 } else {
4400 struct btrfs_file_extent_item *extent;
4401 u64 len;
4402
4403 /*
4404 * If there's an extent beyond i_size, an explicit hole was
4405 * already inserted by copy_items().
4406 */
4407 if (key.offset >= i_size)
4408 return 0;
4409
4410 extent = btrfs_item_ptr(leaf, path->slots[0],
4411 struct btrfs_file_extent_item);
4412
4413 if (btrfs_file_extent_type(leaf, extent) ==
4414 BTRFS_FILE_EXTENT_INLINE)
4415 return 0;
4416
4417 len = btrfs_file_extent_num_bytes(leaf, extent);
4418 /* Last extent goes beyond i_size, no need to log a hole. */
4419 if (key.offset + len > i_size)
4420 return 0;
4421 hole_start = key.offset + len;
4422 hole_size = i_size - hole_start;
4423 }
4424 btrfs_release_path(path);
4425
4426 /* Last extent ends at i_size. */
4427 if (hole_size == 0)
4428 return 0;
4429
4430 hole_size = ALIGN(hole_size, root->sectorsize);
4431 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4432 hole_size, 0, hole_size, 0, 0, 0);
4433 return ret;
4434 }
4435
4436 /*
4437 * When we are logging a new inode X, check if it doesn't have a reference that
4438 * matches the reference from some other inode Y created in a past transaction
4439 * and that was renamed in the current transaction. If we don't do this, then at
4440 * log replay time we can lose inode Y (and all its files if it's a directory):
4441 *
4442 * mkdir /mnt/x
4443 * echo "hello world" > /mnt/x/foobar
4444 * sync
4445 * mv /mnt/x /mnt/y
4446 * mkdir /mnt/x # or touch /mnt/x
4447 * xfs_io -c fsync /mnt/x
4448 * <power fail>
4449 * mount fs, trigger log replay
4450 *
4451 * After the log replay procedure, we would lose the first directory and all its
4452 * files (file foobar).
4453 * For the case where inode Y is not a directory we simply end up losing it:
4454 *
4455 * echo "123" > /mnt/foo
4456 * sync
4457 * mv /mnt/foo /mnt/bar
4458 * echo "abc" > /mnt/foo
4459 * xfs_io -c fsync /mnt/foo
4460 * <power fail>
4461 *
4462 * We also need this for cases where a snapshot entry is replaced by some other
4463 * entry (file or directory) otherwise we end up with an unreplayable log due to
4464 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4465 * if it were a regular entry:
4466 *
4467 * mkdir /mnt/x
4468 * btrfs subvolume snapshot /mnt /mnt/x/snap
4469 * btrfs subvolume delete /mnt/x/snap
4470 * rmdir /mnt/x
4471 * mkdir /mnt/x
4472 * fsync /mnt/x or fsync some new file inside it
4473 * <power fail>
4474 *
4475 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4476 * the same transaction.
4477 */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct inode * inode)4478 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4479 const int slot,
4480 const struct btrfs_key *key,
4481 struct inode *inode)
4482 {
4483 int ret;
4484 struct btrfs_path *search_path;
4485 char *name = NULL;
4486 u32 name_len = 0;
4487 u32 item_size = btrfs_item_size_nr(eb, slot);
4488 u32 cur_offset = 0;
4489 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4490
4491 search_path = btrfs_alloc_path();
4492 if (!search_path)
4493 return -ENOMEM;
4494 search_path->search_commit_root = 1;
4495 search_path->skip_locking = 1;
4496
4497 while (cur_offset < item_size) {
4498 u64 parent;
4499 u32 this_name_len;
4500 u32 this_len;
4501 unsigned long name_ptr;
4502 struct btrfs_dir_item *di;
4503
4504 if (key->type == BTRFS_INODE_REF_KEY) {
4505 struct btrfs_inode_ref *iref;
4506
4507 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4508 parent = key->offset;
4509 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4510 name_ptr = (unsigned long)(iref + 1);
4511 this_len = sizeof(*iref) + this_name_len;
4512 } else {
4513 struct btrfs_inode_extref *extref;
4514
4515 extref = (struct btrfs_inode_extref *)(ptr +
4516 cur_offset);
4517 parent = btrfs_inode_extref_parent(eb, extref);
4518 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4519 name_ptr = (unsigned long)&extref->name;
4520 this_len = sizeof(*extref) + this_name_len;
4521 }
4522
4523 if (this_name_len > name_len) {
4524 char *new_name;
4525
4526 new_name = krealloc(name, this_name_len, GFP_NOFS);
4527 if (!new_name) {
4528 ret = -ENOMEM;
4529 goto out;
4530 }
4531 name_len = this_name_len;
4532 name = new_name;
4533 }
4534
4535 read_extent_buffer(eb, name, name_ptr, this_name_len);
4536 di = btrfs_lookup_dir_item(NULL, BTRFS_I(inode)->root,
4537 search_path, parent,
4538 name, this_name_len, 0);
4539 if (di && !IS_ERR(di)) {
4540 ret = 1;
4541 goto out;
4542 } else if (IS_ERR(di)) {
4543 ret = PTR_ERR(di);
4544 goto out;
4545 }
4546 btrfs_release_path(search_path);
4547
4548 cur_offset += this_len;
4549 }
4550 ret = 0;
4551 out:
4552 btrfs_free_path(search_path);
4553 kfree(name);
4554 return ret;
4555 }
4556
4557 /* log a single inode in the tree log.
4558 * At least one parent directory for this inode must exist in the tree
4559 * or be logged already.
