1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60 #include <linux/cpuset.h>
61 #include <linux/atomic.h>
62
63 /*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
71 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
74 /*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
78 * css_set_lock protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
80 *
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
83 */
84 #ifdef CONFIG_PROVE_RCU
85 DEFINE_MUTEX(cgroup_mutex);
86 DEFINE_SPINLOCK(css_set_lock);
87 EXPORT_SYMBOL_GPL(cgroup_mutex);
88 EXPORT_SYMBOL_GPL(css_set_lock);
89 #else
90 static DEFINE_MUTEX(cgroup_mutex);
91 static DEFINE_SPINLOCK(css_set_lock);
92 #endif
93
94 /*
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
97 */
98 static DEFINE_SPINLOCK(cgroup_idr_lock);
99
100 /*
101 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
102 * against file removal/re-creation across css hiding.
103 */
104 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
105
106 /*
107 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
108 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
109 */
110 static DEFINE_SPINLOCK(release_agent_path_lock);
111
112 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
113
114 #define cgroup_assert_mutex_or_rcu_locked() \
115 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
116 !lockdep_is_held(&cgroup_mutex), \
117 "cgroup_mutex or RCU read lock required");
118
119 /*
120 * cgroup destruction makes heavy use of work items and there can be a lot
121 * of concurrent destructions. Use a separate workqueue so that cgroup
122 * destruction work items don't end up filling up max_active of system_wq
123 * which may lead to deadlock.
124 */
125 static struct workqueue_struct *cgroup_destroy_wq;
126
127 /*
128 * pidlist destructions need to be flushed on cgroup destruction. Use a
129 * separate workqueue as flush domain.
130 */
131 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
132
133 /* generate an array of cgroup subsystem pointers */
134 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
135 static struct cgroup_subsys *cgroup_subsys[] = {
136 #include <linux/cgroup_subsys.h>
137 };
138 #undef SUBSYS
139
140 /* array of cgroup subsystem names */
141 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
142 static const char *cgroup_subsys_name[] = {
143 #include <linux/cgroup_subsys.h>
144 };
145 #undef SUBSYS
146
147 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
148 #define SUBSYS(_x) \
149 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
151 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
153 #include <linux/cgroup_subsys.h>
154 #undef SUBSYS
155
156 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
157 static struct static_key_true *cgroup_subsys_enabled_key[] = {
158 #include <linux/cgroup_subsys.h>
159 };
160 #undef SUBSYS
161
162 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
163 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
164 #include <linux/cgroup_subsys.h>
165 };
166 #undef SUBSYS
167
168 /*
169 * The default hierarchy, reserved for the subsystems that are otherwise
170 * unattached - it never has more than a single cgroup, and all tasks are
171 * part of that cgroup.
172 */
173 struct cgroup_root cgrp_dfl_root;
174 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
175
176 /*
177 * The default hierarchy always exists but is hidden until mounted for the
178 * first time. This is for backward compatibility.
179 */
180 static bool cgrp_dfl_root_visible;
181
182 /* some controllers are not supported in the default hierarchy */
183 static unsigned long cgrp_dfl_root_inhibit_ss_mask;
184
185 /* The list of hierarchy roots */
186
187 static LIST_HEAD(cgroup_roots);
188 static int cgroup_root_count;
189
190 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
191 static DEFINE_IDR(cgroup_hierarchy_idr);
192
193 /*
194 * Assign a monotonically increasing serial number to csses. It guarantees
195 * cgroups with bigger numbers are newer than those with smaller numbers.
196 * Also, as csses are always appended to the parent's ->children list, it
197 * guarantees that sibling csses are always sorted in the ascending serial
198 * number order on the list. Protected by cgroup_mutex.
199 */
200 static u64 css_serial_nr_next = 1;
201
202 /*
203 * These bitmask flags indicate whether tasks in the fork and exit paths have
204 * fork/exit handlers to call. This avoids us having to do extra work in the
205 * fork/exit path to check which subsystems have fork/exit callbacks.
206 */
207 static unsigned long have_fork_callback __read_mostly;
208 static unsigned long have_exit_callback __read_mostly;
209 static unsigned long have_free_callback __read_mostly;
210
211 /* Ditto for the can_fork callback. */
212 static unsigned long have_canfork_callback __read_mostly;
213
214 static struct cftype cgroup_dfl_base_files[];
215 static struct cftype cgroup_legacy_base_files[];
216
217 static int rebind_subsystems(struct cgroup_root *dst_root,
218 unsigned long ss_mask);
219 static void css_task_iter_advance(struct css_task_iter *it);
220 static int cgroup_destroy_locked(struct cgroup *cgrp);
221 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
222 bool visible);
223 static void css_release(struct percpu_ref *ref);
224 static void kill_css(struct cgroup_subsys_state *css);
225 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
226 struct cgroup *cgrp, struct cftype cfts[],
227 bool is_add);
228
229 /**
230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
231 * @ssid: subsys ID of interest
232 *
233 * cgroup_subsys_enabled() can only be used with literal subsys names which
234 * is fine for individual subsystems but unsuitable for cgroup core. This
235 * is slower static_key_enabled() based test indexed by @ssid.
236 */
cgroup_ssid_enabled(int ssid)237 static bool cgroup_ssid_enabled(int ssid)
238 {
239 if (CGROUP_SUBSYS_COUNT == 0)
240 return false;
241
242 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
243 }
244
245 /**
246 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
247 * @cgrp: the cgroup of interest
248 *
249 * The default hierarchy is the v2 interface of cgroup and this function
250 * can be used to test whether a cgroup is on the default hierarchy for
251 * cases where a subsystem should behave differnetly depending on the
252 * interface version.
253 *
254 * The set of behaviors which change on the default hierarchy are still
255 * being determined and the mount option is prefixed with __DEVEL__.
256 *
257 * List of changed behaviors:
258 *
259 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
260 * and "name" are disallowed.
261 *
262 * - When mounting an existing superblock, mount options should match.
263 *
264 * - Remount is disallowed.
265 *
266 * - rename(2) is disallowed.
267 *
268 * - "tasks" is removed. Everything should be at process granularity. Use
269 * "cgroup.procs" instead.
270 *
271 * - "cgroup.procs" is not sorted. pids will be unique unless they got
272 * recycled inbetween reads.
273 *
274 * - "release_agent" and "notify_on_release" are removed. Replacement
275 * notification mechanism will be implemented.
276 *
277 * - "cgroup.clone_children" is removed.
278 *
279 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
280 * and its descendants contain no task; otherwise, 1. The file also
281 * generates kernfs notification which can be monitored through poll and
282 * [di]notify when the value of the file changes.
283 *
284 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
285 * take masks of ancestors with non-empty cpus/mems, instead of being
286 * moved to an ancestor.
287 *
288 * - cpuset: a task can be moved into an empty cpuset, and again it takes
289 * masks of ancestors.
290 *
291 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
292 * is not created.
293 *
294 * - blkcg: blk-throttle becomes properly hierarchical.
295 *
296 * - debug: disallowed on the default hierarchy.
297 */
cgroup_on_dfl(const struct cgroup * cgrp)298 static bool cgroup_on_dfl(const struct cgroup *cgrp)
299 {
300 return cgrp->root == &cgrp_dfl_root;
301 }
302
303 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)304 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
305 gfp_t gfp_mask)
306 {
307 int ret;
308
309 idr_preload(gfp_mask);
310 spin_lock_bh(&cgroup_idr_lock);
311 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
312 spin_unlock_bh(&cgroup_idr_lock);
313 idr_preload_end();
314 return ret;
315 }
316
cgroup_idr_replace(struct idr * idr,void * ptr,int id)317 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
318 {
319 void *ret;
320
321 spin_lock_bh(&cgroup_idr_lock);
322 ret = idr_replace(idr, ptr, id);
323 spin_unlock_bh(&cgroup_idr_lock);
324 return ret;
325 }
326
cgroup_idr_remove(struct idr * idr,int id)327 static void cgroup_idr_remove(struct idr *idr, int id)
328 {
329 spin_lock_bh(&cgroup_idr_lock);
330 idr_remove(idr, id);
331 spin_unlock_bh(&cgroup_idr_lock);
332 }
333
cgroup_parent(struct cgroup * cgrp)334 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
335 {
336 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
337
338 if (parent_css)
339 return container_of(parent_css, struct cgroup, self);
340 return NULL;
341 }
342
343 /**
344 * cgroup_css - obtain a cgroup's css for the specified subsystem
345 * @cgrp: the cgroup of interest
346 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
347 *
348 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
349 * function must be called either under cgroup_mutex or rcu_read_lock() and
350 * the caller is responsible for pinning the returned css if it wants to
351 * keep accessing it outside the said locks. This function may return
352 * %NULL if @cgrp doesn't have @subsys_id enabled.
353 */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)354 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
355 struct cgroup_subsys *ss)
356 {
357 if (ss)
358 return rcu_dereference_check(cgrp->subsys[ss->id],
359 lockdep_is_held(&cgroup_mutex));
360 else
361 return &cgrp->self;
362 }
363
364 /**
365 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
366 * @cgrp: the cgroup of interest
367 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
368 *
369 * Similar to cgroup_css() but returns the effective css, which is defined
370 * as the matching css of the nearest ancestor including self which has @ss
371 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
372 * function is guaranteed to return non-NULL css.
373 */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)374 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
375 struct cgroup_subsys *ss)
376 {
377 lockdep_assert_held(&cgroup_mutex);
378
379 if (!ss)
380 return &cgrp->self;
381
382 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
383 return NULL;
384
385 /*
386 * This function is used while updating css associations and thus
387 * can't test the csses directly. Use ->child_subsys_mask.
388 */
389 while (cgroup_parent(cgrp) &&
390 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
391 cgrp = cgroup_parent(cgrp);
392
393 return cgroup_css(cgrp, ss);
394 }
395
396 /**
397 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
398 * @cgrp: the cgroup of interest
399 * @ss: the subsystem of interest
400 *
401 * Find and get the effective css of @cgrp for @ss. The effective css is
402 * defined as the matching css of the nearest ancestor including self which
403 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
404 * the root css is returned, so this function always returns a valid css.
405 * The returned css must be put using css_put().
406 */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)407 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
408 struct cgroup_subsys *ss)
409 {
410 struct cgroup_subsys_state *css;
411
412 rcu_read_lock();
413
414 do {
415 css = cgroup_css(cgrp, ss);
416
417 if (css && css_tryget_online(css))
418 goto out_unlock;
419 cgrp = cgroup_parent(cgrp);
420 } while (cgrp);
421
422 css = init_css_set.subsys[ss->id];
423 css_get(css);
424 out_unlock:
425 rcu_read_unlock();
426 return css;
427 }
428
429 /* convenient tests for these bits */
cgroup_is_dead(const struct cgroup * cgrp)430 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
431 {
432 return !(cgrp->self.flags & CSS_ONLINE);
433 }
434
cgroup_get(struct cgroup * cgrp)435 static void cgroup_get(struct cgroup *cgrp)
436 {
437 WARN_ON_ONCE(cgroup_is_dead(cgrp));
438 css_get(&cgrp->self);
439 }
440
cgroup_tryget(struct cgroup * cgrp)441 static bool cgroup_tryget(struct cgroup *cgrp)
442 {
443 return css_tryget(&cgrp->self);
444 }
445
cgroup_put(struct cgroup * cgrp)446 static void cgroup_put(struct cgroup *cgrp)
447 {
448 css_put(&cgrp->self);
449 }
450
of_css(struct kernfs_open_file * of)451 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
452 {
453 struct cgroup *cgrp = of->kn->parent->priv;
454 struct cftype *cft = of_cft(of);
455
456 /*
457 * This is open and unprotected implementation of cgroup_css().
458 * seq_css() is only called from a kernfs file operation which has
459 * an active reference on the file. Because all the subsystem
460 * files are drained before a css is disassociated with a cgroup,
461 * the matching css from the cgroup's subsys table is guaranteed to
462 * be and stay valid until the enclosing operation is complete.
463 */
464 if (cft->ss)
465 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
466 else
467 return &cgrp->self;
468 }
469 EXPORT_SYMBOL_GPL(of_css);
470
471 /**
472 * cgroup_is_descendant - test ancestry
473 * @cgrp: the cgroup to be tested
474 * @ancestor: possible ancestor of @cgrp
475 *
476 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
477 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
478 * and @ancestor are accessible.
479 */
cgroup_is_descendant(struct cgroup * cgrp,struct cgroup * ancestor)480 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
481 {
482 while (cgrp) {
483 if (cgrp == ancestor)
484 return true;
485 cgrp = cgroup_parent(cgrp);
486 }
487 return false;
488 }
489
notify_on_release(const struct cgroup * cgrp)490 static int notify_on_release(const struct cgroup *cgrp)
491 {
492 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
493 }
494
495 /**
496 * for_each_css - iterate all css's of a cgroup
497 * @css: the iteration cursor
498 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
499 * @cgrp: the target cgroup to iterate css's of
500 *
501 * Should be called under cgroup_[tree_]mutex.
502 */
503 #define for_each_css(css, ssid, cgrp) \
504 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
505 if (!((css) = rcu_dereference_check( \
506 (cgrp)->subsys[(ssid)], \
507 lockdep_is_held(&cgroup_mutex)))) { } \
508 else
509
510 /**
511 * for_each_e_css - iterate all effective css's of a cgroup
512 * @css: the iteration cursor
513 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
514 * @cgrp: the target cgroup to iterate css's of
515 *
516 * Should be called under cgroup_[tree_]mutex.
517 */
518 #define for_each_e_css(css, ssid, cgrp) \
519 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
520 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
521 ; \
522 else
523
524 /**
525 * for_each_subsys - iterate all enabled cgroup subsystems
526 * @ss: the iteration cursor
527 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
528 */
529 #define for_each_subsys(ss, ssid) \
530 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
531 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
532
533 /**
534 * for_each_subsys_which - filter for_each_subsys with a bitmask
535 * @ss: the iteration cursor
536 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
537 * @ss_maskp: a pointer to the bitmask
538 *
539 * The block will only run for cases where the ssid-th bit (1 << ssid) of
540 * mask is set to 1.
541 */
542 #define for_each_subsys_which(ss, ssid, ss_maskp) \
543 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
544 (ssid) = 0; \
545 else \
546 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
547 if (((ss) = cgroup_subsys[ssid]) && false) \
548 break; \
549 else
550
551 /* iterate across the hierarchies */
552 #define for_each_root(root) \
553 list_for_each_entry((root), &cgroup_roots, root_list)
554
555 /* iterate over child cgrps, lock should be held throughout iteration */
556 #define cgroup_for_each_live_child(child, cgrp) \
557 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
558 if (({ lockdep_assert_held(&cgroup_mutex); \
559 cgroup_is_dead(child); })) \
560 ; \
561 else
562
563 static void cgroup_release_agent(struct work_struct *work);
564 static void check_for_release(struct cgroup *cgrp);
565
566 /*
567 * A cgroup can be associated with multiple css_sets as different tasks may
568 * belong to different cgroups on different hierarchies. In the other
569 * direction, a css_set is naturally associated with multiple cgroups.
570 * This M:N relationship is represented by the following link structure
571 * which exists for each association and allows traversing the associations
572 * from both sides.
573 */
574 struct cgrp_cset_link {
575 /* the cgroup and css_set this link associates */
576 struct cgroup *cgrp;
577 struct css_set *cset;
578
579 /* list of cgrp_cset_links anchored at cgrp->cset_links */
580 struct list_head cset_link;
581
582 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
583 struct list_head cgrp_link;
584 };
585
586 /*
587 * The default css_set - used by init and its children prior to any
588 * hierarchies being mounted. It contains a pointer to the root state
589 * for each subsystem. Also used to anchor the list of css_sets. Not
590 * reference-counted, to improve performance when child cgroups
591 * haven't been created.
592 */
593 struct css_set init_css_set = {
594 .refcount = ATOMIC_INIT(1),
595 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
596 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
597 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
598 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
599 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
600 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
601 };
602
603 static int css_set_count = 1; /* 1 for init_css_set */
604
605 /**
606 * css_set_populated - does a css_set contain any tasks?
607 * @cset: target css_set
608 */
css_set_populated(struct css_set * cset)609 static bool css_set_populated(struct css_set *cset)
610 {
611 lockdep_assert_held(&css_set_lock);
612
613 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
614 }
615
616 /**
617 * cgroup_update_populated - updated populated count of a cgroup
618 * @cgrp: the target cgroup
619 * @populated: inc or dec populated count
620 *
621 * One of the css_sets associated with @cgrp is either getting its first
622 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
623 * count is propagated towards root so that a given cgroup's populated_cnt
624 * is zero iff the cgroup and all its descendants don't contain any tasks.
625 *
626 * @cgrp's interface file "cgroup.populated" is zero if
627 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
628 * changes from or to zero, userland is notified that the content of the
629 * interface file has changed. This can be used to detect when @cgrp and
630 * its descendants become populated or empty.
631 */
cgroup_update_populated(struct cgroup * cgrp,bool populated)632 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
633 {
634 lockdep_assert_held(&css_set_lock);
635
636 do {
637 bool trigger;
638
639 if (populated)
640 trigger = !cgrp->populated_cnt++;
641 else
642 trigger = !--cgrp->populated_cnt;
643
644 if (!trigger)
645 break;
646
647 check_for_release(cgrp);
648 cgroup_file_notify(&cgrp->events_file);
649
650 cgrp = cgroup_parent(cgrp);
651 } while (cgrp);
652 }
653
654 /**
655 * css_set_update_populated - update populated state of a css_set
656 * @cset: target css_set
657 * @populated: whether @cset is populated or depopulated
658 *
659 * @cset is either getting the first task or losing the last. Update the
660 * ->populated_cnt of all associated cgroups accordingly.
661 */
css_set_update_populated(struct css_set * cset,bool populated)662 static void css_set_update_populated(struct css_set *cset, bool populated)
663 {
664 struct cgrp_cset_link *link;
665
666 lockdep_assert_held(&css_set_lock);
667
668 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
669 cgroup_update_populated(link->cgrp, populated);
670 }
671
672 /**
673 * css_set_move_task - move a task from one css_set to another
674 * @task: task being moved
675 * @from_cset: css_set @task currently belongs to (may be NULL)
676 * @to_cset: new css_set @task is being moved to (may be NULL)
677 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
678 *
679 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
680 * css_set, @from_cset can be NULL. If @task is being disassociated
681 * instead of moved, @to_cset can be NULL.
682 *
683 * This function automatically handles populated_cnt updates and
684 * css_task_iter adjustments but the caller is responsible for managing
685 * @from_cset and @to_cset's reference counts.
686 */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)687 static void css_set_move_task(struct task_struct *task,
688 struct css_set *from_cset, struct css_set *to_cset,
689 bool use_mg_tasks)
690 {
691 lockdep_assert_held(&css_set_lock);
692
693 if (from_cset) {
694 struct css_task_iter *it, *pos;
695
696 WARN_ON_ONCE(list_empty(&task->cg_list));
697
698 /*
699 * @task is leaving, advance task iterators which are
700 * pointing to it so that they can resume at the next
701 * position. Advancing an iterator might remove it from
702 * the list, use safe walk. See css_task_iter_advance*()
703 * for details.
704 */
705 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
706 iters_node)
707 if (it->task_pos == &task->cg_list)
708 css_task_iter_advance(it);
709
710 list_del_init(&task->cg_list);
711 if (!css_set_populated(from_cset))
712 css_set_update_populated(from_cset, false);
713 } else {
714 WARN_ON_ONCE(!list_empty(&task->cg_list));
715 }
716
717 if (to_cset) {
718 /*
719 * We are synchronized through cgroup_threadgroup_rwsem
720 * against PF_EXITING setting such that we can't race
721 * against cgroup_exit() changing the css_set to
722 * init_css_set and dropping the old one.
723 */
724 WARN_ON_ONCE(task->flags & PF_EXITING);
725
726 if (!css_set_populated(to_cset))
727 css_set_update_populated(to_cset, true);
728 rcu_assign_pointer(task->cgroups, to_cset);
729 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
730 &to_cset->tasks);
731 }
732 }
733
734 /*
735 * hash table for cgroup groups. This improves the performance to find
736 * an existing css_set. This hash doesn't (currently) take into
737 * account cgroups in empty hierarchies.
738 */
739 #define CSS_SET_HASH_BITS 7
740 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
741
css_set_hash(struct cgroup_subsys_state * css[])742 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
743 {
744 unsigned long key = 0UL;
745 struct cgroup_subsys *ss;
746 int i;
747
748 for_each_subsys(ss, i)
749 key += (unsigned long)css[i];
750 key = (key >> 16) ^ key;
751
752 return key;
753 }
754
put_css_set_locked(struct css_set * cset)755 static void put_css_set_locked(struct css_set *cset)
756 {
757 struct cgrp_cset_link *link, *tmp_link;
758 struct cgroup_subsys *ss;
759 int ssid;
760
761 lockdep_assert_held(&css_set_lock);
762
763 if (!atomic_dec_and_test(&cset->refcount))
764 return;
765
766 /* This css_set is dead. unlink it and release cgroup and css refs */
767 for_each_subsys(ss, ssid) {
768 list_del(&cset->e_cset_node[ssid]);
769 css_put(cset->subsys[ssid]);
770 }
771 hash_del(&cset->hlist);
772 css_set_count--;
773
774 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
775 list_del(&link->cset_link);
776 list_del(&link->cgrp_link);
777 if (cgroup_parent(link->cgrp))
778 cgroup_put(link->cgrp);
779 kfree(link);
780 }
781
782 kfree_rcu(cset, rcu_head);
783 }
784
put_css_set(struct css_set * cset)785 static void put_css_set(struct css_set *cset)
786 {
787 unsigned long flags;
788
789 /*
790 * Ensure that the refcount doesn't hit zero while any readers
791 * can see it. Similar to atomic_dec_and_lock(), but for an
792 * rwlock
793 */
794 if (atomic_add_unless(&cset->refcount, -1, 1))
795 return;
796
797 spin_lock_irqsave(&css_set_lock, flags);
798 put_css_set_locked(cset);
799 spin_unlock_irqrestore(&css_set_lock, flags);
800 }
801
802 /*
803 * refcounted get/put for css_set objects
804 */
get_css_set(struct css_set * cset)805 static inline void get_css_set(struct css_set *cset)
806 {
807 atomic_inc(&cset->refcount);
808 }
809
810 /**
811 * compare_css_sets - helper function for find_existing_css_set().
812 * @cset: candidate css_set being tested
813 * @old_cset: existing css_set for a task
814 * @new_cgrp: cgroup that's being entered by the task
815 * @template: desired set of css pointers in css_set (pre-calculated)
816 *
817 * Returns true if "cset" matches "old_cset" except for the hierarchy
818 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
819 */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])820 static bool compare_css_sets(struct css_set *cset,
821 struct css_set *old_cset,
822 struct cgroup *new_cgrp,
823 struct cgroup_subsys_state *template[])
824 {
825 struct list_head *l1, *l2;
826
827 /*
828 * On the default hierarchy, there can be csets which are
829 * associated with the same set of cgroups but different csses.
830 * Let's first ensure that csses match.
831 */
832 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
833 return false;
834
835 /*
836 * Compare cgroup pointers in order to distinguish between
837 * different cgroups in hierarchies. As different cgroups may
838 * share the same effective css, this comparison is always
839 * necessary.
