1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 #include "tree-log.h"
63
64 #ifdef CONFIG_64BIT
65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
66 * structures are incorrect, as the timespec structure from userspace
67 * is 4 bytes too small. We define these alternatives here to teach
68 * the kernel about the 32-bit struct packing.
69 */
70 struct btrfs_ioctl_timespec_32 {
71 __u64 sec;
72 __u32 nsec;
73 } __attribute__ ((__packed__));
74
75 struct btrfs_ioctl_received_subvol_args_32 {
76 char uuid[BTRFS_UUID_SIZE]; /* in */
77 __u64 stransid; /* in */
78 __u64 rtransid; /* out */
79 struct btrfs_ioctl_timespec_32 stime; /* in */
80 struct btrfs_ioctl_timespec_32 rtime; /* out */
81 __u64 flags; /* in */
82 __u64 reserved[16]; /* in */
83 } __attribute__ ((__packed__));
84
85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
86 struct btrfs_ioctl_received_subvol_args_32)
87 #endif
88
89
90 static int btrfs_clone(struct inode *src, struct inode *inode,
91 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
92 int no_time_update);
93
94 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_flags(umode_t mode,__u32 flags)95 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
96 {
97 if (S_ISDIR(mode))
98 return flags;
99 else if (S_ISREG(mode))
100 return flags & ~FS_DIRSYNC_FL;
101 else
102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103 }
104
105 /*
106 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
107 */
btrfs_flags_to_ioctl(unsigned int flags)108 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
109 {
110 unsigned int iflags = 0;
111
112 if (flags & BTRFS_INODE_SYNC)
113 iflags |= FS_SYNC_FL;
114 if (flags & BTRFS_INODE_IMMUTABLE)
115 iflags |= FS_IMMUTABLE_FL;
116 if (flags & BTRFS_INODE_APPEND)
117 iflags |= FS_APPEND_FL;
118 if (flags & BTRFS_INODE_NODUMP)
119 iflags |= FS_NODUMP_FL;
120 if (flags & BTRFS_INODE_NOATIME)
121 iflags |= FS_NOATIME_FL;
122 if (flags & BTRFS_INODE_DIRSYNC)
123 iflags |= FS_DIRSYNC_FL;
124 if (flags & BTRFS_INODE_NODATACOW)
125 iflags |= FS_NOCOW_FL;
126
127 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
128 iflags |= FS_COMPR_FL;
129 else if (flags & BTRFS_INODE_NOCOMPRESS)
130 iflags |= FS_NOCOMP_FL;
131
132 return iflags;
133 }
134
135 /*
136 * Update inode->i_flags based on the btrfs internal flags.
137 */
btrfs_update_iflags(struct inode * inode)138 void btrfs_update_iflags(struct inode *inode)
139 {
140 struct btrfs_inode *ip = BTRFS_I(inode);
141 unsigned int new_fl = 0;
142
143 if (ip->flags & BTRFS_INODE_SYNC)
144 new_fl |= S_SYNC;
145 if (ip->flags & BTRFS_INODE_IMMUTABLE)
146 new_fl |= S_IMMUTABLE;
147 if (ip->flags & BTRFS_INODE_APPEND)
148 new_fl |= S_APPEND;
149 if (ip->flags & BTRFS_INODE_NOATIME)
150 new_fl |= S_NOATIME;
151 if (ip->flags & BTRFS_INODE_DIRSYNC)
152 new_fl |= S_DIRSYNC;
153
154 set_mask_bits(&inode->i_flags,
155 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
156 new_fl);
157 }
158
159 /*
160 * Inherit flags from the parent inode.
161 *
162 * Currently only the compression flags and the cow flags are inherited.
163 */
btrfs_inherit_iflags(struct inode * inode,struct inode * dir)164 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
165 {
166 unsigned int flags;
167
168 if (!dir)
169 return;
170
171 flags = BTRFS_I(dir)->flags;
172
173 if (flags & BTRFS_INODE_NOCOMPRESS) {
174 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
175 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
176 } else if (flags & BTRFS_INODE_COMPRESS) {
177 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
178 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
179 }
180
181 if (flags & BTRFS_INODE_NODATACOW) {
182 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
183 if (S_ISREG(inode->i_mode))
184 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
185 }
186
187 btrfs_update_iflags(inode);
188 }
189
btrfs_ioctl_getflags(struct file * file,void __user * arg)190 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
191 {
192 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
193 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
194
195 if (copy_to_user(arg, &flags, sizeof(flags)))
196 return -EFAULT;
197 return 0;
198 }
199
check_flags(unsigned int flags)200 static int check_flags(unsigned int flags)
201 {
202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203 FS_NOATIME_FL | FS_NODUMP_FL | \
204 FS_SYNC_FL | FS_DIRSYNC_FL | \
205 FS_NOCOMP_FL | FS_COMPR_FL |
206 FS_NOCOW_FL))
207 return -EOPNOTSUPP;
208
209 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
210 return -EINVAL;
211
212 return 0;
213 }
214
btrfs_ioctl_setflags(struct file * file,void __user * arg)215 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
216 {
217 struct inode *inode = file_inode(file);
218 struct btrfs_inode *ip = BTRFS_I(inode);
219 struct btrfs_root *root = ip->root;
220 struct btrfs_trans_handle *trans;
221 unsigned int flags, oldflags;
222 int ret;
223 u64 ip_oldflags;
224 unsigned int i_oldflags;
225 umode_t mode;
226
227 if (!inode_owner_or_capable(inode))
228 return -EPERM;
229
230 if (btrfs_root_readonly(root))
231 return -EROFS;
232
233 if (copy_from_user(&flags, arg, sizeof(flags)))
234 return -EFAULT;
235
236 ret = check_flags(flags);
237 if (ret)
238 return ret;
239
240 ret = mnt_want_write_file(file);
241 if (ret)
242 return ret;
243
244 mutex_lock(&inode->i_mutex);
245
246 ip_oldflags = ip->flags;
247 i_oldflags = inode->i_flags;
248 mode = inode->i_mode;
249
250 flags = btrfs_mask_flags(inode->i_mode, flags);
251 oldflags = btrfs_flags_to_ioctl(ip->flags);
252 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
253 if (!capable(CAP_LINUX_IMMUTABLE)) {
254 ret = -EPERM;
255 goto out_unlock;
256 }
257 }
258
259 if (flags & FS_SYNC_FL)
260 ip->flags |= BTRFS_INODE_SYNC;
261 else
262 ip->flags &= ~BTRFS_INODE_SYNC;
263 if (flags & FS_IMMUTABLE_FL)
264 ip->flags |= BTRFS_INODE_IMMUTABLE;
265 else
266 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
267 if (flags & FS_APPEND_FL)
268 ip->flags |= BTRFS_INODE_APPEND;
269 else
270 ip->flags &= ~BTRFS_INODE_APPEND;
271 if (flags & FS_NODUMP_FL)
272 ip->flags |= BTRFS_INODE_NODUMP;
273 else
274 ip->flags &= ~BTRFS_INODE_NODUMP;
275 if (flags & FS_NOATIME_FL)
276 ip->flags |= BTRFS_INODE_NOATIME;
277 else
278 ip->flags &= ~BTRFS_INODE_NOATIME;
279 if (flags & FS_DIRSYNC_FL)
280 ip->flags |= BTRFS_INODE_DIRSYNC;
281 else
282 ip->flags &= ~BTRFS_INODE_DIRSYNC;
283 if (flags & FS_NOCOW_FL) {
284 if (S_ISREG(mode)) {
285 /*
286 * It's safe to turn csums off here, no extents exist.
287 * Otherwise we want the flag to reflect the real COW
288 * status of the file and will not set it.
289 */
290 if (inode->i_size == 0)
291 ip->flags |= BTRFS_INODE_NODATACOW
292 | BTRFS_INODE_NODATASUM;
293 } else {
294 ip->flags |= BTRFS_INODE_NODATACOW;
295 }
296 } else {
297 /*
298 * Revert back under same assuptions as above
299 */
300 if (S_ISREG(mode)) {
301 if (inode->i_size == 0)
302 ip->flags &= ~(BTRFS_INODE_NODATACOW
303 | BTRFS_INODE_NODATASUM);
304 } else {
305 ip->flags &= ~BTRFS_INODE_NODATACOW;
306 }
307 }
308
309 /*
310 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
311 * flag may be changed automatically if compression code won't make
312 * things smaller.
313 */
314 if (flags & FS_NOCOMP_FL) {
315 ip->flags &= ~BTRFS_INODE_COMPRESS;
316 ip->flags |= BTRFS_INODE_NOCOMPRESS;
317
318 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
319 if (ret && ret != -ENODATA)
320 goto out_drop;
321 } else if (flags & FS_COMPR_FL) {
322 const char *comp;
323
324 ip->flags |= BTRFS_INODE_COMPRESS;
325 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
326
327 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
328 comp = "lzo";
329 else
330 comp = "zlib";
331 ret = btrfs_set_prop(inode, "btrfs.compression",
332 comp, strlen(comp), 0);
333 if (ret)
334 goto out_drop;
335
336 } else {
337 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
338 if (ret && ret != -ENODATA)
339 goto out_drop;
340 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
341 }
342
343 trans = btrfs_start_transaction(root, 1);
344 if (IS_ERR(trans)) {
345 ret = PTR_ERR(trans);
346 goto out_drop;
347 }
348
349 btrfs_update_iflags(inode);
350 inode_inc_iversion(inode);
351 inode->i_ctime = CURRENT_TIME;
352 ret = btrfs_update_inode(trans, root, inode);
353
354 btrfs_end_transaction(trans, root);
355 out_drop:
356 if (ret) {
357 ip->flags = ip_oldflags;
358 inode->i_flags = i_oldflags;
359 }
360
361 out_unlock:
362 mutex_unlock(&inode->i_mutex);
363 mnt_drop_write_file(file);
364 return ret;
365 }
366
btrfs_ioctl_getversion(struct file * file,int __user * arg)367 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
368 {
369 struct inode *inode = file_inode(file);
370
371 return put_user(inode->i_generation, arg);
372 }
373
btrfs_ioctl_fitrim(struct file * file,void __user * arg)374 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
375 {
376 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
377 struct btrfs_device *device;
378 struct request_queue *q;
379 struct fstrim_range range;
380 u64 minlen = ULLONG_MAX;
381 u64 num_devices = 0;
382 int ret;
383
384 if (!capable(CAP_SYS_ADMIN))
385 return -EPERM;
386
387 rcu_read_lock();
388 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
389 dev_list) {
390 if (!device->bdev)
391 continue;
392 q = bdev_get_queue(device->bdev);
393 if (blk_queue_discard(q)) {
394 num_devices++;
395 minlen = min((u64)q->limits.discard_granularity,
396 minlen);
397 }
398 }
399 rcu_read_unlock();
400
401 if (!num_devices)
402 return -EOPNOTSUPP;
403 if (copy_from_user(&range, arg, sizeof(range)))
404 return -EFAULT;
405
406 /*
407 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
408 * block group is in the logical address space, which can be any
409 * sectorsize aligned bytenr in the range [0, U64_MAX].
410 */
411 if (range.len < fs_info->sb->s_blocksize)
412 return -EINVAL;
413
414 range.minlen = max(range.minlen, minlen);
415 ret = btrfs_trim_fs(fs_info->tree_root, &range);
416 if (ret < 0)
417 return ret;
418
419 if (copy_to_user(arg, &range, sizeof(range)))
420 return -EFAULT;
421
422 return 0;
423 }
424
btrfs_is_empty_uuid(u8 * uuid)425 int btrfs_is_empty_uuid(u8 *uuid)
426 {
427 int i;
428
429 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
430 if (uuid[i])
431 return 0;
432 }
433 return 1;
434 }
435
create_subvol(struct inode * dir,struct dentry * dentry,char * name,int namelen,u64 * async_transid,struct btrfs_qgroup_inherit * inherit)436 static noinline int create_subvol(struct inode *dir,
437 struct dentry *dentry,
438 char *name, int namelen,
439 u64 *async_transid,
440 struct btrfs_qgroup_inherit *inherit)
441 {
442 struct btrfs_trans_handle *trans;
443 struct btrfs_key key;
444 struct btrfs_root_item root_item;
445 struct btrfs_inode_item *inode_item;
446 struct extent_buffer *leaf;
447 struct btrfs_root *root = BTRFS_I(dir)->root;
448 struct btrfs_root *new_root;
449 struct btrfs_block_rsv block_rsv;
450 struct timespec cur_time = CURRENT_TIME;
451 struct inode *inode;
452 int ret;
453 int err;
454 u64 objectid;
455 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
456 u64 index = 0;
457 u64 qgroup_reserved;
458 uuid_le new_uuid;
459
460 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
461 if (ret)
462 return ret;
463
464 /*
465 * Don't create subvolume whose level is not zero. Or qgroup will be
466 * screwed up since it assume subvolme qgroup's level to be 0.
467 */
468 if (btrfs_qgroup_level(objectid))
469 return -ENOSPC;
470
471 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
472 /*
473 * The same as the snapshot creation, please see the comment
474 * of create_snapshot().
475 */
476 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
477 8, &qgroup_reserved, false);
478 if (ret)
479 return ret;
480
481 trans = btrfs_start_transaction(root, 0);
482 if (IS_ERR(trans)) {
483 ret = PTR_ERR(trans);
484 btrfs_subvolume_release_metadata(root, &block_rsv,
485 qgroup_reserved);
486 return ret;
487 }
488 trans->block_rsv = &block_rsv;
489 trans->bytes_reserved = block_rsv.size;
490
491 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
492 if (ret)
493 goto fail;
494
495 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
496 if (IS_ERR(leaf)) {
497 ret = PTR_ERR(leaf);
498 goto fail;
499 }
500
501 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
502 btrfs_set_header_bytenr(leaf, leaf->start);
503 btrfs_set_header_generation(leaf, trans->transid);
504 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
505 btrfs_set_header_owner(leaf, objectid);
506
507 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
508 BTRFS_FSID_SIZE);
509 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
510 btrfs_header_chunk_tree_uuid(leaf),
511 BTRFS_UUID_SIZE);
512 btrfs_mark_buffer_dirty(leaf);
513
514 memset(&root_item, 0, sizeof(root_item));
515
516 inode_item = &root_item.inode;
517 btrfs_set_stack_inode_generation(inode_item, 1);
518 btrfs_set_stack_inode_size(inode_item, 3);
519 btrfs_set_stack_inode_nlink(inode_item, 1);
520 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
521 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
522
523 btrfs_set_root_flags(&root_item, 0);
524 btrfs_set_root_limit(&root_item, 0);
525 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
526
527 btrfs_set_root_bytenr(&root_item, leaf->start);
528 btrfs_set_root_generation(&root_item, trans->transid);
529 btrfs_set_root_level(&root_item, 0);
530 btrfs_set_root_refs(&root_item, 1);
531 btrfs_set_root_used(&root_item, leaf->len);
532 btrfs_set_root_last_snapshot(&root_item, 0);
533
534 btrfs_set_root_generation_v2(&root_item,
535 btrfs_root_generation(&root_item));
536 uuid_le_gen(&new_uuid);
537 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
538 btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
539 btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
540 root_item.ctime = root_item.otime;
541 btrfs_set_root_ctransid(&root_item, trans->transid);
542 btrfs_set_root_otransid(&root_item, trans->transid);
543
544 btrfs_tree_unlock(leaf);
545 free_extent_buffer(leaf);
546 leaf = NULL;
547
548 btrfs_set_root_dirid(&root_item, new_dirid);
549
550 key.objectid = objectid;
551 key.offset = 0;
552 key.type = BTRFS_ROOT_ITEM_KEY;
553 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
554 &root_item);
555 if (ret)
556 goto fail;
557
558 key.offset = (u64)-1;
559 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
560 if (IS_ERR(new_root)) {
561 ret = PTR_ERR(new_root);
562 btrfs_abort_transaction(trans, root, ret);
563 goto fail;
564 }
565
566 btrfs_record_root_in_trans(trans, new_root);
567
568 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
569 if (ret) {
570 /* We potentially lose an unused inode item here */
571 btrfs_abort_transaction(trans, root, ret);
572 goto fail;
573 }
574
575 mutex_lock(&new_root->objectid_mutex);
576 new_root->highest_objectid = new_dirid;
577 mutex_unlock(&new_root->objectid_mutex);
578
579 /*
580 * insert the directory item
581 */
582 ret = btrfs_set_inode_index(dir, &index);
583 if (ret) {
584 btrfs_abort_transaction(trans, root, ret);
585 goto fail;
586 }
587
588 ret = btrfs_insert_dir_item(trans, root,
589 name, namelen, dir, &key,
590 BTRFS_FT_DIR, index);
591 if (ret) {
592 btrfs_abort_transaction(trans, root, ret);
593 goto fail;
594 }
595
596 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
597 ret = btrfs_update_inode(trans, root, dir);
598 if (ret) {
599 btrfs_abort_transaction(trans, root, ret);
600 goto fail;
601 }
602
603 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
604 objectid, root->root_key.objectid,
605 btrfs_ino(dir), index, name, namelen);
606 if (ret) {
607 btrfs_abort_transaction(trans, root, ret);
608 goto fail;
609 }
610
611 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
612 root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
613 objectid);
614 if (ret)
615 btrfs_abort_transaction(trans, root, ret);
616
617 fail:
618 trans->block_rsv = NULL;
619 trans->bytes_reserved = 0;
620 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
621
622 if (async_transid) {
623 *async_transid = trans->transid;
624 err = btrfs_commit_transaction_async(trans, root, 1);
625 if (err)
626 err = btrfs_commit_transaction(trans, root);
627 } else {
628 err = btrfs_commit_transaction(trans, root);
629 }
630 if (err && !ret)
631 ret = err;
632
633 if (!ret) {
634 inode = btrfs_lookup_dentry(dir, dentry);
635 if (IS_ERR(inode))
636 return PTR_ERR(inode);
637 d_instantiate(dentry, inode);
638 }
639 return ret;
640 }
641
btrfs_wait_for_no_snapshoting_writes(struct btrfs_root * root)642 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
643 {
644 s64 writers;
645 DEFINE_WAIT(wait);
646
647 do {
648 prepare_to_wait(&root->subv_writers->wait, &wait,
649 TASK_UNINTERRUPTIBLE);
650
651 writers = percpu_counter_sum(&root->subv_writers->counter);
652 if (writers)
653 schedule();
654
655 finish_wait(&root->subv_writers->wait, &wait);
656 } while (writers);
657 }
658
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,char * name,int namelen,u64 * async_transid,bool readonly,struct btrfs_qgroup_inherit * inherit)659 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
660 struct dentry *dentry, char *name, int namelen,
661 u64 *async_transid, bool readonly,
662 struct btrfs_qgroup_inherit *inherit)
663 {
664 struct inode *inode;
665 struct btrfs_pending_snapshot *pending_snapshot;
666 struct btrfs_trans_handle *trans;
667 int ret;
668
669 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
670 return -EINVAL;
671
672 atomic_inc(&root->will_be_snapshoted);
673 smp_mb__after_atomic();
674 btrfs_wait_for_no_snapshoting_writes(root);
675
676 ret = btrfs_start_delalloc_inodes(root, 0);
677 if (ret)
678 goto out;
679
680 btrfs_wait_ordered_extents(root, -1);
681
682 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
683 if (!pending_snapshot) {
684 ret = -ENOMEM;
685 goto out;
686 }
687
688 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
689 BTRFS_BLOCK_RSV_TEMP);
690 /*
691 * 1 - parent dir inode
692 * 2 - dir entries
693 * 1 - root item
694 * 2 - root ref/backref
695 * 1 - root of snapshot
696 * 1 - UUID item
697 */
698 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
699 &pending_snapshot->block_rsv, 8,
700 &pending_snapshot->qgroup_reserved,
701 false);
702 if (ret)
703 goto free;
704
705 pending_snapshot->dentry = dentry;
706 pending_snapshot->root = root;
707 pending_snapshot->readonly = readonly;
708 pending_snapshot->dir = dir;
709 pending_snapshot->inherit = inherit;
710
711 trans = btrfs_start_transaction(root, 0);
712 if (IS_ERR(trans)) {
713 ret = PTR_ERR(trans);
714 goto fail;
715 }
716
717 spin_lock(&root->fs_info->trans_lock);
718 list_add(&pending_snapshot->list,
719 &trans->transaction->pending_snapshots);
720 spin_unlock(&root->fs_info->trans_lock);
721 if (async_transid) {
722 *async_transid = trans->transid;
723 ret = btrfs_commit_transaction_async(trans,
724 root->fs_info->extent_root, 1);
725 if (ret)
726 ret = btrfs_commit_transaction(trans, root);
727 } else {
728 ret = btrfs_commit_transaction(trans,
729 root->fs_info->extent_root);
730 }
731 if (ret)
732 goto fail;
733
734 ret = pending_snapshot->error;
735 if (ret)
736 goto fail;
737
738 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
739 if (ret)
740 goto fail;
741
742 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
743 if (IS_ERR(inode)) {
744 ret = PTR_ERR(inode);
745 goto fail;
746 }
747
748 d_instantiate(dentry, inode);
749 ret = 0;
750 fail:
751 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
752 &pending_snapshot->block_rsv,
753 pending_snapshot->qgroup_reserved);
754 free:
755 kfree(pending_snapshot);
756 out:
757 if (atomic_dec_and_test(&root->will_be_snapshoted))
758 wake_up_atomic_t(&root->will_be_snapshoted);
759 return ret;
760 }
761
762 /* copy of may_delete in fs/namei.c()
763 * Check whether we can remove a link victim from directory dir, check
764 * whether the type of victim is right.