4560 *
4561 * Any items from this inode changed by the current transaction are copied
4562 * to the log tree. An extra reference is taken on any extents in this
4563 * file, allowing us to avoid a whole pile of corner cases around logging
4564 * blocks that have been removed from the tree.
4565 *
4566 * See LOG_INODE_ALL and related defines for a description of what inode_only
4567 * does.
4568 *
4569 * This handles both files and directories.
4570 */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,int inode_only,const loff_t start,const loff_t end,struct btrfs_log_ctx * ctx)4571 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4572 struct btrfs_root *root, struct inode *inode,
4573 int inode_only,
4574 const loff_t start,
4575 const loff_t end,
4576 struct btrfs_log_ctx *ctx)
4577 {
4578 struct btrfs_path *path;
4579 struct btrfs_path *dst_path;
4580 struct btrfs_key min_key;
4581 struct btrfs_key max_key;
4582 struct btrfs_root *log = root->log_root;
4583 struct extent_buffer *src = NULL;
4584 LIST_HEAD(logged_list);
4585 u64 last_extent = 0;
4586 int err = 0;
4587 int ret;
4588 int nritems;
4589 int ins_start_slot = 0;
4590 int ins_nr;
4591 bool fast_search = false;
4592 u64 ino = btrfs_ino(inode);
4593 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4594 u64 logged_isize = 0;
4595 bool need_log_inode_item = true;
4596 bool xattrs_logged = false;
4597
4598 path = btrfs_alloc_path();
4599 if (!path)
4600 return -ENOMEM;
4601 dst_path = btrfs_alloc_path();
4602 if (!dst_path) {
4603 btrfs_free_path(path);
4604 return -ENOMEM;
4605 }
4606
4607 min_key.objectid = ino;
4608 min_key.type = BTRFS_INODE_ITEM_KEY;
4609 min_key.offset = 0;
4610
4611 max_key.objectid = ino;
4612
4613
4614 /* today the code can only do partial logging of directories */
4615 if (S_ISDIR(inode->i_mode) ||
4616 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4617 &BTRFS_I(inode)->runtime_flags) &&
4618 inode_only == LOG_INODE_EXISTS))
4619 max_key.type = BTRFS_XATTR_ITEM_KEY;
4620 else
4621 max_key.type = (u8)-1;
4622 max_key.offset = (u64)-1;
4623
4624 /*
4625 * Only run delayed items if we are a dir or a new file.
4626 * Otherwise commit the delayed inode only, which is needed in
4627 * order for the log replay code to mark inodes for link count
4628 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4629 */
4630 if (S_ISDIR(inode->i_mode) ||
4631 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed)
4632 ret = btrfs_commit_inode_delayed_items(trans, inode);
4633 else
4634 ret = btrfs_commit_inode_delayed_inode(inode);
4635
4636 if (ret) {
4637 btrfs_free_path(path);
4638 btrfs_free_path(dst_path);
4639 return ret;
4640 }
4641
4642 mutex_lock(&BTRFS_I(inode)->log_mutex);
4643
4644 btrfs_get_logged_extents(inode, &logged_list, start, end);
4645
4646 /*
4647 * a brute force approach to making sure we get the most uptodate
4648 * copies of everything.
4649 */
4650 if (S_ISDIR(inode->i_mode)) {
4651 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4652
4653 if (inode_only == LOG_INODE_EXISTS)
4654 max_key_type = BTRFS_XATTR_ITEM_KEY;
4655 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4656 } else {
4657 if (inode_only == LOG_INODE_EXISTS) {
4658 /*
4659 * Make sure the new inode item we write to the log has
4660 * the same isize as the current one (if it exists).
4661 * This is necessary to prevent data loss after log
4662 * replay, and also to prevent doing a wrong expanding
4663 * truncate - for e.g. create file, write 4K into offset
4664 * 0, fsync, write 4K into offset 4096, add hard link,
4665 * fsync some other file (to sync log), power fail - if
4666 * we use the inode's current i_size, after log replay
4667 * we get a 8Kb file, with the last 4Kb extent as a hole
4668 * (zeroes), as if an expanding truncate happened,
4669 * instead of getting a file of 4Kb only.
