1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26 /*
27 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32 /*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * libcfs/libcfs/hash.c
37 *
38 * Implement a hash class for hash process in lustre system.
39 *
40 * Author: YuZhangyong <yzy@clusterfs.com>
41 *
42 * 2008-08-15: Brian Behlendorf <behlendorf1@llnl.gov>
43 * - Simplified API and improved documentation
44 * - Added per-hash feature flags:
45 * * CFS_HASH_DEBUG additional validation
46 * * CFS_HASH_REHASH dynamic rehashing
47 * - Added per-hash statistics
48 * - General performance enhancements
49 *
50 * 2009-07-31: Liang Zhen <zhen.liang@sun.com>
51 * - move all stuff to libcfs
52 * - don't allow cur_bits != max_bits without setting of CFS_HASH_REHASH
53 * - ignore hs_rwlock if without CFS_HASH_REHASH setting
54 * - buckets are allocated one by one(instead of contiguous memory),
55 * to avoid unnecessary cacheline conflict
56 *
57 * 2010-03-01: Liang Zhen <zhen.liang@sun.com>
58 * - "bucket" is a group of hlist_head now, user can specify bucket size
59 * by bkt_bits of cfs_hash_create(), all hlist_heads in a bucket share
60 * one lock for reducing memory overhead.
61 *
62 * - support lockless hash, caller will take care of locks:
63 * avoid lock overhead for hash tables that are already protected
64 * by locking in the caller for another reason
65 *
66 * - support both spin_lock/rwlock for bucket:
67 * overhead of spinlock contention is lower than read/write
68 * contention of rwlock, so using spinlock to serialize operations on
69 * bucket is more reasonable for those frequently changed hash tables
70 *
71 * - support one-single lock mode:
72 * one lock to protect all hash operations to avoid overhead of
73 * multiple locks if hash table is always small
74 *
75 * - removed a lot of unnecessary addref & decref on hash element:
76 * addref & decref are atomic operations in many use-cases which
77 * are expensive.
78 *
79 * - support non-blocking cfs_hash_add() and cfs_hash_findadd():
80 * some lustre use-cases require these functions to be strictly
81 * non-blocking, we need to schedule required rehash on a different
82 * thread on those cases.
83 *
84 * - safer rehash on large hash table
85 * In old implementation, rehash function will exclusively lock the
86 * hash table and finish rehash in one batch, it's dangerous on SMP
87 * system because rehash millions of elements could take long time.
88 * New implemented rehash can release lock and relax CPU in middle
89 * of rehash, it's safe for another thread to search/change on the
90 * hash table even it's in rehasing.
91 *
92 * - support two different refcount modes
93 * . hash table has refcount on element
94 * . hash table doesn't change refcount on adding/removing element
95 *
96 * - support long name hash table (for param-tree)
97 *
98 * - fix a bug for cfs_hash_rehash_key:
99 * in old implementation, cfs_hash_rehash_key could screw up the
100 * hash-table because @key is overwritten without any protection.
101 * Now we need user to define hs_keycpy for those rehash enabled
102 * hash tables, cfs_hash_rehash_key will overwrite hash-key
103 * inside lock by calling hs_keycpy.
104 *
105 * - better hash iteration:
106 * Now we support both locked iteration & lockless iteration of hash
107 * table. Also, user can break the iteration by return 1 in callback.
108 */
109
110 #include "../../include/linux/libcfs/libcfs.h"
111 #include <linux/seq_file.h>
112
113 #if CFS_HASH_DEBUG_LEVEL >= CFS_HASH_DEBUG_1
114 static unsigned int warn_on_depth = 8;
115 module_param(warn_on_depth, uint, 0644);
116 MODULE_PARM_DESC(warn_on_depth, "warning when hash depth is high.");
117 #endif
118
119 struct cfs_wi_sched *cfs_sched_rehash;
120
121 static inline void
cfs_hash_nl_lock(union cfs_hash_lock * lock,int exclusive)122 cfs_hash_nl_lock(union cfs_hash_lock *lock, int exclusive) {}
123
124 static inline void
cfs_hash_nl_unlock(union cfs_hash_lock * lock,int exclusive)125 cfs_hash_nl_unlock(union cfs_hash_lock *lock, int exclusive) {}
126
127 static inline void
cfs_hash_spin_lock(union cfs_hash_lock * lock,int exclusive)128 cfs_hash_spin_lock(union cfs_hash_lock *lock, int exclusive)
129 __acquires(&lock->spin)
130 {
131 spin_lock(&lock->spin);
132 }
133
134 static inline void
cfs_hash_spin_unlock(union cfs_hash_lock * lock,int exclusive)135 cfs_hash_spin_unlock(union cfs_hash_lock *lock, int exclusive)
136 __releases(&lock->spin)
137 {
138 spin_unlock(&lock->spin);
139 }
140
141 static inline void
cfs_hash_rw_lock(union cfs_hash_lock * lock,int exclusive)142 cfs_hash_rw_lock(union cfs_hash_lock *lock, int exclusive)
143 __acquires(&lock->rw)
144 {
145 if (!exclusive)
146 read_lock(&lock->rw);
147 else
148 write_lock(&lock->rw);
149 }
150
151 static inline void
cfs_hash_rw_unlock(union cfs_hash_lock * lock,int exclusive)152 cfs_hash_rw_unlock(union cfs_hash_lock *lock, int exclusive)
153 __releases(&lock->rw)
154 {
155 if (!exclusive)
156 read_unlock(&lock->rw);
157 else
158 write_unlock(&lock->rw);
159 }
160
161 /** No lock hash */
162 static struct cfs_hash_lock_ops cfs_hash_nl_lops = {
163 .hs_lock = cfs_hash_nl_lock,
164 .hs_unlock = cfs_hash_nl_unlock,
165 .hs_bkt_lock = cfs_hash_nl_lock,
166 .hs_bkt_unlock = cfs_hash_nl_unlock,
167 };
168
169 /** no bucket lock, one spinlock to protect everything */
170 static struct cfs_hash_lock_ops cfs_hash_nbl_lops = {
171 .hs_lock = cfs_hash_spin_lock,
172 .hs_unlock = cfs_hash_spin_unlock,
173 .hs_bkt_lock = cfs_hash_nl_lock,
174 .hs_bkt_unlock = cfs_hash_nl_unlock,
175 };
176
177 /** spin bucket lock, rehash is enabled */
178 static struct cfs_hash_lock_ops cfs_hash_bkt_spin_lops = {
179 .hs_lock = cfs_hash_rw_lock,
180 .hs_unlock = cfs_hash_rw_unlock,
181 .hs_bkt_lock = cfs_hash_spin_lock,
182 .hs_bkt_unlock = cfs_hash_spin_unlock,
183 };
184
185 /** rw bucket lock, rehash is enabled */
186 static struct cfs_hash_lock_ops cfs_hash_bkt_rw_lops = {
187 .hs_lock = cfs_hash_rw_lock,
188 .hs_unlock = cfs_hash_rw_unlock,
189 .hs_bkt_lock = cfs_hash_rw_lock,
190 .hs_bkt_unlock = cfs_hash_rw_unlock,
191 };
192
193 /** spin bucket lock, rehash is disabled */
194 static struct cfs_hash_lock_ops cfs_hash_nr_bkt_spin_lops = {
195 .hs_lock = cfs_hash_nl_lock,
196 .hs_unlock = cfs_hash_nl_unlock,
197 .hs_bkt_lock = cfs_hash_spin_lock,
198 .hs_bkt_unlock = cfs_hash_spin_unlock,
199 };
200
201 /** rw bucket lock, rehash is disabled */
202 static struct cfs_hash_lock_ops cfs_hash_nr_bkt_rw_lops = {
203 .hs_lock = cfs_hash_nl_lock,
204 .hs_unlock = cfs_hash_nl_unlock,
205 .hs_bkt_lock = cfs_hash_rw_lock,
206 .hs_bkt_unlock = cfs_hash_rw_unlock,
207 };
208
209 static void
cfs_hash_lock_setup(struct cfs_hash * hs)210 cfs_hash_lock_setup(struct cfs_hash *hs)
211 {
212 if (cfs_hash_with_no_lock(hs)) {
213 hs->hs_lops = &cfs_hash_nl_lops;
214
215 } else if (cfs_hash_with_no_bktlock(hs)) {
216 hs->hs_lops = &cfs_hash_nbl_lops;
217 spin_lock_init(&hs->hs_lock.spin);
218
219 } else if (cfs_hash_with_rehash(hs)) {
220 rwlock_init(&hs->hs_lock.rw);
221
222 if (cfs_hash_with_rw_bktlock(hs))
223 hs->hs_lops = &cfs_hash_bkt_rw_lops;
224 else if (cfs_hash_with_spin_bktlock(hs))
225 hs->hs_lops = &cfs_hash_bkt_spin_lops;
226 else
227 LBUG();
228 } else {
229 if (cfs_hash_with_rw_bktlock(hs))
230 hs->hs_lops = &cfs_hash_nr_bkt_rw_lops;
231 else if (cfs_hash_with_spin_bktlock(hs))
232 hs->hs_lops = &cfs_hash_nr_bkt_spin_lops;
233 else
234 LBUG();
235 }
236 }
237
238 /**
239 * Simple hash head without depth tracking
240 * new element is always added to head of hlist
241 */
242 struct cfs_hash_head {
243 struct hlist_head hh_head; /**< entries list */
244 };
245
246 static int
cfs_hash_hh_hhead_size(struct cfs_hash * hs)247 cfs_hash_hh_hhead_size(struct cfs_hash *hs)
248 {
249 return sizeof(struct cfs_hash_head);
250 }
251
252 static struct hlist_head *
cfs_hash_hh_hhead(struct cfs_hash * hs,struct cfs_hash_bd * bd)253 cfs_hash_hh_hhead(struct cfs_hash *hs, struct cfs_hash_bd *bd)
254 {
255 struct cfs_hash_head *head;
256
257 head = (struct cfs_hash_head *)&bd->bd_bucket->hsb_head[0];
