• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 #include "tree-log.h"
63 
64 #ifdef CONFIG_64BIT
65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
66  * structures are incorrect, as the timespec structure from userspace
67  * is 4 bytes too small. We define these alternatives here to teach
68  * the kernel about the 32-bit struct packing.
69  */
70 struct btrfs_ioctl_timespec_32 {
71 	__u64 sec;
72 	__u32 nsec;
73 } __attribute__ ((__packed__));
74 
75 struct btrfs_ioctl_received_subvol_args_32 {
76 	char	uuid[BTRFS_UUID_SIZE];	/* in */
77 	__u64	stransid;		/* in */
78 	__u64	rtransid;		/* out */
79 	struct btrfs_ioctl_timespec_32 stime; /* in */
80 	struct btrfs_ioctl_timespec_32 rtime; /* out */
81 	__u64	flags;			/* in */
82 	__u64	reserved[16];		/* in */
83 } __attribute__ ((__packed__));
84 
85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
86 				struct btrfs_ioctl_received_subvol_args_32)
87 #endif
88 
89 
90 static int btrfs_clone(struct inode *src, struct inode *inode,
91 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
92 		       int no_time_update);
93 
94 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_flags(umode_t mode,__u32 flags)95 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
96 {
97 	if (S_ISDIR(mode))
98 		return flags;
99 	else if (S_ISREG(mode))
100 		return flags & ~FS_DIRSYNC_FL;
101 	else
102 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103 }
104 
105 /*
106  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
107  */
btrfs_flags_to_ioctl(unsigned int flags)108 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
109 {
110 	unsigned int iflags = 0;
111 
112 	if (flags & BTRFS_INODE_SYNC)
113 		iflags |= FS_SYNC_FL;
114 	if (flags & BTRFS_INODE_IMMUTABLE)
115 		iflags |= FS_IMMUTABLE_FL;
116 	if (flags & BTRFS_INODE_APPEND)
117 		iflags |= FS_APPEND_FL;
118 	if (flags & BTRFS_INODE_NODUMP)
119 		iflags |= FS_NODUMP_FL;
120 	if (flags & BTRFS_INODE_NOATIME)
121 		iflags |= FS_NOATIME_FL;
122 	if (flags & BTRFS_INODE_DIRSYNC)
123 		iflags |= FS_DIRSYNC_FL;
124 	if (flags & BTRFS_INODE_NODATACOW)
125 		iflags |= FS_NOCOW_FL;
126 
127 	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
128 		iflags |= FS_COMPR_FL;
129 	else if (flags & BTRFS_INODE_NOCOMPRESS)
130 		iflags |= FS_NOCOMP_FL;
131 
132 	return iflags;
133 }
134 
135 /*
136  * Update inode->i_flags based on the btrfs internal flags.
137  */
btrfs_update_iflags(struct inode * inode)138 void btrfs_update_iflags(struct inode *inode)
139 {
140 	struct btrfs_inode *ip = BTRFS_I(inode);
141 	unsigned int new_fl = 0;
142 
143 	if (ip->flags & BTRFS_INODE_SYNC)
144 		new_fl |= S_SYNC;
145 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
146 		new_fl |= S_IMMUTABLE;
147 	if (ip->flags & BTRFS_INODE_APPEND)
148 		new_fl |= S_APPEND;
149 	if (ip->flags & BTRFS_INODE_NOATIME)
150 		new_fl |= S_NOATIME;
151 	if (ip->flags & BTRFS_INODE_DIRSYNC)
152 		new_fl |= S_DIRSYNC;
153 
154 	set_mask_bits(&inode->i_flags,
155 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
156 		      new_fl);
157 }
158 
159 /*
160  * Inherit flags from the parent inode.
161  *
162  * Currently only the compression flags and the cow flags are inherited.
163  */
btrfs_inherit_iflags(struct inode * inode,struct inode * dir)164 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
165 {
166 	unsigned int flags;
167 
168 	if (!dir)
169 		return;
170 
171 	flags = BTRFS_I(dir)->flags;
172 
173 	if (flags & BTRFS_INODE_NOCOMPRESS) {
174 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
175 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
176 	} else if (flags & BTRFS_INODE_COMPRESS) {
177 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
178 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
179 	}
180 
181 	if (flags & BTRFS_INODE_NODATACOW) {
182 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
183 		if (S_ISREG(inode->i_mode))
184 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
185 	}
186 
187 	btrfs_update_iflags(inode);
188 }
189 
btrfs_ioctl_getflags(struct file * file,void __user * arg)190 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
191 {
192 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
193 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
194 
195 	if (copy_to_user(arg, &flags, sizeof(flags)))
196 		return -EFAULT;
197 	return 0;
198 }
199 
check_flags(unsigned int flags)200 static int check_flags(unsigned int flags)
201 {
202 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203 		      FS_NOATIME_FL | FS_NODUMP_FL | \
204 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
205 		      FS_NOCOMP_FL | FS_COMPR_FL |
206 		      FS_NOCOW_FL))
207 		return -EOPNOTSUPP;
208 
209 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
210 		return -EINVAL;
211 
212 	return 0;
213 }
214 
btrfs_ioctl_setflags(struct file * file,void __user * arg)215 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
216 {
217 	struct inode *inode = file_inode(file);
218 	struct btrfs_inode *ip = BTRFS_I(inode);
219 	struct btrfs_root *root = ip->root;
220 	struct btrfs_trans_handle *trans;
221 	unsigned int flags, oldflags;
222 	int ret;
223 	u64 ip_oldflags;
224 	unsigned int i_oldflags;
225 	umode_t mode;
226 
227 	if (!inode_owner_or_capable(inode))
228 		return -EPERM;
229 
230 	if (btrfs_root_readonly(root))
231 		return -EROFS;
232 
233 	if (copy_from_user(&flags, arg, sizeof(flags)))
234 		return -EFAULT;
235 
236 	ret = check_flags(flags);
237 	if (ret)
238 		return ret;
239 
240 	ret = mnt_want_write_file(file);
241 	if (ret)
242 		return ret;
243 
244 	mutex_lock(&inode->i_mutex);
245 
246 	ip_oldflags = ip->flags;
247 	i_oldflags = inode->i_flags;
248 	mode = inode->i_mode;
249 
250 	flags = btrfs_mask_flags(inode->i_mode, flags);
251 	oldflags = btrfs_flags_to_ioctl(ip->flags);
252 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
253 		if (!capable(CAP_LINUX_IMMUTABLE)) {
254 			ret = -EPERM;
255 			goto out_unlock;
256 		}
257 	}
258 
259 	if (flags & FS_SYNC_FL)
260 		ip->flags |= BTRFS_INODE_SYNC;
261 	else
262 		ip->flags &= ~BTRFS_INODE_SYNC;
263 	if (flags & FS_IMMUTABLE_FL)
264 		ip->flags |= BTRFS_INODE_IMMUTABLE;
265 	else
266 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
267 	if (flags & FS_APPEND_FL)
268 		ip->flags |= BTRFS_INODE_APPEND;
269 	else
270 		ip->flags &= ~BTRFS_INODE_APPEND;
271 	if (flags & FS_NODUMP_FL)
272 		ip->flags |= BTRFS_INODE_NODUMP;
273 	else
274 		ip->flags &= ~BTRFS_INODE_NODUMP;
275 	if (flags & FS_NOATIME_FL)
276 		ip->flags |= BTRFS_INODE_NOATIME;
277 	else
278 		ip->flags &= ~BTRFS_INODE_NOATIME;
279 	if (flags & FS_DIRSYNC_FL)
280 		ip->flags |= BTRFS_INODE_DIRSYNC;
281 	else
282 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
283 	if (flags & FS_NOCOW_FL) {
284 		if (S_ISREG(mode)) {
285 			/*
286 			 * It's safe to turn csums off here, no extents exist.
287 			 * Otherwise we want the flag to reflect the real COW
288 			 * status of the file and will not set it.
289 			 */
290 			if (inode->i_size == 0)
291 				ip->flags |= BTRFS_INODE_NODATACOW
292 					   | BTRFS_INODE_NODATASUM;
293 		} else {
294 			ip->flags |= BTRFS_INODE_NODATACOW;
295 		}
296 	} else {
297 		/*
298 		 * Revert back under same assuptions as above
299 		 */
300 		if (S_ISREG(mode)) {
301 			if (inode->i_size == 0)
302 				ip->flags &= ~(BTRFS_INODE_NODATACOW
303 				             | BTRFS_INODE_NODATASUM);
304 		} else {
305 			ip->flags &= ~BTRFS_INODE_NODATACOW;
306 		}
307 	}
308 
309 	/*
310 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
311 	 * flag may be changed automatically if compression code won't make
312 	 * things smaller.
313 	 */
314 	if (flags & FS_NOCOMP_FL) {
315 		ip->flags &= ~BTRFS_INODE_COMPRESS;
316 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
317 
318 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
319 		if (ret && ret != -ENODATA)
320 			goto out_drop;
321 	} else if (flags & FS_COMPR_FL) {
322 		const char *comp;
323 
324 		ip->flags |= BTRFS_INODE_COMPRESS;
325 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
326 
327 		if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
328 			comp = "lzo";
329 		else
330 			comp = "zlib";
331 		ret = btrfs_set_prop(inode, "btrfs.compression",
332 				     comp, strlen(comp), 0);
333 		if (ret)
334 			goto out_drop;
335 
336 	} else {
337 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
338 		if (ret && ret != -ENODATA)
339 			goto out_drop;
340 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
341 	}
342 
343 	trans = btrfs_start_transaction(root, 1);
344 	if (IS_ERR(trans)) {
345 		ret = PTR_ERR(trans);
346 		goto out_drop;
347 	}
348 
349 	btrfs_update_iflags(inode);
350 	inode_inc_iversion(inode);
351 	inode->i_ctime = CURRENT_TIME;
352 	ret = btrfs_update_inode(trans, root, inode);
353 
354 	btrfs_end_transaction(trans, root);
355  out_drop:
356 	if (ret) {
357 		ip->flags = ip_oldflags;
358 		inode->i_flags = i_oldflags;
359 	}
360 
361  out_unlock:
362 	mutex_unlock(&inode->i_mutex);
363 	mnt_drop_write_file(file);
364 	return ret;
365 }
366 
btrfs_ioctl_getversion(struct file * file,int __user * arg)367 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
368 {
369 	struct inode *inode = file_inode(file);
370 
371 	return put_user(inode->i_generation, arg);
372 }
373 
btrfs_ioctl_fitrim(struct file * file,void __user * arg)374 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
375 {
376 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
377 	struct btrfs_device *device;
378 	struct request_queue *q;
379 	struct fstrim_range range;
380 	u64 minlen = ULLONG_MAX;
381 	u64 num_devices = 0;
382 	int ret;
383 
384 	if (!capable(CAP_SYS_ADMIN))
385 		return -EPERM;
386 
387 	rcu_read_lock();
388 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
389 				dev_list) {
390 		if (!device->bdev)
391 			continue;
392 		q = bdev_get_queue(device->bdev);
393 		if (blk_queue_discard(q)) {
394 			num_devices++;
395 			minlen = min((u64)q->limits.discard_granularity,
396 				     minlen);
397 		}
398 	}
399 	rcu_read_unlock();
400 
401 	if (!num_devices)
402 		return -EOPNOTSUPP;
403 	if (copy_from_user(&range, arg, sizeof(range)))
404 		return -EFAULT;
405 
406 	/*
407 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
408 	 * block group is in the logical address space, which can be any
409 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
410 	 */
411 	if (range.len < fs_info->sb->s_blocksize)
412 		return -EINVAL;
413 
414 	range.minlen = max(range.minlen, minlen);
415 	ret = btrfs_trim_fs(fs_info->tree_root, &range);
416 	if (ret < 0)
417 		return ret;
418 
419 	if (copy_to_user(arg, &range, sizeof(range)))
420 		return -EFAULT;
421 
422 	return 0;
423 }
424 
btrfs_is_empty_uuid(u8 * uuid)425 int btrfs_is_empty_uuid(u8 *uuid)
426 {
427 	int i;
428 
429 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
430 		if (uuid[i])
431 			return 0;
432 	}
433 	return 1;
434 }
435 
create_subvol(struct inode * dir,struct dentry * dentry,char * name,int namelen,u64 * async_transid,struct btrfs_qgroup_inherit * inherit)436 static noinline int create_subvol(struct inode *dir,
437 				  struct dentry *dentry,
438 				  char *name, int namelen,
439 				  u64 *async_transid,
440 				  struct btrfs_qgroup_inherit *inherit)
441 {
442 	struct btrfs_trans_handle *trans;
443 	struct btrfs_key key;
444 	struct btrfs_root_item root_item;
445 	struct btrfs_inode_item *inode_item;
446 	struct extent_buffer *leaf;
447 	struct btrfs_root *root = BTRFS_I(dir)->root;
448 	struct btrfs_root *new_root;
449 	struct btrfs_block_rsv block_rsv;
450 	struct timespec cur_time = CURRENT_TIME;
451 	struct inode *inode;
452 	int ret;
453 	int err;
454 	u64 objectid;
455 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
456 	u64 index = 0;
457 	u64 qgroup_reserved;
458 	uuid_le new_uuid;
459 
460 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
461 	if (ret)
462 		return ret;
463 
464 	/*
465 	 * Don't create subvolume whose level is not zero. Or qgroup will be
466 	 * screwed up since it assume subvolme qgroup's level to be 0.
467 	 */
468 	if (btrfs_qgroup_level(objectid))
469 		return -ENOSPC;
470 
471 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
472 	/*
473 	 * The same as the snapshot creation, please see the comment
474 	 * of create_snapshot().
