• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "tree-log.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "hash.h"
29 #include "inode-map.h"
30 
31 /* magic values for the inode_only field in btrfs_log_inode:
32  *
33  * LOG_INODE_ALL means to log everything
34  * LOG_INODE_EXISTS means to log just enough to recreate the inode
35  * during log replay
36  */
37 #define LOG_INODE_ALL 0
38 #define LOG_INODE_EXISTS 1
39 
40 /*
41  * directory trouble cases
42  *
43  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
44  * log, we must force a full commit before doing an fsync of the directory
45  * where the unlink was done.
46  * ---> record transid of last unlink/rename per directory
47  *
48  * mkdir foo/some_dir
49  * normal commit
50  * rename foo/some_dir foo2/some_dir
51  * mkdir foo/some_dir
52  * fsync foo/some_dir/some_file
53  *
54  * The fsync above will unlink the original some_dir without recording
55  * it in its new location (foo2).  After a crash, some_dir will be gone
56  * unless the fsync of some_file forces a full commit
57  *
58  * 2) we must log any new names for any file or dir that is in the fsync
59  * log. ---> check inode while renaming/linking.
60  *
61  * 2a) we must log any new names for any file or dir during rename
62  * when the directory they are being removed from was logged.
63  * ---> check inode and old parent dir during rename
64  *
65  *  2a is actually the more important variant.  With the extra logging
66  *  a crash might unlink the old name without recreating the new one
67  *
68  * 3) after a crash, we must go through any directories with a link count
69  * of zero and redo the rm -rf
70  *
71  * mkdir f1/foo
72  * normal commit
73  * rm -rf f1/foo
74  * fsync(f1)
75  *
76  * The directory f1 was fully removed from the FS, but fsync was never
77  * called on f1, only its parent dir.  After a crash the rm -rf must
78  * be replayed.  This must be able to recurse down the entire
79  * directory tree.  The inode link count fixup code takes care of the
80  * ugly details.
81  */
82 
83 /*
84  * stages for the tree walking.  The first
85  * stage (0) is to only pin down the blocks we find
86  * the second stage (1) is to make sure that all the inodes
87  * we find in the log are created in the subvolume.
88  *
89  * The last stage is to deal with directories and links and extents
90  * and all the other fun semantics
91  */
92 #define LOG_WALK_PIN_ONLY 0
93 #define LOG_WALK_REPLAY_INODES 1
94 #define LOG_WALK_REPLAY_DIR_INDEX 2
95 #define LOG_WALK_REPLAY_ALL 3
96 
97 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
98 			   struct btrfs_root *root, struct inode *inode,
99 			   int inode_only,
100 			   const loff_t start,
101 			   const loff_t end,
102 			   struct btrfs_log_ctx *ctx);
103 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
104 			     struct btrfs_root *root,
105 			     struct btrfs_path *path, u64 objectid);
106 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
107 				       struct btrfs_root *root,
108 				       struct btrfs_root *log,
109 				       struct btrfs_path *path,
110 				       u64 dirid, int del_all);
111 
112 /*
113  * tree logging is a special write ahead log used to make sure that
114  * fsyncs and O_SYNCs can happen without doing full tree commits.
115  *
116  * Full tree commits are expensive because they require commonly
117  * modified blocks to be recowed, creating many dirty pages in the
118  * extent tree an 4x-6x higher write load than ext3.
119  *
120  * Instead of doing a tree commit on every fsync, we use the
121  * key ranges and transaction ids to find items for a given file or directory
122  * that have changed in this transaction.  Those items are copied into
123  * a special tree (one per subvolume root), that tree is written to disk
124  * and then the fsync is considered complete.
125  *
126  * After a crash, items are copied out of the log-tree back into the
127  * subvolume tree.  Any file data extents found are recorded in the extent
128  * allocation tree, and the log-tree freed.
129  *
130  * The log tree is read three times, once to pin down all the extents it is
131  * using in ram and once, once to create all the inodes logged in the tree
132  * and once to do all the other items.
133  */
134 
135 /*
136  * start a sub transaction and setup the log tree
137  * this increments the log tree writer count to make the people
138  * syncing the tree wait for us to finish
139  */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)140 static int start_log_trans(struct btrfs_trans_handle *trans,
141 			   struct btrfs_root *root,
142 			   struct btrfs_log_ctx *ctx)
143 {
144 	int ret = 0;
145 
146 	mutex_lock(&root->log_mutex);
147 
148 	if (root->log_root) {
149 		if (btrfs_need_log_full_commit(root->fs_info, trans)) {
150 			ret = -EAGAIN;
151 			goto out;
152 		}
153 
154 		if (!root->log_start_pid) {
155 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
156 			root->log_start_pid = current->pid;
157 		} else if (root->log_start_pid != current->pid) {
158 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
159 		}
160 	} else {
161 		mutex_lock(&root->fs_info->tree_log_mutex);
162 		if (!root->fs_info->log_root_tree)
163 			ret = btrfs_init_log_root_tree(trans, root->fs_info);
164 		mutex_unlock(&root->fs_info->tree_log_mutex);
165 		if (ret)
166 			goto out;
167 
168 		ret = btrfs_add_log_tree(trans, root);
169 		if (ret)
170 			goto out;
171 
172 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
173 		root->log_start_pid = current->pid;
174 	}
175 
176 	atomic_inc(&root->log_batch);
177 	atomic_inc(&root->log_writers);
178 	if (ctx) {
179 		int index = root->log_transid % 2;
180 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
181 		ctx->log_transid = root->log_transid;
182 	}
183 
184 out:
185 	mutex_unlock(&root->log_mutex);
186 	return ret;
187 }
188 
189 /*
190  * returns 0 if there was a log transaction running and we were able
191  * to join, or returns -ENOENT if there were not transactions
192  * in progress
193  */
join_running_log_trans(struct btrfs_root * root)194 static int join_running_log_trans(struct btrfs_root *root)
195 {
196 	int ret = -ENOENT;
197 
198 	smp_mb();
199 	if (!root->log_root)
200 		return -ENOENT;
201 
202 	mutex_lock(&root->log_mutex);
203 	if (root->log_root) {
204 		ret = 0;
205 		atomic_inc(&root->log_writers);
206 	}
207 	mutex_unlock(&root->log_mutex);
208 	return ret;
209 }
210 
211 /*
212  * This either makes the current running log transaction wait
213  * until you call btrfs_end_log_trans() or it makes any future
214  * log transactions wait until you call btrfs_end_log_trans()
215  */
btrfs_pin_log_trans(struct btrfs_root * root)216 int btrfs_pin_log_trans(struct btrfs_root *root)
217 {
218 	int ret = -ENOENT;
219 
220 	mutex_lock(&root->log_mutex);
221 	atomic_inc(&root->log_writers);
222 	mutex_unlock(&root->log_mutex);
223 	return ret;
224 }
225 
226 /*
227  * indicate we're done making changes to the log tree
228  * and wake up anyone waiting to do a sync
229  */
btrfs_end_log_trans(struct btrfs_root * root)230 void btrfs_end_log_trans(struct btrfs_root *root)
231 {
232 	if (atomic_dec_and_test(&root->log_writers)) {
233 		/*
234 		 * Implicit memory barrier after atomic_dec_and_test
235 		 */
236 		if (waitqueue_active(&root->log_writer_wait))
237 			wake_up(&root->log_writer_wait);
238 	}
239 }
240 
241 
242 /*
243  * the walk control struct is used to pass state down the chain when
244  * processing the log tree.  The stage field tells us which part
245  * of the log tree processing we are currently doing.  The others
246  * are state fields used for that specific part
247  */
248 struct walk_control {
249 	/* should we free the extent on disk when done?  This is used
250 	 * at transaction commit time while freeing a log tree
251 	 */
252 	int free;
253 
254 	/* should we write out the extent buffer?  This is used
255 	 * while flushing the log tree to disk during a sync
256 	 */
257 	int write;
258 
259 	/* should we wait for the extent buffer io to finish?  Also used
260 	 * while flushing the log tree to disk for a sync
261 	 */
262 	int wait;
263 
264 	/* pin only walk, we record which extents on disk belong to the
265 	 * log trees
266 	 */
267 	int pin;
268 
269 	/* what stage of the replay code we're currently in */
270 	int stage;
271 
272 	/* the root we are currently replaying */
273 	struct btrfs_root *replay_dest;
274 
275 	/* the trans handle for the current replay */
276 	struct btrfs_trans_handle *trans;
277 
278 	/* the function that gets used to process blocks we find in the
279 	 * tree.  Note the extent_buffer might not be up to date when it is
280 	 * passed in, and it must be checked or read if you need the data
281 	 * inside it
282 	 */
283 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
284 			    struct walk_control *wc, u64 gen);
285 };
286 
287 /*
288  * process_func used to pin down extents, write them or wait on them
289  */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen)290 static int process_one_buffer(struct btrfs_root *log,
291 			      struct extent_buffer *eb,
292 			      struct walk_control *wc, u64 gen)
293 {
294 	int ret = 0;
295 
296 	/*
297 	 * If this fs is mixed then we need to be able to process the leaves to
298 	 * pin down any logged extents, so we have to read the block.
299 	 */
300 	if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
301 		ret = btrfs_read_buffer(eb, gen);
302 		if (ret)
303 			return ret;
304 	}
305 
306 	if (wc->pin)
307 		ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
308 						      eb->start, eb->len);
309 
310 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
311 		if (wc->pin && btrfs_header_level(eb) == 0)
312 			ret = btrfs_exclude_logged_extents(log, eb);
313 		if (wc->write)
314 			btrfs_write_tree_block(eb);
315 		if (wc->wait)
316 			btrfs_wait_tree_block_writeback(eb);
317 	}
318 	return ret;
319 }
320 
321 /*
322  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
323  * to the src data we are copying out.
324  *
325  * root is the tree we are copying into, and path is a scratch
326  * path for use in this function (it should be released on entry and
327  * will be released on exit).
328  *
329  * If the key is already in the destination tree the existing item is
330  * overwritten.  If the existing item isn't big enough, it is extended.
331  * If it is too large, it is truncated.
332  *
333  * If the key isn't in the destination yet, a new item is inserted.
334  */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)335 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
336 				   struct btrfs_root *root,
337 				   struct btrfs_path *path,
338 				   struct extent_buffer *eb, int slot,
339 				   struct btrfs_key *key)
340 {
341 	int ret;
342 	u32 item_size;
343 	u64 saved_i_size = 0;
344 	int save_old_i_size = 0;
345 	unsigned long src_ptr;
346 	unsigned long dst_ptr;
347 	int overwrite_root = 0;
348 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
349 
350 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
351 		overwrite_root = 1;
352 
353 	item_size = btrfs_item_size_nr(eb, slot);
354 	src_ptr = btrfs_item_ptr_offset(eb, slot);
355 
356 	/* look for the key in the destination tree */
357 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
358 	if (ret < 0)
359 		return ret;
360 
361 	if (ret == 0) {
362 		char *src_copy;
363 		char *dst_copy;
364 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
365 						  path->slots[0]);
366 		if (dst_size != item_size)
367 			goto insert;
368 
369 		if (item_size == 0) {
370 			btrfs_release_path(path);
371 			return 0;
372 		}
373 		dst_copy = kmalloc(item_size, GFP_NOFS);
374 		src_copy = kmalloc(item_size, GFP_NOFS);
375 		if (!dst_copy || !src_copy) {
376 			btrfs_release_path(path);
377 			kfree(dst_copy);
378 			kfree(src_copy);
379 			return -ENOMEM;
380 		}
381 
382 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
383 
384 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
385 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
386 				   item_size);
387 		ret = memcmp(dst_copy, src_copy, item_size);
388 
389 		kfree(dst_copy);
390 		kfree(src_copy);
391 		/*
392 		 * they have the same contents, just return, this saves
393 		 * us from cowing blocks in the destination tree and doing
394 		 * extra writes that may not have been done by a previous
395 		 * sync
396 		 */
397 		if (ret == 0) {
398 			btrfs_release_path(path);
399 			return 0;
400 		}
401 
402 		/*
403 		 * We need to load the old nbytes into the inode so when we
404 		 * replay the extents we've logged we get the right nbytes.
405 		 */
406 		if (inode_item) {
407 			struct btrfs_inode_item *item;
408 			u64 nbytes;
409 			u32 mode;
410 
411 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
412 					      struct btrfs_inode_item);
413 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
414 			item = btrfs_item_ptr(eb, slot,
415 					      struct btrfs_inode_item);
416 			btrfs_set_inode_nbytes(eb, item, nbytes);
417 
418 			/*
419 			 * If this is a directory we need to reset the i_size to
420 			 * 0 so that we can set it up properly when replaying
421 			 * the rest of the items in this log.
422 			 */
423 			mode = btrfs_inode_mode(eb, item);
424 			if (S_ISDIR(mode))
425 				btrfs_set_inode_size(eb, item, 0);
426 		}
427 	} else if (inode_item) {
428 		struct btrfs_inode_item *item;
429 		u32 mode;
430 
431 		/*
432 		 * New inode, set nbytes to 0 so that the nbytes comes out
433 		 * properly when we replay the extents.
434 		 */
435 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
436 		btrfs_set_inode_nbytes(eb, item, 0);
437 
438 		/*
439 		 * If this is a directory we need to reset the i_size to 0 so
440 		 * that we can set it up properly when replaying the rest of
441 		 * the items in this log.
442 		 */
443 		mode = btrfs_inode_mode(eb, item);
444 		if (S_ISDIR(mode))
445 			btrfs_set_inode_size(eb, item, 0);
446 	}
447 insert:
448 	btrfs_release_path(path);
449 	/* try to insert the key into the destination tree */
450 	path->skip_release_on_error = 1;
451 	ret = btrfs_insert_empty_item(trans, root, path,
452 				      key, item_size);
453 	path->skip_release_on_error = 0;
454 
455 	/* make sure any existing item is the correct size */
456 	if (ret == -EEXIST || ret == -EOVERFLOW) {
457 		u32 found_size;
458 		found_size = btrfs_item_size_nr(path->nodes[0],
459 						path->slots[0]);
460 		if (found_size > item_size)
461 			btrfs_truncate_item(root, path, item_size, 1);
462 		else if (found_size < item_size)
463 			btrfs_extend_item(root, path,
464 					  item_size - found_size);
465 	} else if (ret) {
466 		return ret;
467 	}
468 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
469 					path->slots[0]);
470 
471 	/* don't overwrite an existing inode if the generation number
472 	 * was logged as zero.  This is done when the tree logging code
473 	 * is just logging an inode to make sure it exists after recovery.
474 	 *
475 	 * Also, don't overwrite i_size on directories during replay.
476 	 * log replay inserts and removes directory items based on the
477 	 * state of the tree found in the subvolume, and i_size is modified
478 	 * as it goes
479 	 */
480 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
481 		struct btrfs_inode_item *src_item;
482 		struct btrfs_inode_item *dst_item;
483 
484 		src_item = (struct btrfs_inode_item *)src_ptr;
485 		dst_item = (struct btrfs_inode_item *)dst_ptr;
486 
487 		if (btrfs_inode_generation(eb, src_item) == 0) {
488 			struct extent_buffer *dst_eb = path->nodes[0];
489 			const u64 ino_size = btrfs_inode_size(eb, src_item);
490 
491 			/*
492 			 * For regular files an ino_size == 0 is used only when
493 			 * logging that an inode exists, as part of a directory
494 			 * fsync, and the inode wasn't fsynced before. In this
495 			 * case don't set the size of the inode in the fs/subvol
496 			 * tree, otherwise we would be throwing valid data away.
497 			 */
498 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
499 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
500 			    ino_size != 0) {
501 				struct btrfs_map_token token;
502 
503 				btrfs_init_map_token(&token);
504 				btrfs_set_token_inode_size(dst_eb, dst_item,
505 							   ino_size, &token);
506 			}
507 			goto no_copy;
508 		}
509 
510 		if (overwrite_root &&
511 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
512 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
513 			save_old_i_size = 1;
514 			saved_i_size = btrfs_inode_size(path->nodes[0],
515 							dst_item);
516 		}
517 	}
518 
519 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
520 			   src_ptr, item_size);
521 
522 	if (save_old_i_size) {
523 		struct btrfs_inode_item *dst_item;
524 		dst_item = (struct btrfs_inode_item *)dst_ptr;
525 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
526 	}
527 
528 	/* make sure the generation is filled in */
529 	if (key->type == BTRFS_INODE_ITEM_KEY) {
530 		struct btrfs_inode_item *dst_item;
531 		dst_item = (struct btrfs_inode_item *)dst_ptr;
532 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
533 			btrfs_set_inode_generation(path->nodes[0], dst_item,
534 						   trans->transid);
535 		}
536 	}
537 no_copy:
538 	btrfs_mark_buffer_dirty(path->nodes[0]);
539 	btrfs_release_path(path);
540 	return 0;
541 }
542 
543 /*
544  * simple helper to read an inode off the disk from a given root
545  * This can only be called for subvolume roots and not for the log
546  */
read_one_inode(struct btrfs_root * root,u64 objectid)547 static noinline struct inode *read_one_inode(struct btrfs_root *root,
548 					     u64 objectid)
549 {
550 	struct btrfs_key key;
551 	struct inode *inode;
552 
553 	key.objectid = objectid;
554 	key.type = BTRFS_INODE_ITEM_KEY;
555 	key.offset = 0;
556 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
557 	if (IS_ERR(inode)) {
558 		inode = NULL;
559 	} else if (is_bad_inode(inode)) {
560 		iput(inode);
561 		inode = NULL;
562 	}
563 	return inode;
564 }
565 
566 /* replays a single extent in 'eb' at 'slot' with 'key' into the
567  * subvolume 'root'.  path is released on entry and should be released
568  * on exit.
569  *
570  * extents in the log tree have not been allocated out of the extent
571  * tree yet.  So, this completes the allocation, taking a reference
572  * as required if the extent already exists or creating a new extent
573  * if it isn't in the extent allocation tree yet.
574  *
575  * The extent is inserted into the file, dropping any existing extents
576  * from the file that overlap the new one.
577  */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)578 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
579 				      struct btrfs_root *root,
580 				      struct btrfs_path *path,
581 				      struct extent_buffer *eb, int slot,
582 				      struct btrfs_key *key)
583 {
584 	int found_type;
585 	u64 extent_end;
586 	u64 start = key->offset;
587 	u64 nbytes = 0;
588 	struct btrfs_file_extent_item *item;
589 	struct inode *inode = NULL;
590 	unsigned long size;
591 	int ret = 0;
592 
593 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
594 	found_type = btrfs_file_extent_type(eb, item);
595 
596 	if (found_type == BTRFS_FILE_EXTENT_REG ||
597 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
598 		nbytes = btrfs_file_extent_num_bytes(eb, item);
599 		extent_end = start + nbytes;
600 
601 		/*
602 		 * We don't add to the inodes nbytes if we are prealloc or a
603 		 * hole.
604 		 */
605 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
606 			nbytes = 0;
607 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
608 		size = btrfs_file_extent_inline_len(eb, slot, item);
609 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
610 		extent_end = ALIGN(start + size, root->sectorsize);
611 	} else {
612 		ret = 0;
613 		goto out;
614 	}
615 
616 	inode = read_one_inode(root, key->objectid);
617 	if (!inode) {
618 		ret = -EIO;
619 		goto out;
620 	}
621 
622 	/*
623 	 * first check to see if we already have this extent in the
624 	 * file.  This must be done before the btrfs_drop_extents run
625 	 * so we don't try to drop this extent.
626 	 */
627 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
628 				       start, 0);
629 
630 	if (ret == 0 &&
631 	    (found_type == BTRFS_FILE_EXTENT_REG ||
632 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
633 		struct btrfs_file_extent_item cmp1;
634 		struct btrfs_file_extent_item cmp2;
635 		struct btrfs_file_extent_item *existing;
636 		struct extent_buffer *leaf;
637 
638 		leaf = path->nodes[0];
639 		existing = btrfs_item_ptr(leaf, path->slots[0],
640 					  struct btrfs_file_extent_item);
641 
642 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
643 				   sizeof(cmp1));
644 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
645 				   sizeof(cmp2));
646 
647 		/*
648 		 * we already have a pointer to this exact extent,
649 		 * we don't have to do anything
650 		 */
651 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
652 			btrfs_release_path(path);
653 			goto out;
654 		}
655 	}
656 	btrfs_release_path(path);
657 
658 	/* drop any overlapping extents */
659 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
660 	if (ret)
661 		goto out;
662 
663 	if (found_type == BTRFS_FILE_EXTENT_REG ||
664 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
665 		u64 offset;
666 		unsigned long dest_offset;
667 		struct btrfs_key ins;
668 
669 		ret = btrfs_insert_empty_item(trans, root, path, key,
670 					      sizeof(*item));
671 		if (ret)
672 			goto out;
673 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
674 						    path->slots[0]);
675 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
676 				(unsigned long)item,  sizeof(*item));
677 
678 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
679 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
680 		ins.type = BTRFS_EXTENT_ITEM_KEY;
681 		offset = key->offset - btrfs_file_extent_offset(eb, item);
682 
683 		if (ins.objectid > 0) {
684 			u64 csum_start;
685 			u64 csum_end;
686 			LIST_HEAD(ordered_sums);
687 			/*
688 			 * is this extent already allocated in the extent
689 			 * allocation tree?  If so, just add a reference
690 			 */
691 			ret = btrfs_lookup_data_extent(root, ins.objectid,
692 						ins.offset);
693 			if (ret == 0) {
694 				ret = btrfs_inc_extent_ref(trans, root,
695 						ins.objectid, ins.offset,
696 						0, root->root_key.objectid,
697 						key->objectid, offset);
698 				if (ret)
699 					goto out;
700 			} else {
701 				/*
702 				 * insert the extent pointer in the extent
703 				 * allocation tree
704 				 */
705 				ret = btrfs_alloc_logged_file_extent(trans,
706 						root, root->root_key.objectid,
707 						key->objectid, offset, &ins);
708 				if (ret)
709 					goto out;
710 			}
711 			btrfs_release_path(path);
712 
713 			if (btrfs_file_extent_compression(eb, item)) {
714 				csum_start = ins.objectid;
715 				csum_end = csum_start + ins.offset;
716 			} else {
717 				csum_start = ins.objectid +
718 					btrfs_file_extent_offset(eb, item);
719 				csum_end = csum_start +
720 					btrfs_file_extent_num_bytes(eb, item);
721 			}
722 
723 			ret = btrfs_lookup_csums_range(root->log_root,
724 						csum_start, csum_end - 1,
725 						&ordered_sums, 0);
726 			if (ret)
727 				goto out;
728 			/*
729 			 * Now delete all existing cums in the csum root that
730 			 * cover our range. We do this because we can have an
731 			 * extent that is completely referenced by one file
732 			 * extent item and partially referenced by another
733 			 * file extent item (like after using the clone or
734 			 * extent_same ioctls). In this case if we end up doing
735 			 * the replay of the one that partially references the
736 			 * extent first, and we do not do the csum deletion
737 			 * below, we can get 2 csum items in the csum tree that
738 			 * overlap each other. For example, imagine our log has
739 			 * the two following file extent items:
740 			 *
741 			 * key (257 EXTENT_DATA 409600)
742 			 *     extent data disk byte 12845056 nr 102400
743 			 *     extent data offset 20480 nr 20480 ram 102400
744 			 *
745 			 * key (257 EXTENT_DATA 819200)
746 			 *     extent data disk byte 12845056 nr 102400
747 			 *     extent data offset 0 nr 102400 ram 102400
748 			 *
749 			 * Where the second one fully references the 100K extent
750 			 * that starts at disk byte 12845056, and the log tree
751 			 * has a single csum item that covers the entire range
752 			 * of the extent:
753 			 *
754 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
755 			 *
756 			 * After the first file extent item is replayed, the
757 			 * csum tree gets the following csum item:
758 			 *
759 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
760 			 *
761 			 * Which covers the 20K sub-range starting at offset 20K
762 			 * of our extent. Now when we replay the second file
763 			 * extent item, if we do not delete existing csum items
764 			 * that cover any of its blocks, we end up getting two
765 			 * csum items in our csum tree that overlap each other:
766 			 *
767 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
768 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
769 			 *
770 			 * Which is a problem, because after this anyone trying
771 			 * to lookup up for the checksum of any block of our
772 			 * extent starting at an offset of 40K or higher, will
773 			 * end up looking at the second csum item only, which
774 			 * does not contain the checksum for any block starting
775 			 * at offset 40K or higher of our extent.