4670 */
4671 err = logged_inode_size(log, inode, path,
4672 &logged_isize);
4673 if (err)
4674 goto out_unlock;
4675 }
4676 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4677 &BTRFS_I(inode)->runtime_flags)) {
4678 if (inode_only == LOG_INODE_EXISTS) {
4679 max_key.type = BTRFS_XATTR_ITEM_KEY;
4680 ret = drop_objectid_items(trans, log, path, ino,
4681 max_key.type);
4682 } else {
4683 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4684 &BTRFS_I(inode)->runtime_flags);
4685 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4686 &BTRFS_I(inode)->runtime_flags);
4687 while(1) {
4688 ret = btrfs_truncate_inode_items(trans,
4689 log, inode, 0, 0);
4690 if (ret != -EAGAIN)
4691 break;
4692 }
4693 }
4694 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4695 &BTRFS_I(inode)->runtime_flags) ||
4696 inode_only == LOG_INODE_EXISTS) {
4697 if (inode_only == LOG_INODE_ALL)
4698 fast_search = true;
4699 max_key.type = BTRFS_XATTR_ITEM_KEY;
4700 ret = drop_objectid_items(trans, log, path, ino,
4701 max_key.type);
4702 } else {
4703 if (inode_only == LOG_INODE_ALL)
4704 fast_search = true;
4705 goto log_extents;
4706 }
4707
4708 }
4709 if (ret) {
4710 err = ret;
4711 goto out_unlock;
4712 }
4713
4714 while (1) {
4715 ins_nr = 0;
4716 ret = btrfs_search_forward(root, &min_key,
4717 path, trans->transid);
4718 if (ret != 0)
4719 break;
4720 again:
4721 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4722 if (min_key.objectid != ino)
4723 break;
4724 if (min_key.type > max_key.type)
4725 break;
4726
4727 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4728 need_log_inode_item = false;
4729
4730 if ((min_key.type == BTRFS_INODE_REF_KEY ||
4731 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4732 BTRFS_I(inode)->generation == trans->transid) {
4733 ret = btrfs_check_ref_name_override(path->nodes[0],
4734 path->slots[0],
4735 &min_key, inode);
4736 if (ret < 0) {
4737 err = ret;
4738 goto out_unlock;
4739 } else if (ret > 0) {
4740 err = 1;
4741 btrfs_set_log_full_commit(root->fs_info, trans);
4742 goto out_unlock;
4743 }
4744 }
4745
4746 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4747 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4748 if (ins_nr == 0)
4749 goto next_slot;
4750 ret = copy_items(trans, inode, dst_path, path,
4751 &last_extent, ins_start_slot,
4752 ins_nr, inode_only, logged_isize);
4753 if (ret < 0) {
4754 err = ret;
4755 goto out_unlock;
4756 }
4757 ins_nr = 0;
4758 if (ret) {
4759 btrfs_release_path(path);
4760 continue;
4761 }
4762 goto next_slot;
4763 }
4764
4765 src = path->nodes[0];
4766 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4767 ins_nr++;
4768 goto next_slot;
4769 } else if (!ins_nr) {
4770 ins_start_slot = path->slots[0];
4771 ins_nr = 1;
4772 goto next_slot;
4773 }
4774
4775 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4776 ins_start_slot, ins_nr, inode_only,
4777 logged_isize);
4778 if (ret < 0) {
4779 err = ret;
4780 goto out_unlock;
4781 }
4782 if (ret) {
4783 ins_nr = 0;
4784 btrfs_release_path(path);
4785 continue;
4786 }
4787 ins_nr = 1;
4788 ins_start_slot = path->slots[0];
4789 next_slot:
4790
4791 nritems = btrfs_header_nritems(path->nodes[0]);
4792 path->slots[0]++;
4793 if (path->slots[0] < nritems) {
4794 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4795 path->slots[0]);
4796 goto again;
4797 }
4798 if (ins_nr) {
4799 ret = copy_items(trans, inode, dst_path, path,
4800 &last_extent, ins_start_slot,
4801 ins_nr, inode_only, logged_isize);
4802 if (ret < 0) {
4803 err = ret;
4804 goto out_unlock;
4805 }
4806 ret = 0;
4807 ins_nr = 0;
4808 }
4809 btrfs_release_path(path);
4810
4811 if (min_key.offset < (u64)-1) {
4812 min_key.offset++;
4813 } else if (min_key.type < max_key.type) {
4814 min_key.type++;
4815 min_key.offset = 0;
4816 } else {
4817 break;
4818 }
4819 }
4820 if (ins_nr) {
4821 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4822 ins_start_slot, ins_nr, inode_only,
4823 logged_isize);
4824 if (ret < 0) {
4825 err = ret;
4826 goto out_unlock;
4827 }
4828 ret = 0;
4829 ins_nr = 0;
4830 }
4831
4832 btrfs_release_path(path);
4833 btrfs_release_path(dst_path);
4834 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4835 if (err)
4836 goto out_unlock;
4837 xattrs_logged = true;
4838 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4839 btrfs_release_path(path);
4840 btrfs_release_path(dst_path);
4841 err = btrfs_log_trailing_hole(trans, root, inode, path);
4842 if (err)
4843 goto out_unlock;
4844 }
4845 log_extents:
4846 btrfs_release_path(path);
4847 btrfs_release_path(dst_path);
4848 if (need_log_inode_item) {
4849 err = log_inode_item(trans, log, dst_path, inode);
4850 if (!err && !xattrs_logged) {
4851 err = btrfs_log_all_xattrs(trans, root, inode, path,
4852 dst_path);
4853 btrfs_release_path(path);
4854 }
4855 if (err)
4856 goto out_unlock;
4857 }
4858 if (fast_search) {
4859 /*
4860 * Some ordered extents started by fsync might have completed
4861 * before we collected the ordered extents in logged_list, which
4862 * means they're gone, not in our logged_list nor in the inode's
4863 * ordered tree. We want the application/user space to know an
4864 * error happened while attempting to persist file data so that
4865 * it can take proper action. If such error happened, we leave
4866 * without writing to the log tree and the fsync must report the
4867 * file data write error and not commit the current transaction.
4868 */
4869 err = btrfs_inode_check_errors(inode);
4870 if (err) {
4871 ctx->io_err = err;
4872 goto out_unlock;
4873 }
4874 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4875 &logged_list, ctx);
4876 if (ret) {
4877 err = ret;
4878 goto out_unlock;
4879 }
4880 } else if (inode_only == LOG_INODE_ALL) {
4881 struct extent_map *em, *n;
4882
4883 write_lock(&em_tree->lock);
4884 /*
4885 * We can't just remove every em if we're called for a ranged
4886 * fsync - that is, one that doesn't cover the whole possible
4887 * file range (0 to LLONG_MAX). This is because we can have
4888 * em's that fall outside the range we're logging and therefore
4889 * their ordered operations haven't completed yet
4890 * (btrfs_finish_ordered_io() not invoked yet). This means we
4891 * didn't get their respective file extent item in the fs/subvol
4892 * tree yet, and need to let the next fast fsync (one which
4893 * consults the list of modified extent maps) find the em so
4894 * that it logs a matching file extent item and waits for the
4895 * respective ordered operation to complete (if it's still
4896 * running).