258 return &head[bd->bd_offset].hh_head;
259 }
260
261 static int
cfs_hash_hh_hnode_add(struct cfs_hash * hs,struct cfs_hash_bd * bd,struct hlist_node * hnode)262 cfs_hash_hh_hnode_add(struct cfs_hash *hs, struct cfs_hash_bd *bd,
263 struct hlist_node *hnode)
264 {
265 hlist_add_head(hnode, cfs_hash_hh_hhead(hs, bd));
266 return -1; /* unknown depth */
267 }
268
269 static int
cfs_hash_hh_hnode_del(struct cfs_hash * hs,struct cfs_hash_bd * bd,struct hlist_node * hnode)270 cfs_hash_hh_hnode_del(struct cfs_hash *hs, struct cfs_hash_bd *bd,
271 struct hlist_node *hnode)
272 {
273 hlist_del_init(hnode);
274 return -1; /* unknown depth */
275 }
276
277 /**
278 * Simple hash head with depth tracking
279 * new element is always added to head of hlist
280 */
281 struct cfs_hash_head_dep {
282 struct hlist_head hd_head; /**< entries list */
283 unsigned int hd_depth; /**< list length */
284 };
285
286 static int
cfs_hash_hd_hhead_size(struct cfs_hash * hs)287 cfs_hash_hd_hhead_size(struct cfs_hash *hs)
288 {
289 return sizeof(struct cfs_hash_head_dep);
290 }
291
292 static struct hlist_head *
cfs_hash_hd_hhead(struct cfs_hash * hs,struct cfs_hash_bd * bd)293 cfs_hash_hd_hhead(struct cfs_hash *hs, struct cfs_hash_bd *bd)
294 {
295 struct cfs_hash_head_dep *head;
296
297 head = (struct cfs_hash_head_dep *)&bd->bd_bucket->hsb_head[0];
298 return &head[bd->bd_offset].hd_head;
299 }
300
301 static int
cfs_hash_hd_hnode_add(struct cfs_hash * hs,struct cfs_hash_bd * bd,struct hlist_node * hnode)302 cfs_hash_hd_hnode_add(struct cfs_hash *hs, struct cfs_hash_bd *bd,
303 struct hlist_node *hnode)
304 {
305 struct cfs_hash_head_dep *hh;
306
307 hh = container_of(cfs_hash_hd_hhead(hs, bd),
308 struct cfs_hash_head_dep, hd_head);
309 hlist_add_head(hnode, &hh->hd_head);
310 return ++hh->hd_depth;
311 }
312
313 static int
cfs_hash_hd_hnode_del(struct cfs_hash * hs,struct cfs_hash_bd * bd,struct hlist_node * hnode)314 cfs_hash_hd_hnode_del(struct cfs_hash *hs, struct cfs_hash_bd *bd,
315 struct hlist_node *hnode)
316 {
317 struct cfs_hash_head_dep *hh;
318
319 hh = container_of(cfs_hash_hd_hhead(hs, bd),
320 struct cfs_hash_head_dep, hd_head);
321 hlist_del_init(hnode);
322 return --hh->hd_depth;
323 }
324
325 /**
326 * double links hash head without depth tracking
327 * new element is always added to tail of hlist
328 */
329 struct cfs_hash_dhead {
330 struct hlist_head dh_head; /**< entries list */
331 struct hlist_node *dh_tail; /**< the last entry */
332 };
333
334 static int
cfs_hash_dh_hhead_size(struct cfs_hash * hs)335 cfs_hash_dh_hhead_size(struct cfs_hash *hs)
336 {
337 return sizeof(struct cfs_hash_dhead);
338 }
339
340 static struct hlist_head *
cfs_hash_dh_hhead(struct cfs_hash * hs,struct cfs_hash_bd * bd)341 cfs_hash_dh_hhead(struct cfs_hash *hs, struct cfs_hash_bd *bd)
342 {
343 struct cfs_hash_dhead *head;
344
345 head = (struct cfs_hash_dhead *)&bd->bd_bucket->hsb_head[0];
346 return &head[bd->bd_offset].dh_head;
347 }
348
349 static int
cfs_hash_dh_hnode_add(struct cfs_hash * hs,struct cfs_hash_bd * bd,struct hlist_node * hnode)350 cfs_hash_dh_hnode_add(struct cfs_hash *hs, struct cfs_hash_bd *bd,
351 struct hlist_node *hnode)
352 {
353 struct cfs_hash_dhead *dh;
354
355 dh = container_of(cfs_hash_dh_hhead(hs, bd),
356 struct cfs_hash_dhead, dh_head);
357 if (dh->dh_tail != NULL) /* not empty */
358 hlist_add_behind(hnode, dh->dh_tail);
359 else /* empty list */
360 hlist_add_head(hnode, &dh->dh_head);
361 dh->dh_tail = hnode;
362 return -1; /* unknown depth */
363 }
364
365 static int
cfs_hash_dh_hnode_del(struct cfs_hash * hs,struct cfs_hash_bd * bd,struct hlist_node * hnd)366 cfs_hash_dh_hnode_del(struct cfs_hash *hs, struct cfs_hash_bd *bd,
367 struct hlist_node *hnd)
368 {
369 struct cfs_hash_dhead *dh;
370
371 dh = container_of(cfs_hash_dh_hhead(hs, bd),
372 struct cfs_hash_dhead, dh_head);
373 if (hnd->next == NULL) { /* it's the tail */
374 dh->dh_tail = (hnd->pprev == &dh->dh_head.first) ? NULL :
375 container_of(hnd->pprev, struct hlist_node, next);
376 }
377 hlist_del_init(hnd);
378 return -1; /* unknown depth */
379 }
380
381 /**
382 * double links hash head with depth tracking
383 * new element is always added to tail of hlist
384 */
385 struct cfs_hash_dhead_dep {
386 struct hlist_head dd_head; /**< entries list */
387 struct hlist_node *dd_tail; /**< the last entry */
388 unsigned int dd_depth; /**< list length */
389 };
390
391 static int
cfs_hash_dd_hhead_size(struct cfs_hash * hs)392 cfs_hash_dd_hhead_size(struct cfs_hash *hs)
393 {
394 return sizeof(struct cfs_hash_dhead_dep);
395 }
396
397 static struct hlist_head *
cfs_hash_dd_hhead(struct cfs_hash * hs,struct cfs_hash_bd * bd)398 cfs_hash_dd_hhead(struct cfs_hash *hs, struct cfs_hash_bd *bd)
399 {
400 struct cfs_hash_dhead_dep *head;
401
402 head = (struct cfs_hash_dhead_dep *)&bd->bd_bucket->hsb_head[0];
403 return &head[bd->bd_offset].dd_head;
404 }
405
406 static int
cfs_hash_dd_hnode_add(struct cfs_hash * hs,struct cfs_hash_bd * bd,struct hlist_node * hnode)407 cfs_hash_dd_hnode_add(struct cfs_hash *hs, struct cfs_hash_bd *bd,
408 struct hlist_node *hnode)
409 {
410 struct cfs_hash_dhead_dep *dh;
411
412 dh = container_of(cfs_hash_dd_hhead(hs, bd),
413 struct cfs_hash_dhead_dep, dd_head);
414 if (dh->dd_tail != NULL) /* not empty */
415 hlist_add_behind(hnode, dh->dd_tail);
416 else /* empty list */
417 hlist_add_head(hnode, &dh->dd_head);
418 dh->dd_tail = hnode;
419 return ++dh->dd_depth;
420 }
421
422 static int
cfs_hash_dd_hnode_del(struct cfs_hash * hs,struct cfs_hash_bd * bd,struct hlist_node * hnd)423 cfs_hash_dd_hnode_del(struct cfs_hash *hs, struct cfs_hash_bd *bd,
424 struct hlist_node *hnd)
425 {
426 struct cfs_hash_dhead_dep *dh;
427
428 dh = container_of(cfs_hash_dd_hhead(hs, bd),
429 struct cfs_hash_dhead_dep, dd_head);
430 if (hnd->next == NULL) { /* it's the tail */
431 dh->dd_tail = (hnd->pprev == &dh->dd_head.first) ? NULL :
432 container_of(hnd->pprev, struct hlist_node, next);
433 }
434 hlist_del_init(hnd);
435 return --dh->dd_depth;
436 }
437
438 static struct cfs_hash_hlist_ops cfs_hash_hh_hops = {
439 .hop_hhead = cfs_hash_hh_hhead,
440 .hop_hhead_size = cfs_hash_hh_hhead_size,
441 .hop_hnode_add = cfs_hash_hh_hnode_add,
442 .hop_hnode_del = cfs_hash_hh_hnode_del,
443 };
444
445 static struct cfs_hash_hlist_ops cfs_hash_hd_hops = {
446 .hop_hhead = cfs_hash_hd_hhead,
447 .hop_hhead_size = cfs_hash_hd_hhead_size,
448 .hop_hnode_add = cfs_hash_hd_hnode_add,
449 .hop_hnode_del = cfs_hash_hd_hnode_del,
450 };
451
452 static struct cfs_hash_hlist_ops cfs_hash_dh_hops = {
453 .hop_hhead = cfs_hash_dh_hhead,
454 .hop_hhead_size = cfs_hash_dh_hhead_size,
455 .hop_hnode_add = cfs_hash_dh_hnode_add,
456 .hop_hnode_del = cfs_hash_dh_hnode_del,
457 };
458
459 static struct cfs_hash_hlist_ops cfs_hash_dd_hops = {
460 .hop_hhead = cfs_hash_dd_hhead,
461 .hop_hhead_size = cfs_hash_dd_hhead_size,
462 .hop_hnode_add = cfs_hash_dd_hnode_add,
463 .hop_hnode_del = cfs_hash_dd_hnode_del,
464 };
465
466 static void
cfs_hash_hlist_setup(struct cfs_hash * hs)467 cfs_hash_hlist_setup(struct cfs_hash *hs)
468 {
469 if (cfs_hash_with_add_tail(hs)) {
470 hs->hs_hops = cfs_hash_with_depth(hs) ?
471 &cfs_hash_dd_hops : &cfs_hash_dh_hops;
472 } else {
473 hs->hs_hops = cfs_hash_with_depth(hs) ?
474 &cfs_hash_hd_hops : &cfs_hash_hh_hops;
475 }
476 }
477
478 static void
cfs_hash_bd_from_key(struct cfs_hash * hs,struct cfs_hash_bucket ** bkts,unsigned int bits,const void * key,struct cfs_hash_bd * bd)479 cfs_hash_bd_from_key(struct cfs_hash *hs, struct cfs_hash_bucket **bkts,
480 unsigned int bits, const void *key, struct cfs_hash_bd *bd)
481 {
482 unsigned int index = cfs_hash_id(hs, key, (1U << bits) - 1);
483
484 LASSERT(bits == hs->hs_cur_bits || bits == hs->hs_rehash_bits);
485
486 bd->bd_bucket = bkts[index & ((1U << (bits - hs->hs_bkt_bits)) - 1)];
487 bd->bd_offset = index >> (bits - hs->hs_bkt_bits);
488 }
489
490 void
cfs_hash_bd_get(struct cfs_hash * hs,const void * key,struct cfs_hash_bd * bd)491 cfs_hash_bd_get(struct cfs_hash *hs, const void *key, struct cfs_hash_bd *bd)