475 	 */
476 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
477 					       8, &qgroup_reserved, false);
478 	if (ret)
479 		return ret;
480 
481 	trans = btrfs_start_transaction(root, 0);
482 	if (IS_ERR(trans)) {
483 		ret = PTR_ERR(trans);
484 		btrfs_subvolume_release_metadata(root, &block_rsv,
485 						 qgroup_reserved);
486 		return ret;
487 	}
488 	trans->block_rsv = &block_rsv;
489 	trans->bytes_reserved = block_rsv.size;
490 
491 	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
492 	if (ret)
493 		goto fail;
494 
495 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
496 	if (IS_ERR(leaf)) {
497 		ret = PTR_ERR(leaf);
498 		goto fail;
499 	}
500 
501 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
502 	btrfs_set_header_bytenr(leaf, leaf->start);
503 	btrfs_set_header_generation(leaf, trans->transid);
504 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
505 	btrfs_set_header_owner(leaf, objectid);
506 
507 	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
508 			    BTRFS_FSID_SIZE);
509 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
510 			    btrfs_header_chunk_tree_uuid(leaf),
511 			    BTRFS_UUID_SIZE);
512 	btrfs_mark_buffer_dirty(leaf);
513 
514 	memset(&root_item, 0, sizeof(root_item));
515 
516 	inode_item = &root_item.inode;
517 	btrfs_set_stack_inode_generation(inode_item, 1);
518 	btrfs_set_stack_inode_size(inode_item, 3);
519 	btrfs_set_stack_inode_nlink(inode_item, 1);
520 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
521 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
522 
523 	btrfs_set_root_flags(&root_item, 0);
524 	btrfs_set_root_limit(&root_item, 0);
525 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
526 
527 	btrfs_set_root_bytenr(&root_item, leaf->start);
528 	btrfs_set_root_generation(&root_item, trans->transid);
529 	btrfs_set_root_level(&root_item, 0);
530 	btrfs_set_root_refs(&root_item, 1);
531 	btrfs_set_root_used(&root_item, leaf->len);
532 	btrfs_set_root_last_snapshot(&root_item, 0);
533 
534 	btrfs_set_root_generation_v2(&root_item,
535 			btrfs_root_generation(&root_item));
536 	uuid_le_gen(&new_uuid);
537 	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
538 	btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
539 	btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
540 	root_item.ctime = root_item.otime;
541 	btrfs_set_root_ctransid(&root_item, trans->transid);
542 	btrfs_set_root_otransid(&root_item, trans->transid);
543 
544 	btrfs_tree_unlock(leaf);
545 	free_extent_buffer(leaf);
546 	leaf = NULL;
547 
548 	btrfs_set_root_dirid(&root_item, new_dirid);
549 
550 	key.objectid = objectid;
551 	key.offset = 0;
552 	key.type = BTRFS_ROOT_ITEM_KEY;
553 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
554 				&root_item);
555 	if (ret)
556 		goto fail;
557 
558 	key.offset = (u64)-1;
559 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
560 	if (IS_ERR(new_root)) {
561 		ret = PTR_ERR(new_root);
562 		btrfs_abort_transaction(trans, root, ret);
563 		goto fail;
564 	}
565 
566 	btrfs_record_root_in_trans(trans, new_root);
567 
568 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
569 	if (ret) {
570 		/* We potentially lose an unused inode item here */
571 		btrfs_abort_transaction(trans, root, ret);
572 		goto fail;
573 	}
574 
575 	mutex_lock(&new_root->objectid_mutex);
576 	new_root->highest_objectid = new_dirid;
577 	mutex_unlock(&new_root->objectid_mutex);
578 
579 	/*
580 	 * insert the directory item
581 	 */
582 	ret = btrfs_set_inode_index(dir, &index);
583 	if (ret) {
584 		btrfs_abort_transaction(trans, root, ret);
585 		goto fail;
586 	}
587 
588 	ret = btrfs_insert_dir_item(trans, root,
589 				    name, namelen, dir, &key,
590 				    BTRFS_FT_DIR, index);
591 	if (ret) {
592 		btrfs_abort_transaction(trans, root, ret);
593 		goto fail;
594 	}
595 
596 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
597 	ret = btrfs_update_inode(trans, root, dir);
598 	if (ret) {
599 		btrfs_abort_transaction(trans, root, ret);
600 		goto fail;
601 	}
602 
603 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
604 				 objectid, root->root_key.objectid,
605 				 btrfs_ino(dir), index, name, namelen);
606 	if (ret) {
607 		btrfs_abort_transaction(trans, root, ret);
608 		goto fail;
609 	}
610 
611 	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
612 				  root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
613 				  objectid);
614 	if (ret)
615 		btrfs_abort_transaction(trans, root, ret);
616 
617 fail:
618 	trans->block_rsv = NULL;
619 	trans->bytes_reserved = 0;
620 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
621 
622 	if (async_transid) {
623 		*async_transid = trans->transid;
624 		err = btrfs_commit_transaction_async(trans, root, 1);
625 		if (err)
626 			err = btrfs_commit_transaction(trans, root);
627 	} else {
628 		err = btrfs_commit_transaction(trans, root);
629 	}
630 	if (err && !ret)
631 		ret = err;
632 
633 	if (!ret) {
634 		inode = btrfs_lookup_dentry(dir, dentry);
635 		if (IS_ERR(inode))
636 			return PTR_ERR(inode);
637 		d_instantiate(dentry, inode);
638 	}
639 	return ret;
640 }
641 
btrfs_wait_for_no_snapshoting_writes(struct btrfs_root * root)642 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
643 {
644 	s64 writers;
645 	DEFINE_WAIT(wait);
646 
647 	do {
648 		prepare_to_wait(&root->subv_writers->wait, &wait,
649 				TASK_UNINTERRUPTIBLE);
650 
651 		writers = percpu_counter_sum(&root->subv_writers->counter);
652 		if (writers)
653 			schedule();
654 
655 		finish_wait(&root->subv_writers->wait, &wait);
656 	} while (writers);
657 }
658 
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,char * name,int namelen,u64 * async_transid,bool readonly,struct btrfs_qgroup_inherit * inherit)659 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
660 			   struct dentry *dentry, char *name, int namelen,
661 			   u64 *async_transid, bool readonly,
662 			   struct btrfs_qgroup_inherit *inherit)
663 {
664 	struct inode *inode;
665 	struct btrfs_pending_snapshot *pending_snapshot;
666 	struct btrfs_trans_handle *trans;
667 	int ret;
668 
669 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
670 		return -EINVAL;
671 
672 	atomic_inc(&root->will_be_snapshoted);
673 	smp_mb__after_atomic();
674 	btrfs_wait_for_no_snapshoting_writes(root);
675 
676 	ret = btrfs_start_delalloc_inodes(root, 0);
677 	if (ret)
678 		goto out;
679 
680 	btrfs_wait_ordered_extents(root, -1);
681 
682 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
683 	if (!pending_snapshot) {
684 		ret = -ENOMEM;
685 		goto out;
686 	}
687 
688 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
689 			     BTRFS_BLOCK_RSV_TEMP);
690 	/*
691 	 * 1 - parent dir inode
692 	 * 2 - dir entries
693 	 * 1 - root item
694 	 * 2 - root ref/backref
695 	 * 1 - root of snapshot
696 	 * 1 - UUID item
697 	 */
698 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
699 					&pending_snapshot->block_rsv, 8,
700 					&pending_snapshot->qgroup_reserved,
701 					false);
702 	if (ret)
703 		goto free;
704 
705 	pending_snapshot->dentry = dentry;
706 	pending_snapshot->root = root;
707 	pending_snapshot->readonly = readonly;
708 	pending_snapshot->dir = dir;
709 	pending_snapshot->inherit = inherit;
710 
711 	trans = btrfs_start_transaction(root, 0);
712 	if (IS_ERR(trans)) {
713 		ret = PTR_ERR(trans);
714 		goto fail;
715 	}
716 
717 	spin_lock(&root->fs_info->trans_lock);
718 	list_add(&pending_snapshot->list,
719 		 &trans->transaction->pending_snapshots);
720 	spin_unlock(&root->fs_info->trans_lock);
721 	if (async_transid) {
722 		*async_transid = trans->transid;
723 		ret = btrfs_commit_transaction_async(trans,
724 				     root->fs_info->extent_root, 1);
725 		if (ret)
726 			ret = btrfs_commit_transaction(trans, root);
727 	} else {
728 		ret = btrfs_commit_transaction(trans,
729 					       root->fs_info->extent_root);
730 	}
731 	if (ret)
732 		goto fail;
733 
734 	ret = pending_snapshot->error;
735 	if (ret)
736 		goto fail;
737 
738 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
739 	if (ret)
740 		goto fail;
741 
742 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
743 	if (IS_ERR(inode)) {
744 		ret = PTR_ERR(inode);
745 		goto fail;
746 	}
747 
748 	d_instantiate(dentry, inode);
749 	ret = 0;
750 fail:
751 	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
752 					 &pending_snapshot->block_rsv,
753 					 pending_snapshot->qgroup_reserved);
754 free:
755 	kfree(pending_snapshot);
756 out:
757 	if (atomic_dec_and_test(&root->will_be_snapshoted))
758 		wake_up_atomic_t(&root->will_be_snapshoted);
759 	return ret;
760 }
761 
762 /*  copy of may_delete in fs/namei.c()
763  *	Check whether we can remove a link victim from directory dir, check
764  *  whether the type of victim is right.
765  *  1. We can't do it if dir is read-only (done in permission())
766  *  2. We should have write and exec permissions on dir
767  *  3. We can't remove anything from append-only dir
768  *  4. We can't do anything with immutable dir (done in permission())
769  *  5. If the sticky bit on dir is set we should either
770  *	a. be owner of dir, or
771  *	b. be owner of victim, or
772  *	c. have CAP_FOWNER capability
773  *  6. If the victim is append-only or immutable we can't do antyhing with
774  *     links pointing to it.
775  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
776  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
777  *  9. We can't remove a root or mountpoint.
778  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
779  *     nfs_async_unlink().
780  */
781 
btrfs_may_delete(struct inode * dir,struct dentry * victim,int isdir)782 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
783 {
784 	int error;
785 
786 	if (d_really_is_negative(victim))
787 		return -ENOENT;
788 
789 	BUG_ON(d_inode(victim->d_parent) != dir);
790 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
791 
792 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
793 	if (error)
794 		return error;
795 	if (IS_APPEND(dir))
796 		return -EPERM;
797 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
798 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
799 		return -EPERM;
800 	if (isdir) {
801 		if (!d_is_dir(victim))
802 			return -ENOTDIR;
803 		if (IS_ROOT(victim))
804 			return -EBUSY;
805 	} else if (d_is_dir(victim))
806 		return -EISDIR;
807 	if (IS_DEADDIR(dir))
808 		return -ENOENT;
809 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
810 		return -EBUSY;
811 	return 0;
812 }
813 
814 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct inode * dir,struct dentry * child)815 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
816 {
817 	if (d_really_is_positive(child))
818 		return -EEXIST;
819 	if (IS_DEADDIR(dir))
820 		return -ENOENT;
821 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
822 }
823 
824 /*
825  * Create a new subvolume below @parent.  This is largely modeled after
826  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
827  * inside this filesystem so it's quite a bit simpler.
828  */
btrfs_mksubvol(struct path * parent,char * name,int namelen,struct btrfs_root * snap_src,u64 * async_transid,bool readonly,struct btrfs_qgroup_inherit * inherit)829 static noinline int btrfs_mksubvol(struct path *parent,
830 				   char *name, int namelen,
831 				   struct btrfs_root *snap_src,
832 				   u64 *async_transid, bool readonly,
833 				   struct btrfs_qgroup_inherit *inherit)
834 {
835 	struct inode *dir  = d_inode(parent->dentry);
836 	struct dentry *dentry;
837 	int error;
838 
839 	error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
840 	if (error == -EINTR)
841 		return error;
842 
843 	dentry = lookup_one_len(name, parent->dentry, namelen);
844 	error = PTR_ERR(dentry);
845 	if (IS_ERR(dentry))
846 		goto out_unlock;
847 
848 	error = -EEXIST;
849 	if (d_really_is_positive(dentry))
850 		goto out_dput;
851 
852 	error = btrfs_may_create(dir, dentry);
853 	if (error)
854 		goto out_dput;
855 
856 	/*
857 	 * even if this name doesn't exist, we may get hash collisions.
858 	 * check for them now when we can safely fail
859 	 */
860 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
861 					       dir->i_ino, name,
862 					       namelen);
863 	if (error)
864 		goto out_dput;
865 
866 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
867 
868 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
869 		goto out_up_read;
870 
871 	if (snap_src) {
872 		error = create_snapshot(snap_src, dir, dentry, name, namelen,
873 					async_transid, readonly, inherit);
874 	} else {
875 		error = create_subvol(dir, dentry, name, namelen,
876 				      async_transid, inherit);
877 	}
878 	if (!error)
879 		fsnotify_mkdir(dir, dentry);
880 out_up_read:
881 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
882 out_dput:
883 	dput(dentry);
884 out_unlock:
885 	mutex_unlock(&dir->i_mutex);
886 	return error;
887 }
888 
889 /*
890  * When we're defragging a range, we don't want to kick it off again
891  * if it is really just waiting for delalloc to send it down.
892  * If we find a nice big extent or delalloc range for the bytes in the
893  * file you want to defrag, we return 0 to let you know to skip this
894  * part of the file
895  */
check_defrag_in_cache(struct inode * inode,u64 offset,u32 thresh)896 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
897 {
898 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
899 	struct extent_map *em = NULL;
900 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
901 	u64 end;
902 
903 	read_lock(&em_tree->lock);
904 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
905 	read_unlock(&em_tree->lock);
906 
907 	if (em) {
908 		end = extent_map_end(em);
909 		free_extent_map(em);
910 		if (end - offset > thresh)
911 			return 0;
912 	}
913 	/* if we already have a nice delalloc here, just stop */
914 	thresh /= 2;
915 	end = count_range_bits(io_tree, &offset, offset + thresh,
916 			       thresh, EXTENT_DELALLOC, 1);
917 	if (end >= thresh)
918 		return 0;
919 	return 1;
920 }
921 
922 /*
923  * helper function to walk through a file and find extents
924  * newer than a specific transid, and smaller than thresh.