4897 *
4898 * Removing every em outside the range we're logging would make
4899 * the next fast fsync not log their matching file extent items,
4900 * therefore making us lose data after a log replay.
4901 */
4902 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4903 list) {
4904 const u64 mod_end = em->mod_start + em->mod_len - 1;
4905
4906 if (em->mod_start >= start && mod_end <= end)
4907 list_del_init(&em->list);
4908 }
4909 write_unlock(&em_tree->lock);
4910 }
4911
4912 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4913 ret = log_directory_changes(trans, root, inode, path, dst_path,
4914 ctx);
4915 if (ret) {
4916 err = ret;
4917 goto out_unlock;
4918 }
4919 }
4920
4921 spin_lock(&BTRFS_I(inode)->lock);
4922 BTRFS_I(inode)->logged_trans = trans->transid;
4923 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4924 spin_unlock(&BTRFS_I(inode)->lock);
4925 out_unlock:
4926 if (unlikely(err))
4927 btrfs_put_logged_extents(&logged_list);
4928 else
4929 btrfs_submit_logged_extents(&logged_list, log);
4930 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4931
4932 btrfs_free_path(path);
4933 btrfs_free_path(dst_path);
4934 return err;
4935 }
4936
4937 /*
4938 * follow the dentry parent pointers up the chain and see if any
4939 * of the directories in it require a full commit before they can
4940 * be logged. Returns zero if nothing special needs to be done or 1 if
4941 * a full commit is required.
4942 */
check_parent_dirs_for_sync(struct btrfs_trans_handle * trans,struct inode * inode,struct dentry * parent,struct super_block * sb,u64 last_committed)4943 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4944 struct inode *inode,
4945 struct dentry *parent,
4946 struct super_block *sb,
4947 u64 last_committed)
4948 {
4949 int ret = 0;
4950 struct btrfs_root *root;
4951 struct dentry *old_parent = NULL;
4952 struct inode *orig_inode = inode;
4953
4954 /*
4955 * for regular files, if its inode is already on disk, we don't
4956 * have to worry about the parents at all. This is because
4957 * we can use the last_unlink_trans field to record renames
4958 * and other fun in this file.
4959 */
4960 if (S_ISREG(inode->i_mode) &&
4961 BTRFS_I(inode)->generation <= last_committed &&
4962 BTRFS_I(inode)->last_unlink_trans <= last_committed)
4963 goto out;
4964
4965 if (!S_ISDIR(inode->i_mode)) {
4966 if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
4967 goto out;
4968 inode = d_inode(parent);
4969 }
4970
4971 while (1) {
4972 /*
4973 * If we are logging a directory then we start with our inode,
4974 * not our parents inode, so we need to skipp setting the
4975 * logged_trans so that further down in the log code we don't
4976 * think this inode has already been logged.
4977 */
4978 if (inode != orig_inode)
4979 BTRFS_I(inode)->logged_trans = trans->transid;
4980 smp_mb();
4981
4982 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4983 root = BTRFS_I(inode)->root;
4984
4985 /*
4986 * make sure any commits to the log are forced
4987 * to be full commits
4988 */
4989 btrfs_set_log_full_commit(root->fs_info, trans);
4990 ret = 1;
4991 break;
4992 }
4993
4994 if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
4995 break;
4996
4997 if (IS_ROOT(parent))
4998 break;
4999
5000 parent = dget_parent(parent);
5001 dput(old_parent);
5002 old_parent = parent;
5003 inode = d_inode(parent);
5004
5005 }
5006 dput(old_parent);
5007 out:
5008 return ret;
5009 }
5010
5011 struct btrfs_dir_list {
5012 u64 ino;
5013 struct list_head list;
5014 };
5015
5016 /*
5017 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5018 * details about the why it is needed.
5019 * This is a recursive operation - if an existing dentry corresponds to a
5020 * directory, that directory's new entries are logged too (same behaviour as
5021 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5022 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5023 * complains about the following circular lock dependency / possible deadlock:
5024 *
5025 * CPU0 CPU1
5026 * ---- ----
5027 * lock(&type->i_mutex_dir_key#3/2);
5028 * lock(sb_internal#2);
5029 * lock(&type->i_mutex_dir_key#3/2);
5030 * lock(&sb->s_type->i_mutex_key#14);
5031 *
5032 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5033 * sb_start_intwrite() in btrfs_start_transaction().
5034 * Not locking i_mutex of the inodes is still safe because:
5035 *
5036 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5037 * that while logging the inode new references (names) are added or removed
5038 * from the inode, leaving the logged inode item with a link count that does
5039 * not match the number of logged inode reference items. This is fine because
5040 * at log replay time we compute the real number of links and correct the
5041 * link count in the inode item (see replay_one_buffer() and
5042 * link_to_fixup_dir());
5043 *
5044 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5045 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5046 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5047 * has a size that doesn't match the sum of the lengths of all the logged
5048 * names. This does not result in a problem because if a dir_item key is
5049 * logged but its matching dir_index key is not logged, at log replay time we
5050 * don't use it to replay the respective name (see replay_one_name()). On the
5051 * other hand if only the dir_index key ends up being logged, the respective
5052 * name is added to the fs/subvol tree with both the dir_item and dir_index
5053 * keys created (see replay_one_name()).