765 * 1. We can't do it if dir is read-only (done in permission())
766 * 2. We should have write and exec permissions on dir
767 * 3. We can't remove anything from append-only dir
768 * 4. We can't do anything with immutable dir (done in permission())
769 * 5. If the sticky bit on dir is set we should either
770 * a. be owner of dir, or
771 * b. be owner of victim, or
772 * c. have CAP_FOWNER capability
773 * 6. If the victim is append-only or immutable we can't do antyhing with
774 * links pointing to it.
775 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
776 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
777 * 9. We can't remove a root or mountpoint.
778 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
779 * nfs_async_unlink().
780 */
781
btrfs_may_delete(struct inode * dir,struct dentry * victim,int isdir)782 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
783 {
784 int error;
785
786 if (d_really_is_negative(victim))
787 return -ENOENT;
788
789 BUG_ON(d_inode(victim->d_parent) != dir);
790 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
791
792 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
793 if (error)
794 return error;
795 if (IS_APPEND(dir))
796 return -EPERM;
797 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
798 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
799 return -EPERM;
800 if (isdir) {
801 if (!d_is_dir(victim))
802 return -ENOTDIR;
803 if (IS_ROOT(victim))
804 return -EBUSY;
805 } else if (d_is_dir(victim))
806 return -EISDIR;
807 if (IS_DEADDIR(dir))
808 return -ENOENT;
809 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
810 return -EBUSY;
811 return 0;
812 }
813
814 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct inode * dir,struct dentry * child)815 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
816 {
817 if (d_really_is_positive(child))
818 return -EEXIST;
819 if (IS_DEADDIR(dir))
820 return -ENOENT;
821 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
822 }
823
824 /*
825 * Create a new subvolume below @parent. This is largely modeled after
826 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
827 * inside this filesystem so it's quite a bit simpler.
828 */
btrfs_mksubvol(struct path * parent,char * name,int namelen,struct btrfs_root * snap_src,u64 * async_transid,bool readonly,struct btrfs_qgroup_inherit * inherit)829 static noinline int btrfs_mksubvol(struct path *parent,
830 char *name, int namelen,
831 struct btrfs_root *snap_src,
832 u64 *async_transid, bool readonly,
833 struct btrfs_qgroup_inherit *inherit)
834 {
835 struct inode *dir = d_inode(parent->dentry);
836 struct dentry *dentry;
837 int error;
838
839 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
840 if (error == -EINTR)
841 return error;
842
843 dentry = lookup_one_len(name, parent->dentry, namelen);
844 error = PTR_ERR(dentry);
845 if (IS_ERR(dentry))
846 goto out_unlock;
847
848 error = -EEXIST;
849 if (d_really_is_positive(dentry))
850 goto out_dput;
851
852 error = btrfs_may_create(dir, dentry);
853 if (error)
854 goto out_dput;
855
856 /*
857 * even if this name doesn't exist, we may get hash collisions.
858 * check for them now when we can safely fail
859 */
860 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
861 dir->i_ino, name,
862 namelen);
863 if (error)
864 goto out_dput;
865
866 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
867
868 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
869 goto out_up_read;
870
871 if (snap_src) {
872 error = create_snapshot(snap_src, dir, dentry, name, namelen,
873 async_transid, readonly, inherit);
874 } else {
875 error = create_subvol(dir, dentry, name, namelen,
876 async_transid, inherit);
877 }
878 if (!error)
879 fsnotify_mkdir(dir, dentry);
880 out_up_read:
881 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
882 out_dput:
883 dput(dentry);
884 out_unlock:
885 mutex_unlock(&dir->i_mutex);
886 return error;
887 }
888
889 /*
890 * When we're defragging a range, we don't want to kick it off again
891 * if it is really just waiting for delalloc to send it down.
892 * If we find a nice big extent or delalloc range for the bytes in the
893 * file you want to defrag, we return 0 to let you know to skip this
894 * part of the file
895 */
check_defrag_in_cache(struct inode * inode,u64 offset,u32 thresh)896 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
897 {
898 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
899 struct extent_map *em = NULL;
900 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
901 u64 end;
902
903 read_lock(&em_tree->lock);
904 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
905 read_unlock(&em_tree->lock);
906
907 if (em) {
908 end = extent_map_end(em);
909 free_extent_map(em);
910 if (end - offset > thresh)
911 return 0;
912 }
913 /* if we already have a nice delalloc here, just stop */
914 thresh /= 2;
915 end = count_range_bits(io_tree, &offset, offset + thresh,
916 thresh, EXTENT_DELALLOC, 1);
917 if (end >= thresh)
918 return 0;
919 return 1;
920 }
921
922 /*
923 * helper function to walk through a file and find extents
924 * newer than a specific transid, and smaller than thresh.
925 *
926 * This is used by the defragging code to find new and small
927 * extents
928 */
find_new_extents(struct btrfs_root * root,struct inode * inode,u64 newer_than,u64 * off,u32 thresh)929 static int find_new_extents(struct btrfs_root *root,
930 struct inode *inode, u64 newer_than,
931 u64 *off, u32 thresh)
932 {
933 struct btrfs_path *path;
934 struct btrfs_key min_key;
935 struct extent_buffer *leaf;
936 struct btrfs_file_extent_item *extent;
937 int type;
938 int ret;
939 u64 ino = btrfs_ino(inode);
940
941 path = btrfs_alloc_path();
942 if (!path)
943 return -ENOMEM;
944
945 min_key.objectid = ino;
946 min_key.type = BTRFS_EXTENT_DATA_KEY;
947 min_key.offset = *off;
948
949 while (1) {
950 ret = btrfs_search_forward(root, &min_key, path, newer_than);
951 if (ret != 0)
952 goto none;
953 process_slot:
954 if (min_key.objectid != ino)
955 goto none;
956 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
957 goto none;
958
959 leaf = path->nodes[0];
960 extent = btrfs_item_ptr(leaf, path->slots[0],
961 struct btrfs_file_extent_item);
962
963 type = btrfs_file_extent_type(leaf, extent);
964 if (type == BTRFS_FILE_EXTENT_REG &&
965 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
966 check_defrag_in_cache(inode, min_key.offset, thresh)) {
967 *off = min_key.offset;
968 btrfs_free_path(path);
969 return 0;
970 }
971
972 path->slots[0]++;
973 if (path->slots[0] < btrfs_header_nritems(leaf)) {
974 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
975 goto process_slot;
976 }
977
978 if (min_key.offset == (u64)-1)
979 goto none;
980
981 min_key.offset++;
982 btrfs_release_path(path);
983 }
984 none:
985 btrfs_free_path(path);
986 return -ENOENT;
987 }
988
defrag_lookup_extent(struct inode * inode,u64 start)989 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
990 {
991 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
992 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
993 struct extent_map *em;
994 u64 len = PAGE_CACHE_SIZE;
995
996 /*
997 * hopefully we have this extent in the tree already, try without
998 * the full extent lock
999 */
1000 read_lock(&em_tree->lock);
1001 em = lookup_extent_mapping(em_tree, start, len);
1002 read_unlock(&em_tree->lock);
1003
1004 if (!em) {
1005 struct extent_state *cached = NULL;
1006 u64 end = start + len - 1;
1007
1008 /* get the big lock and read metadata off disk */
1009 lock_extent_bits(io_tree, start, end, 0, &cached);
1010 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1011 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1012
1013 if (IS_ERR(em))
1014 return NULL;
1015 }
1016
1017 return em;
1018 }
1019
defrag_check_next_extent(struct inode * inode,struct extent_map * em)1020 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1021 {
1022 struct extent_map *next;
1023 bool ret = true;
1024
1025 /* this is the last extent */
1026 if (em->start + em->len >= i_size_read(inode))
1027 return false;
1028
1029 next = defrag_lookup_extent(inode, em->start + em->len);
1030 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1031 ret = false;
1032 else if ((em->block_start + em->block_len == next->block_start) &&
1033 (em->block_len > 128 * 1024 && next->block_len > 128 * 1024))
1034 ret = false;
1035
1036 free_extent_map(next);
1037 return ret;
1038 }
1039
should_defrag_range(struct inode * inode,u64 start,u32 thresh,u64 * last_len,u64 * skip,u64 * defrag_end,int compress)1040 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1041 u64 *last_len, u64 *skip, u64 *defrag_end,
1042 int compress)
1043 {
1044 struct extent_map *em;
1045 int ret = 1;
1046 bool next_mergeable = true;
1047 bool prev_mergeable = true;
1048
1049 /*
1050 * make sure that once we start defragging an extent, we keep on
1051 * defragging it
1052 */
1053 if (start < *defrag_end)
1054 return 1;
1055
1056 *skip = 0;
1057
1058 em = defrag_lookup_extent(inode, start);
1059 if (!em)
1060 return 0;
1061
1062 /* this will cover holes, and inline extents */
1063 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1064 ret = 0;
1065 goto out;
1066 }
1067
1068 if (!*defrag_end)
1069 prev_mergeable = false;
1070
1071 next_mergeable = defrag_check_next_extent(inode, em);
1072 /*
1073 * we hit a real extent, if it is big or the next extent is not a
1074 * real extent, don't bother defragging it
1075 */
1076 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1077 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1078 ret = 0;
1079 out:
1080 /*
1081 * last_len ends up being a counter of how many bytes we've defragged.
1082 * every time we choose not to defrag an extent, we reset *last_len
1083 * so that the next tiny extent will force a defrag.
1084 *
1085 * The end result of this is that tiny extents before a single big
1086 * extent will force at least part of that big extent to be defragged.
1087 */
1088 if (ret) {
1089 *defrag_end = extent_map_end(em);
1090 } else {
1091 *last_len = 0;
1092 *skip = extent_map_end(em);
1093 *defrag_end = 0;
1094 }
1095
1096 free_extent_map(em);
1097 return ret;
1098 }
1099
1100 /*
1101 * it doesn't do much good to defrag one or two pages
1102 * at a time. This pulls in a nice chunk of pages
1103 * to COW and defrag.
1104 *
1105 * It also makes sure the delalloc code has enough
1106 * dirty data to avoid making new small extents as part
1107 * of the defrag
1108 *
1109 * It's a good idea to start RA on this range
1110 * before calling this.
1111 */
cluster_pages_for_defrag(struct inode * inode,struct page ** pages,unsigned long start_index,unsigned long num_pages)1112 static int cluster_pages_for_defrag(struct inode *inode,
1113 struct page **pages,
1114 unsigned long start_index,
1115 unsigned long num_pages)
1116 {
1117 unsigned long file_end;
1118 u64 isize = i_size_read(inode);
1119 u64 page_start;
1120 u64 page_end;
1121 u64 page_cnt;
1122 int ret;
1123 int i;
1124 int i_done;
1125 struct btrfs_ordered_extent *ordered;
1126 struct extent_state *cached_state = NULL;
1127 struct extent_io_tree *tree;
1128 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1129
1130 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1131 if (!isize || start_index > file_end)
1132 return 0;
1133
1134 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1135
1136 ret = btrfs_delalloc_reserve_space(inode,
1137 start_index << PAGE_CACHE_SHIFT,
1138 page_cnt << PAGE_CACHE_SHIFT);
1139 if (ret)
1140 return ret;
1141 i_done = 0;
1142 tree = &BTRFS_I(inode)->io_tree;
1143
1144 /* step one, lock all the pages */
1145 for (i = 0; i < page_cnt; i++) {
1146 struct page *page;
1147 again:
1148 page = find_or_create_page(inode->i_mapping,
1149 start_index + i, mask);
1150 if (!page)
1151 break;
1152
1153 page_start = page_offset(page);
1154 page_end = page_start + PAGE_CACHE_SIZE - 1;
1155 while (1) {
1156 lock_extent_bits(tree, page_start, page_end,
1157 0, &cached_state);
1158 ordered = btrfs_lookup_ordered_extent(inode,
1159 page_start);
1160 unlock_extent_cached(tree, page_start, page_end,
1161 &cached_state, GFP_NOFS);
1162 if (!ordered)
1163 break;
1164
1165 unlock_page(page);
1166 btrfs_start_ordered_extent(inode, ordered, 1);
1167 btrfs_put_ordered_extent(ordered);
1168 lock_page(page);
1169 /*
1170 * we unlocked the page above, so we need check if
1171 * it was released or not.
1172 */
1173 if (page->mapping != inode->i_mapping) {
1174 unlock_page(page);
1175 page_cache_release(page);
1176 goto again;
1177 }
1178 }
1179
1180 if (!PageUptodate(page)) {
1181 btrfs_readpage(NULL, page);
1182 lock_page(page);
1183 if (!PageUptodate(page)) {
1184 unlock_page(page);
1185 page_cache_release(page);
1186 ret = -EIO;
1187 break;
1188 }
1189 }
1190
1191 if (page->mapping != inode->i_mapping) {
1192 unlock_page(page);
1193 page_cache_release(page);
1194 goto again;
1195 }
1196
1197 pages[i] = page;
1198 i_done++;
1199 }
1200 if (!i_done || ret)
1201 goto out;
1202
1203 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1204 goto out;
1205
1206 /*
1207 * so now we have a nice long stream of locked
1208 * and up to date pages, lets wait on them
1209 */
1210 for (i = 0; i < i_done; i++)
1211 wait_on_page_writeback(pages[i]);
1212
1213 page_start = page_offset(pages[0]);
1214 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1215
1216 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1217 page_start, page_end - 1, 0, &cached_state);
1218 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1219 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1220 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1221 &cached_state, GFP_NOFS);
1222
1223 if (i_done != page_cnt) {
1224 spin_lock(&BTRFS_I(inode)->lock);
1225 BTRFS_I(inode)->outstanding_extents++;
1226 spin_unlock(&BTRFS_I(inode)->lock);
1227 btrfs_delalloc_release_space(inode,
1228 start_index << PAGE_CACHE_SHIFT,
1229 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1230 }
1231
1232
1233 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1234 &cached_state, GFP_NOFS);
1235
1236 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1237 page_start, page_end - 1, &cached_state,
1238 GFP_NOFS);
1239
1240 for (i = 0; i < i_done; i++) {
1241 clear_page_dirty_for_io(pages[i]);
1242 ClearPageChecked(pages[i]);
1243 set_page_extent_mapped(pages[i]);
1244 set_page_dirty(pages[i]);
1245 unlock_page(pages[i]);
1246 page_cache_release(pages[i]);
1247 }
1248 return i_done;
1249 out:
1250 for (i = 0; i < i_done; i++) {
1251 unlock_page(pages[i]);
1252 page_cache_release(pages[i]);
1253 }
1254 btrfs_delalloc_release_space(inode,
1255 start_index << PAGE_CACHE_SHIFT,
1256 page_cnt << PAGE_CACHE_SHIFT);
1257 return ret;
1258
1259 }
1260
btrfs_defrag_file(struct inode * inode,struct file * file,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1261 int btrfs_defrag_file(struct inode *inode, struct file *file,
1262 struct btrfs_ioctl_defrag_range_args *range,
1263 u64 newer_than, unsigned long max_to_defrag)
1264 {
1265 struct btrfs_root *root = BTRFS_I(inode)->root;
1266 struct file_ra_state *ra = NULL;
1267 unsigned long last_index;
1268 u64 isize = i_size_read(inode);
1269 u64 last_len = 0;
1270 u64 skip = 0;
1271 u64 defrag_end = 0;
1272 u64 newer_off = range->start;
1273 unsigned long i;
1274 unsigned long ra_index = 0;
1275 int ret;
1276 int defrag_count = 0;
1277 int compress_type = BTRFS_COMPRESS_ZLIB;
1278 u32 extent_thresh = range->extent_thresh;
1279 unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1280 unsigned long cluster = max_cluster;
1281 u64 new_align = ~((u64)128 * 1024 - 1);
1282 struct page **pages = NULL;
1283
1284 if (isize == 0)
1285 return 0;
1286
1287 if (range->start >= isize)
1288 return -EINVAL;
1289
1290 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1291 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1292 return -EINVAL;
1293 if (range->compress_type)
1294 compress_type = range->compress_type;
1295 }
1296
1297 if (extent_thresh == 0)
1298 extent_thresh = 256 * 1024;
1299
1300 /*
1301 * if we were not given a file, allocate a readahead
1302 * context
1303 */
1304 if (!file) {
1305 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1306 if (!ra)
1307 return -ENOMEM;
1308 file_ra_state_init(ra, inode->i_mapping);
1309 } else {
1310 ra = &file->f_ra;
1311 }
1312
1313 pages = kmalloc_array(max_cluster, sizeof(struct page *),
1314 GFP_NOFS);
1315 if (!pages) {
1316 ret = -ENOMEM;
1317 goto out_ra;
1318 }
1319
1320 /* find the last page to defrag */
1321 if (range->start + range->len > range->start) {
1322 last_index = min_t(u64, isize - 1,
1323 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1324 } else {
1325 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1326 }
1327
1328 if (newer_than) {
1329 ret = find_new_extents(root, inode, newer_than,
1330 &newer_off, 64 * 1024);
1331 if (!ret) {
1332 range->start = newer_off;
1333 /*
1334 * we always align our defrag to help keep
1335 * the extents in the file evenly spaced
1336 */
1337 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1338 } else
1339 goto out_ra;
1340 } else {
1341 i = range->start >> PAGE_CACHE_SHIFT;
1342 }
1343 if (!max_to_defrag)
1344 max_to_defrag = last_index - i + 1;
1345
1346 /*
1347 * make writeback starts from i, so the defrag range can be
1348 * written sequentially.