925  *
926  * This is used by the defragging code to find new and small
927  * extents
928  */
find_new_extents(struct btrfs_root * root,struct inode * inode,u64 newer_than,u64 * off,u32 thresh)929 static int find_new_extents(struct btrfs_root *root,
930 			    struct inode *inode, u64 newer_than,
931 			    u64 *off, u32 thresh)
932 {
933 	struct btrfs_path *path;
934 	struct btrfs_key min_key;
935 	struct extent_buffer *leaf;
936 	struct btrfs_file_extent_item *extent;
937 	int type;
938 	int ret;
939 	u64 ino = btrfs_ino(inode);
940 
941 	path = btrfs_alloc_path();
942 	if (!path)
943 		return -ENOMEM;
944 
945 	min_key.objectid = ino;
946 	min_key.type = BTRFS_EXTENT_DATA_KEY;
947 	min_key.offset = *off;
948 
949 	while (1) {
950 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
951 		if (ret != 0)
952 			goto none;
953 process_slot:
954 		if (min_key.objectid != ino)
955 			goto none;
956 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
957 			goto none;
958 
959 		leaf = path->nodes[0];
960 		extent = btrfs_item_ptr(leaf, path->slots[0],
961 					struct btrfs_file_extent_item);
962 
963 		type = btrfs_file_extent_type(leaf, extent);
964 		if (type == BTRFS_FILE_EXTENT_REG &&
965 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
966 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
967 			*off = min_key.offset;
968 			btrfs_free_path(path);
969 			return 0;
970 		}
971 
972 		path->slots[0]++;
973 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
974 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
975 			goto process_slot;
976 		}
977 
978 		if (min_key.offset == (u64)-1)
979 			goto none;
980 
981 		min_key.offset++;
982 		btrfs_release_path(path);
983 	}
984 none:
985 	btrfs_free_path(path);
986 	return -ENOENT;
987 }
988 
defrag_lookup_extent(struct inode * inode,u64 start)989 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
990 {
991 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
992 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
993 	struct extent_map *em;
994 	u64 len = PAGE_CACHE_SIZE;
995 
996 	/*
997 	 * hopefully we have this extent in the tree already, try without
998 	 * the full extent lock
999 	 */
1000 	read_lock(&em_tree->lock);
1001 	em = lookup_extent_mapping(em_tree, start, len);
1002 	read_unlock(&em_tree->lock);
1003 
1004 	if (!em) {
1005 		struct extent_state *cached = NULL;
1006 		u64 end = start + len - 1;
1007 
1008 		/* get the big lock and read metadata off disk */
1009 		lock_extent_bits(io_tree, start, end, 0, &cached);
1010 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1011 		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1012 
1013 		if (IS_ERR(em))
1014 			return NULL;
1015 	}
1016 
1017 	return em;
1018 }
1019 
defrag_check_next_extent(struct inode * inode,struct extent_map * em)1020 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1021 {
1022 	struct extent_map *next;
1023 	bool ret = true;
1024 
1025 	/* this is the last extent */
1026 	if (em->start + em->len >= i_size_read(inode))
1027 		return false;
1028 
1029 	next = defrag_lookup_extent(inode, em->start + em->len);
1030 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1031 		ret = false;
1032 	else if ((em->block_start + em->block_len == next->block_start) &&
1033 		 (em->block_len > 128 * 1024 && next->block_len > 128 * 1024))
1034 		ret = false;
1035 
1036 	free_extent_map(next);
1037 	return ret;
1038 }
1039 
should_defrag_range(struct inode * inode,u64 start,u32 thresh,u64 * last_len,u64 * skip,u64 * defrag_end,int compress)1040 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1041 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1042 			       int compress)
1043 {
1044 	struct extent_map *em;
1045 	int ret = 1;
1046 	bool next_mergeable = true;
1047 	bool prev_mergeable = true;
1048 
1049 	/*
1050 	 * make sure that once we start defragging an extent, we keep on
1051 	 * defragging it
1052 	 */
1053 	if (start < *defrag_end)
1054 		return 1;
1055 
1056 	*skip = 0;
1057 
1058 	em = defrag_lookup_extent(inode, start);
1059 	if (!em)
1060 		return 0;
1061 
1062 	/* this will cover holes, and inline extents */
1063 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1064 		ret = 0;
1065 		goto out;
1066 	}
1067 
1068 	if (!*defrag_end)
1069 		prev_mergeable = false;
1070 
1071 	next_mergeable = defrag_check_next_extent(inode, em);
1072 	/*
1073 	 * we hit a real extent, if it is big or the next extent is not a
1074 	 * real extent, don't bother defragging it
1075 	 */
1076 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1077 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1078 		ret = 0;
1079 out:
1080 	/*
1081 	 * last_len ends up being a counter of how many bytes we've defragged.
1082 	 * every time we choose not to defrag an extent, we reset *last_len
1083 	 * so that the next tiny extent will force a defrag.
1084 	 *
1085 	 * The end result of this is that tiny extents before a single big
1086 	 * extent will force at least part of that big extent to be defragged.
1087 	 */
1088 	if (ret) {
1089 		*defrag_end = extent_map_end(em);
1090 	} else {
1091 		*last_len = 0;
1092 		*skip = extent_map_end(em);
1093 		*defrag_end = 0;
1094 	}
1095 
1096 	free_extent_map(em);
1097 	return ret;
1098 }
1099 
1100 /*
1101  * it doesn't do much good to defrag one or two pages
1102  * at a time.  This pulls in a nice chunk of pages
1103  * to COW and defrag.
1104  *
1105  * It also makes sure the delalloc code has enough
1106  * dirty data to avoid making new small extents as part
1107  * of the defrag
1108  *
1109  * It's a good idea to start RA on this range
1110  * before calling this.
1111  */
cluster_pages_for_defrag(struct inode * inode,struct page ** pages,unsigned long start_index,unsigned long num_pages)1112 static int cluster_pages_for_defrag(struct inode *inode,
1113 				    struct page **pages,
1114 				    unsigned long start_index,
1115 				    unsigned long num_pages)
1116 {
1117 	unsigned long file_end;
1118 	u64 isize = i_size_read(inode);
1119 	u64 page_start;
1120 	u64 page_end;
1121 	u64 page_cnt;
1122 	int ret;
1123 	int i;
1124 	int i_done;
1125 	struct btrfs_ordered_extent *ordered;
1126 	struct extent_state *cached_state = NULL;
1127 	struct extent_io_tree *tree;
1128 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1129 
1130 	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1131 	if (!isize || start_index > file_end)
1132 		return 0;
1133 
1134 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1135 
1136 	ret = btrfs_delalloc_reserve_space(inode,
1137 			start_index << PAGE_CACHE_SHIFT,
1138 			page_cnt << PAGE_CACHE_SHIFT);
1139 	if (ret)
1140 		return ret;
1141 	i_done = 0;
1142 	tree = &BTRFS_I(inode)->io_tree;
1143 
1144 	/* step one, lock all the pages */
1145 	for (i = 0; i < page_cnt; i++) {
1146 		struct page *page;
1147 again:
1148 		page = find_or_create_page(inode->i_mapping,
1149 					   start_index + i, mask);
1150 		if (!page)
1151 			break;
1152 
1153 		page_start = page_offset(page);
1154 		page_end = page_start + PAGE_CACHE_SIZE - 1;
1155 		while (1) {
1156 			lock_extent_bits(tree, page_start, page_end,
1157 					 0, &cached_state);
1158 			ordered = btrfs_lookup_ordered_extent(inode,
1159 							      page_start);
1160 			unlock_extent_cached(tree, page_start, page_end,
1161 					     &cached_state, GFP_NOFS);
1162 			if (!ordered)
1163 				break;
1164 
1165 			unlock_page(page);
1166 			btrfs_start_ordered_extent(inode, ordered, 1);
1167 			btrfs_put_ordered_extent(ordered);
1168 			lock_page(page);
1169 			/*
1170 			 * we unlocked the page above, so we need check if
1171 			 * it was released or not.
1172 			 */
1173 			if (page->mapping != inode->i_mapping) {
1174 				unlock_page(page);
1175 				page_cache_release(page);
1176 				goto again;
1177 			}
1178 		}
1179 
1180 		if (!PageUptodate(page)) {
1181 			btrfs_readpage(NULL, page);
1182 			lock_page(page);
1183 			if (!PageUptodate(page)) {
1184 				unlock_page(page);
1185 				page_cache_release(page);
1186 				ret = -EIO;
1187 				break;
1188 			}
1189 		}
1190 
1191 		if (page->mapping != inode->i_mapping) {
1192 			unlock_page(page);
1193 			page_cache_release(page);
1194 			goto again;
1195 		}
1196 
1197 		pages[i] = page;
1198 		i_done++;
1199 	}
1200 	if (!i_done || ret)
1201 		goto out;
1202 
1203 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1204 		goto out;
1205 
1206 	/*
1207 	 * so now we have a nice long stream of locked
1208 	 * and up to date pages, lets wait on them
1209 	 */
1210 	for (i = 0; i < i_done; i++)
1211 		wait_on_page_writeback(pages[i]);
1212 
1213 	page_start = page_offset(pages[0]);
1214 	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1215 
1216 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1217 			 page_start, page_end - 1, 0, &cached_state);
1218 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1219 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1220 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1221 			  &cached_state, GFP_NOFS);
1222 
1223 	if (i_done != page_cnt) {
1224 		spin_lock(&BTRFS_I(inode)->lock);
1225 		BTRFS_I(inode)->outstanding_extents++;
1226 		spin_unlock(&BTRFS_I(inode)->lock);
1227 		btrfs_delalloc_release_space(inode,
1228 				start_index << PAGE_CACHE_SHIFT,
1229 				(page_cnt - i_done) << PAGE_CACHE_SHIFT);
1230 	}
1231 
1232 
1233 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1234 			  &cached_state, GFP_NOFS);
1235 
1236 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1237 			     page_start, page_end - 1, &cached_state,
1238 			     GFP_NOFS);
1239 
1240 	for (i = 0; i < i_done; i++) {
1241 		clear_page_dirty_for_io(pages[i]);
1242 		ClearPageChecked(pages[i]);
1243 		set_page_extent_mapped(pages[i]);
1244 		set_page_dirty(pages[i]);
1245 		unlock_page(pages[i]);
1246 		page_cache_release(pages[i]);
1247 	}
1248 	return i_done;
1249 out:
1250 	for (i = 0; i < i_done; i++) {
1251 		unlock_page(pages[i]);
1252 		page_cache_release(pages[i]);
1253 	}
1254 	btrfs_delalloc_release_space(inode,
1255 			start_index << PAGE_CACHE_SHIFT,
1256 			page_cnt << PAGE_CACHE_SHIFT);
1257 	return ret;
1258 
1259 }
1260 
btrfs_defrag_file(struct inode * inode,struct file * file,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1261 int btrfs_defrag_file(struct inode *inode, struct file *file,
1262 		      struct btrfs_ioctl_defrag_range_args *range,
1263 		      u64 newer_than, unsigned long max_to_defrag)
1264 {
1265 	struct btrfs_root *root = BTRFS_I(inode)->root;
1266 	struct file_ra_state *ra = NULL;
1267 	unsigned long last_index;
1268 	u64 isize = i_size_read(inode);
1269 	u64 last_len = 0;
1270 	u64 skip = 0;
1271 	u64 defrag_end = 0;
1272 	u64 newer_off = range->start;
1273 	unsigned long i;
1274 	unsigned long ra_index = 0;
1275 	int ret;
1276 	int defrag_count = 0;
1277 	int compress_type = BTRFS_COMPRESS_ZLIB;
1278 	u32 extent_thresh = range->extent_thresh;
1279 	unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1280 	unsigned long cluster = max_cluster;
1281 	u64 new_align = ~((u64)128 * 1024 - 1);
1282 	struct page **pages = NULL;
1283 
1284 	if (isize == 0)
1285 		return 0;
1286 
1287 	if (range->start >= isize)
1288 		return -EINVAL;
1289 
1290 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1291 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1292 			return -EINVAL;
1293 		if (range->compress_type)
1294 			compress_type = range->compress_type;
1295 	}
1296 
1297 	if (extent_thresh == 0)
1298 		extent_thresh = 256 * 1024;
1299 
1300 	/*
1301 	 * if we were not given a file, allocate a readahead
1302 	 * context
1303 	 */
1304 	if (!file) {
1305 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1306 		if (!ra)
1307 			return -ENOMEM;
1308 		file_ra_state_init(ra, inode->i_mapping);
1309 	} else {
1310 		ra = &file->f_ra;
1311 	}
1312 
1313 	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1314 			GFP_NOFS);
1315 	if (!pages) {
1316 		ret = -ENOMEM;
1317 		goto out_ra;
1318 	}
1319 
1320 	/* find the last page to defrag */
1321 	if (range->start + range->len > range->start) {
1322 		last_index = min_t(u64, isize - 1,
1323 			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1324 	} else {
1325 		last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1326 	}
1327 
1328 	if (newer_than) {
1329 		ret = find_new_extents(root, inode, newer_than,
1330 				       &newer_off, 64 * 1024);
1331 		if (!ret) {
1332 			range->start = newer_off;
1333 			/*
1334 			 * we always align our defrag to help keep
1335 			 * the extents in the file evenly spaced
1336 			 */
1337 			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1338 		} else
1339 			goto out_ra;
1340 	} else {
1341 		i = range->start >> PAGE_CACHE_SHIFT;
1342 	}
1343 	if (!max_to_defrag)
1344 		max_to_defrag = last_index - i + 1;
1345 
1346 	/*
1347 	 * make writeback starts from i, so the defrag range can be
1348 	 * written sequentially.