776 			 */
777 			while (!list_empty(&ordered_sums)) {
778 				struct btrfs_ordered_sum *sums;
779 				sums = list_entry(ordered_sums.next,
780 						struct btrfs_ordered_sum,
781 						list);
782 				if (!ret)
783 					ret = btrfs_del_csums(trans,
784 						      root->fs_info->csum_root,
785 						      sums->bytenr,
786 						      sums->len);
787 				if (!ret)
788 					ret = btrfs_csum_file_blocks(trans,
789 						root->fs_info->csum_root,
790 						sums);
791 				list_del(&sums->list);
792 				kfree(sums);
793 			}
794 			if (ret)
795 				goto out;
796 		} else {
797 			btrfs_release_path(path);
798 		}
799 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
800 		/* inline extents are easy, we just overwrite them */
801 		ret = overwrite_item(trans, root, path, eb, slot, key);
802 		if (ret)
803 			goto out;
804 	}
805 
806 	inode_add_bytes(inode, nbytes);
807 	ret = btrfs_update_inode(trans, root, inode);
808 out:
809 	if (inode)
810 		iput(inode);
811 	return ret;
812 }
813 
814 /*
815  * when cleaning up conflicts between the directory names in the
816  * subvolume, directory names in the log and directory names in the
817  * inode back references, we may have to unlink inodes from directories.
818  *
819  * This is a helper function to do the unlink of a specific directory
820  * item
821  */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct inode * dir,struct btrfs_dir_item * di)822 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
823 				      struct btrfs_root *root,
824 				      struct btrfs_path *path,
825 				      struct inode *dir,
826 				      struct btrfs_dir_item *di)
827 {
828 	struct inode *inode;
829 	char *name;
830 	int name_len;
831 	struct extent_buffer *leaf;
832 	struct btrfs_key location;
833 	int ret;
834 
835 	leaf = path->nodes[0];
836 
837 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
838 	name_len = btrfs_dir_name_len(leaf, di);
839 	name = kmalloc(name_len, GFP_NOFS);
840 	if (!name)
841 		return -ENOMEM;
842 
843 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
844 	btrfs_release_path(path);
845 
846 	inode = read_one_inode(root, location.objectid);
847 	if (!inode) {
848 		ret = -EIO;
849 		goto out;
850 	}
851 
852 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
853 	if (ret)
854 		goto out;
855 
856 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
857 	if (ret)
858 		goto out;
859 	else
860 		ret = btrfs_run_delayed_items(trans, root);
861 out:
862 	kfree(name);
863 	iput(inode);
864 	return ret;
865 }
866 
867 /*
868  * helper function to see if a given name and sequence number found
869  * in an inode back reference are already in a directory and correctly
870  * point to this inode
871  */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,const char * name,int name_len)872 static noinline int inode_in_dir(struct btrfs_root *root,
873 				 struct btrfs_path *path,
874 				 u64 dirid, u64 objectid, u64 index,
875 				 const char *name, int name_len)
876 {
877 	struct btrfs_dir_item *di;
878 	struct btrfs_key location;
879 	int match = 0;
880 
881 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
882 					 index, name, name_len, 0);
883 	if (di && !IS_ERR(di)) {
884 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
885 		if (location.objectid != objectid)
886 			goto out;
887 	} else
888 		goto out;
889 	btrfs_release_path(path);
890 
891 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
892 	if (di && !IS_ERR(di)) {
893 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
894 		if (location.objectid != objectid)
895 			goto out;
896 	} else
897 		goto out;
898 	match = 1;
899 out:
900 	btrfs_release_path(path);
901 	return match;
902 }
903 
904 /*
905  * helper function to check a log tree for a named back reference in
906  * an inode.  This is used to decide if a back reference that is
907  * found in the subvolume conflicts with what we find in the log.
908  *
909  * inode backreferences may have multiple refs in a single item,
910  * during replay we process one reference at a time, and we don't
911  * want to delete valid links to a file from the subvolume if that
912  * link is also in the log.
913  */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const char * name,int namelen)914 static noinline int backref_in_log(struct btrfs_root *log,
915 				   struct btrfs_key *key,
916 				   u64 ref_objectid,
917 				   const char *name, int namelen)
918 {
919 	struct btrfs_path *path;
920 	struct btrfs_inode_ref *ref;
921 	unsigned long ptr;
922 	unsigned long ptr_end;
923 	unsigned long name_ptr;
924 	int found_name_len;
925 	int item_size;
926 	int ret;
927 	int match = 0;
928 
929 	path = btrfs_alloc_path();
930 	if (!path)
931 		return -ENOMEM;
932 
933 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
934 	if (ret != 0)
935 		goto out;
936 
937 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
938 
939 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
940 		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
941 						   name, namelen, NULL))
942 			match = 1;
943 
944 		goto out;
945 	}
946 
947 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
948 	ptr_end = ptr + item_size;
949 	while (ptr < ptr_end) {
950 		ref = (struct btrfs_inode_ref *)ptr;
951 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
952 		if (found_name_len == namelen) {
953 			name_ptr = (unsigned long)(ref + 1);
954 			ret = memcmp_extent_buffer(path->nodes[0], name,
955 						   name_ptr, namelen);
956 			if (ret == 0) {
957 				match = 1;
958 				goto out;
959 			}
960 		}
961 		ptr = (unsigned long)(ref + 1) + found_name_len;
962 	}
963 out:
964 	btrfs_free_path(path);
965 	return match;
966 }
967 
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct inode * dir,struct inode * inode,struct extent_buffer * eb,u64 inode_objectid,u64 parent_objectid,u64 ref_index,char * name,int namelen,int * search_done)968 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
969 				  struct btrfs_root *root,
970 				  struct btrfs_path *path,
971 				  struct btrfs_root *log_root,
972 				  struct inode *dir, struct inode *inode,
973 				  struct extent_buffer *eb,
974 				  u64 inode_objectid, u64 parent_objectid,
975 				  u64 ref_index, char *name, int namelen,
976 				  int *search_done)
977 {
978 	int ret;
979 	char *victim_name;
980 	int victim_name_len;
981 	struct extent_buffer *leaf;
982 	struct btrfs_dir_item *di;
983 	struct btrfs_key search_key;
984 	struct btrfs_inode_extref *extref;
985 
986 again:
987 	/* Search old style refs */
988 	search_key.objectid = inode_objectid;
989 	search_key.type = BTRFS_INODE_REF_KEY;
990 	search_key.offset = parent_objectid;
991 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
992 	if (ret == 0) {
993 		struct btrfs_inode_ref *victim_ref;
994 		unsigned long ptr;
995 		unsigned long ptr_end;
996 
997 		leaf = path->nodes[0];
998 
999 		/* are we trying to overwrite a back ref for the root directory
1000 		 * if so, just jump out, we're done
1001 		 */
1002 		if (search_key.objectid == search_key.offset)
1003 			return 1;
1004 
1005 		/* check all the names in this back reference to see
1006 		 * if they are in the log.  if so, we allow them to stay
1007 		 * otherwise they must be unlinked as a conflict
1008 		 */
1009 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1010 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1011 		while (ptr < ptr_end) {
1012 			victim_ref = (struct btrfs_inode_ref *)ptr;
1013 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1014 								   victim_ref);
1015 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1016 			if (!victim_name)
1017 				return -ENOMEM;
1018 
1019 			read_extent_buffer(leaf, victim_name,
1020 					   (unsigned long)(victim_ref + 1),
1021 					   victim_name_len);
1022 
1023 			if (!backref_in_log(log_root, &search_key,
1024 					    parent_objectid,
1025 					    victim_name,
1026 					    victim_name_len)) {
1027 				inc_nlink(inode);
1028 				btrfs_release_path(path);
1029 
1030 				ret = btrfs_unlink_inode(trans, root, dir,
1031 							 inode, victim_name,
1032 							 victim_name_len);
1033 				kfree(victim_name);
1034 				if (ret)
1035 					return ret;
1036 				ret = btrfs_run_delayed_items(trans, root);
1037 				if (ret)
1038 					return ret;
1039 				*search_done = 1;
1040 				goto again;
1041 			}
1042 			kfree(victim_name);
1043 
1044 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1045 		}
1046 
1047 		/*
1048 		 * NOTE: we have searched root tree and checked the
1049 		 * coresponding ref, it does not need to check again.
1050 		 */
1051 		*search_done = 1;
1052 	}
1053 	btrfs_release_path(path);
1054 
1055 	/* Same search but for extended refs */
1056 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1057 					   inode_objectid, parent_objectid, 0,
1058 					   0);
1059 	if (!IS_ERR_OR_NULL(extref)) {
1060 		u32 item_size;
1061 		u32 cur_offset = 0;
1062 		unsigned long base;
1063 		struct inode *victim_parent;
1064 
1065 		leaf = path->nodes[0];
1066 
1067 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1068 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1069 
1070 		while (cur_offset < item_size) {
1071 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1072 
1073 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1074 
1075 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1076 				goto next;
1077 
1078 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1079 			if (!victim_name)
1080 				return -ENOMEM;
1081 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1082 					   victim_name_len);
1083 
1084 			search_key.objectid = inode_objectid;
1085 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1086 			search_key.offset = btrfs_extref_hash(parent_objectid,
1087 							      victim_name,
1088 							      victim_name_len);
1089 			ret = 0;
1090 			if (!backref_in_log(log_root, &search_key,
1091 					    parent_objectid, victim_name,
1092 					    victim_name_len)) {
1093 				ret = -ENOENT;
1094 				victim_parent = read_one_inode(root,
1095 							       parent_objectid);
1096 				if (victim_parent) {
1097 					inc_nlink(inode);
1098 					btrfs_release_path(path);
1099 
1100 					ret = btrfs_unlink_inode(trans, root,
1101 								 victim_parent,
1102 								 inode,
1103 								 victim_name,
1104 								 victim_name_len);
1105 					if (!ret)
1106 						ret = btrfs_run_delayed_items(
1107 								  trans, root);
1108 				}
1109 				iput(victim_parent);
1110 				kfree(victim_name);
1111 				if (ret)
1112 					return ret;
1113 				*search_done = 1;
1114 				goto again;
1115 			}
1116 			kfree(victim_name);
1117 			if (ret)
1118 				return ret;
1119 next:
1120 			cur_offset += victim_name_len + sizeof(*extref);
1121 		}
1122 		*search_done = 1;
1123 	}
1124 	btrfs_release_path(path);
1125 
1126 	/* look for a conflicting sequence number */
1127 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1128 					 ref_index, name, namelen, 0);
1129 	if (di && !IS_ERR(di)) {
1130 		ret = drop_one_dir_item(trans, root, path, dir, di);
1131 		if (ret)
1132 			return ret;
1133 	}
1134 	btrfs_release_path(path);
1135 
1136 	/* look for a conflicing name */
1137 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1138 				   name, namelen, 0);
1139 	if (di && !IS_ERR(di)) {
1140 		ret = drop_one_dir_item(trans, root, path, dir, di);
1141 		if (ret)
1142 			return ret;
1143 	}
1144 	btrfs_release_path(path);
1145 
1146 	return 0;
1147 }
1148 
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index,u64 * parent_objectid)1149 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1150 			     u32 *namelen, char **name, u64 *index,
1151 			     u64 *parent_objectid)
1152 {
1153 	struct btrfs_inode_extref *extref;
1154 
1155 	extref = (struct btrfs_inode_extref *)ref_ptr;
1156 
1157 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1158 	*name = kmalloc(*namelen, GFP_NOFS);
1159 	if (*name == NULL)
1160 		return -ENOMEM;
1161 
1162 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1163 			   *namelen);
1164 
1165 	*index = btrfs_inode_extref_index(eb, extref);
1166 	if (parent_objectid)
1167 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1168 
1169 	return 0;
1170 }
1171 
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index)1172 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1173 			  u32 *namelen, char **name, u64 *index)
1174 {
1175 	struct btrfs_inode_ref *ref;
1176 
1177 	ref = (struct btrfs_inode_ref *)ref_ptr;
1178 
1179 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1180 	*name = kmalloc(*namelen, GFP_NOFS);
1181 	if (*name == NULL)
1182 		return -ENOMEM;
1183 
1184 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1185 
1186 	*index = btrfs_inode_ref_index(eb, ref);
1187 
1188 	return 0;
1189 }
1190 
1191 /*
1192  * replay one inode back reference item found in the log tree.
1193  * eb, slot and key refer to the buffer and key found in the log tree.
1194  * root is the destination we are replaying into, and path is for temp
1195  * use by this function.  (it should be released on return).
1196  */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1197 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1198 				  struct btrfs_root *root,
1199 				  struct btrfs_root *log,
1200 				  struct btrfs_path *path,
1201 				  struct extent_buffer *eb, int slot,
1202 				  struct btrfs_key *key)
1203 {
1204 	struct inode *dir = NULL;
1205 	struct inode *inode = NULL;
1206 	unsigned long ref_ptr;
1207 	unsigned long ref_end;
1208 	char *name = NULL;
1209 	int namelen;
1210 	int ret;
1211 	int search_done = 0;
1212 	int log_ref_ver = 0;
1213 	u64 parent_objectid;
1214 	u64 inode_objectid;
1215 	u64 ref_index = 0;
1216 	int ref_struct_size;
1217 
1218 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1219 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1220 
1221 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1222 		struct btrfs_inode_extref *r;
1223 
1224 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1225 		log_ref_ver = 1;
1226 		r = (struct btrfs_inode_extref *)ref_ptr;
1227 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1228 	} else {
1229 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1230 		parent_objectid = key->offset;
1231 	}
1232 	inode_objectid = key->objectid;
1233 
1234 	/*
1235 	 * it is possible that we didn't log all the parent directories
1236 	 * for a given inode.  If we don't find the dir, just don't
1237 	 * copy the back ref in.  The link count fixup code will take
1238 	 * care of the rest
1239 	 */
1240 	dir = read_one_inode(root, parent_objectid);
1241 	if (!dir) {
1242 		ret = -ENOENT;
1243 		goto out;
1244 	}
1245 
1246 	inode = read_one_inode(root, inode_objectid);
1247 	if (!inode) {
1248 		ret = -EIO;
1249 		goto out;
1250 	}
1251 
1252 	while (ref_ptr < ref_end) {
1253 		if (log_ref_ver) {
1254 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1255 						&ref_index, &parent_objectid);
1256 			/*
1257 			 * parent object can change from one array
1258 			 * item to another.
1259 			 */
1260 			if (!dir)
1261 				dir = read_one_inode(root, parent_objectid);
1262 			if (!dir) {
1263 				ret = -ENOENT;
1264 				goto out;
1265 			}
1266 		} else {
1267 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1268 					     &ref_index);
1269 		}
1270 		if (ret)
1271 			goto out;
1272 
1273 		/* if we already have a perfect match, we're done */
1274 		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1275 				  ref_index, name, namelen)) {
1276 			/*
1277 			 * look for a conflicting back reference in the
1278 			 * metadata. if we find one we have to unlink that name
1279 			 * of the file before we add our new link.  Later on, we
1280 			 * overwrite any existing back reference, and we don't
1281 			 * want to create dangling pointers in the directory.
1282 			 */
1283 
1284 			if (!search_done) {
1285 				ret = __add_inode_ref(trans, root, path, log,
1286 						      dir, inode, eb,
1287 						      inode_objectid,
1288 						      parent_objectid,
1289 						      ref_index, name, namelen,
1290 						      &search_done);
1291 				if (ret) {
1292 					if (ret == 1)
1293 						ret = 0;
1294 					goto out;
1295 				}
1296 			}
1297 
1298 			/* insert our name */
1299 			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1300 					     0, ref_index);
1301 			if (ret)
1302 				goto out;
1303 
1304 			btrfs_update_inode(trans, root, inode);
1305 		}
1306 
1307 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1308 		kfree(name);
1309 		name = NULL;
1310 		if (log_ref_ver) {
1311 			iput(dir);
1312 			dir = NULL;
1313 		}
1314 	}
1315 
1316 	/* finally write the back reference in the inode */
1317 	ret = overwrite_item(trans, root, path, eb, slot, key);
1318 out:
1319 	btrfs_release_path(path);
1320 	kfree(name);
1321 	iput(dir);
1322 	iput(inode);
1323 	return ret;
1324 }
1325 
insert_orphan_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 ino)1326 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1327 			      struct btrfs_root *root, u64 ino)
1328 {
1329 	int ret;
1330 
1331 	ret = btrfs_insert_orphan_item(trans, root, ino);
1332 	if (ret == -EEXIST)
1333 		ret = 0;
1334 
1335 	return ret;
1336 }
1337 
count_inode_extrefs(struct btrfs_root * root,struct inode * inode,struct btrfs_path * path)1338 static int count_inode_extrefs(struct btrfs_root *root,
1339 			       struct inode *inode, struct btrfs_path *path)
1340 {
1341 	int ret = 0;
1342 	int name_len;
1343 	unsigned int nlink = 0;
1344 	u32 item_size;
1345 	u32 cur_offset = 0;
1346 	u64 inode_objectid = btrfs_ino(inode);
1347 	u64 offset = 0;
1348 	unsigned long ptr;
1349 	struct btrfs_inode_extref *extref;
1350 	struct extent_buffer *leaf;
1351 
1352 	while (1) {
1353 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1354 					    &extref, &offset);
1355 		if (ret)
1356 			break;
1357 
1358 		leaf = path->nodes[0];
1359 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1360 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1361 		cur_offset = 0;
1362 
1363 		while (cur_offset < item_size) {
1364 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1365 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1366 
1367 			nlink++;
1368 
1369 			cur_offset += name_len + sizeof(*extref);
1370 		}
1371 
1372 		offset++;
1373 		btrfs_release_path(path);
1374 	}
1375 	btrfs_release_path(path);
1376 
1377 	if (ret < 0 && ret != -ENOENT)
1378 		return ret;
1379 	return nlink;
1380 }
1381 
count_inode_refs(struct btrfs_root * root,struct inode * inode,struct btrfs_path * path)1382 static int count_inode_refs(struct btrfs_root *root,
1383 			       struct inode *inode, struct btrfs_path *path)
1384 {
1385 	int ret;
1386 	struct btrfs_key key;
1387 	unsigned int nlink = 0;
1388 	unsigned long ptr;
1389 	unsigned long ptr_end;
1390 	int name_len;
1391 	u64 ino = btrfs_ino(inode);
1392 
1393 	key.objectid = ino;
1394 	key.type = BTRFS_INODE_REF_KEY;
1395 	key.offset = (u64)-1;
1396 
1397 	while (1) {
1398 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1399 		if (ret < 0)
1400 			break;
1401 		if (ret > 0) {
1402 			if (path->slots[0] == 0)
1403 				break;
1404 			path->slots[0]--;
1405 		}
1406 process_slot:
1407 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1408 				      path->slots[0]);
1409 		if (key.objectid != ino ||
1410 		    key.type != BTRFS_INODE_REF_KEY)
1411 			break;
1412 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1413 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1414 						   path->slots[0]);
1415 		while (ptr < ptr_end) {
1416 			struct btrfs_inode_ref *ref;
1417 
1418 			ref = (struct btrfs_inode_ref *)ptr;
1419 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1420 							    ref);
1421 			ptr = (unsigned long)(ref + 1) + name_len;
1422 			nlink++;
1423 		}
1424 
1425 		if (key.offset == 0)
1426 			break;
1427 		if (path->slots[0] > 0) {
1428 			path->slots[0]--;
1429 			goto process_slot;
1430 		}
1431 		key.offset--;
1432 		btrfs_release_path(path);
1433 	}
1434 	btrfs_release_path(path);
1435 
1436 	return nlink;
1437 }
1438 
1439 /*
1440  * There are a few corners where the link count of the file can't
1441  * be properly maintained during replay.  So, instead of adding
1442  * lots of complexity to the log code, we just scan the backrefs
1443  * for any file that has been through replay.
1444  *
1445  * The scan will update the link count on the inode to reflect the
1446  * number of back refs found.  If it goes down to zero, the iput
1447  * will free the inode.
