1 /*
2 * Port on Texas Instruments TMS320C6x architecture
3 *
4 * Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
5 * Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com)
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/dma-mapping.h>
12 #include <linux/memblock.h>
13 #include <linux/seq_file.h>
14 #include <linux/bootmem.h>
15 #include <linux/clkdev.h>
16 #include <linux/initrd.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of_fdt.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/cache.h>
23 #include <linux/delay.h>
24 #include <linux/sched.h>
25 #include <linux/clk.h>
26 #include <linux/cpu.h>
27 #include <linux/fs.h>
28 #include <linux/of.h>
29 #include <linux/console.h>
30 #include <linux/screen_info.h>
31
32 #include <asm/sections.h>
33 #include <asm/div64.h>
34 #include <asm/setup.h>
35 #include <asm/dscr.h>
36 #include <asm/clock.h>
37 #include <asm/soc.h>
38 #include <asm/special_insns.h>
39
40 static const char *c6x_soc_name;
41
42 struct screen_info screen_info;
43
44 int c6x_num_cores;
45 EXPORT_SYMBOL_GPL(c6x_num_cores);
46
47 unsigned int c6x_silicon_rev;
48 EXPORT_SYMBOL_GPL(c6x_silicon_rev);
49
50 /*
51 * Device status register. This holds information
52 * about device configuration needed by some drivers.
53 */
54 unsigned int c6x_devstat;
55 EXPORT_SYMBOL_GPL(c6x_devstat);
56
57 /*
58 * Some SoCs have fuse registers holding a unique MAC
59 * address. This is parsed out of the device tree with
60 * the resulting MAC being held here.
61 */
62 unsigned char c6x_fuse_mac[6];
63
64 unsigned long memory_start;
65 unsigned long memory_end;
66 EXPORT_SYMBOL(memory_end);
67
68 unsigned long ram_start;
69 unsigned long ram_end;
70
71 /* Uncached memory for DMA consistent use (memdma=) */
72 static unsigned long dma_start __initdata;
73 static unsigned long dma_size __initdata;
74
75 struct cpuinfo_c6x {
76 const char *cpu_name;
77 const char *cpu_voltage;
78 const char *mmu;
79 const char *fpu;
80 char *cpu_rev;
81 unsigned int core_id;
82 char __cpu_rev[5];
83 };
84
85 static DEFINE_PER_CPU(struct cpuinfo_c6x, cpu_data);
86
87 unsigned int ticks_per_ns_scaled;
88 EXPORT_SYMBOL(ticks_per_ns_scaled);
89
90 unsigned int c6x_core_freq;
91
get_cpuinfo(void)92 static void __init get_cpuinfo(void)
93 {
94 unsigned cpu_id, rev_id, csr;
95 struct clk *coreclk = clk_get_sys(NULL, "core");
96 unsigned long core_khz;
97 u64 tmp;
98 struct cpuinfo_c6x *p;
99 struct device_node *node, *np;
100
101 p = &per_cpu(cpu_data, smp_processor_id());
102
103 if (!IS_ERR(coreclk))
104 c6x_core_freq = clk_get_rate(coreclk);
105 else {
106 printk(KERN_WARNING
107 "Cannot find core clock frequency. Using 700MHz\n");
108 c6x_core_freq = 700000000;
109 }
110
111 core_khz = c6x_core_freq / 1000;
112
113 tmp = (uint64_t)core_khz << C6X_NDELAY_SCALE;
114 do_div(tmp, 1000000);
115 ticks_per_ns_scaled = tmp;
116
117 csr = get_creg(CSR);
118 cpu_id = csr >> 24;
119 rev_id = (csr >> 16) & 0xff;
120
121 p->mmu = "none";
122 p->fpu = "none";
123 p->cpu_voltage = "unknown";
124
125 switch (cpu_id) {
126 case 0:
127 p->cpu_name = "C67x";
128 p->fpu = "yes";
129 break;
130 case 2:
131 p->cpu_name = "C62x";
132 break;
133 case 8:
134 p->cpu_name = "C64x";
135 break;
136 case 12:
137 p->cpu_name = "C64x";
138 break;
139 case 16:
140 p->cpu_name = "C64x+";
141 p->cpu_voltage = "1.2";
142 break;
143 case 21:
144 p->cpu_name = "C66X";
145 p->cpu_voltage = "1.2";
146 break;
147 default:
148 p->cpu_name = "unknown";
149 break;
150 }
151
152 if (cpu_id < 16) {
153 switch (rev_id) {
154 case 0x1:
155 if (cpu_id > 8) {
156 p->cpu_rev = "DM640/DM641/DM642/DM643";
157 p->cpu_voltage = "1.2 - 1.4";
158 } else {
159 p->cpu_rev = "C6201";
160 p->cpu_voltage = "2.5";
161 }
162 break;
163 case 0x2:
164 p->cpu_rev = "C6201B/C6202/C6211";
165 p->cpu_voltage = "1.8";
166 break;
167 case 0x3:
168 p->cpu_rev = "C6202B/C6203/C6204/C6205";
169 p->cpu_voltage = "1.5";
170 break;
171 case 0x201:
172 p->cpu_rev = "C6701 revision 0 (early CPU)";
173 p->cpu_voltage = "1.8";
174 break;
175 case 0x202:
176 p->cpu_rev = "C6701/C6711/C6712";
177 p->cpu_voltage = "1.8";
178 break;
179 case 0x801:
180 p->cpu_rev = "C64x";
181 p->cpu_voltage = "1.5";
182 break;
183 default:
184 p->cpu_rev = "unknown";
185 }
186 } else {
187 p->cpu_rev = p->__cpu_rev;
188 snprintf(p->__cpu_rev, sizeof(p->__cpu_rev), "0x%x", cpu_id);
189 }
190
191 p->core_id = get_coreid();
192
193 node = of_find_node_by_name(NULL, "cpus");
194 if (node) {
195 for_each_child_of_node(node, np)
196 if (!strcmp("cpu", np->name))
197 ++c6x_num_cores;
198 of_node_put(node);
199 }
200
201 node = of_find_node_by_name(NULL, "soc");
202 if (node) {
203 if (of_property_read_string(node, "model", &c6x_soc_name))
204 c6x_soc_name = "unknown";
205 of_node_put(node);
206 } else
207 c6x_soc_name = "unknown";
208
209 printk(KERN_INFO "CPU%d: %s rev %s, %s volts, %uMHz\n",
210 p->core_id, p->cpu_name, p->cpu_rev,
211 p->cpu_voltage, c6x_core_freq / 1000000);
212 }
213
214 /*
215 * Early parsing of the command line
216 */
217 static u32 mem_size __initdata;
218
219 /* "mem=" parsing. */
early_mem(char * p)220 static int __init early_mem(char *p)
221 {
222 if (!p)
223 return -EINVAL;
224
225 mem_size = memparse(p, &p);
226 /* don't remove all of memory when handling "mem={invalid}" */
227 if (mem_size == 0)
228 return -EINVAL;
229
230 return 0;
231 }
232 early_param("mem", early_mem);
233
234 /* "memdma=<size>[@<address>]" parsing. */
early_memdma(char * p)235 static int __init early_memdma(char *p)
236 {
237 if (!p)
238 return -EINVAL;
239
240 dma_size = memparse(p, &p);
241 if (*p == '@')
242 dma_start = memparse(p, &p);
243
244 return 0;
245 }
246 early_param("memdma", early_memdma);
247
c6x_add_memory(phys_addr_t start,unsigned long size)248 int __init c6x_add_memory(phys_addr_t start, unsigned long size)
249 {
250 static int ram_found __initdata;
251
252 /* We only handle one bank (the one with PAGE_OFFSET) for now */
253 if (ram_found)
254 return -EINVAL;
255
256 if (start > PAGE_OFFSET || PAGE_OFFSET >= (start + size))
257 return 0;
258
259 ram_start = start;
260 ram_end = start + size;
261
262 ram_found = 1;
263 return 0;
264 }
265
266 /*
267 * Do early machine setup and device tree parsing. This is called very
268 * early on the boot process.