492 {
493 /* NB: caller should hold hs->hs_rwlock if REHASH is set */
494 if (likely(hs->hs_rehash_buckets == NULL)) {
495 cfs_hash_bd_from_key(hs, hs->hs_buckets,
496 hs->hs_cur_bits, key, bd);
497 } else {
498 LASSERT(hs->hs_rehash_bits != 0);
499 cfs_hash_bd_from_key(hs, hs->hs_rehash_buckets,
500 hs->hs_rehash_bits, key, bd);
501 }
502 }
503 EXPORT_SYMBOL(cfs_hash_bd_get);
504
505 static inline void
cfs_hash_bd_dep_record(struct cfs_hash * hs,struct cfs_hash_bd * bd,int dep_cur)506 cfs_hash_bd_dep_record(struct cfs_hash *hs, struct cfs_hash_bd *bd, int dep_cur)
507 {
508 if (likely(dep_cur <= bd->bd_bucket->hsb_depmax))
509 return;
510
511 bd->bd_bucket->hsb_depmax = dep_cur;
512 # if CFS_HASH_DEBUG_LEVEL >= CFS_HASH_DEBUG_1
513 if (likely(warn_on_depth == 0 ||
514 max(warn_on_depth, hs->hs_dep_max) >= dep_cur))
515 return;
516
517 spin_lock(&hs->hs_dep_lock);
518 hs->hs_dep_max = dep_cur;
519 hs->hs_dep_bkt = bd->bd_bucket->hsb_index;
520 hs->hs_dep_off = bd->bd_offset;
521 hs->hs_dep_bits = hs->hs_cur_bits;
522 spin_unlock(&hs->hs_dep_lock);
523
524 cfs_wi_schedule(cfs_sched_rehash, &hs->hs_dep_wi);
525 # endif
526 }
527
528 void
cfs_hash_bd_add_locked(struct cfs_hash * hs,struct cfs_hash_bd * bd,struct hlist_node * hnode)529 cfs_hash_bd_add_locked(struct cfs_hash *hs, struct cfs_hash_bd *bd,
530 struct hlist_node *hnode)
531 {
532 int rc;
533
534 rc = hs->hs_hops->hop_hnode_add(hs, bd, hnode);
535 cfs_hash_bd_dep_record(hs, bd, rc);
536 bd->bd_bucket->hsb_version++;
537 if (unlikely(bd->bd_bucket->hsb_version == 0))
538 bd->bd_bucket->hsb_version++;
539 bd->bd_bucket->hsb_count++;
540
541 if (cfs_hash_with_counter(hs))
542 atomic_inc(&hs->hs_count);
543 if (!cfs_hash_with_no_itemref(hs))
544 cfs_hash_get(hs, hnode);
545 }
546 EXPORT_SYMBOL(cfs_hash_bd_add_locked);
547
548 void
cfs_hash_bd_del_locked(struct cfs_hash * hs,struct cfs_hash_bd * bd,struct hlist_node * hnode)549 cfs_hash_bd_del_locked(struct cfs_hash *hs, struct cfs_hash_bd *bd,
550 struct hlist_node *hnode)
551 {
552 hs->hs_hops->hop_hnode_del(hs, bd, hnode);
553
554 LASSERT(bd->bd_bucket->hsb_count > 0);
555 bd->bd_bucket->hsb_count--;
556 bd->bd_bucket->hsb_version++;
557 if (unlikely(bd->bd_bucket->hsb_version == 0))
558 bd->bd_bucket->hsb_version++;
559
560 if (cfs_hash_with_counter(hs)) {
561 LASSERT(atomic_read(&hs->hs_count) > 0);
562 atomic_dec(&hs->hs_count);
563 }
564 if (!cfs_hash_with_no_itemref(hs))
565 cfs_hash_put_locked(hs, hnode);
566 }
567 EXPORT_SYMBOL(cfs_hash_bd_del_locked);
568
569 void
cfs_hash_bd_move_locked(struct cfs_hash * hs,struct cfs_hash_bd * bd_old,struct cfs_hash_bd * bd_new,struct hlist_node * hnode)570 cfs_hash_bd_move_locked(struct cfs_hash *hs, struct cfs_hash_bd *bd_old,
571 struct cfs_hash_bd *bd_new, struct hlist_node *hnode)
572 {
573 struct cfs_hash_bucket *obkt = bd_old->bd_bucket;
574 struct cfs_hash_bucket *nbkt = bd_new->bd_bucket;
575 int rc;
576
577 if (cfs_hash_bd_compare(bd_old, bd_new) == 0)
578 return;
579
580 /* use cfs_hash_bd_hnode_add/del, to avoid atomic & refcount ops
581 * in cfs_hash_bd_del/add_locked */
582 hs->hs_hops->hop_hnode_del(hs, bd_old, hnode);
583 rc = hs->hs_hops->hop_hnode_add(hs, bd_new, hnode);
584 cfs_hash_bd_dep_record(hs, bd_new, rc);
585
586 LASSERT(obkt->hsb_count > 0);
587 obkt->hsb_count--;
588 obkt->hsb_version++;
589 if (unlikely(obkt->hsb_version == 0))
590 obkt->hsb_version++;
591 nbkt->hsb_count++;
592 nbkt->hsb_version++;
593 if (unlikely(nbkt->hsb_version == 0))
594 nbkt->hsb_version++;
595 }
596 EXPORT_SYMBOL(cfs_hash_bd_move_locked);
597
598 enum {
599 /** always set, for sanity (avoid ZERO intent) */
600 CFS_HS_LOOKUP_MASK_FIND = BIT(0),
601 /** return entry with a ref */
602 CFS_HS_LOOKUP_MASK_REF = BIT(1),
603 /** add entry if not existing */
604 CFS_HS_LOOKUP_MASK_ADD = BIT(2),
605 /** delete entry, ignore other masks */
606 CFS_HS_LOOKUP_MASK_DEL = BIT(3),
607 };
608
609 enum cfs_hash_lookup_intent {
610 /** return item w/o refcount */
611 CFS_HS_LOOKUP_IT_PEEK = CFS_HS_LOOKUP_MASK_FIND,
612 /** return item with refcount */
613 CFS_HS_LOOKUP_IT_FIND = (CFS_HS_LOOKUP_MASK_FIND |
614 CFS_HS_LOOKUP_MASK_REF),
615 /** return item w/o refcount if existed, otherwise add */
616 CFS_HS_LOOKUP_IT_ADD = (CFS_HS_LOOKUP_MASK_FIND |
617 CFS_HS_LOOKUP_MASK_ADD),
618 /** return item with refcount if existed, otherwise add */
619 CFS_HS_LOOKUP_IT_FINDADD = (CFS_HS_LOOKUP_IT_FIND |
620 CFS_HS_LOOKUP_MASK_ADD),
621 /** delete if existed */
622 CFS_HS_LOOKUP_IT_FINDDEL = (CFS_HS_LOOKUP_MASK_FIND |
623 CFS_HS_LOOKUP_MASK_DEL)
624 };
625
626 static struct hlist_node *
cfs_hash_bd_lookup_intent(struct cfs_hash * hs,struct cfs_hash_bd * bd,const void * key,struct hlist_node * hnode,enum cfs_hash_lookup_intent intent)627 cfs_hash_bd_lookup_intent(struct cfs_hash *hs, struct cfs_hash_bd *bd,
628 const void *key, struct hlist_node *hnode,
629 enum cfs_hash_lookup_intent intent)
630
631 {
632 struct hlist_head *hhead = cfs_hash_bd_hhead(hs, bd);
633 struct hlist_node *ehnode;
634 struct hlist_node *match;
635 int intent_add = (intent & CFS_HS_LOOKUP_MASK_ADD) != 0;
636
637 /* with this function, we can avoid a lot of useless refcount ops,
638 * which are expensive atomic operations most time. */
639 match = intent_add ? NULL : hnode;
640 hlist_for_each(ehnode, hhead) {
641 if (!cfs_hash_keycmp(hs, key, ehnode))
642 continue;
643
644 if (match != NULL && match != ehnode) /* can't match */
645 continue;
646
647 /* match and ... */
648 if ((intent & CFS_HS_LOOKUP_MASK_DEL) != 0) {
649 cfs_hash_bd_del_locked(hs, bd, ehnode);
650 return ehnode;
651 }
652
653 /* caller wants refcount? */
654 if ((intent & CFS_HS_LOOKUP_MASK_REF) != 0)
655 cfs_hash_get(hs, ehnode);
656 return ehnode;
657 }
658 /* no match item */
659 if (!intent_add)
660 return NULL;
661
662 LASSERT(hnode != NULL);
663 cfs_hash_bd_add_locked(hs, bd, hnode);
664 return hnode;
665 }
666
667 struct hlist_node *
cfs_hash_bd_lookup_locked(struct cfs_hash * hs,struct cfs_hash_bd * bd,const void * key)668 cfs_hash_bd_lookup_locked(struct cfs_hash *hs, struct cfs_hash_bd *bd, const void *key)
669 {
670 return cfs_hash_bd_lookup_intent(hs, bd, key, NULL,
671 CFS_HS_LOOKUP_IT_FIND);
672 }
673 EXPORT_SYMBOL(cfs_hash_bd_lookup_locked);
674
675 struct hlist_node *
cfs_hash_bd_peek_locked(struct cfs_hash * hs,struct cfs_hash_bd * bd,const void * key)676 cfs_hash_bd_peek_locked(struct cfs_hash *hs, struct cfs_hash_bd *bd, const void *key)
677 {
678 return cfs_hash_bd_lookup_intent(hs, bd, key, NULL,
679 CFS_HS_LOOKUP_IT_PEEK);
680 }
681 EXPORT_SYMBOL(cfs_hash_bd_peek_locked);
682
683 struct hlist_node *
cfs_hash_bd_findadd_locked(struct cfs_hash * hs,struct cfs_hash_bd * bd,const void * key,struct hlist_node * hnode,int noref)684 cfs_hash_bd_findadd_locked(struct cfs_hash *hs, struct cfs_hash_bd *bd,
685 const void *key, struct hlist_node *hnode,
686 int noref)
687 {
688 return cfs_hash_bd_lookup_intent(hs, bd, key, hnode,
689 (!noref * CFS_HS_LOOKUP_MASK_REF) |
690 CFS_HS_LOOKUP_IT_ADD);
691 }
692 EXPORT_SYMBOL(cfs_hash_bd_findadd_locked);
693
694 struct hlist_node *
cfs_hash_bd_finddel_locked(struct cfs_hash * hs,struct cfs_hash_bd * bd,const void * key,struct hlist_node * hnode)695 cfs_hash_bd_finddel_locked(struct cfs_hash *hs, struct cfs_hash_bd *bd,
696 const void *key, struct hlist_node *hnode)
697 {
698 /* hnode can be NULL, we find the first item with @key */
699 return cfs_hash_bd_lookup_intent(hs, bd, key, hnode,
700 CFS_HS_LOOKUP_IT_FINDDEL);
701 }
702 EXPORT_SYMBOL(cfs_hash_bd_finddel_locked);
703
704 static void
cfs_hash_multi_bd_lock(struct cfs_hash * hs,struct cfs_hash_bd * bds,unsigned n,int excl)705 cfs_hash_multi_bd_lock(struct cfs_hash *hs, struct cfs_hash_bd *bds,
706 unsigned n, int excl)
707 {
708 struct cfs_hash_bucket *prev = NULL;
709 int i;
710
711 /**
712 * bds must be ascendantly ordered by bd->bd_bucket->hsb_index.
713 * NB: it's possible that several bds point to the same bucket but
714 * have different bd::bd_offset, so need take care of deadlock.