1448  */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1449 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1450 					   struct btrfs_root *root,
1451 					   struct inode *inode)
1452 {
1453 	struct btrfs_path *path;
1454 	int ret;
1455 	u64 nlink = 0;
1456 	u64 ino = btrfs_ino(inode);
1457 
1458 	path = btrfs_alloc_path();
1459 	if (!path)
1460 		return -ENOMEM;
1461 
1462 	ret = count_inode_refs(root, inode, path);
1463 	if (ret < 0)
1464 		goto out;
1465 
1466 	nlink = ret;
1467 
1468 	ret = count_inode_extrefs(root, inode, path);
1469 	if (ret < 0)
1470 		goto out;
1471 
1472 	nlink += ret;
1473 
1474 	ret = 0;
1475 
1476 	if (nlink != inode->i_nlink) {
1477 		set_nlink(inode, nlink);
1478 		btrfs_update_inode(trans, root, inode);
1479 	}
1480 	BTRFS_I(inode)->index_cnt = (u64)-1;
1481 
1482 	if (inode->i_nlink == 0) {
1483 		if (S_ISDIR(inode->i_mode)) {
1484 			ret = replay_dir_deletes(trans, root, NULL, path,
1485 						 ino, 1);
1486 			if (ret)
1487 				goto out;
1488 		}
1489 		ret = insert_orphan_item(trans, root, ino);
1490 	}
1491 
1492 out:
1493 	btrfs_free_path(path);
1494 	return ret;
1495 }
1496 
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1497 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1498 					    struct btrfs_root *root,
1499 					    struct btrfs_path *path)
1500 {
1501 	int ret;
1502 	struct btrfs_key key;
1503 	struct inode *inode;
1504 
1505 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1506 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1507 	key.offset = (u64)-1;
1508 	while (1) {
1509 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1510 		if (ret < 0)
1511 			break;
1512 
1513 		if (ret == 1) {
1514 			ret = 0;
1515 			if (path->slots[0] == 0)
1516 				break;
1517 			path->slots[0]--;
1518 		}
1519 
1520 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1521 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1522 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1523 			break;
1524 
1525 		ret = btrfs_del_item(trans, root, path);
1526 		if (ret)
1527 			break;
1528 
1529 		btrfs_release_path(path);
1530 		inode = read_one_inode(root, key.offset);
1531 		if (!inode) {
1532 			ret = -EIO;
1533 			break;
1534 		}
1535 
1536 		ret = fixup_inode_link_count(trans, root, inode);
1537 		iput(inode);
1538 		if (ret)
1539 			break;
1540 
1541 		/*
1542 		 * fixup on a directory may create new entries,
1543 		 * make sure we always look for the highset possible
1544 		 * offset
1545 		 */
1546 		key.offset = (u64)-1;
1547 	}
1548 	btrfs_release_path(path);
1549 	return ret;
1550 }
1551 
1552 
1553 /*
1554  * record a given inode in the fixup dir so we can check its link
1555  * count when replay is done.  The link count is incremented here
1556  * so the inode won't go away until we check it
1557  */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1558 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1559 				      struct btrfs_root *root,
1560 				      struct btrfs_path *path,
1561 				      u64 objectid)
1562 {
1563 	struct btrfs_key key;
1564 	int ret = 0;
1565 	struct inode *inode;
1566 
1567 	inode = read_one_inode(root, objectid);
1568 	if (!inode)
1569 		return -EIO;
1570 
1571 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1572 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1573 	key.offset = objectid;
1574 
1575 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1576 
1577 	btrfs_release_path(path);
1578 	if (ret == 0) {
1579 		if (!inode->i_nlink)
1580 			set_nlink(inode, 1);
1581 		else
1582 			inc_nlink(inode);
1583 		ret = btrfs_update_inode(trans, root, inode);
1584 	} else if (ret == -EEXIST) {
1585 		ret = 0;
1586 	}
1587 	iput(inode);
1588 
1589 	return ret;
1590 }
1591 
1592 /*
1593  * when replaying the log for a directory, we only insert names
1594  * for inodes that actually exist.  This means an fsync on a directory
1595  * does not implicitly fsync all the new files in it
1596  */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,char * name,int name_len,struct btrfs_key * location)1597 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1598 				    struct btrfs_root *root,
1599 				    u64 dirid, u64 index,
1600 				    char *name, int name_len,
1601 				    struct btrfs_key *location)
1602 {
1603 	struct inode *inode;
1604 	struct inode *dir;
1605 	int ret;
1606 
1607 	inode = read_one_inode(root, location->objectid);
1608 	if (!inode)
1609 		return -ENOENT;
1610 
1611 	dir = read_one_inode(root, dirid);
1612 	if (!dir) {
1613 		iput(inode);
1614 		return -EIO;
1615 	}
1616 
1617 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1618 
1619 	/* FIXME, put inode into FIXUP list */
1620 
1621 	iput(inode);
1622 	iput(dir);
1623 	return ret;
1624 }
1625 
1626 /*
1627  * Return true if an inode reference exists in the log for the given name,
1628  * inode and parent inode.
1629  */
name_in_log_ref(struct btrfs_root * log_root,const char * name,const int name_len,const u64 dirid,const u64 ino)1630 static bool name_in_log_ref(struct btrfs_root *log_root,
1631 			    const char *name, const int name_len,
1632 			    const u64 dirid, const u64 ino)
1633 {
1634 	struct btrfs_key search_key;
1635 
1636 	search_key.objectid = ino;
1637 	search_key.type = BTRFS_INODE_REF_KEY;
1638 	search_key.offset = dirid;
1639 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1640 		return true;
1641 
1642 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1643 	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1644 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1645 		return true;
1646 
1647 	return false;
1648 }
1649 
1650 /*
1651  * take a single entry in a log directory item and replay it into
1652  * the subvolume.
1653  *
1654  * if a conflicting item exists in the subdirectory already,
1655  * the inode it points to is unlinked and put into the link count
1656  * fix up tree.
1657  *
1658  * If a name from the log points to a file or directory that does
1659  * not exist in the FS, it is skipped.  fsyncs on directories
1660  * do not force down inodes inside that directory, just changes to the
1661  * names or unlinks in a directory.
1662  *
1663  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1664  * non-existing inode) and 1 if the name was replayed.
1665  */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1666 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1667 				    struct btrfs_root *root,
1668 				    struct btrfs_path *path,
1669 				    struct extent_buffer *eb,
1670 				    struct btrfs_dir_item *di,
1671 				    struct btrfs_key *key)
1672 {
1673 	char *name;
1674 	int name_len;
1675 	struct btrfs_dir_item *dst_di;
1676 	struct btrfs_key found_key;
1677 	struct btrfs_key log_key;
1678 	struct inode *dir;
1679 	u8 log_type;
1680 	int exists;
1681 	int ret = 0;
1682 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1683 	bool name_added = false;
1684 
1685 	dir = read_one_inode(root, key->objectid);
1686 	if (!dir)
1687 		return -EIO;
1688 
1689 	name_len = btrfs_dir_name_len(eb, di);
1690 	name = kmalloc(name_len, GFP_NOFS);
1691 	if (!name) {
1692 		ret = -ENOMEM;
1693 		goto out;
1694 	}
1695 
1696 	log_type = btrfs_dir_type(eb, di);
1697 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1698 		   name_len);
1699 
1700 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1701 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1702 	if (exists == 0)
1703 		exists = 1;
1704 	else
1705 		exists = 0;
1706 	btrfs_release_path(path);
1707 
1708 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1709 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1710 				       name, name_len, 1);
1711 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1712 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1713 						     key->objectid,
1714 						     key->offset, name,
1715 						     name_len, 1);
1716 	} else {
1717 		/* Corruption */
1718 		ret = -EINVAL;
1719 		goto out;
1720 	}
1721 	if (IS_ERR_OR_NULL(dst_di)) {
1722 		/* we need a sequence number to insert, so we only
1723 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1724 		 */
1725 		if (key->type != BTRFS_DIR_INDEX_KEY)
1726 			goto out;
1727 		goto insert;
1728 	}
1729 
1730 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1731 	/* the existing item matches the logged item */
1732 	if (found_key.objectid == log_key.objectid &&
1733 	    found_key.type == log_key.type &&
1734 	    found_key.offset == log_key.offset &&
1735 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1736 		update_size = false;
1737 		goto out;
1738 	}
1739 
1740 	/*
1741 	 * don't drop the conflicting directory entry if the inode
1742 	 * for the new entry doesn't exist
1743 	 */
1744 	if (!exists)
1745 		goto out;
1746 
1747 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1748 	if (ret)
1749 		goto out;
1750 
1751 	if (key->type == BTRFS_DIR_INDEX_KEY)
1752 		goto insert;
1753 out:
1754 	btrfs_release_path(path);
1755 	if (!ret && update_size) {
1756 		btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1757 		ret = btrfs_update_inode(trans, root, dir);
1758 	}
1759 	kfree(name);
1760 	iput(dir);
1761 	if (!ret && name_added)
1762 		ret = 1;
1763 	return ret;
1764 
1765 insert:
1766 	if (name_in_log_ref(root->log_root, name, name_len,
1767 			    key->objectid, log_key.objectid)) {
1768 		/* The dentry will be added later. */
1769 		ret = 0;
1770 		update_size = false;
1771 		goto out;
1772 	}
1773 	btrfs_release_path(path);
1774 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1775 			      name, name_len, &log_key);
1776 	if (ret && ret != -ENOENT && ret != -EEXIST)
1777 		goto out;
1778 	if (!ret)
1779 		name_added = true;
1780 	update_size = false;
1781 	ret = 0;
1782 	goto out;
1783 }
1784 
1785 /*
1786  * find all the names in a directory item and reconcile them into
1787  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1788  * one name in a directory item, but the same code gets used for
1789  * both directory index types
1790  */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1791 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1792 					struct btrfs_root *root,
1793 					struct btrfs_path *path,
1794 					struct extent_buffer *eb, int slot,
1795 					struct btrfs_key *key)
1796 {
1797 	int ret = 0;
1798 	u32 item_size = btrfs_item_size_nr(eb, slot);
1799 	struct btrfs_dir_item *di;
1800 	int name_len;
1801 	unsigned long ptr;
1802 	unsigned long ptr_end;
1803 	struct btrfs_path *fixup_path = NULL;
1804 
1805 	ptr = btrfs_item_ptr_offset(eb, slot);
1806 	ptr_end = ptr + item_size;
1807 	while (ptr < ptr_end) {
1808 		di = (struct btrfs_dir_item *)ptr;
1809 		if (verify_dir_item(root, eb, di))
1810 			return -EIO;
1811 		name_len = btrfs_dir_name_len(eb, di);
1812 		ret = replay_one_name(trans, root, path, eb, di, key);
1813 		if (ret < 0)
1814 			break;
1815 		ptr = (unsigned long)(di + 1);
1816 		ptr += name_len;
1817 
1818 		/*
1819 		 * If this entry refers to a non-directory (directories can not
1820 		 * have a link count > 1) and it was added in the transaction
1821 		 * that was not committed, make sure we fixup the link count of
1822 		 * the inode it the entry points to. Otherwise something like
1823 		 * the following would result in a directory pointing to an
1824 		 * inode with a wrong link that does not account for this dir
1825 		 * entry:
1826 		 *
1827 		 * mkdir testdir
1828 		 * touch testdir/foo
1829 		 * touch testdir/bar
1830 		 * sync
1831 		 *
1832 		 * ln testdir/bar testdir/bar_link
1833 		 * ln testdir/foo testdir/foo_link
1834 		 * xfs_io -c "fsync" testdir/bar
1835 		 *
1836 		 * <power failure>
1837 		 *
1838 		 * mount fs, log replay happens
1839 		 *
1840 		 * File foo would remain with a link count of 1 when it has two
1841 		 * entries pointing to it in the directory testdir. This would
1842 		 * make it impossible to ever delete the parent directory has
1843 		 * it would result in stale dentries that can never be deleted.
1844 		 */
1845 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1846 			struct btrfs_key di_key;
1847 
1848 			if (!fixup_path) {
1849 				fixup_path = btrfs_alloc_path();
1850 				if (!fixup_path) {
1851 					ret = -ENOMEM;
1852 					break;
1853 				}
1854 			}
1855 
1856 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1857 			ret = link_to_fixup_dir(trans, root, fixup_path,
1858 						di_key.objectid);
1859 			if (ret)
1860 				break;
1861 		}
1862 		ret = 0;
1863 	}
1864 	btrfs_free_path(fixup_path);
1865 	return ret;
1866 }
1867 
1868 /*
1869  * directory replay has two parts.  There are the standard directory
1870  * items in the log copied from the subvolume, and range items
1871  * created in the log while the subvolume was logged.
1872  *
1873  * The range items tell us which parts of the key space the log
1874  * is authoritative for.  During replay, if a key in the subvolume
1875  * directory is in a logged range item, but not actually in the log
1876  * that means it was deleted from the directory before the fsync
1877  * and should be removed.
1878  */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,int key_type,u64 * start_ret,u64 * end_ret)1879 static noinline int find_dir_range(struct btrfs_root *root,
1880 				   struct btrfs_path *path,
1881 				   u64 dirid, int key_type,
1882 				   u64 *start_ret, u64 *end_ret)
1883 {
1884 	struct btrfs_key key;
1885 	u64 found_end;
1886 	struct btrfs_dir_log_item *item;
1887 	int ret;
1888 	int nritems;
1889 
1890 	if (*start_ret == (u64)-1)
1891 		return 1;
1892 
1893 	key.objectid = dirid;
1894 	key.type = key_type;
1895 	key.offset = *start_ret;
1896 
1897 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1898 	if (ret < 0)
1899 		goto out;
1900 	if (ret > 0) {
1901 		if (path->slots[0] == 0)
1902 			goto out;
1903 		path->slots[0]--;
1904 	}
1905 	if (ret != 0)
1906 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1907 
1908 	if (key.type != key_type || key.objectid != dirid) {
1909 		ret = 1;
1910 		goto next;
1911 	}
1912 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1913 			      struct btrfs_dir_log_item);
1914 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1915 
1916 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1917 		ret = 0;
1918 		*start_ret = key.offset;
1919 		*end_ret = found_end;
1920 		goto out;
1921 	}
1922 	ret = 1;
1923 next:
1924 	/* check the next slot in the tree to see if it is a valid item */
1925 	nritems = btrfs_header_nritems(path->nodes[0]);
1926 	path->slots[0]++;
1927 	if (path->slots[0] >= nritems) {
1928 		ret = btrfs_next_leaf(root, path);
1929 		if (ret)
1930 			goto out;
1931 	}
1932 
1933 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1934 
1935 	if (key.type != key_type || key.objectid != dirid) {
1936 		ret = 1;
1937 		goto out;
1938 	}
1939 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1940 			      struct btrfs_dir_log_item);
1941 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1942 	*start_ret = key.offset;
1943 	*end_ret = found_end;
1944 	ret = 0;
1945 out:
1946 	btrfs_release_path(path);
1947 	return ret;
1948 }
1949 
1950 /*
1951  * this looks for a given directory item in the log.  If the directory
1952  * item is not in the log, the item is removed and the inode it points
1953  * to is unlinked
1954  */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct inode * dir,struct btrfs_key * dir_key)1955 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1956 				      struct btrfs_root *root,
1957 				      struct btrfs_root *log,
1958 				      struct btrfs_path *path,
1959 				      struct btrfs_path *log_path,
1960 				      struct inode *dir,
1961 				      struct btrfs_key *dir_key)
1962 {
1963 	int ret;
1964 	struct extent_buffer *eb;
1965 	int slot;
1966 	u32 item_size;
1967 	struct btrfs_dir_item *di;
1968 	struct btrfs_dir_item *log_di;
1969 	int name_len;
1970 	unsigned long ptr;
1971 	unsigned long ptr_end;
1972 	char *name;
1973 	struct inode *inode;
1974 	struct btrfs_key location;
1975 
1976 again:
1977 	eb = path->nodes[0];
1978 	slot = path->slots[0];
1979 	item_size = btrfs_item_size_nr(eb, slot);
1980 	ptr = btrfs_item_ptr_offset(eb, slot);
1981 	ptr_end = ptr + item_size;
1982 	while (ptr < ptr_end) {
1983 		di = (struct btrfs_dir_item *)ptr;
1984 		if (verify_dir_item(root, eb, di)) {
1985 			ret = -EIO;
1986 			goto out;
1987 		}
1988 
1989 		name_len = btrfs_dir_name_len(eb, di);
1990 		name = kmalloc(name_len, GFP_NOFS);
1991 		if (!name) {
1992 			ret = -ENOMEM;
1993 			goto out;
1994 		}
1995 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1996 				  name_len);
1997 		log_di = NULL;
1998 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1999 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2000 						       dir_key->objectid,
2001 						       name, name_len, 0);
2002 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2003 			log_di = btrfs_lookup_dir_index_item(trans, log,
2004 						     log_path,
2005 						     dir_key->objectid,
2006 						     dir_key->offset,
2007 						     name, name_len, 0);
2008 		}
2009 		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2010 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2011 			btrfs_release_path(path);
2012 			btrfs_release_path(log_path);
2013 			inode = read_one_inode(root, location.objectid);
2014 			if (!inode) {
2015 				kfree(name);
2016 				return -EIO;
2017 			}
2018 
2019 			ret = link_to_fixup_dir(trans, root,
2020 						path, location.objectid);
2021 			if (ret) {
2022 				kfree(name);
2023 				iput(inode);
2024 				goto out;
2025 			}
2026 
2027 			inc_nlink(inode);
2028 			ret = btrfs_unlink_inode(trans, root, dir, inode,
2029 						 name, name_len);
2030 			if (!ret)
2031 				ret = btrfs_run_delayed_items(trans, root);
2032 			kfree(name);
2033 			iput(inode);
2034 			if (ret)
2035 				goto out;
2036 
2037 			/* there might still be more names under this key
2038 			 * check and repeat if required
2039 			 */
2040 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2041 						0, 0);
2042 			if (ret == 0)
2043 				goto again;
2044 			ret = 0;
2045 			goto out;
2046 		} else if (IS_ERR(log_di)) {
2047 			kfree(name);
2048 			return PTR_ERR(log_di);
2049 		}
2050 		btrfs_release_path(log_path);
2051 		kfree(name);
2052 
2053 		ptr = (unsigned long)(di + 1);
2054 		ptr += name_len;
2055 	}
2056 	ret = 0;
2057 out:
2058 	btrfs_release_path(path);
2059 	btrfs_release_path(log_path);
2060 	return ret;
2061 }
2062 
replay_xattr_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,const u64 ino)2063 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2064 			      struct btrfs_root *root,
2065 			      struct btrfs_root *log,
2066 			      struct btrfs_path *path,
2067 			      const u64 ino)
2068 {
2069 	struct btrfs_key search_key;
2070 	struct btrfs_path *log_path;
2071 	int i;
2072 	int nritems;
2073 	int ret;
2074 
2075 	log_path = btrfs_alloc_path();
2076 	if (!log_path)
2077 		return -ENOMEM;
2078 
2079 	search_key.objectid = ino;
2080 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2081 	search_key.offset = 0;
2082 again:
2083 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2084 	if (ret < 0)
2085 		goto out;
2086 process_leaf:
2087 	nritems = btrfs_header_nritems(path->nodes[0]);
2088 	for (i = path->slots[0]; i < nritems; i++) {
2089 		struct btrfs_key key;
2090 		struct btrfs_dir_item *di;
2091 		struct btrfs_dir_item *log_di;
2092 		u32 total_size;
2093 		u32 cur;
2094 
2095 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2096 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2097 			ret = 0;
2098 			goto out;
2099 		}
2100 
2101 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2102 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2103 		cur = 0;
2104 		while (cur < total_size) {
2105 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2106 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2107 			u32 this_len = sizeof(*di) + name_len + data_len;
2108 			char *name;
2109 
2110 			name = kmalloc(name_len, GFP_NOFS);
2111 			if (!name) {
2112 				ret = -ENOMEM;
2113 				goto out;
2114 			}
2115 			read_extent_buffer(path->nodes[0], name,
2116 					   (unsigned long)(di + 1), name_len);
2117 
2118 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2119 						    name, name_len, 0);
2120 			btrfs_release_path(log_path);
2121 			if (!log_di) {
2122 				/* Doesn't exist in log tree, so delete it. */
2123 				btrfs_release_path(path);
2124 				di = btrfs_lookup_xattr(trans, root, path, ino,
2125 							name, name_len, -1);
2126 				kfree(name);
2127 				if (IS_ERR(di)) {
2128 					ret = PTR_ERR(di);
2129 					goto out;
2130 				}
2131 				ASSERT(di);
2132 				ret = btrfs_delete_one_dir_name(trans, root,
2133 								path, di);
2134 				if (ret)
2135 					goto out;
2136 				btrfs_release_path(path);
2137 				search_key = key;
2138 				goto again;
2139 			}
2140 			kfree(name);
2141 			if (IS_ERR(log_di)) {
2142 				ret = PTR_ERR(log_di);
2143 				goto out;
2144 			}
2145 			cur += this_len;
2146 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2147 		}
2148 	}
2149 	ret = btrfs_next_leaf(root, path);
2150 	if (ret > 0)
2151 		ret = 0;
2152 	else if (ret == 0)
2153 		goto process_leaf;
2154 out:
2155 	btrfs_free_path(log_path);
2156 	btrfs_release_path(path);
2157 	return ret;
2158 }
2159 
2160 
2161 /*
2162  * deletion replay happens before we copy any new directory items
2163  * out of the log or out of backreferences from inodes.  It
2164  * scans the log to find ranges of keys that log is authoritative for,
2165  * and then scans the directory to find items in those ranges that are
2166  * not present in the log.
2167  *
2168  * Anything we don't find in the log is unlinked and removed from the
2169  * directory.
2170  */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)2171 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2172 				       struct btrfs_root *root,
2173 				       struct btrfs_root *log,
2174 				       struct btrfs_path *path,
2175 				       u64 dirid, int del_all)
2176 {
2177 	u64 range_start;
2178 	u64 range_end;
2179 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2180 	int ret = 0;
2181 	struct btrfs_key dir_key;
2182 	struct btrfs_key found_key;
2183 	struct btrfs_path *log_path;
2184 	struct inode *dir;
2185 
2186 	dir_key.objectid = dirid;
2187 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2188 	log_path = btrfs_alloc_path();
2189 	if (!log_path)
2190 		return -ENOMEM;
2191 
2192 	dir = read_one_inode(root, dirid);
2193 	/* it isn't an error if the inode isn't there, that can happen
2194 	 * because we replay the deletes before we copy in the inode item
2195 	 * from the log
2196 	 */
2197 	if (!dir) {
2198 		btrfs_free_path(log_path);
2199 		return 0;
2200 	}
2201 again:
2202 	range_start = 0;
2203 	range_end = 0;
2204 	while (1) {
2205 		if (del_all)
2206 			range_end = (u64)-1;
2207 		else {
2208 			ret = find_dir_range(log, path, dirid, key_type,
2209 					     &range_start, &range_end);
2210 			if (ret < 0)
2211 				goto out;
2212 			else if (ret > 0)
2213 				break;
2214 		}
2215 
2216 		dir_key.offset = range_start;
2217 		while (1) {
2218 			int nritems;
2219 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2220 						0, 0);
2221 			if (ret < 0)
2222 				goto out;
2223 
2224 			nritems = btrfs_header_nritems(path->nodes[0]);
2225 			if (path->slots[0] >= nritems) {
2226 				ret = btrfs_next_leaf(root, path);
2227 				if (ret == 1)
2228 					break;
2229 				else if (ret < 0)
2230 					goto out;
2231 			}
2232 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2233 					      path->slots[0]);
2234 			if (found_key.objectid != dirid ||
2235 			    found_key.type != dir_key.type)
2236 				goto next_type;
2237 
2238 			if (found_key.offset > range_end)
2239 				break;
2240 
2241 			ret = check_item_in_log(trans, root, log, path,
2242 						log_path, dir,
2243 						&found_key);
2244 			if (ret)
2245 				goto out;
2246 			if (found_key.offset == (u64)-1)
2247 				break;
2248 			dir_key.offset = found_key.offset + 1;
2249 		}
2250 		btrfs_release_path(path);
2251 		if (range_end == (u64)-1)
2252 			break;
2253 		range_start = range_end + 1;
2254 	}
2255 
2256 next_type:
2257 	ret = 0;
2258 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2259 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2260 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2261 		btrfs_release_path(path);
2262 		goto again;
2263 	}
2264 out:
2265 	btrfs_release_path(path);
2266 	btrfs_free_path(log_path);
2267 	iput(dir);
2268 	return ret;
2269 }
2270 
2271 /*
2272  * the process_func used to replay items from the log tree.  This
2273  * gets called in two different stages.  The first stage just looks
2274  * for inodes and makes sure they are all copied into the subvolume.