840 */
841 l1 = &cset->cgrp_links;
842 l2 = &old_cset->cgrp_links;
843 while (1) {
844 struct cgrp_cset_link *link1, *link2;
845 struct cgroup *cgrp1, *cgrp2;
846
847 l1 = l1->next;
848 l2 = l2->next;
849 /* See if we reached the end - both lists are equal length. */
850 if (l1 == &cset->cgrp_links) {
851 BUG_ON(l2 != &old_cset->cgrp_links);
852 break;
853 } else {
854 BUG_ON(l2 == &old_cset->cgrp_links);
855 }
856 /* Locate the cgroups associated with these links. */
857 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
858 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
859 cgrp1 = link1->cgrp;
860 cgrp2 = link2->cgrp;
861 /* Hierarchies should be linked in the same order. */
862 BUG_ON(cgrp1->root != cgrp2->root);
863
864 /*
865 * If this hierarchy is the hierarchy of the cgroup
866 * that's changing, then we need to check that this
867 * css_set points to the new cgroup; if it's any other
868 * hierarchy, then this css_set should point to the
869 * same cgroup as the old css_set.
870 */
871 if (cgrp1->root == new_cgrp->root) {
872 if (cgrp1 != new_cgrp)
873 return false;
874 } else {
875 if (cgrp1 != cgrp2)
876 return false;
877 }
878 }
879 return true;
880 }
881
882 /**
883 * find_existing_css_set - init css array and find the matching css_set
884 * @old_cset: the css_set that we're using before the cgroup transition
885 * @cgrp: the cgroup that we're moving into
886 * @template: out param for the new set of csses, should be clear on entry
887 */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])888 static struct css_set *find_existing_css_set(struct css_set *old_cset,
889 struct cgroup *cgrp,
890 struct cgroup_subsys_state *template[])
891 {
892 struct cgroup_root *root = cgrp->root;
893 struct cgroup_subsys *ss;
894 struct css_set *cset;
895 unsigned long key;
896 int i;
897
898 /*
899 * Build the set of subsystem state objects that we want to see in the
900 * new css_set. while subsystems can change globally, the entries here
901 * won't change, so no need for locking.
902 */
903 for_each_subsys(ss, i) {
904 if (root->subsys_mask & (1UL << i)) {
905 /*
906 * @ss is in this hierarchy, so we want the
907 * effective css from @cgrp.
908 */
909 template[i] = cgroup_e_css(cgrp, ss);
910 } else {
911 /*
912 * @ss is not in this hierarchy, so we don't want
913 * to change the css.
914 */
915 template[i] = old_cset->subsys[i];
916 }
917 }
918
919 key = css_set_hash(template);
920 hash_for_each_possible(css_set_table, cset, hlist, key) {
921 if (!compare_css_sets(cset, old_cset, cgrp, template))
922 continue;
923
924 /* This css_set matches what we need */
925 return cset;
926 }
927
928 /* No existing cgroup group matched */
929 return NULL;
930 }
931
free_cgrp_cset_links(struct list_head * links_to_free)932 static void free_cgrp_cset_links(struct list_head *links_to_free)
933 {
934 struct cgrp_cset_link *link, *tmp_link;
935
936 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
937 list_del(&link->cset_link);
938 kfree(link);
939 }
940 }
941
942 /**
943 * allocate_cgrp_cset_links - allocate cgrp_cset_links
944 * @count: the number of links to allocate
945 * @tmp_links: list_head the allocated links are put on
946 *
947 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
948 * through ->cset_link. Returns 0 on success or -errno.
949 */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)950 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
951 {
952 struct cgrp_cset_link *link;
953 int i;
954
955 INIT_LIST_HEAD(tmp_links);
956
957 for (i = 0; i < count; i++) {
958 link = kzalloc(sizeof(*link), GFP_KERNEL);
959 if (!link) {
960 free_cgrp_cset_links(tmp_links);
961 return -ENOMEM;
962 }
963 list_add(&link->cset_link, tmp_links);
964 }
965 return 0;
966 }
967
968 /**
969 * link_css_set - a helper function to link a css_set to a cgroup
970 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
971 * @cset: the css_set to be linked
972 * @cgrp: the destination cgroup
973 */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)974 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
975 struct cgroup *cgrp)
976 {
977 struct cgrp_cset_link *link;
978
979 BUG_ON(list_empty(tmp_links));
980
981 if (cgroup_on_dfl(cgrp))
982 cset->dfl_cgrp = cgrp;
983
984 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
985 link->cset = cset;
986 link->cgrp = cgrp;
987
988 /*
989 * Always add links to the tail of the lists so that the lists are
990 * in choronological order.
991 */
992 list_move_tail(&link->cset_link, &cgrp->cset_links);
993 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
994
995 if (cgroup_parent(cgrp))
996 cgroup_get(cgrp);
997 }
998
999 /**
1000 * find_css_set - return a new css_set with one cgroup updated
1001 * @old_cset: the baseline css_set
1002 * @cgrp: the cgroup to be updated
1003 *
1004 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1005 * substituted into the appropriate hierarchy.
1006 */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1007 static struct css_set *find_css_set(struct css_set *old_cset,
1008 struct cgroup *cgrp)
1009 {
1010 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1011 struct css_set *cset;
1012 struct list_head tmp_links;
1013 struct cgrp_cset_link *link;
1014 struct cgroup_subsys *ss;
1015 unsigned long key;
1016 int ssid;
1017
1018 lockdep_assert_held(&cgroup_mutex);
1019
1020 /* First see if we already have a cgroup group that matches
1021 * the desired set */
1022 spin_lock_irq(&css_set_lock);
1023 cset = find_existing_css_set(old_cset, cgrp, template);
1024 if (cset)
1025 get_css_set(cset);
1026 spin_unlock_irq(&css_set_lock);
1027
1028 if (cset)
1029 return cset;
1030
1031 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1032 if (!cset)
1033 return NULL;
1034
1035 /* Allocate all the cgrp_cset_link objects that we'll need */
1036 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1037 kfree(cset);
1038 return NULL;
1039 }
1040
1041 atomic_set(&cset->refcount, 1);
1042 INIT_LIST_HEAD(&cset->cgrp_links);
1043 INIT_LIST_HEAD(&cset->tasks);
1044 INIT_LIST_HEAD(&cset->mg_tasks);
1045 INIT_LIST_HEAD(&cset->mg_preload_node);
1046 INIT_LIST_HEAD(&cset->mg_node);
1047 INIT_LIST_HEAD(&cset->task_iters);
1048 INIT_HLIST_NODE(&cset->hlist);
1049
1050 /* Copy the set of subsystem state objects generated in
1051 * find_existing_css_set() */
1052 memcpy(cset->subsys, template, sizeof(cset->subsys));
1053
1054 spin_lock_irq(&css_set_lock);
1055 /* Add reference counts and links from the new css_set. */
1056 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1057 struct cgroup *c = link->cgrp;
1058
1059 if (c->root == cgrp->root)
1060 c = cgrp;
1061 link_css_set(&tmp_links, cset, c);
1062 }
1063
1064 BUG_ON(!list_empty(&tmp_links));
1065
1066 css_set_count++;
1067
1068 /* Add @cset to the hash table */
1069 key = css_set_hash(cset->subsys);
1070 hash_add(css_set_table, &cset->hlist, key);
1071
1072 for_each_subsys(ss, ssid) {
1073 struct cgroup_subsys_state *css = cset->subsys[ssid];
1074
1075 list_add_tail(&cset->e_cset_node[ssid],
1076 &css->cgroup->e_csets[ssid]);
1077 css_get(css);
1078 }
1079
1080 spin_unlock_irq(&css_set_lock);
1081
1082 return cset;
1083 }
1084
cgroup_root_from_kf(struct kernfs_root * kf_root)1085 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1086 {
1087 struct cgroup *root_cgrp = kf_root->kn->priv;
1088
1089 return root_cgrp->root;
1090 }
1091
cgroup_init_root_id(struct cgroup_root * root)1092 static int cgroup_init_root_id(struct cgroup_root *root)
1093 {
1094 int id;
1095
1096 lockdep_assert_held(&cgroup_mutex);
1097
1098 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1099 if (id < 0)
1100 return id;
1101
1102 root->hierarchy_id = id;
1103 return 0;
1104 }
1105
cgroup_exit_root_id(struct cgroup_root * root)1106 static void cgroup_exit_root_id(struct cgroup_root *root)
1107 {
1108 lockdep_assert_held(&cgroup_mutex);
1109
1110 if (root->hierarchy_id) {
1111 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1112 root->hierarchy_id = 0;
1113 }
1114 }
1115
cgroup_free_root(struct cgroup_root * root)1116 static void cgroup_free_root(struct cgroup_root *root)
1117 {
1118 if (root) {
1119 /* hierarchy ID should already have been released */
1120 WARN_ON_ONCE(root->hierarchy_id);
1121
1122 idr_destroy(&root->cgroup_idr);
1123 kfree(root);
1124 }
1125 }
1126
cgroup_destroy_root(struct cgroup_root * root)1127 static void cgroup_destroy_root(struct cgroup_root *root)
1128 {
1129 struct cgroup *cgrp = &root->cgrp;
1130 struct cgrp_cset_link *link, *tmp_link;
1131
1132 mutex_lock(&cgroup_mutex);
1133
1134 BUG_ON(atomic_read(&root->nr_cgrps));
1135 BUG_ON(!list_empty(&cgrp->self.children));
1136
1137 /* Rebind all subsystems back to the default hierarchy */
1138 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
1139
1140 /*
1141 * Release all the links from cset_links to this hierarchy's
1142 * root cgroup
1143 */
1144 spin_lock_irq(&css_set_lock);
1145
1146 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1147 list_del(&link->cset_link);
1148 list_del(&link->cgrp_link);
1149 kfree(link);
1150 }
1151
1152 spin_unlock_irq(&css_set_lock);
1153
1154 if (!list_empty(&root->root_list)) {
1155 list_del(&root->root_list);
1156 cgroup_root_count--;
1157 }
1158
1159 cgroup_exit_root_id(root);
1160
1161 mutex_unlock(&cgroup_mutex);
1162
1163 kernfs_destroy_root(root->kf_root);
1164 cgroup_free_root(root);
1165 }
1166
1167 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1168 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1169 struct cgroup_root *root)
1170 {
1171 struct cgroup *res = NULL;
1172
1173 lockdep_assert_held(&cgroup_mutex);
1174 lockdep_assert_held(&css_set_lock);
1175
1176 if (cset == &init_css_set) {
1177 res = &root->cgrp;
1178 } else {
1179 struct cgrp_cset_link *link;
1180
1181 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1182 struct cgroup *c = link->cgrp;
1183
1184 if (c->root == root) {
1185 res = c;
1186 break;
1187 }
1188 }
1189 }
1190
1191 BUG_ON(!res);
1192 return res;
1193 }
1194
1195 /*
1196 * Return the cgroup for "task" from the given hierarchy. Must be
1197 * called with cgroup_mutex and css_set_lock held.
1198 */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1199 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1200 struct cgroup_root *root)
1201 {
1202 /*
1203 * No need to lock the task - since we hold cgroup_mutex the
1204 * task can't change groups, so the only thing that can happen
1205 * is that it exits and its css is set back to init_css_set.
1206 */
1207 return cset_cgroup_from_root(task_css_set(task), root);
1208 }
1209
1210 /*
1211 * A task must hold cgroup_mutex to modify cgroups.
1212 *
1213 * Any task can increment and decrement the count field without lock.
1214 * So in general, code holding cgroup_mutex can't rely on the count
1215 * field not changing. However, if the count goes to zero, then only
1216 * cgroup_attach_task() can increment it again. Because a count of zero
1217 * means that no tasks are currently attached, therefore there is no
1218 * way a task attached to that cgroup can fork (the other way to
1219 * increment the count). So code holding cgroup_mutex can safely
1220 * assume that if the count is zero, it will stay zero. Similarly, if
1221 * a task holds cgroup_mutex on a cgroup with zero count, it
1222 * knows that the cgroup won't be removed, as cgroup_rmdir()
1223 * needs that mutex.
1224 *
1225 * A cgroup can only be deleted if both its 'count' of using tasks
1226 * is zero, and its list of 'children' cgroups is empty. Since all
1227 * tasks in the system use _some_ cgroup, and since there is always at
1228 * least one task in the system (init, pid == 1), therefore, root cgroup
1229 * always has either children cgroups and/or using tasks. So we don't
1230 * need a special hack to ensure that root cgroup cannot be deleted.
1231 *
1232 * P.S. One more locking exception. RCU is used to guard the
1233 * update of a tasks cgroup pointer by cgroup_attach_task()
1234 */
1235
1236 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1237 static const struct file_operations proc_cgroupstats_operations;
1238
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1239 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1240 char *buf)
1241 {
1242 struct cgroup_subsys *ss = cft->ss;
1243
1244 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1245 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1246 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1247 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1248 cft->name);
1249 else
1250 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1251 return buf;
1252 }
1253
1254 /**
1255 * cgroup_file_mode - deduce file mode of a control file
1256 * @cft: the control file in question
1257 *
1258 * S_IRUGO for read, S_IWUSR for write.
1259 */
cgroup_file_mode(const struct cftype * cft)1260 static umode_t cgroup_file_mode(const struct cftype *cft)
1261 {
1262 umode_t mode = 0;
1263
1264 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1265 mode |= S_IRUGO;
1266
1267 if (cft->write_u64 || cft->write_s64 || cft->write) {
1268 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1269 mode |= S_IWUGO;
1270 else
1271 mode |= S_IWUSR;
1272 }
1273
1274 return mode;
1275 }
1276
1277 /**
1278 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1279 * @cgrp: the target cgroup
1280 * @subtree_control: the new subtree_control mask to consider
1281 *
1282 * On the default hierarchy, a subsystem may request other subsystems to be
1283 * enabled together through its ->depends_on mask. In such cases, more
1284 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1285 *
1286 * This function calculates which subsystems need to be enabled if
1287 * @subtree_control is to be applied to @cgrp. The returned mask is always
1288 * a superset of @subtree_control and follows the usual hierarchy rules.
1289 */
cgroup_calc_child_subsys_mask(struct cgroup * cgrp,unsigned long subtree_control)1290 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1291 unsigned long subtree_control)
1292 {
1293 struct cgroup *parent = cgroup_parent(cgrp);
1294 unsigned long cur_ss_mask = subtree_control;
1295 struct cgroup_subsys *ss;
1296 int ssid;
1297
1298 lockdep_assert_held(&cgroup_mutex);
1299
1300 if (!cgroup_on_dfl(cgrp))
1301 return cur_ss_mask;
1302
1303 while (true) {
1304 unsigned long new_ss_mask = cur_ss_mask;
1305
1306 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1307 new_ss_mask |= ss->depends_on;
1308
1309 /*
1310 * Mask out subsystems which aren't available. This can
1311 * happen only if some depended-upon subsystems were bound
1312 * to non-default hierarchies.
1313 */
1314 if (parent)
1315 new_ss_mask &= parent->child_subsys_mask;
1316 else
1317 new_ss_mask &= cgrp->root->subsys_mask;
1318
1319 if (new_ss_mask == cur_ss_mask)
1320 break;
1321 cur_ss_mask = new_ss_mask;
1322 }
1323
1324 return cur_ss_mask;
1325 }
1326
1327 /**
1328 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1329 * @cgrp: the target cgroup
1330 *
1331 * Update @cgrp->child_subsys_mask according to the current
1332 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1333 */
cgroup_refresh_child_subsys_mask(struct cgroup * cgrp)1334 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1335 {
1336 cgrp->child_subsys_mask =
1337 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
1338 }
1339
1340 /**
1341 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1342 * @kn: the kernfs_node being serviced
1343 *
1344 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1345 * the method finishes if locking succeeded. Note that once this function
1346 * returns the cgroup returned by cgroup_kn_lock_live() may become
1347 * inaccessible any time. If the caller intends to continue to access the
1348 * cgroup, it should pin it before invoking this function.
1349 */
cgroup_kn_unlock(struct kernfs_node * kn)1350 static void cgroup_kn_unlock(struct kernfs_node *kn)
1351 {
1352 struct cgroup *cgrp;
1353
1354 if (kernfs_type(kn) == KERNFS_DIR)
1355 cgrp = kn->priv;
1356 else
1357 cgrp = kn->parent->priv;
1358
1359 mutex_unlock(&cgroup_mutex);
1360
1361 kernfs_unbreak_active_protection(kn);
1362 cgroup_put(cgrp);
1363 }
1364
1365 /**
1366 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1367 * @kn: the kernfs_node being serviced
1368 *
1369 * This helper is to be used by a cgroup kernfs method currently servicing
1370 * @kn. It breaks the active protection, performs cgroup locking and
1371 * verifies that the associated cgroup is alive. Returns the cgroup if
1372 * alive; otherwise, %NULL. A successful return should be undone by a
1373 * matching cgroup_kn_unlock() invocation.
1374 *
1375 * Any cgroup kernfs method implementation which requires locking the
1376 * associated cgroup should use this helper. It avoids nesting cgroup
1377 * locking under kernfs active protection and allows all kernfs operations
1378 * including self-removal.
1379 */
cgroup_kn_lock_live(struct kernfs_node * kn)1380 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1381 {
1382 struct cgroup *cgrp;
1383
1384 if (kernfs_type(kn) == KERNFS_DIR)
1385 cgrp = kn->priv;
1386 else
1387 cgrp = kn->parent->priv;
1388
1389 /*
1390 * We're gonna grab cgroup_mutex which nests outside kernfs
1391 * active_ref. cgroup liveliness check alone provides enough
1392 * protection against removal. Ensure @cgrp stays accessible and
1393 * break the active_ref protection.
1394 */
1395 if (!cgroup_tryget(cgrp))
1396 return NULL;
1397 kernfs_break_active_protection(kn);
1398
1399 mutex_lock(&cgroup_mutex);
1400
1401 if (!cgroup_is_dead(cgrp))
1402 return cgrp;
1403
1404 cgroup_kn_unlock(kn);
1405 return NULL;
1406 }
1407
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1408 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1409 {
1410 char name[CGROUP_FILE_NAME_MAX];
1411
1412 lockdep_assert_held(&cgroup_mutex);
1413
1414 if (cft->file_offset) {
1415 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1416 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1417
1418 spin_lock_irq(&cgroup_file_kn_lock);
1419 cfile->kn = NULL;
1420 spin_unlock_irq(&cgroup_file_kn_lock);
1421 }
1422
1423 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1424 }
1425
1426 /**
1427 * css_clear_dir - remove subsys files in a cgroup directory
1428 * @css: taget css
1429 * @cgrp_override: specify if target cgroup is different from css->cgroup
1430 */
css_clear_dir(struct cgroup_subsys_state * css,struct cgroup * cgrp_override)1431 static void css_clear_dir(struct cgroup_subsys_state *css,
1432 struct cgroup *cgrp_override)
1433 {
1434 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1435 struct cftype *cfts;
1436
1437 list_for_each_entry(cfts, &css->ss->cfts, node)
1438 cgroup_addrm_files(css, cgrp, cfts, false);
1439 }
1440
1441 /**
1442 * css_populate_dir - create subsys files in a cgroup directory
1443 * @css: target css
1444 * @cgrp_overried: specify if target cgroup is different from css->cgroup
1445 *
1446 * On failure, no file is added.
1447 */
css_populate_dir(struct cgroup_subsys_state * css,struct cgroup * cgrp_override)1448 static int css_populate_dir(struct cgroup_subsys_state *css,
1449 struct cgroup *cgrp_override)
1450 {
1451 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1452 struct cftype *cfts, *failed_cfts;
1453 int ret;
1454
1455 if (!css->ss) {
1456 if (cgroup_on_dfl(cgrp))
1457 cfts = cgroup_dfl_base_files;
1458 else
1459 cfts = cgroup_legacy_base_files;
1460
1461 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1462 }
1463
1464 list_for_each_entry(cfts, &css->ss->cfts, node) {
1465 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1466 if (ret < 0) {
1467 failed_cfts = cfts;
1468 goto err;
1469 }
1470 }
1471 return 0;
1472 err:
1473 list_for_each_entry(cfts, &css->ss->cfts, node) {
1474 if (cfts == failed_cfts)
1475 break;
1476 cgroup_addrm_files(css, cgrp, cfts, false);
1477 }
1478 return ret;
1479 }
1480
rebind_subsystems(struct cgroup_root * dst_root,unsigned long ss_mask)1481 static int rebind_subsystems(struct cgroup_root *dst_root,
1482 unsigned long ss_mask)
1483 {
1484 struct cgroup *dcgrp = &dst_root->cgrp;
1485 struct cgroup_subsys *ss;
1486 unsigned long tmp_ss_mask;
1487 int ssid, i, ret;
1488
1489 lockdep_assert_held(&cgroup_mutex);
1490
1491 for_each_subsys_which(ss, ssid, &ss_mask) {
1492 /* if @ss has non-root csses attached to it, can't move */
1493 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1494 return -EBUSY;
1495
1496 /* can't move between two non-dummy roots either */
1497 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1498 return -EBUSY;
1499 }
1500
1501 /* skip creating root files on dfl_root for inhibited subsystems */
1502 tmp_ss_mask = ss_mask;
1503 if (dst_root == &cgrp_dfl_root)
1504 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1505
1506 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1507 struct cgroup *scgrp = &ss->root->cgrp;
1508 int tssid;
1509
1510 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1511 if (!ret)
1512 continue;
1513
1514 /*
1515 * Rebinding back to the default root is not allowed to
1516 * fail. Using both default and non-default roots should
1517 * be rare. Moving subsystems back and forth even more so.
1518 * Just warn about it and continue.
1519 */
1520 if (dst_root == &cgrp_dfl_root) {
1521 if (cgrp_dfl_root_visible) {
1522 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1523 ret, ss_mask);
1524 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1525 }
1526 continue;
1527 }
1528
1529 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1530 if (tssid == ssid)
1531 break;
1532 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1533 }
1534 return ret;
1535 }
1536
1537 /*
1538 * Nothing can fail from this point on. Remove files for the
1539 * removed subsystems and rebind each subsystem.