715 */
716 cfs_hash_for_each_bd(bds, n, i) {
717 if (prev == bds[i].bd_bucket)
718 continue;
719
720 LASSERT(prev == NULL ||
721 prev->hsb_index < bds[i].bd_bucket->hsb_index);
722 cfs_hash_bd_lock(hs, &bds[i], excl);
723 prev = bds[i].bd_bucket;
724 }
725 }
726
727 static void
cfs_hash_multi_bd_unlock(struct cfs_hash * hs,struct cfs_hash_bd * bds,unsigned n,int excl)728 cfs_hash_multi_bd_unlock(struct cfs_hash *hs, struct cfs_hash_bd *bds,
729 unsigned n, int excl)
730 {
731 struct cfs_hash_bucket *prev = NULL;
732 int i;
733
734 cfs_hash_for_each_bd(bds, n, i) {
735 if (prev != bds[i].bd_bucket) {
736 cfs_hash_bd_unlock(hs, &bds[i], excl);
737 prev = bds[i].bd_bucket;
738 }
739 }
740 }
741
742 static struct hlist_node *
cfs_hash_multi_bd_lookup_locked(struct cfs_hash * hs,struct cfs_hash_bd * bds,unsigned n,const void * key)743 cfs_hash_multi_bd_lookup_locked(struct cfs_hash *hs, struct cfs_hash_bd *bds,
744 unsigned n, const void *key)
745 {
746 struct hlist_node *ehnode;
747 unsigned i;
748
749 cfs_hash_for_each_bd(bds, n, i) {
750 ehnode = cfs_hash_bd_lookup_intent(hs, &bds[i], key, NULL,
751 CFS_HS_LOOKUP_IT_FIND);
752 if (ehnode != NULL)
753 return ehnode;
754 }
755 return NULL;
756 }
757
758 static struct hlist_node *
cfs_hash_multi_bd_findadd_locked(struct cfs_hash * hs,struct cfs_hash_bd * bds,unsigned n,const void * key,struct hlist_node * hnode,int noref)759 cfs_hash_multi_bd_findadd_locked(struct cfs_hash *hs,
760 struct cfs_hash_bd *bds, unsigned n, const void *key,
761 struct hlist_node *hnode, int noref)
762 {
763 struct hlist_node *ehnode;
764 int intent;
765 unsigned i;
766
767 LASSERT(hnode != NULL);
768 intent = (!noref * CFS_HS_LOOKUP_MASK_REF) | CFS_HS_LOOKUP_IT_PEEK;
769
770 cfs_hash_for_each_bd(bds, n, i) {
771 ehnode = cfs_hash_bd_lookup_intent(hs, &bds[i], key,
772 NULL, intent);
773 if (ehnode != NULL)
774 return ehnode;
775 }
776
777 if (i == 1) { /* only one bucket */
778 cfs_hash_bd_add_locked(hs, &bds[0], hnode);
779 } else {
780 struct cfs_hash_bd mybd;
781
782 cfs_hash_bd_get(hs, key, &mybd);
783 cfs_hash_bd_add_locked(hs, &mybd, hnode);
784 }
785
786 return hnode;
787 }
788
789 static struct hlist_node *
cfs_hash_multi_bd_finddel_locked(struct cfs_hash * hs,struct cfs_hash_bd * bds,unsigned n,const void * key,struct hlist_node * hnode)790 cfs_hash_multi_bd_finddel_locked(struct cfs_hash *hs, struct cfs_hash_bd *bds,
791 unsigned n, const void *key,
792 struct hlist_node *hnode)
793 {
794 struct hlist_node *ehnode;
795 unsigned i;
796
797 cfs_hash_for_each_bd(bds, n, i) {
798 ehnode = cfs_hash_bd_lookup_intent(hs, &bds[i], key, hnode,
799 CFS_HS_LOOKUP_IT_FINDDEL);
800 if (ehnode != NULL)
801 return ehnode;
802 }
803 return NULL;
804 }
805
806 static void
cfs_hash_bd_order(struct cfs_hash_bd * bd1,struct cfs_hash_bd * bd2)807 cfs_hash_bd_order(struct cfs_hash_bd *bd1, struct cfs_hash_bd *bd2)
808 {
809 int rc;
810
811 if (bd2->bd_bucket == NULL)
812 return;
813
814 if (bd1->bd_bucket == NULL) {
815 *bd1 = *bd2;
816 bd2->bd_bucket = NULL;
817 return;
818 }
819
820 rc = cfs_hash_bd_compare(bd1, bd2);
821 if (rc == 0) {
822 bd2->bd_bucket = NULL;
823
824 } else if (rc > 0) { /* swab bd1 and bd2 */
825 struct cfs_hash_bd tmp;
826
827 tmp = *bd2;
828 *bd2 = *bd1;
829 *bd1 = tmp;
830 }
831 }
832
833 void
cfs_hash_dual_bd_get(struct cfs_hash * hs,const void * key,struct cfs_hash_bd * bds)834 cfs_hash_dual_bd_get(struct cfs_hash *hs, const void *key, struct cfs_hash_bd *bds)
835 {
836 /* NB: caller should hold hs_lock.rw if REHASH is set */
837 cfs_hash_bd_from_key(hs, hs->hs_buckets,
838 hs->hs_cur_bits, key, &bds[0]);
839 if (likely(hs->hs_rehash_buckets == NULL)) {
840 /* no rehash or not rehashing */
841 bds[1].bd_bucket = NULL;
842 return;
843 }
844
845 LASSERT(hs->hs_rehash_bits != 0);
846 cfs_hash_bd_from_key(hs, hs->hs_rehash_buckets,
847 hs->hs_rehash_bits, key, &bds[1]);
848
849 cfs_hash_bd_order(&bds[0], &bds[1]);
850 }
851 EXPORT_SYMBOL(cfs_hash_dual_bd_get);
852
853 void
cfs_hash_dual_bd_lock(struct cfs_hash * hs,struct cfs_hash_bd * bds,int excl)854 cfs_hash_dual_bd_lock(struct cfs_hash *hs, struct cfs_hash_bd *bds, int excl)
855 {
856 cfs_hash_multi_bd_lock(hs, bds, 2, excl);
857 }
858 EXPORT_SYMBOL(cfs_hash_dual_bd_lock);
859
860 void
cfs_hash_dual_bd_unlock(struct cfs_hash * hs,struct cfs_hash_bd * bds,int excl)861 cfs_hash_dual_bd_unlock(struct cfs_hash *hs, struct cfs_hash_bd *bds, int excl)
862 {
863 cfs_hash_multi_bd_unlock(hs, bds, 2, excl);
864 }
865 EXPORT_SYMBOL(cfs_hash_dual_bd_unlock);
866
867 struct hlist_node *
cfs_hash_dual_bd_lookup_locked(struct cfs_hash * hs,struct cfs_hash_bd * bds,const void * key)868 cfs_hash_dual_bd_lookup_locked(struct cfs_hash *hs, struct cfs_hash_bd *bds,
869 const void *key)
870 {
871 return cfs_hash_multi_bd_lookup_locked(hs, bds, 2, key);
872 }
873 EXPORT_SYMBOL(cfs_hash_dual_bd_lookup_locked);
874
875 struct hlist_node *
cfs_hash_dual_bd_findadd_locked(struct cfs_hash * hs,struct cfs_hash_bd * bds,const void * key,struct hlist_node * hnode,int noref)876 cfs_hash_dual_bd_findadd_locked(struct cfs_hash *hs, struct cfs_hash_bd *bds,
877 const void *key, struct hlist_node *hnode,
878 int noref)
879 {
880 return cfs_hash_multi_bd_findadd_locked(hs, bds, 2, key,
881 hnode, noref);
882 }
883 EXPORT_SYMBOL(cfs_hash_dual_bd_findadd_locked);
884
885 struct hlist_node *
cfs_hash_dual_bd_finddel_locked(struct cfs_hash * hs,struct cfs_hash_bd * bds,const void * key,struct hlist_node * hnode)886 cfs_hash_dual_bd_finddel_locked(struct cfs_hash *hs, struct cfs_hash_bd *bds,
887 const void *key, struct hlist_node *hnode)
888 {
889 return cfs_hash_multi_bd_finddel_locked(hs, bds, 2, key, hnode);
890 }
891 EXPORT_SYMBOL(cfs_hash_dual_bd_finddel_locked);
892
893 static void
cfs_hash_buckets_free(struct cfs_hash_bucket ** buckets,int bkt_size,int prev_size,int size)894 cfs_hash_buckets_free(struct cfs_hash_bucket **buckets,
895 int bkt_size, int prev_size, int size)
896 {
897 int i;
898
899 for (i = prev_size; i < size; i++) {
900 if (buckets[i] != NULL)
901 LIBCFS_FREE(buckets[i], bkt_size);
902 }
903
904 LIBCFS_FREE(buckets, sizeof(buckets[0]) * size);
905 }
906
907 /*
908 * Create or grow bucket memory. Return old_buckets if no allocation was
909 * needed, the newly allocated buckets if allocation was needed and
910 * successful, and NULL on error.
911 */
912 static struct cfs_hash_bucket **
cfs_hash_buckets_realloc(struct cfs_hash * hs,struct cfs_hash_bucket ** old_bkts,unsigned int old_size,unsigned int new_size)913 cfs_hash_buckets_realloc(struct cfs_hash *hs, struct cfs_hash_bucket **old_bkts,
914 unsigned int old_size, unsigned int new_size)
915 {
916 struct cfs_hash_bucket **new_bkts;
917 int i;
918
919 LASSERT(old_size == 0 || old_bkts != NULL);
920
921 if (old_bkts != NULL && old_size == new_size)
922 return old_bkts;
923
924 LIBCFS_ALLOC(new_bkts, sizeof(new_bkts[0]) * new_size);
925 if (new_bkts == NULL)
926 return NULL;
927
928 if (old_bkts != NULL) {
929 memcpy(new_bkts, old_bkts,
930 min(old_size, new_size) * sizeof(*old_bkts));
931 }
932
933 for (i = old_size; i < new_size; i++) {
934 struct hlist_head *hhead;
935 struct cfs_hash_bd bd;
936
937 LIBCFS_ALLOC(new_bkts[i], cfs_hash_bkt_size(hs));
938 if (new_bkts[i] == NULL) {
939 cfs_hash_buckets_free(new_bkts, cfs_hash_bkt_size(hs),
940 old_size, new_size);
941 return NULL;
942 }
943
944 new_bkts[i]->hsb_index = i;
945 new_bkts[i]->hsb_version = 1; /* shouldn't be zero */
946 new_bkts[i]->hsb_depmax = -1; /* unknown */
947 bd.bd_bucket = new_bkts[i];
948 cfs_hash_bd_for_each_hlist(hs, &bd, hhead)
949 INIT_HLIST_HEAD(hhead);
950
951 if (cfs_hash_with_no_lock(hs) ||
952 cfs_hash_with_no_bktlock(hs))
953 continue;
954
955 if (cfs_hash_with_rw_bktlock(hs))
956 rwlock_init(&new_bkts[i]->hsb_lock.rw);
957 else if (cfs_hash_with_spin_bktlock(hs))
958 spin_lock_init(&new_bkts[i]->hsb_lock.spin);
959 else
960 LBUG(); /* invalid use-case */
961 }
962 return new_bkts;
963 }
964
965 /**
966 * Initialize new libcfs hash, where:
967 * @name - Descriptive hash name
968 * @cur_bits - Initial hash table size, in bits
969 * @max_bits - Maximum allowed hash table resize, in bits
970 * @ops - Registered hash table operations
971 * @flags - CFS_HASH_REHASH enable synamic hash resizing
972 * - CFS_HASH_SORT enable chained hash sort
973 */
974 static int cfs_hash_rehash_worker(cfs_workitem_t *wi);
975
976 #if CFS_HASH_DEBUG_LEVEL >= CFS_HASH_DEBUG_1
cfs_hash_dep_print(cfs_workitem_t * wi)977 static int cfs_hash_dep_print(cfs_workitem_t *wi)
978 {
979 struct cfs_hash *hs = container_of(wi, struct cfs_hash, hs_dep_wi);
980 int dep;
981 int bkt;
982 int off;
983 int bits;
984
985 spin_lock(&hs->hs_dep_lock);
986 dep = hs->hs_dep_max;
987 bkt = hs->hs_dep_bkt;
988 off = hs->hs_dep_off;
989 bits = hs->hs_dep_bits;
990 spin_unlock(&hs->hs_dep_lock);
991
992 LCONSOLE_WARN("#### HASH %s (bits: %d): max depth %d at bucket %d/%d\n",
993 hs->hs_name, bits, dep, bkt, off);
994 spin_lock(&hs->hs_dep_lock);
995 hs->hs_dep_bits = 0; /* mark as workitem done */
996 spin_unlock(&hs->hs_dep_lock);
997 return 0;
998 }
999
cfs_hash_depth_wi_init(struct cfs_hash * hs)1000 static void cfs_hash_depth_wi_init(struct cfs_hash *hs)
1001 {
1002 spin_lock_init(&hs->hs_dep_lock);
1003 cfs_wi_init(&hs->hs_dep_wi, hs, cfs_hash_dep_print);
1004 }
1005
cfs_hash_depth_wi_cancel(struct cfs_hash * hs)1006 static void cfs_hash_depth_wi_cancel(struct cfs_hash *hs)
1007 {
1008 if (cfs_wi_deschedule(cfs_sched_rehash, &hs->hs_dep_wi))
1009 return;
1010
1011 spin_lock(&hs->hs_dep_lock);
1012 while (hs->hs_dep_bits != 0) {
1013 spin_unlock(&hs->hs_dep_lock);
1014 cond_resched();
1015 spin_lock(&hs->hs_dep_lock);
1016 }
1017 spin_unlock(&hs->hs_dep_lock);
1018 }
1019
1020 #else /* CFS_HASH_DEBUG_LEVEL < CFS_HASH_DEBUG_1 */
1021
cfs_hash_depth_wi_init(struct cfs_hash * hs)1022 static inline void cfs_hash_depth_wi_init(struct cfs_hash *hs) {}
cfs_hash_depth_wi_cancel(struct cfs_hash * hs)1023 static inline void cfs_hash_depth_wi_cancel(struct cfs_hash *hs) {}
1024
1025 #endif /* CFS_HASH_DEBUG_LEVEL >= CFS_HASH_DEBUG_1 */
1026
1027 struct cfs_hash *
cfs_hash_create(char * name,unsigned cur_bits,unsigned max_bits,unsigned bkt_bits,unsigned extra_bytes,unsigned min_theta,unsigned max_theta,struct cfs_hash_ops * ops,unsigned flags)1028 cfs_hash_create(char *name, unsigned cur_bits, unsigned max_bits,
1029 unsigned bkt_bits, unsigned extra_bytes,
1030 unsigned min_theta, unsigned max_theta,
1031 struct cfs_hash_ops *ops, unsigned flags)
1032 {
1033 struct cfs_hash *hs;
1034 int len;
1035
1036 CLASSERT(CFS_HASH_THETA_BITS < 15);
1037
1038 LASSERT(name != NULL);
1039 LASSERT(ops != NULL);
1040 LASSERT(ops->hs_key);
1041 LASSERT(ops->hs_hash);
1042 LASSERT(ops->hs_object);
1043 LASSERT(ops->hs_keycmp);
1044 LASSERT(ops->hs_get != NULL);
1045 LASSERT(ops->hs_put_locked != NULL);
1046
1047 if ((flags & CFS_HASH_REHASH) != 0)
1048 flags |= CFS_HASH_COUNTER; /* must have counter */
1049
1050 LASSERT(cur_bits > 0);
1051 LASSERT(cur_bits >= bkt_bits);
1052 LASSERT(max_bits >= cur_bits && max_bits < 31);
1053 LASSERT(ergo((flags & CFS_HASH_REHASH) == 0, cur_bits == max_bits));
1054 LASSERT(ergo((flags & CFS_HASH_REHASH) != 0,
1055 (flags & CFS_HASH_NO_LOCK) == 0));
1056 LASSERT(ergo((flags & CFS_HASH_REHASH_KEY) != 0,
1057 ops->hs_keycpy != NULL));
1058
1059 len = (flags & CFS_HASH_BIGNAME) == 0 ?