2275  *
2276  * The second stage copies all the other item types from the log into
2277  * the subvolume.  The two stage approach is slower, but gets rid of
2278  * lots of complexity around inodes referencing other inodes that exist
2279  * only in the log (references come from either directory items or inode
2280  * back refs).
2281  */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen)2282 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2283 			     struct walk_control *wc, u64 gen)
2284 {
2285 	int nritems;
2286 	struct btrfs_path *path;
2287 	struct btrfs_root *root = wc->replay_dest;
2288 	struct btrfs_key key;
2289 	int level;
2290 	int i;
2291 	int ret;
2292 
2293 	ret = btrfs_read_buffer(eb, gen);
2294 	if (ret)
2295 		return ret;
2296 
2297 	level = btrfs_header_level(eb);
2298 
2299 	if (level != 0)
2300 		return 0;
2301 
2302 	path = btrfs_alloc_path();
2303 	if (!path)
2304 		return -ENOMEM;
2305 
2306 	nritems = btrfs_header_nritems(eb);
2307 	for (i = 0; i < nritems; i++) {
2308 		btrfs_item_key_to_cpu(eb, &key, i);
2309 
2310 		/* inode keys are done during the first stage */
2311 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2312 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2313 			struct btrfs_inode_item *inode_item;
2314 			u32 mode;
2315 
2316 			inode_item = btrfs_item_ptr(eb, i,
2317 					    struct btrfs_inode_item);
2318 			ret = replay_xattr_deletes(wc->trans, root, log,
2319 						   path, key.objectid);
2320 			if (ret)
2321 				break;
2322 			mode = btrfs_inode_mode(eb, inode_item);
2323 			if (S_ISDIR(mode)) {
2324 				ret = replay_dir_deletes(wc->trans,
2325 					 root, log, path, key.objectid, 0);
2326 				if (ret)
2327 					break;
2328 			}
2329 			ret = overwrite_item(wc->trans, root, path,
2330 					     eb, i, &key);
2331 			if (ret)
2332 				break;
2333 
2334 			/* for regular files, make sure corresponding
2335 			 * orhpan item exist. extents past the new EOF
2336 			 * will be truncated later by orphan cleanup.
2337 			 */
2338 			if (S_ISREG(mode)) {
2339 				ret = insert_orphan_item(wc->trans, root,
2340 							 key.objectid);
2341 				if (ret)
2342 					break;
2343 			}
2344 
2345 			ret = link_to_fixup_dir(wc->trans, root,
2346 						path, key.objectid);
2347 			if (ret)
2348 				break;
2349 		}
2350 
2351 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2352 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2353 			ret = replay_one_dir_item(wc->trans, root, path,
2354 						  eb, i, &key);
2355 			if (ret)
2356 				break;
2357 		}
2358 
2359 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2360 			continue;
2361 
2362 		/* these keys are simply copied */
2363 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2364 			ret = overwrite_item(wc->trans, root, path,
2365 					     eb, i, &key);
2366 			if (ret)
2367 				break;
2368 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2369 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2370 			ret = add_inode_ref(wc->trans, root, log, path,
2371 					    eb, i, &key);
2372 			if (ret && ret != -ENOENT)
2373 				break;
2374 			ret = 0;
2375 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2376 			ret = replay_one_extent(wc->trans, root, path,
2377 						eb, i, &key);
2378 			if (ret)
2379 				break;
2380 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2381 			ret = replay_one_dir_item(wc->trans, root, path,
2382 						  eb, i, &key);
2383 			if (ret)
2384 				break;
2385 		}
2386 	}
2387 	btrfs_free_path(path);
2388 	return ret;
2389 }
2390 
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2391 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2392 				   struct btrfs_root *root,
2393 				   struct btrfs_path *path, int *level,
2394 				   struct walk_control *wc)
2395 {
2396 	u64 root_owner;
2397 	u64 bytenr;
2398 	u64 ptr_gen;
2399 	struct extent_buffer *next;
2400 	struct extent_buffer *cur;
2401 	struct extent_buffer *parent;
2402 	u32 blocksize;
2403 	int ret = 0;
2404 
2405 	WARN_ON(*level < 0);
2406 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2407 
2408 	while (*level > 0) {
2409 		WARN_ON(*level < 0);
2410 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2411 		cur = path->nodes[*level];
2412 
2413 		WARN_ON(btrfs_header_level(cur) != *level);
2414 
2415 		if (path->slots[*level] >=
2416 		    btrfs_header_nritems(cur))
2417 			break;
2418 
2419 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2420 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2421 		blocksize = root->nodesize;
2422 
2423 		parent = path->nodes[*level];
2424 		root_owner = btrfs_header_owner(parent);
2425 
2426 		next = btrfs_find_create_tree_block(root, bytenr);
2427 		if (!next)
2428 			return -ENOMEM;
2429 
2430 		if (*level == 1) {
2431 			ret = wc->process_func(root, next, wc, ptr_gen);
2432 			if (ret) {
2433 				free_extent_buffer(next);
2434 				return ret;
2435 			}
2436 
2437 			path->slots[*level]++;
2438 			if (wc->free) {
2439 				ret = btrfs_read_buffer(next, ptr_gen);
2440 				if (ret) {
2441 					free_extent_buffer(next);
2442 					return ret;
2443 				}
2444 
2445 				if (trans) {
2446 					btrfs_tree_lock(next);
2447 					btrfs_set_lock_blocking(next);
2448 					clean_tree_block(trans, root->fs_info,
2449 							next);
2450 					btrfs_wait_tree_block_writeback(next);
2451 					btrfs_tree_unlock(next);
2452 				} else {
2453 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2454 						clear_extent_buffer_dirty(next);
2455 				}
2456 
2457 				WARN_ON(root_owner !=
2458 					BTRFS_TREE_LOG_OBJECTID);
2459 				ret = btrfs_free_and_pin_reserved_extent(root,
2460 							 bytenr, blocksize);
2461 				if (ret) {
2462 					free_extent_buffer(next);
2463 					return ret;
2464 				}
2465 			}
2466 			free_extent_buffer(next);
2467 			continue;
2468 		}
2469 		ret = btrfs_read_buffer(next, ptr_gen);
2470 		if (ret) {
2471 			free_extent_buffer(next);
2472 			return ret;
2473 		}
2474 
2475 		WARN_ON(*level <= 0);
2476 		if (path->nodes[*level-1])
2477 			free_extent_buffer(path->nodes[*level-1]);
2478 		path->nodes[*level-1] = next;
2479 		*level = btrfs_header_level(next);
2480 		path->slots[*level] = 0;
2481 		cond_resched();
2482 	}
2483 	WARN_ON(*level < 0);
2484 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2485 
2486 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2487 
2488 	cond_resched();
2489 	return 0;
2490 }
2491 
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2492 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2493 				 struct btrfs_root *root,
2494 				 struct btrfs_path *path, int *level,
2495 				 struct walk_control *wc)
2496 {
2497 	u64 root_owner;
2498 	int i;
2499 	int slot;
2500 	int ret;
2501 
2502 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2503 		slot = path->slots[i];
2504 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2505 			path->slots[i]++;
2506 			*level = i;
2507 			WARN_ON(*level == 0);
2508 			return 0;
2509 		} else {
2510 			struct extent_buffer *parent;
2511 			if (path->nodes[*level] == root->node)
2512 				parent = path->nodes[*level];
2513 			else
2514 				parent = path->nodes[*level + 1];
2515 
2516 			root_owner = btrfs_header_owner(parent);
2517 			ret = wc->process_func(root, path->nodes[*level], wc,
2518 				 btrfs_header_generation(path->nodes[*level]));
2519 			if (ret)
2520 				return ret;
2521 
2522 			if (wc->free) {
2523 				struct extent_buffer *next;
2524 
2525 				next = path->nodes[*level];
2526 
2527 				if (trans) {
2528 					btrfs_tree_lock(next);
2529 					btrfs_set_lock_blocking(next);
2530 					clean_tree_block(trans, root->fs_info,
2531 							next);
2532 					btrfs_wait_tree_block_writeback(next);
2533 					btrfs_tree_unlock(next);
2534 				} else {
2535 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2536 						clear_extent_buffer_dirty(next);
2537 				}
2538 
2539 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2540 				ret = btrfs_free_and_pin_reserved_extent(root,
2541 						path->nodes[*level]->start,
2542 						path->nodes[*level]->len);
2543 				if (ret)
2544 					return ret;
2545 			}
2546 			free_extent_buffer(path->nodes[*level]);
2547 			path->nodes[*level] = NULL;
2548 			*level = i + 1;
2549 		}
2550 	}
2551 	return 1;
2552 }
2553 
2554 /*
2555  * drop the reference count on the tree rooted at 'snap'.  This traverses
2556  * the tree freeing any blocks that have a ref count of zero after being
2557  * decremented.
2558  */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2559 static int walk_log_tree(struct btrfs_trans_handle *trans,
2560 			 struct btrfs_root *log, struct walk_control *wc)
2561 {
2562 	int ret = 0;
2563 	int wret;
2564 	int level;
2565 	struct btrfs_path *path;
2566 	int orig_level;
2567 
2568 	path = btrfs_alloc_path();
2569 	if (!path)
2570 		return -ENOMEM;
2571 
2572 	level = btrfs_header_level(log->node);
2573 	orig_level = level;
2574 	path->nodes[level] = log->node;
2575 	extent_buffer_get(log->node);
2576 	path->slots[level] = 0;
2577 
2578 	while (1) {
2579 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2580 		if (wret > 0)
2581 			break;
2582 		if (wret < 0) {
2583 			ret = wret;
2584 			goto out;
2585 		}
2586 
2587 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2588 		if (wret > 0)
2589 			break;
2590 		if (wret < 0) {
2591 			ret = wret;
2592 			goto out;
2593 		}
2594 	}
2595 
2596 	/* was the root node processed? if not, catch it here */
2597 	if (path->nodes[orig_level]) {
2598 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2599 			 btrfs_header_generation(path->nodes[orig_level]));
2600 		if (ret)
2601 			goto out;
2602 		if (wc->free) {
2603 			struct extent_buffer *next;
2604 
2605 			next = path->nodes[orig_level];
2606 
2607 			if (trans) {
2608 				btrfs_tree_lock(next);
2609 				btrfs_set_lock_blocking(next);
2610 				clean_tree_block(trans, log->fs_info, next);
2611 				btrfs_wait_tree_block_writeback(next);
2612 				btrfs_tree_unlock(next);
2613 			} else {
2614 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2615 					clear_extent_buffer_dirty(next);
2616 			}
2617 
2618 			WARN_ON(log->root_key.objectid !=
2619 				BTRFS_TREE_LOG_OBJECTID);
2620 			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2621 							 next->len);
2622 			if (ret)
2623 				goto out;
2624 		}
2625 	}
2626 
2627 out:
2628 	btrfs_free_path(path);
2629 	return ret;
2630 }
2631 
2632 /*
2633  * helper function to update the item for a given subvolumes log root
2634  * in the tree of log roots
2635  */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log)2636 static int update_log_root(struct btrfs_trans_handle *trans,
2637 			   struct btrfs_root *log)
2638 {
2639 	int ret;
2640 
2641 	if (log->log_transid == 1) {
2642 		/* insert root item on the first sync */
2643 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2644 				&log->root_key, &log->root_item);
2645 	} else {
2646 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2647 				&log->root_key, &log->root_item);
2648 	}
2649 	return ret;
2650 }
2651 
wait_log_commit(struct btrfs_root * root,int transid)2652 static void wait_log_commit(struct btrfs_root *root, int transid)
2653 {
2654 	DEFINE_WAIT(wait);
2655 	int index = transid % 2;
2656 
2657 	/*
2658 	 * we only allow two pending log transactions at a time,
2659 	 * so we know that if ours is more than 2 older than the
2660 	 * current transaction, we're done
2661 	 */
2662 	do {
2663 		prepare_to_wait(&root->log_commit_wait[index],
2664 				&wait, TASK_UNINTERRUPTIBLE);
2665 		mutex_unlock(&root->log_mutex);
2666 
2667 		if (root->log_transid_committed < transid &&
2668 		    atomic_read(&root->log_commit[index]))
2669 			schedule();
2670 
2671 		finish_wait(&root->log_commit_wait[index], &wait);
2672 		mutex_lock(&root->log_mutex);
2673 	} while (root->log_transid_committed < transid &&
2674 		 atomic_read(&root->log_commit[index]));
2675 }
2676 
wait_for_writer(struct btrfs_root * root)2677 static void wait_for_writer(struct btrfs_root *root)
2678 {
2679 	DEFINE_WAIT(wait);
2680 
2681 	while (atomic_read(&root->log_writers)) {
2682 		prepare_to_wait(&root->log_writer_wait,
2683 				&wait, TASK_UNINTERRUPTIBLE);
2684 		mutex_unlock(&root->log_mutex);
2685 		if (atomic_read(&root->log_writers))
2686 			schedule();
2687 		finish_wait(&root->log_writer_wait, &wait);
2688 		mutex_lock(&root->log_mutex);
2689 	}
2690 }
2691 
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)2692 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2693 					struct btrfs_log_ctx *ctx)
2694 {
2695 	if (!ctx)
2696 		return;
2697 
2698 	mutex_lock(&root->log_mutex);
2699 	list_del_init(&ctx->list);
2700 	mutex_unlock(&root->log_mutex);
2701 }
2702 
2703 /*
2704  * Invoked in log mutex context, or be sure there is no other task which
2705  * can access the list.
2706  */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)2707 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2708 					     int index, int error)
2709 {
2710 	struct btrfs_log_ctx *ctx;
2711 	struct btrfs_log_ctx *safe;
2712 
2713 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2714 		list_del_init(&ctx->list);
2715 		ctx->log_ret = error;
2716 	}
2717 
2718 	INIT_LIST_HEAD(&root->log_ctxs[index]);
2719 }
2720 
2721 /*
2722  * btrfs_sync_log does sends a given tree log down to the disk and
2723  * updates the super blocks to record it.  When this call is done,
2724  * you know that any inodes previously logged are safely on disk only
2725  * if it returns 0.
2726  *
2727  * Any other return value means you need to call btrfs_commit_transaction.
2728  * Some of the edge cases for fsyncing directories that have had unlinks
2729  * or renames done in the past mean that sometimes the only safe
2730  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2731  * that has happened.
2732  */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)2733 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2734 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2735 {
2736 	int index1;
2737 	int index2;
2738 	int mark;
2739 	int ret;
2740 	struct btrfs_root *log = root->log_root;
2741 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2742 	int log_transid = 0;
2743 	struct btrfs_log_ctx root_log_ctx;
2744 	struct blk_plug plug;
2745 
2746 	mutex_lock(&root->log_mutex);
2747 	log_transid = ctx->log_transid;
2748 	if (root->log_transid_committed >= log_transid) {
2749 		mutex_unlock(&root->log_mutex);
2750 		return ctx->log_ret;
2751 	}
2752 
2753 	index1 = log_transid % 2;
2754 	if (atomic_read(&root->log_commit[index1])) {
2755 		wait_log_commit(root, log_transid);
2756 		mutex_unlock(&root->log_mutex);
2757 		return ctx->log_ret;
2758 	}
2759 	ASSERT(log_transid == root->log_transid);
2760 	atomic_set(&root->log_commit[index1], 1);
2761 
2762 	/* wait for previous tree log sync to complete */
2763 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2764 		wait_log_commit(root, log_transid - 1);
2765 
2766 	while (1) {
2767 		int batch = atomic_read(&root->log_batch);
2768 		/* when we're on an ssd, just kick the log commit out */
2769 		if (!btrfs_test_opt(root, SSD) &&
2770 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2771 			mutex_unlock(&root->log_mutex);
2772 			schedule_timeout_uninterruptible(1);
2773 			mutex_lock(&root->log_mutex);
2774 		}
2775 		wait_for_writer(root);
2776 		if (batch == atomic_read(&root->log_batch))
2777 			break;
2778 	}
2779 
2780 	/* bail out if we need to do a full commit */
2781 	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2782 		ret = -EAGAIN;
2783 		btrfs_free_logged_extents(log, log_transid);
2784 		mutex_unlock(&root->log_mutex);
2785 		goto out;
2786 	}
2787 
2788 	if (log_transid % 2 == 0)
2789 		mark = EXTENT_DIRTY;
2790 	else
2791 		mark = EXTENT_NEW;
2792 
2793 	/* we start IO on  all the marked extents here, but we don't actually
2794 	 * wait for them until later.
2795 	 */
2796 	blk_start_plug(&plug);
2797 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2798 	if (ret) {
2799 		blk_finish_plug(&plug);
2800 		btrfs_abort_transaction(trans, root, ret);
2801 		btrfs_free_logged_extents(log, log_transid);
2802 		btrfs_set_log_full_commit(root->fs_info, trans);
2803 		mutex_unlock(&root->log_mutex);
2804 		goto out;
2805 	}
2806 
2807 	btrfs_set_root_node(&log->root_item, log->node);
2808 
2809 	root->log_transid++;
2810 	log->log_transid = root->log_transid;
2811 	root->log_start_pid = 0;
2812 	/*
2813 	 * Update or create log root item under the root's log_mutex to prevent
2814 	 * races with concurrent log syncs that can lead to failure to update
2815 	 * log root item because it was not created yet.
2816 	 */
2817 	ret = update_log_root(trans, log);
2818 	/*
2819 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2820 	 * in their headers. new modifications of the log will be written to
2821 	 * new positions. so it's safe to allow log writers to go in.
2822 	 */
2823 	mutex_unlock(&root->log_mutex);
2824 
2825 	btrfs_init_log_ctx(&root_log_ctx);
2826 
2827 	mutex_lock(&log_root_tree->log_mutex);
2828 	atomic_inc(&log_root_tree->log_batch);
2829 	atomic_inc(&log_root_tree->log_writers);
2830 
2831 	index2 = log_root_tree->log_transid % 2;
2832 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2833 	root_log_ctx.log_transid = log_root_tree->log_transid;
2834 
2835 	mutex_unlock(&log_root_tree->log_mutex);
2836 
2837 	mutex_lock(&log_root_tree->log_mutex);
2838 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2839 		/*
2840 		 * Implicit memory barrier after atomic_dec_and_test
2841 		 */
2842 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2843 			wake_up(&log_root_tree->log_writer_wait);
2844 	}
2845 
2846 	if (ret) {
2847 		if (!list_empty(&root_log_ctx.list))
2848 			list_del_init(&root_log_ctx.list);
2849 
2850 		blk_finish_plug(&plug);
2851 		btrfs_set_log_full_commit(root->fs_info, trans);
2852 
2853 		if (ret != -ENOSPC) {
2854 			btrfs_abort_transaction(trans, root, ret);
2855 			mutex_unlock(&log_root_tree->log_mutex);
2856 			goto out;
2857 		}
2858 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2859 		btrfs_free_logged_extents(log, log_transid);
2860 		mutex_unlock(&log_root_tree->log_mutex);
2861 		ret = -EAGAIN;
2862 		goto out;
2863 	}
2864 
2865 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2866 		blk_finish_plug(&plug);
2867 		list_del_init(&root_log_ctx.list);
2868 		mutex_unlock(&log_root_tree->log_mutex);
2869 		ret = root_log_ctx.log_ret;
2870 		goto out;
2871 	}
2872 
2873 	index2 = root_log_ctx.log_transid % 2;
2874 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2875 		blk_finish_plug(&plug);
2876 		ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2877 						mark);
2878 		btrfs_wait_logged_extents(trans, log, log_transid);
2879 		wait_log_commit(log_root_tree,
2880 				root_log_ctx.log_transid);
2881 		mutex_unlock(&log_root_tree->log_mutex);
2882 		if (!ret)
2883 			ret = root_log_ctx.log_ret;
2884 		goto out;
2885 	}
2886 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2887 	atomic_set(&log_root_tree->log_commit[index2], 1);
2888 
2889 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2890 		wait_log_commit(log_root_tree,
2891 				root_log_ctx.log_transid - 1);
2892 	}
2893 
2894 	wait_for_writer(log_root_tree);
2895 
2896 	/*
2897 	 * now that we've moved on to the tree of log tree roots,
2898 	 * check the full commit flag again
2899 	 */
2900 	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2901 		blk_finish_plug(&plug);
2902 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2903 		btrfs_free_logged_extents(log, log_transid);
2904 		mutex_unlock(&log_root_tree->log_mutex);
2905 		ret = -EAGAIN;
2906 		goto out_wake_log_root;
2907 	}
2908 
2909 	ret = btrfs_write_marked_extents(log_root_tree,
2910 					 &log_root_tree->dirty_log_pages,
2911 					 EXTENT_DIRTY | EXTENT_NEW);
2912 	blk_finish_plug(&plug);
2913 	if (ret) {
2914 		btrfs_set_log_full_commit(root->fs_info, trans);
2915 		btrfs_abort_transaction(trans, root, ret);
2916 		btrfs_free_logged_extents(log, log_transid);
2917 		mutex_unlock(&log_root_tree->log_mutex);
2918 		goto out_wake_log_root;
2919 	}
2920 	ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2921 	if (!ret)
2922 		ret = btrfs_wait_marked_extents(log_root_tree,
2923 						&log_root_tree->dirty_log_pages,
2924 						EXTENT_NEW | EXTENT_DIRTY);
2925 	if (ret) {
2926 		btrfs_set_log_full_commit(root->fs_info, trans);
2927 		btrfs_free_logged_extents(log, log_transid);
2928 		mutex_unlock(&log_root_tree->log_mutex);
2929 		goto out_wake_log_root;
2930 	}
2931 	btrfs_wait_logged_extents(trans, log, log_transid);
2932 
2933 	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2934 				log_root_tree->node->start);
2935 	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2936 				btrfs_header_level(log_root_tree->node));
2937 
2938 	log_root_tree->log_transid++;
2939 	mutex_unlock(&log_root_tree->log_mutex);
2940 
2941 	/*
2942 	 * nobody else is going to jump in and write the the ctree
2943 	 * super here because the log_commit atomic below is protecting
2944 	 * us.  We must be called with a transaction handle pinning
2945 	 * the running transaction open, so a full commit can't hop
2946 	 * in and cause problems either.
2947 	 */
2948 	ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2949 	if (ret) {
2950 		btrfs_set_log_full_commit(root->fs_info, trans);
2951 		btrfs_abort_transaction(trans, root, ret);
2952 		goto out_wake_log_root;
2953 	}
2954 
2955 	mutex_lock(&root->log_mutex);
2956 	if (root->last_log_commit < log_transid)
2957 		root->last_log_commit = log_transid;
2958 	mutex_unlock(&root->log_mutex);
2959 
2960 out_wake_log_root:
2961 	mutex_lock(&log_root_tree->log_mutex);
2962 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2963 
2964 	log_root_tree->log_transid_committed++;
2965 	atomic_set(&log_root_tree->log_commit[index2], 0);
2966 	mutex_unlock(&log_root_tree->log_mutex);
2967 
2968 	/*
2969 	 * The barrier before waitqueue_active is needed so all the updates
2970 	 * above are seen by the woken threads. It might not be necessary, but
2971 	 * proving that seems to be hard.