1349 */
1350 if (i < inode->i_mapping->writeback_index)
1351 inode->i_mapping->writeback_index = i;
1352
1353 while (i <= last_index && defrag_count < max_to_defrag &&
1354 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE))) {
1355 /*
1356 * make sure we stop running if someone unmounts
1357 * the FS
1358 */
1359 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1360 break;
1361
1362 if (btrfs_defrag_cancelled(root->fs_info)) {
1363 btrfs_debug(root->fs_info, "defrag_file cancelled");
1364 ret = -EAGAIN;
1365 break;
1366 }
1367
1368 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1369 extent_thresh, &last_len, &skip,
1370 &defrag_end, range->flags &
1371 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1372 unsigned long next;
1373 /*
1374 * the should_defrag function tells us how much to skip
1375 * bump our counter by the suggested amount
1376 */
1377 next = DIV_ROUND_UP(skip, PAGE_CACHE_SIZE);
1378 i = max(i + 1, next);
1379 continue;
1380 }
1381
1382 if (!newer_than) {
1383 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1384 PAGE_CACHE_SHIFT) - i;
1385 cluster = min(cluster, max_cluster);
1386 } else {
1387 cluster = max_cluster;
1388 }
1389
1390 if (i + cluster > ra_index) {
1391 ra_index = max(i, ra_index);
1392 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1393 cluster);
1394 ra_index += cluster;
1395 }
1396
1397 mutex_lock(&inode->i_mutex);
1398 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1399 BTRFS_I(inode)->force_compress = compress_type;
1400 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1401 if (ret < 0) {
1402 mutex_unlock(&inode->i_mutex);
1403 goto out_ra;
1404 }
1405
1406 defrag_count += ret;
1407 balance_dirty_pages_ratelimited(inode->i_mapping);
1408 mutex_unlock(&inode->i_mutex);
1409
1410 if (newer_than) {
1411 if (newer_off == (u64)-1)
1412 break;
1413
1414 if (ret > 0)
1415 i += ret;
1416
1417 newer_off = max(newer_off + 1,
1418 (u64)i << PAGE_CACHE_SHIFT);
1419
1420 ret = find_new_extents(root, inode,
1421 newer_than, &newer_off,
1422 64 * 1024);
1423 if (!ret) {
1424 range->start = newer_off;
1425 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1426 } else {
1427 break;
1428 }
1429 } else {
1430 if (ret > 0) {
1431 i += ret;
1432 last_len += ret << PAGE_CACHE_SHIFT;
1433 } else {
1434 i++;
1435 last_len = 0;
1436 }
1437 }
1438 }
1439
1440 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1441 filemap_flush(inode->i_mapping);
1442 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1443 &BTRFS_I(inode)->runtime_flags))
1444 filemap_flush(inode->i_mapping);
1445 }
1446
1447 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1448 /* the filemap_flush will queue IO into the worker threads, but
1449 * we have to make sure the IO is actually started and that
1450 * ordered extents get created before we return
1451 */
1452 atomic_inc(&root->fs_info->async_submit_draining);
1453 while (atomic_read(&root->fs_info->nr_async_submits) ||
1454 atomic_read(&root->fs_info->async_delalloc_pages)) {
1455 wait_event(root->fs_info->async_submit_wait,
1456 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1457 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1458 }
1459 atomic_dec(&root->fs_info->async_submit_draining);
1460 }
1461
1462 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1463 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1464 }
1465
1466 ret = defrag_count;
1467
1468 out_ra:
1469 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1470 mutex_lock(&inode->i_mutex);
1471 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1472 mutex_unlock(&inode->i_mutex);
1473 }
1474 if (!file)
1475 kfree(ra);
1476 kfree(pages);
1477 return ret;
1478 }
1479
btrfs_ioctl_resize(struct file * file,void __user * arg)1480 static noinline int btrfs_ioctl_resize(struct file *file,
1481 void __user *arg)
1482 {
1483 u64 new_size;
1484 u64 old_size;
1485 u64 devid = 1;
1486 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1487 struct btrfs_ioctl_vol_args *vol_args;
1488 struct btrfs_trans_handle *trans;
1489 struct btrfs_device *device = NULL;
1490 char *sizestr;
1491 char *retptr;
1492 char *devstr = NULL;
1493 int ret = 0;
1494 int mod = 0;
1495
1496 if (!capable(CAP_SYS_ADMIN))
1497 return -EPERM;
1498
1499 ret = mnt_want_write_file(file);
1500 if (ret)
1501 return ret;
1502
1503 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1504 1)) {
1505 mnt_drop_write_file(file);
1506 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1507 }
1508
1509 mutex_lock(&root->fs_info->volume_mutex);
1510 vol_args = memdup_user(arg, sizeof(*vol_args));
1511 if (IS_ERR(vol_args)) {
1512 ret = PTR_ERR(vol_args);
1513 goto out;
1514 }
1515
1516 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1517
1518 sizestr = vol_args->name;
1519 devstr = strchr(sizestr, ':');
1520 if (devstr) {
1521 sizestr = devstr + 1;
1522 *devstr = '\0';
1523 devstr = vol_args->name;
1524 ret = kstrtoull(devstr, 10, &devid);
1525 if (ret)
1526 goto out_free;
1527 if (!devid) {
1528 ret = -EINVAL;
1529 goto out_free;
1530 }
1531 btrfs_info(root->fs_info, "resizing devid %llu", devid);
1532 }
1533
1534 device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1535 if (!device) {
1536 btrfs_info(root->fs_info, "resizer unable to find device %llu",
1537 devid);
1538 ret = -ENODEV;
1539 goto out_free;
1540 }
1541
1542 if (!device->writeable) {
1543 btrfs_info(root->fs_info,
1544 "resizer unable to apply on readonly device %llu",
1545 devid);
1546 ret = -EPERM;
1547 goto out_free;
1548 }
1549
1550 if (!strcmp(sizestr, "max"))
1551 new_size = device->bdev->bd_inode->i_size;
1552 else {
1553 if (sizestr[0] == '-') {
1554 mod = -1;
1555 sizestr++;
1556 } else if (sizestr[0] == '+') {
1557 mod = 1;
1558 sizestr++;
1559 }
1560 new_size = memparse(sizestr, &retptr);
1561 if (*retptr != '\0' || new_size == 0) {
1562 ret = -EINVAL;
1563 goto out_free;
1564 }
1565 }
1566
1567 if (device->is_tgtdev_for_dev_replace) {
1568 ret = -EPERM;
1569 goto out_free;
1570 }
1571
1572 old_size = btrfs_device_get_total_bytes(device);
1573
1574 if (mod < 0) {
1575 if (new_size > old_size) {
1576 ret = -EINVAL;
1577 goto out_free;
1578 }
1579 new_size = old_size - new_size;
1580 } else if (mod > 0) {
1581 if (new_size > ULLONG_MAX - old_size) {
1582 ret = -ERANGE;
1583 goto out_free;
1584 }
1585 new_size = old_size + new_size;
1586 }
1587
1588 if (new_size < 256 * 1024 * 1024) {
1589 ret = -EINVAL;
1590 goto out_free;
1591 }
1592 if (new_size > device->bdev->bd_inode->i_size) {
1593 ret = -EFBIG;
1594 goto out_free;
1595 }
1596
1597 new_size = div_u64(new_size, root->sectorsize);
1598 new_size *= root->sectorsize;
1599
1600 btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu",
1601 rcu_str_deref(device->name), new_size);
1602
1603 if (new_size > old_size) {
1604 trans = btrfs_start_transaction(root, 0);
1605 if (IS_ERR(trans)) {
1606 ret = PTR_ERR(trans);
1607 goto out_free;
1608 }
1609 ret = btrfs_grow_device(trans, device, new_size);
1610 btrfs_commit_transaction(trans, root);
1611 } else if (new_size < old_size) {
1612 ret = btrfs_shrink_device(device, new_size);
1613 } /* equal, nothing need to do */
1614
1615 out_free:
1616 kfree(vol_args);
1617 out:
1618 mutex_unlock(&root->fs_info->volume_mutex);
1619 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1620 mnt_drop_write_file(file);
1621 return ret;
1622 }
1623
btrfs_ioctl_snap_create_transid(struct file * file,char * name,unsigned long fd,int subvol,u64 * transid,bool readonly,struct btrfs_qgroup_inherit * inherit)1624 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1625 char *name, unsigned long fd, int subvol,
1626 u64 *transid, bool readonly,
1627 struct btrfs_qgroup_inherit *inherit)
1628 {
1629 int namelen;
1630 int ret = 0;
1631
1632 if (!S_ISDIR(file_inode(file)->i_mode))
1633 return -ENOTDIR;
1634
1635 ret = mnt_want_write_file(file);
1636 if (ret)
1637 goto out;
1638
1639 namelen = strlen(name);
1640 if (strchr(name, '/')) {
1641 ret = -EINVAL;
1642 goto out_drop_write;
1643 }
1644
1645 if (name[0] == '.' &&
1646 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1647 ret = -EEXIST;
1648 goto out_drop_write;
1649 }
1650
1651 if (subvol) {
1652 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1653 NULL, transid, readonly, inherit);
1654 } else {
1655 struct fd src = fdget(fd);
1656 struct inode *src_inode;
1657 if (!src.file) {
1658 ret = -EINVAL;
1659 goto out_drop_write;
1660 }
1661
1662 src_inode = file_inode(src.file);
1663 if (src_inode->i_sb != file_inode(file)->i_sb) {
1664 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1665 "Snapshot src from another FS");
1666 ret = -EXDEV;
1667 } else if (!inode_owner_or_capable(src_inode)) {
1668 /*
1669 * Subvolume creation is not restricted, but snapshots
1670 * are limited to own subvolumes only
1671 */
1672 ret = -EPERM;
1673 } else {
1674 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1675 BTRFS_I(src_inode)->root,
1676 transid, readonly, inherit);
1677 }
1678 fdput(src);
1679 }
1680 out_drop_write:
1681 mnt_drop_write_file(file);
1682 out:
1683 return ret;
1684 }
1685
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1686 static noinline int btrfs_ioctl_snap_create(struct file *file,
1687 void __user *arg, int subvol)
1688 {
1689 struct btrfs_ioctl_vol_args *vol_args;
1690 int ret;
1691
1692 if (!S_ISDIR(file_inode(file)->i_mode))
1693 return -ENOTDIR;
1694
1695 vol_args = memdup_user(arg, sizeof(*vol_args));
1696 if (IS_ERR(vol_args))
1697 return PTR_ERR(vol_args);
1698 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1699
1700 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1701 vol_args->fd, subvol,
1702 NULL, false, NULL);
1703
1704 kfree(vol_args);
1705 return ret;
1706 }
1707
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1708 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1709 void __user *arg, int subvol)
1710 {
1711 struct btrfs_ioctl_vol_args_v2 *vol_args;
1712 int ret;
1713 u64 transid = 0;
1714 u64 *ptr = NULL;
1715 bool readonly = false;
1716 struct btrfs_qgroup_inherit *inherit = NULL;
1717
1718 if (!S_ISDIR(file_inode(file)->i_mode))
1719 return -ENOTDIR;
1720
1721 vol_args = memdup_user(arg, sizeof(*vol_args));
1722 if (IS_ERR(vol_args))
1723 return PTR_ERR(vol_args);
1724 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1725
1726 if (vol_args->flags &
1727 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1728 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1729 ret = -EOPNOTSUPP;
1730 goto free_args;
1731 }
1732
1733 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1734 ptr = &transid;
1735 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1736 readonly = true;
1737 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1738 if (vol_args->size > PAGE_CACHE_SIZE) {
1739 ret = -EINVAL;
1740 goto free_args;
1741 }
1742 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1743 if (IS_ERR(inherit)) {
1744 ret = PTR_ERR(inherit);
1745 goto free_args;
1746 }
1747 }
1748
1749 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1750 vol_args->fd, subvol, ptr,
1751 readonly, inherit);
1752 if (ret)
1753 goto free_inherit;
1754
1755 if (ptr && copy_to_user(arg +
1756 offsetof(struct btrfs_ioctl_vol_args_v2,
1757 transid),
1758 ptr, sizeof(*ptr)))
1759 ret = -EFAULT;
1760
1761 free_inherit:
1762 kfree(inherit);
1763 free_args:
1764 kfree(vol_args);
1765 return ret;
1766 }
1767
btrfs_ioctl_subvol_getflags(struct file * file,void __user * arg)1768 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1769 void __user *arg)
1770 {
1771 struct inode *inode = file_inode(file);
1772 struct btrfs_root *root = BTRFS_I(inode)->root;
1773 int ret = 0;
1774 u64 flags = 0;
1775
1776 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1777 return -EINVAL;
1778
1779 down_read(&root->fs_info->subvol_sem);
1780 if (btrfs_root_readonly(root))
1781 flags |= BTRFS_SUBVOL_RDONLY;
1782 up_read(&root->fs_info->subvol_sem);
1783
1784 if (copy_to_user(arg, &flags, sizeof(flags)))
1785 ret = -EFAULT;
1786
1787 return ret;
1788 }
1789
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1790 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1791 void __user *arg)
1792 {
1793 struct inode *inode = file_inode(file);
1794 struct btrfs_root *root = BTRFS_I(inode)->root;
1795 struct btrfs_trans_handle *trans;
1796 u64 root_flags;
1797 u64 flags;
1798 int ret = 0;
1799
1800 if (!inode_owner_or_capable(inode))
1801 return -EPERM;
1802
1803 ret = mnt_want_write_file(file);
1804 if (ret)
1805 goto out;
1806
1807 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1808 ret = -EINVAL;
1809 goto out_drop_write;
1810 }
1811
1812 if (copy_from_user(&flags, arg, sizeof(flags))) {
1813 ret = -EFAULT;
1814 goto out_drop_write;
1815 }
1816
1817 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1818 ret = -EINVAL;
1819 goto out_drop_write;
1820 }
1821
1822 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1823 ret = -EOPNOTSUPP;
1824 goto out_drop_write;
1825 }
1826
1827 down_write(&root->fs_info->subvol_sem);
1828
1829 /* nothing to do */
1830 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1831 goto out_drop_sem;
1832
1833 root_flags = btrfs_root_flags(&root->root_item);
1834 if (flags & BTRFS_SUBVOL_RDONLY) {
1835 btrfs_set_root_flags(&root->root_item,
1836 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1837 } else {
1838 /*
1839 * Block RO -> RW transition if this subvolume is involved in
1840 * send
1841 */
1842 spin_lock(&root->root_item_lock);
1843 if (root->send_in_progress == 0) {
1844 btrfs_set_root_flags(&root->root_item,
1845 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1846 spin_unlock(&root->root_item_lock);
1847 } else {
1848 spin_unlock(&root->root_item_lock);
1849 btrfs_warn(root->fs_info,
1850 "Attempt to set subvolume %llu read-write during send",
1851 root->root_key.objectid);
1852 ret = -EPERM;
1853 goto out_drop_sem;
1854 }
1855 }
1856
1857 trans = btrfs_start_transaction(root, 1);
1858 if (IS_ERR(trans)) {
1859 ret = PTR_ERR(trans);
1860 goto out_reset;
1861 }
1862
1863 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1864 &root->root_key, &root->root_item);
1865
1866 btrfs_commit_transaction(trans, root);
1867 out_reset:
1868 if (ret)
1869 btrfs_set_root_flags(&root->root_item, root_flags);
1870 out_drop_sem:
1871 up_write(&root->fs_info->subvol_sem);
1872 out_drop_write:
1873 mnt_drop_write_file(file);
1874 out:
1875 return ret;
1876 }
1877
1878 /*
1879 * helper to check if the subvolume references other subvolumes
1880 */
may_destroy_subvol(struct btrfs_root * root)1881 static noinline int may_destroy_subvol(struct btrfs_root *root)
1882 {
1883 struct btrfs_path *path;
1884 struct btrfs_dir_item *di;
1885 struct btrfs_key key;
1886 u64 dir_id;
1887 int ret;
1888
1889 path = btrfs_alloc_path();
1890 if (!path)
1891 return -ENOMEM;
1892
1893 /* Make sure this root isn't set as the default subvol */
1894 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1895 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1896 dir_id, "default", 7, 0);
1897 if (di && !IS_ERR(di)) {
1898 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1899 if (key.objectid == root->root_key.objectid) {
1900 ret = -EPERM;
1901 btrfs_err(root->fs_info, "deleting default subvolume "
1902 "%llu is not allowed", key.objectid);
1903 goto out;
1904 }
1905 btrfs_release_path(path);
1906 }
1907
1908 key.objectid = root->root_key.objectid;
1909 key.type = BTRFS_ROOT_REF_KEY;
1910 key.offset = (u64)-1;
1911
1912 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1913 &key, path, 0, 0);
1914 if (ret < 0)
1915 goto out;
1916 BUG_ON(ret == 0);
1917
1918 ret = 0;
1919 if (path->slots[0] > 0) {
1920 path->slots[0]--;
1921 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1922 if (key.objectid == root->root_key.objectid &&
1923 key.type == BTRFS_ROOT_REF_KEY)
1924 ret = -ENOTEMPTY;
1925 }
1926 out:
1927 btrfs_free_path(path);
1928 return ret;
1929 }
1930
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)1931 static noinline int key_in_sk(struct btrfs_key *key,
1932 struct btrfs_ioctl_search_key *sk)
1933 {
1934 struct btrfs_key test;
1935 int ret;
1936
1937 test.objectid = sk->min_objectid;
1938 test.type = sk->min_type;
1939 test.offset = sk->min_offset;
1940
1941 ret = btrfs_comp_cpu_keys(key, &test);
1942 if (ret < 0)
1943 return 0;
1944
1945 test.objectid = sk->max_objectid;
1946 test.type = sk->max_type;
1947 test.offset = sk->max_offset;
1948
1949 ret = btrfs_comp_cpu_keys(key, &test);
1950 if (ret > 0)
1951 return 0;
1952 return 1;
1953 }
1954
copy_to_sk(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)1955 static noinline int copy_to_sk(struct btrfs_root *root,
1956 struct btrfs_path *path,
1957 struct btrfs_key *key,
1958 struct btrfs_ioctl_search_key *sk,
1959 size_t *buf_size,
1960 char __user *ubuf,
1961 unsigned long *sk_offset,
1962 int *num_found)
1963 {
1964 u64 found_transid;
1965 struct extent_buffer *leaf;
1966 struct btrfs_ioctl_search_header sh;
1967 struct btrfs_key test;
1968 unsigned long item_off;
1969 unsigned long item_len;
1970 int nritems;
1971 int i;
1972 int slot;
1973 int ret = 0;
1974
1975 leaf = path->nodes[0];
1976 slot = path->slots[0];
1977 nritems = btrfs_header_nritems(leaf);
1978
1979 if (btrfs_header_generation(leaf) > sk->max_transid) {
1980 i = nritems;
1981 goto advance_key;
1982 }
1983 found_transid = btrfs_header_generation(leaf);
1984
1985 for (i = slot; i < nritems; i++) {
1986 item_off = btrfs_item_ptr_offset(leaf, i);
1987 item_len = btrfs_item_size_nr(leaf, i);
1988
1989 btrfs_item_key_to_cpu(leaf, key, i);
1990 if (!key_in_sk(key, sk))
1991 continue;
1992
1993 if (sizeof(sh) + item_len > *buf_size) {
1994 if (*num_found) {
1995 ret = 1;
1996 goto out;
1997 }
1998
1999 /*
2000 * return one empty item back for v1, which does not
2001 * handle -EOVERFLOW
2002 */
2003
2004 *buf_size = sizeof(sh) + item_len;
2005 item_len = 0;
2006 ret = -EOVERFLOW;
2007 }
2008
2009 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2010 ret = 1;
2011 goto out;
2012 }
2013
2014 sh.objectid = key->objectid;
2015 sh.offset = key->offset;
2016 sh.type = key->type;
2017 sh.len = item_len;
2018 sh.transid = found_transid;
2019
2020 /*
2021 * Copy search result header. If we fault then loop again so we
2022 * can fault in the pages and -EFAULT there if there's a
2023 * problem. Otherwise we'll fault and then copy the buffer in
2024 * properly this next time through
2025 */
2026 if (probe_user_write(ubuf + *sk_offset, &sh, sizeof(sh))) {
2027 ret = 0;
2028 goto out;
2029 }
2030
2031 *sk_offset += sizeof(sh);
2032
2033 if (item_len) {
2034 char __user *up = ubuf + *sk_offset;
2035 /*
2036 * Copy the item, same behavior as above, but reset the
2037 * * sk_offset so we copy the full thing again.
2038 */
2039 if (read_extent_buffer_to_user_nofault(leaf, up,
2040 item_off, item_len)) {
2041 ret = 0;
2042 *sk_offset -= sizeof(sh);
2043 goto out;
2044 }
2045
2046 *sk_offset += item_len;
2047 }
2048 (*num_found)++;
2049
2050 if (ret) /* -EOVERFLOW from above */
2051 goto out;
2052
2053 if (*num_found >= sk->nr_items) {
2054 ret = 1;
2055 goto out;
2056 }
2057 }
2058 advance_key:
2059 ret = 0;
2060 test.objectid = sk->max_objectid;
2061 test.type = sk->max_type;
2062 test.offset = sk->max_offset;
2063 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2064 ret = 1;
2065 else if (key->offset < (u64)-1)
2066 key->offset++;
2067 else if (key->type < (u8)-1) {
2068 key->offset = 0;
2069 key->type++;
2070 } else if (key->objectid < (u64)-1) {
2071 key->offset = 0;
2072 key->type = 0;
2073 key->objectid++;
2074 } else
2075 ret = 1;
2076 out:
2077 /*
2078 * 0: all items from this leaf copied, continue with next
2079 * 1: * more items can be copied, but unused buffer is too small
2080 * * all items were found
2081 * Either way, it will stops the loop which iterates to the next
2082 * leaf
2083 * -EOVERFLOW: item was to large for buffer
2084 * -EFAULT: could not copy extent buffer back to userspace
2085 */
2086 return ret;
2087 }
2088
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf)2089 static noinline int search_ioctl(struct inode *inode,
2090 struct btrfs_ioctl_search_key *sk,
2091 size_t *buf_size,
2092 char __user *ubuf)
2093 {
2094 struct btrfs_root *root;
2095 struct btrfs_key key;
2096 struct btrfs_path *path;
2097 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2098 int ret;
2099 int num_found = 0;
2100 unsigned long sk_offset = 0;
2101
2102 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2103 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2104 return -EOVERFLOW;
2105 }
2106
2107 path = btrfs_alloc_path();
2108 if (!path)
2109 return -ENOMEM;
2110
2111 if (sk->tree_id == 0) {
2112 /* search the root of the inode that was passed */
2113 root = BTRFS_I(inode)->root;
2114 } else {
2115 key.objectid = sk->tree_id;
2116 key.type = BTRFS_ROOT_ITEM_KEY;
2117 key.offset = (u64)-1;
2118 root = btrfs_read_fs_root_no_name(info, &key);
2119 if (IS_ERR(root)) {
2120 btrfs_err(info, "could not find root %llu",
2121 sk->tree_id);
2122 btrfs_free_path(path);
2123 return -ENOENT;
2124 }
2125 }
2126
2127 key.objectid = sk->min_objectid;
2128 key.type = sk->min_type;
2129 key.offset = sk->min_offset;
2130
2131 while (1) {
2132 ret = fault_in_pages_writeable(ubuf + sk_offset,
2133 *buf_size - sk_offset);
2134 if (ret)
2135 break;
2136
2137 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2138 if (ret != 0) {
2139 if (ret > 0)
2140 ret = 0;
2141 goto err;
2142 }
2143 ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2144 &sk_offset, &num_found);
2145 btrfs_release_path(path);
2146 if (ret)
2147 break;
2148
2149 }
2150 if (ret > 0)
2151 ret = 0;
2152 err:
2153 sk->nr_items = num_found;
2154 btrfs_free_path(path);
2155 return ret;
2156 }
2157
btrfs_ioctl_tree_search(struct file * file,void __user * argp)2158 static noinline int btrfs_ioctl_tree_search(struct file *file,
2159 void __user *argp)
2160 {
2161 struct btrfs_ioctl_search_args __user *uargs;
2162 struct btrfs_ioctl_search_key sk;
2163 struct inode *inode;
2164 int ret;
2165 size_t buf_size;
2166
2167 if (!capable(CAP_SYS_ADMIN))
2168 return -EPERM;
2169
2170 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2171
2172 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2173 return -EFAULT;
2174
2175 buf_size = sizeof(uargs->buf);
2176
2177 inode = file_inode(file);
2178 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2179
2180 /*
2181 * In the origin implementation an overflow is handled by returning a
2182 * search header with a len of zero, so reset ret.
2183 */
2184 if (ret == -EOVERFLOW)
2185 ret = 0;
2186
2187 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2188 ret = -EFAULT;
2189 return ret;
2190 }
2191
btrfs_ioctl_tree_search_v2(struct file * file,void __user * argp)2192 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2193 void __user *argp)
2194 {
2195 struct btrfs_ioctl_search_args_v2 __user *uarg;
2196 struct btrfs_ioctl_search_args_v2 args;
2197 struct inode *inode;
2198 int ret;
2199 size_t buf_size;
2200 const size_t buf_limit = 16 * 1024 * 1024;
2201
2202 if (!capable(CAP_SYS_ADMIN))
2203 return -EPERM;
2204
2205 /* copy search header and buffer size */
2206 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2207 if (copy_from_user(&args, uarg, sizeof(args)))
2208 return -EFAULT;
2209
2210 buf_size = args.buf_size;
2211
2212 if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2213 return -EOVERFLOW;
2214
2215 /* limit result size to 16MB */
2216 if (buf_size > buf_limit)
2217 buf_size = buf_limit;
2218
2219 inode = file_inode(file);
2220 ret = search_ioctl(inode, &args.key, &buf_size,
2221 (char *)(&uarg->buf[0]));
2222 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2223 ret = -EFAULT;
2224 else if (ret == -EOVERFLOW &&
2225 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2226 ret = -EFAULT;
2227
2228 return ret;
2229 }
2230
2231 /*
2232 * Search INODE_REFs to identify path name of 'dirid' directory
2233 * in a 'tree_id' tree. and sets path name to 'name'.