5054 * The directory's inode item with a wrong i_size is not a problem as well,
5055 * since we don't use it at log replay time to set the i_size in the inode
5056 * item of the fs/subvol tree (see overwrite_item()).
5057 */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * start_inode,struct btrfs_log_ctx * ctx)5058 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5059 struct btrfs_root *root,
5060 struct inode *start_inode,
5061 struct btrfs_log_ctx *ctx)
5062 {
5063 struct btrfs_root *log = root->log_root;
5064 struct btrfs_path *path;
5065 LIST_HEAD(dir_list);
5066 struct btrfs_dir_list *dir_elem;
5067 int ret = 0;
5068
5069 path = btrfs_alloc_path();
5070 if (!path)
5071 return -ENOMEM;
5072
5073 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5074 if (!dir_elem) {
5075 btrfs_free_path(path);
5076 return -ENOMEM;
5077 }
5078 dir_elem->ino = btrfs_ino(start_inode);
5079 list_add_tail(&dir_elem->list, &dir_list);
5080
5081 while (!list_empty(&dir_list)) {
5082 struct extent_buffer *leaf;
5083 struct btrfs_key min_key;
5084 int nritems;
5085 int i;
5086
5087 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5088 list);
5089 if (ret)
5090 goto next_dir_inode;
5091
5092 min_key.objectid = dir_elem->ino;
5093 min_key.type = BTRFS_DIR_ITEM_KEY;
5094 min_key.offset = 0;
5095 again:
5096 btrfs_release_path(path);
5097 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5098 if (ret < 0) {
5099 goto next_dir_inode;
5100 } else if (ret > 0) {
5101 ret = 0;
5102 goto next_dir_inode;
5103 }
5104
5105 process_leaf:
5106 leaf = path->nodes[0];
5107 nritems = btrfs_header_nritems(leaf);
5108 for (i = path->slots[0]; i < nritems; i++) {
5109 struct btrfs_dir_item *di;
5110 struct btrfs_key di_key;
5111 struct inode *di_inode;
5112 struct btrfs_dir_list *new_dir_elem;
5113 int log_mode = LOG_INODE_EXISTS;
5114 int type;
5115
5116 btrfs_item_key_to_cpu(leaf, &min_key, i);
5117 if (min_key.objectid != dir_elem->ino ||
5118 min_key.type != BTRFS_DIR_ITEM_KEY)
5119 goto next_dir_inode;
5120
5121 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5122 type = btrfs_dir_type(leaf, di);
5123 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5124 type != BTRFS_FT_DIR)
5125 continue;
5126 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5127 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5128 continue;
5129
5130 di_inode = btrfs_iget(root->fs_info->sb, &di_key,
5131 root, NULL);
5132 if (IS_ERR(di_inode)) {
5133 ret = PTR_ERR(di_inode);
5134 goto next_dir_inode;
5135 }
5136
5137 if (btrfs_inode_in_log(di_inode, trans->transid)) {
5138 btrfs_add_delayed_iput(di_inode);
5139 continue;
5140 }
5141
5142 ctx->log_new_dentries = false;
5143 if (type == BTRFS_FT_DIR)
5144 log_mode = LOG_INODE_ALL;
5145 btrfs_release_path(path);
5146 ret = btrfs_log_inode(trans, root, di_inode,
5147 log_mode, 0, LLONG_MAX, ctx);
5148 btrfs_add_delayed_iput(di_inode);
5149 if (ret)
5150 goto next_dir_inode;
5151 if (ctx->log_new_dentries) {
5152 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5153 GFP_NOFS);
5154 if (!new_dir_elem) {
5155 ret = -ENOMEM;
5156 goto next_dir_inode;
5157 }
5158 new_dir_elem->ino = di_key.objectid;
5159 list_add_tail(&new_dir_elem->list, &dir_list);
5160 }
5161 break;
5162 }
5163 if (i == nritems) {
5164 ret = btrfs_next_leaf(log, path);
5165 if (ret < 0) {
5166 goto next_dir_inode;
5167 } else if (ret > 0) {
5168 ret = 0;
5169 goto next_dir_inode;
5170 }
5171 goto process_leaf;
5172 }
5173 if (min_key.offset < (u64)-1) {
5174 min_key.offset++;
5175 goto again;
5176 }
5177 next_dir_inode:
5178 list_del(&dir_elem->list);
5179 kfree(dir_elem);
5180 }
5181
5182 btrfs_free_path(path);
5183 return ret;
5184 }
5185
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_log_ctx * ctx)5186 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5187 struct inode *inode,
5188 struct btrfs_log_ctx *ctx)
5189 {
5190 int ret;
5191 struct btrfs_path *path;
5192 struct btrfs_key key;
5193 struct btrfs_root *root = BTRFS_I(inode)->root;
5194 const u64 ino = btrfs_ino(inode);
5195
5196 path = btrfs_alloc_path();
5197 if (!path)
5198 return -ENOMEM;
5199 path->skip_locking = 1;
5200 path->search_commit_root = 1;
5201
5202 key.objectid = ino;
5203 key.type = BTRFS_INODE_REF_KEY;
5204 key.offset = 0;
5205 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5206 if (ret < 0)
5207 goto out;
5208
5209 while (true) {
5210 struct extent_buffer *leaf = path->nodes[0];
5211 int slot = path->slots[0];
5212 u32 cur_offset = 0;
5213 u32 item_size;
5214 unsigned long ptr;
5215
5216 if (slot >= btrfs_header_nritems(leaf)) {
5217 ret = btrfs_next_leaf(root, path);
5218 if (ret < 0)
5219 goto out;
5220 else if (ret > 0)
5221 break;
5222 continue;
5223 }
5224
5225 btrfs_item_key_to_cpu(leaf, &key, slot);
5226 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5227 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5228 break;
5229
5230 item_size = btrfs_item_size_nr(leaf, slot);
5231 ptr = btrfs_item_ptr_offset(leaf, slot);
5232 while (cur_offset < item_size) {
5233 struct btrfs_key inode_key;
5234 struct inode *dir_inode;
5235
5236 inode_key.type = BTRFS_INODE_ITEM_KEY;
5237 inode_key.offset = 0;
5238
5239 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5240 struct btrfs_inode_extref *extref;
5241
5242 extref = (struct btrfs_inode_extref *)
5243 (ptr + cur_offset);
5244 inode_key.objectid = btrfs_inode_extref_parent(
5245 leaf, extref);
5246 cur_offset += sizeof(*extref);
5247 cur_offset += btrfs_inode_extref_name_len(leaf,
5248 extref);
5249 } else {
5250 inode_key.objectid = key.offset;
5251 cur_offset = item_size;
5252 }
5253
5254 dir_inode = btrfs_iget(root->fs_info->sb, &inode_key,
5255 root, NULL);
5256 /*
5257 * If the parent inode was deleted, return an error to
5258 * fallback to a transaction commit. This is to prevent
5259 * getting an inode that was moved from one parent A to
5260 * a parent B, got its former parent A deleted and then
5261 * it got fsync'ed, from existing at both parents after
5262 * a log replay (and the old parent still existing).