2972 	 */
2973 	smp_mb();
2974 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2975 		wake_up(&log_root_tree->log_commit_wait[index2]);
2976 out:
2977 	mutex_lock(&root->log_mutex);
2978 	btrfs_remove_all_log_ctxs(root, index1, ret);
2979 	root->log_transid_committed++;
2980 	atomic_set(&root->log_commit[index1], 0);
2981 	mutex_unlock(&root->log_mutex);
2982 
2983 	/*
2984 	 * The barrier before waitqueue_active is needed so all the updates
2985 	 * above are seen by the woken threads. It might not be necessary, but
2986 	 * proving that seems to be hard.
2987 	 */
2988 	smp_mb();
2989 	if (waitqueue_active(&root->log_commit_wait[index1]))
2990 		wake_up(&root->log_commit_wait[index1]);
2991 	return ret;
2992 }
2993 
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)2994 static void free_log_tree(struct btrfs_trans_handle *trans,
2995 			  struct btrfs_root *log)
2996 {
2997 	int ret;
2998 	u64 start;
2999 	u64 end;
3000 	struct walk_control wc = {
3001 		.free = 1,
3002 		.process_func = process_one_buffer
3003 	};
3004 
3005 	ret = walk_log_tree(trans, log, &wc);
3006 	/* I don't think this can happen but just in case */
3007 	if (ret)
3008 		btrfs_abort_transaction(trans, log, ret);
3009 
3010 	while (1) {
3011 		ret = find_first_extent_bit(&log->dirty_log_pages,
3012 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
3013 				NULL);
3014 		if (ret)
3015 			break;
3016 
3017 		clear_extent_bits(&log->dirty_log_pages, start, end,
3018 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
3019 	}
3020 
3021 	/*
3022 	 * We may have short-circuited the log tree with the full commit logic
3023 	 * and left ordered extents on our list, so clear these out to keep us
3024 	 * from leaking inodes and memory.
3025 	 */
3026 	btrfs_free_logged_extents(log, 0);
3027 	btrfs_free_logged_extents(log, 1);
3028 
3029 	free_extent_buffer(log->node);
3030 	kfree(log);
3031 }
3032 
3033 /*
3034  * free all the extents used by the tree log.  This should be called
3035  * at commit time of the full transaction
3036  */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3037 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3038 {
3039 	if (root->log_root) {
3040 		free_log_tree(trans, root->log_root);
3041 		root->log_root = NULL;
3042 	}
3043 	return 0;
3044 }
3045 
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3046 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3047 			     struct btrfs_fs_info *fs_info)
3048 {
3049 	if (fs_info->log_root_tree) {
3050 		free_log_tree(trans, fs_info->log_root_tree);
3051 		fs_info->log_root_tree = NULL;
3052 	}
3053 	return 0;
3054 }
3055 
3056 /*
3057  * If both a file and directory are logged, and unlinks or renames are
3058  * mixed in, we have a few interesting corners:
3059  *
3060  * create file X in dir Y
3061  * link file X to X.link in dir Y
3062  * fsync file X
3063  * unlink file X but leave X.link
3064  * fsync dir Y
3065  *
3066  * After a crash we would expect only X.link to exist.  But file X
3067  * didn't get fsync'd again so the log has back refs for X and X.link.
3068  *
3069  * We solve this by removing directory entries and inode backrefs from the
3070  * log when a file that was logged in the current transaction is
3071  * unlinked.  Any later fsync will include the updated log entries, and
3072  * we'll be able to reconstruct the proper directory items from backrefs.
3073  *
3074  * This optimizations allows us to avoid relogging the entire inode
3075  * or the entire directory.
3076  */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct inode * dir,u64 index)3077 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3078 				 struct btrfs_root *root,
3079 				 const char *name, int name_len,
3080 				 struct inode *dir, u64 index)
3081 {
3082 	struct btrfs_root *log;
3083 	struct btrfs_dir_item *di;
3084 	struct btrfs_path *path;
3085 	int ret;
3086 	int err = 0;
3087 	int bytes_del = 0;
3088 	u64 dir_ino = btrfs_ino(dir);
3089 
3090 	if (BTRFS_I(dir)->logged_trans < trans->transid)
3091 		return 0;
3092 
3093 	ret = join_running_log_trans(root);
3094 	if (ret)
3095 		return 0;
3096 
3097 	mutex_lock(&BTRFS_I(dir)->log_mutex);
3098 
3099 	log = root->log_root;
3100 	path = btrfs_alloc_path();
3101 	if (!path) {
3102 		err = -ENOMEM;
3103 		goto out_unlock;
3104 	}
3105 
3106 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3107 				   name, name_len, -1);
3108 	if (IS_ERR(di)) {
3109 		err = PTR_ERR(di);
3110 		goto fail;
3111 	}
3112 	if (di) {
3113 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3114 		bytes_del += name_len;
3115 		if (ret) {
3116 			err = ret;
3117 			goto fail;
3118 		}
3119 	}
3120 	btrfs_release_path(path);
3121 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3122 					 index, name, name_len, -1);
3123 	if (IS_ERR(di)) {
3124 		err = PTR_ERR(di);
3125 		goto fail;
3126 	}
3127 	if (di) {
3128 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3129 		bytes_del += name_len;
3130 		if (ret) {
3131 			err = ret;
3132 			goto fail;
3133 		}
3134 	}
3135 
3136 	/* update the directory size in the log to reflect the names
3137 	 * we have removed
3138 	 */
3139 	if (bytes_del) {
3140 		struct btrfs_key key;
3141 
3142 		key.objectid = dir_ino;
3143 		key.offset = 0;
3144 		key.type = BTRFS_INODE_ITEM_KEY;
3145 		btrfs_release_path(path);
3146 
3147 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3148 		if (ret < 0) {
3149 			err = ret;
3150 			goto fail;
3151 		}
3152 		if (ret == 0) {
3153 			struct btrfs_inode_item *item;
3154 			u64 i_size;
3155 
3156 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3157 					      struct btrfs_inode_item);
3158 			i_size = btrfs_inode_size(path->nodes[0], item);
3159 			if (i_size > bytes_del)
3160 				i_size -= bytes_del;
3161 			else
3162 				i_size = 0;
3163 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3164 			btrfs_mark_buffer_dirty(path->nodes[0]);
3165 		} else
3166 			ret = 0;
3167 		btrfs_release_path(path);
3168 	}
3169 fail:
3170 	btrfs_free_path(path);
3171 out_unlock:
3172 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
3173 	if (err == -ENOSPC) {
3174 		btrfs_set_log_full_commit(root->fs_info, trans);
3175 		err = 0;
3176 	} else if (err < 0 && err != -ENOENT) {
3177 		/* ENOENT can be returned if the entry hasn't been fsynced yet */
3178 		btrfs_abort_transaction(trans, root, err);
3179 	}
3180 
3181 	btrfs_end_log_trans(root);
3182 
3183 	return err;
3184 }
3185 
3186 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct inode * inode,u64 dirid)3187 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3188 			       struct btrfs_root *root,
3189 			       const char *name, int name_len,
3190 			       struct inode *inode, u64 dirid)
3191 {
3192 	struct btrfs_root *log;
3193 	u64 index;
3194 	int ret;
3195 
3196 	if (BTRFS_I(inode)->logged_trans < trans->transid)
3197 		return 0;
3198 
3199 	ret = join_running_log_trans(root);
3200 	if (ret)
3201 		return 0;
3202 	log = root->log_root;
3203 	mutex_lock(&BTRFS_I(inode)->log_mutex);
3204 
3205 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3206 				  dirid, &index);
3207 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
3208 	if (ret == -ENOSPC) {
3209 		btrfs_set_log_full_commit(root->fs_info, trans);
3210 		ret = 0;
3211 	} else if (ret < 0 && ret != -ENOENT)
3212 		btrfs_abort_transaction(trans, root, ret);
3213 	btrfs_end_log_trans(root);
3214 
3215 	return ret;
3216 }
3217 
3218 /*
3219  * creates a range item in the log for 'dirid'.  first_offset and
3220  * last_offset tell us which parts of the key space the log should
3221  * be considered authoritative for.
3222  */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,int key_type,u64 dirid,u64 first_offset,u64 last_offset)3223 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3224 				       struct btrfs_root *log,
3225 				       struct btrfs_path *path,
3226 				       int key_type, u64 dirid,
3227 				       u64 first_offset, u64 last_offset)
3228 {
3229 	int ret;
3230 	struct btrfs_key key;
3231 	struct btrfs_dir_log_item *item;
3232 
3233 	key.objectid = dirid;
3234 	key.offset = first_offset;
3235 	if (key_type == BTRFS_DIR_ITEM_KEY)
3236 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3237 	else
3238 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3239 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3240 	if (ret)
3241 		return ret;
3242 
3243 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3244 			      struct btrfs_dir_log_item);
3245 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3246 	btrfs_mark_buffer_dirty(path->nodes[0]);
3247 	btrfs_release_path(path);
3248 	return 0;
3249 }
3250 
3251 /*
3252  * log all the items included in the current transaction for a given
3253  * directory.  This also creates the range items in the log tree required
3254  * to replay anything deleted before the fsync
3255  */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,int key_type,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)3256 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3257 			  struct btrfs_root *root, struct inode *inode,
3258 			  struct btrfs_path *path,
3259 			  struct btrfs_path *dst_path, int key_type,
3260 			  struct btrfs_log_ctx *ctx,
3261 			  u64 min_offset, u64 *last_offset_ret)
3262 {
3263 	struct btrfs_key min_key;
3264 	struct btrfs_root *log = root->log_root;
3265 	struct extent_buffer *src;
3266 	int err = 0;
3267 	int ret;
3268 	int i;
3269 	int nritems;
3270 	u64 first_offset = min_offset;
3271 	u64 last_offset = (u64)-1;
3272 	u64 ino = btrfs_ino(inode);
3273 
3274 	log = root->log_root;
3275 
3276 	min_key.objectid = ino;
3277 	min_key.type = key_type;
3278 	min_key.offset = min_offset;
3279 
3280 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3281 
3282 	/*
3283 	 * we didn't find anything from this transaction, see if there
3284 	 * is anything at all
3285 	 */
3286 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3287 		min_key.objectid = ino;
3288 		min_key.type = key_type;
3289 		min_key.offset = (u64)-1;
3290 		btrfs_release_path(path);
3291 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3292 		if (ret < 0) {
3293 			btrfs_release_path(path);
3294 			return ret;
3295 		}
3296 		ret = btrfs_previous_item(root, path, ino, key_type);
3297 
3298 		/* if ret == 0 there are items for this type,
3299 		 * create a range to tell us the last key of this type.
3300 		 * otherwise, there are no items in this directory after
3301 		 * *min_offset, and we create a range to indicate that.
3302 		 */
3303 		if (ret == 0) {
3304 			struct btrfs_key tmp;
3305 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3306 					      path->slots[0]);
3307 			if (key_type == tmp.type)
3308 				first_offset = max(min_offset, tmp.offset) + 1;
3309 		}
3310 		goto done;
3311 	}
3312 
3313 	/* go backward to find any previous key */
3314 	ret = btrfs_previous_item(root, path, ino, key_type);
3315 	if (ret == 0) {
3316 		struct btrfs_key tmp;
3317 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3318 		if (key_type == tmp.type) {
3319 			first_offset = tmp.offset;
3320 			ret = overwrite_item(trans, log, dst_path,
3321 					     path->nodes[0], path->slots[0],
3322 					     &tmp);
3323 			if (ret) {
3324 				err = ret;
3325 				goto done;
3326 			}
3327 		}
3328 	}
3329 	btrfs_release_path(path);
3330 
3331 	/*
3332 	 * Find the first key from this transaction again.  See the note for
3333 	 * log_new_dir_dentries, if we're logging a directory recursively we
3334 	 * won't be holding its i_mutex, which means we can modify the directory
3335 	 * while we're logging it.  If we remove an entry between our first
3336 	 * search and this search we'll not find the key again and can just
3337 	 * bail.
3338 	 */
3339 search:
3340 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3341 	if (ret != 0)
3342 		goto done;
3343 
3344 	/*
3345 	 * we have a block from this transaction, log every item in it
3346 	 * from our directory
3347 	 */
3348 	while (1) {
3349 		struct btrfs_key tmp;
3350 		src = path->nodes[0];
3351 		nritems = btrfs_header_nritems(src);
3352 		for (i = path->slots[0]; i < nritems; i++) {
3353 			struct btrfs_dir_item *di;
3354 
3355 			btrfs_item_key_to_cpu(src, &min_key, i);
3356 
3357 			if (min_key.objectid != ino || min_key.type != key_type)
3358 				goto done;
3359 
3360 			if (need_resched()) {
3361 				btrfs_release_path(path);
3362 				cond_resched();
3363 				goto search;
3364 			}
3365 
3366 			ret = overwrite_item(trans, log, dst_path, src, i,
3367 					     &min_key);
3368 			if (ret) {
3369 				err = ret;
3370 				goto done;
3371 			}
3372 
3373 			/*
3374 			 * We must make sure that when we log a directory entry,
3375 			 * the corresponding inode, after log replay, has a
3376 			 * matching link count. For example:
3377 			 *
3378 			 * touch foo
3379 			 * mkdir mydir
3380 			 * sync
3381 			 * ln foo mydir/bar
3382 			 * xfs_io -c "fsync" mydir
3383 			 * <crash>
3384 			 * <mount fs and log replay>
3385 			 *
3386 			 * Would result in a fsync log that when replayed, our
3387 			 * file inode would have a link count of 1, but we get
3388 			 * two directory entries pointing to the same inode.
3389 			 * After removing one of the names, it would not be
3390 			 * possible to remove the other name, which resulted
3391 			 * always in stale file handle errors, and would not
3392 			 * be possible to rmdir the parent directory, since
3393 			 * its i_size could never decrement to the value
3394 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3395 			 */
3396 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3397 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3398 			if (ctx &&
3399 			    (btrfs_dir_transid(src, di) == trans->transid ||
3400 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3401 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3402 				ctx->log_new_dentries = true;
3403 		}
3404 		path->slots[0] = nritems;
3405 
3406 		/*
3407 		 * look ahead to the next item and see if it is also
3408 		 * from this directory and from this transaction
3409 		 */
3410 		ret = btrfs_next_leaf(root, path);
3411 		if (ret) {
3412 			if (ret == 1)
3413 				last_offset = (u64)-1;
3414 			else
3415 				err = ret;
3416 			goto done;
3417 		}
3418 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3419 		if (tmp.objectid != ino || tmp.type != key_type) {
3420 			last_offset = (u64)-1;
3421 			goto done;
3422 		}
3423 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3424 			ret = overwrite_item(trans, log, dst_path,
3425 					     path->nodes[0], path->slots[0],
3426 					     &tmp);
3427 			if (ret)
3428 				err = ret;
3429 			else
3430 				last_offset = tmp.offset;
3431 			goto done;
3432 		}
3433 	}
3434 done:
3435 	btrfs_release_path(path);
3436 	btrfs_release_path(dst_path);
3437 
3438 	if (err == 0) {
3439 		*last_offset_ret = last_offset;
3440 		/*
3441 		 * insert the log range keys to indicate where the log
3442 		 * is valid
3443 		 */
3444 		ret = insert_dir_log_key(trans, log, path, key_type,
3445 					 ino, first_offset, last_offset);
3446 		if (ret)
3447 			err = ret;
3448 	}
3449 	return err;
3450 }
3451 
3452 /*
3453  * logging directories is very similar to logging inodes, We find all the items
3454  * from the current transaction and write them to the log.
3455  *
3456  * The recovery code scans the directory in the subvolume, and if it finds a
3457  * key in the range logged that is not present in the log tree, then it means
3458  * that dir entry was unlinked during the transaction.
3459  *
3460  * In order for that scan to work, we must include one key smaller than
3461  * the smallest logged by this transaction and one key larger than the largest
3462  * key logged by this transaction.
3463  */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)3464 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3465 			  struct btrfs_root *root, struct inode *inode,
3466 			  struct btrfs_path *path,
3467 			  struct btrfs_path *dst_path,
3468 			  struct btrfs_log_ctx *ctx)
3469 {
3470 	u64 min_key;
3471 	u64 max_key;
3472 	int ret;
3473 	int key_type = BTRFS_DIR_ITEM_KEY;
3474 
3475 again:
3476 	min_key = 0;
3477 	max_key = 0;
3478 	while (1) {
3479 		ret = log_dir_items(trans, root, inode, path,
3480 				    dst_path, key_type, ctx, min_key,
3481 				    &max_key);
3482 		if (ret)
3483 			return ret;
3484 		if (max_key == (u64)-1)
3485 			break;
3486 		min_key = max_key + 1;
3487 	}
3488 
3489 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3490 		key_type = BTRFS_DIR_INDEX_KEY;
3491 		goto again;
3492 	}
3493 	return 0;
3494 }
3495 
3496 /*
3497  * a helper function to drop items from the log before we relog an
3498  * inode.  max_key_type indicates the highest item type to remove.
3499  * This cannot be run for file data extents because it does not
3500  * free the extents they point to.
3501  */
drop_objectid_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 objectid,int max_key_type)3502 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3503 				  struct btrfs_root *log,
3504 				  struct btrfs_path *path,
3505 				  u64 objectid, int max_key_type)
3506 {
3507 	int ret;
3508 	struct btrfs_key key;
3509 	struct btrfs_key found_key;
3510 	int start_slot;
3511 
3512 	key.objectid = objectid;
3513 	key.type = max_key_type;
3514 	key.offset = (u64)-1;
3515 
3516 	while (1) {
3517 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3518 		BUG_ON(ret == 0); /* Logic error */
3519 		if (ret < 0)
3520 			break;
3521 
3522 		if (path->slots[0] == 0)
3523 			break;
3524 
3525 		path->slots[0]--;
3526 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3527 				      path->slots[0]);
3528 
3529 		if (found_key.objectid != objectid)
3530 			break;
3531 
3532 		found_key.offset = 0;
3533 		found_key.type = 0;
3534 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3535 				       &start_slot);
3536 
3537 		ret = btrfs_del_items(trans, log, path, start_slot,
3538 				      path->slots[0] - start_slot + 1);
3539 		/*
3540 		 * If start slot isn't 0 then we don't need to re-search, we've
3541 		 * found the last guy with the objectid in this tree.
3542 		 */
3543 		if (ret || start_slot != 0)
3544 			break;
3545 		btrfs_release_path(path);
3546 	}
3547 	btrfs_release_path(path);
3548 	if (ret > 0)
3549 		ret = 0;
3550 	return ret;
3551 }
3552 
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only,u64 logged_isize)3553 static void fill_inode_item(struct btrfs_trans_handle *trans,
3554 			    struct extent_buffer *leaf,
3555 			    struct btrfs_inode_item *item,
3556 			    struct inode *inode, int log_inode_only,
3557 			    u64 logged_isize)
3558 {
3559 	struct btrfs_map_token token;
3560 
3561 	btrfs_init_map_token(&token);
3562 
3563 	if (log_inode_only) {
3564 		/* set the generation to zero so the recover code
3565 		 * can tell the difference between an logging
3566 		 * just to say 'this inode exists' and a logging
3567 		 * to say 'update this inode with these values'
3568 		 */
3569 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3570 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3571 	} else {
3572 		btrfs_set_token_inode_generation(leaf, item,
3573 						 BTRFS_I(inode)->generation,
3574 						 &token);
3575 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3576 	}
3577 
3578 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3579 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3580 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3581 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3582 
3583 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3584 				     inode->i_atime.tv_sec, &token);
3585 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3586 				      inode->i_atime.tv_nsec, &token);
3587 
3588 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3589 				     inode->i_mtime.tv_sec, &token);
3590 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3591 				      inode->i_mtime.tv_nsec, &token);
3592 
3593 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3594 				     inode->i_ctime.tv_sec, &token);
3595 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3596 				      inode->i_ctime.tv_nsec, &token);
3597 
3598 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3599 				     &token);
3600 
3601 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3602 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3603 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3604 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3605 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3606 }
3607 
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct inode * inode)3608 static int log_inode_item(struct btrfs_trans_handle *trans,
3609 			  struct btrfs_root *log, struct btrfs_path *path,
3610 			  struct inode *inode)
3611 {
3612 	struct btrfs_inode_item *inode_item;
3613 	int ret;
3614 
3615 	ret = btrfs_insert_empty_item(trans, log, path,
3616 				      &BTRFS_I(inode)->location,
3617 				      sizeof(*inode_item));
3618 	if (ret && ret != -EEXIST)
3619 		return ret;
3620 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3621 				    struct btrfs_inode_item);
3622 	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
3623 	btrfs_release_path(path);
3624 	return 0;
3625 }
3626 
copy_items(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,u64 * last_extent,int start_slot,int nr,int inode_only,u64 logged_isize)3627 static noinline int copy_items(struct btrfs_trans_handle *trans,
3628 			       struct inode *inode,
3629 			       struct btrfs_path *dst_path,
3630 			       struct btrfs_path *src_path, u64 *last_extent,
3631 			       int start_slot, int nr, int inode_only,
3632 			       u64 logged_isize)
3633 {
3634 	unsigned long src_offset;
3635 	unsigned long dst_offset;
3636 	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3637 	struct btrfs_file_extent_item *extent;
3638 	struct btrfs_inode_item *inode_item;
3639 	struct extent_buffer *src = src_path->nodes[0];
3640 	struct btrfs_key first_key, last_key, key;
3641 	int ret;
3642 	struct btrfs_key *ins_keys;
3643 	u32 *ins_sizes;
3644 	char *ins_data;
3645 	int i;
3646 	struct list_head ordered_sums;
3647 	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3648 	bool has_extents = false;
3649 	bool need_find_last_extent = true;
3650 	bool done = false;
3651 
3652 	INIT_LIST_HEAD(&ordered_sums);
3653 
3654 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3655 			   nr * sizeof(u32), GFP_NOFS);
3656 	if (!ins_data)
3657 		return -ENOMEM;
3658 
3659 	first_key.objectid = (u64)-1;
3660 
3661 	ins_sizes = (u32 *)ins_data;
3662 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3663 
3664 	for (i = 0; i < nr; i++) {
3665 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3666 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3667 	}
3668 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3669 				       ins_keys, ins_sizes, nr);
3670 	if (ret) {
3671 		kfree(ins_data);
3672 		return ret;
3673 	}
3674 
3675 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3676 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3677 						   dst_path->slots[0]);
3678 
3679 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3680 
3681 		if ((i == (nr - 1)))
3682 			last_key = ins_keys[i];
3683 
3684 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3685 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3686 						    dst_path->slots[0],
3687 						    struct btrfs_inode_item);
3688 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3689 					inode, inode_only == LOG_INODE_EXISTS,
3690 					logged_isize);
3691 		} else {
3692 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3693 					   src_offset, ins_sizes[i]);
3694 		}
3695 
3696 		/*
3697 		 * We set need_find_last_extent here in case we know we were
3698 		 * processing other items and then walk into the first extent in
3699 		 * the inode.  If we don't hit an extent then nothing changes,
3700 		 * we'll do the last search the next time around.