1349 	 */
1350 	if (i < inode->i_mapping->writeback_index)
1351 		inode->i_mapping->writeback_index = i;
1352 
1353 	while (i <= last_index && defrag_count < max_to_defrag &&
1354 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE))) {
1355 		/*
1356 		 * make sure we stop running if someone unmounts
1357 		 * the FS
1358 		 */
1359 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1360 			break;
1361 
1362 		if (btrfs_defrag_cancelled(root->fs_info)) {
1363 			btrfs_debug(root->fs_info, "defrag_file cancelled");
1364 			ret = -EAGAIN;
1365 			break;
1366 		}
1367 
1368 		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1369 					 extent_thresh, &last_len, &skip,
1370 					 &defrag_end, range->flags &
1371 					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1372 			unsigned long next;
1373 			/*
1374 			 * the should_defrag function tells us how much to skip
1375 			 * bump our counter by the suggested amount
1376 			 */
1377 			next = DIV_ROUND_UP(skip, PAGE_CACHE_SIZE);
1378 			i = max(i + 1, next);
1379 			continue;
1380 		}
1381 
1382 		if (!newer_than) {
1383 			cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1384 				   PAGE_CACHE_SHIFT) - i;
1385 			cluster = min(cluster, max_cluster);
1386 		} else {
1387 			cluster = max_cluster;
1388 		}
1389 
1390 		if (i + cluster > ra_index) {
1391 			ra_index = max(i, ra_index);
1392 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1393 				       cluster);
1394 			ra_index += cluster;
1395 		}
1396 
1397 		mutex_lock(&inode->i_mutex);
1398 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1399 			BTRFS_I(inode)->force_compress = compress_type;
1400 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1401 		if (ret < 0) {
1402 			mutex_unlock(&inode->i_mutex);
1403 			goto out_ra;
1404 		}
1405 
1406 		defrag_count += ret;
1407 		balance_dirty_pages_ratelimited(inode->i_mapping);
1408 		mutex_unlock(&inode->i_mutex);
1409 
1410 		if (newer_than) {
1411 			if (newer_off == (u64)-1)
1412 				break;
1413 
1414 			if (ret > 0)
1415 				i += ret;
1416 
1417 			newer_off = max(newer_off + 1,
1418 					(u64)i << PAGE_CACHE_SHIFT);
1419 
1420 			ret = find_new_extents(root, inode,
1421 					       newer_than, &newer_off,
1422 					       64 * 1024);
1423 			if (!ret) {
1424 				range->start = newer_off;
1425 				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1426 			} else {
1427 				break;
1428 			}
1429 		} else {
1430 			if (ret > 0) {
1431 				i += ret;
1432 				last_len += ret << PAGE_CACHE_SHIFT;
1433 			} else {
1434 				i++;
1435 				last_len = 0;
1436 			}
1437 		}
1438 	}
1439 
1440 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1441 		filemap_flush(inode->i_mapping);
1442 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1443 			     &BTRFS_I(inode)->runtime_flags))
1444 			filemap_flush(inode->i_mapping);
1445 	}
1446 
1447 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1448 		/* the filemap_flush will queue IO into the worker threads, but
1449 		 * we have to make sure the IO is actually started and that
1450 		 * ordered extents get created before we return
1451 		 */
1452 		atomic_inc(&root->fs_info->async_submit_draining);
1453 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1454 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1455 			wait_event(root->fs_info->async_submit_wait,
1456 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1457 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1458 		}
1459 		atomic_dec(&root->fs_info->async_submit_draining);
1460 	}
1461 
1462 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1463 		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1464 	}
1465 
1466 	ret = defrag_count;
1467 
1468 out_ra:
1469 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1470 		mutex_lock(&inode->i_mutex);
1471 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1472 		mutex_unlock(&inode->i_mutex);
1473 	}
1474 	if (!file)
1475 		kfree(ra);
1476 	kfree(pages);
1477 	return ret;
1478 }
1479 
btrfs_ioctl_resize(struct file * file,void __user * arg)1480 static noinline int btrfs_ioctl_resize(struct file *file,
1481 					void __user *arg)
1482 {
1483 	u64 new_size;
1484 	u64 old_size;
1485 	u64 devid = 1;
1486 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1487 	struct btrfs_ioctl_vol_args *vol_args;
1488 	struct btrfs_trans_handle *trans;
1489 	struct btrfs_device *device = NULL;
1490 	char *sizestr;
1491 	char *retptr;
1492 	char *devstr = NULL;
1493 	int ret = 0;
1494 	int mod = 0;
1495 
1496 	if (!capable(CAP_SYS_ADMIN))
1497 		return -EPERM;
1498 
1499 	ret = mnt_want_write_file(file);
1500 	if (ret)
1501 		return ret;
1502 
1503 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1504 			1)) {
1505 		mnt_drop_write_file(file);
1506 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1507 	}
1508 
1509 	mutex_lock(&root->fs_info->volume_mutex);
1510 	vol_args = memdup_user(arg, sizeof(*vol_args));
1511 	if (IS_ERR(vol_args)) {
1512 		ret = PTR_ERR(vol_args);
1513 		goto out;
1514 	}
1515 
1516 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1517 
1518 	sizestr = vol_args->name;
1519 	devstr = strchr(sizestr, ':');
1520 	if (devstr) {
1521 		sizestr = devstr + 1;
1522 		*devstr = '\0';
1523 		devstr = vol_args->name;
1524 		ret = kstrtoull(devstr, 10, &devid);
1525 		if (ret)
1526 			goto out_free;
1527 		if (!devid) {
1528 			ret = -EINVAL;
1529 			goto out_free;
1530 		}
1531 		btrfs_info(root->fs_info, "resizing devid %llu", devid);
1532 	}
1533 
1534 	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1535 	if (!device) {
1536 		btrfs_info(root->fs_info, "resizer unable to find device %llu",
1537 		       devid);
1538 		ret = -ENODEV;
1539 		goto out_free;
1540 	}
1541 
1542 	if (!device->writeable) {
1543 		btrfs_info(root->fs_info,
1544 			   "resizer unable to apply on readonly device %llu",
1545 		       devid);
1546 		ret = -EPERM;
1547 		goto out_free;
1548 	}
1549 
1550 	if (!strcmp(sizestr, "max"))
1551 		new_size = device->bdev->bd_inode->i_size;
1552 	else {
1553 		if (sizestr[0] == '-') {
1554 			mod = -1;
1555 			sizestr++;
1556 		} else if (sizestr[0] == '+') {
1557 			mod = 1;
1558 			sizestr++;
1559 		}
1560 		new_size = memparse(sizestr, &retptr);
1561 		if (*retptr != '\0' || new_size == 0) {
1562 			ret = -EINVAL;
1563 			goto out_free;
1564 		}
1565 	}
1566 
1567 	if (device->is_tgtdev_for_dev_replace) {
1568 		ret = -EPERM;
1569 		goto out_free;
1570 	}
1571 
1572 	old_size = btrfs_device_get_total_bytes(device);
1573 
1574 	if (mod < 0) {
1575 		if (new_size > old_size) {
1576 			ret = -EINVAL;
1577 			goto out_free;
1578 		}
1579 		new_size = old_size - new_size;
1580 	} else if (mod > 0) {
1581 		if (new_size > ULLONG_MAX - old_size) {
1582 			ret = -ERANGE;
1583 			goto out_free;
1584 		}
1585 		new_size = old_size + new_size;
1586 	}
1587 
1588 	if (new_size < 256 * 1024 * 1024) {
1589 		ret = -EINVAL;
1590 		goto out_free;
1591 	}
1592 	if (new_size > device->bdev->bd_inode->i_size) {
1593 		ret = -EFBIG;
1594 		goto out_free;
1595 	}
1596 
1597 	new_size = div_u64(new_size, root->sectorsize);
1598 	new_size *= root->sectorsize;
1599 
1600 	btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu",
1601 		      rcu_str_deref(device->name), new_size);
1602 
1603 	if (new_size > old_size) {
1604 		trans = btrfs_start_transaction(root, 0);
1605 		if (IS_ERR(trans)) {
1606 			ret = PTR_ERR(trans);
1607 			goto out_free;
1608 		}
1609 		ret = btrfs_grow_device(trans, device, new_size);
1610 		btrfs_commit_transaction(trans, root);
1611 	} else if (new_size < old_size) {
1612 		ret = btrfs_shrink_device(device, new_size);
1613 	} /* equal, nothing need to do */
1614 
1615 out_free:
1616 	kfree(vol_args);
1617 out:
1618 	mutex_unlock(&root->fs_info->volume_mutex);
1619 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1620 	mnt_drop_write_file(file);
1621 	return ret;
1622 }
1623 
btrfs_ioctl_snap_create_transid(struct file * file,char * name,unsigned long fd,int subvol,u64 * transid,bool readonly,struct btrfs_qgroup_inherit * inherit)1624 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1625 				char *name, unsigned long fd, int subvol,
1626 				u64 *transid, bool readonly,
1627 				struct btrfs_qgroup_inherit *inherit)
1628 {
1629 	int namelen;
1630 	int ret = 0;
1631 
1632 	if (!S_ISDIR(file_inode(file)->i_mode))
1633 		return -ENOTDIR;
1634 
1635 	ret = mnt_want_write_file(file);
1636 	if (ret)
1637 		goto out;
1638 
1639 	namelen = strlen(name);
1640 	if (strchr(name, '/')) {
1641 		ret = -EINVAL;
1642 		goto out_drop_write;
1643 	}
1644 
1645 	if (name[0] == '.' &&
1646 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1647 		ret = -EEXIST;
1648 		goto out_drop_write;
1649 	}
1650 
1651 	if (subvol) {
1652 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1653 				     NULL, transid, readonly, inherit);
1654 	} else {
1655 		struct fd src = fdget(fd);
1656 		struct inode *src_inode;
1657 		if (!src.file) {
1658 			ret = -EINVAL;
1659 			goto out_drop_write;
1660 		}
1661 
1662 		src_inode = file_inode(src.file);
1663 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1664 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1665 				   "Snapshot src from another FS");
1666 			ret = -EXDEV;
1667 		} else if (!inode_owner_or_capable(src_inode)) {
1668 			/*
1669 			 * Subvolume creation is not restricted, but snapshots
1670 			 * are limited to own subvolumes only
1671 			 */
1672 			ret = -EPERM;
1673 		} else {
1674 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1675 					     BTRFS_I(src_inode)->root,
1676 					     transid, readonly, inherit);
1677 		}
1678 		fdput(src);
1679 	}
1680 out_drop_write:
1681 	mnt_drop_write_file(file);
1682 out:
1683 	return ret;
1684 }
1685 
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1686 static noinline int btrfs_ioctl_snap_create(struct file *file,
1687 					    void __user *arg, int subvol)
1688 {
1689 	struct btrfs_ioctl_vol_args *vol_args;
1690 	int ret;
1691 
1692 	if (!S_ISDIR(file_inode(file)->i_mode))
1693 		return -ENOTDIR;
1694 
1695 	vol_args = memdup_user(arg, sizeof(*vol_args));
1696 	if (IS_ERR(vol_args))
1697 		return PTR_ERR(vol_args);
1698 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1699 
1700 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1701 					      vol_args->fd, subvol,
1702 					      NULL, false, NULL);
1703 
1704 	kfree(vol_args);
1705 	return ret;
1706 }
1707 
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1708 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1709 					       void __user *arg, int subvol)
1710 {
1711 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1712 	int ret;
1713 	u64 transid = 0;
1714 	u64 *ptr = NULL;
1715 	bool readonly = false;
1716 	struct btrfs_qgroup_inherit *inherit = NULL;
1717 
1718 	if (!S_ISDIR(file_inode(file)->i_mode))
1719 		return -ENOTDIR;
1720 
1721 	vol_args = memdup_user(arg, sizeof(*vol_args));
1722 	if (IS_ERR(vol_args))
1723 		return PTR_ERR(vol_args);
1724 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1725 
1726 	if (vol_args->flags &
1727 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1728 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1729 		ret = -EOPNOTSUPP;
1730 		goto free_args;
1731 	}
1732 
1733 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1734 		ptr = &transid;
1735 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1736 		readonly = true;
1737 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1738 		if (vol_args->size > PAGE_CACHE_SIZE) {
1739 			ret = -EINVAL;
1740 			goto free_args;
1741 		}
1742 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1743 		if (IS_ERR(inherit)) {
1744 			ret = PTR_ERR(inherit);
1745 			goto free_args;
1746 		}
1747 	}
1748 
1749 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1750 					      vol_args->fd, subvol, ptr,
1751 					      readonly, inherit);
1752 	if (ret)
1753 		goto free_inherit;
1754 
1755 	if (ptr && copy_to_user(arg +
1756 				offsetof(struct btrfs_ioctl_vol_args_v2,
1757 					transid),
1758 				ptr, sizeof(*ptr)))
1759 		ret = -EFAULT;
1760 
1761 free_inherit:
1762 	kfree(inherit);
1763 free_args:
1764 	kfree(vol_args);
1765 	return ret;
1766 }
1767 
btrfs_ioctl_subvol_getflags(struct file * file,void __user * arg)1768 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1769 						void __user *arg)
1770 {
1771 	struct inode *inode = file_inode(file);
1772 	struct btrfs_root *root = BTRFS_I(inode)->root;
1773 	int ret = 0;
1774 	u64 flags = 0;
1775 
1776 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1777 		return -EINVAL;
1778 
1779 	down_read(&root->fs_info->subvol_sem);
1780 	if (btrfs_root_readonly(root))
1781 		flags |= BTRFS_SUBVOL_RDONLY;
1782 	up_read(&root->fs_info->subvol_sem);
1783 
1784 	if (copy_to_user(arg, &flags, sizeof(flags)))