1540 */
1541 for_each_subsys_which(ss, ssid, &ss_mask) {
1542 struct cgroup_root *src_root = ss->root;
1543 struct cgroup *scgrp = &src_root->cgrp;
1544 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1545 struct css_set *cset;
1546
1547 WARN_ON(!css || cgroup_css(dcgrp, ss));
1548
1549 css_clear_dir(css, NULL);
1550
1551 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1552 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1553 ss->root = dst_root;
1554 css->cgroup = dcgrp;
1555
1556 spin_lock_irq(&css_set_lock);
1557 hash_for_each(css_set_table, i, cset, hlist)
1558 list_move_tail(&cset->e_cset_node[ss->id],
1559 &dcgrp->e_csets[ss->id]);
1560 spin_unlock_irq(&css_set_lock);
1561
1562 src_root->subsys_mask &= ~(1 << ssid);
1563 scgrp->subtree_control &= ~(1 << ssid);
1564 cgroup_refresh_child_subsys_mask(scgrp);
1565
1566 /* default hierarchy doesn't enable controllers by default */
1567 dst_root->subsys_mask |= 1 << ssid;
1568 if (dst_root == &cgrp_dfl_root) {
1569 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1570 } else {
1571 dcgrp->subtree_control |= 1 << ssid;
1572 cgroup_refresh_child_subsys_mask(dcgrp);
1573 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1574 }
1575
1576 if (ss->bind)
1577 ss->bind(css);
1578 }
1579
1580 kernfs_activate(dcgrp->kn);
1581 return 0;
1582 }
1583
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1584 static int cgroup_show_options(struct seq_file *seq,
1585 struct kernfs_root *kf_root)
1586 {
1587 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1588 struct cgroup_subsys *ss;
1589 int ssid;
1590
1591 if (root != &cgrp_dfl_root)
1592 for_each_subsys(ss, ssid)
1593 if (root->subsys_mask & (1 << ssid))
1594 seq_show_option(seq, ss->legacy_name, NULL);
1595 if (root->flags & CGRP_ROOT_NOPREFIX)
1596 seq_puts(seq, ",noprefix");
1597 if (root->flags & CGRP_ROOT_XATTR)
1598 seq_puts(seq, ",xattr");
1599
1600 spin_lock(&release_agent_path_lock);
1601 if (strlen(root->release_agent_path))
1602 seq_show_option(seq, "release_agent",
1603 root->release_agent_path);
1604 spin_unlock(&release_agent_path_lock);
1605
1606 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1607 seq_puts(seq, ",clone_children");
1608 if (strlen(root->name))
1609 seq_show_option(seq, "name", root->name);
1610 return 0;
1611 }
1612
1613 struct cgroup_sb_opts {
1614 unsigned long subsys_mask;
1615 unsigned int flags;
1616 char *release_agent;
1617 bool cpuset_clone_children;
1618 char *name;
1619 /* User explicitly requested empty subsystem */
1620 bool none;
1621 };
1622
parse_cgroupfs_options(char * data,struct cgroup_sb_opts * opts)1623 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1624 {
1625 char *token, *o = data;
1626 bool all_ss = false, one_ss = false;
1627 unsigned long mask = -1UL;
1628 struct cgroup_subsys *ss;
1629 int nr_opts = 0;
1630 int i;
1631
1632 #ifdef CONFIG_CPUSETS
1633 mask = ~(1U << cpuset_cgrp_id);
1634 #endif
1635
1636 memset(opts, 0, sizeof(*opts));
1637
1638 while ((token = strsep(&o, ",")) != NULL) {
1639 nr_opts++;
1640
1641 if (!*token)
1642 return -EINVAL;
1643 if (!strcmp(token, "none")) {
1644 /* Explicitly have no subsystems */
1645 opts->none = true;
1646 continue;
1647 }
1648 if (!strcmp(token, "all")) {
1649 /* Mutually exclusive option 'all' + subsystem name */
1650 if (one_ss)
1651 return -EINVAL;
1652 all_ss = true;
1653 continue;
1654 }
1655 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1656 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1657 continue;
1658 }
1659 if (!strcmp(token, "noprefix")) {
1660 opts->flags |= CGRP_ROOT_NOPREFIX;
1661 continue;
1662 }
1663 if (!strcmp(token, "clone_children")) {
1664 opts->cpuset_clone_children = true;
1665 continue;
1666 }
1667 if (!strcmp(token, "xattr")) {
1668 opts->flags |= CGRP_ROOT_XATTR;
1669 continue;
1670 }
1671 if (!strncmp(token, "release_agent=", 14)) {
1672 /* Specifying two release agents is forbidden */
1673 if (opts->release_agent)
1674 return -EINVAL;
1675 opts->release_agent =
1676 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1677 if (!opts->release_agent)
1678 return -ENOMEM;
1679 continue;
1680 }
1681 if (!strncmp(token, "name=", 5)) {
1682 const char *name = token + 5;
1683 /* Can't specify an empty name */
1684 if (!strlen(name))
1685 return -EINVAL;
1686 /* Must match [\w.-]+ */
1687 for (i = 0; i < strlen(name); i++) {
1688 char c = name[i];
1689 if (isalnum(c))
1690 continue;
1691 if ((c == '.') || (c == '-') || (c == '_'))
1692 continue;
1693 return -EINVAL;
1694 }
1695 /* Specifying two names is forbidden */
1696 if (opts->name)
1697 return -EINVAL;
1698 opts->name = kstrndup(name,
1699 MAX_CGROUP_ROOT_NAMELEN - 1,
1700 GFP_KERNEL);
1701 if (!opts->name)
1702 return -ENOMEM;
1703
1704 continue;
1705 }
1706
1707 for_each_subsys(ss, i) {
1708 if (strcmp(token, ss->legacy_name))
1709 continue;
1710 if (!cgroup_ssid_enabled(i))
1711 continue;
1712
1713 /* Mutually exclusive option 'all' + subsystem name */
1714 if (all_ss)
1715 return -EINVAL;
1716 opts->subsys_mask |= (1 << i);
1717 one_ss = true;
1718
1719 break;
1720 }
1721 if (i == CGROUP_SUBSYS_COUNT)
1722 return -ENOENT;
1723 }
1724
1725 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1726 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1727 if (nr_opts != 1) {
1728 pr_err("sane_behavior: no other mount options allowed\n");
1729 return -EINVAL;
1730 }
1731 return 0;
1732 }
1733
1734 /*
1735 * If the 'all' option was specified select all the subsystems,
1736 * otherwise if 'none', 'name=' and a subsystem name options were
1737 * not specified, let's default to 'all'
1738 */
1739 if (all_ss || (!one_ss && !opts->none && !opts->name))
1740 for_each_subsys(ss, i)
1741 if (cgroup_ssid_enabled(i))
1742 opts->subsys_mask |= (1 << i);
1743
1744 /*
1745 * We either have to specify by name or by subsystems. (So all
1746 * empty hierarchies must have a name).
1747 */
1748 if (!opts->subsys_mask && !opts->name)
1749 return -EINVAL;
1750
1751 /*
1752 * Option noprefix was introduced just for backward compatibility
1753 * with the old cpuset, so we allow noprefix only if mounting just
1754 * the cpuset subsystem.
1755 */
1756 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1757 return -EINVAL;
1758
1759 /* Can't specify "none" and some subsystems */
1760 if (opts->subsys_mask && opts->none)
1761 return -EINVAL;
1762
1763 return 0;
1764 }
1765
cgroup_remount(struct kernfs_root * kf_root,int * flags,char * data)1766 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1767 {
1768 int ret = 0;
1769 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1770 struct cgroup_sb_opts opts;
1771 unsigned long added_mask, removed_mask;
1772
1773 if (root == &cgrp_dfl_root) {
1774 pr_err("remount is not allowed\n");
1775 return -EINVAL;
1776 }
1777
1778 mutex_lock(&cgroup_mutex);
1779
1780 /* See what subsystems are wanted */
1781 ret = parse_cgroupfs_options(data, &opts);
1782 if (ret)
1783 goto out_unlock;
1784
1785 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1786 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1787 task_tgid_nr(current), current->comm);
1788
1789 added_mask = opts.subsys_mask & ~root->subsys_mask;
1790 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1791
1792 /* Don't allow flags or name to change at remount */
1793 if ((opts.flags ^ root->flags) ||
1794 (opts.name && strcmp(opts.name, root->name))) {
1795 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1796 opts.flags, opts.name ?: "", root->flags, root->name);
1797 ret = -EINVAL;
1798 goto out_unlock;
1799 }
1800
1801 /* remounting is not allowed for populated hierarchies */
1802 if (!list_empty(&root->cgrp.self.children)) {
1803 ret = -EBUSY;
1804 goto out_unlock;
1805 }
1806
1807 ret = rebind_subsystems(root, added_mask);
1808 if (ret)
1809 goto out_unlock;
1810
1811 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1812
1813 if (opts.release_agent) {
1814 spin_lock(&release_agent_path_lock);
1815 strcpy(root->release_agent_path, opts.release_agent);
1816 spin_unlock(&release_agent_path_lock);
1817 }
1818 out_unlock:
1819 kfree(opts.release_agent);
1820 kfree(opts.name);
1821 mutex_unlock(&cgroup_mutex);
1822 return ret;
1823 }
1824
1825 /*
1826 * To reduce the fork() overhead for systems that are not actually using
1827 * their cgroups capability, we don't maintain the lists running through
1828 * each css_set to its tasks until we see the list actually used - in other
1829 * words after the first mount.
1830 */
1831 static bool use_task_css_set_links __read_mostly;
1832
cgroup_enable_task_cg_lists(void)1833 static void cgroup_enable_task_cg_lists(void)
1834 {
1835 struct task_struct *p, *g;
1836
1837 spin_lock_irq(&css_set_lock);
1838
1839 if (use_task_css_set_links)
1840 goto out_unlock;
1841
1842 use_task_css_set_links = true;
1843
1844 /*
1845 * We need tasklist_lock because RCU is not safe against
1846 * while_each_thread(). Besides, a forking task that has passed
1847 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1848 * is not guaranteed to have its child immediately visible in the
1849 * tasklist if we walk through it with RCU.
1850 */
1851 read_lock(&tasklist_lock);
1852 do_each_thread(g, p) {
1853 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1854 task_css_set(p) != &init_css_set);
1855
1856 /*
1857 * We should check if the process is exiting, otherwise
1858 * it will race with cgroup_exit() in that the list
1859 * entry won't be deleted though the process has exited.
1860 * Do it while holding siglock so that we don't end up
1861 * racing against cgroup_exit().
1862 *
1863 * Interrupts were already disabled while acquiring
1864 * the css_set_lock, so we do not need to disable it
1865 * again when acquiring the sighand->siglock here.
1866 */
1867 spin_lock(&p->sighand->siglock);
1868 if (!(p->flags & PF_EXITING)) {
1869 struct css_set *cset = task_css_set(p);
1870
1871 if (!css_set_populated(cset))
1872 css_set_update_populated(cset, true);
1873 list_add_tail(&p->cg_list, &cset->tasks);
1874 get_css_set(cset);
1875 }
1876 spin_unlock(&p->sighand->siglock);
1877 } while_each_thread(g, p);
1878 read_unlock(&tasklist_lock);
1879 out_unlock:
1880 spin_unlock_irq(&css_set_lock);
1881 }
1882
init_cgroup_housekeeping(struct cgroup * cgrp)1883 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1884 {
1885 struct cgroup_subsys *ss;
1886 int ssid;
1887
1888 INIT_LIST_HEAD(&cgrp->self.sibling);
1889 INIT_LIST_HEAD(&cgrp->self.children);
1890 INIT_LIST_HEAD(&cgrp->cset_links);
1891 INIT_LIST_HEAD(&cgrp->pidlists);
1892 mutex_init(&cgrp->pidlist_mutex);
1893 cgrp->self.cgroup = cgrp;
1894 cgrp->self.flags |= CSS_ONLINE;
1895
1896 for_each_subsys(ss, ssid)
1897 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1898
1899 init_waitqueue_head(&cgrp->offline_waitq);
1900 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1901 }
1902
init_cgroup_root(struct cgroup_root * root,struct cgroup_sb_opts * opts)1903 static void init_cgroup_root(struct cgroup_root *root,
1904 struct cgroup_sb_opts *opts)
1905 {
1906 struct cgroup *cgrp = &root->cgrp;
1907
1908 INIT_LIST_HEAD(&root->root_list);
1909 atomic_set(&root->nr_cgrps, 1);
1910 cgrp->root = root;
1911 init_cgroup_housekeeping(cgrp);
1912 idr_init(&root->cgroup_idr);
1913
1914 root->flags = opts->flags;
1915 if (opts->release_agent)
1916 strcpy(root->release_agent_path, opts->release_agent);
1917 if (opts->name)
1918 strcpy(root->name, opts->name);
1919 if (opts->cpuset_clone_children)
1920 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1921 }
1922
cgroup_setup_root(struct cgroup_root * root,unsigned long ss_mask)1923 static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
1924 {
1925 LIST_HEAD(tmp_links);
1926 struct cgroup *root_cgrp = &root->cgrp;
1927 struct css_set *cset;
1928 int i, ret;
1929
1930 lockdep_assert_held(&cgroup_mutex);
1931
1932 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1933 if (ret < 0)
1934 goto out;
1935 root_cgrp->id = ret;
1936
1937 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1938 GFP_KERNEL);
1939 if (ret)
1940 goto out;
1941
1942 /*
1943 * We're accessing css_set_count without locking css_set_lock here,
1944 * but that's OK - it can only be increased by someone holding
1945 * cgroup_lock, and that's us. The worst that can happen is that we
1946 * have some link structures left over
1947 */
1948 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1949 if (ret)
1950 goto cancel_ref;
1951
1952 ret = cgroup_init_root_id(root);
1953 if (ret)
1954 goto cancel_ref;
1955
1956 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1957 KERNFS_ROOT_CREATE_DEACTIVATED,
1958 root_cgrp);
1959 if (IS_ERR(root->kf_root)) {
1960 ret = PTR_ERR(root->kf_root);
1961 goto exit_root_id;
1962 }
1963 root_cgrp->kn = root->kf_root->kn;
1964
1965 ret = css_populate_dir(&root_cgrp->self, NULL);
1966 if (ret)
1967 goto destroy_root;
1968
1969 ret = rebind_subsystems(root, ss_mask);
1970 if (ret)
1971 goto destroy_root;
1972
1973 /*
1974 * There must be no failure case after here, since rebinding takes
1975 * care of subsystems' refcounts, which are explicitly dropped in
1976 * the failure exit path.
1977 */
1978 list_add(&root->root_list, &cgroup_roots);
1979 cgroup_root_count++;
1980
1981 /*
1982 * Link the root cgroup in this hierarchy into all the css_set
1983 * objects.
1984 */
1985 spin_lock_irq(&css_set_lock);
1986 hash_for_each(css_set_table, i, cset, hlist) {
1987 link_css_set(&tmp_links, cset, root_cgrp);
1988 if (css_set_populated(cset))
1989 cgroup_update_populated(root_cgrp, true);
1990 }
1991 spin_unlock_irq(&css_set_lock);
1992
1993 BUG_ON(!list_empty(&root_cgrp->self.children));
1994 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1995
1996 kernfs_activate(root_cgrp->kn);
1997 ret = 0;
1998 goto out;
1999
2000 destroy_root:
2001 kernfs_destroy_root(root->kf_root);
2002 root->kf_root = NULL;
2003 exit_root_id:
2004 cgroup_exit_root_id(root);
2005 cancel_ref:
2006 percpu_ref_exit(&root_cgrp->self.refcnt);
2007 out:
2008 free_cgrp_cset_links(&tmp_links);
2009 return ret;
2010 }
2011
cgroup_mount(struct file_system_type * fs_type,int flags,const char * unused_dev_name,void * data)2012 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2013 int flags, const char *unused_dev_name,
2014 void *data)
2015 {
2016 struct super_block *pinned_sb = NULL;
2017 struct cgroup_subsys *ss;
2018 struct cgroup_root *root;
2019 struct cgroup_sb_opts opts;
2020 struct dentry *dentry;
2021 int ret;
2022 int i;
2023 bool new_sb;
2024
2025 /*
2026 * The first time anyone tries to mount a cgroup, enable the list
2027 * linking each css_set to its tasks and fix up all existing tasks.
2028 */
2029 if (!use_task_css_set_links)
2030 cgroup_enable_task_cg_lists();
2031
2032 mutex_lock(&cgroup_mutex);
2033
2034 /* First find the desired set of subsystems */
2035 ret = parse_cgroupfs_options(data, &opts);
2036 if (ret)
2037 goto out_unlock;
2038
2039 /* look for a matching existing root */
2040 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
2041 cgrp_dfl_root_visible = true;
2042 root = &cgrp_dfl_root;
2043 cgroup_get(&root->cgrp);
2044 ret = 0;
2045 goto out_unlock;
2046 }
2047
2048 /*
2049 * Destruction of cgroup root is asynchronous, so subsystems may
2050 * still be dying after the previous unmount. Let's drain the
2051 * dying subsystems. We just need to ensure that the ones
2052 * unmounted previously finish dying and don't care about new ones
2053 * starting. Testing ref liveliness is good enough.
2054 */
2055 for_each_subsys(ss, i) {
2056 if (!(opts.subsys_mask & (1 << i)) ||
2057 ss->root == &cgrp_dfl_root)
2058 continue;
2059
2060 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2061 mutex_unlock(&cgroup_mutex);
2062 msleep(10);
2063 ret = restart_syscall();
2064 goto out_free;
2065 }
2066 cgroup_put(&ss->root->cgrp);
2067 }
2068
2069 for_each_root(root) {
2070 bool name_match = false;
2071
2072 if (root == &cgrp_dfl_root)
2073 continue;
2074
2075 /*
2076 * If we asked for a name then it must match. Also, if
2077 * name matches but sybsys_mask doesn't, we should fail.
2078 * Remember whether name matched.
2079 */
2080 if (opts.name) {
2081 if (strcmp(opts.name, root->name))
2082 continue;
2083 name_match = true;
2084 }
2085
2086 /*
2087 * If we asked for subsystems (or explicitly for no
2088 * subsystems) then they must match.
2089 */
2090 if ((opts.subsys_mask || opts.none) &&
2091 (opts.subsys_mask != root->subsys_mask)) {
2092 if (!name_match)
2093 continue;
2094 ret = -EBUSY;
2095 goto out_unlock;
2096 }
2097
2098 if (root->flags ^ opts.flags)
2099 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2100
2101 /*
2102 * We want to reuse @root whose lifetime is governed by its
2103 * ->cgrp. Let's check whether @root is alive and keep it
2104 * that way. As cgroup_kill_sb() can happen anytime, we
2105 * want to block it by pinning the sb so that @root doesn't
2106 * get killed before mount is complete.
2107 *
2108 * With the sb pinned, tryget_live can reliably indicate
2109 * whether @root can be reused. If it's being killed,
2110 * drain it. We can use wait_queue for the wait but this
2111 * path is super cold. Let's just sleep a bit and retry.
2112 */
2113 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2114 if (IS_ERR(pinned_sb) ||
2115 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2116 mutex_unlock(&cgroup_mutex);
2117 if (!IS_ERR_OR_NULL(pinned_sb))
2118 deactivate_super(pinned_sb);
2119 msleep(10);
2120 ret = restart_syscall();
2121 goto out_free;
2122 }
2123
2124 ret = 0;
2125 goto out_unlock;
2126 }
2127
2128 /*
2129 * No such thing, create a new one. name= matching without subsys
2130 * specification is allowed for already existing hierarchies but we
2131 * can't create new one without subsys specification.
2132 */
2133 if (!opts.subsys_mask && !opts.none) {
2134 ret = -EINVAL;
2135 goto out_unlock;
2136 }
2137
2138 root = kzalloc(sizeof(*root), GFP_KERNEL);
2139 if (!root) {
2140 ret = -ENOMEM;
2141 goto out_unlock;
2142 }
2143
2144 init_cgroup_root(root, &opts);
2145
2146 ret = cgroup_setup_root(root, opts.subsys_mask);
2147 if (ret)
2148 cgroup_free_root(root);
2149
2150 out_unlock:
2151 mutex_unlock(&cgroup_mutex);
2152 out_free:
2153 kfree(opts.release_agent);
2154 kfree(opts.name);
2155
2156 if (ret)
2157 return ERR_PTR(ret);
2158
2159 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2160 CGROUP_SUPER_MAGIC, &new_sb);
2161 if (IS_ERR(dentry) || !new_sb)
2162 cgroup_put(&root->cgrp);
2163
2164 /*
2165 * If @pinned_sb, we're reusing an existing root and holding an
2166 * extra ref on its sb. Mount is complete. Put the extra ref.
2167 */
2168 if (pinned_sb) {
2169 WARN_ON(new_sb);
2170 deactivate_super(pinned_sb);
2171 }
2172
2173 return dentry;
2174 }
2175
cgroup_kill_sb(struct super_block * sb)2176 static void cgroup_kill_sb(struct super_block *sb)
2177 {
2178 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2179 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2180
2181 /*
2182 * If @root doesn't have any mounts or children, start killing it.
2183 * This prevents new mounts by disabling percpu_ref_tryget_live().
2184 * cgroup_mount() may wait for @root's release.
2185 *
2186 * And don't kill the default root.
2187 */
2188 if (!list_empty(&root->cgrp.self.children) ||
2189 root == &cgrp_dfl_root)
2190 cgroup_put(&root->cgrp);
2191 else
2192 percpu_ref_kill(&root->cgrp.self.refcnt);
2193
2194 kernfs_kill_sb(sb);
2195 }
2196
2197 static struct file_system_type cgroup_fs_type = {
2198 .name = "cgroup",
2199 .mount = cgroup_mount,
2200 .kill_sb = cgroup_kill_sb,
2201 };
2202
2203 /**
2204 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2205 * @task: target task
2206 * @buf: the buffer to write the path into
2207 * @buflen: the length of the buffer
2208 *
2209 * Determine @task's cgroup on the first (the one with the lowest non-zero
2210 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2211 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2212 * cgroup controller callbacks.
2213 *
2214 * Return value is the same as kernfs_path().
2215 */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2216 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2217 {
2218 struct cgroup_root *root;
2219 struct cgroup *cgrp;
2220 int hierarchy_id = 1;
2221 char *path = NULL;
2222
2223 mutex_lock(&cgroup_mutex);
2224 spin_lock_irq(&css_set_lock);
2225
2226 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2227
2228 if (root) {
2229 cgrp = task_cgroup_from_root(task, root);
2230 path = cgroup_path(cgrp, buf, buflen);
2231 } else {
2232 /* if no hierarchy exists, everyone is in "/" */
2233 if (strlcpy(buf, "/", buflen) < buflen)
2234 path = buf;
2235 }
2236
2237 spin_unlock_irq(&css_set_lock);
2238 mutex_unlock(&cgroup_mutex);
2239 return path;
2240 }
2241 EXPORT_SYMBOL_GPL(task_cgroup_path);
2242
2243 /* used to track tasks and other necessary states during migration */
2244 struct cgroup_taskset {
2245 /* the src and dst cset list running through cset->mg_node */
2246 struct list_head src_csets;
2247 struct list_head dst_csets;
2248
2249 /* the subsys currently being processed */
2250 int ssid;
2251
2252 /*
2253 * Fields for cgroup_taskset_*() iteration.
2254 *
2255 * Before migration is committed, the target migration tasks are on
2256 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2257 * the csets on ->dst_csets. ->csets point to either ->src_csets
2258 * or ->dst_csets depending on whether migration is committed.
2259 *
2260 * ->cur_csets and ->cur_task point to the current task position
2261 * during iteration.
2262 */
2263 struct list_head *csets;
2264 struct css_set *cur_cset;
2265 struct task_struct *cur_task;
2266 };
2267
2268 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2269 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2270 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2271 .csets = &tset.src_csets, \
2272 }
2273
2274 /**
2275 * cgroup_taskset_add - try to add a migration target task to a taskset
2276 * @task: target task
2277 * @tset: target taskset
2278 *
2279 * Add @task, which is a migration target, to @tset. This function becomes
2280 * noop if @task doesn't need to be migrated. @task's css_set should have
2281 * been added as a migration source and @task->cg_list will be moved from
2282 * the css_set's tasks list to mg_tasks one.
2283 */
cgroup_taskset_add(struct task_struct * task,struct cgroup_taskset * tset)2284 static void cgroup_taskset_add(struct task_struct *task,
2285 struct cgroup_taskset *tset)
2286 {
2287 struct css_set *cset;
2288
2289 lockdep_assert_held(&css_set_lock);
2290
2291 /* @task either already exited or can't exit until the end */
2292 if (task->flags & PF_EXITING)
2293 return;
2294
2295 /* leave @task alone if post_fork() hasn't linked it yet */
2296 if (list_empty(&task->cg_list))
2297 return;
2298
2299 cset = task_css_set(task);
2300 if (!cset->mg_src_cgrp)
2301 return;
2302
2303 list_move_tail(&task->cg_list, &cset->mg_tasks);
2304 if (list_empty(&cset->mg_node))
2305 list_add_tail(&cset->mg_node, &tset->src_csets);
2306 if (list_empty(&cset->mg_dst_cset->mg_node))
2307 list_move_tail(&cset->mg_dst_cset->mg_node,
2308 &tset->dst_csets);
2309 }
2310
2311 /**
2312 * cgroup_taskset_first - reset taskset and return the first task
2313 * @tset: taskset of interest
2314 * @dst_cssp: output variable for the destination css
2315 *
2316 * @tset iteration is initialized and the first task is returned.