3701 		 */
3702 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3703 			has_extents = true;
3704 			if (first_key.objectid == (u64)-1)
3705 				first_key = ins_keys[i];
3706 		} else {
3707 			need_find_last_extent = false;
3708 		}
3709 
3710 		/* take a reference on file data extents so that truncates
3711 		 * or deletes of this inode don't have to relog the inode
3712 		 * again
3713 		 */
3714 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3715 		    !skip_csum) {
3716 			int found_type;
3717 			extent = btrfs_item_ptr(src, start_slot + i,
3718 						struct btrfs_file_extent_item);
3719 
3720 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3721 				continue;
3722 
3723 			found_type = btrfs_file_extent_type(src, extent);
3724 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3725 				u64 ds, dl, cs, cl;
3726 				ds = btrfs_file_extent_disk_bytenr(src,
3727 								extent);
3728 				/* ds == 0 is a hole */
3729 				if (ds == 0)
3730 					continue;
3731 
3732 				dl = btrfs_file_extent_disk_num_bytes(src,
3733 								extent);
3734 				cs = btrfs_file_extent_offset(src, extent);
3735 				cl = btrfs_file_extent_num_bytes(src,
3736 								extent);
3737 				if (btrfs_file_extent_compression(src,
3738 								  extent)) {
3739 					cs = 0;
3740 					cl = dl;
3741 				}
3742 
3743 				ret = btrfs_lookup_csums_range(
3744 						log->fs_info->csum_root,
3745 						ds + cs, ds + cs + cl - 1,
3746 						&ordered_sums, 0);
3747 				if (ret)
3748 					break;
3749 			}
3750 		}
3751 	}
3752 
3753 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3754 	btrfs_release_path(dst_path);
3755 	kfree(ins_data);
3756 
3757 	/*
3758 	 * we have to do this after the loop above to avoid changing the
3759 	 * log tree while trying to change the log tree.
3760 	 */
3761 	while (!list_empty(&ordered_sums)) {
3762 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3763 						   struct btrfs_ordered_sum,
3764 						   list);
3765 		if (!ret)
3766 			ret = btrfs_csum_file_blocks(trans, log, sums);
3767 		list_del(&sums->list);
3768 		kfree(sums);
3769 	}
3770 
3771 	if (!has_extents)
3772 		return ret;
3773 
3774 	if (need_find_last_extent && *last_extent == first_key.offset) {
3775 		/*
3776 		 * We don't have any leafs between our current one and the one
3777 		 * we processed before that can have file extent items for our
3778 		 * inode (and have a generation number smaller than our current
3779 		 * transaction id).
3780 		 */
3781 		need_find_last_extent = false;
3782 	}
3783 
3784 	/*
3785 	 * Because we use btrfs_search_forward we could skip leaves that were
3786 	 * not modified and then assume *last_extent is valid when it really
3787 	 * isn't.  So back up to the previous leaf and read the end of the last
3788 	 * extent before we go and fill in holes.
3789 	 */
3790 	if (need_find_last_extent) {
3791 		u64 len;
3792 
3793 		ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3794 		if (ret < 0)
3795 			return ret;
3796 		if (ret)
3797 			goto fill_holes;
3798 		if (src_path->slots[0])
3799 			src_path->slots[0]--;
3800 		src = src_path->nodes[0];
3801 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3802 		if (key.objectid != btrfs_ino(inode) ||
3803 		    key.type != BTRFS_EXTENT_DATA_KEY)
3804 			goto fill_holes;
3805 		extent = btrfs_item_ptr(src, src_path->slots[0],
3806 					struct btrfs_file_extent_item);
3807 		if (btrfs_file_extent_type(src, extent) ==
3808 		    BTRFS_FILE_EXTENT_INLINE) {
3809 			len = btrfs_file_extent_inline_len(src,
3810 							   src_path->slots[0],
3811 							   extent);
3812 			*last_extent = ALIGN(key.offset + len,
3813 					     log->sectorsize);
3814 		} else {
3815 			len = btrfs_file_extent_num_bytes(src, extent);
3816 			*last_extent = key.offset + len;
3817 		}
3818 	}
3819 fill_holes:
3820 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3821 	 * things could have happened
3822 	 *
3823 	 * 1) A merge could have happened, so we could currently be on a leaf
3824 	 * that holds what we were copying in the first place.
3825 	 * 2) A split could have happened, and now not all of the items we want
3826 	 * are on the same leaf.
3827 	 *
3828 	 * So we need to adjust how we search for holes, we need to drop the
3829 	 * path and re-search for the first extent key we found, and then walk
3830 	 * forward until we hit the last one we copied.
3831 	 */
3832 	if (need_find_last_extent) {
3833 		/* btrfs_prev_leaf could return 1 without releasing the path */
3834 		btrfs_release_path(src_path);
3835 		ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3836 					src_path, 0, 0);
3837 		if (ret < 0)
3838 			return ret;
3839 		ASSERT(ret == 0);
3840 		src = src_path->nodes[0];
3841 		i = src_path->slots[0];
3842 	} else {
3843 		i = start_slot;
3844 	}
3845 
3846 	/*
3847 	 * Ok so here we need to go through and fill in any holes we may have
3848 	 * to make sure that holes are punched for those areas in case they had
3849 	 * extents previously.
3850 	 */
3851 	while (!done) {
3852 		u64 offset, len;
3853 		u64 extent_end;
3854 
3855 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3856 			ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3857 			if (ret < 0)
3858 				return ret;
3859 			ASSERT(ret == 0);
3860 			src = src_path->nodes[0];
3861 			i = 0;
3862 			need_find_last_extent = true;
3863 		}
3864 
3865 		btrfs_item_key_to_cpu(src, &key, i);
3866 		if (!btrfs_comp_cpu_keys(&key, &last_key))
3867 			done = true;
3868 		if (key.objectid != btrfs_ino(inode) ||
3869 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3870 			i++;
3871 			continue;
3872 		}
3873 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3874 		if (btrfs_file_extent_type(src, extent) ==
3875 		    BTRFS_FILE_EXTENT_INLINE) {
3876 			len = btrfs_file_extent_inline_len(src, i, extent);
3877 			extent_end = ALIGN(key.offset + len, log->sectorsize);
3878 		} else {
3879 			len = btrfs_file_extent_num_bytes(src, extent);
3880 			extent_end = key.offset + len;
3881 		}
3882 		i++;
3883 
3884 		if (*last_extent == key.offset) {
3885 			*last_extent = extent_end;
3886 			continue;
3887 		}
3888 		offset = *last_extent;
3889 		len = key.offset - *last_extent;
3890 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3891 					       offset, 0, 0, len, 0, len, 0,
3892 					       0, 0);
3893 		if (ret)
3894 			break;
3895 		*last_extent = extent_end;
3896 	}
3897 	/*
3898 	 * Need to let the callers know we dropped the path so they should
3899 	 * re-search.
3900 	 */
3901 	if (!ret && need_find_last_extent)
3902 		ret = 1;
3903 	return ret;
3904 }
3905 
extent_cmp(void * priv,struct list_head * a,struct list_head * b)3906 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3907 {
3908 	struct extent_map *em1, *em2;
3909 
3910 	em1 = list_entry(a, struct extent_map, list);
3911 	em2 = list_entry(b, struct extent_map, list);
3912 
3913 	if (em1->start < em2->start)
3914 		return -1;
3915 	else if (em1->start > em2->start)
3916 		return 1;
3917 	return 0;
3918 }
3919 
wait_ordered_extents(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_root * root,const struct extent_map * em,const struct list_head * logged_list,bool * ordered_io_error)3920 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3921 				struct inode *inode,
3922 				struct btrfs_root *root,
3923 				const struct extent_map *em,
3924 				const struct list_head *logged_list,
3925 				bool *ordered_io_error)
3926 {
3927 	struct btrfs_ordered_extent *ordered;
3928 	struct btrfs_root *log = root->log_root;
3929 	u64 mod_start = em->mod_start;
3930 	u64 mod_len = em->mod_len;
3931 	const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3932 	u64 csum_offset;
3933 	u64 csum_len;
3934 	LIST_HEAD(ordered_sums);
3935 	int ret = 0;
3936 
3937 	*ordered_io_error = false;
3938 
3939 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3940 	    em->block_start == EXTENT_MAP_HOLE)
3941 		return 0;
3942 
3943 	/*
3944 	 * Wait far any ordered extent that covers our extent map. If it
3945 	 * finishes without an error, first check and see if our csums are on
3946 	 * our outstanding ordered extents.
3947 	 */
3948 	list_for_each_entry(ordered, logged_list, log_list) {
3949 		struct btrfs_ordered_sum *sum;
3950 
3951 		if (!mod_len)
3952 			break;
3953 
3954 		if (ordered->file_offset + ordered->len <= mod_start ||
3955 		    mod_start + mod_len <= ordered->file_offset)
3956 			continue;
3957 
3958 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3959 		    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3960 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3961 			const u64 start = ordered->file_offset;
3962 			const u64 end = ordered->file_offset + ordered->len - 1;
3963 
3964 			WARN_ON(ordered->inode != inode);
3965 			filemap_fdatawrite_range(inode->i_mapping, start, end);
3966 		}
3967 
3968 		wait_event(ordered->wait,
3969 			   (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3970 			    test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3971 
3972 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3973 			/*
3974 			 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3975 			 * i_mapping flags, so that the next fsync won't get
3976 			 * an outdated io error too.
3977 			 */
3978 			btrfs_inode_check_errors(inode);
3979 			*ordered_io_error = true;
3980 			break;
3981 		}
3982 		/*
3983 		 * We are going to copy all the csums on this ordered extent, so
3984 		 * go ahead and adjust mod_start and mod_len in case this
3985 		 * ordered extent has already been logged.
3986 		 */
3987 		if (ordered->file_offset > mod_start) {
3988 			if (ordered->file_offset + ordered->len >=
3989 			    mod_start + mod_len)
3990 				mod_len = ordered->file_offset - mod_start;
3991 			/*
3992 			 * If we have this case
3993 			 *
3994 			 * |--------- logged extent ---------|
3995 			 *       |----- ordered extent ----|
3996 			 *
3997 			 * Just don't mess with mod_start and mod_len, we'll
3998 			 * just end up logging more csums than we need and it
3999 			 * will be ok.
4000 			 */
4001 		} else {
4002 			if (ordered->file_offset + ordered->len <
4003 			    mod_start + mod_len) {
4004 				mod_len = (mod_start + mod_len) -
4005 					(ordered->file_offset + ordered->len);
4006 				mod_start = ordered->file_offset +
4007 					ordered->len;
4008 			} else {
4009 				mod_len = 0;
4010 			}
4011 		}
4012 
4013 		if (skip_csum)
4014 			continue;
4015 
4016 		/*
4017 		 * To keep us from looping for the above case of an ordered
4018 		 * extent that falls inside of the logged extent.
4019 		 */
4020 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4021 				     &ordered->flags))
4022 			continue;
4023 
4024 		list_for_each_entry(sum, &ordered->list, list) {
4025 			ret = btrfs_csum_file_blocks(trans, log, sum);
4026 			if (ret)
4027 				break;
4028 		}
4029 	}
4030 
4031 	if (*ordered_io_error || !mod_len || ret || skip_csum)
4032 		return ret;
4033 
4034 	if (em->compress_type) {
4035 		csum_offset = 0;
4036 		csum_len = max(em->block_len, em->orig_block_len);
4037 	} else {
4038 		csum_offset = mod_start - em->start;
4039 		csum_len = mod_len;
4040 	}
4041 
4042 	/* block start is already adjusted for the file extent offset. */
4043 	ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
4044 				       em->block_start + csum_offset,
4045 				       em->block_start + csum_offset +
4046 				       csum_len - 1, &ordered_sums, 0);
4047 	if (ret)
4048 		return ret;
4049 
4050 	while (!list_empty(&ordered_sums)) {
4051 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4052 						   struct btrfs_ordered_sum,
4053 						   list);
4054 		if (!ret)
4055 			ret = btrfs_csum_file_blocks(trans, log, sums);
4056 		list_del(&sums->list);
4057 		kfree(sums);
4058 	}
4059 
4060 	return ret;
4061 }
4062 
log_one_extent(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_root * root,const struct extent_map * em,struct btrfs_path * path,const struct list_head * logged_list,struct btrfs_log_ctx * ctx)4063 static int log_one_extent(struct btrfs_trans_handle *trans,
4064 			  struct inode *inode, struct btrfs_root *root,
4065 			  const struct extent_map *em,
4066 			  struct btrfs_path *path,
4067 			  const struct list_head *logged_list,
4068 			  struct btrfs_log_ctx *ctx)
4069 {
4070 	struct btrfs_root *log = root->log_root;
4071 	struct btrfs_file_extent_item *fi;
4072 	struct extent_buffer *leaf;
4073 	struct btrfs_map_token token;
4074 	struct btrfs_key key;
4075 	u64 extent_offset = em->start - em->orig_start;
4076 	u64 block_len;
4077 	int ret;
4078 	int extent_inserted = 0;
4079 	bool ordered_io_err = false;
4080 
4081 	ret = wait_ordered_extents(trans, inode, root, em, logged_list,
4082 				   &ordered_io_err);
4083 	if (ret)
4084 		return ret;
4085 
4086 	if (ordered_io_err) {
4087 		ctx->io_err = -EIO;
4088 		return 0;
4089 	}
4090 
4091 	btrfs_init_map_token(&token);
4092 
4093 	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4094 				   em->start + em->len, NULL, 0, 1,
4095 				   sizeof(*fi), &extent_inserted);
4096 	if (ret)
4097 		return ret;
4098 
4099 	if (!extent_inserted) {
4100 		key.objectid = btrfs_ino(inode);
4101 		key.type = BTRFS_EXTENT_DATA_KEY;
4102 		key.offset = em->start;
4103 
4104 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4105 					      sizeof(*fi));
4106 		if (ret)
4107 			return ret;
4108 	}
4109 	leaf = path->nodes[0];
4110 	fi = btrfs_item_ptr(leaf, path->slots[0],
4111 			    struct btrfs_file_extent_item);
4112 
4113 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4114 					       &token);
4115 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4116 		btrfs_set_token_file_extent_type(leaf, fi,
4117 						 BTRFS_FILE_EXTENT_PREALLOC,
4118 						 &token);
4119 	else
4120 		btrfs_set_token_file_extent_type(leaf, fi,
4121 						 BTRFS_FILE_EXTENT_REG,
4122 						 &token);
4123 
4124 	block_len = max(em->block_len, em->orig_block_len);
4125 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4126 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4127 							em->block_start,
4128 							&token);
4129 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4130 							   &token);
4131 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4132 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4133 							em->block_start -
4134 							extent_offset, &token);
4135 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4136 							   &token);
4137 	} else {
4138 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4139 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4140 							   &token);
4141 	}
4142 
4143 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4144 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4145 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4146 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4147 						&token);
4148 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4149 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4150 	btrfs_mark_buffer_dirty(leaf);
4151 
4152 	btrfs_release_path(path);
4153 
4154 	return ret;
4155 }
4156 
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,struct list_head * logged_list,struct btrfs_log_ctx * ctx)4157 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4158 				     struct btrfs_root *root,
4159 				     struct inode *inode,
4160 				     struct btrfs_path *path,
4161 				     struct list_head *logged_list,
4162 				     struct btrfs_log_ctx *ctx)
4163 {
4164 	struct extent_map *em, *n;
4165 	struct list_head extents;
4166 	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4167 	u64 test_gen;
4168 	int ret = 0;
4169 	int num = 0;
4170 
4171 	INIT_LIST_HEAD(&extents);
4172 
4173 	write_lock(&tree->lock);
4174 	test_gen = root->fs_info->last_trans_committed;
4175 
4176 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4177 		list_del_init(&em->list);
4178 
4179 		/*
4180 		 * Just an arbitrary number, this can be really CPU intensive
4181 		 * once we start getting a lot of extents, and really once we
4182 		 * have a bunch of extents we just want to commit since it will
4183 		 * be faster.
4184 		 */
4185 		if (++num > 32768) {
4186 			list_del_init(&tree->modified_extents);
4187 			ret = -EFBIG;
4188 			goto process;
4189 		}
4190 
4191 		if (em->generation <= test_gen)
4192 			continue;
4193 		/* Need a ref to keep it from getting evicted from cache */
4194 		atomic_inc(&em->refs);
4195 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4196 		list_add_tail(&em->list, &extents);
4197 		num++;
4198 	}
4199 
4200 	list_sort(NULL, &extents, extent_cmp);
4201 
4202 process:
4203 	while (!list_empty(&extents)) {
4204 		em = list_entry(extents.next, struct extent_map, list);
4205 
4206 		list_del_init(&em->list);
4207 
4208 		/*
4209 		 * If we had an error we just need to delete everybody from our
4210 		 * private list.
4211 		 */
4212 		if (ret) {
4213 			clear_em_logging(tree, em);
4214 			free_extent_map(em);
4215 			continue;
4216 		}
4217 
4218 		write_unlock(&tree->lock);
4219 
4220 		ret = log_one_extent(trans, inode, root, em, path, logged_list,
4221 				     ctx);
4222 		write_lock(&tree->lock);
4223 		clear_em_logging(tree, em);
4224 		free_extent_map(em);
4225 	}
4226 	WARN_ON(!list_empty(&extents));
4227 	write_unlock(&tree->lock);
4228 
4229 	btrfs_release_path(path);
4230 	return ret;
4231 }
4232 
logged_inode_size(struct btrfs_root * log,struct inode * inode,struct btrfs_path * path,u64 * size_ret)4233 static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4234 			     struct btrfs_path *path, u64 *size_ret)
4235 {
4236 	struct btrfs_key key;
4237 	int ret;
4238 
4239 	key.objectid = btrfs_ino(inode);
4240 	key.type = BTRFS_INODE_ITEM_KEY;
4241 	key.offset = 0;
4242 
4243 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4244 	if (ret < 0) {
4245 		return ret;
4246 	} else if (ret > 0) {
4247 		*size_ret = 0;
4248 	} else {
4249 		struct btrfs_inode_item *item;
4250 
4251 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4252 				      struct btrfs_inode_item);
4253 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4254 	}
4255 
4256 	btrfs_release_path(path);
4257 	return 0;
4258 }
4259 
4260 /*
4261  * At the moment we always log all xattrs. This is to figure out at log replay
4262  * time which xattrs must have their deletion replayed. If a xattr is missing
4263  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4264  * because if a xattr is deleted, the inode is fsynced and a power failure
4265  * happens, causing the log to be replayed the next time the fs is mounted,
4266  * we want the xattr to not exist anymore (same behaviour as other filesystems
4267  * with a journal, ext3/4, xfs, f2fs, etc).
4268  */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path)4269 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4270 				struct btrfs_root *root,
4271 				struct inode *inode,
4272 				struct btrfs_path *path,
4273 				struct btrfs_path *dst_path)
4274 {
4275 	int ret;
4276 	struct btrfs_key key;
4277 	const u64 ino = btrfs_ino(inode);
4278 	int ins_nr = 0;
4279 	int start_slot = 0;
4280 
4281 	key.objectid = ino;
4282 	key.type = BTRFS_XATTR_ITEM_KEY;
4283 	key.offset = 0;
4284 
4285 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4286 	if (ret < 0)
4287 		return ret;
4288 
4289 	while (true) {
4290 		int slot = path->slots[0];
4291 		struct extent_buffer *leaf = path->nodes[0];
4292 		int nritems = btrfs_header_nritems(leaf);
4293 
4294 		if (slot >= nritems) {
4295 			if (ins_nr > 0) {
4296 				u64 last_extent = 0;
4297 
4298 				ret = copy_items(trans, inode, dst_path, path,
4299 						 &last_extent, start_slot,
4300 						 ins_nr, 1, 0);
4301 				/* can't be 1, extent items aren't processed */
4302 				ASSERT(ret <= 0);
4303 				if (ret < 0)
4304 					return ret;
4305 				ins_nr = 0;
4306 			}
4307 			ret = btrfs_next_leaf(root, path);
4308 			if (ret < 0)
4309 				return ret;
4310 			else if (ret > 0)
4311 				break;
4312 			continue;
4313 		}
4314 
4315 		btrfs_item_key_to_cpu(leaf, &key, slot);
4316 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4317 			break;
4318 
4319 		if (ins_nr == 0)
4320 			start_slot = slot;
4321 		ins_nr++;
4322 		path->slots[0]++;
4323 		cond_resched();
4324 	}
4325 	if (ins_nr > 0) {
4326 		u64 last_extent = 0;
4327 
4328 		ret = copy_items(trans, inode, dst_path, path,
4329 				 &last_extent, start_slot,
4330 				 ins_nr, 1, 0);
4331 		/* can't be 1, extent items aren't processed */
4332 		ASSERT(ret <= 0);
4333 		if (ret < 0)
4334 			return ret;
4335 	}
4336 
4337 	return 0;
4338 }
4339 
4340 /*
4341  * If the no holes feature is enabled we need to make sure any hole between the
4342  * last extent and the i_size of our inode is explicitly marked in the log. This
4343  * is to make sure that doing something like:
4344  *
4345  *      1) create file with 128Kb of data
4346  *      2) truncate file to 64Kb
4347  *      3) truncate file to 256Kb
4348  *      4) fsync file
4349  *      5) <crash/power failure>
4350  *      6) mount fs and trigger log replay
4351  *
4352  * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4353  * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4354  * file correspond to a hole. The presence of explicit holes in a log tree is
4355  * what guarantees that log replay will remove/adjust file extent items in the
4356  * fs/subvol tree.
4357  *
4358  * Here we do not need to care about holes between extents, that is already done
4359  * by copy_items(). We also only need to do this in the full sync path, where we
4360  * lookup for extents from the fs/subvol tree only. In the fast path case, we
4361  * lookup the list of modified extent maps and if any represents a hole, we
4362  * insert a corresponding extent representing a hole in the log tree.
4363  */
btrfs_log_trailing_hole(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path)4364 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4365 				   struct btrfs_root *root,
4366 				   struct inode *inode,
4367 				   struct btrfs_path *path)
4368 {
4369 	int ret;
4370 	struct btrfs_key key;
4371 	u64 hole_start;
4372 	u64 hole_size;
4373 	struct extent_buffer *leaf;
4374 	struct btrfs_root *log = root->log_root;
4375 	const u64 ino = btrfs_ino(inode);
4376 	const u64 i_size = i_size_read(inode);
4377 
4378 	if (!btrfs_fs_incompat(root->fs_info, NO_HOLES))
4379 		return 0;
4380 
4381 	key.objectid = ino;
4382 	key.type = BTRFS_EXTENT_DATA_KEY;
4383 	key.offset = (u64)-1;
4384 
4385 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4386 	ASSERT(ret != 0);
4387 	if (ret < 0)
4388 		return ret;
4389 
4390 	ASSERT(path->slots[0] > 0);
4391 	path->slots[0]--;
4392 	leaf = path->nodes[0];
4393 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4394 
4395 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4396 		/* inode does not have any extents */
4397 		hole_start = 0;
4398 		hole_size = i_size;
4399 	} else {
4400 		struct btrfs_file_extent_item *extent;
4401 		u64 len;
4402 
4403 		/*
4404 		 * If there's an extent beyond i_size, an explicit hole was
4405 		 * already inserted by copy_items().