2234 */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)2235 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2236 u64 tree_id, u64 dirid, char *name)
2237 {
2238 struct btrfs_root *root;
2239 struct btrfs_key key;
2240 char *ptr;
2241 int ret = -1;
2242 int slot;
2243 int len;
2244 int total_len = 0;
2245 struct btrfs_inode_ref *iref;
2246 struct extent_buffer *l;
2247 struct btrfs_path *path;
2248
2249 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2250 name[0]='\0';
2251 return 0;
2252 }
2253
2254 path = btrfs_alloc_path();
2255 if (!path)
2256 return -ENOMEM;
2257
2258 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2259
2260 key.objectid = tree_id;
2261 key.type = BTRFS_ROOT_ITEM_KEY;
2262 key.offset = (u64)-1;
2263 root = btrfs_read_fs_root_no_name(info, &key);
2264 if (IS_ERR(root)) {
2265 btrfs_err(info, "could not find root %llu", tree_id);
2266 ret = -ENOENT;
2267 goto out;
2268 }
2269
2270 key.objectid = dirid;
2271 key.type = BTRFS_INODE_REF_KEY;
2272 key.offset = (u64)-1;
2273
2274 while (1) {
2275 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2276 if (ret < 0)
2277 goto out;
2278 else if (ret > 0) {
2279 ret = btrfs_previous_item(root, path, dirid,
2280 BTRFS_INODE_REF_KEY);
2281 if (ret < 0)
2282 goto out;
2283 else if (ret > 0) {
2284 ret = -ENOENT;
2285 goto out;
2286 }
2287 }
2288
2289 l = path->nodes[0];
2290 slot = path->slots[0];
2291 btrfs_item_key_to_cpu(l, &key, slot);
2292
2293 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2294 len = btrfs_inode_ref_name_len(l, iref);
2295 ptr -= len + 1;
2296 total_len += len + 1;
2297 if (ptr < name) {
2298 ret = -ENAMETOOLONG;
2299 goto out;
2300 }
2301
2302 *(ptr + len) = '/';
2303 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2304
2305 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2306 break;
2307
2308 btrfs_release_path(path);
2309 key.objectid = key.offset;
2310 key.offset = (u64)-1;
2311 dirid = key.objectid;
2312 }
2313 memmove(name, ptr, total_len);
2314 name[total_len] = '\0';
2315 ret = 0;
2316 out:
2317 btrfs_free_path(path);
2318 return ret;
2319 }
2320
btrfs_ioctl_ino_lookup(struct file * file,void __user * argp)2321 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2322 void __user *argp)
2323 {
2324 struct btrfs_ioctl_ino_lookup_args *args;
2325 struct inode *inode;
2326 int ret = 0;
2327
2328 args = memdup_user(argp, sizeof(*args));
2329 if (IS_ERR(args))
2330 return PTR_ERR(args);
2331
2332 inode = file_inode(file);
2333
2334 /*
2335 * Unprivileged query to obtain the containing subvolume root id. The
2336 * path is reset so it's consistent with btrfs_search_path_in_tree.
2337 */
2338 if (args->treeid == 0)
2339 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2340
2341 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2342 args->name[0] = 0;
2343 goto out;
2344 }
2345
2346 if (!capable(CAP_SYS_ADMIN)) {
2347 ret = -EPERM;
2348 goto out;
2349 }
2350
2351 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2352 args->treeid, args->objectid,
2353 args->name);
2354
2355 out:
2356 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2357 ret = -EFAULT;
2358
2359 kfree(args);
2360 return ret;
2361 }
2362
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg)2363 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2364 void __user *arg)
2365 {
2366 struct dentry *parent = file->f_path.dentry;
2367 struct dentry *dentry;
2368 struct inode *dir = d_inode(parent);
2369 struct inode *inode;
2370 struct btrfs_root *root = BTRFS_I(dir)->root;
2371 struct btrfs_root *dest = NULL;
2372 struct btrfs_ioctl_vol_args *vol_args;
2373 struct btrfs_trans_handle *trans;
2374 struct btrfs_block_rsv block_rsv;
2375 u64 root_flags;
2376 u64 qgroup_reserved;
2377 int namelen;
2378 int ret;
2379 int err = 0;
2380
2381 if (!S_ISDIR(dir->i_mode))
2382 return -ENOTDIR;
2383
2384 vol_args = memdup_user(arg, sizeof(*vol_args));
2385 if (IS_ERR(vol_args))
2386 return PTR_ERR(vol_args);
2387
2388 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2389 namelen = strlen(vol_args->name);
2390 if (strchr(vol_args->name, '/') ||
2391 strncmp(vol_args->name, "..", namelen) == 0) {
2392 err = -EINVAL;
2393 goto out;
2394 }
2395
2396 err = mnt_want_write_file(file);
2397 if (err)
2398 goto out;
2399
2400
2401 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2402 if (err == -EINTR)
2403 goto out_drop_write;
2404 dentry = lookup_one_len(vol_args->name, parent, namelen);
2405 if (IS_ERR(dentry)) {
2406 err = PTR_ERR(dentry);
2407 goto out_unlock_dir;
2408 }
2409
2410 if (d_really_is_negative(dentry)) {
2411 err = -ENOENT;
2412 goto out_dput;
2413 }
2414
2415 inode = d_inode(dentry);
2416 dest = BTRFS_I(inode)->root;
2417 if (!capable(CAP_SYS_ADMIN)) {
2418 /*
2419 * Regular user. Only allow this with a special mount
2420 * option, when the user has write+exec access to the
2421 * subvol root, and when rmdir(2) would have been
2422 * allowed.
2423 *
2424 * Note that this is _not_ check that the subvol is
2425 * empty or doesn't contain data that we wouldn't
2426 * otherwise be able to delete.
2427 *
2428 * Users who want to delete empty subvols should try
2429 * rmdir(2).
2430 */
2431 err = -EPERM;
2432 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2433 goto out_dput;
2434
2435 /*
2436 * Do not allow deletion if the parent dir is the same
2437 * as the dir to be deleted. That means the ioctl
2438 * must be called on the dentry referencing the root
2439 * of the subvol, not a random directory contained
2440 * within it.
2441 */
2442 err = -EINVAL;
2443 if (root == dest)
2444 goto out_dput;
2445
2446 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2447 if (err)
2448 goto out_dput;
2449 }
2450
2451 /* check if subvolume may be deleted by a user */
2452 err = btrfs_may_delete(dir, dentry, 1);
2453 if (err)
2454 goto out_dput;
2455
2456 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2457 err = -EINVAL;
2458 goto out_dput;
2459 }
2460
2461 mutex_lock(&inode->i_mutex);
2462
2463 /*
2464 * Don't allow to delete a subvolume with send in progress. This is
2465 * inside the i_mutex so the error handling that has to drop the bit
2466 * again is not run concurrently.
2467 */
2468 spin_lock(&dest->root_item_lock);
2469 root_flags = btrfs_root_flags(&dest->root_item);
2470 if (dest->send_in_progress == 0) {
2471 btrfs_set_root_flags(&dest->root_item,
2472 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2473 spin_unlock(&dest->root_item_lock);
2474 } else {
2475 spin_unlock(&dest->root_item_lock);
2476 btrfs_warn(root->fs_info,
2477 "Attempt to delete subvolume %llu during send",
2478 dest->root_key.objectid);
2479 err = -EPERM;
2480 goto out_unlock_inode;
2481 }
2482
2483 down_write(&root->fs_info->subvol_sem);
2484
2485 err = may_destroy_subvol(dest);
2486 if (err)
2487 goto out_up_write;
2488
2489 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2490 /*
2491 * One for dir inode, two for dir entries, two for root
2492 * ref/backref.
2493 */
2494 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2495 5, &qgroup_reserved, true);
2496 if (err)
2497 goto out_up_write;
2498
2499 trans = btrfs_start_transaction(root, 0);
2500 if (IS_ERR(trans)) {
2501 err = PTR_ERR(trans);
2502 goto out_release;
2503 }
2504 trans->block_rsv = &block_rsv;
2505 trans->bytes_reserved = block_rsv.size;
2506
2507 ret = btrfs_unlink_subvol(trans, root, dir,
2508 dest->root_key.objectid,
2509 dentry->d_name.name,
2510 dentry->d_name.len);
2511 if (ret) {
2512 err = ret;
2513 btrfs_abort_transaction(trans, root, ret);
2514 goto out_end_trans;
2515 }
2516
2517 btrfs_record_root_in_trans(trans, dest);
2518
2519 memset(&dest->root_item.drop_progress, 0,
2520 sizeof(dest->root_item.drop_progress));
2521 dest->root_item.drop_level = 0;
2522 btrfs_set_root_refs(&dest->root_item, 0);
2523
2524 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2525 ret = btrfs_insert_orphan_item(trans,
2526 root->fs_info->tree_root,
2527 dest->root_key.objectid);
2528 if (ret) {
2529 btrfs_abort_transaction(trans, root, ret);
2530 err = ret;
2531 goto out_end_trans;
2532 }
2533 }
2534
2535 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2536 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2537 dest->root_key.objectid);
2538 if (ret && ret != -ENOENT) {
2539 btrfs_abort_transaction(trans, root, ret);
2540 err = ret;
2541 goto out_end_trans;
2542 }
2543 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2544 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2545 dest->root_item.received_uuid,
2546 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2547 dest->root_key.objectid);
2548 if (ret && ret != -ENOENT) {
2549 btrfs_abort_transaction(trans, root, ret);
2550 err = ret;
2551 goto out_end_trans;
2552 }
2553 }
2554
2555 out_end_trans:
2556 trans->block_rsv = NULL;
2557 trans->bytes_reserved = 0;
2558 if (!err)
2559 btrfs_record_snapshot_destroy(trans, dir);
2560 ret = btrfs_end_transaction(trans, root);
2561 if (ret && !err)
2562 err = ret;
2563 inode->i_flags |= S_DEAD;
2564 out_release:
2565 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2566 out_up_write:
2567 up_write(&root->fs_info->subvol_sem);
2568 if (err) {
2569 spin_lock(&dest->root_item_lock);
2570 root_flags = btrfs_root_flags(&dest->root_item);
2571 btrfs_set_root_flags(&dest->root_item,
2572 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2573 spin_unlock(&dest->root_item_lock);
2574 }
2575 out_unlock_inode:
2576 mutex_unlock(&inode->i_mutex);
2577 if (!err) {
2578 d_invalidate(dentry);
2579 btrfs_invalidate_inodes(dest);
2580 d_delete(dentry);
2581 ASSERT(dest->send_in_progress == 0);
2582
2583 /* the last ref */
2584 if (dest->ino_cache_inode) {
2585 iput(dest->ino_cache_inode);
2586 dest->ino_cache_inode = NULL;
2587 }
2588 }
2589 out_dput:
2590 dput(dentry);
2591 out_unlock_dir:
2592 mutex_unlock(&dir->i_mutex);
2593 out_drop_write:
2594 mnt_drop_write_file(file);
2595 out:
2596 kfree(vol_args);
2597 return err;
2598 }
2599
btrfs_ioctl_defrag(struct file * file,void __user * argp)2600 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2601 {
2602 struct inode *inode = file_inode(file);
2603 struct btrfs_root *root = BTRFS_I(inode)->root;
2604 struct btrfs_ioctl_defrag_range_args *range;
2605 int ret;
2606
2607 ret = mnt_want_write_file(file);
2608 if (ret)
2609 return ret;
2610
2611 if (btrfs_root_readonly(root)) {
2612 ret = -EROFS;
2613 goto out;
2614 }
2615
2616 switch (inode->i_mode & S_IFMT) {
2617 case S_IFDIR:
2618 if (!capable(CAP_SYS_ADMIN)) {
2619 ret = -EPERM;
2620 goto out;
2621 }
2622 ret = btrfs_defrag_root(root);
2623 if (ret)
2624 goto out;
2625 ret = btrfs_defrag_root(root->fs_info->extent_root);
2626 break;
2627 case S_IFREG:
2628 if (!(file->f_mode & FMODE_WRITE)) {
2629 ret = -EINVAL;
2630 goto out;
2631 }
2632
2633 range = kzalloc(sizeof(*range), GFP_KERNEL);
2634 if (!range) {
2635 ret = -ENOMEM;
2636 goto out;
2637 }
2638
2639 if (argp) {
2640 if (copy_from_user(range, argp,
2641 sizeof(*range))) {
2642 ret = -EFAULT;
2643 kfree(range);
2644 goto out;
2645 }
2646 /* compression requires us to start the IO */
2647 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2648 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2649 range->extent_thresh = (u32)-1;
2650 }
2651 } else {
2652 /* the rest are all set to zero by kzalloc */
2653 range->len = (u64)-1;
2654 }
2655 ret = btrfs_defrag_file(file_inode(file), file,
2656 range, 0, 0);
2657 if (ret > 0)
2658 ret = 0;
2659 kfree(range);
2660 break;
2661 default:
2662 ret = -EINVAL;
2663 }
2664 out:
2665 mnt_drop_write_file(file);
2666 return ret;
2667 }
2668
btrfs_ioctl_add_dev(struct btrfs_root * root,void __user * arg)2669 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2670 {
2671 struct btrfs_ioctl_vol_args *vol_args;
2672 int ret;
2673
2674 if (!capable(CAP_SYS_ADMIN))
2675 return -EPERM;
2676
2677 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2678 1)) {
2679 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2680 }
2681
2682 mutex_lock(&root->fs_info->volume_mutex);
2683 vol_args = memdup_user(arg, sizeof(*vol_args));
2684 if (IS_ERR(vol_args)) {
2685 ret = PTR_ERR(vol_args);
2686 goto out;
2687 }
2688
2689 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2690 ret = btrfs_init_new_device(root, vol_args->name);
2691
2692 if (!ret)
2693 btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2694
2695 kfree(vol_args);
2696 out:
2697 mutex_unlock(&root->fs_info->volume_mutex);
2698 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2699 return ret;
2700 }
2701
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)2702 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2703 {
2704 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2705 struct btrfs_ioctl_vol_args *vol_args;
2706 int ret;
2707
2708 if (!capable(CAP_SYS_ADMIN))
2709 return -EPERM;
2710
2711 ret = mnt_want_write_file(file);
2712 if (ret)
2713 return ret;
2714
2715 vol_args = memdup_user(arg, sizeof(*vol_args));
2716 if (IS_ERR(vol_args)) {
2717 ret = PTR_ERR(vol_args);
2718 goto err_drop;
2719 }
2720
2721 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2722
2723 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2724 1)) {
2725 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2726 goto out;
2727 }
2728
2729 mutex_lock(&root->fs_info->volume_mutex);
2730 ret = btrfs_rm_device(root, vol_args->name);
2731 mutex_unlock(&root->fs_info->volume_mutex);
2732 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2733
2734 if (!ret)
2735 btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2736
2737 out:
2738 kfree(vol_args);
2739 err_drop:
2740 mnt_drop_write_file(file);
2741 return ret;
2742 }
2743
btrfs_ioctl_fs_info(struct btrfs_root * root,void __user * arg)2744 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2745 {
2746 struct btrfs_ioctl_fs_info_args *fi_args;
2747 struct btrfs_device *device;
2748 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2749 int ret = 0;
2750
2751 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2752 if (!fi_args)
2753 return -ENOMEM;
2754
2755 mutex_lock(&fs_devices->device_list_mutex);
2756 fi_args->num_devices = fs_devices->num_devices;
2757 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2758
2759 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2760 if (device->devid > fi_args->max_id)
2761 fi_args->max_id = device->devid;
2762 }
2763 mutex_unlock(&fs_devices->device_list_mutex);
2764
2765 fi_args->nodesize = root->fs_info->super_copy->nodesize;
2766 fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2767 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2768
2769 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2770 ret = -EFAULT;
2771
2772 kfree(fi_args);
2773 return ret;
2774 }
2775
btrfs_ioctl_dev_info(struct btrfs_root * root,void __user * arg)2776 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2777 {
2778 struct btrfs_ioctl_dev_info_args *di_args;
2779 struct btrfs_device *dev;
2780 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2781 int ret = 0;
2782 char *s_uuid = NULL;
2783
2784 di_args = memdup_user(arg, sizeof(*di_args));
2785 if (IS_ERR(di_args))
2786 return PTR_ERR(di_args);
2787
2788 if (!btrfs_is_empty_uuid(di_args->uuid))
2789 s_uuid = di_args->uuid;
2790
2791 mutex_lock(&fs_devices->device_list_mutex);
2792 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2793
2794 if (!dev) {
2795 ret = -ENODEV;
2796 goto out;
2797 }
2798
2799 di_args->devid = dev->devid;
2800 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2801 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2802 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2803 if (dev->name) {
2804 struct rcu_string *name;
2805
2806 rcu_read_lock();
2807 name = rcu_dereference(dev->name);
2808 strncpy(di_args->path, name->str, sizeof(di_args->path));
2809 rcu_read_unlock();
2810 di_args->path[sizeof(di_args->path) - 1] = 0;
2811 } else {
2812 di_args->path[0] = '\0';
2813 }
2814
2815 out:
2816 mutex_unlock(&fs_devices->device_list_mutex);
2817 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2818 ret = -EFAULT;
2819
2820 kfree(di_args);
2821 return ret;
2822 }
2823
extent_same_get_page(struct inode * inode,pgoff_t index)2824 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2825 {
2826 struct page *page;
2827
2828 page = grab_cache_page(inode->i_mapping, index);
2829 if (!page)
2830 return ERR_PTR(-ENOMEM);
2831
2832 if (!PageUptodate(page)) {
2833 int ret;
2834
2835 ret = btrfs_readpage(NULL, page);
2836 if (ret)
2837 return ERR_PTR(ret);
2838 lock_page(page);
2839 if (!PageUptodate(page)) {
2840 unlock_page(page);
2841 page_cache_release(page);
2842 return ERR_PTR(-EIO);
2843 }
2844 if (page->mapping != inode->i_mapping) {
2845 unlock_page(page);
2846 page_cache_release(page);
2847 return ERR_PTR(-EAGAIN);
2848 }
2849 }
2850
2851 return page;
2852 }
2853
gather_extent_pages(struct inode * inode,struct page ** pages,int num_pages,u64 off)2854 static int gather_extent_pages(struct inode *inode, struct page **pages,
2855 int num_pages, u64 off)
2856 {
2857 int i;
2858 pgoff_t index = off >> PAGE_CACHE_SHIFT;
2859
2860 for (i = 0; i < num_pages; i++) {
2861 again:
2862 pages[i] = extent_same_get_page(inode, index + i);
2863 if (IS_ERR(pages[i])) {
2864 int err = PTR_ERR(pages[i]);
2865
2866 if (err == -EAGAIN)
2867 goto again;
2868 pages[i] = NULL;
2869 return err;
2870 }
2871 }
2872 return 0;
2873 }
2874
lock_extent_range(struct inode * inode,u64 off,u64 len,bool retry_range_locking)2875 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2876 bool retry_range_locking)
2877 {
2878 /*
2879 * Do any pending delalloc/csum calculations on inode, one way or
2880 * another, and lock file content.
2881 * The locking order is:
2882 *
2883 * 1) pages
2884 * 2) range in the inode's io tree
2885 */
2886 while (1) {
2887 struct btrfs_ordered_extent *ordered;
2888 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2889 ordered = btrfs_lookup_first_ordered_extent(inode,
2890 off + len - 1);
2891 if ((!ordered ||
2892 ordered->file_offset + ordered->len <= off ||
2893 ordered->file_offset >= off + len) &&
2894 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2895 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2896 if (ordered)
2897 btrfs_put_ordered_extent(ordered);
2898 break;
2899 }
2900 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2901 if (ordered)
2902 btrfs_put_ordered_extent(ordered);
2903 if (!retry_range_locking)
2904 return -EAGAIN;
2905 btrfs_wait_ordered_range(inode, off, len);
2906 }
2907 return 0;
2908 }
2909
btrfs_double_inode_unlock(struct inode * inode1,struct inode * inode2)2910 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2911 {
2912 mutex_unlock(&inode1->i_mutex);
2913 mutex_unlock(&inode2->i_mutex);
2914 }
2915
btrfs_double_inode_lock(struct inode * inode1,struct inode * inode2)2916 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2917 {
2918 if (inode1 < inode2)
2919 swap(inode1, inode2);
2920
2921 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2922 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2923 }
2924
btrfs_double_extent_unlock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len)2925 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2926 struct inode *inode2, u64 loff2, u64 len)
2927 {
2928 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2929 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2930 }
2931
btrfs_double_extent_lock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len,bool retry_range_locking)2932 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2933 struct inode *inode2, u64 loff2, u64 len,
2934 bool retry_range_locking)
2935 {
2936 int ret;
2937
2938 if (inode1 < inode2) {
2939 swap(inode1, inode2);
2940 swap(loff1, loff2);
2941 }
2942 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2943 if (ret)
2944 return ret;
2945 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2946 if (ret)
2947 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2948 loff1 + len - 1);
2949 return ret;
2950 }
2951
2952 struct cmp_pages {
2953 int num_pages;
2954 struct page **src_pages;
2955 struct page **dst_pages;
2956 };
2957
btrfs_cmp_data_free(struct cmp_pages * cmp)2958 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2959 {
2960 int i;
2961 struct page *pg;
2962
2963 for (i = 0; i < cmp->num_pages; i++) {
2964 pg = cmp->src_pages[i];
2965 if (pg) {
2966 unlock_page(pg);
2967 page_cache_release(pg);
2968 }
2969 pg = cmp->dst_pages[i];
2970 if (pg) {
2971 unlock_page(pg);
2972 page_cache_release(pg);
2973 }
2974 }
2975 kfree(cmp->src_pages);
2976 kfree(cmp->dst_pages);
2977 }
2978
btrfs_cmp_data_prepare(struct inode * src,u64 loff,struct inode * dst,u64 dst_loff,u64 len,struct cmp_pages * cmp)2979 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2980 struct inode *dst, u64 dst_loff,
2981 u64 len, struct cmp_pages *cmp)
2982 {
2983 int ret;
2984 int num_pages = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
2985 struct page **src_pgarr, **dst_pgarr;
2986
2987 /*
2988 * We must gather up all the pages before we initiate our
2989 * extent locking. We use an array for the page pointers. Size
2990 * of the array is bounded by len, which is in turn bounded by
2991 * BTRFS_MAX_DEDUPE_LEN.