2317 */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2318 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2319 struct cgroup_subsys_state **dst_cssp)
2320 {
2321 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2322 tset->cur_task = NULL;
2323
2324 return cgroup_taskset_next(tset, dst_cssp);
2325 }
2326
2327 /**
2328 * cgroup_taskset_next - iterate to the next task in taskset
2329 * @tset: taskset of interest
2330 * @dst_cssp: output variable for the destination css
2331 *
2332 * Return the next task in @tset. Iteration must have been initialized
2333 * with cgroup_taskset_first().
2334 */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2335 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2336 struct cgroup_subsys_state **dst_cssp)
2337 {
2338 struct css_set *cset = tset->cur_cset;
2339 struct task_struct *task = tset->cur_task;
2340
2341 while (&cset->mg_node != tset->csets) {
2342 if (!task)
2343 task = list_first_entry(&cset->mg_tasks,
2344 struct task_struct, cg_list);
2345 else
2346 task = list_next_entry(task, cg_list);
2347
2348 if (&task->cg_list != &cset->mg_tasks) {
2349 tset->cur_cset = cset;
2350 tset->cur_task = task;
2351
2352 /*
2353 * This function may be called both before and
2354 * after cgroup_taskset_migrate(). The two cases
2355 * can be distinguished by looking at whether @cset
2356 * has its ->mg_dst_cset set.
2357 */
2358 if (cset->mg_dst_cset)
2359 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2360 else
2361 *dst_cssp = cset->subsys[tset->ssid];
2362
2363 return task;
2364 }
2365
2366 cset = list_next_entry(cset, mg_node);
2367 task = NULL;
2368 }
2369
2370 return NULL;
2371 }
2372
2373 /**
2374 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2375 * @tset: taget taskset
2376 * @dst_cgrp: destination cgroup
2377 *
2378 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2379 * ->can_attach callbacks fails and guarantees that either all or none of
2380 * the tasks in @tset are migrated. @tset is consumed regardless of
2381 * success.
2382 */
cgroup_taskset_migrate(struct cgroup_taskset * tset,struct cgroup * dst_cgrp)2383 static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2384 struct cgroup *dst_cgrp)
2385 {
2386 struct cgroup_subsys_state *css, *failed_css = NULL;
2387 struct task_struct *task, *tmp_task;
2388 struct css_set *cset, *tmp_cset;
2389 int i, ret;
2390
2391 /* methods shouldn't be called if no task is actually migrating */
2392 if (list_empty(&tset->src_csets))
2393 return 0;
2394
2395 /* check that we can legitimately attach to the cgroup */
2396 for_each_e_css(css, i, dst_cgrp) {
2397 if (css->ss->can_attach) {
2398 tset->ssid = i;
2399 ret = css->ss->can_attach(tset);
2400 if (ret) {
2401 failed_css = css;
2402 goto out_cancel_attach;
2403 }
2404 }
2405 }
2406
2407 /*
2408 * Now that we're guaranteed success, proceed to move all tasks to
2409 * the new cgroup. There are no failure cases after here, so this
2410 * is the commit point.
2411 */
2412 spin_lock_irq(&css_set_lock);
2413 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2414 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2415 struct css_set *from_cset = task_css_set(task);
2416 struct css_set *to_cset = cset->mg_dst_cset;
2417
2418 get_css_set(to_cset);
2419 css_set_move_task(task, from_cset, to_cset, true);
2420 put_css_set_locked(from_cset);
2421 }
2422 }
2423 spin_unlock_irq(&css_set_lock);
2424
2425 /*
2426 * Migration is committed, all target tasks are now on dst_csets.
2427 * Nothing is sensitive to fork() after this point. Notify
2428 * controllers that migration is complete.
2429 */
2430 tset->csets = &tset->dst_csets;
2431
2432 for_each_e_css(css, i, dst_cgrp) {
2433 if (css->ss->attach) {
2434 tset->ssid = i;
2435 css->ss->attach(tset);
2436 }
2437 }
2438
2439 ret = 0;
2440 goto out_release_tset;
2441
2442 out_cancel_attach:
2443 for_each_e_css(css, i, dst_cgrp) {
2444 if (css == failed_css)
2445 break;
2446 if (css->ss->cancel_attach) {
2447 tset->ssid = i;
2448 css->ss->cancel_attach(tset);
2449 }
2450 }
2451 out_release_tset:
2452 spin_lock_irq(&css_set_lock);
2453 list_splice_init(&tset->dst_csets, &tset->src_csets);
2454 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2455 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2456 list_del_init(&cset->mg_node);
2457 }
2458 spin_unlock_irq(&css_set_lock);
2459 return ret;
2460 }
2461
2462 /**
2463 * cgroup_migrate_finish - cleanup after attach
2464 * @preloaded_csets: list of preloaded css_sets
2465 *
2466 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2467 * those functions for details.
2468 */
cgroup_migrate_finish(struct list_head * preloaded_csets)2469 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2470 {
2471 struct css_set *cset, *tmp_cset;
2472
2473 lockdep_assert_held(&cgroup_mutex);
2474
2475 spin_lock_irq(&css_set_lock);
2476 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2477 cset->mg_src_cgrp = NULL;
2478 cset->mg_dst_cset = NULL;
2479 list_del_init(&cset->mg_preload_node);
2480 put_css_set_locked(cset);
2481 }
2482 spin_unlock_irq(&css_set_lock);
2483 }
2484
2485 /**
2486 * cgroup_migrate_add_src - add a migration source css_set
2487 * @src_cset: the source css_set to add
2488 * @dst_cgrp: the destination cgroup
2489 * @preloaded_csets: list of preloaded css_sets
2490 *
2491 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2492 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2493 * up by cgroup_migrate_finish().
2494 *
2495 * This function may be called without holding cgroup_threadgroup_rwsem
2496 * even if the target is a process. Threads may be created and destroyed
2497 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2498 * into play and the preloaded css_sets are guaranteed to cover all
2499 * migrations.
2500 */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct list_head * preloaded_csets)2501 static void cgroup_migrate_add_src(struct css_set *src_cset,
2502 struct cgroup *dst_cgrp,
2503 struct list_head *preloaded_csets)
2504 {
2505 struct cgroup *src_cgrp;
2506
2507 lockdep_assert_held(&cgroup_mutex);
2508 lockdep_assert_held(&css_set_lock);
2509
2510 /*
2511 * If ->dead, @src_set is associated with one or more dead cgroups
2512 * and doesn't contain any migratable tasks. Ignore it early so
2513 * that the rest of migration path doesn't get confused by it.
2514 */
2515 if (src_cset->dead)
2516 return;
2517
2518 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2519
2520 if (!list_empty(&src_cset->mg_preload_node))
2521 return;
2522
2523 WARN_ON(src_cset->mg_src_cgrp);
2524 WARN_ON(!list_empty(&src_cset->mg_tasks));
2525 WARN_ON(!list_empty(&src_cset->mg_node));
2526
2527 src_cset->mg_src_cgrp = src_cgrp;
2528 get_css_set(src_cset);
2529 list_add(&src_cset->mg_preload_node, preloaded_csets);
2530 }
2531
2532 /**
2533 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2534 * @dst_cgrp: the destination cgroup (may be %NULL)
2535 * @preloaded_csets: list of preloaded source css_sets
2536 *
2537 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2538 * have been preloaded to @preloaded_csets. This function looks up and
2539 * pins all destination css_sets, links each to its source, and append them
2540 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2541 * source css_set is assumed to be its cgroup on the default hierarchy.
2542 *
2543 * This function must be called after cgroup_migrate_add_src() has been
2544 * called on each migration source css_set. After migration is performed
2545 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2546 * @preloaded_csets.
2547 */
cgroup_migrate_prepare_dst(struct cgroup * dst_cgrp,struct list_head * preloaded_csets)2548 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2549 struct list_head *preloaded_csets)
2550 {
2551 LIST_HEAD(csets);
2552 struct css_set *src_cset, *tmp_cset;
2553
2554 lockdep_assert_held(&cgroup_mutex);
2555
2556 /*
2557 * Except for the root, child_subsys_mask must be zero for a cgroup
2558 * with tasks so that child cgroups don't compete against tasks.
2559 */
2560 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2561 dst_cgrp->child_subsys_mask)
2562 return -EBUSY;
2563
2564 /* look up the dst cset for each src cset and link it to src */
2565 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2566 struct css_set *dst_cset;
2567
2568 dst_cset = find_css_set(src_cset,
2569 dst_cgrp ?: src_cset->dfl_cgrp);
2570 if (!dst_cset)
2571 goto err;
2572
2573 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2574
2575 /*
2576 * If src cset equals dst, it's noop. Drop the src.
2577 * cgroup_migrate() will skip the cset too. Note that we
2578 * can't handle src == dst as some nodes are used by both.
2579 */
2580 if (src_cset == dst_cset) {
2581 src_cset->mg_src_cgrp = NULL;
2582 list_del_init(&src_cset->mg_preload_node);
2583 put_css_set(src_cset);
2584 put_css_set(dst_cset);
2585 continue;
2586 }
2587
2588 src_cset->mg_dst_cset = dst_cset;
2589
2590 if (list_empty(&dst_cset->mg_preload_node))
2591 list_add(&dst_cset->mg_preload_node, &csets);
2592 else
2593 put_css_set(dst_cset);
2594 }
2595
2596 list_splice_tail(&csets, preloaded_csets);
2597 return 0;
2598 err:
2599 cgroup_migrate_finish(&csets);
2600 return -ENOMEM;
2601 }
2602
2603 /**
2604 * cgroup_migrate - migrate a process or task to a cgroup
2605 * @leader: the leader of the process or the task to migrate
2606 * @threadgroup: whether @leader points to the whole process or a single task
2607 * @cgrp: the destination cgroup
2608 *
2609 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2610 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2611 * caller is also responsible for invoking cgroup_migrate_add_src() and
2612 * cgroup_migrate_prepare_dst() on the targets before invoking this
2613 * function and following up with cgroup_migrate_finish().
2614 *
2615 * As long as a controller's ->can_attach() doesn't fail, this function is
2616 * guaranteed to succeed. This means that, excluding ->can_attach()
2617 * failure, when migrating multiple targets, the success or failure can be
2618 * decided for all targets by invoking group_migrate_prepare_dst() before
2619 * actually starting migrating.
2620 */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup * cgrp)2621 static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2622 struct cgroup *cgrp)
2623 {
2624 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2625 struct task_struct *task;
2626
2627 /*
2628 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2629 * already PF_EXITING could be freed from underneath us unless we
2630 * take an rcu_read_lock.
2631 */
2632 spin_lock_irq(&css_set_lock);
2633 rcu_read_lock();
2634 task = leader;
2635 do {
2636 cgroup_taskset_add(task, &tset);
2637 if (!threadgroup)
2638 break;
2639 } while_each_thread(leader, task);
2640 rcu_read_unlock();
2641 spin_unlock_irq(&css_set_lock);
2642
2643 return cgroup_taskset_migrate(&tset, cgrp);
2644 }
2645
2646 /**
2647 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2648 * @dst_cgrp: the cgroup to attach to
2649 * @leader: the task or the leader of the threadgroup to be attached
2650 * @threadgroup: attach the whole threadgroup?
2651 *
2652 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2653 */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2654 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2655 struct task_struct *leader, bool threadgroup)
2656 {
2657 LIST_HEAD(preloaded_csets);
2658 struct task_struct *task;
2659 int ret;
2660
2661 /* look up all src csets */
2662 spin_lock_irq(&css_set_lock);
2663 rcu_read_lock();
2664 task = leader;
2665 do {
2666 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2667 &preloaded_csets);
2668 if (!threadgroup)
2669 break;
2670 } while_each_thread(leader, task);
2671 rcu_read_unlock();
2672 spin_unlock_irq(&css_set_lock);
2673
2674 /* prepare dst csets and commit */
2675 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2676 if (!ret)
2677 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
2678
2679 cgroup_migrate_finish(&preloaded_csets);
2680 return ret;
2681 }
2682
cgroup_procs_write_permission(struct task_struct * task,struct cgroup * dst_cgrp,struct kernfs_open_file * of)2683 static int cgroup_procs_write_permission(struct task_struct *task,
2684 struct cgroup *dst_cgrp,
2685 struct kernfs_open_file *of)
2686 {
2687 const struct cred *cred = current_cred();
2688 const struct cred *tcred = get_task_cred(task);
2689 int ret = 0;
2690
2691 /*
2692 * even if we're attaching all tasks in the thread group, we only
2693 * need to check permissions on one of them.
2694 */
2695 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2696 !uid_eq(cred->euid, tcred->uid) &&
2697 !uid_eq(cred->euid, tcred->suid) &&
2698 !ns_capable(tcred->user_ns, CAP_SYS_NICE))
2699 ret = -EACCES;
2700
2701 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2702 struct super_block *sb = of->file->f_path.dentry->d_sb;
2703 struct cgroup *cgrp;
2704 struct inode *inode;
2705
2706 spin_lock_irq(&css_set_lock);
2707 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2708 spin_unlock_irq(&css_set_lock);
2709
2710 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2711 cgrp = cgroup_parent(cgrp);
2712
2713 ret = -ENOMEM;
2714 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2715 if (inode) {
2716 ret = inode_permission(inode, MAY_WRITE);
2717 iput(inode);
2718 }
2719 }
2720
2721 put_cred(tcred);
2722 return ret;
2723 }
2724
2725 /*
2726 * Find the task_struct of the task to attach by vpid and pass it along to the
2727 * function to attach either it or all tasks in its threadgroup. Will lock
2728 * cgroup_mutex and threadgroup.
2729 */
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool threadgroup)2730 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2731 size_t nbytes, loff_t off, bool threadgroup)
2732 {
2733 struct task_struct *tsk;
2734 struct cgroup_subsys *ss;
2735 struct cgroup *cgrp;
2736 pid_t pid;
2737 int ssid, ret;
2738
2739 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2740 return -EINVAL;
2741
2742 cgrp = cgroup_kn_lock_live(of->kn);
2743 if (!cgrp)
2744 return -ENODEV;
2745
2746 percpu_down_write(&cgroup_threadgroup_rwsem);
2747 rcu_read_lock();
2748 if (pid) {
2749 tsk = find_task_by_vpid(pid);
2750 if (!tsk) {
2751 ret = -ESRCH;
2752 goto out_unlock_rcu;
2753 }
2754 } else {
2755 tsk = current;
2756 }
2757
2758 if (threadgroup)
2759 tsk = tsk->group_leader;
2760
2761 /*
2762 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2763 * If userland migrates such a kthread to a non-root cgroup, it can
2764 * become trapped in a cpuset, or RT kthread may be born in a
2765 * cgroup with no rt_runtime allocated. Just say no.
2766 */
2767 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2768 ret = -EINVAL;
2769 goto out_unlock_rcu;
2770 }
2771
2772 get_task_struct(tsk);
2773 rcu_read_unlock();
2774
2775 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2776 if (!ret)
2777 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2778
2779 put_task_struct(tsk);
2780 goto out_unlock_threadgroup;
2781
2782 out_unlock_rcu:
2783 rcu_read_unlock();
2784 out_unlock_threadgroup:
2785 percpu_up_write(&cgroup_threadgroup_rwsem);
2786 for_each_subsys(ss, ssid)
2787 if (ss->post_attach)
2788 ss->post_attach();
2789 cgroup_kn_unlock(of->kn);
2790 return ret ?: nbytes;
2791 }
2792
2793 /**
2794 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2795 * @from: attach to all cgroups of a given task
2796 * @tsk: the task to be attached
2797 */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)2798 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2799 {
2800 struct cgroup_root *root;
2801 int retval = 0;
2802
2803 mutex_lock(&cgroup_mutex);
2804 for_each_root(root) {
2805 struct cgroup *from_cgrp;
2806
2807 if (root == &cgrp_dfl_root)
2808 continue;
2809
2810 spin_lock_irq(&css_set_lock);
2811 from_cgrp = task_cgroup_from_root(from, root);
2812 spin_unlock_irq(&css_set_lock);
2813
2814 retval = cgroup_attach_task(from_cgrp, tsk, false);
2815 if (retval)
2816 break;
2817 }
2818 mutex_unlock(&cgroup_mutex);
2819
2820 return retval;
2821 }
2822 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2823
cgroup_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2824 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2825 char *buf, size_t nbytes, loff_t off)
2826 {
2827 return __cgroup_procs_write(of, buf, nbytes, off, false);
2828 }
2829
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2830 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2831 char *buf, size_t nbytes, loff_t off)
2832 {
2833 return __cgroup_procs_write(of, buf, nbytes, off, true);
2834 }
2835
cgroup_release_agent_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2836 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2837 char *buf, size_t nbytes, loff_t off)
2838 {
2839 struct cgroup *cgrp;
2840
2841 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2842
2843 cgrp = cgroup_kn_lock_live(of->kn);
2844 if (!cgrp)
2845 return -ENODEV;
2846 spin_lock(&release_agent_path_lock);
2847 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2848 sizeof(cgrp->root->release_agent_path));
2849 spin_unlock(&release_agent_path_lock);
2850 cgroup_kn_unlock(of->kn);
2851 return nbytes;
2852 }
2853
cgroup_release_agent_show(struct seq_file * seq,void * v)2854 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2855 {
2856 struct cgroup *cgrp = seq_css(seq)->cgroup;
2857
2858 spin_lock(&release_agent_path_lock);
2859 seq_puts(seq, cgrp->root->release_agent_path);
2860 spin_unlock(&release_agent_path_lock);
2861 seq_putc(seq, '\n');
2862 return 0;
2863 }
2864
cgroup_sane_behavior_show(struct seq_file * seq,void * v)2865 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2866 {
2867 seq_puts(seq, "0\n");
2868 return 0;
2869 }
2870
cgroup_print_ss_mask(struct seq_file * seq,unsigned long ss_mask)2871 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
2872 {
2873 struct cgroup_subsys *ss;
2874 bool printed = false;
2875 int ssid;
2876
2877 for_each_subsys_which(ss, ssid, &ss_mask) {
2878 if (printed)
2879 seq_putc(seq, ' ');
2880 seq_printf(seq, "%s", ss->name);
2881 printed = true;
2882 }
2883 if (printed)
2884 seq_putc(seq, '\n');
2885 }
2886
2887 /* show controllers which are currently attached to the default hierarchy */
cgroup_root_controllers_show(struct seq_file * seq,void * v)2888 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2889 {
2890 struct cgroup *cgrp = seq_css(seq)->cgroup;
2891
2892 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2893 ~cgrp_dfl_root_inhibit_ss_mask);
2894 return 0;
2895 }
2896
2897 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)2898 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2899 {
2900 struct cgroup *cgrp = seq_css(seq)->cgroup;
2901
2902 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2903 return 0;
2904 }
2905
2906 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)2907 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2908 {
2909 struct cgroup *cgrp = seq_css(seq)->cgroup;
2910
2911 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2912 return 0;
2913 }
2914
2915 /**
2916 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2917 * @cgrp: root of the subtree to update csses for
2918 *
2919 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2920 * css associations need to be updated accordingly. This function looks up
2921 * all css_sets which are attached to the subtree, creates the matching
2922 * updated css_sets and migrates the tasks to the new ones.
2923 */
cgroup_update_dfl_csses(struct cgroup * cgrp)2924 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2925 {
2926 LIST_HEAD(preloaded_csets);
2927 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2928 struct cgroup_subsys_state *css;
2929 struct css_set *src_cset;
2930 int ret;
2931
2932 lockdep_assert_held(&cgroup_mutex);
2933
2934 percpu_down_write(&cgroup_threadgroup_rwsem);
2935
2936 /* look up all csses currently attached to @cgrp's subtree */
2937 spin_lock_irq(&css_set_lock);
2938 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2939 struct cgrp_cset_link *link;
2940
2941 /* self is not affected by child_subsys_mask change */
2942 if (css->cgroup == cgrp)
2943 continue;
2944
2945 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2946 cgroup_migrate_add_src(link->cset, cgrp,
2947 &preloaded_csets);
2948 }
2949 spin_unlock_irq(&css_set_lock);
2950
2951 /* NULL dst indicates self on default hierarchy */
2952 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2953 if (ret)
2954 goto out_finish;
2955
2956 spin_lock_irq(&css_set_lock);
2957 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2958 struct task_struct *task, *ntask;
2959
2960 /* src_csets precede dst_csets, break on the first dst_cset */
2961 if (!src_cset->mg_src_cgrp)
2962 break;
2963
2964 /* all tasks in src_csets need to be migrated */
2965 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2966 cgroup_taskset_add(task, &tset);
2967 }
2968 spin_unlock_irq(&css_set_lock);
2969
2970 ret = cgroup_taskset_migrate(&tset, cgrp);
2971 out_finish:
2972 cgroup_migrate_finish(&preloaded_csets);
2973 percpu_up_write(&cgroup_threadgroup_rwsem);
2974 return ret;
2975 }
2976
2977 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2978 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2979 char *buf, size_t nbytes,
2980 loff_t off)
2981 {
2982 unsigned long enable = 0, disable = 0;
2983 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2984 struct cgroup *cgrp, *child;
2985 struct cgroup_subsys *ss;
2986 char *tok;
2987 int ssid, ret;
2988
2989 /*
2990 * Parse input - space separated list of subsystem names prefixed
2991 * with either + or -.
2992 */
2993 buf = strstrip(buf);
2994 while ((tok = strsep(&buf, " "))) {
2995 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2996
2997 if (tok[0] == '\0')
2998 continue;
2999 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
3000 if (!cgroup_ssid_enabled(ssid) ||
3001 strcmp(tok + 1, ss->name))
3002 continue;
3003
3004 if (*tok == '+') {
3005 enable |= 1 << ssid;
3006 disable &= ~(1 << ssid);
3007 } else if (*tok == '-') {
3008 disable |= 1 << ssid;
3009 enable &= ~(1 << ssid);
3010 } else {
3011 return -EINVAL;
3012 }
3013 break;
3014 }
3015 if (ssid == CGROUP_SUBSYS_COUNT)
3016 return -EINVAL;
3017 }
3018
3019 cgrp = cgroup_kn_lock_live(of->kn);
3020 if (!cgrp)
3021 return -ENODEV;
3022
3023 for_each_subsys(ss, ssid) {
3024 if (enable & (1 << ssid)) {
3025 if (cgrp->subtree_control & (1 << ssid)) {
3026 enable &= ~(1 << ssid);
3027 continue;
3028 }
3029
3030 /* unavailable or not enabled on the parent? */
3031 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
3032 (cgroup_parent(cgrp) &&
3033 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
3034 ret = -ENOENT;
3035 goto out_unlock;
3036 }
3037 } else if (disable & (1 << ssid)) {
3038 if (!(cgrp->subtree_control & (1 << ssid))) {
3039 disable &= ~(1 << ssid);
3040 continue;
3041 }
3042
3043 /* a child has it enabled? */
3044 cgroup_for_each_live_child(child, cgrp) {
3045 if (child->subtree_control & (1 << ssid)) {
3046 ret = -EBUSY;
3047 goto out_unlock;
3048 }
3049 }
3050 }
3051 }
3052
3053 if (!enable && !disable) {
3054 ret = 0;
3055 goto out_unlock;
3056 }
3057
3058 /*
3059 * Except for the root, subtree_control must be zero for a cgroup
3060 * with tasks so that child cgroups don't compete against tasks.
3061 */
3062 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
3063 ret = -EBUSY;
3064 goto out_unlock;
3065 }
3066
3067 /*
3068 * Update subsys masks and calculate what needs to be done. More
3069 * subsystems than specified may need to be enabled or disabled
3070 * depending on subsystem dependencies.