1060 CFS_HASH_NAME_LEN : CFS_HASH_BIGNAME_LEN;
1061 LIBCFS_ALLOC(hs, offsetof(struct cfs_hash, hs_name[len]));
1062 if (hs == NULL)
1063 return NULL;
1064
1065 strlcpy(hs->hs_name, name, len);
1066 hs->hs_flags = flags;
1067
1068 atomic_set(&hs->hs_refcount, 1);
1069 atomic_set(&hs->hs_count, 0);
1070
1071 cfs_hash_lock_setup(hs);
1072 cfs_hash_hlist_setup(hs);
1073
1074 hs->hs_cur_bits = (__u8)cur_bits;
1075 hs->hs_min_bits = (__u8)cur_bits;
1076 hs->hs_max_bits = (__u8)max_bits;
1077 hs->hs_bkt_bits = (__u8)bkt_bits;
1078
1079 hs->hs_ops = ops;
1080 hs->hs_extra_bytes = extra_bytes;
1081 hs->hs_rehash_bits = 0;
1082 cfs_wi_init(&hs->hs_rehash_wi, hs, cfs_hash_rehash_worker);
1083 cfs_hash_depth_wi_init(hs);
1084
1085 if (cfs_hash_with_rehash(hs))
1086 __cfs_hash_set_theta(hs, min_theta, max_theta);
1087
1088 hs->hs_buckets = cfs_hash_buckets_realloc(hs, NULL, 0,
1089 CFS_HASH_NBKT(hs));
1090 if (hs->hs_buckets != NULL)
1091 return hs;
1092
1093 LIBCFS_FREE(hs, offsetof(struct cfs_hash, hs_name[len]));
1094 return NULL;
1095 }
1096 EXPORT_SYMBOL(cfs_hash_create);
1097
1098 /**
1099 * Cleanup libcfs hash @hs.
1100 */
1101 static void
cfs_hash_destroy(struct cfs_hash * hs)1102 cfs_hash_destroy(struct cfs_hash *hs)
1103 {
1104 struct hlist_node *hnode;
1105 struct hlist_node *pos;
1106 struct cfs_hash_bd bd;
1107 int i;
1108
1109 LASSERT(hs != NULL);
1110 LASSERT(!cfs_hash_is_exiting(hs) &&
1111 !cfs_hash_is_iterating(hs));
1112
1113 /**
1114 * prohibit further rehashes, don't need any lock because
1115 * I'm the only (last) one can change it.
1116 */
1117 hs->hs_exiting = 1;
1118 if (cfs_hash_with_rehash(hs))
1119 cfs_hash_rehash_cancel(hs);
1120
1121 cfs_hash_depth_wi_cancel(hs);
1122 /* rehash should be done/canceled */
1123 LASSERT(hs->hs_buckets != NULL &&
1124 hs->hs_rehash_buckets == NULL);
1125
1126 cfs_hash_for_each_bucket(hs, &bd, i) {
1127 struct hlist_head *hhead;
1128
1129 LASSERT(bd.bd_bucket != NULL);
1130 /* no need to take this lock, just for consistent code */
1131 cfs_hash_bd_lock(hs, &bd, 1);
1132
1133 cfs_hash_bd_for_each_hlist(hs, &bd, hhead) {
1134 hlist_for_each_safe(hnode, pos, hhead) {
1135 LASSERTF(!cfs_hash_with_assert_empty(hs),
1136 "hash %s bucket %u(%u) is not empty: %u items left\n",
1137 hs->hs_name, bd.bd_bucket->hsb_index,
1138 bd.bd_offset, bd.bd_bucket->hsb_count);
1139 /* can't assert key valicate, because we
1140 * can interrupt rehash */
1141 cfs_hash_bd_del_locked(hs, &bd, hnode);
1142 cfs_hash_exit(hs, hnode);
1143 }
1144 }
1145 LASSERT(bd.bd_bucket->hsb_count == 0);
1146 cfs_hash_bd_unlock(hs, &bd, 1);
1147 cond_resched();
1148 }
1149
1150 LASSERT(atomic_read(&hs->hs_count) == 0);
1151
1152 cfs_hash_buckets_free(hs->hs_buckets, cfs_hash_bkt_size(hs),
1153 0, CFS_HASH_NBKT(hs));
1154 i = cfs_hash_with_bigname(hs) ?
1155 CFS_HASH_BIGNAME_LEN : CFS_HASH_NAME_LEN;
1156 LIBCFS_FREE(hs, offsetof(struct cfs_hash, hs_name[i]));
1157 }
1158
cfs_hash_getref(struct cfs_hash * hs)1159 struct cfs_hash *cfs_hash_getref(struct cfs_hash *hs)
1160 {
1161 if (atomic_inc_not_zero(&hs->hs_refcount))
1162 return hs;
1163 return NULL;
1164 }
1165 EXPORT_SYMBOL(cfs_hash_getref);
1166
cfs_hash_putref(struct cfs_hash * hs)1167 void cfs_hash_putref(struct cfs_hash *hs)
1168 {
1169 if (atomic_dec_and_test(&hs->hs_refcount))
1170 cfs_hash_destroy(hs);
1171 }
1172 EXPORT_SYMBOL(cfs_hash_putref);
1173
1174 static inline int
cfs_hash_rehash_bits(struct cfs_hash * hs)1175 cfs_hash_rehash_bits(struct cfs_hash *hs)
1176 {
1177 if (cfs_hash_with_no_lock(hs) ||
1178 !cfs_hash_with_rehash(hs))
1179 return -EOPNOTSUPP;
1180
1181 if (unlikely(cfs_hash_is_exiting(hs)))
1182 return -ESRCH;
1183
1184 if (unlikely(cfs_hash_is_rehashing(hs)))
1185 return -EALREADY;
1186
1187 if (unlikely(cfs_hash_is_iterating(hs)))
1188 return -EAGAIN;
1189
1190 /* XXX: need to handle case with max_theta != 2.0
1191 * and the case with min_theta != 0.5 */
1192 if ((hs->hs_cur_bits < hs->hs_max_bits) &&
1193 (__cfs_hash_theta(hs) > hs->hs_max_theta))
1194 return hs->hs_cur_bits + 1;
1195
1196 if (!cfs_hash_with_shrink(hs))
1197 return 0;
1198
1199 if ((hs->hs_cur_bits > hs->hs_min_bits) &&
1200 (__cfs_hash_theta(hs) < hs->hs_min_theta))
1201 return hs->hs_cur_bits - 1;
1202
1203 return 0;
1204 }
1205
1206 /**
1207 * don't allow inline rehash if:
1208 * - user wants non-blocking change (add/del) on hash table
1209 * - too many elements
1210 */
1211 static inline int
cfs_hash_rehash_inline(struct cfs_hash * hs)1212 cfs_hash_rehash_inline(struct cfs_hash *hs)
1213 {
1214 return !cfs_hash_with_nblk_change(hs) &&
1215 atomic_read(&hs->hs_count) < CFS_HASH_LOOP_HOG;
1216 }
1217
1218 /**
1219 * Add item @hnode to libcfs hash @hs using @key. The registered
1220 * ops->hs_get function will be called when the item is added.
1221 */
1222 void
cfs_hash_add(struct cfs_hash * hs,const void * key,struct hlist_node * hnode)1223 cfs_hash_add(struct cfs_hash *hs, const void *key, struct hlist_node *hnode)
1224 {
1225 struct cfs_hash_bd bd;
1226 int bits;
1227
1228 LASSERT(hlist_unhashed(hnode));
1229
1230 cfs_hash_lock(hs, 0);
1231 cfs_hash_bd_get_and_lock(hs, key, &bd, 1);
1232
1233 cfs_hash_key_validate(hs, key, hnode);
1234 cfs_hash_bd_add_locked(hs, &bd, hnode);
1235
1236 cfs_hash_bd_unlock(hs, &bd, 1);
1237
1238 bits = cfs_hash_rehash_bits(hs);
1239 cfs_hash_unlock(hs, 0);
1240 if (bits > 0)
1241 cfs_hash_rehash(hs, cfs_hash_rehash_inline(hs));
1242 }
1243 EXPORT_SYMBOL(cfs_hash_add);
1244
1245 static struct hlist_node *
cfs_hash_find_or_add(struct cfs_hash * hs,const void * key,struct hlist_node * hnode,int noref)1246 cfs_hash_find_or_add(struct cfs_hash *hs, const void *key,
1247 struct hlist_node *hnode, int noref)
1248 {
1249 struct hlist_node *ehnode;
1250 struct cfs_hash_bd bds[2];
1251 int bits = 0;
1252
1253 LASSERT(hlist_unhashed(hnode));
1254
1255 cfs_hash_lock(hs, 0);
1256 cfs_hash_dual_bd_get_and_lock(hs, key, bds, 1);
1257
1258 cfs_hash_key_validate(hs, key, hnode);
1259 ehnode = cfs_hash_dual_bd_findadd_locked(hs, bds, key,
1260 hnode, noref);
1261 cfs_hash_dual_bd_unlock(hs, bds, 1);
1262
1263 if (ehnode == hnode) /* new item added */
1264 bits = cfs_hash_rehash_bits(hs);
1265 cfs_hash_unlock(hs, 0);
1266 if (bits > 0)
1267 cfs_hash_rehash(hs, cfs_hash_rehash_inline(hs));
1268
1269 return ehnode;
1270 }
1271
1272 /**
1273 * Add item @hnode to libcfs hash @hs using @key. The registered
1274 * ops->hs_get function will be called if the item was added.
1275 * Returns 0 on success or -EALREADY on key collisions.
1276 */
1277 int
cfs_hash_add_unique(struct cfs_hash * hs,const void * key,struct hlist_node * hnode)1278 cfs_hash_add_unique(struct cfs_hash *hs, const void *key, struct hlist_node *hnode)
1279 {
1280 return cfs_hash_find_or_add(hs, key, hnode, 1) != hnode ?
1281 -EALREADY : 0;
1282 }
1283 EXPORT_SYMBOL(cfs_hash_add_unique);
1284
1285 /**
1286 * Add item @hnode to libcfs hash @hs using @key. If this @key
1287 * already exists in the hash then ops->hs_get will be called on the
1288 * conflicting entry and that entry will be returned to the caller.
1289 * Otherwise ops->hs_get is called on the item which was added.
1290 */
1291 void *
cfs_hash_findadd_unique(struct cfs_hash * hs,const void * key,struct hlist_node * hnode)1292 cfs_hash_findadd_unique(struct cfs_hash *hs, const void *key,
1293 struct hlist_node *hnode)
1294 {
1295 hnode = cfs_hash_find_or_add(hs, key, hnode, 0);
1296
1297 return cfs_hash_object(hs, hnode);
1298 }
1299 EXPORT_SYMBOL(cfs_hash_findadd_unique);
1300
1301 /**
1302 * Delete item @hnode from the libcfs hash @hs using @key. The @key
1303 * is required to ensure the correct hash bucket is locked since there
1304 * is no direct linkage from the item to the bucket. The object
1305 * removed from the hash will be returned and obs->hs_put is called
1306 * on the removed object.