2992 */
2993 src_pgarr = kzalloc(num_pages * sizeof(struct page *), GFP_NOFS);
2994 dst_pgarr = kzalloc(num_pages * sizeof(struct page *), GFP_NOFS);
2995 if (!src_pgarr || !dst_pgarr) {
2996 kfree(src_pgarr);
2997 kfree(dst_pgarr);
2998 return -ENOMEM;
2999 }
3000 cmp->num_pages = num_pages;
3001 cmp->src_pages = src_pgarr;
3002 cmp->dst_pages = dst_pgarr;
3003
3004 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
3005 if (ret)
3006 goto out;
3007
3008 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
3009
3010 out:
3011 if (ret)
3012 btrfs_cmp_data_free(cmp);
3013 return ret;
3014 }
3015
btrfs_cmp_data(struct inode * src,u64 loff,struct inode * dst,u64 dst_loff,u64 len,struct cmp_pages * cmp)3016 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
3017 u64 dst_loff, u64 len, struct cmp_pages *cmp)
3018 {
3019 int ret = 0;
3020 int i;
3021 struct page *src_page, *dst_page;
3022 unsigned int cmp_len = PAGE_CACHE_SIZE;
3023 void *addr, *dst_addr;
3024
3025 i = 0;
3026 while (len) {
3027 if (len < PAGE_CACHE_SIZE)
3028 cmp_len = len;
3029
3030 BUG_ON(i >= cmp->num_pages);
3031
3032 src_page = cmp->src_pages[i];
3033 dst_page = cmp->dst_pages[i];
3034 ASSERT(PageLocked(src_page));
3035 ASSERT(PageLocked(dst_page));
3036
3037 addr = kmap_atomic(src_page);
3038 dst_addr = kmap_atomic(dst_page);
3039
3040 flush_dcache_page(src_page);
3041 flush_dcache_page(dst_page);
3042
3043 if (memcmp(addr, dst_addr, cmp_len))
3044 ret = BTRFS_SAME_DATA_DIFFERS;
3045
3046 kunmap_atomic(addr);
3047 kunmap_atomic(dst_addr);
3048
3049 if (ret)
3050 break;
3051
3052 len -= cmp_len;
3053 i++;
3054 }
3055
3056 return ret;
3057 }
3058
extent_same_check_offsets(struct inode * inode,u64 off,u64 * plen,u64 olen)3059 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3060 u64 olen)
3061 {
3062 u64 len = *plen;
3063 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3064
3065 if (off + olen > inode->i_size || off + olen < off)
3066 return -EINVAL;
3067
3068 /* if we extend to eof, continue to block boundary */
3069 if (off + len == inode->i_size)
3070 *plen = len = ALIGN(inode->i_size, bs) - off;
3071
3072 /* Check that we are block aligned - btrfs_clone() requires this */
3073 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3074 return -EINVAL;
3075
3076 return 0;
3077 }
3078
btrfs_extent_same(struct inode * src,u64 loff,u64 olen,struct inode * dst,u64 dst_loff)3079 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3080 struct inode *dst, u64 dst_loff)
3081 {
3082 int ret;
3083 u64 len = olen;
3084 struct cmp_pages cmp;
3085 int same_inode = 0;
3086 u64 same_lock_start = 0;
3087 u64 same_lock_len = 0;
3088
3089 if (src == dst)
3090 same_inode = 1;
3091
3092 if (len == 0)
3093 return 0;
3094
3095 if (same_inode) {
3096 mutex_lock(&src->i_mutex);
3097
3098 ret = extent_same_check_offsets(src, loff, &len, olen);
3099 if (ret)
3100 goto out_unlock;
3101
3102 /*
3103 * Single inode case wants the same checks, except we
3104 * don't want our length pushed out past i_size as
3105 * comparing that data range makes no sense.
3106 *
3107 * extent_same_check_offsets() will do this for an
3108 * unaligned length at i_size, so catch it here and
3109 * reject the request.
3110 *
3111 * This effectively means we require aligned extents
3112 * for the single-inode case, whereas the other cases
3113 * allow an unaligned length so long as it ends at
3114 * i_size.
3115 */
3116 if (len != olen) {
3117 ret = -EINVAL;
3118 goto out_unlock;
3119 }
3120
3121 /* Check for overlapping ranges */
3122 if (dst_loff + len > loff && dst_loff < loff + len) {
3123 ret = -EINVAL;
3124 goto out_unlock;
3125 }
3126
3127 same_lock_start = min_t(u64, loff, dst_loff);
3128 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3129 } else {
3130 btrfs_double_inode_lock(src, dst);
3131
3132 ret = extent_same_check_offsets(src, loff, &len, olen);
3133 if (ret)
3134 goto out_unlock;
3135
3136 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3137 if (ret)
3138 goto out_unlock;
3139 }
3140
3141 /* don't make the dst file partly checksummed */
3142 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3143 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3144 ret = -EINVAL;
3145 goto out_unlock;
3146 }
3147
3148 again:
3149 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3150 if (ret)
3151 goto out_unlock;
3152
3153 if (same_inode)
3154 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3155 false);
3156 else
3157 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3158 false);
3159 /*
3160 * If one of the inodes has dirty pages in the respective range or
3161 * ordered extents, we need to flush dellaloc and wait for all ordered
3162 * extents in the range. We must unlock the pages and the ranges in the
3163 * io trees to avoid deadlocks when flushing delalloc (requires locking
3164 * pages) and when waiting for ordered extents to complete (they require
3165 * range locking).
3166 */
3167 if (ret == -EAGAIN) {
3168 /*
3169 * Ranges in the io trees already unlocked. Now unlock all
3170 * pages before waiting for all IO to complete.
3171 */
3172 btrfs_cmp_data_free(&cmp);
3173 if (same_inode) {
3174 btrfs_wait_ordered_range(src, same_lock_start,
3175 same_lock_len);
3176 } else {
3177 btrfs_wait_ordered_range(src, loff, len);
3178 btrfs_wait_ordered_range(dst, dst_loff, len);
3179 }
3180 goto again;
3181 }
3182 ASSERT(ret == 0);
3183 if (WARN_ON(ret)) {
3184 /* ranges in the io trees already unlocked */
3185 btrfs_cmp_data_free(&cmp);
3186 return ret;
3187 }
3188
3189 /* pass original length for comparison so we stay within i_size */
3190 ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp);
3191 if (ret == 0)
3192 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3193
3194 if (same_inode)
3195 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3196 same_lock_start + same_lock_len - 1);
3197 else
3198 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3199
3200 btrfs_cmp_data_free(&cmp);
3201 out_unlock:
3202 if (same_inode)
3203 mutex_unlock(&src->i_mutex);
3204 else
3205 btrfs_double_inode_unlock(src, dst);
3206
3207 return ret;
3208 }
3209
3210 #define BTRFS_MAX_DEDUPE_LEN (16 * 1024 * 1024)
3211
btrfs_ioctl_file_extent_same(struct file * file,struct btrfs_ioctl_same_args __user * argp)3212 static long btrfs_ioctl_file_extent_same(struct file *file,
3213 struct btrfs_ioctl_same_args __user *argp)
3214 {
3215 struct btrfs_ioctl_same_args *same = NULL;
3216 struct btrfs_ioctl_same_extent_info *info;
3217 struct inode *src = file_inode(file);
3218 u64 off;
3219 u64 len;
3220 int i;
3221 int ret;
3222 unsigned long size;
3223 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3224 bool is_admin = capable(CAP_SYS_ADMIN);
3225 u16 count;
3226
3227 if (!(file->f_mode & FMODE_READ))
3228 return -EINVAL;
3229
3230 ret = mnt_want_write_file(file);
3231 if (ret)
3232 return ret;
3233
3234 if (get_user(count, &argp->dest_count)) {
3235 ret = -EFAULT;
3236 goto out;
3237 }
3238
3239 size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
3240
3241 same = memdup_user(argp, size);
3242
3243 if (IS_ERR(same)) {
3244 ret = PTR_ERR(same);
3245 same = NULL;
3246 goto out;
3247 }
3248
3249 off = same->logical_offset;
3250 len = same->length;
3251
3252 /*
3253 * Limit the total length we will dedupe for each operation.
3254 * This is intended to bound the total time spent in this
3255 * ioctl to something sane.
3256 */
3257 if (len > BTRFS_MAX_DEDUPE_LEN)
3258 len = BTRFS_MAX_DEDUPE_LEN;
3259
3260 if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
3261 /*
3262 * Btrfs does not support blocksize < page_size. As a
3263 * result, btrfs_cmp_data() won't correctly handle
3264 * this situation without an update.
3265 */
3266 ret = -EINVAL;
3267 goto out;
3268 }
3269
3270 ret = -EISDIR;
3271 if (S_ISDIR(src->i_mode))
3272 goto out;
3273
3274 ret = -EACCES;
3275 if (!S_ISREG(src->i_mode))
3276 goto out;
3277
3278 /* pre-format output fields to sane values */
3279 for (i = 0; i < count; i++) {
3280 same->info[i].bytes_deduped = 0ULL;
3281 same->info[i].status = 0;
3282 }
3283
3284 for (i = 0, info = same->info; i < count; i++, info++) {
3285 struct inode *dst;
3286 struct fd dst_file = fdget(info->fd);
3287 if (!dst_file.file) {
3288 info->status = -EBADF;
3289 continue;
3290 }
3291 dst = file_inode(dst_file.file);
3292
3293 if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
3294 info->status = -EINVAL;
3295 } else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
3296 info->status = -EXDEV;
3297 } else if (S_ISDIR(dst->i_mode)) {
3298 info->status = -EISDIR;
3299 } else if (!S_ISREG(dst->i_mode)) {
3300 info->status = -EACCES;
3301 } else {
3302 info->status = btrfs_extent_same(src, off, len, dst,
3303 info->logical_offset);
3304 if (info->status == 0)
3305 info->bytes_deduped += len;
3306 }
3307 fdput(dst_file);
3308 }
3309
3310 ret = copy_to_user(argp, same, size);
3311 if (ret)
3312 ret = -EFAULT;
3313
3314 out:
3315 mnt_drop_write_file(file);
3316 kfree(same);
3317 return ret;
3318 }
3319
clone_finish_inode_update(struct btrfs_trans_handle * trans,struct inode * inode,u64 endoff,const u64 destoff,const u64 olen,int no_time_update)3320 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3321 struct inode *inode,
3322 u64 endoff,
3323 const u64 destoff,
3324 const u64 olen,
3325 int no_time_update)
3326 {
3327 struct btrfs_root *root = BTRFS_I(inode)->root;
3328 int ret;
3329
3330 inode_inc_iversion(inode);
3331 if (!no_time_update)
3332 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3333 /*
3334 * We round up to the block size at eof when determining which
3335 * extents to clone above, but shouldn't round up the file size.
3336 */
3337 if (endoff > destoff + olen)
3338 endoff = destoff + olen;
3339 if (endoff > inode->i_size)
3340 btrfs_i_size_write(inode, endoff);
3341
3342 ret = btrfs_update_inode(trans, root, inode);
3343 if (ret) {
3344 btrfs_abort_transaction(trans, root, ret);
3345 btrfs_end_transaction(trans, root);
3346 goto out;
3347 }
3348 ret = btrfs_end_transaction(trans, root);
3349 out:
3350 return ret;
3351 }
3352
clone_update_extent_map(struct inode * inode,const struct btrfs_trans_handle * trans,const struct btrfs_path * path,const u64 hole_offset,const u64 hole_len)3353 static void clone_update_extent_map(struct inode *inode,
3354 const struct btrfs_trans_handle *trans,
3355 const struct btrfs_path *path,
3356 const u64 hole_offset,
3357 const u64 hole_len)
3358 {
3359 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3360 struct extent_map *em;
3361 int ret;
3362
3363 em = alloc_extent_map();
3364 if (!em) {
3365 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3366 &BTRFS_I(inode)->runtime_flags);
3367 return;
3368 }
3369
3370 if (path) {
3371 struct btrfs_file_extent_item *fi;
3372
3373 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3374 struct btrfs_file_extent_item);
3375 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3376 em->generation = -1;
3377 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3378 BTRFS_FILE_EXTENT_INLINE)
3379 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3380 &BTRFS_I(inode)->runtime_flags);
3381 } else {
3382 em->start = hole_offset;
3383 em->len = hole_len;
3384 em->ram_bytes = em->len;
3385 em->orig_start = hole_offset;
3386 em->block_start = EXTENT_MAP_HOLE;
3387 em->block_len = 0;
3388 em->orig_block_len = 0;
3389 em->compress_type = BTRFS_COMPRESS_NONE;
3390 em->generation = trans->transid;
3391 }
3392
3393 while (1) {
3394 write_lock(&em_tree->lock);
3395 ret = add_extent_mapping(em_tree, em, 1);
3396 write_unlock(&em_tree->lock);
3397 if (ret != -EEXIST) {
3398 free_extent_map(em);
3399 break;
3400 }
3401 btrfs_drop_extent_cache(inode, em->start,
3402 em->start + em->len - 1, 0);
3403 }
3404
3405 if (ret)
3406 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3407 &BTRFS_I(inode)->runtime_flags);
3408 }
3409
3410 /*
3411 * Make sure we do not end up inserting an inline extent into a file that has
3412 * already other (non-inline) extents. If a file has an inline extent it can
3413 * not have any other extents and the (single) inline extent must start at the
3414 * file offset 0. Failing to respect these rules will lead to file corruption,
3415 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3416 *
3417 * We can have extents that have been already written to disk or we can have
3418 * dirty ranges still in delalloc, in which case the extent maps and items are
3419 * created only when we run delalloc, and the delalloc ranges might fall outside
3420 * the range we are currently locking in the inode's io tree. So we check the
3421 * inode's i_size because of that (i_size updates are done while holding the
3422 * i_mutex, which we are holding here).
3423 * We also check to see if the inode has a size not greater than "datal" but has
3424 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3425 * protected against such concurrent fallocate calls by the i_mutex).
3426 *
3427 * If the file has no extents but a size greater than datal, do not allow the
3428 * copy because we would need turn the inline extent into a non-inline one (even
3429 * with NO_HOLES enabled). If we find our destination inode only has one inline
3430 * extent, just overwrite it with the source inline extent if its size is less
3431 * than the source extent's size, or we could copy the source inline extent's
3432 * data into the destination inode's inline extent if the later is greater then
3433 * the former.
3434 */
clone_copy_inline_extent(struct inode * src,struct inode * dst,struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_key * new_key,const u64 drop_start,const u64 datal,const u64 skip,const u64 size,char * inline_data)3435 static int clone_copy_inline_extent(struct inode *src,
3436 struct inode *dst,
3437 struct btrfs_trans_handle *trans,
3438 struct btrfs_path *path,
3439 struct btrfs_key *new_key,
3440 const u64 drop_start,
3441 const u64 datal,
3442 const u64 skip,
3443 const u64 size,
3444 char *inline_data)
3445 {
3446 struct btrfs_root *root = BTRFS_I(dst)->root;
3447 const u64 aligned_end = ALIGN(new_key->offset + datal,
3448 root->sectorsize);
3449 int ret;
3450 struct btrfs_key key;
3451
3452 if (new_key->offset > 0)
3453 return -EOPNOTSUPP;
3454
3455 key.objectid = btrfs_ino(dst);
3456 key.type = BTRFS_EXTENT_DATA_KEY;
3457 key.offset = 0;
3458 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3459 if (ret < 0) {
3460 return ret;
3461 } else if (ret > 0) {
3462 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3463 ret = btrfs_next_leaf(root, path);
3464 if (ret < 0)
3465 return ret;
3466 else if (ret > 0)
3467 goto copy_inline_extent;
3468 }
3469 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3470 if (key.objectid == btrfs_ino(dst) &&
3471 key.type == BTRFS_EXTENT_DATA_KEY) {
3472 ASSERT(key.offset > 0);
3473 return -EOPNOTSUPP;
3474 }
3475 } else if (i_size_read(dst) <= datal) {
3476 struct btrfs_file_extent_item *ei;
3477 u64 ext_len;
3478
3479 /*
3480 * If the file size is <= datal, make sure there are no other
3481 * extents following (can happen do to an fallocate call with
3482 * the flag FALLOC_FL_KEEP_SIZE).
3483 */
3484 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3485 struct btrfs_file_extent_item);
3486 /*
3487 * If it's an inline extent, it can not have other extents
3488 * following it.
3489 */
3490 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3491 BTRFS_FILE_EXTENT_INLINE)
3492 goto copy_inline_extent;
3493
3494 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3495 if (ext_len > aligned_end)
3496 return -EOPNOTSUPP;
3497
3498 ret = btrfs_next_item(root, path);
3499 if (ret < 0) {
3500 return ret;
3501 } else if (ret == 0) {
3502 btrfs_item_key_to_cpu(path->nodes[0], &key,
3503 path->slots[0]);
3504 if (key.objectid == btrfs_ino(dst) &&
3505 key.type == BTRFS_EXTENT_DATA_KEY)
3506 return -EOPNOTSUPP;
3507 }
3508 }
3509
3510 copy_inline_extent:
3511 /*
3512 * We have no extent items, or we have an extent at offset 0 which may
3513 * or may not be inlined. All these cases are dealt the same way.
3514 */
3515 if (i_size_read(dst) > datal) {
3516 /*
3517 * If the destination inode has an inline extent...
3518 * This would require copying the data from the source inline
3519 * extent into the beginning of the destination's inline extent.
3520 * But this is really complex, both extents can be compressed
3521 * or just one of them, which would require decompressing and
3522 * re-compressing data (which could increase the new compressed
3523 * size, not allowing the compressed data to fit anymore in an
3524 * inline extent).
3525 * So just don't support this case for now (it should be rare,
3526 * we are not really saving space when cloning inline extents).
3527 */
3528 return -EOPNOTSUPP;
3529 }
3530
3531 btrfs_release_path(path);
3532 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3533 if (ret)
3534 return ret;
3535 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3536 if (ret)
3537 return ret;
3538
3539 if (skip) {
3540 const u32 start = btrfs_file_extent_calc_inline_size(0);
3541
3542 memmove(inline_data + start, inline_data + start + skip, datal);
3543 }
3544
3545 write_extent_buffer(path->nodes[0], inline_data,
3546 btrfs_item_ptr_offset(path->nodes[0],
3547 path->slots[0]),
3548 size);
3549 inode_add_bytes(dst, datal);
3550
3551 return 0;
3552 }
3553
3554 /**
3555 * btrfs_clone() - clone a range from inode file to another
3556 *
3557 * @src: Inode to clone from
3558 * @inode: Inode to clone to
3559 * @off: Offset within source to start clone from
3560 * @olen: Original length, passed by user, of range to clone
3561 * @olen_aligned: Block-aligned value of olen
3562 * @destoff: Offset within @inode to start clone
3563 * @no_time_update: Whether to update mtime/ctime on the target inode
3564 */
btrfs_clone(struct inode * src,struct inode * inode,const u64 off,const u64 olen,const u64 olen_aligned,const u64 destoff,int no_time_update)3565 static int btrfs_clone(struct inode *src, struct inode *inode,
3566 const u64 off, const u64 olen, const u64 olen_aligned,
3567 const u64 destoff, int no_time_update)
3568 {
3569 struct btrfs_root *root = BTRFS_I(inode)->root;
3570 struct btrfs_path *path = NULL;
3571 struct extent_buffer *leaf;
3572 struct btrfs_trans_handle *trans;
3573 char *buf = NULL;
3574 struct btrfs_key key;
3575 u32 nritems;
3576 int slot;
3577 int ret;
3578 const u64 len = olen_aligned;
3579 u64 last_dest_end = destoff;
3580
3581 ret = -ENOMEM;
3582 buf = vmalloc(root->nodesize);
3583 if (!buf)
3584 return ret;
3585
3586 path = btrfs_alloc_path();
3587 if (!path) {
3588 vfree(buf);
3589 return ret;
3590 }
3591
3592 path->reada = 2;
3593 /* clone data */
3594 key.objectid = btrfs_ino(src);
3595 key.type = BTRFS_EXTENT_DATA_KEY;
3596 key.offset = off;
3597
3598 while (1) {
3599 u64 next_key_min_offset = key.offset + 1;
3600
3601 /*
3602 * note the key will change type as we walk through the
3603 * tree.
3604 */
3605 path->leave_spinning = 1;
3606 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3607 0, 0);
3608 if (ret < 0)
3609 goto out;
3610 /*
3611 * First search, if no extent item that starts at offset off was
3612 * found but the previous item is an extent item, it's possible
3613 * it might overlap our target range, therefore process it.