1785 		ret = -EFAULT;
1786 
1787 	return ret;
1788 }
1789 
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1790 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1791 					      void __user *arg)
1792 {
1793 	struct inode *inode = file_inode(file);
1794 	struct btrfs_root *root = BTRFS_I(inode)->root;
1795 	struct btrfs_trans_handle *trans;
1796 	u64 root_flags;
1797 	u64 flags;
1798 	int ret = 0;
1799 
1800 	if (!inode_owner_or_capable(inode))
1801 		return -EPERM;
1802 
1803 	ret = mnt_want_write_file(file);
1804 	if (ret)
1805 		goto out;
1806 
1807 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1808 		ret = -EINVAL;
1809 		goto out_drop_write;
1810 	}
1811 
1812 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1813 		ret = -EFAULT;
1814 		goto out_drop_write;
1815 	}
1816 
1817 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1818 		ret = -EINVAL;
1819 		goto out_drop_write;
1820 	}
1821 
1822 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1823 		ret = -EOPNOTSUPP;
1824 		goto out_drop_write;
1825 	}
1826 
1827 	down_write(&root->fs_info->subvol_sem);
1828 
1829 	/* nothing to do */
1830 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1831 		goto out_drop_sem;
1832 
1833 	root_flags = btrfs_root_flags(&root->root_item);
1834 	if (flags & BTRFS_SUBVOL_RDONLY) {
1835 		btrfs_set_root_flags(&root->root_item,
1836 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1837 	} else {
1838 		/*
1839 		 * Block RO -> RW transition if this subvolume is involved in
1840 		 * send
1841 		 */
1842 		spin_lock(&root->root_item_lock);
1843 		if (root->send_in_progress == 0) {
1844 			btrfs_set_root_flags(&root->root_item,
1845 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1846 			spin_unlock(&root->root_item_lock);
1847 		} else {
1848 			spin_unlock(&root->root_item_lock);
1849 			btrfs_warn(root->fs_info,
1850 			"Attempt to set subvolume %llu read-write during send",
1851 					root->root_key.objectid);
1852 			ret = -EPERM;
1853 			goto out_drop_sem;
1854 		}
1855 	}
1856 
1857 	trans = btrfs_start_transaction(root, 1);
1858 	if (IS_ERR(trans)) {
1859 		ret = PTR_ERR(trans);
1860 		goto out_reset;
1861 	}
1862 
1863 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1864 				&root->root_key, &root->root_item);
1865 
1866 	btrfs_commit_transaction(trans, root);
1867 out_reset:
1868 	if (ret)
1869 		btrfs_set_root_flags(&root->root_item, root_flags);
1870 out_drop_sem:
1871 	up_write(&root->fs_info->subvol_sem);
1872 out_drop_write:
1873 	mnt_drop_write_file(file);
1874 out:
1875 	return ret;
1876 }
1877 
1878 /*
1879  * helper to check if the subvolume references other subvolumes
1880  */
may_destroy_subvol(struct btrfs_root * root)1881 static noinline int may_destroy_subvol(struct btrfs_root *root)
1882 {
1883 	struct btrfs_path *path;
1884 	struct btrfs_dir_item *di;
1885 	struct btrfs_key key;
1886 	u64 dir_id;
1887 	int ret;
1888 
1889 	path = btrfs_alloc_path();
1890 	if (!path)
1891 		return -ENOMEM;
1892 
1893 	/* Make sure this root isn't set as the default subvol */
1894 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1895 	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1896 				   dir_id, "default", 7, 0);
1897 	if (di && !IS_ERR(di)) {
1898 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1899 		if (key.objectid == root->root_key.objectid) {
1900 			ret = -EPERM;
1901 			btrfs_err(root->fs_info, "deleting default subvolume "
1902 				  "%llu is not allowed", key.objectid);
1903 			goto out;
1904 		}
1905 		btrfs_release_path(path);
1906 	}
1907 
1908 	key.objectid = root->root_key.objectid;
1909 	key.type = BTRFS_ROOT_REF_KEY;
1910 	key.offset = (u64)-1;
1911 
1912 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1913 				&key, path, 0, 0);
1914 	if (ret < 0)
1915 		goto out;
1916 	BUG_ON(ret == 0);
1917 
1918 	ret = 0;
1919 	if (path->slots[0] > 0) {
1920 		path->slots[0]--;
1921 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1922 		if (key.objectid == root->root_key.objectid &&
1923 		    key.type == BTRFS_ROOT_REF_KEY)
1924 			ret = -ENOTEMPTY;
1925 	}
1926 out:
1927 	btrfs_free_path(path);
1928 	return ret;
1929 }
1930 
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)1931 static noinline int key_in_sk(struct btrfs_key *key,
1932 			      struct btrfs_ioctl_search_key *sk)
1933 {
1934 	struct btrfs_key test;
1935 	int ret;
1936 
1937 	test.objectid = sk->min_objectid;
1938 	test.type = sk->min_type;
1939 	test.offset = sk->min_offset;
1940 
1941 	ret = btrfs_comp_cpu_keys(key, &test);
1942 	if (ret < 0)
1943 		return 0;
1944 
1945 	test.objectid = sk->max_objectid;
1946 	test.type = sk->max_type;
1947 	test.offset = sk->max_offset;
1948 
1949 	ret = btrfs_comp_cpu_keys(key, &test);
1950 	if (ret > 0)
1951 		return 0;
1952 	return 1;
1953 }
1954 
copy_to_sk(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)1955 static noinline int copy_to_sk(struct btrfs_root *root,
1956 			       struct btrfs_path *path,
1957 			       struct btrfs_key *key,
1958 			       struct btrfs_ioctl_search_key *sk,
1959 			       size_t *buf_size,
1960 			       char __user *ubuf,
1961 			       unsigned long *sk_offset,
1962 			       int *num_found)
1963 {
1964 	u64 found_transid;
1965 	struct extent_buffer *leaf;
1966 	struct btrfs_ioctl_search_header sh;
1967 	struct btrfs_key test;
1968 	unsigned long item_off;
1969 	unsigned long item_len;
1970 	int nritems;
1971 	int i;
1972 	int slot;
1973 	int ret = 0;
1974 
1975 	leaf = path->nodes[0];
1976 	slot = path->slots[0];
1977 	nritems = btrfs_header_nritems(leaf);
1978 
1979 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1980 		i = nritems;
1981 		goto advance_key;
1982 	}
1983 	found_transid = btrfs_header_generation(leaf);
1984 
1985 	for (i = slot; i < nritems; i++) {
1986 		item_off = btrfs_item_ptr_offset(leaf, i);
1987 		item_len = btrfs_item_size_nr(leaf, i);
1988 
1989 		btrfs_item_key_to_cpu(leaf, key, i);
1990 		if (!key_in_sk(key, sk))
1991 			continue;
1992 
1993 		if (sizeof(sh) + item_len > *buf_size) {
1994 			if (*num_found) {
1995 				ret = 1;
1996 				goto out;
1997 			}
1998 
1999 			/*
2000 			 * return one empty item back for v1, which does not
2001 			 * handle -EOVERFLOW
2002 			 */
2003 
2004 			*buf_size = sizeof(sh) + item_len;
2005 			item_len = 0;
2006 			ret = -EOVERFLOW;
2007 		}
2008 
2009 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2010 			ret = 1;
2011 			goto out;
2012 		}
2013 
2014 		sh.objectid = key->objectid;
2015 		sh.offset = key->offset;
2016 		sh.type = key->type;
2017 		sh.len = item_len;
2018 		sh.transid = found_transid;
2019 
2020 		/*
2021 		 * Copy search result header. If we fault then loop again so we
2022 		 * can fault in the pages and -EFAULT there if there's a
2023 		 * problem. Otherwise we'll fault and then copy the buffer in
2024 		 * properly this next time through
2025 		 */
2026 		if (probe_user_write(ubuf + *sk_offset, &sh, sizeof(sh))) {
2027 			ret = 0;
2028 			goto out;
2029 		}
2030 
2031 		*sk_offset += sizeof(sh);
2032 
2033 		if (item_len) {
2034 			char __user *up = ubuf + *sk_offset;
2035 			/*
2036 			 * Copy the item, same behavior as above, but reset the
2037 			 * * sk_offset so we copy the full thing again.
2038 			 */
2039 			if (read_extent_buffer_to_user_nofault(leaf, up,
2040 						item_off, item_len)) {
2041 				ret = 0;
2042 				*sk_offset -= sizeof(sh);
2043 				goto out;
2044 			}
2045 
2046 			*sk_offset += item_len;
2047 		}
2048 		(*num_found)++;
2049 
2050 		if (ret) /* -EOVERFLOW from above */
2051 			goto out;
2052 
2053 		if (*num_found >= sk->nr_items) {
2054 			ret = 1;
2055 			goto out;
2056 		}
2057 	}
2058 advance_key:
2059 	ret = 0;
2060 	test.objectid = sk->max_objectid;
2061 	test.type = sk->max_type;
2062 	test.offset = sk->max_offset;
2063 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2064 		ret = 1;
2065 	else if (key->offset < (u64)-1)
2066 		key->offset++;
2067 	else if (key->type < (u8)-1) {
2068 		key->offset = 0;
2069 		key->type++;
2070 	} else if (key->objectid < (u64)-1) {
2071 		key->offset = 0;
2072 		key->type = 0;
2073 		key->objectid++;
2074 	} else
2075 		ret = 1;
2076 out:
2077 	/*
2078 	 *  0: all items from this leaf copied, continue with next
2079 	 *  1: * more items can be copied, but unused buffer is too small
2080 	 *     * all items were found
2081 	 *     Either way, it will stops the loop which iterates to the next
2082 	 *     leaf
2083 	 *  -EOVERFLOW: item was to large for buffer
2084 	 *  -EFAULT: could not copy extent buffer back to userspace
2085 	 */
2086 	return ret;
2087 }
2088 
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf)2089 static noinline int search_ioctl(struct inode *inode,
2090 				 struct btrfs_ioctl_search_key *sk,
2091 				 size_t *buf_size,
2092 				 char __user *ubuf)
2093 {
2094 	struct btrfs_root *root;
2095 	struct btrfs_key key;
2096 	struct btrfs_path *path;
2097 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2098 	int ret;
2099 	int num_found = 0;
2100 	unsigned long sk_offset = 0;
2101 
2102 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2103 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2104 		return -EOVERFLOW;
2105 	}
2106 
2107 	path = btrfs_alloc_path();
2108 	if (!path)
2109 		return -ENOMEM;
2110 
2111 	if (sk->tree_id == 0) {
2112 		/* search the root of the inode that was passed */
2113 		root = BTRFS_I(inode)->root;
2114 	} else {
2115 		key.objectid = sk->tree_id;
2116 		key.type = BTRFS_ROOT_ITEM_KEY;
2117 		key.offset = (u64)-1;
2118 		root = btrfs_read_fs_root_no_name(info, &key);
2119 		if (IS_ERR(root)) {
2120 			btrfs_err(info, "could not find root %llu",
2121 			       sk->tree_id);
2122 			btrfs_free_path(path);
2123 			return -ENOENT;
2124 		}
2125 	}
2126 
2127 	key.objectid = sk->min_objectid;
2128 	key.type = sk->min_type;
2129 	key.offset = sk->min_offset;
2130 
2131 	while (1) {
2132 		ret = fault_in_pages_writeable(ubuf + sk_offset,
2133 					       *buf_size - sk_offset);
2134 		if (ret)
2135 			break;
2136 
2137 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2138 		if (ret != 0) {
2139 			if (ret > 0)
2140 				ret = 0;
2141 			goto err;
2142 		}
2143 		ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2144 				 &sk_offset, &num_found);
2145 		btrfs_release_path(path);
2146 		if (ret)
2147 			break;
2148 
2149 	}
2150 	if (ret > 0)
2151 		ret = 0;
2152 err:
2153 	sk->nr_items = num_found;
2154 	btrfs_free_path(path);
2155 	return ret;
2156 }
2157 
btrfs_ioctl_tree_search(struct file * file,void __user * argp)2158 static noinline int btrfs_ioctl_tree_search(struct file *file,
2159 					   void __user *argp)
2160 {
2161 	struct btrfs_ioctl_search_args __user *uargs;
2162 	struct btrfs_ioctl_search_key sk;
2163 	struct inode *inode;
2164 	int ret;
2165 	size_t buf_size;
2166 
2167 	if (!capable(CAP_SYS_ADMIN))
2168 		return -EPERM;
2169 
2170 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2171 
2172 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2173 		return -EFAULT;
2174 
2175 	buf_size = sizeof(uargs->buf);
2176 
2177 	inode = file_inode(file);
2178 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2179 
2180 	/*
2181 	 * In the origin implementation an overflow is handled by returning a
2182 	 * search header with a len of zero, so reset ret.
2183 	 */
2184 	if (ret == -EOVERFLOW)
2185 		ret = 0;
2186 
2187 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2188 		ret = -EFAULT;
2189 	return ret;
2190 }
2191 
btrfs_ioctl_tree_search_v2(struct file * file,void __user * argp)2192 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2193 					       void __user *argp)
2194 {
2195 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2196 	struct btrfs_ioctl_search_args_v2 args;
2197 	struct inode *inode;
2198 	int ret;
2199 	size_t buf_size;
2200 	const size_t buf_limit = 16 * 1024 * 1024;
2201 
2202 	if (!capable(CAP_SYS_ADMIN))
2203 		return -EPERM;
2204 
2205 	/* copy search header and buffer size */
2206 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2207 	if (copy_from_user(&args, uarg, sizeof(args)))
2208 		return -EFAULT;
2209 
2210 	buf_size = args.buf_size;
2211 
2212 	if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2213 		return -EOVERFLOW;
2214 
2215 	/* limit result size to 16MB */
2216 	if (buf_size > buf_limit)
2217 		buf_size = buf_limit;
2218 
2219 	inode = file_inode(file);
2220 	ret = search_ioctl(inode, &args.key, &buf_size,
2221 			   (char *)(&uarg->buf[0]));
2222 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2223 		ret = -EFAULT;
2224 	else if (ret == -EOVERFLOW &&
2225 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2226 		ret = -EFAULT;
2227 
2228 	return ret;
2229 }
2230 
2231 /*
2232  * Search INODE_REFs to identify path name of 'dirid' directory
2233  * in a 'tree_id' tree. and sets path name to 'name'.