269 */
machine_init(unsigned long dt_ptr)270 notrace void __init machine_init(unsigned long dt_ptr)
271 {
272 void *dtb = __va(dt_ptr);
273 void *fdt = _fdt_start;
274
275 /* interrupts must be masked */
276 set_creg(IER, 2);
277
278 /*
279 * Set the Interrupt Service Table (IST) to the beginning of the
280 * vector table.
281 */
282 set_ist(_vectors_start);
283
284 lockdep_init();
285
286 /*
287 * dtb is passed in from bootloader.
288 * fdt is linked in blob.
289 */
290 if (dtb && dtb != fdt)
291 fdt = dtb;
292
293 /* Do some early initialization based on the flat device tree */
294 early_init_dt_scan(fdt);
295
296 parse_early_param();
297 }
298
setup_arch(char ** cmdline_p)299 void __init setup_arch(char **cmdline_p)
300 {
301 int bootmap_size;
302 struct memblock_region *reg;
303
304 printk(KERN_INFO "Initializing kernel\n");
305
306 /* Initialize command line */
307 *cmdline_p = boot_command_line;
308
309 memory_end = ram_end;
310 memory_end &= ~(PAGE_SIZE - 1);
311
312 if (mem_size && (PAGE_OFFSET + PAGE_ALIGN(mem_size)) < memory_end)
313 memory_end = PAGE_OFFSET + PAGE_ALIGN(mem_size);
314
315 /* add block that this kernel can use */
316 memblock_add(PAGE_OFFSET, memory_end - PAGE_OFFSET);
317
318 /* reserve kernel text/data/bss */
319 memblock_reserve(PAGE_OFFSET,
320 PAGE_ALIGN((unsigned long)&_end - PAGE_OFFSET));
321
322 if (dma_size) {
323 /* align to cacheability granularity */
324 dma_size = CACHE_REGION_END(dma_size);
325
326 if (!dma_start)
327 dma_start = memory_end - dma_size;
328
329 /* align to cacheability granularity */
330 dma_start = CACHE_REGION_START(dma_start);
331
332 /* reserve DMA memory taken from kernel memory */
333 if (memblock_is_region_memory(dma_start, dma_size))
334 memblock_reserve(dma_start, dma_size);
335 }
336
337 memory_start = PAGE_ALIGN((unsigned int) &_end);
338
339 printk(KERN_INFO "Memory Start=%08lx, Memory End=%08lx\n",
340 memory_start, memory_end);
341
342 #ifdef CONFIG_BLK_DEV_INITRD
343 /*
344 * Reserve initrd memory if in kernel memory.
345 */
346 if (initrd_start < initrd_end)
347 if (memblock_is_region_memory(initrd_start,
348 initrd_end - initrd_start))
349 memblock_reserve(initrd_start,
350 initrd_end - initrd_start);
351 #endif
352
353 init_mm.start_code = (unsigned long) &_stext;
354 init_mm.end_code = (unsigned long) &_etext;
355 init_mm.end_data = memory_start;
356 init_mm.brk = memory_start;
357
358 /*
359 * Give all the memory to the bootmap allocator, tell it to put the
360 * boot mem_map at the start of memory
361 */
362 bootmap_size = init_bootmem_node(NODE_DATA(0),
363 memory_start >> PAGE_SHIFT,
364 PAGE_OFFSET >> PAGE_SHIFT,
365 memory_end >> PAGE_SHIFT);
366 memblock_reserve(memory_start, bootmap_size);
367
368 unflatten_device_tree();
369
370 c6x_cache_init();
371
372 /* Set the whole external memory as non-cacheable */
373 disable_caching(ram_start, ram_end - 1);
374
375 /* Set caching of external RAM used by Linux */
376 for_each_memblock(memory, reg)
377 enable_caching(CACHE_REGION_START(reg->base),
378 CACHE_REGION_START(reg->base + reg->size - 1));
379
380 #ifdef CONFIG_BLK_DEV_INITRD
381 /*
382 * Enable caching for initrd which falls outside kernel memory.