3614 */
3615 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3616 btrfs_item_key_to_cpu(path->nodes[0], &key,
3617 path->slots[0] - 1);
3618 if (key.type == BTRFS_EXTENT_DATA_KEY)
3619 path->slots[0]--;
3620 }
3621
3622 nritems = btrfs_header_nritems(path->nodes[0]);
3623 process_slot:
3624 if (path->slots[0] >= nritems) {
3625 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3626 if (ret < 0)
3627 goto out;
3628 if (ret > 0)
3629 break;
3630 nritems = btrfs_header_nritems(path->nodes[0]);
3631 }
3632 leaf = path->nodes[0];
3633 slot = path->slots[0];
3634
3635 btrfs_item_key_to_cpu(leaf, &key, slot);
3636 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3637 key.objectid != btrfs_ino(src))
3638 break;
3639
3640 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3641 struct btrfs_file_extent_item *extent;
3642 int type;
3643 u32 size;
3644 struct btrfs_key new_key;
3645 u64 disko = 0, diskl = 0;
3646 u64 datao = 0, datal = 0;
3647 u8 comp;
3648 u64 drop_start;
3649
3650 extent = btrfs_item_ptr(leaf, slot,
3651 struct btrfs_file_extent_item);
3652 comp = btrfs_file_extent_compression(leaf, extent);
3653 type = btrfs_file_extent_type(leaf, extent);
3654 if (type == BTRFS_FILE_EXTENT_REG ||
3655 type == BTRFS_FILE_EXTENT_PREALLOC) {
3656 disko = btrfs_file_extent_disk_bytenr(leaf,
3657 extent);
3658 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3659 extent);
3660 datao = btrfs_file_extent_offset(leaf, extent);
3661 datal = btrfs_file_extent_num_bytes(leaf,
3662 extent);
3663 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3664 /* take upper bound, may be compressed */
3665 datal = btrfs_file_extent_ram_bytes(leaf,
3666 extent);
3667 }
3668
3669 /*
3670 * The first search might have left us at an extent
3671 * item that ends before our target range's start, can
3672 * happen if we have holes and NO_HOLES feature enabled.
3673 */
3674 if (key.offset + datal <= off) {
3675 path->slots[0]++;
3676 goto process_slot;
3677 } else if (key.offset >= off + len) {
3678 break;
3679 }
3680 next_key_min_offset = key.offset + datal;
3681 size = btrfs_item_size_nr(leaf, slot);
3682 read_extent_buffer(leaf, buf,
3683 btrfs_item_ptr_offset(leaf, slot),
3684 size);
3685
3686 btrfs_release_path(path);
3687 path->leave_spinning = 0;
3688
3689 memcpy(&new_key, &key, sizeof(new_key));
3690 new_key.objectid = btrfs_ino(inode);
3691 if (off <= key.offset)
3692 new_key.offset = key.offset + destoff - off;
3693 else
3694 new_key.offset = destoff;
3695
3696 /*
3697 * Deal with a hole that doesn't have an extent item
3698 * that represents it (NO_HOLES feature enabled).
3699 * This hole is either in the middle of the cloning
3700 * range or at the beginning (fully overlaps it or
3701 * partially overlaps it).
3702 */
3703 if (new_key.offset != last_dest_end)
3704 drop_start = last_dest_end;
3705 else
3706 drop_start = new_key.offset;
3707
3708 /*
3709 * 1 - adjusting old extent (we may have to split it)
3710 * 1 - add new extent
3711 * 1 - inode update
3712 */
3713 trans = btrfs_start_transaction(root, 3);
3714 if (IS_ERR(trans)) {
3715 ret = PTR_ERR(trans);
3716 goto out;
3717 }
3718
3719 if (type == BTRFS_FILE_EXTENT_REG ||
3720 type == BTRFS_FILE_EXTENT_PREALLOC) {
3721 /*
3722 * a | --- range to clone ---| b
3723 * | ------------- extent ------------- |
3724 */
3725
3726 /* subtract range b */
3727 if (key.offset + datal > off + len)
3728 datal = off + len - key.offset;
3729
3730 /* subtract range a */
3731 if (off > key.offset) {
3732 datao += off - key.offset;
3733 datal -= off - key.offset;
3734 }
3735
3736 ret = btrfs_drop_extents(trans, root, inode,
3737 drop_start,
3738 new_key.offset + datal,
3739 1);
3740 if (ret) {
3741 if (ret != -EOPNOTSUPP)
3742 btrfs_abort_transaction(trans,
3743 root, ret);
3744 btrfs_end_transaction(trans, root);
3745 goto out;
3746 }
3747
3748 ret = btrfs_insert_empty_item(trans, root, path,
3749 &new_key, size);
3750 if (ret) {
3751 btrfs_abort_transaction(trans, root,
3752 ret);
3753 btrfs_end_transaction(trans, root);
3754 goto out;
3755 }
3756
3757 leaf = path->nodes[0];
3758 slot = path->slots[0];
3759 write_extent_buffer(leaf, buf,
3760 btrfs_item_ptr_offset(leaf, slot),
3761 size);
3762
3763 extent = btrfs_item_ptr(leaf, slot,
3764 struct btrfs_file_extent_item);
3765
3766 /* disko == 0 means it's a hole */
3767 if (!disko)
3768 datao = 0;
3769
3770 btrfs_set_file_extent_offset(leaf, extent,
3771 datao);
3772 btrfs_set_file_extent_num_bytes(leaf, extent,
3773 datal);
3774
3775 if (disko) {
3776 inode_add_bytes(inode, datal);
3777 ret = btrfs_inc_extent_ref(trans, root,
3778 disko, diskl, 0,
3779 root->root_key.objectid,
3780 btrfs_ino(inode),
3781 new_key.offset - datao);
3782 if (ret) {
3783 btrfs_abort_transaction(trans,
3784 root,
3785 ret);
3786 btrfs_end_transaction(trans,
3787 root);
3788 goto out;
3789
3790 }
3791 }
3792 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3793 u64 skip = 0;
3794 u64 trim = 0;
3795
3796 if (off > key.offset) {
3797 skip = off - key.offset;
3798 new_key.offset += skip;
3799 }
3800
3801 if (key.offset + datal > off + len)
3802 trim = key.offset + datal - (off + len);
3803
3804 if (comp && (skip || trim)) {
3805 ret = -EINVAL;
3806 btrfs_end_transaction(trans, root);
3807 goto out;
3808 }
3809 size -= skip + trim;
3810 datal -= skip + trim;
3811
3812 ret = clone_copy_inline_extent(src, inode,
3813 trans, path,
3814 &new_key,
3815 drop_start,
3816 datal,
3817 skip, size, buf);
3818 if (ret) {
3819 if (ret != -EOPNOTSUPP)
3820 btrfs_abort_transaction(trans,
3821 root,
3822 ret);
3823 btrfs_end_transaction(trans, root);
3824 goto out;
3825 }
3826 leaf = path->nodes[0];
3827 slot = path->slots[0];
3828 }
3829
3830 /* If we have an implicit hole (NO_HOLES feature). */
3831 if (drop_start < new_key.offset)
3832 clone_update_extent_map(inode, trans,
3833 NULL, drop_start,
3834 new_key.offset - drop_start);
3835
3836 clone_update_extent_map(inode, trans, path, 0, 0);
3837
3838 btrfs_mark_buffer_dirty(leaf);
3839 btrfs_release_path(path);
3840
3841 last_dest_end = ALIGN(new_key.offset + datal,
3842 root->sectorsize);
3843 ret = clone_finish_inode_update(trans, inode,
3844 last_dest_end,
3845 destoff, olen,
3846 no_time_update);
3847 if (ret)
3848 goto out;
3849 if (new_key.offset + datal >= destoff + len)
3850 break;
3851 }
3852 btrfs_release_path(path);
3853 key.offset = next_key_min_offset;
3854
3855 if (fatal_signal_pending(current)) {
3856 ret = -EINTR;
3857 goto out;
3858 }
3859
3860 cond_resched();
3861 }
3862 ret = 0;
3863
3864 if (last_dest_end < destoff + len) {
3865 /*
3866 * We have an implicit hole (NO_HOLES feature is enabled) that
3867 * fully or partially overlaps our cloning range at its end.
3868 */
3869 btrfs_release_path(path);
3870
3871 /*
3872 * 1 - remove extent(s)
3873 * 1 - inode update
3874 */
3875 trans = btrfs_start_transaction(root, 2);
3876 if (IS_ERR(trans)) {
3877 ret = PTR_ERR(trans);
3878 goto out;
3879 }
3880 ret = btrfs_drop_extents(trans, root, inode,
3881 last_dest_end, destoff + len, 1);
3882 if (ret) {
3883 if (ret != -EOPNOTSUPP)
3884 btrfs_abort_transaction(trans, root, ret);
3885 btrfs_end_transaction(trans, root);
3886 goto out;
3887 }
3888 clone_update_extent_map(inode, trans, NULL, last_dest_end,
3889 destoff + len - last_dest_end);
3890 ret = clone_finish_inode_update(trans, inode, destoff + len,
3891 destoff, olen, no_time_update);
3892 }
3893
3894 out:
3895 btrfs_free_path(path);
3896 vfree(buf);
3897 return ret;
3898 }
3899
btrfs_ioctl_clone(struct file * file,unsigned long srcfd,u64 off,u64 olen,u64 destoff)3900 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3901 u64 off, u64 olen, u64 destoff)
3902 {
3903 struct inode *inode = file_inode(file);
3904 struct btrfs_root *root = BTRFS_I(inode)->root;
3905 struct fd src_file;
3906 struct inode *src;
3907 int ret;
3908 u64 len = olen;
3909 u64 bs = root->fs_info->sb->s_blocksize;
3910 int same_inode = 0;
3911
3912 /*
3913 * TODO:
3914 * - split compressed inline extents. annoying: we need to
3915 * decompress into destination's address_space (the file offset
3916 * may change, so source mapping won't do), then recompress (or
3917 * otherwise reinsert) a subrange.
3918 *
3919 * - split destination inode's inline extents. The inline extents can
3920 * be either compressed or non-compressed.
3921 */
3922
3923 /* the destination must be opened for writing */
3924 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3925 return -EINVAL;
3926
3927 if (btrfs_root_readonly(root))
3928 return -EROFS;
3929
3930 ret = mnt_want_write_file(file);
3931 if (ret)
3932 return ret;
3933
3934 src_file = fdget(srcfd);
3935 if (!src_file.file) {
3936 ret = -EBADF;
3937 goto out_drop_write;
3938 }
3939
3940 ret = -EXDEV;
3941 if (src_file.file->f_path.mnt != file->f_path.mnt)
3942 goto out_fput;
3943
3944 src = file_inode(src_file.file);
3945
3946 ret = -EINVAL;
3947 if (src == inode)
3948 same_inode = 1;
3949
3950 /* the src must be open for reading */
3951 if (!(src_file.file->f_mode & FMODE_READ))
3952 goto out_fput;
3953
3954 ret = -EISDIR;
3955 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3956 goto out_fput;
3957
3958 ret = -EXDEV;
3959 if (src->i_sb != inode->i_sb)
3960 goto out_fput;
3961
3962 if (!same_inode) {
3963 btrfs_double_inode_lock(src, inode);
3964 } else {
3965 mutex_lock(&src->i_mutex);
3966 }
3967
3968 /* don't make the dst file partly checksummed */
3969 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3970 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
3971 ret = -EINVAL;
3972 goto out_unlock;
3973 }
3974
3975 /* determine range to clone */
3976 ret = -EINVAL;
3977 if (off + len > src->i_size || off + len < off)
3978 goto out_unlock;
3979 if (len == 0)
3980 olen = len = src->i_size - off;
3981 /*
3982 * If we extend to eof, continue to block boundary if and only if the
3983 * destination end offset matches the destination file's size, otherwise
3984 * we would be corrupting data by placing the eof block into the middle
3985 * of a file.
3986 */
3987 if (off + len == src->i_size) {
3988 if (!IS_ALIGNED(len, bs) && destoff + len < inode->i_size)
3989 goto out_unlock;
3990 len = ALIGN(src->i_size, bs) - off;
3991 }
3992
3993 if (len == 0) {
3994 ret = 0;
3995 goto out_unlock;
3996 }
3997
3998 /* verify the end result is block aligned */
3999 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
4000 !IS_ALIGNED(destoff, bs))
4001 goto out_unlock;
4002
4003 /* verify if ranges are overlapped within the same file */
4004 if (same_inode) {
4005 if (destoff + len > off && destoff < off + len)
4006 goto out_unlock;
4007 }
4008
4009 if (destoff > inode->i_size) {
4010 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
4011 if (ret)
4012 goto out_unlock;
4013 }
4014
4015 /*
4016 * Lock the target range too. Right after we replace the file extent
4017 * items in the fs tree (which now point to the cloned data), we might
4018 * have a worker replace them with extent items relative to a write
4019 * operation that was issued before this clone operation (i.e. confront
4020 * with inode.c:btrfs_finish_ordered_io).
4021 */
4022 if (same_inode) {
4023 u64 lock_start = min_t(u64, off, destoff);
4024 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
4025
4026 ret = lock_extent_range(src, lock_start, lock_len, true);
4027 } else {
4028 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
4029 true);
4030 }
4031 ASSERT(ret == 0);
4032 if (WARN_ON(ret)) {
4033 /* ranges in the io trees already unlocked */
4034 goto out_unlock;
4035 }
4036
4037 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
4038
4039 if (same_inode) {
4040 u64 lock_start = min_t(u64, off, destoff);
4041 u64 lock_end = max_t(u64, off, destoff) + len - 1;
4042
4043 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
4044 } else {
4045 btrfs_double_extent_unlock(src, off, inode, destoff, len);
4046 }
4047 /*
4048 * Truncate page cache pages so that future reads will see the cloned
4049 * data immediately and not the previous data.
4050 */
4051 truncate_inode_pages_range(&inode->i_data, destoff,
4052 PAGE_CACHE_ALIGN(destoff + len) - 1);
4053 out_unlock:
4054 if (!same_inode)
4055 btrfs_double_inode_unlock(src, inode);
4056 else
4057 mutex_unlock(&src->i_mutex);
4058 out_fput:
4059 fdput(src_file);
4060 out_drop_write:
4061 mnt_drop_write_file(file);
4062 return ret;
4063 }
4064
btrfs_ioctl_clone_range(struct file * file,void __user * argp)4065 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
4066 {
4067 struct btrfs_ioctl_clone_range_args args;
4068
4069 if (copy_from_user(&args, argp, sizeof(args)))
4070 return -EFAULT;
4071 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
4072 args.src_length, args.dest_offset);
4073 }
4074
4075 /*
4076 * there are many ways the trans_start and trans_end ioctls can lead
4077 * to deadlocks. They should only be used by applications that
4078 * basically own the machine, and have a very in depth understanding
4079 * of all the possible deadlocks and enospc problems.
4080 */
btrfs_ioctl_trans_start(struct file * file)4081 static long btrfs_ioctl_trans_start(struct file *file)
4082 {
4083 struct inode *inode = file_inode(file);
4084 struct btrfs_root *root = BTRFS_I(inode)->root;
4085 struct btrfs_trans_handle *trans;
4086 int ret;
4087
4088 ret = -EPERM;
4089 if (!capable(CAP_SYS_ADMIN))
4090 goto out;
4091
4092 ret = -EINPROGRESS;
4093 if (file->private_data)
4094 goto out;
4095
4096 ret = -EROFS;
4097 if (btrfs_root_readonly(root))
4098 goto out;
4099
4100 ret = mnt_want_write_file(file);
4101 if (ret)
4102 goto out;
4103
4104 atomic_inc(&root->fs_info->open_ioctl_trans);
4105
4106 ret = -ENOMEM;
4107 trans = btrfs_start_ioctl_transaction(root);
4108 if (IS_ERR(trans))
4109 goto out_drop;
4110
4111 file->private_data = trans;
4112 return 0;
4113
4114 out_drop:
4115 atomic_dec(&root->fs_info->open_ioctl_trans);
4116 mnt_drop_write_file(file);
4117 out:
4118 return ret;
4119 }
4120
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)4121 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4122 {
4123 struct inode *inode = file_inode(file);
4124 struct btrfs_root *root = BTRFS_I(inode)->root;
4125 struct btrfs_root *new_root;
4126 struct btrfs_dir_item *di;
4127 struct btrfs_trans_handle *trans;
4128 struct btrfs_path *path;
4129 struct btrfs_key location;
4130 struct btrfs_disk_key disk_key;
4131 u64 objectid = 0;
4132 u64 dir_id;
4133 int ret;
4134
4135 if (!capable(CAP_SYS_ADMIN))
4136 return -EPERM;
4137
4138 ret = mnt_want_write_file(file);
4139 if (ret)
4140 return ret;
4141
4142 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4143 ret = -EFAULT;
4144 goto out;
4145 }
4146
4147 if (!objectid)
4148 objectid = BTRFS_FS_TREE_OBJECTID;
4149
4150 location.objectid = objectid;
4151 location.type = BTRFS_ROOT_ITEM_KEY;
4152 location.offset = (u64)-1;
4153
4154 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
4155 if (IS_ERR(new_root)) {
4156 ret = PTR_ERR(new_root);
4157 goto out;
4158 }
4159 if (!is_fstree(new_root->objectid)) {
4160 ret = -ENOENT;
4161 goto out;
4162 }
4163
4164 path = btrfs_alloc_path();
4165 if (!path) {
4166 ret = -ENOMEM;
4167 goto out;
4168 }
4169 path->leave_spinning = 1;
4170
4171 trans = btrfs_start_transaction(root, 1);
4172 if (IS_ERR(trans)) {
4173 btrfs_free_path(path);
4174 ret = PTR_ERR(trans);
4175 goto out;
4176 }
4177
4178 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
4179 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
4180 dir_id, "default", 7, 1);
4181 if (IS_ERR_OR_NULL(di)) {
4182 btrfs_free_path(path);
4183 btrfs_end_transaction(trans, root);
4184 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
4185 "item, this isn't going to work");
4186 ret = -ENOENT;
4187 goto out;
4188 }
4189
4190 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4191 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4192 btrfs_mark_buffer_dirty(path->nodes[0]);
4193 btrfs_free_path(path);
4194
4195 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
4196 btrfs_end_transaction(trans, root);
4197 out:
4198 mnt_drop_write_file(file);
4199 return ret;
4200 }
4201
btrfs_get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)4202 void btrfs_get_block_group_info(struct list_head *groups_list,
4203 struct btrfs_ioctl_space_info *space)
4204 {
4205 struct btrfs_block_group_cache *block_group;
4206
4207 space->total_bytes = 0;
4208 space->used_bytes = 0;
4209 space->flags = 0;
4210 list_for_each_entry(block_group, groups_list, list) {
4211 space->flags = block_group->flags;
4212 space->total_bytes += block_group->key.offset;
4213 space->used_bytes +=
4214 btrfs_block_group_used(&block_group->item);
4215 }
4216 }
4217
btrfs_ioctl_space_info(struct btrfs_root * root,void __user * arg)4218 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
4219 {
4220 struct btrfs_ioctl_space_args space_args;
4221 struct btrfs_ioctl_space_info space;
4222 struct btrfs_ioctl_space_info *dest;
4223 struct btrfs_ioctl_space_info *dest_orig;
4224 struct btrfs_ioctl_space_info __user *user_dest;
4225 struct btrfs_space_info *info;
4226 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4227 BTRFS_BLOCK_GROUP_SYSTEM,
4228 BTRFS_BLOCK_GROUP_METADATA,
4229 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4230 int num_types = 4;
4231 int alloc_size;
4232 int ret = 0;
4233 u64 slot_count = 0;
4234 int i, c;
4235
4236 if (copy_from_user(&space_args,
4237 (struct btrfs_ioctl_space_args __user *)arg,
4238 sizeof(space_args)))
4239 return -EFAULT;
4240
4241 for (i = 0; i < num_types; i++) {
4242 struct btrfs_space_info *tmp;
4243
4244 info = NULL;
4245 rcu_read_lock();
4246 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4247 list) {
4248 if (tmp->flags == types[i]) {
4249 info = tmp;
4250 break;
4251 }
4252 }
4253 rcu_read_unlock();
4254
4255 if (!info)
4256 continue;
4257
4258 down_read(&info->groups_sem);
4259 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4260 if (!list_empty(&info->block_groups[c]))
4261 slot_count++;
4262 }
4263 up_read(&info->groups_sem);
4264 }
4265
4266 /*
4267 * Global block reserve, exported as a space_info
4268 */
4269 slot_count++;
4270
4271 /* space_slots == 0 means they are asking for a count */
4272 if (space_args.space_slots == 0) {
4273 space_args.total_spaces = slot_count;
4274 goto out;
4275 }
4276
4277 slot_count = min_t(u64, space_args.space_slots, slot_count);
4278
4279 alloc_size = sizeof(*dest) * slot_count;
4280
4281 /* we generally have at most 6 or so space infos, one for each raid
4282 * level. So, a whole page should be more than enough for everyone
4283 */
4284 if (alloc_size > PAGE_CACHE_SIZE)
4285 return -ENOMEM;
4286
4287 space_args.total_spaces = 0;
4288 dest = kmalloc(alloc_size, GFP_NOFS);
4289 if (!dest)
4290 return -ENOMEM;
4291 dest_orig = dest;
4292
4293 /* now we have a buffer to copy into */
4294 for (i = 0; i < num_types; i++) {
4295 struct btrfs_space_info *tmp;
4296
4297 if (!slot_count)
4298 break;
4299
4300 info = NULL;
4301 rcu_read_lock();
4302 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4303 list) {
4304 if (tmp->flags == types[i]) {
4305 info = tmp;
4306 break;
4307 }
4308 }
4309 rcu_read_unlock();
4310
4311 if (!info)
4312 continue;
4313 down_read(&info->groups_sem);
4314 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4315 if (!list_empty(&info->block_groups[c])) {
4316 btrfs_get_block_group_info(
4317 &info->block_groups[c], &space);
4318 memcpy(dest, &space, sizeof(space));
4319 dest++;
4320 space_args.total_spaces++;
4321 slot_count--;
4322 }
4323 if (!slot_count)
4324 break;
4325 }
4326 up_read(&info->groups_sem);
4327 }
4328
4329 /*
4330 * Add global block reserve
4331 */
4332 if (slot_count) {
4333 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4334
4335 spin_lock(&block_rsv->lock);
4336 space.total_bytes = block_rsv->size;
4337 space.used_bytes = block_rsv->size - block_rsv->reserved;
4338 spin_unlock(&block_rsv->lock);
4339 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4340 memcpy(dest, &space, sizeof(space));
4341 space_args.total_spaces++;
4342 }
4343
4344 user_dest = (struct btrfs_ioctl_space_info __user *)
4345 (arg + sizeof(struct btrfs_ioctl_space_args));
4346
4347 if (copy_to_user(user_dest, dest_orig, alloc_size))
4348 ret = -EFAULT;
4349
4350 kfree(dest_orig);
4351 out:
4352 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4353 ret = -EFAULT;
4354
4355 return ret;
4356 }
4357
4358 /*
4359 * there are many ways the trans_start and trans_end ioctls can lead
4360 * to deadlocks. They should only be used by applications that
4361 * basically own the machine, and have a very in depth understanding
4362 * of all the possible deadlocks and enospc problems.