4406 		 */
4407 		if (key.offset >= i_size)
4408 			return 0;
4409 
4410 		extent = btrfs_item_ptr(leaf, path->slots[0],
4411 					struct btrfs_file_extent_item);
4412 
4413 		if (btrfs_file_extent_type(leaf, extent) ==
4414 		    BTRFS_FILE_EXTENT_INLINE)
4415 			return 0;
4416 
4417 		len = btrfs_file_extent_num_bytes(leaf, extent);
4418 		/* Last extent goes beyond i_size, no need to log a hole. */
4419 		if (key.offset + len > i_size)
4420 			return 0;
4421 		hole_start = key.offset + len;
4422 		hole_size = i_size - hole_start;
4423 	}
4424 	btrfs_release_path(path);
4425 
4426 	/* Last extent ends at i_size. */
4427 	if (hole_size == 0)
4428 		return 0;
4429 
4430 	hole_size = ALIGN(hole_size, root->sectorsize);
4431 	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4432 				       hole_size, 0, hole_size, 0, 0, 0);
4433 	return ret;
4434 }
4435 
4436 /*
4437  * When we are logging a new inode X, check if it doesn't have a reference that
4438  * matches the reference from some other inode Y created in a past transaction
4439  * and that was renamed in the current transaction. If we don't do this, then at
4440  * log replay time we can lose inode Y (and all its files if it's a directory):
4441  *
4442  * mkdir /mnt/x
4443  * echo "hello world" > /mnt/x/foobar
4444  * sync
4445  * mv /mnt/x /mnt/y
4446  * mkdir /mnt/x                 # or touch /mnt/x
4447  * xfs_io -c fsync /mnt/x
4448  * <power fail>
4449  * mount fs, trigger log replay
4450  *
4451  * After the log replay procedure, we would lose the first directory and all its
4452  * files (file foobar).
4453  * For the case where inode Y is not a directory we simply end up losing it:
4454  *
4455  * echo "123" > /mnt/foo
4456  * sync
4457  * mv /mnt/foo /mnt/bar
4458  * echo "abc" > /mnt/foo
4459  * xfs_io -c fsync /mnt/foo
4460  * <power fail>
4461  *
4462  * We also need this for cases where a snapshot entry is replaced by some other
4463  * entry (file or directory) otherwise we end up with an unreplayable log due to
4464  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4465  * if it were a regular entry:
4466  *
4467  * mkdir /mnt/x
4468  * btrfs subvolume snapshot /mnt /mnt/x/snap
4469  * btrfs subvolume delete /mnt/x/snap
4470  * rmdir /mnt/x
4471  * mkdir /mnt/x
4472  * fsync /mnt/x or fsync some new file inside it
4473  * <power fail>
4474  *
4475  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4476  * the same transaction.
4477  */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct inode * inode)4478 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4479 					 const int slot,
4480 					 const struct btrfs_key *key,
4481 					 struct inode *inode)
4482 {
4483 	int ret;
4484 	struct btrfs_path *search_path;
4485 	char *name = NULL;
4486 	u32 name_len = 0;
4487 	u32 item_size = btrfs_item_size_nr(eb, slot);
4488 	u32 cur_offset = 0;
4489 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4490 
4491 	search_path = btrfs_alloc_path();
4492 	if (!search_path)
4493 		return -ENOMEM;
4494 	search_path->search_commit_root = 1;
4495 	search_path->skip_locking = 1;
4496 
4497 	while (cur_offset < item_size) {
4498 		u64 parent;
4499 		u32 this_name_len;
4500 		u32 this_len;
4501 		unsigned long name_ptr;
4502 		struct btrfs_dir_item *di;
4503 
4504 		if (key->type == BTRFS_INODE_REF_KEY) {
4505 			struct btrfs_inode_ref *iref;
4506 
4507 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4508 			parent = key->offset;
4509 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4510 			name_ptr = (unsigned long)(iref + 1);
4511 			this_len = sizeof(*iref) + this_name_len;
4512 		} else {
4513 			struct btrfs_inode_extref *extref;
4514 
4515 			extref = (struct btrfs_inode_extref *)(ptr +
4516 							       cur_offset);
4517 			parent = btrfs_inode_extref_parent(eb, extref);
4518 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4519 			name_ptr = (unsigned long)&extref->name;
4520 			this_len = sizeof(*extref) + this_name_len;
4521 		}
4522 
4523 		if (this_name_len > name_len) {
4524 			char *new_name;
4525 
4526 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4527 			if (!new_name) {
4528 				ret = -ENOMEM;
4529 				goto out;
4530 			}
4531 			name_len = this_name_len;
4532 			name = new_name;
4533 		}
4534 
4535 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4536 		di = btrfs_lookup_dir_item(NULL, BTRFS_I(inode)->root,
4537 					   search_path, parent,
4538 					   name, this_name_len, 0);
4539 		if (di && !IS_ERR(di)) {
4540 			ret = 1;
4541 			goto out;
4542 		} else if (IS_ERR(di)) {
4543 			ret = PTR_ERR(di);
4544 			goto out;
4545 		}
4546 		btrfs_release_path(search_path);
4547 
4548 		cur_offset += this_len;
4549 	}
4550 	ret = 0;
4551 out:
4552 	btrfs_free_path(search_path);
4553 	kfree(name);
4554 	return ret;
4555 }
4556 
4557 /* log a single inode in the tree log.
4558  * At least one parent directory for this inode must exist in the tree
4559  * or be logged already.
4560  *
4561  * Any items from this inode changed by the current transaction are copied
4562  * to the log tree.  An extra reference is taken on any extents in this
4563  * file, allowing us to avoid a whole pile of corner cases around logging
4564  * blocks that have been removed from the tree.
4565  *
4566  * See LOG_INODE_ALL and related defines for a description of what inode_only
4567  * does.
4568  *
4569  * This handles both files and directories.
4570  */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,int inode_only,const loff_t start,const loff_t end,struct btrfs_log_ctx * ctx)4571 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4572 			   struct btrfs_root *root, struct inode *inode,
4573 			   int inode_only,
4574 			   const loff_t start,
4575 			   const loff_t end,
4576 			   struct btrfs_log_ctx *ctx)
4577 {
4578 	struct btrfs_path *path;
4579 	struct btrfs_path *dst_path;
4580 	struct btrfs_key min_key;
4581 	struct btrfs_key max_key;
4582 	struct btrfs_root *log = root->log_root;
4583 	struct extent_buffer *src = NULL;
4584 	LIST_HEAD(logged_list);
4585 	u64 last_extent = 0;
4586 	int err = 0;
4587 	int ret;
4588 	int nritems;
4589 	int ins_start_slot = 0;
4590 	int ins_nr;
4591 	bool fast_search = false;
4592 	u64 ino = btrfs_ino(inode);
4593 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4594 	u64 logged_isize = 0;
4595 	bool need_log_inode_item = true;
4596 	bool xattrs_logged = false;
4597 
4598 	path = btrfs_alloc_path();
4599 	if (!path)
4600 		return -ENOMEM;
4601 	dst_path = btrfs_alloc_path();
4602 	if (!dst_path) {
4603 		btrfs_free_path(path);
4604 		return -ENOMEM;
4605 	}
4606 
4607 	min_key.objectid = ino;
4608 	min_key.type = BTRFS_INODE_ITEM_KEY;
4609 	min_key.offset = 0;
4610 
4611 	max_key.objectid = ino;
4612 
4613 
4614 	/* today the code can only do partial logging of directories */
4615 	if (S_ISDIR(inode->i_mode) ||
4616 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4617 		       &BTRFS_I(inode)->runtime_flags) &&
4618 	     inode_only == LOG_INODE_EXISTS))
4619 		max_key.type = BTRFS_XATTR_ITEM_KEY;
4620 	else
4621 		max_key.type = (u8)-1;
4622 	max_key.offset = (u64)-1;
4623 
4624 	/*
4625 	 * Only run delayed items if we are a dir or a new file.
4626 	 * Otherwise commit the delayed inode only, which is needed in
4627 	 * order for the log replay code to mark inodes for link count
4628 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4629 	 */
4630 	if (S_ISDIR(inode->i_mode) ||
4631 	    BTRFS_I(inode)->generation > root->fs_info->last_trans_committed)
4632 		ret = btrfs_commit_inode_delayed_items(trans, inode);
4633 	else
4634 		ret = btrfs_commit_inode_delayed_inode(inode);
4635 
4636 	if (ret) {
4637 		btrfs_free_path(path);
4638 		btrfs_free_path(dst_path);
4639 		return ret;
4640 	}
4641 
4642 	mutex_lock(&BTRFS_I(inode)->log_mutex);
4643 
4644 	btrfs_get_logged_extents(inode, &logged_list, start, end);
4645 
4646 	/*
4647 	 * a brute force approach to making sure we get the most uptodate
4648 	 * copies of everything.
4649 	 */
4650 	if (S_ISDIR(inode->i_mode)) {
4651 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4652 
4653 		if (inode_only == LOG_INODE_EXISTS)
4654 			max_key_type = BTRFS_XATTR_ITEM_KEY;
4655 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4656 	} else {
4657 		if (inode_only == LOG_INODE_EXISTS) {
4658 			/*
4659 			 * Make sure the new inode item we write to the log has
4660 			 * the same isize as the current one (if it exists).
4661 			 * This is necessary to prevent data loss after log
4662 			 * replay, and also to prevent doing a wrong expanding
4663 			 * truncate - for e.g. create file, write 4K into offset
4664 			 * 0, fsync, write 4K into offset 4096, add hard link,
4665 			 * fsync some other file (to sync log), power fail - if
4666 			 * we use the inode's current i_size, after log replay
4667 			 * we get a 8Kb file, with the last 4Kb extent as a hole
4668 			 * (zeroes), as if an expanding truncate happened,
4669 			 * instead of getting a file of 4Kb only.
4670 			 */
4671 			err = logged_inode_size(log, inode, path,
4672 						&logged_isize);
4673 			if (err)
4674 				goto out_unlock;
4675 		}
4676 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4677 			     &BTRFS_I(inode)->runtime_flags)) {
4678 			if (inode_only == LOG_INODE_EXISTS) {
4679 				max_key.type = BTRFS_XATTR_ITEM_KEY;
4680 				ret = drop_objectid_items(trans, log, path, ino,
4681 							  max_key.type);
4682 			} else {
4683 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4684 					  &BTRFS_I(inode)->runtime_flags);
4685 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4686 					  &BTRFS_I(inode)->runtime_flags);
4687 				while(1) {
4688 					ret = btrfs_truncate_inode_items(trans,
4689 							 log, inode, 0, 0);
4690 					if (ret != -EAGAIN)
4691 						break;
4692 				}
4693 			}
4694 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4695 					      &BTRFS_I(inode)->runtime_flags) ||
4696 			   inode_only == LOG_INODE_EXISTS) {
4697 			if (inode_only == LOG_INODE_ALL)
4698 				fast_search = true;
4699 			max_key.type = BTRFS_XATTR_ITEM_KEY;
4700 			ret = drop_objectid_items(trans, log, path, ino,
4701 						  max_key.type);
4702 		} else {
4703 			if (inode_only == LOG_INODE_ALL)
4704 				fast_search = true;
4705 			goto log_extents;
4706 		}
4707 
4708 	}
4709 	if (ret) {
4710 		err = ret;
4711 		goto out_unlock;
4712 	}
4713 
4714 	while (1) {
4715 		ins_nr = 0;
4716 		ret = btrfs_search_forward(root, &min_key,
4717 					   path, trans->transid);
4718 		if (ret != 0)
4719 			break;
4720 again:
4721 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
4722 		if (min_key.objectid != ino)
4723 			break;
4724 		if (min_key.type > max_key.type)
4725 			break;
4726 
4727 		if (min_key.type == BTRFS_INODE_ITEM_KEY)
4728 			need_log_inode_item = false;
4729 
4730 		if ((min_key.type == BTRFS_INODE_REF_KEY ||
4731 		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4732 		    BTRFS_I(inode)->generation == trans->transid) {
4733 			ret = btrfs_check_ref_name_override(path->nodes[0],
4734 							    path->slots[0],
4735 							    &min_key, inode);
4736 			if (ret < 0) {
4737 				err = ret;
4738 				goto out_unlock;
4739 			} else if (ret > 0) {
4740 				err = 1;
4741 				btrfs_set_log_full_commit(root->fs_info, trans);
4742 				goto out_unlock;
4743 			}
4744 		}
4745 
4746 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4747 		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4748 			if (ins_nr == 0)
4749 				goto next_slot;
4750 			ret = copy_items(trans, inode, dst_path, path,
4751 					 &last_extent, ins_start_slot,
4752 					 ins_nr, inode_only, logged_isize);
4753 			if (ret < 0) {
4754 				err = ret;
4755 				goto out_unlock;
4756 			}
4757 			ins_nr = 0;
4758 			if (ret) {
4759 				btrfs_release_path(path);
4760 				continue;
4761 			}
4762 			goto next_slot;
4763 		}
4764 
4765 		src = path->nodes[0];
4766 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4767 			ins_nr++;
4768 			goto next_slot;
4769 		} else if (!ins_nr) {
4770 			ins_start_slot = path->slots[0];
4771 			ins_nr = 1;
4772 			goto next_slot;
4773 		}
4774 
4775 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4776 				 ins_start_slot, ins_nr, inode_only,
4777 				 logged_isize);
4778 		if (ret < 0) {
4779 			err = ret;
4780 			goto out_unlock;
4781 		}
4782 		if (ret) {
4783 			ins_nr = 0;
4784 			btrfs_release_path(path);
4785 			continue;
4786 		}
4787 		ins_nr = 1;
4788 		ins_start_slot = path->slots[0];
4789 next_slot:
4790 
4791 		nritems = btrfs_header_nritems(path->nodes[0]);
4792 		path->slots[0]++;
4793 		if (path->slots[0] < nritems) {
4794 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4795 					      path->slots[0]);
4796 			goto again;
4797 		}
4798 		if (ins_nr) {
4799 			ret = copy_items(trans, inode, dst_path, path,
4800 					 &last_extent, ins_start_slot,
4801 					 ins_nr, inode_only, logged_isize);
4802 			if (ret < 0) {
4803 				err = ret;
4804 				goto out_unlock;
4805 			}
4806 			ret = 0;
4807 			ins_nr = 0;
4808 		}
4809 		btrfs_release_path(path);
4810 
4811 		if (min_key.offset < (u64)-1) {
4812 			min_key.offset++;
4813 		} else if (min_key.type < max_key.type) {
4814 			min_key.type++;
4815 			min_key.offset = 0;
4816 		} else {
4817 			break;
4818 		}
4819 	}
4820 	if (ins_nr) {
4821 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4822 				 ins_start_slot, ins_nr, inode_only,
4823 				 logged_isize);
4824 		if (ret < 0) {
4825 			err = ret;
4826 			goto out_unlock;
4827 		}
4828 		ret = 0;
4829 		ins_nr = 0;
4830 	}
4831 
4832 	btrfs_release_path(path);
4833 	btrfs_release_path(dst_path);
4834 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4835 	if (err)
4836 		goto out_unlock;
4837 	xattrs_logged = true;
4838 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4839 		btrfs_release_path(path);
4840 		btrfs_release_path(dst_path);
4841 		err = btrfs_log_trailing_hole(trans, root, inode, path);
4842 		if (err)
4843 			goto out_unlock;
4844 	}
4845 log_extents:
4846 	btrfs_release_path(path);
4847 	btrfs_release_path(dst_path);
4848 	if (need_log_inode_item) {
4849 		err = log_inode_item(trans, log, dst_path, inode);
4850 		if (!err && !xattrs_logged) {
4851 			err = btrfs_log_all_xattrs(trans, root, inode, path,
4852 						   dst_path);
4853 			btrfs_release_path(path);
4854 		}
4855 		if (err)
4856 			goto out_unlock;
4857 	}
4858 	if (fast_search) {
4859 		/*
4860 		 * Some ordered extents started by fsync might have completed
4861 		 * before we collected the ordered extents in logged_list, which
4862 		 * means they're gone, not in our logged_list nor in the inode's
4863 		 * ordered tree. We want the application/user space to know an
4864 		 * error happened while attempting to persist file data so that
4865 		 * it can take proper action. If such error happened, we leave
4866 		 * without writing to the log tree and the fsync must report the
4867 		 * file data write error and not commit the current transaction.
4868 		 */
4869 		err = btrfs_inode_check_errors(inode);
4870 		if (err) {
4871 			ctx->io_err = err;
4872 			goto out_unlock;
4873 		}
4874 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4875 						&logged_list, ctx);
4876 		if (ret) {
4877 			err = ret;
4878 			goto out_unlock;
4879 		}
4880 	} else if (inode_only == LOG_INODE_ALL) {
4881 		struct extent_map *em, *n;
4882 
4883 		write_lock(&em_tree->lock);
4884 		/*
4885 		 * We can't just remove every em if we're called for a ranged
4886 		 * fsync - that is, one that doesn't cover the whole possible
4887 		 * file range (0 to LLONG_MAX). This is because we can have
4888 		 * em's that fall outside the range we're logging and therefore
4889 		 * their ordered operations haven't completed yet
4890 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
4891 		 * didn't get their respective file extent item in the fs/subvol
4892 		 * tree yet, and need to let the next fast fsync (one which
4893 		 * consults the list of modified extent maps) find the em so
4894 		 * that it logs a matching file extent item and waits for the
4895 		 * respective ordered operation to complete (if it's still
4896 		 * running).
4897 		 *
4898 		 * Removing every em outside the range we're logging would make
4899 		 * the next fast fsync not log their matching file extent items,
4900 		 * therefore making us lose data after a log replay.
4901 		 */
4902 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4903 					 list) {
4904 			const u64 mod_end = em->mod_start + em->mod_len - 1;
4905 
4906 			if (em->mod_start >= start && mod_end <= end)
4907 				list_del_init(&em->list);
4908 		}
4909 		write_unlock(&em_tree->lock);
4910 	}
4911 
4912 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4913 		ret = log_directory_changes(trans, root, inode, path, dst_path,
4914 					    ctx);
4915 		if (ret) {
4916 			err = ret;
4917 			goto out_unlock;
4918 		}
4919 	}
4920 
4921 	spin_lock(&BTRFS_I(inode)->lock);
4922 	BTRFS_I(inode)->logged_trans = trans->transid;
4923 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4924 	spin_unlock(&BTRFS_I(inode)->lock);
4925 out_unlock:
4926 	if (unlikely(err))
4927 		btrfs_put_logged_extents(&logged_list);
4928 	else
4929 		btrfs_submit_logged_extents(&logged_list, log);
4930 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
4931 
4932 	btrfs_free_path(path);
4933 	btrfs_free_path(dst_path);
4934 	return err;
4935 }
4936 
4937 /*
4938  * follow the dentry parent pointers up the chain and see if any
4939  * of the directories in it require a full commit before they can
4940  * be logged.  Returns zero if nothing special needs to be done or 1 if
4941  * a full commit is required.
4942  */
check_parent_dirs_for_sync(struct btrfs_trans_handle * trans,struct inode * inode,struct dentry * parent,struct super_block * sb,u64 last_committed)4943 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4944 					       struct inode *inode,
4945 					       struct dentry *parent,
4946 					       struct super_block *sb,
4947 					       u64 last_committed)
4948 {
4949 	int ret = 0;
4950 	struct btrfs_root *root;
4951 	struct dentry *old_parent = NULL;
4952 	struct inode *orig_inode = inode;
4953 
4954 	/*
4955 	 * for regular files, if its inode is already on disk, we don't
4956 	 * have to worry about the parents at all.  This is because
4957 	 * we can use the last_unlink_trans field to record renames
4958 	 * and other fun in this file.
4959 	 */
4960 	if (S_ISREG(inode->i_mode) &&
4961 	    BTRFS_I(inode)->generation <= last_committed &&
4962 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
4963 			goto out;
4964 
4965 	if (!S_ISDIR(inode->i_mode)) {
4966 		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
4967 			goto out;
4968 		inode = d_inode(parent);
4969 	}
4970 
4971 	while (1) {
4972 		/*
4973 		 * If we are logging a directory then we start with our inode,
4974 		 * not our parents inode, so we need to skipp setting the
4975 		 * logged_trans so that further down in the log code we don't
4976 		 * think this inode has already been logged.
4977 		 */
4978 		if (inode != orig_inode)
4979 			BTRFS_I(inode)->logged_trans = trans->transid;
4980 		smp_mb();
4981 
4982 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4983 			root = BTRFS_I(inode)->root;
4984 
4985 			/*
4986 			 * make sure any commits to the log are forced
4987 			 * to be full commits
4988 			 */
4989 			btrfs_set_log_full_commit(root->fs_info, trans);
4990 			ret = 1;
4991 			break;
4992 		}
4993 
4994 		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
4995 			break;
4996 
4997 		if (IS_ROOT(parent))
4998 			break;
4999 
5000 		parent = dget_parent(parent);
5001 		dput(old_parent);
5002 		old_parent = parent;
5003 		inode = d_inode(parent);
5004 
5005 	}
5006 	dput(old_parent);
5007 out:
5008 	return ret;
5009 }
5010 
5011 struct btrfs_dir_list {
5012 	u64 ino;
5013 	struct list_head list;
5014 };
5015 
5016 /*
5017  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5018  * details about the why it is needed.
5019  * This is a recursive operation - if an existing dentry corresponds to a
5020  * directory, that directory's new entries are logged too (same behaviour as
5021  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5022  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5023  * complains about the following circular lock dependency / possible deadlock:
5024  *
5025  *        CPU0                                        CPU1
5026  *        ----                                        ----
5027  * lock(&type->i_mutex_dir_key#3/2);
5028  *                                            lock(sb_internal#2);
5029  *                                            lock(&type->i_mutex_dir_key#3/2);
5030  * lock(&sb->s_type->i_mutex_key#14);
5031  *
5032  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5033  * sb_start_intwrite() in btrfs_start_transaction().
5034  * Not locking i_mutex of the inodes is still safe because:
5035  *
5036  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5037  *    that while logging the inode new references (names) are added or removed
5038  *    from the inode, leaving the logged inode item with a link count that does
5039  *    not match the number of logged inode reference items. This is fine because
5040  *    at log replay time we compute the real number of links and correct the
5041  *    link count in the inode item (see replay_one_buffer() and
5042  *    link_to_fixup_dir());
5043  *
5044  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5045  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5046  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5047  *    has a size that doesn't match the sum of the lengths of all the logged
5048  *    names. This does not result in a problem because if a dir_item key is
5049  *    logged but its matching dir_index key is not logged, at log replay time we
5050  *    don't use it to replay the respective name (see replay_one_name()). On the
5051  *    other hand if only the dir_index key ends up being logged, the respective
5052  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5053  *    keys created (see replay_one_name()).
5054  *    The directory's inode item with a wrong i_size is not a problem as well,
5055  *    since we don't use it at log replay time to set the i_size in the inode
5056  *    item of the fs/subvol tree (see overwrite_item()).