3071 */
3072 old_sc = cgrp->subtree_control;
3073 old_ss = cgrp->child_subsys_mask;
3074 new_sc = (old_sc | enable) & ~disable;
3075 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
3076
3077 css_enable = ~old_ss & new_ss;
3078 css_disable = old_ss & ~new_ss;
3079 enable |= css_enable;
3080 disable |= css_disable;
3081
3082 /*
3083 * Because css offlining is asynchronous, userland might try to
3084 * re-enable the same controller while the previous instance is
3085 * still around. In such cases, wait till it's gone using
3086 * offline_waitq.
3087 */
3088 for_each_subsys_which(ss, ssid, &css_enable) {
3089 cgroup_for_each_live_child(child, cgrp) {
3090 DEFINE_WAIT(wait);
3091
3092 if (!cgroup_css(child, ss))
3093 continue;
3094
3095 cgroup_get(child);
3096 prepare_to_wait(&child->offline_waitq, &wait,
3097 TASK_UNINTERRUPTIBLE);
3098 cgroup_kn_unlock(of->kn);
3099 schedule();
3100 finish_wait(&child->offline_waitq, &wait);
3101 cgroup_put(child);
3102
3103 return restart_syscall();
3104 }
3105 }
3106
3107 cgrp->subtree_control = new_sc;
3108 cgrp->child_subsys_mask = new_ss;
3109
3110 /*
3111 * Create new csses or make the existing ones visible. A css is
3112 * created invisible if it's being implicitly enabled through
3113 * dependency. An invisible css is made visible when the userland
3114 * explicitly enables it.
3115 */
3116 for_each_subsys(ss, ssid) {
3117 if (!(enable & (1 << ssid)))
3118 continue;
3119
3120 cgroup_for_each_live_child(child, cgrp) {
3121 if (css_enable & (1 << ssid))
3122 ret = create_css(child, ss,
3123 cgrp->subtree_control & (1 << ssid));
3124 else
3125 ret = css_populate_dir(cgroup_css(child, ss),
3126 NULL);
3127 if (ret)
3128 goto err_undo_css;
3129 }
3130 }
3131
3132 /*
3133 * At this point, cgroup_e_css() results reflect the new csses
3134 * making the following cgroup_update_dfl_csses() properly update
3135 * css associations of all tasks in the subtree.
3136 */
3137 ret = cgroup_update_dfl_csses(cgrp);
3138 if (ret)
3139 goto err_undo_css;
3140
3141 /*
3142 * All tasks are migrated out of disabled csses. Kill or hide
3143 * them. A css is hidden when the userland requests it to be
3144 * disabled while other subsystems are still depending on it. The
3145 * css must not actively control resources and be in the vanilla
3146 * state if it's made visible again later. Controllers which may
3147 * be depended upon should provide ->css_reset() for this purpose.
3148 */
3149 for_each_subsys(ss, ssid) {
3150 if (!(disable & (1 << ssid)))
3151 continue;
3152
3153 cgroup_for_each_live_child(child, cgrp) {
3154 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3155
3156 if (css_disable & (1 << ssid)) {
3157 kill_css(css);
3158 } else {
3159 css_clear_dir(css, NULL);
3160 if (ss->css_reset)
3161 ss->css_reset(css);
3162 }
3163 }
3164 }
3165
3166 /*
3167 * The effective csses of all the descendants (excluding @cgrp) may
3168 * have changed. Subsystems can optionally subscribe to this event
3169 * by implementing ->css_e_css_changed() which is invoked if any of
3170 * the effective csses seen from the css's cgroup may have changed.
3171 */
3172 for_each_subsys(ss, ssid) {
3173 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3174 struct cgroup_subsys_state *css;
3175
3176 if (!ss->css_e_css_changed || !this_css)
3177 continue;
3178
3179 css_for_each_descendant_pre(css, this_css)
3180 if (css != this_css)
3181 ss->css_e_css_changed(css);
3182 }
3183
3184 kernfs_activate(cgrp->kn);
3185 ret = 0;
3186 out_unlock:
3187 cgroup_kn_unlock(of->kn);
3188 return ret ?: nbytes;
3189
3190 err_undo_css:
3191 cgrp->subtree_control = old_sc;
3192 cgrp->child_subsys_mask = old_ss;
3193
3194 for_each_subsys(ss, ssid) {
3195 if (!(enable & (1 << ssid)))
3196 continue;
3197
3198 cgroup_for_each_live_child(child, cgrp) {
3199 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3200
3201 if (!css)
3202 continue;
3203
3204 if (css_enable & (1 << ssid))
3205 kill_css(css);
3206 else
3207 css_clear_dir(css, NULL);
3208 }
3209 }
3210 goto out_unlock;
3211 }
3212
cgroup_events_show(struct seq_file * seq,void * v)3213 static int cgroup_events_show(struct seq_file *seq, void *v)
3214 {
3215 seq_printf(seq, "populated %d\n",
3216 cgroup_is_populated(seq_css(seq)->cgroup));
3217 return 0;
3218 }
3219
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3220 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3221 size_t nbytes, loff_t off)
3222 {
3223 struct cgroup *cgrp = of->kn->parent->priv;
3224 struct cftype *cft = of->kn->priv;
3225 struct cgroup_subsys_state *css;
3226 int ret;
3227
3228 if (cft->write)
3229 return cft->write(of, buf, nbytes, off);
3230
3231 /*
3232 * kernfs guarantees that a file isn't deleted with operations in
3233 * flight, which means that the matching css is and stays alive and
3234 * doesn't need to be pinned. The RCU locking is not necessary
3235 * either. It's just for the convenience of using cgroup_css().
3236 */
3237 rcu_read_lock();
3238 css = cgroup_css(cgrp, cft->ss);
3239 rcu_read_unlock();
3240
3241 if (cft->write_u64) {
3242 unsigned long long v;
3243 ret = kstrtoull(buf, 0, &v);
3244 if (!ret)
3245 ret = cft->write_u64(css, cft, v);
3246 } else if (cft->write_s64) {
3247 long long v;
3248 ret = kstrtoll(buf, 0, &v);
3249 if (!ret)
3250 ret = cft->write_s64(css, cft, v);
3251 } else {
3252 ret = -EINVAL;
3253 }
3254
3255 return ret ?: nbytes;
3256 }
3257
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3258 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3259 {
3260 return seq_cft(seq)->seq_start(seq, ppos);
3261 }
3262
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)3263 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3264 {
3265 return seq_cft(seq)->seq_next(seq, v, ppos);
3266 }
3267
cgroup_seqfile_stop(struct seq_file * seq,void * v)3268 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3269 {
3270 seq_cft(seq)->seq_stop(seq, v);
3271 }
3272
cgroup_seqfile_show(struct seq_file * m,void * arg)3273 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3274 {
3275 struct cftype *cft = seq_cft(m);
3276 struct cgroup_subsys_state *css = seq_css(m);
3277
3278 if (cft->seq_show)
3279 return cft->seq_show(m, arg);
3280
3281 if (cft->read_u64)
3282 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3283 else if (cft->read_s64)
3284 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3285 else
3286 return -EINVAL;
3287 return 0;
3288 }
3289
3290 static struct kernfs_ops cgroup_kf_single_ops = {
3291 .atomic_write_len = PAGE_SIZE,
3292 .write = cgroup_file_write,
3293 .seq_show = cgroup_seqfile_show,
3294 };
3295
3296 static struct kernfs_ops cgroup_kf_ops = {
3297 .atomic_write_len = PAGE_SIZE,
3298 .write = cgroup_file_write,
3299 .seq_start = cgroup_seqfile_start,
3300 .seq_next = cgroup_seqfile_next,
3301 .seq_stop = cgroup_seqfile_stop,
3302 .seq_show = cgroup_seqfile_show,
3303 };
3304
3305 /*
3306 * cgroup_rename - Only allow simple rename of directories in place.
3307 */
cgroup_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name_str)3308 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3309 const char *new_name_str)
3310 {
3311 struct cgroup *cgrp = kn->priv;
3312 int ret;
3313
3314 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
3315 if (strchr(new_name_str, '\n'))
3316 return -EINVAL;
3317
3318 if (kernfs_type(kn) != KERNFS_DIR)
3319 return -ENOTDIR;
3320 if (kn->parent != new_parent)
3321 return -EIO;
3322
3323 /*
3324 * This isn't a proper migration and its usefulness is very
3325 * limited. Disallow on the default hierarchy.
3326 */
3327 if (cgroup_on_dfl(cgrp))
3328 return -EPERM;
3329
3330 /*
3331 * We're gonna grab cgroup_mutex which nests outside kernfs
3332 * active_ref. kernfs_rename() doesn't require active_ref
3333 * protection. Break them before grabbing cgroup_mutex.
3334 */
3335 kernfs_break_active_protection(new_parent);
3336 kernfs_break_active_protection(kn);
3337
3338 mutex_lock(&cgroup_mutex);
3339
3340 ret = kernfs_rename(kn, new_parent, new_name_str);
3341
3342 mutex_unlock(&cgroup_mutex);
3343
3344 kernfs_unbreak_active_protection(kn);
3345 kernfs_unbreak_active_protection(new_parent);
3346 return ret;
3347 }
3348
3349 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)3350 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3351 {
3352 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3353 .ia_uid = current_fsuid(),
3354 .ia_gid = current_fsgid(), };
3355
3356 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3357 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3358 return 0;
3359
3360 return kernfs_setattr(kn, &iattr);
3361 }
3362
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)3363 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3364 struct cftype *cft)
3365 {
3366 char name[CGROUP_FILE_NAME_MAX];
3367 struct kernfs_node *kn;
3368 struct lock_class_key *key = NULL;
3369 int ret;
3370
3371 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3372 key = &cft->lockdep_key;
3373 #endif
3374 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3375 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3376 NULL, key);
3377 if (IS_ERR(kn))
3378 return PTR_ERR(kn);
3379
3380 ret = cgroup_kn_set_ugid(kn);
3381 if (ret) {
3382 kernfs_remove(kn);
3383 return ret;
3384 }
3385
3386 if (cft->file_offset) {
3387 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3388
3389 spin_lock_irq(&cgroup_file_kn_lock);
3390 cfile->kn = kn;
3391 spin_unlock_irq(&cgroup_file_kn_lock);
3392 }
3393
3394 return 0;
3395 }
3396
3397 /**
3398 * cgroup_addrm_files - add or remove files to a cgroup directory
3399 * @css: the target css
3400 * @cgrp: the target cgroup (usually css->cgroup)
3401 * @cfts: array of cftypes to be added
3402 * @is_add: whether to add or remove
3403 *
3404 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3405 * For removals, this function never fails.
3406 */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)3407 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3408 struct cgroup *cgrp, struct cftype cfts[],
3409 bool is_add)
3410 {
3411 struct cftype *cft, *cft_end = NULL;
3412 int ret;
3413
3414 lockdep_assert_held(&cgroup_mutex);
3415
3416 restart:
3417 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3418 /* does cft->flags tell us to skip this file on @cgrp? */
3419 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3420 continue;
3421 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3422 continue;
3423 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3424 continue;
3425 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3426 continue;
3427
3428 if (is_add) {
3429 ret = cgroup_add_file(css, cgrp, cft);
3430 if (ret) {
3431 pr_warn("%s: failed to add %s, err=%d\n",
3432 __func__, cft->name, ret);
3433 cft_end = cft;
3434 is_add = false;
3435 goto restart;
3436 }
3437 } else {
3438 cgroup_rm_file(cgrp, cft);
3439 }
3440 }
3441 return 0;
3442 }
3443
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)3444 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3445 {
3446 LIST_HEAD(pending);
3447 struct cgroup_subsys *ss = cfts[0].ss;
3448 struct cgroup *root = &ss->root->cgrp;
3449 struct cgroup_subsys_state *css;
3450 int ret = 0;
3451
3452 lockdep_assert_held(&cgroup_mutex);
3453
3454 /* add/rm files for all cgroups created before */
3455 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3456 struct cgroup *cgrp = css->cgroup;
3457
3458 if (cgroup_is_dead(cgrp))
3459 continue;
3460
3461 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3462 if (ret)
3463 break;
3464 }
3465
3466 if (is_add && !ret)
3467 kernfs_activate(root->kn);
3468 return ret;
3469 }
3470
cgroup_exit_cftypes(struct cftype * cfts)3471 static void cgroup_exit_cftypes(struct cftype *cfts)
3472 {
3473 struct cftype *cft;
3474
3475 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3476 /* free copy for custom atomic_write_len, see init_cftypes() */
3477 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3478 kfree(cft->kf_ops);
3479 cft->kf_ops = NULL;
3480 cft->ss = NULL;
3481
3482 /* revert flags set by cgroup core while adding @cfts */
3483 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3484 }
3485 }
3486
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3487 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3488 {
3489 struct cftype *cft;
3490
3491 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3492 struct kernfs_ops *kf_ops;
3493
3494 WARN_ON(cft->ss || cft->kf_ops);
3495
3496 if (cft->seq_start)
3497 kf_ops = &cgroup_kf_ops;
3498 else
3499 kf_ops = &cgroup_kf_single_ops;
3500
3501 /*
3502 * Ugh... if @cft wants a custom max_write_len, we need to
3503 * make a copy of kf_ops to set its atomic_write_len.
3504 */
3505 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3506 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3507 if (!kf_ops) {
3508 cgroup_exit_cftypes(cfts);
3509 return -ENOMEM;
3510 }
3511 kf_ops->atomic_write_len = cft->max_write_len;
3512 }
3513
3514 cft->kf_ops = kf_ops;
3515 cft->ss = ss;
3516 }
3517
3518 return 0;
3519 }
3520
cgroup_rm_cftypes_locked(struct cftype * cfts)3521 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3522 {
3523 lockdep_assert_held(&cgroup_mutex);
3524
3525 if (!cfts || !cfts[0].ss)
3526 return -ENOENT;
3527
3528 list_del(&cfts->node);
3529 cgroup_apply_cftypes(cfts, false);
3530 cgroup_exit_cftypes(cfts);
3531 return 0;
3532 }
3533
3534 /**
3535 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3536 * @cfts: zero-length name terminated array of cftypes
3537 *
3538 * Unregister @cfts. Files described by @cfts are removed from all
3539 * existing cgroups and all future cgroups won't have them either. This
3540 * function can be called anytime whether @cfts' subsys is attached or not.
3541 *
3542 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3543 * registered.
3544 */
cgroup_rm_cftypes(struct cftype * cfts)3545 int cgroup_rm_cftypes(struct cftype *cfts)
3546 {
3547 int ret;
3548
3549 mutex_lock(&cgroup_mutex);
3550 ret = cgroup_rm_cftypes_locked(cfts);
3551 mutex_unlock(&cgroup_mutex);
3552 return ret;
3553 }
3554
3555 /**
3556 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3557 * @ss: target cgroup subsystem
3558 * @cfts: zero-length name terminated array of cftypes
3559 *
3560 * Register @cfts to @ss. Files described by @cfts are created for all
3561 * existing cgroups to which @ss is attached and all future cgroups will
3562 * have them too. This function can be called anytime whether @ss is
3563 * attached or not.
3564 *
3565 * Returns 0 on successful registration, -errno on failure. Note that this
3566 * function currently returns 0 as long as @cfts registration is successful
3567 * even if some file creation attempts on existing cgroups fail.
3568 */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3569 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3570 {
3571 int ret;
3572
3573 if (!cgroup_ssid_enabled(ss->id))
3574 return 0;
3575
3576 if (!cfts || cfts[0].name[0] == '\0')
3577 return 0;
3578
3579 ret = cgroup_init_cftypes(ss, cfts);
3580 if (ret)
3581 return ret;
3582
3583 mutex_lock(&cgroup_mutex);
3584
3585 list_add_tail(&cfts->node, &ss->cfts);
3586 ret = cgroup_apply_cftypes(cfts, true);
3587 if (ret)
3588 cgroup_rm_cftypes_locked(cfts);
3589
3590 mutex_unlock(&cgroup_mutex);
3591 return ret;
3592 }
3593
3594 /**
3595 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3596 * @ss: target cgroup subsystem
3597 * @cfts: zero-length name terminated array of cftypes
3598 *
3599 * Similar to cgroup_add_cftypes() but the added files are only used for
3600 * the default hierarchy.
3601 */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3602 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3603 {
3604 struct cftype *cft;
3605
3606 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3607 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3608 return cgroup_add_cftypes(ss, cfts);
3609 }
3610
3611 /**
3612 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3613 * @ss: target cgroup subsystem
3614 * @cfts: zero-length name terminated array of cftypes
3615 *
3616 * Similar to cgroup_add_cftypes() but the added files are only used for
3617 * the legacy hierarchies.
3618 */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3619 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3620 {
3621 struct cftype *cft;
3622
3623 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3624 cft->flags |= __CFTYPE_NOT_ON_DFL;
3625 return cgroup_add_cftypes(ss, cfts);
3626 }
3627
3628 /**
3629 * cgroup_file_notify - generate a file modified event for a cgroup_file
3630 * @cfile: target cgroup_file
3631 *
3632 * @cfile must have been obtained by setting cftype->file_offset.
3633 */
cgroup_file_notify(struct cgroup_file * cfile)3634 void cgroup_file_notify(struct cgroup_file *cfile)
3635 {
3636 unsigned long flags;
3637
3638 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3639 if (cfile->kn)
3640 kernfs_notify(cfile->kn);
3641 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3642 }
3643
3644 /**
3645 * cgroup_task_count - count the number of tasks in a cgroup.
3646 * @cgrp: the cgroup in question
3647 *
3648 * Return the number of tasks in the cgroup.
3649 */
cgroup_task_count(const struct cgroup * cgrp)3650 static int cgroup_task_count(const struct cgroup *cgrp)
3651 {
3652 int count = 0;
3653 struct cgrp_cset_link *link;
3654
3655 spin_lock_irq(&css_set_lock);
3656 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3657 count += atomic_read(&link->cset->refcount);
3658 spin_unlock_irq(&css_set_lock);
3659 return count;
3660 }
3661
3662 /**
3663 * css_next_child - find the next child of a given css
3664 * @pos: the current position (%NULL to initiate traversal)
3665 * @parent: css whose children to walk
3666 *
3667 * This function returns the next child of @parent and should be called
3668 * under either cgroup_mutex or RCU read lock. The only requirement is
3669 * that @parent and @pos are accessible. The next sibling is guaranteed to
3670 * be returned regardless of their states.
3671 *
3672 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3673 * css which finished ->css_online() is guaranteed to be visible in the
3674 * future iterations and will stay visible until the last reference is put.
3675 * A css which hasn't finished ->css_online() or already finished
3676 * ->css_offline() may show up during traversal. It's each subsystem's
3677 * responsibility to synchronize against on/offlining.
3678 */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)3679 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3680 struct cgroup_subsys_state *parent)
3681 {
3682 struct cgroup_subsys_state *next;
3683
3684 cgroup_assert_mutex_or_rcu_locked();
3685
3686 /*
3687 * @pos could already have been unlinked from the sibling list.
3688 * Once a cgroup is removed, its ->sibling.next is no longer
3689 * updated when its next sibling changes. CSS_RELEASED is set when
3690 * @pos is taken off list, at which time its next pointer is valid,
3691 * and, as releases are serialized, the one pointed to by the next
3692 * pointer is guaranteed to not have started release yet. This
3693 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3694 * critical section, the one pointed to by its next pointer is
3695 * guaranteed to not have finished its RCU grace period even if we
3696 * have dropped rcu_read_lock() inbetween iterations.
3697 *
3698 * If @pos has CSS_RELEASED set, its next pointer can't be
3699 * dereferenced; however, as each css is given a monotonically
3700 * increasing unique serial number and always appended to the
3701 * sibling list, the next one can be found by walking the parent's
3702 * children until the first css with higher serial number than
3703 * @pos's. While this path can be slower, it happens iff iteration
3704 * races against release and the race window is very small.
3705 */
3706 if (!pos) {
3707 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3708 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3709 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3710 } else {
3711 list_for_each_entry_rcu(next, &parent->children, sibling)
3712 if (next->serial_nr > pos->serial_nr)
3713 break;
3714 }
3715
3716 /*
3717 * @next, if not pointing to the head, can be dereferenced and is
3718 * the next sibling.
3719 */
3720 if (&next->sibling != &parent->children)
3721 return next;
3722 return NULL;
3723 }
3724
3725 /**
3726 * css_next_descendant_pre - find the next descendant for pre-order walk
3727 * @pos: the current position (%NULL to initiate traversal)
3728 * @root: css whose descendants to walk
3729 *
3730 * To be used by css_for_each_descendant_pre(). Find the next descendant
3731 * to visit for pre-order traversal of @root's descendants. @root is
3732 * included in the iteration and the first node to be visited.
3733 *
3734 * While this function requires cgroup_mutex or RCU read locking, it
3735 * doesn't require the whole traversal to be contained in a single critical
3736 * section. This function will return the correct next descendant as long
3737 * as both @pos and @root are accessible and @pos is a descendant of @root.
3738 *
3739 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3740 * css which finished ->css_online() is guaranteed to be visible in the
3741 * future iterations and will stay visible until the last reference is put.
3742 * A css which hasn't finished ->css_online() or already finished
3743 * ->css_offline() may show up during traversal. It's each subsystem's
3744 * responsibility to synchronize against on/offlining.
3745 */
3746 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)3747 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3748 struct cgroup_subsys_state *root)
3749 {
3750 struct cgroup_subsys_state *next;
3751
3752 cgroup_assert_mutex_or_rcu_locked();
3753
3754 /* if first iteration, visit @root */
3755 if (!pos)
3756 return root;
3757
3758 /* visit the first child if exists */
3759 next = css_next_child(NULL, pos);
3760 if (next)
3761 return next;
3762
3763 /* no child, visit my or the closest ancestor's next sibling */
3764 while (pos != root) {
3765 next = css_next_child(pos, pos->parent);
3766 if (next)
3767 return next;
3768 pos = pos->parent;
3769 }
3770
3771 return NULL;
3772 }
3773
3774 /**
3775 * css_rightmost_descendant - return the rightmost descendant of a css
3776 * @pos: css of interest
3777 *
3778 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3779 * is returned. This can be used during pre-order traversal to skip
3780 * subtree of @pos.
3781 *
3782 * While this function requires cgroup_mutex or RCU read locking, it
3783 * doesn't require the whole traversal to be contained in a single critical
3784 * section. This function will return the correct rightmost descendant as
3785 * long as @pos is accessible.
3786 */
3787 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)3788 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3789 {
3790 struct cgroup_subsys_state *last, *tmp;
3791
3792 cgroup_assert_mutex_or_rcu_locked();
3793
3794 do {
3795 last = pos;
3796 /* ->prev isn't RCU safe, walk ->next till the end */
3797 pos = NULL;
3798 css_for_each_child(tmp, last)
3799 pos = tmp;
3800 } while (pos);
3801
3802 return last;
3803 }
3804
3805 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)3806 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3807 {
3808 struct cgroup_subsys_state *last;
3809
3810 do {
3811 last = pos;
3812 pos = css_next_child(NULL, pos);
3813 } while (pos);
3814
3815 return last;
3816 }
3817
3818 /**
3819 * css_next_descendant_post - find the next descendant for post-order walk
3820 * @pos: the current position (%NULL to initiate traversal)
3821 * @root: css whose descendants to walk
3822 *
3823 * To be used by css_for_each_descendant_post(). Find the next descendant
3824 * to visit for post-order traversal of @root's descendants. @root is
3825 * included in the iteration and the last node to be visited.