4363 */
btrfs_ioctl_trans_end(struct file * file)4364 long btrfs_ioctl_trans_end(struct file *file)
4365 {
4366 struct inode *inode = file_inode(file);
4367 struct btrfs_root *root = BTRFS_I(inode)->root;
4368 struct btrfs_trans_handle *trans;
4369
4370 trans = file->private_data;
4371 if (!trans)
4372 return -EINVAL;
4373 file->private_data = NULL;
4374
4375 btrfs_end_transaction(trans, root);
4376
4377 atomic_dec(&root->fs_info->open_ioctl_trans);
4378
4379 mnt_drop_write_file(file);
4380 return 0;
4381 }
4382
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)4383 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4384 void __user *argp)
4385 {
4386 struct btrfs_trans_handle *trans;
4387 u64 transid;
4388 int ret;
4389
4390 trans = btrfs_attach_transaction_barrier(root);
4391 if (IS_ERR(trans)) {
4392 if (PTR_ERR(trans) != -ENOENT)
4393 return PTR_ERR(trans);
4394
4395 /* No running transaction, don't bother */
4396 transid = root->fs_info->last_trans_committed;
4397 goto out;
4398 }
4399 transid = trans->transid;
4400 ret = btrfs_commit_transaction_async(trans, root, 0);
4401 if (ret) {
4402 btrfs_end_transaction(trans, root);
4403 return ret;
4404 }
4405 out:
4406 if (argp)
4407 if (copy_to_user(argp, &transid, sizeof(transid)))
4408 return -EFAULT;
4409 return 0;
4410 }
4411
btrfs_ioctl_wait_sync(struct btrfs_root * root,void __user * argp)4412 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4413 void __user *argp)
4414 {
4415 u64 transid;
4416
4417 if (argp) {
4418 if (copy_from_user(&transid, argp, sizeof(transid)))
4419 return -EFAULT;
4420 } else {
4421 transid = 0; /* current trans */
4422 }
4423 return btrfs_wait_for_commit(root, transid);
4424 }
4425
btrfs_ioctl_scrub(struct file * file,void __user * arg)4426 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4427 {
4428 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4429 struct btrfs_ioctl_scrub_args *sa;
4430 int ret;
4431
4432 if (!capable(CAP_SYS_ADMIN))
4433 return -EPERM;
4434
4435 sa = memdup_user(arg, sizeof(*sa));
4436 if (IS_ERR(sa))
4437 return PTR_ERR(sa);
4438
4439 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4440 ret = mnt_want_write_file(file);
4441 if (ret)
4442 goto out;
4443 }
4444
4445 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4446 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4447 0);
4448
4449 if (copy_to_user(arg, sa, sizeof(*sa)))
4450 ret = -EFAULT;
4451
4452 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4453 mnt_drop_write_file(file);
4454 out:
4455 kfree(sa);
4456 return ret;
4457 }
4458
btrfs_ioctl_scrub_cancel(struct btrfs_root * root,void __user * arg)4459 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4460 {
4461 if (!capable(CAP_SYS_ADMIN))
4462 return -EPERM;
4463
4464 return btrfs_scrub_cancel(root->fs_info);
4465 }
4466
btrfs_ioctl_scrub_progress(struct btrfs_root * root,void __user * arg)4467 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4468 void __user *arg)
4469 {
4470 struct btrfs_ioctl_scrub_args *sa;
4471 int ret;
4472
4473 if (!capable(CAP_SYS_ADMIN))
4474 return -EPERM;
4475
4476 sa = memdup_user(arg, sizeof(*sa));
4477 if (IS_ERR(sa))
4478 return PTR_ERR(sa);
4479
4480 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4481
4482 if (copy_to_user(arg, sa, sizeof(*sa)))
4483 ret = -EFAULT;
4484
4485 kfree(sa);
4486 return ret;
4487 }
4488
btrfs_ioctl_get_dev_stats(struct btrfs_root * root,void __user * arg)4489 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4490 void __user *arg)
4491 {
4492 struct btrfs_ioctl_get_dev_stats *sa;
4493 int ret;
4494
4495 sa = memdup_user(arg, sizeof(*sa));
4496 if (IS_ERR(sa))
4497 return PTR_ERR(sa);
4498
4499 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4500 kfree(sa);
4501 return -EPERM;
4502 }
4503
4504 ret = btrfs_get_dev_stats(root, sa);
4505
4506 if (copy_to_user(arg, sa, sizeof(*sa)))
4507 ret = -EFAULT;
4508
4509 kfree(sa);
4510 return ret;
4511 }
4512
btrfs_ioctl_dev_replace(struct btrfs_root * root,void __user * arg)4513 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4514 {
4515 struct btrfs_ioctl_dev_replace_args *p;
4516 int ret;
4517
4518 if (!capable(CAP_SYS_ADMIN))
4519 return -EPERM;
4520
4521 p = memdup_user(arg, sizeof(*p));
4522 if (IS_ERR(p))
4523 return PTR_ERR(p);
4524
4525 switch (p->cmd) {
4526 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4527 if (root->fs_info->sb->s_flags & MS_RDONLY) {
4528 ret = -EROFS;
4529 goto out;
4530 }
4531 if (atomic_xchg(
4532 &root->fs_info->mutually_exclusive_operation_running,
4533 1)) {
4534 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4535 } else {
4536 ret = btrfs_dev_replace_start(root, p);
4537 atomic_set(
4538 &root->fs_info->mutually_exclusive_operation_running,
4539 0);
4540 }
4541 break;
4542 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4543 btrfs_dev_replace_status(root->fs_info, p);
4544 ret = 0;
4545 break;
4546 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4547 ret = btrfs_dev_replace_cancel(root->fs_info, p);
4548 break;
4549 default:
4550 ret = -EINVAL;
4551 break;
4552 }
4553
4554 if (copy_to_user(arg, p, sizeof(*p)))
4555 ret = -EFAULT;
4556 out:
4557 kfree(p);
4558 return ret;
4559 }
4560
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)4561 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4562 {
4563 int ret = 0;
4564 int i;
4565 u64 rel_ptr;
4566 int size;
4567 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4568 struct inode_fs_paths *ipath = NULL;
4569 struct btrfs_path *path;
4570
4571 if (!capable(CAP_DAC_READ_SEARCH))
4572 return -EPERM;
4573
4574 path = btrfs_alloc_path();
4575 if (!path) {
4576 ret = -ENOMEM;
4577 goto out;
4578 }
4579
4580 ipa = memdup_user(arg, sizeof(*ipa));
4581 if (IS_ERR(ipa)) {
4582 ret = PTR_ERR(ipa);
4583 ipa = NULL;
4584 goto out;
4585 }
4586
4587 size = min_t(u32, ipa->size, 4096);
4588 ipath = init_ipath(size, root, path);
4589 if (IS_ERR(ipath)) {
4590 ret = PTR_ERR(ipath);
4591 ipath = NULL;
4592 goto out;
4593 }
4594
4595 ret = paths_from_inode(ipa->inum, ipath);
4596 if (ret < 0)
4597 goto out;
4598
4599 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4600 rel_ptr = ipath->fspath->val[i] -
4601 (u64)(unsigned long)ipath->fspath->val;
4602 ipath->fspath->val[i] = rel_ptr;
4603 }
4604
4605 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4606 (void *)(unsigned long)ipath->fspath, size);
4607 if (ret) {
4608 ret = -EFAULT;
4609 goto out;
4610 }
4611
4612 out:
4613 btrfs_free_path(path);
4614 free_ipath(ipath);
4615 kfree(ipa);
4616
4617 return ret;
4618 }
4619
build_ino_list(u64 inum,u64 offset,u64 root,void * ctx)4620 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4621 {
4622 struct btrfs_data_container *inodes = ctx;
4623 const size_t c = 3 * sizeof(u64);
4624
4625 if (inodes->bytes_left >= c) {
4626 inodes->bytes_left -= c;
4627 inodes->val[inodes->elem_cnt] = inum;
4628 inodes->val[inodes->elem_cnt + 1] = offset;
4629 inodes->val[inodes->elem_cnt + 2] = root;
4630 inodes->elem_cnt += 3;
4631 } else {
4632 inodes->bytes_missing += c - inodes->bytes_left;
4633 inodes->bytes_left = 0;
4634 inodes->elem_missed += 3;
4635 }
4636
4637 return 0;
4638 }
4639
btrfs_ioctl_logical_to_ino(struct btrfs_root * root,void __user * arg)4640 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4641 void __user *arg)
4642 {
4643 int ret = 0;
4644 int size;
4645 struct btrfs_ioctl_logical_ino_args *loi;
4646 struct btrfs_data_container *inodes = NULL;
4647 struct btrfs_path *path = NULL;
4648
4649 if (!capable(CAP_SYS_ADMIN))
4650 return -EPERM;
4651
4652 loi = memdup_user(arg, sizeof(*loi));
4653 if (IS_ERR(loi)) {
4654 ret = PTR_ERR(loi);
4655 loi = NULL;
4656 goto out;
4657 }
4658
4659 path = btrfs_alloc_path();
4660 if (!path) {
4661 ret = -ENOMEM;
4662 goto out;
4663 }
4664
4665 size = min_t(u32, loi->size, 64 * 1024);
4666 inodes = init_data_container(size);
4667 if (IS_ERR(inodes)) {
4668 ret = PTR_ERR(inodes);
4669 inodes = NULL;
4670 goto out;
4671 }
4672
4673 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4674 build_ino_list, inodes);
4675 if (ret == -EINVAL)
4676 ret = -ENOENT;
4677 if (ret < 0)
4678 goto out;
4679
4680 ret = copy_to_user((void *)(unsigned long)loi->inodes,
4681 (void *)(unsigned long)inodes, size);
4682 if (ret)
4683 ret = -EFAULT;
4684
4685 out:
4686 btrfs_free_path(path);
4687 vfree(inodes);
4688 kfree(loi);
4689
4690 return ret;
4691 }
4692
update_ioctl_balance_args(struct btrfs_fs_info * fs_info,int lock,struct btrfs_ioctl_balance_args * bargs)4693 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4694 struct btrfs_ioctl_balance_args *bargs)
4695 {
4696 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4697
4698 bargs->flags = bctl->flags;
4699
4700 if (atomic_read(&fs_info->balance_running))
4701 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4702 if (atomic_read(&fs_info->balance_pause_req))
4703 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4704 if (atomic_read(&fs_info->balance_cancel_req))
4705 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4706
4707 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4708 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4709 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4710
4711 if (lock) {
4712 spin_lock(&fs_info->balance_lock);
4713 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4714 spin_unlock(&fs_info->balance_lock);
4715 } else {
4716 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4717 }
4718 }
4719
btrfs_ioctl_balance(struct file * file,void __user * arg)4720 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4721 {
4722 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4723 struct btrfs_fs_info *fs_info = root->fs_info;
4724 struct btrfs_ioctl_balance_args *bargs;
4725 struct btrfs_balance_control *bctl;
4726 bool need_unlock; /* for mut. excl. ops lock */
4727 int ret;
4728
4729 if (!capable(CAP_SYS_ADMIN))
4730 return -EPERM;
4731
4732 ret = mnt_want_write_file(file);
4733 if (ret)
4734 return ret;
4735
4736 again:
4737 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4738 mutex_lock(&fs_info->volume_mutex);
4739 mutex_lock(&fs_info->balance_mutex);
4740 need_unlock = true;
4741 goto locked;
4742 }
4743
4744 /*
4745 * mut. excl. ops lock is locked. Three possibilites:
4746 * (1) some other op is running
4747 * (2) balance is running
4748 * (3) balance is paused -- special case (think resume)
4749 */
4750 mutex_lock(&fs_info->balance_mutex);
4751 if (fs_info->balance_ctl) {
4752 /* this is either (2) or (3) */
4753 if (!atomic_read(&fs_info->balance_running)) {
4754 mutex_unlock(&fs_info->balance_mutex);
4755 if (!mutex_trylock(&fs_info->volume_mutex))
4756 goto again;
4757 mutex_lock(&fs_info->balance_mutex);
4758
4759 if (fs_info->balance_ctl &&
4760 !atomic_read(&fs_info->balance_running)) {
4761 /* this is (3) */
4762 need_unlock = false;
4763 goto locked;
4764 }
4765
4766 mutex_unlock(&fs_info->balance_mutex);
4767 mutex_unlock(&fs_info->volume_mutex);
4768 goto again;
4769 } else {
4770 /* this is (2) */
4771 mutex_unlock(&fs_info->balance_mutex);
4772 ret = -EINPROGRESS;
4773 goto out;
4774 }
4775 } else {
4776 /* this is (1) */
4777 mutex_unlock(&fs_info->balance_mutex);
4778 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4779 goto out;
4780 }
4781
4782 locked:
4783 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4784
4785 if (arg) {
4786 bargs = memdup_user(arg, sizeof(*bargs));
4787 if (IS_ERR(bargs)) {
4788 ret = PTR_ERR(bargs);
4789 goto out_unlock;
4790 }
4791
4792 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4793 if (!fs_info->balance_ctl) {
4794 ret = -ENOTCONN;
4795 goto out_bargs;
4796 }
4797
4798 bctl = fs_info->balance_ctl;
4799 spin_lock(&fs_info->balance_lock);
4800 bctl->flags |= BTRFS_BALANCE_RESUME;
4801 spin_unlock(&fs_info->balance_lock);
4802
4803 goto do_balance;
4804 }
4805 } else {
4806 bargs = NULL;
4807 }
4808
4809 if (fs_info->balance_ctl) {
4810 ret = -EINPROGRESS;
4811 goto out_bargs;
4812 }
4813
4814 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4815 if (!bctl) {
4816 ret = -ENOMEM;
4817 goto out_bargs;
4818 }
4819
4820 bctl->fs_info = fs_info;
4821 if (arg) {
4822 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4823 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4824 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4825
4826 bctl->flags = bargs->flags;
4827 } else {
4828 /* balance everything - no filters */
4829 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4830 }
4831
4832 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4833 ret = -EINVAL;
4834 goto out_bctl;
4835 }
4836
4837 do_balance:
4838 /*
4839 * Ownership of bctl and mutually_exclusive_operation_running
4840 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4841 * or, if restriper was paused all the way until unmount, in
4842 * free_fs_info. mutually_exclusive_operation_running is
4843 * cleared in __cancel_balance.
4844 */
4845 need_unlock = false;
4846
4847 ret = btrfs_balance(bctl, bargs);
4848 bctl = NULL;
4849
4850 if (arg) {
4851 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4852 ret = -EFAULT;
4853 }
4854
4855 out_bctl:
4856 kfree(bctl);
4857 out_bargs:
4858 kfree(bargs);
4859 out_unlock:
4860 mutex_unlock(&fs_info->balance_mutex);
4861 mutex_unlock(&fs_info->volume_mutex);
4862 if (need_unlock)
4863 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4864 out:
4865 mnt_drop_write_file(file);
4866 return ret;
4867 }
4868
btrfs_ioctl_balance_ctl(struct btrfs_root * root,int cmd)4869 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4870 {
4871 if (!capable(CAP_SYS_ADMIN))
4872 return -EPERM;
4873
4874 switch (cmd) {
4875 case BTRFS_BALANCE_CTL_PAUSE:
4876 return btrfs_pause_balance(root->fs_info);
4877 case BTRFS_BALANCE_CTL_CANCEL:
4878 return btrfs_cancel_balance(root->fs_info);
4879 }
4880
4881 return -EINVAL;
4882 }
4883
btrfs_ioctl_balance_progress(struct btrfs_root * root,void __user * arg)4884 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4885 void __user *arg)
4886 {
4887 struct btrfs_fs_info *fs_info = root->fs_info;
4888 struct btrfs_ioctl_balance_args *bargs;
4889 int ret = 0;
4890
4891 if (!capable(CAP_SYS_ADMIN))
4892 return -EPERM;
4893
4894 mutex_lock(&fs_info->balance_mutex);
4895 if (!fs_info->balance_ctl) {
4896 ret = -ENOTCONN;
4897 goto out;
4898 }
4899
4900 bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4901 if (!bargs) {
4902 ret = -ENOMEM;
4903 goto out;
4904 }
4905
4906 update_ioctl_balance_args(fs_info, 1, bargs);
4907
4908 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4909 ret = -EFAULT;
4910
4911 kfree(bargs);
4912 out:
4913 mutex_unlock(&fs_info->balance_mutex);
4914 return ret;
4915 }
4916
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)4917 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4918 {
4919 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4920 struct btrfs_ioctl_quota_ctl_args *sa;
4921 struct btrfs_trans_handle *trans = NULL;
4922 int ret;
4923 int err;
4924
4925 if (!capable(CAP_SYS_ADMIN))
4926 return -EPERM;
4927
4928 ret = mnt_want_write_file(file);
4929 if (ret)
4930 return ret;
4931
4932 sa = memdup_user(arg, sizeof(*sa));
4933 if (IS_ERR(sa)) {
4934 ret = PTR_ERR(sa);
4935 goto drop_write;
4936 }
4937
4938 down_write(&root->fs_info->subvol_sem);
4939 trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4940 if (IS_ERR(trans)) {
4941 ret = PTR_ERR(trans);
4942 goto out;
4943 }
4944
4945 switch (sa->cmd) {
4946 case BTRFS_QUOTA_CTL_ENABLE:
4947 ret = btrfs_quota_enable(trans, root->fs_info);
4948 break;
4949 case BTRFS_QUOTA_CTL_DISABLE:
4950 ret = btrfs_quota_disable(trans, root->fs_info);
4951 break;
4952 default:
4953 ret = -EINVAL;
4954 break;
4955 }
4956
4957 err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4958 if (err && !ret)
4959 ret = err;
4960 out:
4961 kfree(sa);
4962 up_write(&root->fs_info->subvol_sem);
4963 drop_write:
4964 mnt_drop_write_file(file);
4965 return ret;
4966 }
4967
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)4968 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4969 {
4970 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4971 struct btrfs_ioctl_qgroup_assign_args *sa;
4972 struct btrfs_trans_handle *trans;
4973 int ret;
4974 int err;
4975
4976 if (!capable(CAP_SYS_ADMIN))
4977 return -EPERM;
4978
4979 ret = mnt_want_write_file(file);
4980 if (ret)
4981 return ret;
4982
4983 sa = memdup_user(arg, sizeof(*sa));
4984 if (IS_ERR(sa)) {
4985 ret = PTR_ERR(sa);
4986 goto drop_write;
4987 }
4988
4989 trans = btrfs_join_transaction(root);
4990 if (IS_ERR(trans)) {
4991 ret = PTR_ERR(trans);
4992 goto out;
4993 }
4994
4995 /* FIXME: check if the IDs really exist */
4996 if (sa->assign) {
4997 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4998 sa->src, sa->dst);
4999 } else {
5000 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
5001 sa->src, sa->dst);
5002 }
5003
5004 /* update qgroup status and info */
5005 err = btrfs_run_qgroups(trans, root->fs_info);
5006 if (err < 0)
5007 btrfs_std_error(root->fs_info, ret,
5008 "failed to update qgroup status and info\n");
5009 err = btrfs_end_transaction(trans, root);
5010 if (err && !ret)
5011 ret = err;
5012
5013 out:
5014 kfree(sa);
5015 drop_write:
5016 mnt_drop_write_file(file);
5017 return ret;
5018 }
5019
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)5020 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
5021 {
5022 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5023 struct btrfs_ioctl_qgroup_create_args *sa;
5024 struct btrfs_trans_handle *trans;
5025 int ret;
5026 int err;
5027
5028 if (!capable(CAP_SYS_ADMIN))
5029 return -EPERM;
5030
5031 ret = mnt_want_write_file(file);
5032 if (ret)
5033 return ret;
5034
5035 sa = memdup_user(arg, sizeof(*sa));
5036 if (IS_ERR(sa)) {
5037 ret = PTR_ERR(sa);
5038 goto drop_write;
5039 }
5040
5041 if (!sa->qgroupid) {
5042 ret = -EINVAL;
5043 goto out;
5044 }
5045
5046 trans = btrfs_join_transaction(root);
5047 if (IS_ERR(trans)) {
5048 ret = PTR_ERR(trans);
5049 goto out;
5050 }
5051
5052 /* FIXME: check if the IDs really exist */
5053 if (sa->create) {
5054 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
5055 } else {
5056 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
5057 }
5058
5059 err = btrfs_end_transaction(trans, root);
5060 if (err && !ret)
5061 ret = err;
5062
5063 out:
5064 kfree(sa);
5065 drop_write:
5066 mnt_drop_write_file(file);
5067 return ret;
5068 }
5069
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)5070 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
5071 {
5072 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5073 struct btrfs_ioctl_qgroup_limit_args *sa;
5074 struct btrfs_trans_handle *trans;
5075 int ret;
5076 int err;
5077 u64 qgroupid;
5078
5079 if (!capable(CAP_SYS_ADMIN))
5080 return -EPERM;
5081
5082 ret = mnt_want_write_file(file);
5083 if (ret)
5084 return ret;
5085
5086 sa = memdup_user(arg, sizeof(*sa));
5087 if (IS_ERR(sa)) {
5088 ret = PTR_ERR(sa);
5089 goto drop_write;
5090 }
5091
5092 trans = btrfs_join_transaction(root);
5093 if (IS_ERR(trans)) {
5094 ret = PTR_ERR(trans);
5095 goto out;
5096 }
5097
5098 qgroupid = sa->qgroupid;
5099 if (!qgroupid) {
5100 /* take the current subvol as qgroup */
5101 qgroupid = root->root_key.objectid;
5102 }
5103
5104 /* FIXME: check if the IDs really exist */
5105 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
5106
5107 err = btrfs_end_transaction(trans, root);
5108 if (err && !ret)
5109 ret = err;
5110
5111 out:
5112 kfree(sa);
5113 drop_write:
5114 mnt_drop_write_file(file);
5115 return ret;
5116 }
5117
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)5118 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5119 {
5120 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5121 struct btrfs_ioctl_quota_rescan_args *qsa;
5122 int ret;
5123
5124 if (!capable(CAP_SYS_ADMIN))
5125 return -EPERM;
5126
5127 ret = mnt_want_write_file(file);
5128 if (ret)
5129 return ret;
5130
5131 qsa = memdup_user(arg, sizeof(*qsa));
5132 if (IS_ERR(qsa)) {
5133 ret = PTR_ERR(qsa);
5134 goto drop_write;
5135 }
5136
5137 if (qsa->flags) {
5138 ret = -EINVAL;
5139 goto out;
5140 }
5141
5142 ret = btrfs_qgroup_rescan(root->fs_info);
5143
5144 out:
5145 kfree(qsa);
5146 drop_write:
5147 mnt_drop_write_file(file);
5148 return ret;
5149 }
5150
btrfs_ioctl_quota_rescan_status(struct file * file,void __user * arg)5151 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5152 {
5153 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5154 struct btrfs_ioctl_quota_rescan_args *qsa;
5155 int ret = 0;
5156
5157 if (!capable(CAP_SYS_ADMIN))
5158 return -EPERM;
5159
5160 qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
5161 if (!qsa)
5162 return -ENOMEM;
5163
5164 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5165 qsa->flags = 1;
5166 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
5167 }
5168
5169 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5170 ret = -EFAULT;
5171
5172 kfree(qsa);
5173 return ret;
5174 }
5175
btrfs_ioctl_quota_rescan_wait(struct file * file,void __user * arg)5176 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5177 {
5178 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5179
5180 if (!capable(CAP_SYS_ADMIN))
5181 return -EPERM;
5182
5183 return btrfs_qgroup_wait_for_completion(root->fs_info, true);
5184 }
5185
_btrfs_ioctl_set_received_subvol(struct file * file,struct btrfs_ioctl_received_subvol_args * sa)5186 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5187 struct btrfs_ioctl_received_subvol_args *sa)
5188 {
5189 struct inode *inode = file_inode(file);
5190 struct btrfs_root *root = BTRFS_I(inode)->root;
5191 struct btrfs_root_item *root_item = &root->root_item;
5192 struct btrfs_trans_handle *trans;
5193 struct timespec ct = CURRENT_TIME;
5194 int ret = 0;
5195 int received_uuid_changed;
5196
5197 if (!inode_owner_or_capable(inode))
5198 return -EPERM;
5199
5200 ret = mnt_want_write_file(file);
5201 if (ret < 0)
5202 return ret;
5203
5204 down_write(&root->fs_info->subvol_sem);
5205
5206 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
5207 ret = -EINVAL;
5208 goto out;
5209 }
5210
5211 if (btrfs_root_readonly(root)) {
5212 ret = -EROFS;
5213 goto out;
5214 }
5215
5216 /*
5217 * 1 - root item
5218 * 2 - uuid items (received uuid + subvol uuid)
5219 */
5220 trans = btrfs_start_transaction(root, 3);
5221 if (IS_ERR(trans)) {
5222 ret = PTR_ERR(trans);
5223 trans = NULL;
5224 goto out;
5225 }
5226
5227 sa->rtransid = trans->transid;
5228 sa->rtime.sec = ct.tv_sec;
5229 sa->rtime.nsec = ct.tv_nsec;
5230
5231 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5232 BTRFS_UUID_SIZE);
5233 if (received_uuid_changed &&
5234 !btrfs_is_empty_uuid(root_item->received_uuid))
5235 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
5236 root_item->received_uuid,
5237 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5238 root->root_key.objectid);
5239 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5240 btrfs_set_root_stransid(root_item, sa->stransid);
5241 btrfs_set_root_rtransid(root_item, sa->rtransid);
5242 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5243 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5244 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5245 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5246
5247 ret = btrfs_update_root(trans, root->fs_info->tree_root,
5248 &root->root_key, &root->root_item);
5249 if (ret < 0) {
5250 btrfs_end_transaction(trans, root);
5251 goto out;
5252 }
5253 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5254 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
5255 sa->uuid,
5256 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5257 root->root_key.objectid);
5258 if (ret < 0 && ret != -EEXIST) {
5259 btrfs_abort_transaction(trans, root, ret);
5260 goto out;
5261 }
5262 }
5263 ret = btrfs_commit_transaction(trans, root);
5264 if (ret < 0) {
5265 btrfs_abort_transaction(trans, root, ret);
5266 goto out;
5267 }
5268
5269 out:
5270 up_write(&root->fs_info->subvol_sem);
5271 mnt_drop_write_file(file);
5272 return ret;
5273 }
5274
5275 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)5276 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5277 void __user *arg)
5278 {
5279 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5280 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5281 int ret = 0;
5282
5283 args32 = memdup_user(arg, sizeof(*args32));
5284 if (IS_ERR(args32)) {
5285 ret = PTR_ERR(args32);
5286 args32 = NULL;
5287 goto out;
5288 }
5289
5290 args64 = kmalloc(sizeof(*args64), GFP_NOFS);
5291 if (!args64) {
5292 ret = -ENOMEM;
5293 goto out;
5294 }
5295
5296 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5297 args64->stransid = args32->stransid;
5298 args64->rtransid = args32->rtransid;
5299 args64->stime.sec = args32->stime.sec;
5300 args64->stime.nsec = args32->stime.nsec;
5301 args64->rtime.sec = args32->rtime.sec;
5302 args64->rtime.nsec = args32->rtime.nsec;
5303 args64->flags = args32->flags;
5304
5305 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5306 if (ret)
5307 goto out;
5308
5309 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5310 args32->stransid = args64->stransid;
5311 args32->rtransid = args64->rtransid;
5312 args32->stime.sec = args64->stime.sec;
5313 args32->stime.nsec = args64->stime.nsec;
5314 args32->rtime.sec = args64->rtime.sec;
5315 args32->rtime.nsec = args64->rtime.nsec;
5316 args32->flags = args64->flags;
5317
5318 ret = copy_to_user(arg, args32, sizeof(*args32));
5319 if (ret)
5320 ret = -EFAULT;
5321
5322 out:
5323 kfree(args32);
5324 kfree(args64);
5325 return ret;
5326 }
5327 #endif
5328
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)5329 static long btrfs_ioctl_set_received_subvol(struct file *file,
5330 void __user *arg)
5331 {
5332 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5333 int ret = 0;
5334
5335 sa = memdup_user(arg, sizeof(*sa));
5336 if (IS_ERR(sa)) {
5337 ret = PTR_ERR(sa);
5338 sa = NULL;
5339 goto out;
5340 }
5341
5342 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5343
5344 if (ret)
5345 goto out;
5346
5347 ret = copy_to_user(arg, sa, sizeof(*sa));
5348 if (ret)
5349 ret = -EFAULT;
5350
5351 out:
5352 kfree(sa);
5353 return ret;
5354 }
5355
btrfs_ioctl_get_fslabel(struct file * file,void __user * arg)5356 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5357 {
5358 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5359 size_t len;
5360 int ret;
5361 char label[BTRFS_LABEL_SIZE];
5362
5363 spin_lock(&root->fs_info->super_lock);
5364 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5365 spin_unlock(&root->fs_info->super_lock);
5366
5367 len = strnlen(label, BTRFS_LABEL_SIZE);
5368
5369 if (len == BTRFS_LABEL_SIZE) {
5370 btrfs_warn(root->fs_info,
5371 "label is too long, return the first %zu bytes", --len);
5372 }
5373
5374 ret = copy_to_user(arg, label, len);
5375
5376 return ret ? -EFAULT : 0;
5377 }
5378
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)5379 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5380 {
5381 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5382 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5383 struct btrfs_trans_handle *trans;
5384 char label[BTRFS_LABEL_SIZE];
5385 int ret;
5386
5387 if (!capable(CAP_SYS_ADMIN))
5388 return -EPERM;
5389
5390 if (copy_from_user(label, arg, sizeof(label)))
5391 return -EFAULT;
5392
5393 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5394 btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5395 BTRFS_LABEL_SIZE - 1);
5396 return -EINVAL;
5397 }
5398
5399 ret = mnt_want_write_file(file);
5400 if (ret)
5401 return ret;
5402
5403 trans = btrfs_start_transaction(root, 0);
5404 if (IS_ERR(trans)) {
5405 ret = PTR_ERR(trans);
5406 goto out_unlock;
5407 }
5408
5409 spin_lock(&root->fs_info->super_lock);
5410 strcpy(super_block->label, label);
5411 spin_unlock(&root->fs_info->super_lock);
5412 ret = btrfs_commit_transaction(trans, root);
5413
5414 out_unlock:
5415 mnt_drop_write_file(file);
5416 return ret;
5417 }
5418
5419 #define INIT_FEATURE_FLAGS(suffix) \
5420 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5421 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5422 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5423
btrfs_ioctl_get_supported_features(struct file * file,void __user * arg)5424 static int btrfs_ioctl_get_supported_features(struct file *file,
5425 void __user *arg)
5426 {
5427 static struct btrfs_ioctl_feature_flags features[3] = {
5428 INIT_FEATURE_FLAGS(SUPP),
5429 INIT_FEATURE_FLAGS(SAFE_SET),
5430 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5431 };
5432
5433 if (copy_to_user(arg, &features, sizeof(features)))
5434 return -EFAULT;
5435
5436 return 0;
5437 }
5438
btrfs_ioctl_get_features(struct file * file,void __user * arg)5439 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5440 {
5441 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5442 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5443 struct btrfs_ioctl_feature_flags features;
5444
5445 features.compat_flags = btrfs_super_compat_flags(super_block);
5446 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5447 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5448
5449 if (copy_to_user(arg, &features, sizeof(features)))
5450 return -EFAULT;
5451
5452 return 0;
5453 }
5454
check_feature_bits(struct btrfs_root * root,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)5455 static int check_feature_bits(struct btrfs_root *root,
5456 enum btrfs_feature_set set,
5457 u64 change_mask, u64 flags, u64 supported_flags,
5458 u64 safe_set, u64 safe_clear)
5459 {
5460 const char *type = btrfs_feature_set_names[set];
5461 char *names;
5462 u64 disallowed, unsupported;
5463 u64 set_mask = flags & change_mask;
5464 u64 clear_mask = ~flags & change_mask;
5465
5466 unsupported = set_mask & ~supported_flags;
5467 if (unsupported) {
5468 names = btrfs_printable_features(set, unsupported);
5469 if (names) {
5470 btrfs_warn(root->fs_info,
5471 "this kernel does not support the %s feature bit%s",
5472 names, strchr(names, ',') ? "s" : "");
5473 kfree(names);
5474 } else
5475 btrfs_warn(root->fs_info,
5476 "this kernel does not support %s bits 0x%llx",
5477 type, unsupported);
5478 return -EOPNOTSUPP;
5479 }
5480
5481 disallowed = set_mask & ~safe_set;
5482 if (disallowed) {
5483 names = btrfs_printable_features(set, disallowed);
5484 if (names) {
5485 btrfs_warn(root->fs_info,
5486 "can't set the %s feature bit%s while mounted",
5487 names, strchr(names, ',') ? "s" : "");
5488 kfree(names);
5489 } else
5490 btrfs_warn(root->fs_info,
5491 "can't set %s bits 0x%llx while mounted",
5492 type, disallowed);
5493 return -EPERM;
5494 }
5495
5496 disallowed = clear_mask & ~safe_clear;
5497 if (disallowed) {
5498 names = btrfs_printable_features(set, disallowed);
5499 if (names) {
5500 btrfs_warn(root->fs_info,
5501 "can't clear the %s feature bit%s while mounted",
5502 names, strchr(names, ',') ? "s" : "");
5503 kfree(names);
5504 } else
5505 btrfs_warn(root->fs_info,
5506 "can't clear %s bits 0x%llx while mounted",
5507 type, disallowed);
5508 return -EPERM;
5509 }
5510
5511 return 0;
5512 }
5513
5514 #define check_feature(root, change_mask, flags, mask_base) \
5515 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \
5516 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5517 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5518 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5519
btrfs_ioctl_set_features(struct file * file,void __user * arg)5520 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5521 {
5522 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5523 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5524 struct btrfs_ioctl_feature_flags flags[2];
5525 struct btrfs_trans_handle *trans;
5526 u64 newflags;
5527 int ret;
5528
5529 if (!capable(CAP_SYS_ADMIN))
5530 return -EPERM;
5531
5532 if (copy_from_user(flags, arg, sizeof(flags)))
5533 return -EFAULT;
5534
5535 /* Nothing to do */
5536 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5537 !flags[0].incompat_flags)
5538 return 0;
5539
5540 ret = check_feature(root, flags[0].compat_flags,
5541 flags[1].compat_flags, COMPAT);
5542 if (ret)
5543 return ret;
5544
5545 ret = check_feature(root, flags[0].compat_ro_flags,
5546 flags[1].compat_ro_flags, COMPAT_RO);
5547 if (ret)
5548 return ret;
5549
5550 ret = check_feature(root, flags[0].incompat_flags,
5551 flags[1].incompat_flags, INCOMPAT);
5552 if (ret)
5553 return ret;
5554
5555 trans = btrfs_start_transaction(root, 0);
5556 if (IS_ERR(trans))
5557 return PTR_ERR(trans);
5558
5559 spin_lock(&root->fs_info->super_lock);
5560 newflags = btrfs_super_compat_flags(super_block);
5561 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5562 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5563 btrfs_set_super_compat_flags(super_block, newflags);
5564
5565 newflags = btrfs_super_compat_ro_flags(super_block);
5566 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5567 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5568 btrfs_set_super_compat_ro_flags(super_block, newflags);
5569
5570 newflags = btrfs_super_incompat_flags(super_block);
5571 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5572 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5573 btrfs_set_super_incompat_flags(super_block, newflags);
5574 spin_unlock(&root->fs_info->super_lock);
5575
5576 return btrfs_commit_transaction(trans, root);
5577 }
5578
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5579 long btrfs_ioctl(struct file *file, unsigned int
5580 cmd, unsigned long arg)
5581 {
5582 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5583 void __user *argp = (void __user *)arg;
5584
5585 switch (cmd) {
5586 case FS_IOC_GETFLAGS:
5587 return btrfs_ioctl_getflags(file, argp);
5588 case FS_IOC_SETFLAGS:
5589 return btrfs_ioctl_setflags(file, argp);
5590 case FS_IOC_GETVERSION:
5591 return btrfs_ioctl_getversion(file, argp);
5592 case FITRIM:
5593 return btrfs_ioctl_fitrim(file, argp);
5594 case BTRFS_IOC_SNAP_CREATE:
5595 return btrfs_ioctl_snap_create(file, argp, 0);
5596 case BTRFS_IOC_SNAP_CREATE_V2:
5597 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5598 case BTRFS_IOC_SUBVOL_CREATE:
5599 return btrfs_ioctl_snap_create(file, argp, 1);
5600 case BTRFS_IOC_SUBVOL_CREATE_V2:
5601 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5602 case BTRFS_IOC_SNAP_DESTROY:
5603 return btrfs_ioctl_snap_destroy(file, argp);
5604 case BTRFS_IOC_SUBVOL_GETFLAGS:
5605 return btrfs_ioctl_subvol_getflags(file, argp);
5606 case BTRFS_IOC_SUBVOL_SETFLAGS:
5607 return btrfs_ioctl_subvol_setflags(file, argp);
5608 case BTRFS_IOC_DEFAULT_SUBVOL:
5609 return btrfs_ioctl_default_subvol(file, argp);
5610 case BTRFS_IOC_DEFRAG:
5611 return btrfs_ioctl_defrag(file, NULL);
5612 case BTRFS_IOC_DEFRAG_RANGE:
5613 return btrfs_ioctl_defrag(file, argp);
5614 case BTRFS_IOC_RESIZE:
5615 return btrfs_ioctl_resize(file, argp);
5616 case BTRFS_IOC_ADD_DEV:
5617 return btrfs_ioctl_add_dev(root, argp);
5618 case BTRFS_IOC_RM_DEV:
5619 return btrfs_ioctl_rm_dev(file, argp);
5620 case BTRFS_IOC_FS_INFO:
5621 return btrfs_ioctl_fs_info(root, argp);
5622 case BTRFS_IOC_DEV_INFO:
5623 return btrfs_ioctl_dev_info(root, argp);
5624 case BTRFS_IOC_BALANCE:
5625 return btrfs_ioctl_balance(file, NULL);
5626 case BTRFS_IOC_CLONE:
5627 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
5628 case BTRFS_IOC_CLONE_RANGE:
5629 return btrfs_ioctl_clone_range(file, argp);
5630 case BTRFS_IOC_TRANS_START:
5631 return btrfs_ioctl_trans_start(file);
5632 case BTRFS_IOC_TRANS_END:
5633 return btrfs_ioctl_trans_end(file);
5634 case BTRFS_IOC_TREE_SEARCH:
5635 return btrfs_ioctl_tree_search(file, argp);
5636 case BTRFS_IOC_TREE_SEARCH_V2:
5637 return btrfs_ioctl_tree_search_v2(file, argp);
5638 case BTRFS_IOC_INO_LOOKUP:
5639 return btrfs_ioctl_ino_lookup(file, argp);
5640 case BTRFS_IOC_INO_PATHS:
5641 return btrfs_ioctl_ino_to_path(root, argp);
5642 case BTRFS_IOC_LOGICAL_INO:
5643 return btrfs_ioctl_logical_to_ino(root, argp);
5644 case BTRFS_IOC_SPACE_INFO:
5645 return btrfs_ioctl_space_info(root, argp);
5646 case BTRFS_IOC_SYNC: {
5647 int ret;
5648
5649 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5650 if (ret)
5651 return ret;
5652 ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5653 /*
5654 * The transaction thread may want to do more work,
5655 * namely it pokes the cleaner ktread that will start
5656 * processing uncleaned subvols.
5657 */
5658 wake_up_process(root->fs_info->transaction_kthread);
5659 return ret;
5660 }
5661 case BTRFS_IOC_START_SYNC:
5662 return btrfs_ioctl_start_sync(root, argp);
5663 case BTRFS_IOC_WAIT_SYNC:
5664 return btrfs_ioctl_wait_sync(root, argp);
5665 case BTRFS_IOC_SCRUB:
5666 return btrfs_ioctl_scrub(file, argp);
5667 case BTRFS_IOC_SCRUB_CANCEL:
5668 return btrfs_ioctl_scrub_cancel(root, argp);
5669 case BTRFS_IOC_SCRUB_PROGRESS:
5670 return btrfs_ioctl_scrub_progress(root, argp);
5671 case BTRFS_IOC_BALANCE_V2:
5672 return btrfs_ioctl_balance(file, argp);
5673 case BTRFS_IOC_BALANCE_CTL:
5674 return btrfs_ioctl_balance_ctl(root, arg);
5675 case BTRFS_IOC_BALANCE_PROGRESS:
5676 return btrfs_ioctl_balance_progress(root, argp);
5677 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5678 return btrfs_ioctl_set_received_subvol(file, argp);
5679 #ifdef CONFIG_64BIT
5680 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5681 return btrfs_ioctl_set_received_subvol_32(file, argp);
5682 #endif
5683 case BTRFS_IOC_SEND:
5684 return btrfs_ioctl_send(file, argp);
5685 case BTRFS_IOC_GET_DEV_STATS:
5686 return btrfs_ioctl_get_dev_stats(root, argp);
5687 case BTRFS_IOC_QUOTA_CTL:
5688 return btrfs_ioctl_quota_ctl(file, argp);
5689 case BTRFS_IOC_QGROUP_ASSIGN:
5690 return btrfs_ioctl_qgroup_assign(file, argp);
5691 case BTRFS_IOC_QGROUP_CREATE:
5692 return btrfs_ioctl_qgroup_create(file, argp);
5693 case BTRFS_IOC_QGROUP_LIMIT:
5694 return btrfs_ioctl_qgroup_limit(file, argp);
5695 case BTRFS_IOC_QUOTA_RESCAN:
5696 return btrfs_ioctl_quota_rescan(file, argp);
5697 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5698 return btrfs_ioctl_quota_rescan_status(file, argp);
5699 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5700 return btrfs_ioctl_quota_rescan_wait(file, argp);
5701 case BTRFS_IOC_DEV_REPLACE:
5702 return btrfs_ioctl_dev_replace(root, argp);
5703 case BTRFS_IOC_GET_FSLABEL:
5704 return btrfs_ioctl_get_fslabel(file, argp);
5705 case BTRFS_IOC_SET_FSLABEL:
5706 return btrfs_ioctl_set_fslabel(file, argp);
5707 case BTRFS_IOC_FILE_EXTENT_SAME:
5708 return btrfs_ioctl_file_extent_same(file, argp);
5709 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5710 return btrfs_ioctl_get_supported_features(file, argp);
5711 case BTRFS_IOC_GET_FEATURES:
5712 return btrfs_ioctl_get_features(file, argp);
5713 case BTRFS_IOC_SET_FEATURES:
5714 return btrfs_ioctl_set_features(file, argp);
5715 }
5716
5717 return -ENOTTY;
5718 }
5719