1307 */
1308 void *
cfs_hash_del(struct cfs_hash * hs,const void * key,struct hlist_node * hnode)1309 cfs_hash_del(struct cfs_hash *hs, const void *key, struct hlist_node *hnode)
1310 {
1311 void *obj = NULL;
1312 int bits = 0;
1313 struct cfs_hash_bd bds[2];
1314
1315 cfs_hash_lock(hs, 0);
1316 cfs_hash_dual_bd_get_and_lock(hs, key, bds, 1);
1317
1318 /* NB: do nothing if @hnode is not in hash table */
1319 if (hnode == NULL || !hlist_unhashed(hnode)) {
1320 if (bds[1].bd_bucket == NULL && hnode != NULL) {
1321 cfs_hash_bd_del_locked(hs, &bds[0], hnode);
1322 } else {
1323 hnode = cfs_hash_dual_bd_finddel_locked(hs, bds,
1324 key, hnode);
1325 }
1326 }
1327
1328 if (hnode != NULL) {
1329 obj = cfs_hash_object(hs, hnode);
1330 bits = cfs_hash_rehash_bits(hs);
1331 }
1332
1333 cfs_hash_dual_bd_unlock(hs, bds, 1);
1334 cfs_hash_unlock(hs, 0);
1335 if (bits > 0)
1336 cfs_hash_rehash(hs, cfs_hash_rehash_inline(hs));
1337
1338 return obj;
1339 }
1340 EXPORT_SYMBOL(cfs_hash_del);
1341
1342 /**
1343 * Delete item given @key in libcfs hash @hs. The first @key found in
1344 * the hash will be removed, if the key exists multiple times in the hash
1345 * @hs this function must be called once per key. The removed object
1346 * will be returned and ops->hs_put is called on the removed object.
1347 */
1348 void *
cfs_hash_del_key(struct cfs_hash * hs,const void * key)1349 cfs_hash_del_key(struct cfs_hash *hs, const void *key)
1350 {
1351 return cfs_hash_del(hs, key, NULL);
1352 }
1353 EXPORT_SYMBOL(cfs_hash_del_key);
1354
1355 /**
1356 * Lookup an item using @key in the libcfs hash @hs and return it.
1357 * If the @key is found in the hash hs->hs_get() is called and the
1358 * matching objects is returned. It is the callers responsibility
1359 * to call the counterpart ops->hs_put using the cfs_hash_put() macro
1360 * when when finished with the object. If the @key was not found
1361 * in the hash @hs NULL is returned.
1362 */
1363 void *
cfs_hash_lookup(struct cfs_hash * hs,const void * key)1364 cfs_hash_lookup(struct cfs_hash *hs, const void *key)
1365 {
1366 void *obj = NULL;
1367 struct hlist_node *hnode;
1368 struct cfs_hash_bd bds[2];
1369
1370 cfs_hash_lock(hs, 0);
1371 cfs_hash_dual_bd_get_and_lock(hs, key, bds, 0);
1372
1373 hnode = cfs_hash_dual_bd_lookup_locked(hs, bds, key);
1374 if (hnode != NULL)
1375 obj = cfs_hash_object(hs, hnode);
1376
1377 cfs_hash_dual_bd_unlock(hs, bds, 0);
1378 cfs_hash_unlock(hs, 0);
1379
1380 return obj;
1381 }
1382 EXPORT_SYMBOL(cfs_hash_lookup);
1383
1384 static void
cfs_hash_for_each_enter(struct cfs_hash * hs)1385 cfs_hash_for_each_enter(struct cfs_hash *hs) {
1386 LASSERT(!cfs_hash_is_exiting(hs));
1387
1388 if (!cfs_hash_with_rehash(hs))
1389 return;
1390 /*
1391 * NB: it's race on cfs_has_t::hs_iterating, but doesn't matter
1392 * because it's just an unreliable signal to rehash-thread,
1393 * rehash-thread will try to finish rehash ASAP when seeing this.
1394 */
1395 hs->hs_iterating = 1;
1396
1397 cfs_hash_lock(hs, 1);
1398 hs->hs_iterators++;
1399
1400 /* NB: iteration is mostly called by service thread,
1401 * we tend to cancel pending rehash-request, instead of
1402 * blocking service thread, we will relaunch rehash request
1403 * after iteration */
1404 if (cfs_hash_is_rehashing(hs))
1405 cfs_hash_rehash_cancel_locked(hs);
1406 cfs_hash_unlock(hs, 1);
1407 }
1408
1409 static void
cfs_hash_for_each_exit(struct cfs_hash * hs)1410 cfs_hash_for_each_exit(struct cfs_hash *hs) {
1411 int remained;
1412 int bits;
1413
1414 if (!cfs_hash_with_rehash(hs))
1415 return;
1416 cfs_hash_lock(hs, 1);
1417 remained = --hs->hs_iterators;
1418 bits = cfs_hash_rehash_bits(hs);
1419 cfs_hash_unlock(hs, 1);
1420 /* NB: it's race on cfs_has_t::hs_iterating, see above */
1421 if (remained == 0)
1422 hs->hs_iterating = 0;
1423 if (bits > 0) {
1424 cfs_hash_rehash(hs, atomic_read(&hs->hs_count) <
1425 CFS_HASH_LOOP_HOG);
1426 }
1427 }
1428
1429 /**
1430 * For each item in the libcfs hash @hs call the passed callback @func
1431 * and pass to it as an argument each hash item and the private @data.
1432 *
1433 * a) the function may sleep!
1434 * b) during the callback:
1435 * . the bucket lock is held so the callback must never sleep.
1436 * . if @removal_safe is true, use can remove current item by
1437 * cfs_hash_bd_del_locked
1438 */
1439 static __u64
cfs_hash_for_each_tight(struct cfs_hash * hs,cfs_hash_for_each_cb_t func,void * data,int remove_safe)1440 cfs_hash_for_each_tight(struct cfs_hash *hs, cfs_hash_for_each_cb_t func,
1441 void *data, int remove_safe) {
1442 struct hlist_node *hnode;
1443 struct hlist_node *pos;
1444 struct cfs_hash_bd bd;
1445 __u64 count = 0;
1446 int excl = !!remove_safe;
1447 int loop = 0;
1448 int i;
1449
1450 cfs_hash_for_each_enter(hs);
1451
1452 cfs_hash_lock(hs, 0);
1453 LASSERT(!cfs_hash_is_rehashing(hs));
1454
1455 cfs_hash_for_each_bucket(hs, &bd, i) {
1456 struct hlist_head *hhead;
1457
1458 cfs_hash_bd_lock(hs, &bd, excl);
1459 if (func == NULL) { /* only glimpse size */
1460 count += bd.bd_bucket->hsb_count;
1461 cfs_hash_bd_unlock(hs, &bd, excl);
1462 continue;
1463 }
1464
1465 cfs_hash_bd_for_each_hlist(hs, &bd, hhead) {
1466 hlist_for_each_safe(hnode, pos, hhead) {
1467 cfs_hash_bucket_validate(hs, &bd, hnode);
1468 count++;
1469 loop++;
1470 if (func(hs, &bd, hnode, data)) {
1471 cfs_hash_bd_unlock(hs, &bd, excl);
1472 goto out;
1473 }
1474 }
1475 }
1476 cfs_hash_bd_unlock(hs, &bd, excl);
1477 if (loop < CFS_HASH_LOOP_HOG)
1478 continue;
1479 loop = 0;
1480 cfs_hash_unlock(hs, 0);
1481 cond_resched();
1482 cfs_hash_lock(hs, 0);
1483 }
1484 out:
1485 cfs_hash_unlock(hs, 0);
1486
1487 cfs_hash_for_each_exit(hs);
1488 return count;
1489 }
1490
1491 struct cfs_hash_cond_arg {
1492 cfs_hash_cond_opt_cb_t func;
1493 void *arg;
1494 };
1495
1496 static int
cfs_hash_cond_del_locked(struct cfs_hash * hs,struct cfs_hash_bd * bd,struct hlist_node * hnode,void * data)1497 cfs_hash_cond_del_locked(struct cfs_hash *hs, struct cfs_hash_bd *bd,
1498 struct hlist_node *hnode, void *data)
1499 {
1500 struct cfs_hash_cond_arg *cond = data;
1501
1502 if (cond->func(cfs_hash_object(hs, hnode), cond->arg))
1503 cfs_hash_bd_del_locked(hs, bd, hnode);
1504 return 0;
1505 }
1506
1507 /**
1508 * Delete item from the libcfs hash @hs when @func return true.
1509 * The write lock being hold during loop for each bucket to avoid
1510 * any object be reference.
1511 */
1512 void
cfs_hash_cond_del(struct cfs_hash * hs,cfs_hash_cond_opt_cb_t func,void * data)1513 cfs_hash_cond_del(struct cfs_hash *hs, cfs_hash_cond_opt_cb_t func, void *data)
1514 {
1515 struct cfs_hash_cond_arg arg = {
1516 .func = func,
1517 .arg = data,
1518 };
1519
1520 cfs_hash_for_each_tight(hs, cfs_hash_cond_del_locked, &arg, 1);
1521 }
1522 EXPORT_SYMBOL(cfs_hash_cond_del);
1523
1524 void
cfs_hash_for_each(struct cfs_hash * hs,cfs_hash_for_each_cb_t func,void * data)1525 cfs_hash_for_each(struct cfs_hash *hs,
1526 cfs_hash_for_each_cb_t func, void *data)
1527 {
1528 cfs_hash_for_each_tight(hs, func, data, 0);
1529 }
1530 EXPORT_SYMBOL(cfs_hash_for_each);
1531
1532 void
cfs_hash_for_each_safe(struct cfs_hash * hs,cfs_hash_for_each_cb_t func,void * data)1533 cfs_hash_for_each_safe(struct cfs_hash *hs,
1534 cfs_hash_for_each_cb_t func, void *data) {
1535 cfs_hash_for_each_tight(hs, func, data, 1);
1536 }
1537 EXPORT_SYMBOL(cfs_hash_for_each_safe);
1538
1539 static int
cfs_hash_peek(struct cfs_hash * hs,struct cfs_hash_bd * bd,struct hlist_node * hnode,void * data)1540 cfs_hash_peek(struct cfs_hash *hs, struct cfs_hash_bd *bd,
1541 struct hlist_node *hnode, void *data)
1542 {
1543 *(int *)data = 0;
1544 return 1; /* return 1 to break the loop */
1545 }
1546
1547 int
cfs_hash_is_empty(struct cfs_hash * hs)1548 cfs_hash_is_empty(struct cfs_hash *hs)
1549 {
1550 int empty = 1;
1551
1552 cfs_hash_for_each_tight(hs, cfs_hash_peek, &empty, 0);
1553 return empty;
1554 }
1555 EXPORT_SYMBOL(cfs_hash_is_empty);
1556
1557 __u64
cfs_hash_size_get(struct cfs_hash * hs)1558 cfs_hash_size_get(struct cfs_hash *hs)
1559 {
1560 return cfs_hash_with_counter(hs) ?
1561 atomic_read(&hs->hs_count) :
1562 cfs_hash_for_each_tight(hs, NULL, NULL, 0);
1563 }
1564 EXPORT_SYMBOL(cfs_hash_size_get);
1565
1566 /*
1567 * cfs_hash_for_each_relax:
1568 * Iterate the hash table and call @func on each item without
1569 * any lock. This function can't guarantee to finish iteration
1570 * if these features are enabled:
1571 *
1572 * a. if rehash_key is enabled, an item can be moved from
1573 * one bucket to another bucket
1574 * b. user can remove non-zero-ref item from hash-table,
1575 * so the item can be removed from hash-table, even worse,
1576 * it's possible that user changed key and insert to another
1577 * hash bucket.