5263 * Example:
5264 *
5265 * mkdir /mnt/A
5266 * mkdir /mnt/B
5267 * touch /mnt/B/bar
5268 * sync
5269 * mv /mnt/B/bar /mnt/A/bar
5270 * mv -T /mnt/A /mnt/B
5271 * fsync /mnt/B/bar
5272 * <power fail>
5273 *
5274 * If we ignore the old parent B which got deleted,
5275 * after a log replay we would have file bar linked
5276 * at both parents and the old parent B would still
5277 * exist.
5278 */
5279 if (IS_ERR(dir_inode)) {
5280 ret = PTR_ERR(dir_inode);
5281 goto out;
5282 }
5283
5284 ret = btrfs_log_inode(trans, root, dir_inode,
5285 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5286 btrfs_add_delayed_iput(dir_inode);
5287 if (ret)
5288 goto out;
5289 }
5290 path->slots[0]++;
5291 }
5292 ret = 0;
5293 out:
5294 btrfs_free_path(path);
5295 return ret;
5296 }
5297
5298 /*
5299 * helper function around btrfs_log_inode to make sure newly created
5300 * parent directories also end up in the log. A minimal inode and backref
5301 * only logging is done of any parent directories that are older than
5302 * the last committed transaction
5303 */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct dentry * parent,const loff_t start,const loff_t end,int exists_only,struct btrfs_log_ctx * ctx)5304 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5305 struct btrfs_root *root, struct inode *inode,
5306 struct dentry *parent,
5307 const loff_t start,
5308 const loff_t end,
5309 int exists_only,
5310 struct btrfs_log_ctx *ctx)
5311 {
5312 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5313 struct super_block *sb;
5314 struct dentry *old_parent = NULL;
5315 int ret = 0;
5316 u64 last_committed = root->fs_info->last_trans_committed;
5317 bool log_dentries = false;
5318 struct inode *orig_inode = inode;
5319
5320 sb = inode->i_sb;
5321
5322 if (btrfs_test_opt(root, NOTREELOG)) {
5323 ret = 1;
5324 goto end_no_trans;
5325 }
5326
5327 /*
5328 * The prev transaction commit doesn't complete, we need do
5329 * full commit by ourselves.
5330 */
5331 if (root->fs_info->last_trans_log_full_commit >
5332 root->fs_info->last_trans_committed) {
5333 ret = 1;
5334 goto end_no_trans;
5335 }
5336
5337 if (root != BTRFS_I(inode)->root ||
5338 btrfs_root_refs(&root->root_item) == 0) {
5339 ret = 1;
5340 goto end_no_trans;
5341 }
5342
5343 ret = check_parent_dirs_for_sync(trans, inode, parent,
5344 sb, last_committed);
5345 if (ret)
5346 goto end_no_trans;
5347
5348 if (btrfs_inode_in_log(inode, trans->transid)) {
5349 ret = BTRFS_NO_LOG_SYNC;
5350 goto end_no_trans;
5351 }
5352
5353 ret = start_log_trans(trans, root, ctx);
5354 if (ret)
5355 goto end_no_trans;
5356
5357 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5358 if (ret)
5359 goto end_trans;
5360
5361 /*
5362 * for regular files, if its inode is already on disk, we don't
5363 * have to worry about the parents at all. This is because
5364 * we can use the last_unlink_trans field to record renames
5365 * and other fun in this file.
5366 */
5367 if (S_ISREG(inode->i_mode) &&
5368 BTRFS_I(inode)->generation <= last_committed &&
5369 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5370 ret = 0;
5371 goto end_trans;
5372 }
5373
5374 if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5375 log_dentries = true;
5376
5377 /*
5378 * On unlink we must make sure all our current and old parent directores
5379 * inodes are fully logged. This is to prevent leaving dangling
5380 * directory index entries in directories that were our parents but are
5381 * not anymore. Not doing this results in old parent directory being
5382 * impossible to delete after log replay (rmdir will always fail with
5383 * error -ENOTEMPTY).