383 */
384 if (initrd_start < initrd_end) {
385 if (!memblock_is_region_memory(initrd_start,
386 initrd_end - initrd_start))
387 enable_caching(CACHE_REGION_START(initrd_start),
388 CACHE_REGION_START(initrd_end - 1));
389 }
390 #endif
391
392 /*
393 * Disable caching for dma coherent memory taken from kernel memory.
394 */
395 if (dma_size && memblock_is_region_memory(dma_start, dma_size))
396 disable_caching(dma_start,
397 CACHE_REGION_START(dma_start + dma_size - 1));
398
399 /* Initialize the coherent memory allocator */
400 coherent_mem_init(dma_start, dma_size);
401
402 /*
403 * Free all memory as a starting point.
404 */
405 free_bootmem(PAGE_OFFSET, memory_end - PAGE_OFFSET);
406
407 /*
408 * Then reserve memory which is already being used.
409 */
410 for_each_memblock(reserved, reg) {
411 pr_debug("reserved - 0x%08x-0x%08x\n",
412 (u32) reg->base, (u32) reg->size);
413 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
414 }
415
416 max_low_pfn = PFN_DOWN(memory_end);
417 min_low_pfn = PFN_UP(memory_start);
418 max_mapnr = max_low_pfn - min_low_pfn;
419
420 /* Get kmalloc into gear */
421 paging_init();
422
423 /*
424 * Probe for Device State Configuration Registers.
425 * We have to do this early in case timer needs to be enabled
426 * through DSCR.
427 */
428 dscr_probe();
429
430 /* We do this early for timer and core clock frequency */
431 c64x_setup_clocks();
432
433 /* Get CPU info */
434 get_cpuinfo();
435
436 #if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
437 conswitchp = &dummy_con;
438 #endif
439 }
440
441 #define cpu_to_ptr(n) ((void *)((long)(n)+1))
442 #define ptr_to_cpu(p) ((long)(p) - 1)
443
show_cpuinfo(struct seq_file * m,void * v)444 static int show_cpuinfo(struct seq_file *m, void *v)
445 {
446 int n = ptr_to_cpu(v);
447 struct cpuinfo_c6x *p = &per_cpu(cpu_data, n);
448
449 if (n == 0) {
450 seq_printf(m,
451 "soc\t\t: %s\n"
452 "soc revision\t: 0x%x\n"
453 "soc cores\t: %d\n",
454 c6x_soc_name, c6x_silicon_rev, c6x_num_cores);
455 }
456
457 seq_printf(m,
458 "\n"
459 "processor\t: %d\n"
460 "cpu\t\t: %s\n"
461 "core revision\t: %s\n"
462 "core voltage\t: %s\n"
463 "core id\t\t: %d\n"
464 "mmu\t\t: %s\n"
465 "fpu\t\t: %s\n"
466 "cpu MHz\t\t: %u\n"
467 "bogomips\t: %lu.%02lu\n\n",
468 n,
469 p->cpu_name, p->cpu_rev, p->cpu_voltage,
470 p->core_id, p->mmu, p->fpu,
471 (c6x_core_freq + 500000) / 1000000,
472 (loops_per_jiffy/(500000/HZ)),
473 (loops_per_jiffy/(5000/HZ))%100);
474
475 return 0;
476 }
477
c_start(struct seq_file * m,loff_t * pos)478 static void *c_start(struct seq_file *m, loff_t *pos)
479 {
480 return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL;
481 }
c_next(struct seq_file * m,void * v,loff_t * pos)482 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
483 {
484 ++*pos;
485 return NULL;
486 }
c_stop(struct seq_file * m,void * v)487 static void c_stop(struct seq_file *m, void *v)
488 {
489 }
490
491 const struct seq_operations cpuinfo_op = {
492 c_start,
493 c_stop,
494 c_next,
495 show_cpuinfo
496 };
497
498 static struct cpu cpu_devices[NR_CPUS];
499
topology_init(void)500 static int __init topology_init(void)
501 {
502 int i;
503
504 for_each_present_cpu(i)
505 register_cpu(&cpu_devices[i], i);
506
507 return 0;
508 }
509
510 subsys_initcall(topology_init);
511