1578 * there's no way for us to finish iteration correctly on previous
1579 * two cases, so iteration has to be stopped on change.
1580 */
1581 static int
cfs_hash_for_each_relax(struct cfs_hash * hs,cfs_hash_for_each_cb_t func,void * data)1582 cfs_hash_for_each_relax(struct cfs_hash *hs, cfs_hash_for_each_cb_t func,
1583 void *data) {
1584 struct hlist_node *hnode;
1585 struct hlist_node *tmp;
1586 struct cfs_hash_bd bd;
1587 __u32 version;
1588 int count = 0;
1589 int stop_on_change;
1590 int rc;
1591 int i;
1592
1593 stop_on_change = cfs_hash_with_rehash_key(hs) ||
1594 !cfs_hash_with_no_itemref(hs) ||
1595 hs->hs_ops->hs_put_locked == NULL;
1596 cfs_hash_lock(hs, 0);
1597 LASSERT(!cfs_hash_is_rehashing(hs));
1598
1599 cfs_hash_for_each_bucket(hs, &bd, i) {
1600 struct hlist_head *hhead;
1601
1602 cfs_hash_bd_lock(hs, &bd, 0);
1603 version = cfs_hash_bd_version_get(&bd);
1604
1605 cfs_hash_bd_for_each_hlist(hs, &bd, hhead) {
1606 for (hnode = hhead->first; hnode != NULL;) {
1607 cfs_hash_bucket_validate(hs, &bd, hnode);
1608 cfs_hash_get(hs, hnode);
1609 cfs_hash_bd_unlock(hs, &bd, 0);
1610 cfs_hash_unlock(hs, 0);
1611
1612 rc = func(hs, &bd, hnode, data);
1613 if (stop_on_change)
1614 cfs_hash_put(hs, hnode);
1615 cond_resched();
1616 count++;
1617
1618 cfs_hash_lock(hs, 0);
1619 cfs_hash_bd_lock(hs, &bd, 0);
1620 if (!stop_on_change) {
1621 tmp = hnode->next;
1622 cfs_hash_put_locked(hs, hnode);
1623 hnode = tmp;
1624 } else { /* bucket changed? */
1625 if (version !=
1626 cfs_hash_bd_version_get(&bd))
1627 break;
1628 /* safe to continue because no change */
1629 hnode = hnode->next;
1630 }
1631 if (rc) /* callback wants to break iteration */
1632 break;
1633 }
1634 if (rc) /* callback wants to break iteration */
1635 break;
1636 }
1637 cfs_hash_bd_unlock(hs, &bd, 0);
1638 if (rc) /* callback wants to break iteration */
1639 break;
1640 }
1641 cfs_hash_unlock(hs, 0);
1642
1643 return count;
1644 }
1645
1646 int
cfs_hash_for_each_nolock(struct cfs_hash * hs,cfs_hash_for_each_cb_t func,void * data)1647 cfs_hash_for_each_nolock(struct cfs_hash *hs,
1648 cfs_hash_for_each_cb_t func, void *data) {
1649 if (cfs_hash_with_no_lock(hs) ||
1650 cfs_hash_with_rehash_key(hs) ||
1651 !cfs_hash_with_no_itemref(hs))
1652 return -EOPNOTSUPP;
1653
1654 if (hs->hs_ops->hs_get == NULL ||
1655 (hs->hs_ops->hs_put == NULL &&
1656 hs->hs_ops->hs_put_locked == NULL))
1657 return -EOPNOTSUPP;
1658
1659 cfs_hash_for_each_enter(hs);
1660 cfs_hash_for_each_relax(hs, func, data);
1661 cfs_hash_for_each_exit(hs);
1662
1663 return 0;
1664 }
1665 EXPORT_SYMBOL(cfs_hash_for_each_nolock);
1666
1667 /**
1668 * For each hash bucket in the libcfs hash @hs call the passed callback
1669 * @func until all the hash buckets are empty. The passed callback @func
1670 * or the previously registered callback hs->hs_put must remove the item
1671 * from the hash. You may either use the cfs_hash_del() or hlist_del()
1672 * functions. No rwlocks will be held during the callback @func it is
1673 * safe to sleep if needed. This function will not terminate until the
1674 * hash is empty. Note it is still possible to concurrently add new
1675 * items in to the hash. It is the callers responsibility to ensure
1676 * the required locking is in place to prevent concurrent insertions.
1677 */
1678 int
cfs_hash_for_each_empty(struct cfs_hash * hs,cfs_hash_for_each_cb_t func,void * data)1679 cfs_hash_for_each_empty(struct cfs_hash *hs,
1680 cfs_hash_for_each_cb_t func, void *data) {
1681 unsigned i = 0;
1682
1683 if (cfs_hash_with_no_lock(hs))
1684 return -EOPNOTSUPP;
1685
1686 if (hs->hs_ops->hs_get == NULL ||
1687 (hs->hs_ops->hs_put == NULL &&
1688 hs->hs_ops->hs_put_locked == NULL))
1689 return -EOPNOTSUPP;
1690
1691 cfs_hash_for_each_enter(hs);
1692 while (cfs_hash_for_each_relax(hs, func, data)) {
1693 CDEBUG(D_INFO, "Try to empty hash: %s, loop: %u\n",
1694 hs->hs_name, i++);
1695 }
1696 cfs_hash_for_each_exit(hs);
1697 return 0;
1698 }
1699 EXPORT_SYMBOL(cfs_hash_for_each_empty);
1700
1701 void
cfs_hash_hlist_for_each(struct cfs_hash * hs,unsigned hindex,cfs_hash_for_each_cb_t func,void * data)1702 cfs_hash_hlist_for_each(struct cfs_hash *hs, unsigned hindex,
1703 cfs_hash_for_each_cb_t func, void *data)
1704 {
1705 struct hlist_head *hhead;
1706 struct hlist_node *hnode;
1707 struct cfs_hash_bd bd;
1708
1709 cfs_hash_for_each_enter(hs);
1710 cfs_hash_lock(hs, 0);
1711 if (hindex >= CFS_HASH_NHLIST(hs))
1712 goto out;
1713
1714 cfs_hash_bd_index_set(hs, hindex, &bd);
1715
1716 cfs_hash_bd_lock(hs, &bd, 0);
1717 hhead = cfs_hash_bd_hhead(hs, &bd);
1718 hlist_for_each(hnode, hhead) {
1719 if (func(hs, &bd, hnode, data))
1720 break;
1721 }
1722 cfs_hash_bd_unlock(hs, &bd, 0);
1723 out:
1724 cfs_hash_unlock(hs, 0);
1725 cfs_hash_for_each_exit(hs);
1726 }
1727
1728 EXPORT_SYMBOL(cfs_hash_hlist_for_each);
1729
1730 /*
1731 * For each item in the libcfs hash @hs which matches the @key call
1732 * the passed callback @func and pass to it as an argument each hash
1733 * item and the private @data. During the callback the bucket lock
1734 * is held so the callback must never sleep.
1735 */
1736 void
cfs_hash_for_each_key(struct cfs_hash * hs,const void * key,cfs_hash_for_each_cb_t func,void * data)1737 cfs_hash_for_each_key(struct cfs_hash *hs, const void *key,
1738 cfs_hash_for_each_cb_t func, void *data) {
1739 struct hlist_node *hnode;
1740 struct cfs_hash_bd bds[2];
1741 unsigned i;
1742
1743 cfs_hash_lock(hs, 0);
1744
1745 cfs_hash_dual_bd_get_and_lock(hs, key, bds, 0);
1746
1747 cfs_hash_for_each_bd(bds, 2, i) {
1748 struct hlist_head *hlist = cfs_hash_bd_hhead(hs, &bds[i]);
1749
1750 hlist_for_each(hnode, hlist) {
1751 cfs_hash_bucket_validate(hs, &bds[i], hnode);
1752
1753 if (cfs_hash_keycmp(hs, key, hnode)) {
1754 if (func(hs, &bds[i], hnode, data))
1755 break;
1756 }
1757 }
1758 }
1759
1760 cfs_hash_dual_bd_unlock(hs, bds, 0);
1761 cfs_hash_unlock(hs, 0);
1762 }
1763 EXPORT_SYMBOL(cfs_hash_for_each_key);
1764
1765 /**
1766 * Rehash the libcfs hash @hs to the given @bits. This can be used
1767 * to grow the hash size when excessive chaining is detected, or to
1768 * shrink the hash when it is larger than needed. When the CFS_HASH_REHASH
1769 * flag is set in @hs the libcfs hash may be dynamically rehashed
1770 * during addition or removal if the hash's theta value exceeds
1771 * either the hs->hs_min_theta or hs->max_theta values. By default
1772 * these values are tuned to keep the chained hash depth small, and
1773 * this approach assumes a reasonably uniform hashing function. The
1774 * theta thresholds for @hs are tunable via cfs_hash_set_theta().
1775 */
1776 void
cfs_hash_rehash_cancel_locked(struct cfs_hash * hs)1777 cfs_hash_rehash_cancel_locked(struct cfs_hash *hs)
1778 {
1779 int i;
1780
1781 /* need hold cfs_hash_lock(hs, 1) */
1782 LASSERT(cfs_hash_with_rehash(hs) &&
1783 !cfs_hash_with_no_lock(hs));
1784
1785 if (!cfs_hash_is_rehashing(hs))
1786 return;
1787
1788 if (cfs_wi_deschedule(cfs_sched_rehash, &hs->hs_rehash_wi)) {
1789 hs->hs_rehash_bits = 0;
1790 return;
1791 }
1792
1793 for (i = 2; cfs_hash_is_rehashing(hs); i++) {
1794 cfs_hash_unlock(hs, 1);
1795 /* raise console warning while waiting too long */
1796 CDEBUG(IS_PO2(i >> 3) ? D_WARNING : D_INFO,
1797 "hash %s is still rehashing, rescheded %d\n",
1798 hs->hs_name, i - 1);
1799 cond_resched();
1800 cfs_hash_lock(hs, 1);
1801 }
1802 }
1803 EXPORT_SYMBOL(cfs_hash_rehash_cancel_locked);
1804
1805 void
cfs_hash_rehash_cancel(struct cfs_hash * hs)1806 cfs_hash_rehash_cancel(struct cfs_hash *hs)
1807 {
1808 cfs_hash_lock(hs, 1);
1809 cfs_hash_rehash_cancel_locked(hs);
1810 cfs_hash_unlock(hs, 1);
1811 }
1812 EXPORT_SYMBOL(cfs_hash_rehash_cancel);
1813
1814 int
cfs_hash_rehash(struct cfs_hash * hs,int do_rehash)1815 cfs_hash_rehash(struct cfs_hash *hs, int do_rehash)
1816 {
1817 int rc;
1818
1819 LASSERT(cfs_hash_with_rehash(hs) && !cfs_hash_with_no_lock(hs));
1820
1821 cfs_hash_lock(hs, 1);
1822
1823 rc = cfs_hash_rehash_bits(hs);
1824 if (rc <= 0) {
1825 cfs_hash_unlock(hs, 1);
1826 return rc;
1827 }
1828
1829 hs->hs_rehash_bits = rc;
1830 if (!do_rehash) {
1831 /* launch and return */
1832 cfs_wi_schedule(cfs_sched_rehash, &hs->hs_rehash_wi);
1833 cfs_hash_unlock(hs, 1);
1834 return 0;
1835 }
1836
1837 /* rehash right now */
1838 cfs_hash_unlock(hs, 1);
1839
1840 return cfs_hash_rehash_worker(&hs->hs_rehash_wi);
1841 }
1842 EXPORT_SYMBOL(cfs_hash_rehash);
1843
1844 static int
cfs_hash_rehash_bd(struct cfs_hash * hs,struct cfs_hash_bd * old)1845 cfs_hash_rehash_bd(struct cfs_hash *hs, struct cfs_hash_bd *old)
1846 {
1847 struct cfs_hash_bd new;
1848 struct hlist_head *hhead;
1849 struct hlist_node *hnode;
1850 struct hlist_node *pos;
1851 void *key;
1852 int c = 0;
1853
1854 /* hold cfs_hash_lock(hs, 1), so don't need any bucket lock */
1855 cfs_hash_bd_for_each_hlist(hs, old, hhead) {
1856 hlist_for_each_safe(hnode, pos, hhead) {
1857 key = cfs_hash_key(hs, hnode);
1858 LASSERT(key != NULL);
1859 /* Validate hnode is in the correct bucket. */
1860 cfs_hash_bucket_validate(hs, old, hnode);
1861 /*
1862 * Delete from old hash bucket; move to new bucket.