5384 *
5385 * Example 1:
5386 *
5387 * mkdir testdir
5388 * touch testdir/foo
5389 * ln testdir/foo testdir/bar
5390 * sync
5391 * unlink testdir/bar
5392 * xfs_io -c fsync testdir/foo
5393 * <power failure>
5394 * mount fs, triggers log replay
5395 *
5396 * If we don't log the parent directory (testdir), after log replay the
5397 * directory still has an entry pointing to the file inode using the bar
5398 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5399 * the file inode has a link count of 1.
5400 *
5401 * Example 2:
5402 *
5403 * mkdir testdir
5404 * touch foo
5405 * ln foo testdir/foo2
5406 * ln foo testdir/foo3
5407 * sync
5408 * unlink testdir/foo3
5409 * xfs_io -c fsync foo
5410 * <power failure>
5411 * mount fs, triggers log replay
5412 *
5413 * Similar as the first example, after log replay the parent directory
5414 * testdir still has an entry pointing to the inode file with name foo3
5415 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5416 * and has a link count of 2.
5417 */
5418 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5419 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5420 if (ret)
5421 goto end_trans;
5422 }
5423
5424 while (1) {
5425 if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
5426 break;
5427
5428 inode = d_inode(parent);
5429 if (root != BTRFS_I(inode)->root)
5430 break;
5431
5432 if (BTRFS_I(inode)->generation > last_committed) {
5433 ret = btrfs_log_inode(trans, root, inode,
5434 LOG_INODE_EXISTS,
5435 0, LLONG_MAX, ctx);
5436 if (ret)
5437 goto end_trans;
5438 }
5439 if (IS_ROOT(parent))
5440 break;
5441
5442 parent = dget_parent(parent);
5443 dput(old_parent);
5444 old_parent = parent;
5445 }
5446 if (log_dentries)
5447 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5448 else
5449 ret = 0;
5450 end_trans:
5451 dput(old_parent);
5452 if (ret < 0) {
5453 btrfs_set_log_full_commit(root->fs_info, trans);
5454 ret = 1;
5455 }
5456
5457 if (ret)
5458 btrfs_remove_log_ctx(root, ctx);
5459 btrfs_end_log_trans(root);
5460 end_no_trans:
5461 return ret;
5462 }
5463
5464 /*
5465 * it is not safe to log dentry if the chunk root has added new
5466 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5467 * If this returns 1, you must commit the transaction to safely get your
5468 * data on disk.
5469 */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct dentry * dentry,const loff_t start,const loff_t end,struct btrfs_log_ctx * ctx)5470 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5471 struct btrfs_root *root, struct dentry *dentry,
5472 const loff_t start,
5473 const loff_t end,
5474 struct btrfs_log_ctx *ctx)
5475 {
5476 struct dentry *parent = dget_parent(dentry);
5477 int ret;
5478
5479 ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
5480 start, end, 0, ctx);
5481 dput(parent);
5482
5483 return ret;
5484 }
5485
5486 /*
5487 * should be called during mount to recover any replay any log trees
5488 * from the FS
5489 */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)5490 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5491 {
5492 int ret;
5493 struct btrfs_path *path;
5494 struct btrfs_trans_handle *trans;
5495 struct btrfs_key key;
5496 struct btrfs_key found_key;
5497 struct btrfs_key tmp_key;
5498 struct btrfs_root *log;
5499 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5500 struct walk_control wc = {
5501 .process_func = process_one_buffer,
5502 .stage = 0,
5503 };
5504
5505 path = btrfs_alloc_path();
5506 if (!path)
5507 return -ENOMEM;
5508
5509 fs_info->log_root_recovering = 1;
5510
5511 trans = btrfs_start_transaction(fs_info->tree_root, 0);
5512 if (IS_ERR(trans)) {
5513 ret = PTR_ERR(trans);
5514 goto error;
5515 }
5516
5517 wc.trans = trans;
5518 wc.pin = 1;
5519
5520 ret = walk_log_tree(trans, log_root_tree, &wc);
5521 if (ret) {
5522 btrfs_std_error(fs_info, ret, "Failed to pin buffers while "
5523 "recovering log root tree.");
5524 goto error;
5525 }
5526
5527 again:
5528 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5529 key.offset = (u64)-1;
5530 key.type = BTRFS_ROOT_ITEM_KEY;
5531
5532 while (1) {
5533 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5534
5535 if (ret < 0) {
5536 btrfs_std_error(fs_info, ret,
5537 "Couldn't find tree log root.");
5538 goto error;
5539 }
5540 if (ret > 0) {
5541 if (path->slots[0] == 0)
5542 break;
5543 path->slots[0]--;
5544 }
5545 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5546 path->slots[0]);
5547 btrfs_release_path(path);
5548 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5549 break;
5550
5551 log = btrfs_read_fs_root(log_root_tree, &found_key);
5552 if (IS_ERR(log)) {
5553 ret = PTR_ERR(log);
5554 btrfs_std_error(fs_info, ret,
5555 "Couldn't read tree log root.");
5556 goto error;
5557 }
5558
5559 tmp_key.objectid = found_key.offset;
5560 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5561 tmp_key.offset = (u64)-1;
5562
5563 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5564 if (IS_ERR(wc.replay_dest)) {
5565 ret = PTR_ERR(wc.replay_dest);
5566 free_extent_buffer(log->node);
5567 free_extent_buffer(log->commit_root);
5568 kfree(log);
5569 btrfs_std_error(fs_info, ret, "Couldn't read target root "
5570 "for tree log recovery.");
5571 goto error;
5572 }
5573
5574 wc.replay_dest->log_root = log;
5575 btrfs_record_root_in_trans(trans, wc.replay_dest);
5576 ret = walk_log_tree(trans, log, &wc);
5577
5578 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5579 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5580 path);
5581 }
5582
5583 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5584 struct btrfs_root *root = wc.replay_dest;
5585
5586 btrfs_release_path(path);
5587
5588 /*
5589 * We have just replayed everything, and the highest
5590 * objectid of fs roots probably has changed in case
5591 * some inode_item's got replayed.