2234  */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)2235 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2236 				u64 tree_id, u64 dirid, char *name)
2237 {
2238 	struct btrfs_root *root;
2239 	struct btrfs_key key;
2240 	char *ptr;
2241 	int ret = -1;
2242 	int slot;
2243 	int len;
2244 	int total_len = 0;
2245 	struct btrfs_inode_ref *iref;
2246 	struct extent_buffer *l;
2247 	struct btrfs_path *path;
2248 
2249 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2250 		name[0]='\0';
2251 		return 0;
2252 	}
2253 
2254 	path = btrfs_alloc_path();
2255 	if (!path)
2256 		return -ENOMEM;
2257 
2258 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2259 
2260 	key.objectid = tree_id;
2261 	key.type = BTRFS_ROOT_ITEM_KEY;
2262 	key.offset = (u64)-1;
2263 	root = btrfs_read_fs_root_no_name(info, &key);
2264 	if (IS_ERR(root)) {
2265 		btrfs_err(info, "could not find root %llu", tree_id);
2266 		ret = -ENOENT;
2267 		goto out;
2268 	}
2269 
2270 	key.objectid = dirid;
2271 	key.type = BTRFS_INODE_REF_KEY;
2272 	key.offset = (u64)-1;
2273 
2274 	while (1) {
2275 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2276 		if (ret < 0)
2277 			goto out;
2278 		else if (ret > 0) {
2279 			ret = btrfs_previous_item(root, path, dirid,
2280 						  BTRFS_INODE_REF_KEY);
2281 			if (ret < 0)
2282 				goto out;
2283 			else if (ret > 0) {
2284 				ret = -ENOENT;
2285 				goto out;
2286 			}
2287 		}
2288 
2289 		l = path->nodes[0];
2290 		slot = path->slots[0];
2291 		btrfs_item_key_to_cpu(l, &key, slot);
2292 
2293 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2294 		len = btrfs_inode_ref_name_len(l, iref);
2295 		ptr -= len + 1;
2296 		total_len += len + 1;
2297 		if (ptr < name) {
2298 			ret = -ENAMETOOLONG;
2299 			goto out;
2300 		}
2301 
2302 		*(ptr + len) = '/';
2303 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2304 
2305 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2306 			break;
2307 
2308 		btrfs_release_path(path);
2309 		key.objectid = key.offset;
2310 		key.offset = (u64)-1;
2311 		dirid = key.objectid;
2312 	}
2313 	memmove(name, ptr, total_len);
2314 	name[total_len] = '\0';
2315 	ret = 0;
2316 out:
2317 	btrfs_free_path(path);
2318 	return ret;
2319 }
2320 
btrfs_ioctl_ino_lookup(struct file * file,void __user * argp)2321 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2322 					   void __user *argp)
2323 {
2324 	 struct btrfs_ioctl_ino_lookup_args *args;
2325 	 struct inode *inode;
2326 	int ret = 0;
2327 
2328 	args = memdup_user(argp, sizeof(*args));
2329 	if (IS_ERR(args))
2330 		return PTR_ERR(args);
2331 
2332 	inode = file_inode(file);
2333 
2334 	/*
2335 	 * Unprivileged query to obtain the containing subvolume root id. The
2336 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2337 	 */
2338 	if (args->treeid == 0)
2339 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2340 
2341 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2342 		args->name[0] = 0;
2343 		goto out;
2344 	}
2345 
2346 	if (!capable(CAP_SYS_ADMIN)) {
2347 		ret = -EPERM;
2348 		goto out;
2349 	}
2350 
2351 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2352 					args->treeid, args->objectid,
2353 					args->name);
2354 
2355 out:
2356 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2357 		ret = -EFAULT;
2358 
2359 	kfree(args);
2360 	return ret;
2361 }
2362 
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg)2363 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2364 					     void __user *arg)
2365 {
2366 	struct dentry *parent = file->f_path.dentry;
2367 	struct dentry *dentry;
2368 	struct inode *dir = d_inode(parent);
2369 	struct inode *inode;
2370 	struct btrfs_root *root = BTRFS_I(dir)->root;
2371 	struct btrfs_root *dest = NULL;
2372 	struct btrfs_ioctl_vol_args *vol_args;
2373 	struct btrfs_trans_handle *trans;
2374 	struct btrfs_block_rsv block_rsv;
2375 	u64 root_flags;
2376 	u64 qgroup_reserved;
2377 	int namelen;
2378 	int ret;
2379 	int err = 0;
2380 
2381 	if (!S_ISDIR(dir->i_mode))
2382 		return -ENOTDIR;
2383 
2384 	vol_args = memdup_user(arg, sizeof(*vol_args));
2385 	if (IS_ERR(vol_args))
2386 		return PTR_ERR(vol_args);
2387 
2388 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2389 	namelen = strlen(vol_args->name);
2390 	if (strchr(vol_args->name, '/') ||
2391 	    strncmp(vol_args->name, "..", namelen) == 0) {
2392 		err = -EINVAL;
2393 		goto out;
2394 	}
2395 
2396 	err = mnt_want_write_file(file);
2397 	if (err)
2398 		goto out;
2399 
2400 
2401 	err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2402 	if (err == -EINTR)
2403 		goto out_drop_write;
2404 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2405 	if (IS_ERR(dentry)) {
2406 		err = PTR_ERR(dentry);
2407 		goto out_unlock_dir;
2408 	}
2409 
2410 	if (d_really_is_negative(dentry)) {
2411 		err = -ENOENT;
2412 		goto out_dput;
2413 	}
2414 
2415 	inode = d_inode(dentry);
2416 	dest = BTRFS_I(inode)->root;
2417 	if (!capable(CAP_SYS_ADMIN)) {
2418 		/*
2419 		 * Regular user.  Only allow this with a special mount
2420 		 * option, when the user has write+exec access to the
2421 		 * subvol root, and when rmdir(2) would have been
2422 		 * allowed.
2423 		 *
2424 		 * Note that this is _not_ check that the subvol is
2425 		 * empty or doesn't contain data that we wouldn't
2426 		 * otherwise be able to delete.
2427 		 *
2428 		 * Users who want to delete empty subvols should try
2429 		 * rmdir(2).
2430 		 */
2431 		err = -EPERM;
2432 		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2433 			goto out_dput;
2434 
2435 		/*
2436 		 * Do not allow deletion if the parent dir is the same
2437 		 * as the dir to be deleted.  That means the ioctl
2438 		 * must be called on the dentry referencing the root
2439 		 * of the subvol, not a random directory contained
2440 		 * within it.
2441 		 */
2442 		err = -EINVAL;
2443 		if (root == dest)
2444 			goto out_dput;
2445 
2446 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2447 		if (err)
2448 			goto out_dput;
2449 	}
2450 
2451 	/* check if subvolume may be deleted by a user */
2452 	err = btrfs_may_delete(dir, dentry, 1);
2453 	if (err)
2454 		goto out_dput;
2455 
2456 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2457 		err = -EINVAL;
2458 		goto out_dput;
2459 	}
2460 
2461 	mutex_lock(&inode->i_mutex);
2462 
2463 	/*
2464 	 * Don't allow to delete a subvolume with send in progress. This is
2465 	 * inside the i_mutex so the error handling that has to drop the bit
2466 	 * again is not run concurrently.
2467 	 */
2468 	spin_lock(&dest->root_item_lock);
2469 	root_flags = btrfs_root_flags(&dest->root_item);
2470 	if (dest->send_in_progress == 0) {
2471 		btrfs_set_root_flags(&dest->root_item,
2472 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2473 		spin_unlock(&dest->root_item_lock);
2474 	} else {
2475 		spin_unlock(&dest->root_item_lock);
2476 		btrfs_warn(root->fs_info,
2477 			"Attempt to delete subvolume %llu during send",
2478 			dest->root_key.objectid);
2479 		err = -EPERM;
2480 		goto out_unlock_inode;
2481 	}
2482 
2483 	down_write(&root->fs_info->subvol_sem);
2484 
2485 	err = may_destroy_subvol(dest);
2486 	if (err)
2487 		goto out_up_write;
2488 
2489 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2490 	/*
2491 	 * One for dir inode, two for dir entries, two for root
2492 	 * ref/backref.
2493 	 */
2494 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2495 					       5, &qgroup_reserved, true);
2496 	if (err)
2497 		goto out_up_write;
2498 
2499 	trans = btrfs_start_transaction(root, 0);
2500 	if (IS_ERR(trans)) {
2501 		err = PTR_ERR(trans);
2502 		goto out_release;
2503 	}
2504 	trans->block_rsv = &block_rsv;
2505 	trans->bytes_reserved = block_rsv.size;
2506 
2507 	ret = btrfs_unlink_subvol(trans, root, dir,
2508 				dest->root_key.objectid,
2509 				dentry->d_name.name,
2510 				dentry->d_name.len);
2511 	if (ret) {
2512 		err = ret;
2513 		btrfs_abort_transaction(trans, root, ret);
2514 		goto out_end_trans;
2515 	}
2516 
2517 	btrfs_record_root_in_trans(trans, dest);
2518 
2519 	memset(&dest->root_item.drop_progress, 0,
2520 		sizeof(dest->root_item.drop_progress));
2521 	dest->root_item.drop_level = 0;
2522 	btrfs_set_root_refs(&dest->root_item, 0);
2523 
2524 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2525 		ret = btrfs_insert_orphan_item(trans,
2526 					root->fs_info->tree_root,
2527 					dest->root_key.objectid);
2528 		if (ret) {
2529 			btrfs_abort_transaction(trans, root, ret);
2530 			err = ret;
2531 			goto out_end_trans;
2532 		}
2533 	}
2534 
2535 	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2536 				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2537 				  dest->root_key.objectid);
2538 	if (ret && ret != -ENOENT) {
2539 		btrfs_abort_transaction(trans, root, ret);
2540 		err = ret;
2541 		goto out_end_trans;
2542 	}
2543 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2544 		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2545 					  dest->root_item.received_uuid,
2546 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2547 					  dest->root_key.objectid);
2548 		if (ret && ret != -ENOENT) {
2549 			btrfs_abort_transaction(trans, root, ret);
2550 			err = ret;
2551 			goto out_end_trans;
2552 		}
2553 	}
2554 
2555 out_end_trans:
2556 	trans->block_rsv = NULL;
2557 	trans->bytes_reserved = 0;
2558 	if (!err)
2559 		btrfs_record_snapshot_destroy(trans, dir);
2560 	ret = btrfs_end_transaction(trans, root);
2561 	if (ret && !err)
2562 		err = ret;
2563 	inode->i_flags |= S_DEAD;
2564 out_release:
2565 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2566 out_up_write:
2567 	up_write(&root->fs_info->subvol_sem);
2568 	if (err) {
2569 		spin_lock(&dest->root_item_lock);
2570 		root_flags = btrfs_root_flags(&dest->root_item);
2571 		btrfs_set_root_flags(&dest->root_item,
2572 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2573 		spin_unlock(&dest->root_item_lock);
2574 	}
2575 out_unlock_inode:
2576 	mutex_unlock(&inode->i_mutex);
2577 	if (!err) {
2578 		d_invalidate(dentry);
2579 		btrfs_invalidate_inodes(dest);
2580 		d_delete(dentry);
2581 		ASSERT(dest->send_in_progress == 0);
2582 
2583 		/* the last ref */
2584 		if (dest->ino_cache_inode) {
2585 			iput(dest->ino_cache_inode);
2586 			dest->ino_cache_inode = NULL;
2587 		}
2588 	}
2589 out_dput:
2590 	dput(dentry);
2591 out_unlock_dir:
2592 	mutex_unlock(&dir->i_mutex);
2593 out_drop_write:
2594 	mnt_drop_write_file(file);
2595 out:
2596 	kfree(vol_args);
2597 	return err;
2598 }
2599 
btrfs_ioctl_defrag(struct file * file,void __user * argp)2600 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2601 {
2602 	struct inode *inode = file_inode(file);
2603 	struct btrfs_root *root = BTRFS_I(inode)->root;
2604 	struct btrfs_ioctl_defrag_range_args *range;
2605 	int ret;
2606 
2607 	ret = mnt_want_write_file(file);
2608 	if (ret)
2609 		return ret;
2610 
2611 	if (btrfs_root_readonly(root)) {
2612 		ret = -EROFS;
2613 		goto out;
2614 	}
2615 
2616 	switch (inode->i_mode & S_IFMT) {
2617 	case S_IFDIR:
2618 		if (!capable(CAP_SYS_ADMIN)) {
2619 			ret = -EPERM;
2620 			goto out;
2621 		}
2622 		ret = btrfs_defrag_root(root);
2623 		if (ret)
2624 			goto out;
2625 		ret = btrfs_defrag_root(root->fs_info->extent_root);
2626 		break;
2627 	case S_IFREG:
2628 		if (!(file->f_mode & FMODE_WRITE)) {
2629 			ret = -EINVAL;
2630 			goto out;
2631 		}
2632 
2633 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2634 		if (!range) {
2635 			ret = -ENOMEM;
2636 			goto out;
2637 		}
2638 
2639 		if (argp) {
2640 			if (copy_from_user(range, argp,
2641 					   sizeof(*range))) {
2642 				ret = -EFAULT;
2643 				kfree(range);
2644 				goto out;
2645 			}
2646 			/* compression requires us to start the IO */
2647 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2648 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2649 				range->extent_thresh = (u32)-1;
2650 			}
2651 		} else {
2652 			/* the rest are all set to zero by kzalloc */
2653 			range->len = (u64)-1;
2654 		}
2655 		ret = btrfs_defrag_file(file_inode(file), file,
2656 					range, 0, 0);
2657 		if (ret > 0)
2658 			ret = 0;
2659 		kfree(range);
2660 		break;
2661 	default:
2662 		ret = -EINVAL;
2663 	}
2664 out:
2665 	mnt_drop_write_file(file);
2666 	return ret;
2667 }
2668 
btrfs_ioctl_add_dev(struct btrfs_root * root,void __user * arg)2669 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2670 {
2671 	struct btrfs_ioctl_vol_args *vol_args;
2672 	int ret;
2673 
2674 	if (!capable(CAP_SYS_ADMIN))
2675 		return -EPERM;
2676 
2677 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2678 			1)) {
2679 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2680 	}
2681 
2682 	mutex_lock(&root->fs_info->volume_mutex);
2683 	vol_args = memdup_user(arg, sizeof(*vol_args));
2684 	if (IS_ERR(vol_args)) {
2685 		ret = PTR_ERR(vol_args);
2686 		goto out;
2687 	}
2688 
2689 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2690 	ret = btrfs_init_new_device(root, vol_args->name);