1863 * ops->hs_key must be defined.
1864 */
1865 cfs_hash_bd_from_key(hs, hs->hs_rehash_buckets,
1866 hs->hs_rehash_bits, key, &new);
1867 cfs_hash_bd_move_locked(hs, old, &new, hnode);
1868 c++;
1869 }
1870 }
1871
1872 return c;
1873 }
1874
1875 static int
cfs_hash_rehash_worker(cfs_workitem_t * wi)1876 cfs_hash_rehash_worker(cfs_workitem_t *wi)
1877 {
1878 struct cfs_hash *hs = container_of(wi, struct cfs_hash, hs_rehash_wi);
1879 struct cfs_hash_bucket **bkts;
1880 struct cfs_hash_bd bd;
1881 unsigned int old_size;
1882 unsigned int new_size;
1883 int bsize;
1884 int count = 0;
1885 int rc = 0;
1886 int i;
1887
1888 LASSERT (hs != NULL && cfs_hash_with_rehash(hs));
1889
1890 cfs_hash_lock(hs, 0);
1891 LASSERT(cfs_hash_is_rehashing(hs));
1892
1893 old_size = CFS_HASH_NBKT(hs);
1894 new_size = CFS_HASH_RH_NBKT(hs);
1895
1896 cfs_hash_unlock(hs, 0);
1897
1898 /*
1899 * don't need hs::hs_rwlock for hs::hs_buckets,
1900 * because nobody can change bkt-table except me.
1901 */
1902 bkts = cfs_hash_buckets_realloc(hs, hs->hs_buckets,
1903 old_size, new_size);
1904 cfs_hash_lock(hs, 1);
1905 if (bkts == NULL) {
1906 rc = -ENOMEM;
1907 goto out;
1908 }
1909
1910 if (bkts == hs->hs_buckets) {
1911 bkts = NULL; /* do nothing */
1912 goto out;
1913 }
1914
1915 rc = __cfs_hash_theta(hs);
1916 if ((rc >= hs->hs_min_theta) && (rc <= hs->hs_max_theta)) {
1917 /* free the new allocated bkt-table */
1918 old_size = new_size;
1919 new_size = CFS_HASH_NBKT(hs);
1920 rc = -EALREADY;
1921 goto out;
1922 }
1923
1924 LASSERT(hs->hs_rehash_buckets == NULL);
1925 hs->hs_rehash_buckets = bkts;
1926
1927 rc = 0;
1928 cfs_hash_for_each_bucket(hs, &bd, i) {
1929 if (cfs_hash_is_exiting(hs)) {
1930 rc = -ESRCH;
1931 /* someone wants to destroy the hash, abort now */
1932 if (old_size < new_size) /* OK to free old bkt-table */
1933 break;
1934 /* it's shrinking, need free new bkt-table */
1935 hs->hs_rehash_buckets = NULL;
1936 old_size = new_size;
1937 new_size = CFS_HASH_NBKT(hs);
1938 goto out;
1939 }
1940
1941 count += cfs_hash_rehash_bd(hs, &bd);
1942 if (count < CFS_HASH_LOOP_HOG ||
1943 cfs_hash_is_iterating(hs)) { /* need to finish ASAP */
1944 continue;
1945 }
1946
1947 count = 0;
1948 cfs_hash_unlock(hs, 1);
1949 cond_resched();
1950 cfs_hash_lock(hs, 1);
1951 }
1952
1953 hs->hs_rehash_count++;
1954
1955 bkts = hs->hs_buckets;
1956 hs->hs_buckets = hs->hs_rehash_buckets;
1957 hs->hs_rehash_buckets = NULL;
1958
1959 hs->hs_cur_bits = hs->hs_rehash_bits;
1960 out:
1961 hs->hs_rehash_bits = 0;
1962 if (rc == -ESRCH) /* never be scheduled again */
1963 cfs_wi_exit(cfs_sched_rehash, wi);
1964 bsize = cfs_hash_bkt_size(hs);
1965 cfs_hash_unlock(hs, 1);
1966 /* can't refer to @hs anymore because it could be destroyed */
1967 if (bkts != NULL)
1968 cfs_hash_buckets_free(bkts, bsize, new_size, old_size);
1969 if (rc != 0)
1970 CDEBUG(D_INFO, "early quit of rehashing: %d\n", rc);
1971 /* return 1 only if cfs_wi_exit is called */
1972 return rc == -ESRCH;
1973 }
1974
1975 /**
1976 * Rehash the object referenced by @hnode in the libcfs hash @hs. The
1977 * @old_key must be provided to locate the objects previous location
1978 * in the hash, and the @new_key will be used to reinsert the object.
1979 * Use this function instead of a cfs_hash_add() + cfs_hash_del()
1980 * combo when it is critical that there is no window in time where the
1981 * object is missing from the hash. When an object is being rehashed
1982 * the registered cfs_hash_get() and cfs_hash_put() functions will
1983 * not be called.
1984 */
cfs_hash_rehash_key(struct cfs_hash * hs,const void * old_key,void * new_key,struct hlist_node * hnode)1985 void cfs_hash_rehash_key(struct cfs_hash *hs, const void *old_key,
1986 void *new_key, struct hlist_node *hnode)
1987 {
1988 struct cfs_hash_bd bds[3];
1989 struct cfs_hash_bd old_bds[2];
1990 struct cfs_hash_bd new_bd;
1991
1992 LASSERT(!hlist_unhashed(hnode));
1993
1994 cfs_hash_lock(hs, 0);
1995
1996 cfs_hash_dual_bd_get(hs, old_key, old_bds);
1997 cfs_hash_bd_get(hs, new_key, &new_bd);
1998
1999 bds[0] = old_bds[0];
2000 bds[1] = old_bds[1];
2001 bds[2] = new_bd;
2002
2003 /* NB: bds[0] and bds[1] are ordered already */
2004 cfs_hash_bd_order(&bds[1], &bds[2]);
2005 cfs_hash_bd_order(&bds[0], &bds[1]);
2006
2007 cfs_hash_multi_bd_lock(hs, bds, 3, 1);
2008 if (likely(old_bds[1].bd_bucket == NULL)) {
2009 cfs_hash_bd_move_locked(hs, &old_bds[0], &new_bd, hnode);
2010 } else {
2011 cfs_hash_dual_bd_finddel_locked(hs, old_bds, old_key, hnode);
2012 cfs_hash_bd_add_locked(hs, &new_bd, hnode);
2013 }
2014 /* overwrite key inside locks, otherwise may screw up with
2015 * other operations, i.e: rehash */
2016 cfs_hash_keycpy(hs, new_key, hnode);
2017
2018 cfs_hash_multi_bd_unlock(hs, bds, 3, 1);
2019 cfs_hash_unlock(hs, 0);
2020 }
2021 EXPORT_SYMBOL(cfs_hash_rehash_key);
2022
cfs_hash_debug_header(struct seq_file * m)2023 void cfs_hash_debug_header(struct seq_file *m)
2024 {
2025 seq_printf(m, "%-*s cur min max theta t-min t-max flags rehash count maxdep maxdepb distribution\n",
2026 CFS_HASH_BIGNAME_LEN, "name");
2027 }
2028 EXPORT_SYMBOL(cfs_hash_debug_header);
2029
2030 static struct cfs_hash_bucket **
cfs_hash_full_bkts(struct cfs_hash * hs)2031 cfs_hash_full_bkts(struct cfs_hash *hs)
2032 {
2033 /* NB: caller should hold hs->hs_rwlock if REHASH is set */
2034 if (hs->hs_rehash_buckets == NULL)
2035 return hs->hs_buckets;
2036
2037 LASSERT(hs->hs_rehash_bits != 0);
2038 return hs->hs_rehash_bits > hs->hs_cur_bits ?
2039 hs->hs_rehash_buckets : hs->hs_buckets;
2040 }
2041
2042 static unsigned int
cfs_hash_full_nbkt(struct cfs_hash * hs)2043 cfs_hash_full_nbkt(struct cfs_hash *hs)
2044 {
2045 /* NB: caller should hold hs->hs_rwlock if REHASH is set */
2046 if (hs->hs_rehash_buckets == NULL)
2047 return CFS_HASH_NBKT(hs);
2048
2049 LASSERT(hs->hs_rehash_bits != 0);
2050 return hs->hs_rehash_bits > hs->hs_cur_bits ?
2051 CFS_HASH_RH_NBKT(hs) : CFS_HASH_NBKT(hs);
2052 }
2053
cfs_hash_debug_str(struct cfs_hash * hs,struct seq_file * m)2054 void cfs_hash_debug_str(struct cfs_hash *hs, struct seq_file *m)
2055 {
2056 int dist[8] = { 0, };
2057 int maxdep = -1;
2058 int maxdepb = -1;
2059 int total = 0;
2060 int theta;
2061 int i;
2062
2063 cfs_hash_lock(hs, 0);
2064 theta = __cfs_hash_theta(hs);
2065
2066 seq_printf(m, "%-*s %5d %5d %5d %d.%03d %d.%03d %d.%03d 0x%02x %6d ",
2067 CFS_HASH_BIGNAME_LEN, hs->hs_name,
2068 1 << hs->hs_cur_bits, 1 << hs->hs_min_bits,
2069 1 << hs->hs_max_bits,
2070 __cfs_hash_theta_int(theta), __cfs_hash_theta_frac(theta),
2071 __cfs_hash_theta_int(hs->hs_min_theta),
2072 __cfs_hash_theta_frac(hs->hs_min_theta),
2073 __cfs_hash_theta_int(hs->hs_max_theta),
2074 __cfs_hash_theta_frac(hs->hs_max_theta),
2075 hs->hs_flags, hs->hs_rehash_count);
2076
2077 /*
2078 * The distribution is a summary of the chained hash depth in
2079 * each of the libcfs hash buckets. Each buckets hsb_count is
2080 * divided by the hash theta value and used to generate a
2081 * histogram of the hash distribution. A uniform hash will
2082 * result in all hash buckets being close to the average thus
2083 * only the first few entries in the histogram will be non-zero.
2084 * If you hash function results in a non-uniform hash the will
2085 * be observable by outlier bucks in the distribution histogram.
2086 *
2087 * Uniform hash distribution: 128/128/0/0/0/0/0/0
2088 * Non-Uniform hash distribution: 128/125/0/0/0/0/2/1
2089 */
2090 for (i = 0; i < cfs_hash_full_nbkt(hs); i++) {
2091 struct cfs_hash_bd bd;
2092
2093 bd.bd_bucket = cfs_hash_full_bkts(hs)[i];
2094 cfs_hash_bd_lock(hs, &bd, 0);
2095 if (maxdep < bd.bd_bucket->hsb_depmax) {
2096 maxdep = bd.bd_bucket->hsb_depmax;
2097 maxdepb = ffz(~maxdep);
2098 }
2099 total += bd.bd_bucket->hsb_count;
2100 dist[min(fls(bd.bd_bucket->hsb_count / max(theta, 1)), 7)]++;
2101 cfs_hash_bd_unlock(hs, &bd, 0);
2102 }
2103
2104 seq_printf(m, "%7d %7d %7d ", total, maxdep, maxdepb);
2105 for (i = 0; i < 8; i++)
2106 seq_printf(m, "%d%c", dist[i], (i == 7) ? '\n' : '/');
2107
2108 cfs_hash_unlock(hs, 0);
2109 }
2110 EXPORT_SYMBOL(cfs_hash_debug_str);
2111