5592 *
5593 * root->objectid_mutex is not acquired as log replay
5594 * could only happen during mount.
5595 */
5596 ret = btrfs_find_highest_objectid(root,
5597 &root->highest_objectid);
5598 }
5599
5600 key.offset = found_key.offset - 1;
5601 wc.replay_dest->log_root = NULL;
5602 free_extent_buffer(log->node);
5603 free_extent_buffer(log->commit_root);
5604 kfree(log);
5605
5606 if (ret)
5607 goto error;
5608
5609 if (found_key.offset == 0)
5610 break;
5611 }
5612 btrfs_release_path(path);
5613
5614 /* step one is to pin it all, step two is to replay just inodes */
5615 if (wc.pin) {
5616 wc.pin = 0;
5617 wc.process_func = replay_one_buffer;
5618 wc.stage = LOG_WALK_REPLAY_INODES;
5619 goto again;
5620 }
5621 /* step three is to replay everything */
5622 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5623 wc.stage++;
5624 goto again;
5625 }
5626
5627 btrfs_free_path(path);
5628
5629 /* step 4: commit the transaction, which also unpins the blocks */
5630 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
5631 if (ret)
5632 return ret;
5633
5634 free_extent_buffer(log_root_tree->node);
5635 log_root_tree->log_root = NULL;
5636 fs_info->log_root_recovering = 0;
5637 kfree(log_root_tree);
5638
5639 return 0;
5640 error:
5641 if (wc.trans)
5642 btrfs_end_transaction(wc.trans, fs_info->tree_root);
5643 btrfs_free_path(path);
5644 return ret;
5645 }
5646
5647 /*
5648 * there are some corner cases where we want to force a full
5649 * commit instead of allowing a directory to be logged.
5650 *
5651 * They revolve around files there were unlinked from the directory, and
5652 * this function updates the parent directory so that a full commit is
5653 * properly done if it is fsync'd later after the unlinks are done.
5654 */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct inode * dir,struct inode * inode,int for_rename)5655 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5656 struct inode *dir, struct inode *inode,
5657 int for_rename)
5658 {
5659 /*
5660 * when we're logging a file, if it hasn't been renamed
5661 * or unlinked, and its inode is fully committed on disk,
5662 * we don't have to worry about walking up the directory chain
5663 * to log its parents.
5664 *
5665 * So, we use the last_unlink_trans field to put this transid
5666 * into the file. When the file is logged we check it and
5667 * don't log the parents if the file is fully on disk.
5668 */
5669 if (S_ISREG(inode->i_mode))
5670 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5671
5672 /*
5673 * if this directory was already logged any new
5674 * names for this file/dir will get recorded
5675 */
5676 smp_mb();
5677 if (BTRFS_I(dir)->logged_trans == trans->transid)
5678 return;
5679
5680 /*
5681 * if the inode we're about to unlink was logged,
5682 * the log will be properly updated for any new names
5683 */
5684 if (BTRFS_I(inode)->logged_trans == trans->transid)
5685 return;
5686
5687 /*
5688 * when renaming files across directories, if the directory
5689 * there we're unlinking from gets fsync'd later on, there's
5690 * no way to find the destination directory later and fsync it
5691 * properly. So, we have to be conservative and force commits
5692 * so the new name gets discovered.
5693 */
5694 if (for_rename)
5695 goto record;
5696
5697 /* we can safely do the unlink without any special recording */
5698 return;
5699
5700 record:
5701 BTRFS_I(dir)->last_unlink_trans = trans->transid;
5702 }
5703
5704 /*
5705 * Make sure that if someone attempts to fsync the parent directory of a deleted
5706 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5707 * that after replaying the log tree of the parent directory's root we will not
5708 * see the snapshot anymore and at log replay time we will not see any log tree
5709 * corresponding to the deleted snapshot's root, which could lead to replaying
5710 * it after replaying the log tree of the parent directory (which would replay
5711 * the snapshot delete operation).
5712 */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct inode * dir)5713 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5714 struct inode *dir)
5715 {
5716 BTRFS_I(dir)->last_unlink_trans = trans->transid;
5717 }
5718
5719 /*
5720 * Call this after adding a new name for a file and it will properly
5721 * update the log to reflect the new name.
5722 *
5723 * It will return zero if all goes well, and it will return 1 if a
5724 * full transaction commit is required.
5725 */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * old_dir,struct dentry * parent)5726 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5727 struct inode *inode, struct inode *old_dir,
5728 struct dentry *parent)
5729 {
5730 struct btrfs_root * root = BTRFS_I(inode)->root;
5731
5732 /*
5733 * this will force the logging code to walk the dentry chain
5734 * up for the file
5735 */
5736 if (S_ISREG(inode->i_mode))
5737 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5738
5739 /*
5740 * if this inode hasn't been logged and directory we're renaming it
5741 * from hasn't been logged, we don't need to log it
5742 */
5743 if (BTRFS_I(inode)->logged_trans <=
5744 root->fs_info->last_trans_committed &&
5745 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5746 root->fs_info->last_trans_committed))
5747 return 0;
5748
5749 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5750 LLONG_MAX, 1, NULL);
5751 }
5752
5753