3826 *
3827 * While this function requires cgroup_mutex or RCU read locking, it
3828 * doesn't require the whole traversal to be contained in a single critical
3829 * section. This function will return the correct next descendant as long
3830 * as both @pos and @cgroup are accessible and @pos is a descendant of
3831 * @cgroup.
3832 *
3833 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3834 * css which finished ->css_online() is guaranteed to be visible in the
3835 * future iterations and will stay visible until the last reference is put.
3836 * A css which hasn't finished ->css_online() or already finished
3837 * ->css_offline() may show up during traversal. It's each subsystem's
3838 * responsibility to synchronize against on/offlining.
3839 */
3840 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)3841 css_next_descendant_post(struct cgroup_subsys_state *pos,
3842 struct cgroup_subsys_state *root)
3843 {
3844 struct cgroup_subsys_state *next;
3845
3846 cgroup_assert_mutex_or_rcu_locked();
3847
3848 /* if first iteration, visit leftmost descendant which may be @root */
3849 if (!pos)
3850 return css_leftmost_descendant(root);
3851
3852 /* if we visited @root, we're done */
3853 if (pos == root)
3854 return NULL;
3855
3856 /* if there's an unvisited sibling, visit its leftmost descendant */
3857 next = css_next_child(pos, pos->parent);
3858 if (next)
3859 return css_leftmost_descendant(next);
3860
3861 /* no sibling left, visit parent */
3862 return pos->parent;
3863 }
3864
3865 /**
3866 * css_has_online_children - does a css have online children
3867 * @css: the target css
3868 *
3869 * Returns %true if @css has any online children; otherwise, %false. This
3870 * function can be called from any context but the caller is responsible
3871 * for synchronizing against on/offlining as necessary.
3872 */
css_has_online_children(struct cgroup_subsys_state * css)3873 bool css_has_online_children(struct cgroup_subsys_state *css)
3874 {
3875 struct cgroup_subsys_state *child;
3876 bool ret = false;
3877
3878 rcu_read_lock();
3879 css_for_each_child(child, css) {
3880 if (child->flags & CSS_ONLINE) {
3881 ret = true;
3882 break;
3883 }
3884 }
3885 rcu_read_unlock();
3886 return ret;
3887 }
3888
3889 /**
3890 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
3891 * @it: the iterator to advance
3892 *
3893 * Advance @it to the next css_set to walk.
3894 */
css_task_iter_advance_css_set(struct css_task_iter * it)3895 static void css_task_iter_advance_css_set(struct css_task_iter *it)
3896 {
3897 struct list_head *l = it->cset_pos;
3898 struct cgrp_cset_link *link;
3899 struct css_set *cset;
3900
3901 lockdep_assert_held(&css_set_lock);
3902
3903 /* Advance to the next non-empty css_set */
3904 do {
3905 l = l->next;
3906 if (l == it->cset_head) {
3907 it->cset_pos = NULL;
3908 it->task_pos = NULL;
3909 return;
3910 }
3911
3912 if (it->ss) {
3913 cset = container_of(l, struct css_set,
3914 e_cset_node[it->ss->id]);
3915 } else {
3916 link = list_entry(l, struct cgrp_cset_link, cset_link);
3917 cset = link->cset;
3918 }
3919 } while (!css_set_populated(cset));
3920
3921 it->cset_pos = l;
3922
3923 if (!list_empty(&cset->tasks))
3924 it->task_pos = cset->tasks.next;
3925 else
3926 it->task_pos = cset->mg_tasks.next;
3927
3928 it->tasks_head = &cset->tasks;
3929 it->mg_tasks_head = &cset->mg_tasks;
3930
3931 /*
3932 * We don't keep css_sets locked across iteration steps and thus
3933 * need to take steps to ensure that iteration can be resumed after
3934 * the lock is re-acquired. Iteration is performed at two levels -
3935 * css_sets and tasks in them.
3936 *
3937 * Once created, a css_set never leaves its cgroup lists, so a
3938 * pinned css_set is guaranteed to stay put and we can resume
3939 * iteration afterwards.
3940 *
3941 * Tasks may leave @cset across iteration steps. This is resolved
3942 * by registering each iterator with the css_set currently being
3943 * walked and making css_set_move_task() advance iterators whose
3944 * next task is leaving.
3945 */
3946 if (it->cur_cset) {
3947 list_del(&it->iters_node);
3948 put_css_set_locked(it->cur_cset);
3949 }
3950 get_css_set(cset);
3951 it->cur_cset = cset;
3952 list_add(&it->iters_node, &cset->task_iters);
3953 }
3954
css_task_iter_advance(struct css_task_iter * it)3955 static void css_task_iter_advance(struct css_task_iter *it)
3956 {
3957 struct list_head *l = it->task_pos;
3958
3959 lockdep_assert_held(&css_set_lock);
3960 WARN_ON_ONCE(!l);
3961
3962 /*
3963 * Advance iterator to find next entry. cset->tasks is consumed
3964 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3965 * next cset.
3966 */
3967 l = l->next;
3968
3969 if (l == it->tasks_head)
3970 l = it->mg_tasks_head->next;
3971
3972 if (l == it->mg_tasks_head)
3973 css_task_iter_advance_css_set(it);
3974 else
3975 it->task_pos = l;
3976 }
3977
3978 /**
3979 * css_task_iter_start - initiate task iteration
3980 * @css: the css to walk tasks of
3981 * @it: the task iterator to use
3982 *
3983 * Initiate iteration through the tasks of @css. The caller can call
3984 * css_task_iter_next() to walk through the tasks until the function
3985 * returns NULL. On completion of iteration, css_task_iter_end() must be
3986 * called.
3987 */
css_task_iter_start(struct cgroup_subsys_state * css,struct css_task_iter * it)3988 void css_task_iter_start(struct cgroup_subsys_state *css,
3989 struct css_task_iter *it)
3990 {
3991 /* no one should try to iterate before mounting cgroups */
3992 WARN_ON_ONCE(!use_task_css_set_links);
3993
3994 memset(it, 0, sizeof(*it));
3995
3996 spin_lock_irq(&css_set_lock);
3997
3998 it->ss = css->ss;
3999
4000 if (it->ss)
4001 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4002 else
4003 it->cset_pos = &css->cgroup->cset_links;
4004
4005 it->cset_head = it->cset_pos;
4006
4007 css_task_iter_advance_css_set(it);
4008
4009 spin_unlock_irq(&css_set_lock);
4010 }
4011
4012 /**
4013 * css_task_iter_next - return the next task for the iterator
4014 * @it: the task iterator being iterated
4015 *
4016 * The "next" function for task iteration. @it should have been
4017 * initialized via css_task_iter_start(). Returns NULL when the iteration
4018 * reaches the end.
4019 */
css_task_iter_next(struct css_task_iter * it)4020 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4021 {
4022 if (it->cur_task) {
4023 put_task_struct(it->cur_task);
4024 it->cur_task = NULL;
4025 }
4026
4027 spin_lock_irq(&css_set_lock);
4028
4029 if (it->task_pos) {
4030 it->cur_task = list_entry(it->task_pos, struct task_struct,
4031 cg_list);
4032 get_task_struct(it->cur_task);
4033 css_task_iter_advance(it);
4034 }
4035
4036 spin_unlock_irq(&css_set_lock);
4037
4038 return it->cur_task;
4039 }
4040
4041 /**
4042 * css_task_iter_end - finish task iteration
4043 * @it: the task iterator to finish
4044 *
4045 * Finish task iteration started by css_task_iter_start().
4046 */
css_task_iter_end(struct css_task_iter * it)4047 void css_task_iter_end(struct css_task_iter *it)
4048 {
4049 if (it->cur_cset) {
4050 spin_lock_irq(&css_set_lock);
4051 list_del(&it->iters_node);
4052 put_css_set_locked(it->cur_cset);
4053 spin_unlock_irq(&css_set_lock);
4054 }
4055
4056 if (it->cur_task)
4057 put_task_struct(it->cur_task);
4058 }
4059
4060 /**
4061 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4062 * @to: cgroup to which the tasks will be moved
4063 * @from: cgroup in which the tasks currently reside
4064 *
4065 * Locking rules between cgroup_post_fork() and the migration path
4066 * guarantee that, if a task is forking while being migrated, the new child
4067 * is guaranteed to be either visible in the source cgroup after the
4068 * parent's migration is complete or put into the target cgroup. No task
4069 * can slip out of migration through forking.
4070 */
cgroup_transfer_tasks(struct cgroup * to,struct cgroup * from)4071 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
4072 {
4073 LIST_HEAD(preloaded_csets);
4074 struct cgrp_cset_link *link;
4075 struct css_task_iter it;
4076 struct task_struct *task;
4077 int ret;
4078
4079 mutex_lock(&cgroup_mutex);
4080
4081 /* all tasks in @from are being moved, all csets are source */
4082 spin_lock_irq(&css_set_lock);
4083 list_for_each_entry(link, &from->cset_links, cset_link)
4084 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
4085 spin_unlock_irq(&css_set_lock);
4086
4087 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4088 if (ret)
4089 goto out_err;
4090
4091 /*
4092 * Migrate tasks one-by-one until @form is empty. This fails iff
4093 * ->can_attach() fails.
4094 */
4095 do {
4096 css_task_iter_start(&from->self, &it);
4097
4098 do {
4099 task = css_task_iter_next(&it);
4100 } while (task && (task->flags & PF_EXITING));
4101
4102 if (task)
4103 get_task_struct(task);
4104 css_task_iter_end(&it);
4105
4106 if (task) {
4107 ret = cgroup_migrate(task, false, to);
4108 put_task_struct(task);
4109 }
4110 } while (task && !ret);
4111 out_err:
4112 cgroup_migrate_finish(&preloaded_csets);
4113 mutex_unlock(&cgroup_mutex);
4114 return ret;
4115 }
4116
4117 /*
4118 * Stuff for reading the 'tasks'/'procs' files.
4119 *
4120 * Reading this file can return large amounts of data if a cgroup has
4121 * *lots* of attached tasks. So it may need several calls to read(),
4122 * but we cannot guarantee that the information we produce is correct
4123 * unless we produce it entirely atomically.
4124 *
4125 */
4126
4127 /* which pidlist file are we talking about? */
4128 enum cgroup_filetype {
4129 CGROUP_FILE_PROCS,
4130 CGROUP_FILE_TASKS,
4131 };
4132
4133 /*
4134 * A pidlist is a list of pids that virtually represents the contents of one
4135 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4136 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4137 * to the cgroup.
4138 */
4139 struct cgroup_pidlist {
4140 /*
4141 * used to find which pidlist is wanted. doesn't change as long as
4142 * this particular list stays in the list.
4143 */
4144 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4145 /* array of xids */
4146 pid_t *list;
4147 /* how many elements the above list has */
4148 int length;
4149 /* each of these stored in a list by its cgroup */
4150 struct list_head links;
4151 /* pointer to the cgroup we belong to, for list removal purposes */
4152 struct cgroup *owner;
4153 /* for delayed destruction */
4154 struct delayed_work destroy_dwork;
4155 };
4156
4157 /*
4158 * The following two functions "fix" the issue where there are more pids
4159 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4160 * TODO: replace with a kernel-wide solution to this problem
4161 */
4162 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
pidlist_allocate(int count)4163 static void *pidlist_allocate(int count)
4164 {
4165 if (PIDLIST_TOO_LARGE(count))
4166 return vmalloc(count * sizeof(pid_t));
4167 else
4168 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4169 }
4170
pidlist_free(void * p)4171 static void pidlist_free(void *p)
4172 {
4173 kvfree(p);
4174 }
4175
4176 /*
4177 * Used to destroy all pidlists lingering waiting for destroy timer. None
4178 * should be left afterwards.
4179 */
cgroup_pidlist_destroy_all(struct cgroup * cgrp)4180 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4181 {
4182 struct cgroup_pidlist *l, *tmp_l;
4183
4184 mutex_lock(&cgrp->pidlist_mutex);
4185 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4186 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4187 mutex_unlock(&cgrp->pidlist_mutex);
4188
4189 flush_workqueue(cgroup_pidlist_destroy_wq);
4190 BUG_ON(!list_empty(&cgrp->pidlists));
4191 }
4192
cgroup_pidlist_destroy_work_fn(struct work_struct * work)4193 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4194 {
4195 struct delayed_work *dwork = to_delayed_work(work);
4196 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4197 destroy_dwork);
4198 struct cgroup_pidlist *tofree = NULL;
4199
4200 mutex_lock(&l->owner->pidlist_mutex);
4201
4202 /*
4203 * Destroy iff we didn't get queued again. The state won't change
4204 * as destroy_dwork can only be queued while locked.
4205 */
4206 if (!delayed_work_pending(dwork)) {
4207 list_del(&l->links);
4208 pidlist_free(l->list);
4209 put_pid_ns(l->key.ns);
4210 tofree = l;
4211 }
4212
4213 mutex_unlock(&l->owner->pidlist_mutex);
4214 kfree(tofree);
4215 }
4216
4217 /*
4218 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4219 * Returns the number of unique elements.
4220 */
pidlist_uniq(pid_t * list,int length)4221 static int pidlist_uniq(pid_t *list, int length)
4222 {
4223 int src, dest = 1;
4224
4225 /*
4226 * we presume the 0th element is unique, so i starts at 1. trivial
4227 * edge cases first; no work needs to be done for either
4228 */
4229 if (length == 0 || length == 1)
4230 return length;
4231 /* src and dest walk down the list; dest counts unique elements */
4232 for (src = 1; src < length; src++) {
4233 /* find next unique element */
4234 while (list[src] == list[src-1]) {
4235 src++;
4236 if (src == length)
4237 goto after;
4238 }
4239 /* dest always points to where the next unique element goes */
4240 list[dest] = list[src];
4241 dest++;
4242 }
4243 after:
4244 return dest;
4245 }
4246
4247 /*
4248 * The two pid files - task and cgroup.procs - guaranteed that the result
4249 * is sorted, which forced this whole pidlist fiasco. As pid order is
4250 * different per namespace, each namespace needs differently sorted list,
4251 * making it impossible to use, for example, single rbtree of member tasks
4252 * sorted by task pointer. As pidlists can be fairly large, allocating one
4253 * per open file is dangerous, so cgroup had to implement shared pool of
4254 * pidlists keyed by cgroup and namespace.
4255 *
4256 * All this extra complexity was caused by the original implementation
4257 * committing to an entirely unnecessary property. In the long term, we
4258 * want to do away with it. Explicitly scramble sort order if on the
4259 * default hierarchy so that no such expectation exists in the new
4260 * interface.
4261 *
4262 * Scrambling is done by swapping every two consecutive bits, which is
4263 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4264 */
pid_fry(pid_t pid)4265 static pid_t pid_fry(pid_t pid)
4266 {
4267 unsigned a = pid & 0x55555555;
4268 unsigned b = pid & 0xAAAAAAAA;
4269
4270 return (a << 1) | (b >> 1);
4271 }
4272
cgroup_pid_fry(struct cgroup * cgrp,pid_t pid)4273 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4274 {
4275 if (cgroup_on_dfl(cgrp))
4276 return pid_fry(pid);
4277 else
4278 return pid;
4279 }
4280
cmppid(const void * a,const void * b)4281 static int cmppid(const void *a, const void *b)
4282 {
4283 return *(pid_t *)a - *(pid_t *)b;
4284 }
4285
fried_cmppid(const void * a,const void * b)4286 static int fried_cmppid(const void *a, const void *b)
4287 {
4288 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4289 }
4290
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)4291 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4292 enum cgroup_filetype type)
4293 {
4294 struct cgroup_pidlist *l;
4295 /* don't need task_nsproxy() if we're looking at ourself */
4296 struct pid_namespace *ns = task_active_pid_ns(current);
4297
4298 lockdep_assert_held(&cgrp->pidlist_mutex);
4299
4300 list_for_each_entry(l, &cgrp->pidlists, links)
4301 if (l->key.type == type && l->key.ns == ns)
4302 return l;
4303 return NULL;
4304 }
4305
4306 /*
4307 * find the appropriate pidlist for our purpose (given procs vs tasks)
4308 * returns with the lock on that pidlist already held, and takes care
4309 * of the use count, or returns NULL with no locks held if we're out of
4310 * memory.
4311 */
cgroup_pidlist_find_create(struct cgroup * cgrp,enum cgroup_filetype type)4312 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4313 enum cgroup_filetype type)
4314 {
4315 struct cgroup_pidlist *l;
4316
4317 lockdep_assert_held(&cgrp->pidlist_mutex);
4318
4319 l = cgroup_pidlist_find(cgrp, type);
4320 if (l)
4321 return l;
4322
4323 /* entry not found; create a new one */
4324 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4325 if (!l)
4326 return l;
4327
4328 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4329 l->key.type = type;
4330 /* don't need task_nsproxy() if we're looking at ourself */
4331 l->key.ns = get_pid_ns(task_active_pid_ns(current));
4332 l->owner = cgrp;
4333 list_add(&l->links, &cgrp->pidlists);
4334 return l;
4335 }
4336
4337 /*
4338 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4339 */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)4340 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4341 struct cgroup_pidlist **lp)
4342 {
4343 pid_t *array;
4344 int length;
4345 int pid, n = 0; /* used for populating the array */
4346 struct css_task_iter it;
4347 struct task_struct *tsk;
4348 struct cgroup_pidlist *l;
4349
4350 lockdep_assert_held(&cgrp->pidlist_mutex);
4351
4352 /*
4353 * If cgroup gets more users after we read count, we won't have
4354 * enough space - tough. This race is indistinguishable to the
4355 * caller from the case that the additional cgroup users didn't
4356 * show up until sometime later on.
4357 */
4358 length = cgroup_task_count(cgrp);
4359 array = pidlist_allocate(length);
4360 if (!array)
4361 return -ENOMEM;
4362 /* now, populate the array */
4363 css_task_iter_start(&cgrp->self, &it);
4364 while ((tsk = css_task_iter_next(&it))) {
4365 if (unlikely(n == length))
4366 break;
4367 /* get tgid or pid for procs or tasks file respectively */
4368 if (type == CGROUP_FILE_PROCS)
4369 pid = task_tgid_vnr(tsk);
4370 else
4371 pid = task_pid_vnr(tsk);
4372 if (pid > 0) /* make sure to only use valid results */
4373 array[n++] = pid;
4374 }
4375 css_task_iter_end(&it);
4376 length = n;
4377 /* now sort & (if procs) strip out duplicates */
4378 if (cgroup_on_dfl(cgrp))
4379 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4380 else
4381 sort(array, length, sizeof(pid_t), cmppid, NULL);
4382 if (type == CGROUP_FILE_PROCS)
4383 length = pidlist_uniq(array, length);
4384
4385 l = cgroup_pidlist_find_create(cgrp, type);
4386 if (!l) {
4387 pidlist_free(array);
4388 return -ENOMEM;
4389 }
4390
4391 /* store array, freeing old if necessary */
4392 pidlist_free(l->list);
4393 l->list = array;
4394 l->length = length;
4395 *lp = l;
4396 return 0;
4397 }
4398
4399 /**
4400 * cgroupstats_build - build and fill cgroupstats
4401 * @stats: cgroupstats to fill information into
4402 * @dentry: A dentry entry belonging to the cgroup for which stats have
4403 * been requested.
4404 *
4405 * Build and fill cgroupstats so that taskstats can export it to user
4406 * space.
4407 */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)4408 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4409 {
4410 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4411 struct cgroup *cgrp;
4412 struct css_task_iter it;
4413 struct task_struct *tsk;
4414
4415 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4416 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4417 kernfs_type(kn) != KERNFS_DIR)
4418 return -EINVAL;
4419
4420 mutex_lock(&cgroup_mutex);
4421
4422 /*
4423 * We aren't being called from kernfs and there's no guarantee on
4424 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4425 * @kn->priv is RCU safe. Let's do the RCU dancing.
4426 */
4427 rcu_read_lock();
4428 cgrp = rcu_dereference(kn->priv);
4429 if (!cgrp || cgroup_is_dead(cgrp)) {
4430 rcu_read_unlock();
4431 mutex_unlock(&cgroup_mutex);
4432 return -ENOENT;
4433 }
4434 rcu_read_unlock();
4435
4436 css_task_iter_start(&cgrp->self, &it);
4437 while ((tsk = css_task_iter_next(&it))) {
4438 switch (tsk->state) {
4439 case TASK_RUNNING:
4440 stats->nr_running++;
4441 break;
4442 case TASK_INTERRUPTIBLE:
4443 stats->nr_sleeping++;
4444 break;
4445 case TASK_UNINTERRUPTIBLE:
4446 stats->nr_uninterruptible++;
4447 break;
4448 case TASK_STOPPED:
4449 stats->nr_stopped++;
4450 break;
4451 default:
4452 if (delayacct_is_task_waiting_on_io(tsk))
4453 stats->nr_io_wait++;
4454 break;
4455 }
4456 }
4457 css_task_iter_end(&it);
4458
4459 mutex_unlock(&cgroup_mutex);
4460 return 0;
4461 }
4462
4463
4464 /*
4465 * seq_file methods for the tasks/procs files. The seq_file position is the
4466 * next pid to display; the seq_file iterator is a pointer to the pid
4467 * in the cgroup->l->list array.
4468 */
4469
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)4470 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4471 {
4472 /*
4473 * Initially we receive a position value that corresponds to
4474 * one more than the last pid shown (or 0 on the first call or
4475 * after a seek to the start). Use a binary-search to find the
4476 * next pid to display, if any
4477 */
4478 struct kernfs_open_file *of = s->private;
4479 struct cgroup *cgrp = seq_css(s)->cgroup;
4480 struct cgroup_pidlist *l;
4481 enum cgroup_filetype type = seq_cft(s)->private;
4482 int index = 0, pid = *pos;
4483 int *iter, ret;
4484
4485 mutex_lock(&cgrp->pidlist_mutex);
4486
4487 /*
4488 * !NULL @of->priv indicates that this isn't the first start()
4489 * after open. If the matching pidlist is around, we can use that.
4490 * Look for it. Note that @of->priv can't be used directly. It
4491 * could already have been destroyed.
4492 */
4493 if (of->priv)
4494 of->priv = cgroup_pidlist_find(cgrp, type);
4495
4496 /*
4497 * Either this is the first start() after open or the matching
4498 * pidlist has been destroyed inbetween. Create a new one.