2691 
2692 	if (!ret)
2693 		btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2694 
2695 	kfree(vol_args);
2696 out:
2697 	mutex_unlock(&root->fs_info->volume_mutex);
2698 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2699 	return ret;
2700 }
2701 
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)2702 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2703 {
2704 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2705 	struct btrfs_ioctl_vol_args *vol_args;
2706 	int ret;
2707 
2708 	if (!capable(CAP_SYS_ADMIN))
2709 		return -EPERM;
2710 
2711 	ret = mnt_want_write_file(file);
2712 	if (ret)
2713 		return ret;
2714 
2715 	vol_args = memdup_user(arg, sizeof(*vol_args));
2716 	if (IS_ERR(vol_args)) {
2717 		ret = PTR_ERR(vol_args);
2718 		goto err_drop;
2719 	}
2720 
2721 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2722 
2723 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2724 			1)) {
2725 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2726 		goto out;
2727 	}
2728 
2729 	mutex_lock(&root->fs_info->volume_mutex);
2730 	ret = btrfs_rm_device(root, vol_args->name);
2731 	mutex_unlock(&root->fs_info->volume_mutex);
2732 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2733 
2734 	if (!ret)
2735 		btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2736 
2737 out:
2738 	kfree(vol_args);
2739 err_drop:
2740 	mnt_drop_write_file(file);
2741 	return ret;
2742 }
2743 
btrfs_ioctl_fs_info(struct btrfs_root * root,void __user * arg)2744 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2745 {
2746 	struct btrfs_ioctl_fs_info_args *fi_args;
2747 	struct btrfs_device *device;
2748 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2749 	int ret = 0;
2750 
2751 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2752 	if (!fi_args)
2753 		return -ENOMEM;
2754 
2755 	mutex_lock(&fs_devices->device_list_mutex);
2756 	fi_args->num_devices = fs_devices->num_devices;
2757 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2758 
2759 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2760 		if (device->devid > fi_args->max_id)
2761 			fi_args->max_id = device->devid;
2762 	}
2763 	mutex_unlock(&fs_devices->device_list_mutex);
2764 
2765 	fi_args->nodesize = root->fs_info->super_copy->nodesize;
2766 	fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2767 	fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2768 
2769 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2770 		ret = -EFAULT;
2771 
2772 	kfree(fi_args);
2773 	return ret;
2774 }
2775 
btrfs_ioctl_dev_info(struct btrfs_root * root,void __user * arg)2776 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2777 {
2778 	struct btrfs_ioctl_dev_info_args *di_args;
2779 	struct btrfs_device *dev;
2780 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2781 	int ret = 0;
2782 	char *s_uuid = NULL;
2783 
2784 	di_args = memdup_user(arg, sizeof(*di_args));
2785 	if (IS_ERR(di_args))
2786 		return PTR_ERR(di_args);
2787 
2788 	if (!btrfs_is_empty_uuid(di_args->uuid))
2789 		s_uuid = di_args->uuid;
2790 
2791 	mutex_lock(&fs_devices->device_list_mutex);
2792 	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2793 
2794 	if (!dev) {
2795 		ret = -ENODEV;
2796 		goto out;
2797 	}
2798 
2799 	di_args->devid = dev->devid;
2800 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2801 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2802 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2803 	if (dev->name) {
2804 		struct rcu_string *name;
2805 
2806 		rcu_read_lock();
2807 		name = rcu_dereference(dev->name);
2808 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2809 		rcu_read_unlock();
2810 		di_args->path[sizeof(di_args->path) - 1] = 0;
2811 	} else {
2812 		di_args->path[0] = '\0';
2813 	}
2814 
2815 out:
2816 	mutex_unlock(&fs_devices->device_list_mutex);
2817 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2818 		ret = -EFAULT;
2819 
2820 	kfree(di_args);
2821 	return ret;
2822 }
2823 
extent_same_get_page(struct inode * inode,pgoff_t index)2824 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2825 {
2826 	struct page *page;
2827 
2828 	page = grab_cache_page(inode->i_mapping, index);
2829 	if (!page)
2830 		return ERR_PTR(-ENOMEM);
2831 
2832 	if (!PageUptodate(page)) {
2833 		int ret;
2834 
2835 		ret = btrfs_readpage(NULL, page);
2836 		if (ret)
2837 			return ERR_PTR(ret);
2838 		lock_page(page);
2839 		if (!PageUptodate(page)) {
2840 			unlock_page(page);
2841 			page_cache_release(page);
2842 			return ERR_PTR(-EIO);
2843 		}
2844 		if (page->mapping != inode->i_mapping) {
2845 			unlock_page(page);
2846 			page_cache_release(page);
2847 			return ERR_PTR(-EAGAIN);
2848 		}
2849 	}
2850 
2851 	return page;
2852 }
2853 
gather_extent_pages(struct inode * inode,struct page ** pages,int num_pages,u64 off)2854 static int gather_extent_pages(struct inode *inode, struct page **pages,
2855 			       int num_pages, u64 off)
2856 {
2857 	int i;
2858 	pgoff_t index = off >> PAGE_CACHE_SHIFT;
2859 
2860 	for (i = 0; i < num_pages; i++) {
2861 again:
2862 		pages[i] = extent_same_get_page(inode, index + i);
2863 		if (IS_ERR(pages[i])) {
2864 			int err = PTR_ERR(pages[i]);
2865 
2866 			if (err == -EAGAIN)
2867 				goto again;
2868 			pages[i] = NULL;
2869 			return err;
2870 		}
2871 	}
2872 	return 0;
2873 }
2874 
lock_extent_range(struct inode * inode,u64 off,u64 len,bool retry_range_locking)2875 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2876 			     bool retry_range_locking)
2877 {
2878 	/*
2879 	 * Do any pending delalloc/csum calculations on inode, one way or
2880 	 * another, and lock file content.
2881 	 * The locking order is:
2882 	 *
2883 	 *   1) pages
2884 	 *   2) range in the inode's io tree
2885 	 */
2886 	while (1) {
2887 		struct btrfs_ordered_extent *ordered;
2888 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2889 		ordered = btrfs_lookup_first_ordered_extent(inode,
2890 							    off + len - 1);
2891 		if ((!ordered ||
2892 		     ordered->file_offset + ordered->len <= off ||
2893 		     ordered->file_offset >= off + len) &&
2894 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2895 				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2896 			if (ordered)
2897 				btrfs_put_ordered_extent(ordered);
2898 			break;
2899 		}
2900 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2901 		if (ordered)
2902 			btrfs_put_ordered_extent(ordered);
2903 		if (!retry_range_locking)
2904 			return -EAGAIN;
2905 		btrfs_wait_ordered_range(inode, off, len);
2906 	}
2907 	return 0;
2908 }
2909 
btrfs_double_inode_unlock(struct inode * inode1,struct inode * inode2)2910 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2911 {
2912 	mutex_unlock(&inode1->i_mutex);
2913 	mutex_unlock(&inode2->i_mutex);
2914 }
2915 
btrfs_double_inode_lock(struct inode * inode1,struct inode * inode2)2916 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2917 {
2918 	if (inode1 < inode2)
2919 		swap(inode1, inode2);
2920 
2921 	mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2922 	mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2923 }
2924 
btrfs_double_extent_unlock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len)2925 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2926 				      struct inode *inode2, u64 loff2, u64 len)
2927 {
2928 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2929 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2930 }
2931 
btrfs_double_extent_lock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len,bool retry_range_locking)2932 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2933 				    struct inode *inode2, u64 loff2, u64 len,
2934 				    bool retry_range_locking)
2935 {
2936 	int ret;
2937 
2938 	if (inode1 < inode2) {
2939 		swap(inode1, inode2);
2940 		swap(loff1, loff2);
2941 	}
2942 	ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2943 	if (ret)
2944 		return ret;
2945 	ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2946 	if (ret)
2947 		unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2948 			      loff1 + len - 1);
2949 	return ret;
2950 }
2951 
2952 struct cmp_pages {
2953 	int		num_pages;
2954 	struct page	**src_pages;
2955 	struct page	**dst_pages;
2956 };
2957 
btrfs_cmp_data_free(struct cmp_pages * cmp)2958 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2959 {
2960 	int i;
2961 	struct page *pg;
2962 
2963 	for (i = 0; i < cmp->num_pages; i++) {
2964 		pg = cmp->src_pages[i];
2965 		if (pg) {
2966 			unlock_page(pg);
2967 			page_cache_release(pg);
2968 		}
2969 		pg = cmp->dst_pages[i];
2970 		if (pg) {
2971 			unlock_page(pg);
2972 			page_cache_release(pg);
2973 		}
2974 	}
2975 	kfree(cmp->src_pages);
2976 	kfree(cmp->dst_pages);
2977 }
2978 
btrfs_cmp_data_prepare(struct inode * src,u64 loff,struct inode * dst,u64 dst_loff,u64 len,struct cmp_pages * cmp)2979 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2980 				  struct inode *dst, u64 dst_loff,
2981 				  u64 len, struct cmp_pages *cmp)
2982 {
2983 	int ret;
2984 	int num_pages = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
2985 	struct page **src_pgarr, **dst_pgarr;
2986 
2987 	/*
2988 	 * We must gather up all the pages before we initiate our
2989 	 * extent locking. We use an array for the page pointers. Size
2990 	 * of the array is bounded by len, which is in turn bounded by
2991 	 * BTRFS_MAX_DEDUPE_LEN.
2992 	 */
2993 	src_pgarr = kzalloc(num_pages * sizeof(struct page *), GFP_NOFS);
2994 	dst_pgarr = kzalloc(num_pages * sizeof(struct page *), GFP_NOFS);
2995 	if (!src_pgarr || !dst_pgarr) {
2996 		kfree(src_pgarr);
2997 		kfree(dst_pgarr);
2998 		return -ENOMEM;
2999 	}
3000 	cmp->num_pages = num_pages;
3001 	cmp->src_pages = src_pgarr;
3002 	cmp->dst_pages = dst_pgarr;
3003 
3004 	ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
3005 	if (ret)
3006 		goto out;
3007 
3008 	ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
3009 
3010 out:
3011 	if (ret)
3012 		btrfs_cmp_data_free(cmp);
3013 	return ret;
3014 }
3015 
btrfs_cmp_data(struct inode * src,u64 loff,struct inode * dst,u64 dst_loff,u64 len,struct cmp_pages * cmp)3016 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
3017 			  u64 dst_loff, u64 len, struct cmp_pages *cmp)
3018 {
3019 	int ret = 0;
3020 	int i;
3021 	struct page *src_page, *dst_page;
3022 	unsigned int cmp_len = PAGE_CACHE_SIZE;
3023 	void *addr, *dst_addr;
3024 
3025 	i = 0;
3026 	while (len) {
3027 		if (len < PAGE_CACHE_SIZE)
3028 			cmp_len = len;
3029 
3030 		BUG_ON(i >= cmp->num_pages);
3031 
3032 		src_page = cmp->src_pages[i];
3033 		dst_page = cmp->dst_pages[i];
3034 		ASSERT(PageLocked(src_page));
3035 		ASSERT(PageLocked(dst_page));
3036 
3037 		addr = kmap_atomic(src_page);
3038 		dst_addr = kmap_atomic(dst_page);
3039 
3040 		flush_dcache_page(src_page);
3041 		flush_dcache_page(dst_page);
3042 
3043 		if (memcmp(addr, dst_addr, cmp_len))
3044 			ret = BTRFS_SAME_DATA_DIFFERS;
3045 
3046 		kunmap_atomic(addr);
3047 		kunmap_atomic(dst_addr);
3048 
3049 		if (ret)
3050 			break;
3051 
3052 		len -= cmp_len;
3053 		i++;
3054 	}
3055 
3056 	return ret;
3057 }
3058 
extent_same_check_offsets(struct inode * inode,u64 off,u64 * plen,u64 olen)3059 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3060 				     u64 olen)
3061 {
3062 	u64 len = *plen;
3063 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3064 
3065 	if (off + olen > inode->i_size || off + olen < off)
3066 		return -EINVAL;
3067 
3068 	/* if we extend to eof, continue to block boundary */
3069 	if (off + len == inode->i_size)
3070 		*plen = len = ALIGN(inode->i_size, bs) - off;
3071 
3072 	/* Check that we are block aligned - btrfs_clone() requires this */
3073 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3074 		return -EINVAL;
3075 
3076 	return 0;
3077 }
3078 
btrfs_extent_same(struct inode * src,u64 loff,u64 olen,struct inode * dst,u64 dst_loff)3079 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3080 			     struct inode *dst, u64 dst_loff)
3081 {
3082 	int ret;
3083 	u64 len = olen;
3084 	struct cmp_pages cmp;
3085 	int same_inode = 0;
3086 	u64 same_lock_start = 0;
3087 	u64 same_lock_len = 0;
3088 
3089 	if (src == dst)
3090 		same_inode = 1;
3091 
3092 	if (len == 0)
3093 		return 0;
3094 
3095 	if (same_inode) {
3096 		mutex_lock(&src->i_mutex);
3097 
3098 		ret = extent_same_check_offsets(src, loff, &len, olen);
3099 		if (ret)
3100 			goto out_unlock;
3101 
3102 		/*
3103 		 * Single inode case wants the same checks, except we
3104 		 * don't want our length pushed out past i_size as
3105 		 * comparing that data range makes no sense.
3106 		 *
3107 		 * extent_same_check_offsets() will do this for an
3108 		 * unaligned length at i_size, so catch it here and
3109 		 * reject the request.
3110 		 *
3111 		 * This effectively means we require aligned extents
3112 		 * for the single-inode case, whereas the other cases
3113 		 * allow an unaligned length so long as it ends at
3114 		 * i_size.