5057  */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * start_inode,struct btrfs_log_ctx * ctx)5058 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5059 				struct btrfs_root *root,
5060 				struct inode *start_inode,
5061 				struct btrfs_log_ctx *ctx)
5062 {
5063 	struct btrfs_root *log = root->log_root;
5064 	struct btrfs_path *path;
5065 	LIST_HEAD(dir_list);
5066 	struct btrfs_dir_list *dir_elem;
5067 	int ret = 0;
5068 
5069 	path = btrfs_alloc_path();
5070 	if (!path)
5071 		return -ENOMEM;
5072 
5073 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5074 	if (!dir_elem) {
5075 		btrfs_free_path(path);
5076 		return -ENOMEM;
5077 	}
5078 	dir_elem->ino = btrfs_ino(start_inode);
5079 	list_add_tail(&dir_elem->list, &dir_list);
5080 
5081 	while (!list_empty(&dir_list)) {
5082 		struct extent_buffer *leaf;
5083 		struct btrfs_key min_key;
5084 		int nritems;
5085 		int i;
5086 
5087 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5088 					    list);
5089 		if (ret)
5090 			goto next_dir_inode;
5091 
5092 		min_key.objectid = dir_elem->ino;
5093 		min_key.type = BTRFS_DIR_ITEM_KEY;
5094 		min_key.offset = 0;
5095 again:
5096 		btrfs_release_path(path);
5097 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5098 		if (ret < 0) {
5099 			goto next_dir_inode;
5100 		} else if (ret > 0) {
5101 			ret = 0;
5102 			goto next_dir_inode;
5103 		}
5104 
5105 process_leaf:
5106 		leaf = path->nodes[0];
5107 		nritems = btrfs_header_nritems(leaf);
5108 		for (i = path->slots[0]; i < nritems; i++) {
5109 			struct btrfs_dir_item *di;
5110 			struct btrfs_key di_key;
5111 			struct inode *di_inode;
5112 			struct btrfs_dir_list *new_dir_elem;
5113 			int log_mode = LOG_INODE_EXISTS;
5114 			int type;
5115 
5116 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5117 			if (min_key.objectid != dir_elem->ino ||
5118 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5119 				goto next_dir_inode;
5120 
5121 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5122 			type = btrfs_dir_type(leaf, di);
5123 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5124 			    type != BTRFS_FT_DIR)
5125 				continue;
5126 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5127 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5128 				continue;
5129 
5130 			di_inode = btrfs_iget(root->fs_info->sb, &di_key,
5131 					      root, NULL);
5132 			if (IS_ERR(di_inode)) {
5133 				ret = PTR_ERR(di_inode);
5134 				goto next_dir_inode;
5135 			}
5136 
5137 			if (btrfs_inode_in_log(di_inode, trans->transid)) {
5138 				btrfs_add_delayed_iput(di_inode);
5139 				continue;
5140 			}
5141 
5142 			ctx->log_new_dentries = false;
5143 			if (type == BTRFS_FT_DIR)
5144 				log_mode = LOG_INODE_ALL;
5145 			btrfs_release_path(path);
5146 			ret = btrfs_log_inode(trans, root, di_inode,
5147 					      log_mode, 0, LLONG_MAX, ctx);
5148 			btrfs_add_delayed_iput(di_inode);
5149 			if (ret)
5150 				goto next_dir_inode;
5151 			if (ctx->log_new_dentries) {
5152 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5153 						       GFP_NOFS);
5154 				if (!new_dir_elem) {
5155 					ret = -ENOMEM;
5156 					goto next_dir_inode;
5157 				}
5158 				new_dir_elem->ino = di_key.objectid;
5159 				list_add_tail(&new_dir_elem->list, &dir_list);
5160 			}
5161 			break;
5162 		}
5163 		if (i == nritems) {
5164 			ret = btrfs_next_leaf(log, path);
5165 			if (ret < 0) {
5166 				goto next_dir_inode;
5167 			} else if (ret > 0) {
5168 				ret = 0;
5169 				goto next_dir_inode;
5170 			}
5171 			goto process_leaf;
5172 		}
5173 		if (min_key.offset < (u64)-1) {
5174 			min_key.offset++;
5175 			goto again;
5176 		}
5177 next_dir_inode:
5178 		list_del(&dir_elem->list);
5179 		kfree(dir_elem);
5180 	}
5181 
5182 	btrfs_free_path(path);
5183 	return ret;
5184 }
5185 
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_log_ctx * ctx)5186 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5187 				 struct inode *inode,
5188 				 struct btrfs_log_ctx *ctx)
5189 {
5190 	int ret;
5191 	struct btrfs_path *path;
5192 	struct btrfs_key key;
5193 	struct btrfs_root *root = BTRFS_I(inode)->root;
5194 	const u64 ino = btrfs_ino(inode);
5195 
5196 	path = btrfs_alloc_path();
5197 	if (!path)
5198 		return -ENOMEM;
5199 	path->skip_locking = 1;
5200 	path->search_commit_root = 1;
5201 
5202 	key.objectid = ino;
5203 	key.type = BTRFS_INODE_REF_KEY;
5204 	key.offset = 0;
5205 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5206 	if (ret < 0)
5207 		goto out;
5208 
5209 	while (true) {
5210 		struct extent_buffer *leaf = path->nodes[0];
5211 		int slot = path->slots[0];
5212 		u32 cur_offset = 0;
5213 		u32 item_size;
5214 		unsigned long ptr;
5215 
5216 		if (slot >= btrfs_header_nritems(leaf)) {
5217 			ret = btrfs_next_leaf(root, path);
5218 			if (ret < 0)
5219 				goto out;
5220 			else if (ret > 0)
5221 				break;
5222 			continue;
5223 		}
5224 
5225 		btrfs_item_key_to_cpu(leaf, &key, slot);
5226 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5227 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5228 			break;
5229 
5230 		item_size = btrfs_item_size_nr(leaf, slot);
5231 		ptr = btrfs_item_ptr_offset(leaf, slot);
5232 		while (cur_offset < item_size) {
5233 			struct btrfs_key inode_key;
5234 			struct inode *dir_inode;
5235 
5236 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5237 			inode_key.offset = 0;
5238 
5239 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5240 				struct btrfs_inode_extref *extref;
5241 
5242 				extref = (struct btrfs_inode_extref *)
5243 					(ptr + cur_offset);
5244 				inode_key.objectid = btrfs_inode_extref_parent(
5245 					leaf, extref);
5246 				cur_offset += sizeof(*extref);
5247 				cur_offset += btrfs_inode_extref_name_len(leaf,
5248 					extref);
5249 			} else {
5250 				inode_key.objectid = key.offset;
5251 				cur_offset = item_size;
5252 			}
5253 
5254 			dir_inode = btrfs_iget(root->fs_info->sb, &inode_key,
5255 					       root, NULL);
5256 			/*
5257 			 * If the parent inode was deleted, return an error to
5258 			 * fallback to a transaction commit. This is to prevent
5259 			 * getting an inode that was moved from one parent A to
5260 			 * a parent B, got its former parent A deleted and then
5261 			 * it got fsync'ed, from existing at both parents after
5262 			 * a log replay (and the old parent still existing).
5263 			 * Example:
5264 			 *
5265 			 * mkdir /mnt/A
5266 			 * mkdir /mnt/B
5267 			 * touch /mnt/B/bar
5268 			 * sync
5269 			 * mv /mnt/B/bar /mnt/A/bar
5270 			 * mv -T /mnt/A /mnt/B
5271 			 * fsync /mnt/B/bar
5272 			 * <power fail>
5273 			 *
5274 			 * If we ignore the old parent B which got deleted,
5275 			 * after a log replay we would have file bar linked
5276 			 * at both parents and the old parent B would still
5277 			 * exist.
5278 			 */
5279 			if (IS_ERR(dir_inode)) {
5280 				ret = PTR_ERR(dir_inode);
5281 				goto out;
5282 			}
5283 
5284 			ret = btrfs_log_inode(trans, root, dir_inode,
5285 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5286 			btrfs_add_delayed_iput(dir_inode);
5287 			if (ret)
5288 				goto out;
5289 		}
5290 		path->slots[0]++;
5291 	}
5292 	ret = 0;
5293 out:
5294 	btrfs_free_path(path);
5295 	return ret;
5296 }
5297 
5298 /*
5299  * helper function around btrfs_log_inode to make sure newly created
5300  * parent directories also end up in the log.  A minimal inode and backref
5301  * only logging is done of any parent directories that are older than
5302  * the last committed transaction
5303  */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct dentry * parent,const loff_t start,const loff_t end,int exists_only,struct btrfs_log_ctx * ctx)5304 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5305 			    	  struct btrfs_root *root, struct inode *inode,
5306 				  struct dentry *parent,
5307 				  const loff_t start,
5308 				  const loff_t end,
5309 				  int exists_only,
5310 				  struct btrfs_log_ctx *ctx)
5311 {
5312 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5313 	struct super_block *sb;
5314 	struct dentry *old_parent = NULL;
5315 	int ret = 0;
5316 	u64 last_committed = root->fs_info->last_trans_committed;
5317 	bool log_dentries = false;
5318 	struct inode *orig_inode = inode;
5319 
5320 	sb = inode->i_sb;
5321 
5322 	if (btrfs_test_opt(root, NOTREELOG)) {
5323 		ret = 1;
5324 		goto end_no_trans;
5325 	}
5326 
5327 	/*
5328 	 * The prev transaction commit doesn't complete, we need do
5329 	 * full commit by ourselves.
5330 	 */
5331 	if (root->fs_info->last_trans_log_full_commit >
5332 	    root->fs_info->last_trans_committed) {
5333 		ret = 1;
5334 		goto end_no_trans;
5335 	}
5336 
5337 	if (root != BTRFS_I(inode)->root ||
5338 	    btrfs_root_refs(&root->root_item) == 0) {
5339 		ret = 1;
5340 		goto end_no_trans;
5341 	}
5342 
5343 	ret = check_parent_dirs_for_sync(trans, inode, parent,
5344 					 sb, last_committed);
5345 	if (ret)
5346 		goto end_no_trans;
5347 
5348 	if (btrfs_inode_in_log(inode, trans->transid)) {
5349 		ret = BTRFS_NO_LOG_SYNC;
5350 		goto end_no_trans;
5351 	}
5352 
5353 	ret = start_log_trans(trans, root, ctx);
5354 	if (ret)
5355 		goto end_no_trans;
5356 
5357 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5358 	if (ret)
5359 		goto end_trans;
5360 
5361 	/*
5362 	 * for regular files, if its inode is already on disk, we don't
5363 	 * have to worry about the parents at all.  This is because
5364 	 * we can use the last_unlink_trans field to record renames
5365 	 * and other fun in this file.
5366 	 */
5367 	if (S_ISREG(inode->i_mode) &&
5368 	    BTRFS_I(inode)->generation <= last_committed &&
5369 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5370 		ret = 0;
5371 		goto end_trans;
5372 	}
5373 
5374 	if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5375 		log_dentries = true;
5376 
5377 	/*
5378 	 * On unlink we must make sure all our current and old parent directores
5379 	 * inodes are fully logged. This is to prevent leaving dangling
5380 	 * directory index entries in directories that were our parents but are
5381 	 * not anymore. Not doing this results in old parent directory being
5382 	 * impossible to delete after log replay (rmdir will always fail with
5383 	 * error -ENOTEMPTY).
5384 	 *
5385 	 * Example 1:
5386 	 *
5387 	 * mkdir testdir
5388 	 * touch testdir/foo
5389 	 * ln testdir/foo testdir/bar
5390 	 * sync
5391 	 * unlink testdir/bar
5392 	 * xfs_io -c fsync testdir/foo
5393 	 * <power failure>
5394 	 * mount fs, triggers log replay
5395 	 *
5396 	 * If we don't log the parent directory (testdir), after log replay the
5397 	 * directory still has an entry pointing to the file inode using the bar
5398 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5399 	 * the file inode has a link count of 1.
5400 	 *
5401 	 * Example 2:
5402 	 *
5403 	 * mkdir testdir
5404 	 * touch foo
5405 	 * ln foo testdir/foo2
5406 	 * ln foo testdir/foo3
5407 	 * sync
5408 	 * unlink testdir/foo3
5409 	 * xfs_io -c fsync foo
5410 	 * <power failure>
5411 	 * mount fs, triggers log replay
5412 	 *
5413 	 * Similar as the first example, after log replay the parent directory
5414 	 * testdir still has an entry pointing to the inode file with name foo3
5415 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5416 	 * and has a link count of 2.
5417 	 */
5418 	if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5419 		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5420 		if (ret)
5421 			goto end_trans;
5422 	}
5423 
5424 	while (1) {
5425 		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
5426 			break;
5427 
5428 		inode = d_inode(parent);
5429 		if (root != BTRFS_I(inode)->root)
5430 			break;
5431 
5432 		if (BTRFS_I(inode)->generation > last_committed) {
5433 			ret = btrfs_log_inode(trans, root, inode,
5434 					      LOG_INODE_EXISTS,
5435 					      0, LLONG_MAX, ctx);
5436 			if (ret)
5437 				goto end_trans;
5438 		}
5439 		if (IS_ROOT(parent))
5440 			break;
5441 
5442 		parent = dget_parent(parent);
5443 		dput(old_parent);
5444 		old_parent = parent;
5445 	}
5446 	if (log_dentries)
5447 		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5448 	else
5449 		ret = 0;
5450 end_trans:
5451 	dput(old_parent);
5452 	if (ret < 0) {
5453 		btrfs_set_log_full_commit(root->fs_info, trans);
5454 		ret = 1;
5455 	}
5456 
5457 	if (ret)
5458 		btrfs_remove_log_ctx(root, ctx);
5459 	btrfs_end_log_trans(root);
5460 end_no_trans:
5461 	return ret;
5462 }
5463 
5464 /*
5465  * it is not safe to log dentry if the chunk root has added new
5466  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
5467  * If this returns 1, you must commit the transaction to safely get your
5468  * data on disk.
5469  */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct dentry * dentry,const loff_t start,const loff_t end,struct btrfs_log_ctx * ctx)5470 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5471 			  struct btrfs_root *root, struct dentry *dentry,
5472 			  const loff_t start,
5473 			  const loff_t end,
5474 			  struct btrfs_log_ctx *ctx)
5475 {
5476 	struct dentry *parent = dget_parent(dentry);
5477 	int ret;
5478 
5479 	ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
5480 				     start, end, 0, ctx);
5481 	dput(parent);
5482 
5483 	return ret;
5484 }
5485 
5486 /*
5487  * should be called during mount to recover any replay any log trees
5488  * from the FS
5489  */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)5490 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5491 {
5492 	int ret;
5493 	struct btrfs_path *path;
5494 	struct btrfs_trans_handle *trans;
5495 	struct btrfs_key key;
5496 	struct btrfs_key found_key;
5497 	struct btrfs_key tmp_key;
5498 	struct btrfs_root *log;
5499 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5500 	struct walk_control wc = {
5501 		.process_func = process_one_buffer,
5502 		.stage = 0,
5503 	};
5504 
5505 	path = btrfs_alloc_path();
5506 	if (!path)
5507 		return -ENOMEM;
5508 
5509 	fs_info->log_root_recovering = 1;
5510 
5511 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
5512 	if (IS_ERR(trans)) {
5513 		ret = PTR_ERR(trans);
5514 		goto error;
5515 	}
5516 
5517 	wc.trans = trans;
5518 	wc.pin = 1;
5519 
5520 	ret = walk_log_tree(trans, log_root_tree, &wc);
5521 	if (ret) {
5522 		btrfs_std_error(fs_info, ret, "Failed to pin buffers while "
5523 			    "recovering log root tree.");
5524 		goto error;
5525 	}
5526 
5527 again:
5528 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
5529 	key.offset = (u64)-1;
5530 	key.type = BTRFS_ROOT_ITEM_KEY;
5531 
5532 	while (1) {
5533 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5534 
5535 		if (ret < 0) {
5536 			btrfs_std_error(fs_info, ret,
5537 				    "Couldn't find tree log root.");
5538 			goto error;
5539 		}
5540 		if (ret > 0) {
5541 			if (path->slots[0] == 0)
5542 				break;
5543 			path->slots[0]--;
5544 		}
5545 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5546 				      path->slots[0]);
5547 		btrfs_release_path(path);
5548 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5549 			break;
5550 
5551 		log = btrfs_read_fs_root(log_root_tree, &found_key);
5552 		if (IS_ERR(log)) {
5553 			ret = PTR_ERR(log);
5554 			btrfs_std_error(fs_info, ret,
5555 				    "Couldn't read tree log root.");
5556 			goto error;
5557 		}
5558 
5559 		tmp_key.objectid = found_key.offset;
5560 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5561 		tmp_key.offset = (u64)-1;
5562 
5563 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5564 		if (IS_ERR(wc.replay_dest)) {
5565 			ret = PTR_ERR(wc.replay_dest);
5566 			free_extent_buffer(log->node);
5567 			free_extent_buffer(log->commit_root);
5568 			kfree(log);
5569 			btrfs_std_error(fs_info, ret, "Couldn't read target root "
5570 				    "for tree log recovery.");
5571 			goto error;
5572 		}
5573 
5574 		wc.replay_dest->log_root = log;
5575 		btrfs_record_root_in_trans(trans, wc.replay_dest);
5576 		ret = walk_log_tree(trans, log, &wc);
5577 
5578 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5579 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
5580 						      path);
5581 		}
5582 
5583 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5584 			struct btrfs_root *root = wc.replay_dest;
5585 
5586 			btrfs_release_path(path);
5587 
5588 			/*
5589 			 * We have just replayed everything, and the highest
5590 			 * objectid of fs roots probably has changed in case
5591 			 * some inode_item's got replayed.
5592 			 *
5593 			 * root->objectid_mutex is not acquired as log replay
5594 			 * could only happen during mount.
5595 			 */
5596 			ret = btrfs_find_highest_objectid(root,
5597 						  &root->highest_objectid);
5598 		}
5599 
5600 		key.offset = found_key.offset - 1;
5601 		wc.replay_dest->log_root = NULL;
5602 		free_extent_buffer(log->node);
5603 		free_extent_buffer(log->commit_root);
5604 		kfree(log);
5605 
5606 		if (ret)
5607 			goto error;
5608 
5609 		if (found_key.offset == 0)
5610 			break;
5611 	}
5612 	btrfs_release_path(path);
5613 
5614 	/* step one is to pin it all, step two is to replay just inodes */
5615 	if (wc.pin) {
5616 		wc.pin = 0;
5617 		wc.process_func = replay_one_buffer;
5618 		wc.stage = LOG_WALK_REPLAY_INODES;
5619 		goto again;
5620 	}
5621 	/* step three is to replay everything */
5622 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
5623 		wc.stage++;
5624 		goto again;
5625 	}
5626 
5627 	btrfs_free_path(path);
5628 
5629 	/* step 4: commit the transaction, which also unpins the blocks */
5630 	ret = btrfs_commit_transaction(trans, fs_info->tree_root);
5631 	if (ret)
5632 		return ret;
5633 
5634 	free_extent_buffer(log_root_tree->node);
5635 	log_root_tree->log_root = NULL;
5636 	fs_info->log_root_recovering = 0;
5637 	kfree(log_root_tree);
5638 
5639 	return 0;
5640 error:
5641 	if (wc.trans)
5642 		btrfs_end_transaction(wc.trans, fs_info->tree_root);
5643 	btrfs_free_path(path);
5644 	return ret;
5645 }
5646 
5647 /*
5648  * there are some corner cases where we want to force a full
5649  * commit instead of allowing a directory to be logged.
5650  *
5651  * They revolve around files there were unlinked from the directory, and
5652  * this function updates the parent directory so that a full commit is
5653  * properly done if it is fsync'd later after the unlinks are done.
5654  */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct inode * dir,struct inode * inode,int for_rename)5655 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5656 			     struct inode *dir, struct inode *inode,
5657 			     int for_rename)
5658 {
5659 	/*
5660 	 * when we're logging a file, if it hasn't been renamed
5661 	 * or unlinked, and its inode is fully committed on disk,
5662 	 * we don't have to worry about walking up the directory chain
5663 	 * to log its parents.
5664 	 *
5665 	 * So, we use the last_unlink_trans field to put this transid
5666 	 * into the file.  When the file is logged we check it and
5667 	 * don't log the parents if the file is fully on disk.
5668 	 */
5669 	if (S_ISREG(inode->i_mode))
5670 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
5671 
5672 	/*
5673 	 * if this directory was already logged any new
5674 	 * names for this file/dir will get recorded
5675 	 */
5676 	smp_mb();
5677 	if (BTRFS_I(dir)->logged_trans == trans->transid)
5678 		return;
5679 
5680 	/*
5681 	 * if the inode we're about to unlink was logged,
5682 	 * the log will be properly updated for any new names
5683 	 */
5684 	if (BTRFS_I(inode)->logged_trans == trans->transid)
5685 		return;
5686 
5687 	/*
5688 	 * when renaming files across directories, if the directory
5689 	 * there we're unlinking from gets fsync'd later on, there's
5690 	 * no way to find the destination directory later and fsync it
5691 	 * properly.  So, we have to be conservative and force commits
5692 	 * so the new name gets discovered.
5693 	 */
5694 	if (for_rename)
5695 		goto record;
5696 
5697 	/* we can safely do the unlink without any special recording */
5698 	return;
5699 
5700 record:
5701 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
5702 }
5703 
5704 /*
5705  * Make sure that if someone attempts to fsync the parent directory of a deleted
5706  * snapshot, it ends up triggering a transaction commit. This is to guarantee
5707  * that after replaying the log tree of the parent directory's root we will not
5708  * see the snapshot anymore and at log replay time we will not see any log tree
5709  * corresponding to the deleted snapshot's root, which could lead to replaying
5710  * it after replaying the log tree of the parent directory (which would replay
5711  * the snapshot delete operation).
5712  */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct inode * dir)5713 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5714 				   struct inode *dir)
5715 {
5716 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
5717 }
5718 
5719 /*
5720  * Call this after adding a new name for a file and it will properly
5721  * update the log to reflect the new name.
5722  *
5723  * It will return zero if all goes well, and it will return 1 if a
5724  * full transaction commit is required.
5725  */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * old_dir,struct dentry * parent)5726 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5727 			struct inode *inode, struct inode *old_dir,
5728 			struct dentry *parent)
5729 {
5730 	struct btrfs_root * root = BTRFS_I(inode)->root;
5731 
5732 	/*
5733 	 * this will force the logging code to walk the dentry chain
5734 	 * up for the file
5735 	 */
5736 	if (S_ISREG(inode->i_mode))
5737 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
5738 
5739 	/*
5740 	 * if this inode hasn't been logged and directory we're renaming it
5741 	 * from hasn't been logged, we don't need to log it
5742 	 */
5743 	if (BTRFS_I(inode)->logged_trans <=
5744 	    root->fs_info->last_trans_committed &&
5745 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5746 		    root->fs_info->last_trans_committed))
5747 		return 0;
5748 
5749 	return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5750 				      LLONG_MAX, 1, NULL);
5751 }
5752 
5753