4499 */
4500 if (!of->priv) {
4501 ret = pidlist_array_load(cgrp, type,
4502 (struct cgroup_pidlist **)&of->priv);
4503 if (ret)
4504 return ERR_PTR(ret);
4505 }
4506 l = of->priv;
4507
4508 if (pid) {
4509 int end = l->length;
4510
4511 while (index < end) {
4512 int mid = (index + end) / 2;
4513 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4514 index = mid;
4515 break;
4516 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4517 index = mid + 1;
4518 else
4519 end = mid;
4520 }
4521 }
4522 /* If we're off the end of the array, we're done */
4523 if (index >= l->length)
4524 return NULL;
4525 /* Update the abstract position to be the actual pid that we found */
4526 iter = l->list + index;
4527 *pos = cgroup_pid_fry(cgrp, *iter);
4528 return iter;
4529 }
4530
cgroup_pidlist_stop(struct seq_file * s,void * v)4531 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4532 {
4533 struct kernfs_open_file *of = s->private;
4534 struct cgroup_pidlist *l = of->priv;
4535
4536 if (l)
4537 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4538 CGROUP_PIDLIST_DESTROY_DELAY);
4539 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4540 }
4541
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)4542 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4543 {
4544 struct kernfs_open_file *of = s->private;
4545 struct cgroup_pidlist *l = of->priv;
4546 pid_t *p = v;
4547 pid_t *end = l->list + l->length;
4548 /*
4549 * Advance to the next pid in the array. If this goes off the
4550 * end, we're done
4551 */
4552 p++;
4553 if (p >= end) {
4554 return NULL;
4555 } else {
4556 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4557 return p;
4558 }
4559 }
4560
cgroup_pidlist_show(struct seq_file * s,void * v)4561 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4562 {
4563 seq_printf(s, "%d\n", *(int *)v);
4564
4565 return 0;
4566 }
4567
cgroup_read_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft)4568 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4569 struct cftype *cft)
4570 {
4571 return notify_on_release(css->cgroup);
4572 }
4573
cgroup_write_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4574 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4575 struct cftype *cft, u64 val)
4576 {
4577 if (val)
4578 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4579 else
4580 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4581 return 0;
4582 }
4583
cgroup_clone_children_read(struct cgroup_subsys_state * css,struct cftype * cft)4584 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4585 struct cftype *cft)
4586 {
4587 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4588 }
4589
cgroup_clone_children_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4590 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4591 struct cftype *cft, u64 val)
4592 {
4593 if (val)
4594 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4595 else
4596 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4597 return 0;
4598 }
4599
4600 /* cgroup core interface files for the default hierarchy */
4601 static struct cftype cgroup_dfl_base_files[] = {
4602 {
4603 .name = "cgroup.procs",
4604 .file_offset = offsetof(struct cgroup, procs_file),
4605 .seq_start = cgroup_pidlist_start,
4606 .seq_next = cgroup_pidlist_next,
4607 .seq_stop = cgroup_pidlist_stop,
4608 .seq_show = cgroup_pidlist_show,
4609 .private = CGROUP_FILE_PROCS,
4610 .write = cgroup_procs_write,
4611 },
4612 {
4613 .name = "cgroup.controllers",
4614 .flags = CFTYPE_ONLY_ON_ROOT,
4615 .seq_show = cgroup_root_controllers_show,
4616 },
4617 {
4618 .name = "cgroup.controllers",
4619 .flags = CFTYPE_NOT_ON_ROOT,
4620 .seq_show = cgroup_controllers_show,
4621 },
4622 {
4623 .name = "cgroup.subtree_control",
4624 .seq_show = cgroup_subtree_control_show,
4625 .write = cgroup_subtree_control_write,
4626 },
4627 {
4628 .name = "cgroup.events",
4629 .flags = CFTYPE_NOT_ON_ROOT,
4630 .file_offset = offsetof(struct cgroup, events_file),
4631 .seq_show = cgroup_events_show,
4632 },
4633 { } /* terminate */
4634 };
4635
4636 /* cgroup core interface files for the legacy hierarchies */
4637 static struct cftype cgroup_legacy_base_files[] = {
4638 {
4639 .name = "cgroup.procs",
4640 .seq_start = cgroup_pidlist_start,
4641 .seq_next = cgroup_pidlist_next,
4642 .seq_stop = cgroup_pidlist_stop,
4643 .seq_show = cgroup_pidlist_show,
4644 .private = CGROUP_FILE_PROCS,
4645 .write = cgroup_procs_write,
4646 },
4647 {
4648 .name = "cgroup.clone_children",
4649 .read_u64 = cgroup_clone_children_read,
4650 .write_u64 = cgroup_clone_children_write,
4651 },
4652 {
4653 .name = "cgroup.sane_behavior",
4654 .flags = CFTYPE_ONLY_ON_ROOT,
4655 .seq_show = cgroup_sane_behavior_show,
4656 },
4657 {
4658 .name = "tasks",
4659 .seq_start = cgroup_pidlist_start,
4660 .seq_next = cgroup_pidlist_next,
4661 .seq_stop = cgroup_pidlist_stop,
4662 .seq_show = cgroup_pidlist_show,
4663 .private = CGROUP_FILE_TASKS,
4664 .write = cgroup_tasks_write,
4665 },
4666 {
4667 .name = "notify_on_release",
4668 .read_u64 = cgroup_read_notify_on_release,
4669 .write_u64 = cgroup_write_notify_on_release,
4670 },
4671 {
4672 .name = "release_agent",
4673 .flags = CFTYPE_ONLY_ON_ROOT,
4674 .seq_show = cgroup_release_agent_show,
4675 .write = cgroup_release_agent_write,
4676 .max_write_len = PATH_MAX - 1,
4677 },
4678 { } /* terminate */
4679 };
4680
4681 /*
4682 * css destruction is four-stage process.
4683 *
4684 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4685 * Implemented in kill_css().
4686 *
4687 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4688 * and thus css_tryget_online() is guaranteed to fail, the css can be
4689 * offlined by invoking offline_css(). After offlining, the base ref is
4690 * put. Implemented in css_killed_work_fn().
4691 *
4692 * 3. When the percpu_ref reaches zero, the only possible remaining
4693 * accessors are inside RCU read sections. css_release() schedules the
4694 * RCU callback.
4695 *
4696 * 4. After the grace period, the css can be freed. Implemented in
4697 * css_free_work_fn().
4698 *
4699 * It is actually hairier because both step 2 and 4 require process context
4700 * and thus involve punting to css->destroy_work adding two additional
4701 * steps to the already complex sequence.
4702 */
css_free_work_fn(struct work_struct * work)4703 static void css_free_work_fn(struct work_struct *work)
4704 {
4705 struct cgroup_subsys_state *css =
4706 container_of(work, struct cgroup_subsys_state, destroy_work);
4707 struct cgroup_subsys *ss = css->ss;
4708 struct cgroup *cgrp = css->cgroup;
4709
4710 percpu_ref_exit(&css->refcnt);
4711
4712 if (ss) {
4713 /* css free path */
4714 struct cgroup_subsys_state *parent = css->parent;
4715 int id = css->id;
4716
4717 ss->css_free(css);
4718 cgroup_idr_remove(&ss->css_idr, id);
4719 cgroup_put(cgrp);
4720
4721 if (parent)
4722 css_put(parent);
4723 } else {
4724 /* cgroup free path */
4725 atomic_dec(&cgrp->root->nr_cgrps);
4726 cgroup_pidlist_destroy_all(cgrp);
4727 cancel_work_sync(&cgrp->release_agent_work);
4728
4729 if (cgroup_parent(cgrp)) {
4730 /*
4731 * We get a ref to the parent, and put the ref when
4732 * this cgroup is being freed, so it's guaranteed
4733 * that the parent won't be destroyed before its
4734 * children.
4735 */
4736 cgroup_put(cgroup_parent(cgrp));
4737 kernfs_put(cgrp->kn);
4738 kfree(cgrp);
4739 } else {
4740 /*
4741 * This is root cgroup's refcnt reaching zero,
4742 * which indicates that the root should be
4743 * released.
4744 */
4745 cgroup_destroy_root(cgrp->root);
4746 }
4747 }
4748 }
4749
css_free_rcu_fn(struct rcu_head * rcu_head)4750 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4751 {
4752 struct cgroup_subsys_state *css =
4753 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4754
4755 INIT_WORK(&css->destroy_work, css_free_work_fn);
4756 queue_work(cgroup_destroy_wq, &css->destroy_work);
4757 }
4758
css_release_work_fn(struct work_struct * work)4759 static void css_release_work_fn(struct work_struct *work)
4760 {
4761 struct cgroup_subsys_state *css =
4762 container_of(work, struct cgroup_subsys_state, destroy_work);
4763 struct cgroup_subsys *ss = css->ss;
4764 struct cgroup *cgrp = css->cgroup;
4765
4766 mutex_lock(&cgroup_mutex);
4767
4768 css->flags |= CSS_RELEASED;
4769 list_del_rcu(&css->sibling);
4770
4771 if (ss) {
4772 /* css release path */
4773 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4774 if (ss->css_released)
4775 ss->css_released(css);
4776 } else {
4777 /* cgroup release path */
4778 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4779 cgrp->id = -1;
4780
4781 /*
4782 * There are two control paths which try to determine
4783 * cgroup from dentry without going through kernfs -
4784 * cgroupstats_build() and css_tryget_online_from_dir().
4785 * Those are supported by RCU protecting clearing of
4786 * cgrp->kn->priv backpointer.
4787 */
4788 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4789 }
4790
4791 mutex_unlock(&cgroup_mutex);
4792
4793 call_rcu(&css->rcu_head, css_free_rcu_fn);
4794 }
4795
css_release(struct percpu_ref * ref)4796 static void css_release(struct percpu_ref *ref)
4797 {
4798 struct cgroup_subsys_state *css =
4799 container_of(ref, struct cgroup_subsys_state, refcnt);
4800
4801 INIT_WORK(&css->destroy_work, css_release_work_fn);
4802 queue_work(cgroup_destroy_wq, &css->destroy_work);
4803 }
4804
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)4805 static void init_and_link_css(struct cgroup_subsys_state *css,
4806 struct cgroup_subsys *ss, struct cgroup *cgrp)
4807 {
4808 lockdep_assert_held(&cgroup_mutex);
4809
4810 cgroup_get(cgrp);
4811
4812 memset(css, 0, sizeof(*css));
4813 css->cgroup = cgrp;
4814 css->ss = ss;
4815 css->id = -1;
4816 INIT_LIST_HEAD(&css->sibling);
4817 INIT_LIST_HEAD(&css->children);
4818 css->serial_nr = css_serial_nr_next++;
4819 atomic_set(&css->online_cnt, 0);
4820
4821 if (cgroup_parent(cgrp)) {
4822 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4823 css_get(css->parent);
4824 }
4825
4826 BUG_ON(cgroup_css(cgrp, ss));
4827 }
4828
4829 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)4830 static int online_css(struct cgroup_subsys_state *css)
4831 {
4832 struct cgroup_subsys *ss = css->ss;
4833 int ret = 0;
4834
4835 lockdep_assert_held(&cgroup_mutex);
4836
4837 if (ss->css_online)
4838 ret = ss->css_online(css);
4839 if (!ret) {
4840 css->flags |= CSS_ONLINE;
4841 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4842
4843 atomic_inc(&css->online_cnt);
4844 if (css->parent)
4845 atomic_inc(&css->parent->online_cnt);
4846 }
4847 return ret;
4848 }
4849
4850 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)4851 static void offline_css(struct cgroup_subsys_state *css)
4852 {
4853 struct cgroup_subsys *ss = css->ss;
4854
4855 lockdep_assert_held(&cgroup_mutex);
4856
4857 if (!(css->flags & CSS_ONLINE))
4858 return;
4859
4860 if (ss->css_offline)
4861 ss->css_offline(css);
4862
4863 css->flags &= ~CSS_ONLINE;
4864 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4865
4866 wake_up_all(&css->cgroup->offline_waitq);
4867 }
4868
4869 /**
4870 * create_css - create a cgroup_subsys_state
4871 * @cgrp: the cgroup new css will be associated with
4872 * @ss: the subsys of new css
4873 * @visible: whether to create control knobs for the new css or not
4874 *
4875 * Create a new css associated with @cgrp - @ss pair. On success, the new
4876 * css is online and installed in @cgrp with all interface files created if
4877 * @visible. Returns 0 on success, -errno on failure.
4878 */
create_css(struct cgroup * cgrp,struct cgroup_subsys * ss,bool visible)4879 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4880 bool visible)
4881 {
4882 struct cgroup *parent = cgroup_parent(cgrp);
4883 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4884 struct cgroup_subsys_state *css;
4885 int err;
4886
4887 lockdep_assert_held(&cgroup_mutex);
4888
4889 css = ss->css_alloc(parent_css);
4890 if (IS_ERR(css))
4891 return PTR_ERR(css);
4892
4893 init_and_link_css(css, ss, cgrp);
4894
4895 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4896 if (err)
4897 goto err_free_css;
4898
4899 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4900 if (err < 0)
4901 goto err_free_percpu_ref;
4902 css->id = err;
4903
4904 if (visible) {
4905 err = css_populate_dir(css, NULL);
4906 if (err)
4907 goto err_free_id;
4908 }
4909
4910 /* @css is ready to be brought online now, make it visible */
4911 list_add_tail_rcu(&css->sibling, &parent_css->children);
4912 cgroup_idr_replace(&ss->css_idr, css, css->id);
4913
4914 err = online_css(css);
4915 if (err)
4916 goto err_list_del;
4917
4918 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4919 cgroup_parent(parent)) {
4920 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4921 current->comm, current->pid, ss->name);
4922 if (!strcmp(ss->name, "memory"))
4923 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4924 ss->warned_broken_hierarchy = true;
4925 }
4926
4927 return 0;
4928
4929 err_list_del:
4930 list_del_rcu(&css->sibling);
4931 css_clear_dir(css, NULL);
4932 err_free_id:
4933 cgroup_idr_remove(&ss->css_idr, css->id);
4934 err_free_percpu_ref:
4935 percpu_ref_exit(&css->refcnt);
4936 err_free_css:
4937 call_rcu(&css->rcu_head, css_free_rcu_fn);
4938 return err;
4939 }
4940
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)4941 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4942 umode_t mode)
4943 {
4944 struct cgroup *parent, *cgrp;
4945 struct cgroup_root *root;
4946 struct cgroup_subsys *ss;
4947 struct kernfs_node *kn;
4948 int ssid, ret;
4949
4950 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4951 */
4952 if (strchr(name, '\n'))
4953 return -EINVAL;
4954
4955 parent = cgroup_kn_lock_live(parent_kn);
4956 if (!parent)
4957 return -ENODEV;
4958 root = parent->root;
4959
4960 /* allocate the cgroup and its ID, 0 is reserved for the root */
4961 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4962 if (!cgrp) {
4963 ret = -ENOMEM;
4964 goto out_unlock;
4965 }
4966
4967 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4968 if (ret)
4969 goto out_free_cgrp;
4970
4971 /*
4972 * Temporarily set the pointer to NULL, so idr_find() won't return
4973 * a half-baked cgroup.
4974 */
4975 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4976 if (cgrp->id < 0) {
4977 ret = -ENOMEM;
4978 goto out_cancel_ref;
4979 }
4980
4981 init_cgroup_housekeeping(cgrp);
4982
4983 cgrp->self.parent = &parent->self;
4984 cgrp->root = root;
4985
4986 if (notify_on_release(parent))
4987 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4988
4989 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4990 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4991
4992 /* create the directory */
4993 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4994 if (IS_ERR(kn)) {
4995 ret = PTR_ERR(kn);
4996 goto out_free_id;
4997 }
4998 cgrp->kn = kn;
4999
5000 /*
5001 * This extra ref will be put in cgroup_free_fn() and guarantees
5002 * that @cgrp->kn is always accessible.
5003 */
5004 kernfs_get(kn);
5005
5006 cgrp->self.serial_nr = css_serial_nr_next++;
5007
5008 /* allocation complete, commit to creation */
5009 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5010 atomic_inc(&root->nr_cgrps);
5011 cgroup_get(parent);
5012
5013 /*
5014 * @cgrp is now fully operational. If something fails after this
5015 * point, it'll be released via the normal destruction path.
5016 */
5017 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5018
5019 ret = cgroup_kn_set_ugid(kn);
5020 if (ret)
5021 goto out_destroy;
5022
5023 ret = css_populate_dir(&cgrp->self, NULL);
5024 if (ret)
5025 goto out_destroy;
5026
5027 /* let's create and online css's */
5028 for_each_subsys(ss, ssid) {
5029 if (parent->child_subsys_mask & (1 << ssid)) {
5030 ret = create_css(cgrp, ss,
5031 parent->subtree_control & (1 << ssid));
5032 if (ret)
5033 goto out_destroy;
5034 }
5035 }
5036
5037 /*
5038 * On the default hierarchy, a child doesn't automatically inherit
5039 * subtree_control from the parent. Each is configured manually.
5040 */
5041 if (!cgroup_on_dfl(cgrp)) {
5042 cgrp->subtree_control = parent->subtree_control;
5043 cgroup_refresh_child_subsys_mask(cgrp);
5044 }
5045
5046 kernfs_activate(kn);
5047
5048 ret = 0;
5049 goto out_unlock;
5050
5051 out_free_id:
5052 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
5053 out_cancel_ref:
5054 percpu_ref_exit(&cgrp->self.refcnt);
5055 out_free_cgrp:
5056 kfree(cgrp);
5057 out_unlock:
5058 cgroup_kn_unlock(parent_kn);
5059 return ret;
5060
5061 out_destroy:
5062 cgroup_destroy_locked(cgrp);
5063 goto out_unlock;
5064 }
5065
5066 /*
5067 * This is called when the refcnt of a css is confirmed to be killed.
5068 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5069 * initate destruction and put the css ref from kill_css().
5070 */
css_killed_work_fn(struct work_struct * work)5071 static void css_killed_work_fn(struct work_struct *work)
5072 {
5073 struct cgroup_subsys_state *css =
5074 container_of(work, struct cgroup_subsys_state, destroy_work);
5075
5076 mutex_lock(&cgroup_mutex);
5077
5078 do {
5079 offline_css(css);
5080 css_put(css);
5081 /* @css can't go away while we're holding cgroup_mutex */
5082 css = css->parent;
5083 } while (css && atomic_dec_and_test(&css->online_cnt));
5084
5085 mutex_unlock(&cgroup_mutex);
5086 }
5087
5088 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5089 static void css_killed_ref_fn(struct percpu_ref *ref)
5090 {
5091 struct cgroup_subsys_state *css =
5092 container_of(ref, struct cgroup_subsys_state, refcnt);
5093
5094 if (atomic_dec_and_test(&css->online_cnt)) {
5095 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5096 queue_work(cgroup_destroy_wq, &css->destroy_work);
5097 }
5098 }
5099
5100 /**
5101 * kill_css - destroy a css
5102 * @css: css to destroy
5103 *
5104 * This function initiates destruction of @css by removing cgroup interface
5105 * files and putting its base reference. ->css_offline() will be invoked
5106 * asynchronously once css_tryget_online() is guaranteed to fail and when
5107 * the reference count reaches zero, @css will be released.
5108 */
kill_css(struct cgroup_subsys_state * css)5109 static void kill_css(struct cgroup_subsys_state *css)
5110 {
5111 lockdep_assert_held(&cgroup_mutex);
5112
5113 /*
5114 * This must happen before css is disassociated with its cgroup.
5115 * See seq_css() for details.
5116 */
5117 css_clear_dir(css, NULL);
5118
5119 /*
5120 * Killing would put the base ref, but we need to keep it alive
5121 * until after ->css_offline().
5122 */
5123 css_get(css);
5124
5125 /*
5126 * cgroup core guarantees that, by the time ->css_offline() is
5127 * invoked, no new css reference will be given out via
5128 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5129 * proceed to offlining css's because percpu_ref_kill() doesn't
5130 * guarantee that the ref is seen as killed on all CPUs on return.
5131 *
5132 * Use percpu_ref_kill_and_confirm() to get notifications as each
5133 * css is confirmed to be seen as killed on all CPUs.
5134 */
5135 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5136 }
5137
5138 /**
5139 * cgroup_destroy_locked - the first stage of cgroup destruction
5140 * @cgrp: cgroup to be destroyed
5141 *
5142 * css's make use of percpu refcnts whose killing latency shouldn't be
5143 * exposed to userland and are RCU protected. Also, cgroup core needs to
5144 * guarantee that css_tryget_online() won't succeed by the time
5145 * ->css_offline() is invoked. To satisfy all the requirements,
5146 * destruction is implemented in the following two steps.
5147 *
5148 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5149 * userland visible parts and start killing the percpu refcnts of
5150 * css's. Set up so that the next stage will be kicked off once all
5151 * the percpu refcnts are confirmed to be killed.
5152 *
5153 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5154 * rest of destruction. Once all cgroup references are gone, the
5155 * cgroup is RCU-freed.
5156 *
5157 * This function implements s1. After this step, @cgrp is gone as far as
5158 * the userland is concerned and a new cgroup with the same name may be
5159 * created. As cgroup doesn't care about the names internally, this
5160 * doesn't cause any problem.
5161 */
cgroup_destroy_locked(struct cgroup * cgrp)5162 static int cgroup_destroy_locked(struct cgroup *cgrp)
5163 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5164 {
5165 struct cgroup_subsys_state *css;
5166 struct cgrp_cset_link *link;
5167 int ssid;
5168
5169 lockdep_assert_held(&cgroup_mutex);
5170
5171 /*
5172 * Only migration can raise populated from zero and we're already
5173 * holding cgroup_mutex.
5174 */
5175 if (cgroup_is_populated(cgrp))
5176 return -EBUSY;
5177
5178 /*
5179 * Make sure there's no live children. We can't test emptiness of
5180 * ->self.children as dead children linger on it while being
5181 * drained; otherwise, "rmdir parent/child parent" may fail.
5182 */
5183 if (css_has_online_children(&cgrp->self))
5184 return -EBUSY;
5185
5186 /*
5187 * Mark @cgrp and the associated csets dead. The former prevents
5188 * further task migration and child creation by disabling
5189 * cgroup_lock_live_group(). The latter makes the csets ignored by
5190 * the migration path.
5191 */
5192 cgrp->self.flags &= ~CSS_ONLINE;
5193
5194 spin_lock_irq(&css_set_lock);
5195 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5196 link->cset->dead = true;
5197 spin_unlock_irq(&css_set_lock);
5198
5199 /* initiate massacre of all css's */
5200 for_each_css(css, ssid, cgrp)
5201 kill_css(css);
5202
5203 /*
5204 * Remove @cgrp directory along with the base files. @cgrp has an
5205 * extra ref on its kn.
5206 */
5207 kernfs_remove(cgrp->kn);
5208
5209 check_for_release(cgroup_parent(cgrp));
5210
5211 /* put the base reference */
5212 percpu_ref_kill(&cgrp->self.refcnt);
5213
5214 return 0;
5215 };
5216
cgroup_rmdir(struct kernfs_node * kn)5217 static int cgroup_rmdir(struct kernfs_node *kn)
5218 {
5219 struct cgroup *cgrp;
5220 int ret = 0;
5221
5222 cgrp = cgroup_kn_lock_live(kn);
5223 if (!cgrp)
5224 return 0;
5225
5226 ret = cgroup_destroy_locked(cgrp);
5227
5228 cgroup_kn_unlock(kn);
5229 return ret;
5230 }
5231
5232 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5233 .remount_fs = cgroup_remount,
5234 .show_options = cgroup_show_options,
5235 .mkdir = cgroup_mkdir,
5236 .rmdir = cgroup_rmdir,
5237 .rename = cgroup_rename,
5238 };
5239
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5240 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5241 {
5242 struct cgroup_subsys_state *css;
5243
5244 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
5245
5246 mutex_lock(&cgroup_mutex);
5247
5248 idr_init(&ss->css_idr);
5249 INIT_LIST_HEAD(&ss->cfts);
5250
5251 /* Create the root cgroup state for this subsystem */
5252 ss->root = &cgrp_dfl_root;
5253 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5254 /* We don't handle early failures gracefully */
5255 BUG_ON(IS_ERR(css));
5256 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5257
5258 /*
5259 * Root csses are never destroyed and we can't initialize
5260 * percpu_ref during early init. Disable refcnting.
5261 */
5262 css->flags |= CSS_NO_REF;
5263
5264 if (early) {
5265 /* allocation can't be done safely during early init */
5266 css->id = 1;
5267 } else {
5268 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5269 BUG_ON(css->id < 0);
5270 }
5271
5272 /* Update the init_css_set to contain a subsys
5273 * pointer to this state - since the subsystem is
5274 * newly registered, all tasks and hence the
5275 * init_css_set is in the subsystem's root cgroup. */
5276 init_css_set.subsys[ss->id] = css;
5277
5278 have_fork_callback |= (bool)ss->fork << ss->id;
5279 have_exit_callback |= (bool)ss->exit << ss->id;
5280 have_free_callback |= (bool)ss->free << ss->id;
5281 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5282
5283 /* At system boot, before all subsystems have been
5284 * registered, no tasks have been forked, so we don't
5285 * need to invoke fork callbacks here. */
5286 BUG_ON(!list_empty(&init_task.tasks));
5287
5288 BUG_ON(online_css(css));
5289
5290 mutex_unlock(&cgroup_mutex);
5291 }
5292
5293 /**
5294 * cgroup_init_early - cgroup initialization at system boot
5295 *
5296 * Initialize cgroups at system boot, and initialize any
5297 * subsystems that request early init.
5298 */
cgroup_init_early(void)5299 int __init cgroup_init_early(void)
5300 {
5301 static struct cgroup_sb_opts __initdata opts;
5302 struct cgroup_subsys *ss;
5303 int i;
5304
5305 init_cgroup_root(&cgrp_dfl_root, &opts);
5306 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5307
5308 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5309
5310 for_each_subsys(ss, i) {
5311 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5312 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5313 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5314 ss->id, ss->name);
5315 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5316 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5317
5318 ss->id = i;
5319 ss->name = cgroup_subsys_name[i];
5320 if (!ss->legacy_name)
5321 ss->legacy_name = cgroup_subsys_name[i];
5322
5323 if (ss->early_init)
5324 cgroup_init_subsys(ss, true);
5325 }
5326 return 0;
5327 }
5328
5329 static unsigned long cgroup_disable_mask __initdata;
5330
5331 /**
5332 * cgroup_init - cgroup initialization
5333 *
5334 * Register cgroup filesystem and /proc file, and initialize
5335 * any subsystems that didn't request early init.
5336 */
cgroup_init(void)5337 int __init cgroup_init(void)
5338 {
5339 struct cgroup_subsys *ss;
5340 unsigned long key;
5341 int ssid;
5342
5343 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5344 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5345 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5346
5347 /*
5348 * The latency of the synchronize_sched() is too high for cgroups,
5349 * avoid it at the cost of forcing all readers into the slow path.
5350 */
5351 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5352
5353 mutex_lock(&cgroup_mutex);
5354
5355 /* Add init_css_set to the hash table */
5356 key = css_set_hash(init_css_set.subsys);
5357 hash_add(css_set_table, &init_css_set.hlist, key);
5358
5359 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5360
5361 mutex_unlock(&cgroup_mutex);
5362
5363 for_each_subsys(ss, ssid) {
5364 if (ss->early_init) {
5365 struct cgroup_subsys_state *css =
5366 init_css_set.subsys[ss->id];
5367
5368 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5369 GFP_KERNEL);
5370 BUG_ON(css->id < 0);
5371 } else {
5372 cgroup_init_subsys(ss, false);
5373 }
5374
5375 list_add_tail(&init_css_set.e_cset_node[ssid],
5376 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5377
5378 /*
5379 * Setting dfl_root subsys_mask needs to consider the
5380 * disabled flag and cftype registration needs kmalloc,
5381 * both of which aren't available during early_init.
5382 */
5383 if (cgroup_disable_mask & (1 << ssid)) {
5384 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5385 printk(KERN_INFO "Disabling %s control group subsystem\n",
5386 ss->name);
5387 continue;
5388 }
5389
5390 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5391
5392 if (!ss->dfl_cftypes)
5393 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5394
5395 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5396 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5397 } else {
5398 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5399 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5400 }
5401
5402 if (ss->bind)
5403 ss->bind(init_css_set.subsys[ssid]);
5404 }
5405
5406 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5407 WARN_ON(register_filesystem(&cgroup_fs_type));
5408 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5409
5410 return 0;
5411 }
5412
cgroup_wq_init(void)5413 static int __init cgroup_wq_init(void)
5414 {
5415 /*
5416 * There isn't much point in executing destruction path in
5417 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5418 * Use 1 for @max_active.
5419 *
5420 * We would prefer to do this in cgroup_init() above, but that
5421 * is called before init_workqueues(): so leave this until after.
5422 */
5423 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5424 BUG_ON(!cgroup_destroy_wq);
5425
5426 /*
5427 * Used to destroy pidlists and separate to serve as flush domain.
5428 * Cap @max_active to 1 too.
5429 */
5430 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5431 0, 1);
5432 BUG_ON(!cgroup_pidlist_destroy_wq);
5433
5434 return 0;
5435 }
5436 core_initcall(cgroup_wq_init);
5437
5438 /*
5439 * proc_cgroup_show()
5440 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5441 * - Used for /proc/<pid>/cgroup.
5442 */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)5443 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5444 struct pid *pid, struct task_struct *tsk)
5445 {
5446 char *buf, *path;
5447 int retval;
5448 struct cgroup_root *root;
5449
5450 retval = -ENOMEM;
5451 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5452 if (!buf)
5453 goto out;
5454
5455 mutex_lock(&cgroup_mutex);
5456 spin_lock_irq(&css_set_lock);
5457
5458 for_each_root(root) {
5459 struct cgroup_subsys *ss;
5460 struct cgroup *cgrp;
5461 int ssid, count = 0;
5462
5463 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5464 continue;
5465
5466 seq_printf(m, "%d:", root->hierarchy_id);
5467 if (root != &cgrp_dfl_root)
5468 for_each_subsys(ss, ssid)
5469 if (root->subsys_mask & (1 << ssid))
5470 seq_printf(m, "%s%s", count++ ? "," : "",
5471 ss->legacy_name);
5472 if (strlen(root->name))
5473 seq_printf(m, "%sname=%s", count ? "," : "",
5474 root->name);
5475 seq_putc(m, ':');
5476
5477 cgrp = task_cgroup_from_root(tsk, root);
5478
5479 /*
5480 * On traditional hierarchies, all zombie tasks show up as
5481 * belonging to the root cgroup. On the default hierarchy,
5482 * while a zombie doesn't show up in "cgroup.procs" and
5483 * thus can't be migrated, its /proc/PID/cgroup keeps
5484 * reporting the cgroup it belonged to before exiting. If
5485 * the cgroup is removed before the zombie is reaped,
5486 * " (deleted)" is appended to the cgroup path.
5487 */
5488 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5489 path = cgroup_path(cgrp, buf, PATH_MAX);
5490 if (!path) {
5491 retval = -ENAMETOOLONG;
5492 goto out_unlock;
5493 }
5494 } else {
5495 path = "/";
5496 }
5497
5498 seq_puts(m, path);
5499
5500 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5501 seq_puts(m, " (deleted)\n");
5502 else
5503 seq_putc(m, '\n');
5504 }
5505
5506 retval = 0;
5507 out_unlock:
5508 spin_unlock_irq(&css_set_lock);
5509 mutex_unlock(&cgroup_mutex);
5510 kfree(buf);
5511 out:
5512 return retval;
5513 }
5514
5515 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)5516 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5517 {
5518 struct cgroup_subsys *ss;
5519 int i;
5520
5521 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5522 /*
5523 * ideally we don't want subsystems moving around while we do this.
5524 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5525 * subsys/hierarchy state.
5526 */
5527 mutex_lock(&cgroup_mutex);
5528
5529 for_each_subsys(ss, i)
5530 seq_printf(m, "%s\t%d\t%d\t%d\n",
5531 ss->legacy_name, ss->root->hierarchy_id,
5532 atomic_read(&ss->root->nr_cgrps),
5533 cgroup_ssid_enabled(i));
5534
5535 mutex_unlock(&cgroup_mutex);
5536 return 0;
5537 }
5538
cgroupstats_open(struct inode * inode,struct file * file)5539 static int cgroupstats_open(struct inode *inode, struct file *file)
5540 {
5541 return single_open(file, proc_cgroupstats_show, NULL);
5542 }
5543
5544 static const struct file_operations proc_cgroupstats_operations = {
5545 .open = cgroupstats_open,
5546 .read = seq_read,
5547 .llseek = seq_lseek,
5548 .release = single_release,
5549 };
5550
subsys_canfork_priv_p(void * ss_priv[CGROUP_CANFORK_COUNT],int i)5551 static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5552 {
5553 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5554 return &ss_priv[i - CGROUP_CANFORK_START];
5555 return NULL;
5556 }
5557
subsys_canfork_priv(void * ss_priv[CGROUP_CANFORK_COUNT],int i)5558 static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5559 {
5560 void **private = subsys_canfork_priv_p(ss_priv, i);
5561 return private ? *private : NULL;
5562 }
5563
5564 /**
5565 * cgroup_fork - initialize cgroup related fields during copy_process()
5566 * @child: pointer to task_struct of forking parent process.
5567 *
5568 * A task is associated with the init_css_set until cgroup_post_fork()
5569 * attaches it to the parent's css_set. Empty cg_list indicates that
5570 * @child isn't holding reference to its css_set.
5571 */
cgroup_fork(struct task_struct * child)5572 void cgroup_fork(struct task_struct *child)
5573 {
5574 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5575 INIT_LIST_HEAD(&child->cg_list);
5576 }
5577
5578 /**
5579 * cgroup_can_fork - called on a new task before the process is exposed
5580 * @child: the task in question.
5581 *
5582 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5583 * returns an error, the fork aborts with that error code. This allows for
5584 * a cgroup subsystem to conditionally allow or deny new forks.
5585 */
cgroup_can_fork(struct task_struct * child,void * ss_priv[CGROUP_CANFORK_COUNT])5586 int cgroup_can_fork(struct task_struct *child,
5587 void *ss_priv[CGROUP_CANFORK_COUNT])
5588 {
5589 struct cgroup_subsys *ss;
5590 int i, j, ret;
5591
5592 for_each_subsys_which(ss, i, &have_canfork_callback) {
5593 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5594 if (ret)
5595 goto out_revert;
5596 }
5597
5598 return 0;
5599
5600 out_revert:
5601 for_each_subsys(ss, j) {
5602 if (j >= i)
5603 break;
5604 if (ss->cancel_fork)
5605 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5606 }
5607
5608 return ret;
5609 }
5610
5611 /**
5612 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5613 * @child: the task in question
5614 *
5615 * This calls the cancel_fork() callbacks if a fork failed *after*
5616 * cgroup_can_fork() succeded.
5617 */
cgroup_cancel_fork(struct task_struct * child,void * ss_priv[CGROUP_CANFORK_COUNT])5618 void cgroup_cancel_fork(struct task_struct *child,
5619 void *ss_priv[CGROUP_CANFORK_COUNT])
5620 {
5621 struct cgroup_subsys *ss;
5622 int i;
5623
5624 for_each_subsys(ss, i)
5625 if (ss->cancel_fork)
5626 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5627 }
5628
5629 /**
5630 * cgroup_post_fork - called on a new task after adding it to the task list
5631 * @child: the task in question
5632 *
5633 * Adds the task to the list running through its css_set if necessary and
5634 * call the subsystem fork() callbacks. Has to be after the task is
5635 * visible on the task list in case we race with the first call to
5636 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5637 * list.
5638 */
cgroup_post_fork(struct task_struct * child,void * old_ss_priv[CGROUP_CANFORK_COUNT])5639 void cgroup_post_fork(struct task_struct *child,
5640 void *old_ss_priv[CGROUP_CANFORK_COUNT])
5641 {
5642 struct cgroup_subsys *ss;
5643 int i;
5644
5645 /*
5646 * This may race against cgroup_enable_task_cg_lists(). As that
5647 * function sets use_task_css_set_links before grabbing
5648 * tasklist_lock and we just went through tasklist_lock to add
5649 * @child, it's guaranteed that either we see the set
5650 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5651 * @child during its iteration.
5652 *
5653 * If we won the race, @child is associated with %current's
5654 * css_set. Grabbing css_set_lock guarantees both that the
5655 * association is stable, and, on completion of the parent's
5656 * migration, @child is visible in the source of migration or
5657 * already in the destination cgroup. This guarantee is necessary
5658 * when implementing operations which need to migrate all tasks of
5659 * a cgroup to another.
5660 *
5661 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5662 * will remain in init_css_set. This is safe because all tasks are
5663 * in the init_css_set before cg_links is enabled and there's no
5664 * operation which transfers all tasks out of init_css_set.
5665 */
5666 if (use_task_css_set_links) {
5667 struct css_set *cset;
5668
5669 spin_lock_irq(&css_set_lock);
5670 cset = task_css_set(current);
5671 if (list_empty(&child->cg_list)) {
5672 get_css_set(cset);
5673 css_set_move_task(child, NULL, cset, false);
5674 }
5675 spin_unlock_irq(&css_set_lock);
5676 }
5677
5678 /*
5679 * Call ss->fork(). This must happen after @child is linked on
5680 * css_set; otherwise, @child might change state between ->fork()
5681 * and addition to css_set.
5682 */
5683 for_each_subsys_which(ss, i, &have_fork_callback)
5684 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
5685 }
5686
5687 /**
5688 * cgroup_exit - detach cgroup from exiting task
5689 * @tsk: pointer to task_struct of exiting process
5690 *
5691 * Description: Detach cgroup from @tsk and release it.
5692 *
5693 * Note that cgroups marked notify_on_release force every task in
5694 * them to take the global cgroup_mutex mutex when exiting.
5695 * This could impact scaling on very large systems. Be reluctant to
5696 * use notify_on_release cgroups where very high task exit scaling
5697 * is required on large systems.
5698 *
5699 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5700 * call cgroup_exit() while the task is still competent to handle
5701 * notify_on_release(), then leave the task attached to the root cgroup in
5702 * each hierarchy for the remainder of its exit. No need to bother with
5703 * init_css_set refcnting. init_css_set never goes away and we can't race
5704 * with migration path - PF_EXITING is visible to migration path.
5705 */
cgroup_exit(struct task_struct * tsk)5706 void cgroup_exit(struct task_struct *tsk)
5707 {
5708 struct cgroup_subsys *ss;
5709 struct css_set *cset;
5710 int i;
5711
5712 /*
5713 * Unlink from @tsk from its css_set. As migration path can't race
5714 * with us, we can check css_set and cg_list without synchronization.
5715 */
5716 cset = task_css_set(tsk);
5717
5718 if (!list_empty(&tsk->cg_list)) {
5719 spin_lock_irq(&css_set_lock);
5720 css_set_move_task(tsk, cset, NULL, false);
5721 spin_unlock_irq(&css_set_lock);
5722 } else {
5723 get_css_set(cset);
5724 }
5725
5726 /* see cgroup_post_fork() for details */
5727 for_each_subsys_which(ss, i, &have_exit_callback)
5728 ss->exit(tsk);
5729 }
5730
cgroup_free(struct task_struct * task)5731 void cgroup_free(struct task_struct *task)
5732 {
5733 struct css_set *cset = task_css_set(task);
5734 struct cgroup_subsys *ss;
5735 int ssid;
5736
5737 for_each_subsys_which(ss, ssid, &have_free_callback)
5738 ss->free(task);
5739
5740 put_css_set(cset);
5741 }
5742
check_for_release(struct cgroup * cgrp)5743 static void check_for_release(struct cgroup *cgrp)
5744 {
5745 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
5746 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5747 schedule_work(&cgrp->release_agent_work);
5748 }
5749
5750 /*
5751 * Notify userspace when a cgroup is released, by running the
5752 * configured release agent with the name of the cgroup (path
5753 * relative to the root of cgroup file system) as the argument.
5754 *
5755 * Most likely, this user command will try to rmdir this cgroup.
5756 *
5757 * This races with the possibility that some other task will be
5758 * attached to this cgroup before it is removed, or that some other
5759 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5760 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5761 * unused, and this cgroup will be reprieved from its death sentence,
5762 * to continue to serve a useful existence. Next time it's released,
5763 * we will get notified again, if it still has 'notify_on_release' set.
5764 *
5765 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5766 * means only wait until the task is successfully execve()'d. The
5767 * separate release agent task is forked by call_usermodehelper(),
5768 * then control in this thread returns here, without waiting for the
5769 * release agent task. We don't bother to wait because the caller of
5770 * this routine has no use for the exit status of the release agent
5771 * task, so no sense holding our caller up for that.
5772 */
cgroup_release_agent(struct work_struct * work)5773 static void cgroup_release_agent(struct work_struct *work)
5774 {
5775 struct cgroup *cgrp =
5776 container_of(work, struct cgroup, release_agent_work);
5777 char *pathbuf = NULL, *agentbuf = NULL, *path;
5778 char *argv[3], *envp[3];
5779
5780 mutex_lock(&cgroup_mutex);
5781
5782 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5783 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5784 if (!pathbuf || !agentbuf)
5785 goto out;
5786
5787 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5788 if (!path)
5789 goto out;
5790
5791 argv[0] = agentbuf;
5792 argv[1] = path;
5793 argv[2] = NULL;
5794
5795 /* minimal command environment */
5796 envp[0] = "HOME=/";
5797 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5798 envp[2] = NULL;
5799
5800 mutex_unlock(&cgroup_mutex);
5801 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5802 goto out_free;
5803 out:
5804 mutex_unlock(&cgroup_mutex);
5805 out_free:
5806 kfree(agentbuf);
5807 kfree(pathbuf);
5808 }
5809
cgroup_disable(char * str)5810 static int __init cgroup_disable(char *str)
5811 {
5812 struct cgroup_subsys *ss;
5813 char *token;
5814 int i;
5815
5816 while ((token = strsep(&str, ",")) != NULL) {
5817 if (!*token)
5818 continue;
5819
5820 for_each_subsys(ss, i) {
5821 if (strcmp(token, ss->name) &&
5822 strcmp(token, ss->legacy_name))
5823 continue;
5824 cgroup_disable_mask |= 1 << i;
5825 }
5826 }
5827 return 1;
5828 }
5829 __setup("cgroup_disable=", cgroup_disable);
5830
5831 /**
5832 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5833 * @dentry: directory dentry of interest
5834 * @ss: subsystem of interest
5835 *
5836 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5837 * to get the corresponding css and return it. If such css doesn't exist
5838 * or can't be pinned, an ERR_PTR value is returned.
5839 */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)5840 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5841 struct cgroup_subsys *ss)
5842 {
5843 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5844 struct cgroup_subsys_state *css = NULL;
5845 struct cgroup *cgrp;
5846
5847 /* is @dentry a cgroup dir? */
5848 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5849 kernfs_type(kn) != KERNFS_DIR)
5850 return ERR_PTR(-EBADF);
5851
5852 rcu_read_lock();
5853
5854 /*
5855 * This path doesn't originate from kernfs and @kn could already
5856 * have been or be removed at any point. @kn->priv is RCU
5857 * protected for this access. See css_release_work_fn() for details.
5858 */
5859 cgrp = rcu_dereference(kn->priv);
5860 if (cgrp)
5861 css = cgroup_css(cgrp, ss);
5862
5863 if (!css || !css_tryget_online(css))
5864 css = ERR_PTR(-ENOENT);
5865
5866 rcu_read_unlock();
5867 return css;
5868 }
5869
5870 /**
5871 * css_from_id - lookup css by id
5872 * @id: the cgroup id
5873 * @ss: cgroup subsys to be looked into
5874 *
5875 * Returns the css if there's valid one with @id, otherwise returns NULL.
5876 * Should be called under rcu_read_lock().
5877 */
css_from_id(int id,struct cgroup_subsys * ss)5878 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5879 {
5880 WARN_ON_ONCE(!rcu_read_lock_held());
5881 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5882 }
5883
5884 #ifdef CONFIG_CGROUP_DEBUG
5885 static struct cgroup_subsys_state *
debug_css_alloc(struct cgroup_subsys_state * parent_css)5886 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5887 {
5888 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5889
5890 if (!css)
5891 return ERR_PTR(-ENOMEM);
5892
5893 return css;
5894 }
5895
debug_css_free(struct cgroup_subsys_state * css)5896 static void debug_css_free(struct cgroup_subsys_state *css)
5897 {
5898 kfree(css);
5899 }
5900
debug_taskcount_read(struct cgroup_subsys_state * css,struct cftype * cft)5901 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5902 struct cftype *cft)
5903 {
5904 return cgroup_task_count(css->cgroup);
5905 }
5906
current_css_set_read(struct cgroup_subsys_state * css,struct cftype * cft)5907 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5908 struct cftype *cft)
5909 {
5910 return (u64)(unsigned long)current->cgroups;
5911 }
5912
current_css_set_refcount_read(struct cgroup_subsys_state * css,struct cftype * cft)5913 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5914 struct cftype *cft)
5915 {
5916 u64 count;
5917
5918 rcu_read_lock();
5919 count = atomic_read(&task_css_set(current)->refcount);
5920 rcu_read_unlock();
5921 return count;
5922 }
5923
current_css_set_cg_links_read(struct seq_file * seq,void * v)5924 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5925 {
5926 struct cgrp_cset_link *link;
5927 struct css_set *cset;
5928 char *name_buf;
5929
5930 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5931 if (!name_buf)
5932 return -ENOMEM;
5933
5934 spin_lock_irq(&css_set_lock);
5935 rcu_read_lock();
5936 cset = rcu_dereference(current->cgroups);
5937 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5938 struct cgroup *c = link->cgrp;
5939
5940 cgroup_name(c, name_buf, NAME_MAX + 1);
5941 seq_printf(seq, "Root %d group %s\n",
5942 c->root->hierarchy_id, name_buf);
5943 }
5944 rcu_read_unlock();
5945 spin_unlock_irq(&css_set_lock);
5946 kfree(name_buf);
5947 return 0;
5948 }
5949
5950 #define MAX_TASKS_SHOWN_PER_CSS 25
cgroup_css_links_read(struct seq_file * seq,void * v)5951 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5952 {
5953 struct cgroup_subsys_state *css = seq_css(seq);
5954 struct cgrp_cset_link *link;
5955
5956 spin_lock_irq(&css_set_lock);
5957 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5958 struct css_set *cset = link->cset;
5959 struct task_struct *task;
5960 int count = 0;
5961
5962 seq_printf(seq, "css_set %pK\n", cset);
5963
5964 list_for_each_entry(task, &cset->tasks, cg_list) {
5965 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5966 goto overflow;
5967 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5968 }
5969
5970 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5971 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5972 goto overflow;
5973 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5974 }
5975 continue;
5976 overflow:
5977 seq_puts(seq, " ...\n");
5978 }
5979 spin_unlock_irq(&css_set_lock);
5980 return 0;
5981 }
5982
releasable_read(struct cgroup_subsys_state * css,struct cftype * cft)5983 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5984 {
5985 return (!cgroup_is_populated(css->cgroup) &&
5986 !css_has_online_children(&css->cgroup->self));
5987 }
5988
5989 static struct cftype debug_files[] = {
5990 {
5991 .name = "taskcount",
5992 .read_u64 = debug_taskcount_read,
5993 },
5994
5995 {
5996 .name = "current_css_set",
5997 .read_u64 = current_css_set_read,
5998 },
5999
6000 {
6001 .name = "current_css_set_refcount",
6002 .read_u64 = current_css_set_refcount_read,
6003 },
6004
6005 {
6006 .name = "current_css_set_cg_links",
6007 .seq_show = current_css_set_cg_links_read,
6008 },
6009
6010 {
6011 .name = "cgroup_css_links",
6012 .seq_show = cgroup_css_links_read,
6013 },
6014
6015 {
6016 .name = "releasable",
6017 .read_u64 = releasable_read,
6018 },
6019
6020 { } /* terminate */
6021 };
6022
6023 struct cgroup_subsys debug_cgrp_subsys = {
6024 .css_alloc = debug_css_alloc,
6025 .css_free = debug_css_free,
6026 .legacy_cftypes = debug_files,
6027 };
6028 #endif /* CONFIG_CGROUP_DEBUG */
6029