3115 		 */
3116 		if (len != olen) {
3117 			ret = -EINVAL;
3118 			goto out_unlock;
3119 		}
3120 
3121 		/* Check for overlapping ranges */
3122 		if (dst_loff + len > loff && dst_loff < loff + len) {
3123 			ret = -EINVAL;
3124 			goto out_unlock;
3125 		}
3126 
3127 		same_lock_start = min_t(u64, loff, dst_loff);
3128 		same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3129 	} else {
3130 		btrfs_double_inode_lock(src, dst);
3131 
3132 		ret = extent_same_check_offsets(src, loff, &len, olen);
3133 		if (ret)
3134 			goto out_unlock;
3135 
3136 		ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3137 		if (ret)
3138 			goto out_unlock;
3139 	}
3140 
3141 	/* don't make the dst file partly checksummed */
3142 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3143 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3144 		ret = -EINVAL;
3145 		goto out_unlock;
3146 	}
3147 
3148 again:
3149 	ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3150 	if (ret)
3151 		goto out_unlock;
3152 
3153 	if (same_inode)
3154 		ret = lock_extent_range(src, same_lock_start, same_lock_len,
3155 					false);
3156 	else
3157 		ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3158 					       false);
3159 	/*
3160 	 * If one of the inodes has dirty pages in the respective range or
3161 	 * ordered extents, we need to flush dellaloc and wait for all ordered
3162 	 * extents in the range. We must unlock the pages and the ranges in the
3163 	 * io trees to avoid deadlocks when flushing delalloc (requires locking
3164 	 * pages) and when waiting for ordered extents to complete (they require
3165 	 * range locking).
3166 	 */
3167 	if (ret == -EAGAIN) {
3168 		/*
3169 		 * Ranges in the io trees already unlocked. Now unlock all
3170 		 * pages before waiting for all IO to complete.
3171 		 */
3172 		btrfs_cmp_data_free(&cmp);
3173 		if (same_inode) {
3174 			btrfs_wait_ordered_range(src, same_lock_start,
3175 						 same_lock_len);
3176 		} else {
3177 			btrfs_wait_ordered_range(src, loff, len);
3178 			btrfs_wait_ordered_range(dst, dst_loff, len);
3179 		}
3180 		goto again;
3181 	}
3182 	ASSERT(ret == 0);
3183 	if (WARN_ON(ret)) {
3184 		/* ranges in the io trees already unlocked */
3185 		btrfs_cmp_data_free(&cmp);
3186 		return ret;
3187 	}
3188 
3189 	/* pass original length for comparison so we stay within i_size */
3190 	ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp);
3191 	if (ret == 0)
3192 		ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3193 
3194 	if (same_inode)
3195 		unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3196 			      same_lock_start + same_lock_len - 1);
3197 	else
3198 		btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3199 
3200 	btrfs_cmp_data_free(&cmp);
3201 out_unlock:
3202 	if (same_inode)
3203 		mutex_unlock(&src->i_mutex);
3204 	else
3205 		btrfs_double_inode_unlock(src, dst);
3206 
3207 	return ret;
3208 }
3209 
3210 #define BTRFS_MAX_DEDUPE_LEN	(16 * 1024 * 1024)
3211 
btrfs_ioctl_file_extent_same(struct file * file,struct btrfs_ioctl_same_args __user * argp)3212 static long btrfs_ioctl_file_extent_same(struct file *file,
3213 			struct btrfs_ioctl_same_args __user *argp)
3214 {
3215 	struct btrfs_ioctl_same_args *same = NULL;
3216 	struct btrfs_ioctl_same_extent_info *info;
3217 	struct inode *src = file_inode(file);
3218 	u64 off;
3219 	u64 len;
3220 	int i;
3221 	int ret;
3222 	unsigned long size;
3223 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3224 	bool is_admin = capable(CAP_SYS_ADMIN);
3225 	u16 count;
3226 
3227 	if (!(file->f_mode & FMODE_READ))
3228 		return -EINVAL;
3229 
3230 	ret = mnt_want_write_file(file);
3231 	if (ret)
3232 		return ret;
3233 
3234 	if (get_user(count, &argp->dest_count)) {
3235 		ret = -EFAULT;
3236 		goto out;
3237 	}
3238 
3239 	size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
3240 
3241 	same = memdup_user(argp, size);
3242 
3243 	if (IS_ERR(same)) {
3244 		ret = PTR_ERR(same);
3245 		same = NULL;
3246 		goto out;
3247 	}
3248 
3249 	off = same->logical_offset;
3250 	len = same->length;
3251 
3252 	/*
3253 	 * Limit the total length we will dedupe for each operation.
3254 	 * This is intended to bound the total time spent in this
3255 	 * ioctl to something sane.
3256 	 */
3257 	if (len > BTRFS_MAX_DEDUPE_LEN)
3258 		len = BTRFS_MAX_DEDUPE_LEN;
3259 
3260 	if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
3261 		/*
3262 		 * Btrfs does not support blocksize < page_size. As a
3263 		 * result, btrfs_cmp_data() won't correctly handle
3264 		 * this situation without an update.
3265 		 */
3266 		ret = -EINVAL;
3267 		goto out;
3268 	}
3269 
3270 	ret = -EISDIR;
3271 	if (S_ISDIR(src->i_mode))
3272 		goto out;
3273 
3274 	ret = -EACCES;
3275 	if (!S_ISREG(src->i_mode))
3276 		goto out;
3277 
3278 	/* pre-format output fields to sane values */
3279 	for (i = 0; i < count; i++) {
3280 		same->info[i].bytes_deduped = 0ULL;
3281 		same->info[i].status = 0;
3282 	}
3283 
3284 	for (i = 0, info = same->info; i < count; i++, info++) {
3285 		struct inode *dst;
3286 		struct fd dst_file = fdget(info->fd);
3287 		if (!dst_file.file) {
3288 			info->status = -EBADF;
3289 			continue;
3290 		}
3291 		dst = file_inode(dst_file.file);
3292 
3293 		if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
3294 			info->status = -EINVAL;
3295 		} else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
3296 			info->status = -EXDEV;
3297 		} else if (S_ISDIR(dst->i_mode)) {
3298 			info->status = -EISDIR;
3299 		} else if (!S_ISREG(dst->i_mode)) {
3300 			info->status = -EACCES;
3301 		} else {
3302 			info->status = btrfs_extent_same(src, off, len, dst,
3303 							info->logical_offset);
3304 			if (info->status == 0)
3305 				info->bytes_deduped += len;
3306 		}
3307 		fdput(dst_file);
3308 	}
3309 
3310 	ret = copy_to_user(argp, same, size);
3311 	if (ret)
3312 		ret = -EFAULT;
3313 
3314 out:
3315 	mnt_drop_write_file(file);
3316 	kfree(same);
3317 	return ret;
3318 }
3319 
clone_finish_inode_update(struct btrfs_trans_handle * trans,struct inode * inode,u64 endoff,const u64 destoff,const u64 olen,int no_time_update)3320 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3321 				     struct inode *inode,
3322 				     u64 endoff,
3323 				     const u64 destoff,
3324 				     const u64 olen,
3325 				     int no_time_update)
3326 {
3327 	struct btrfs_root *root = BTRFS_I(inode)->root;
3328 	int ret;
3329 
3330 	inode_inc_iversion(inode);
3331 	if (!no_time_update)
3332 		inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3333 	/*
3334 	 * We round up to the block size at eof when determining which
3335 	 * extents to clone above, but shouldn't round up the file size.
3336 	 */
3337 	if (endoff > destoff + olen)
3338 		endoff = destoff + olen;
3339 	if (endoff > inode->i_size)
3340 		btrfs_i_size_write(inode, endoff);
3341 
3342 	ret = btrfs_update_inode(trans, root, inode);
3343 	if (ret) {
3344 		btrfs_abort_transaction(trans, root, ret);
3345 		btrfs_end_transaction(trans, root);
3346 		goto out;
3347 	}
3348 	ret = btrfs_end_transaction(trans, root);
3349 out:
3350 	return ret;
3351 }
3352 
clone_update_extent_map(struct inode * inode,const struct btrfs_trans_handle * trans,const struct btrfs_path * path,const u64 hole_offset,const u64 hole_len)3353 static void clone_update_extent_map(struct inode *inode,
3354 				    const struct btrfs_trans_handle *trans,
3355 				    const struct btrfs_path *path,
3356 				    const u64 hole_offset,
3357 				    const u64 hole_len)
3358 {
3359 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3360 	struct extent_map *em;
3361 	int ret;
3362 
3363 	em = alloc_extent_map();
3364 	if (!em) {
3365 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3366 			&BTRFS_I(inode)->runtime_flags);
3367 		return;
3368 	}
3369 
3370 	if (path) {
3371 		struct btrfs_file_extent_item *fi;
3372 
3373 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3374 				    struct btrfs_file_extent_item);
3375 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3376 		em->generation = -1;
3377 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3378 		    BTRFS_FILE_EXTENT_INLINE)
3379 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3380 				&BTRFS_I(inode)->runtime_flags);
3381 	} else {
3382 		em->start = hole_offset;
3383 		em->len = hole_len;
3384 		em->ram_bytes = em->len;
3385 		em->orig_start = hole_offset;
3386 		em->block_start = EXTENT_MAP_HOLE;
3387 		em->block_len = 0;
3388 		em->orig_block_len = 0;
3389 		em->compress_type = BTRFS_COMPRESS_NONE;
3390 		em->generation = trans->transid;
3391 	}
3392 
3393 	while (1) {
3394 		write_lock(&em_tree->lock);
3395 		ret = add_extent_mapping(em_tree, em, 1);
3396 		write_unlock(&em_tree->lock);
3397 		if (ret != -EEXIST) {
3398 			free_extent_map(em);
3399 			break;
3400 		}
3401 		btrfs_drop_extent_cache(inode, em->start,
3402 					em->start + em->len - 1, 0);
3403 	}
3404 
3405 	if (ret)
3406 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3407 			&BTRFS_I(inode)->runtime_flags);
3408 }
3409 
3410 /*
3411  * Make sure we do not end up inserting an inline extent into a file that has
3412  * already other (non-inline) extents. If a file has an inline extent it can
3413  * not have any other extents and the (single) inline extent must start at the
3414  * file offset 0. Failing to respect these rules will lead to file corruption,
3415  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3416  *
3417  * We can have extents that have been already written to disk or we can have
3418  * dirty ranges still in delalloc, in which case the extent maps and items are
3419  * created only when we run delalloc, and the delalloc ranges might fall outside
3420  * the range we are currently locking in the inode's io tree. So we check the
3421  * inode's i_size because of that (i_size updates are done while holding the
3422  * i_mutex, which we are holding here).
3423  * We also check to see if the inode has a size not greater than "datal" but has
3424  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3425  * protected against such concurrent fallocate calls by the i_mutex).
3426  *
3427  * If the file has no extents but a size greater than datal, do not allow the
3428  * copy because we would need turn the inline extent into a non-inline one (even
3429  * with NO_HOLES enabled). If we find our destination inode only has one inline
3430  * extent, just overwrite it with the source inline extent if its size is less
3431  * than the source extent's size, or we could copy the source inline extent's
3432  * data into the destination inode's inline extent if the later is greater then
3433  * the former.
3434  */
clone_copy_inline_extent(struct inode * src,struct inode * dst,struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_key * new_key,const u64 drop_start,const u64 datal,const u64 skip,const u64 size,char * inline_data)3435 static int clone_copy_inline_extent(struct inode *src,
3436 				    struct inode *dst,
3437 				    struct btrfs_trans_handle *trans,
3438 				    struct btrfs_path *path,
3439 				    struct btrfs_key *new_key,
3440 				    const u64 drop_start,
3441 				    const u64 datal,
3442 				    const u64 skip,
3443 				    const u64 size,
3444 				    char *inline_data)
3445 {
3446 	struct btrfs_root *root = BTRFS_I(dst)->root;
3447 	const u64 aligned_end = ALIGN(new_key->offset + datal,
3448 				      root->sectorsize);
3449 	int ret;
3450 	struct btrfs_key key;
3451 
3452 	if (new_key->offset > 0)
3453 		return -EOPNOTSUPP;
3454 
3455 	key.objectid = btrfs_ino(dst);
3456 	key.type = BTRFS_EXTENT_DATA_KEY;
3457 	key.offset = 0;
3458 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3459 	if (ret < 0) {
3460 		return ret;
3461 	} else if (ret > 0) {
3462 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3463 			ret = btrfs_next_leaf(root, path);
3464 			if (ret < 0)
3465 				return ret;
3466 			else if (ret > 0)
3467 				goto copy_inline_extent;
3468 		}
3469 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3470 		if (key.objectid == btrfs_ino(dst) &&
3471 		    key.type == BTRFS_EXTENT_DATA_KEY) {
3472 			ASSERT(key.offset > 0);
3473 			return -EOPNOTSUPP;
3474 		}
3475 	} else if (i_size_read(dst) <= datal) {
3476 		struct btrfs_file_extent_item *ei;
3477 		u64 ext_len;
3478 
3479 		/*
3480 		 * If the file size is <= datal, make sure there are no other
3481 		 * extents following (can happen do to an fallocate call with
3482 		 * the flag FALLOC_FL_KEEP_SIZE).
3483 		 */
3484 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3485 				    struct btrfs_file_extent_item);
3486 		/*
3487 		 * If it's an inline extent, it can not have other extents
3488 		 * following it.
3489 		 */
3490 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3491 		    BTRFS_FILE_EXTENT_INLINE)
3492 			goto copy_inline_extent;
3493 
3494 		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3495 		if (ext_len > aligned_end)
3496 			return -EOPNOTSUPP;
3497 
3498 		ret = btrfs_next_item(root, path);
3499 		if (ret < 0) {
3500 			return ret;
3501 		} else if (ret == 0) {
3502 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3503 					      path->slots[0]);
3504 			if (key.objectid == btrfs_ino(dst) &&
3505 			    key.type == BTRFS_EXTENT_DATA_KEY)
3506 				return -EOPNOTSUPP;
3507 		}
3508 	}
3509 
3510 copy_inline_extent:
3511 	/*
3512 	 * We have no extent items, or we have an extent at offset 0 which may
3513 	 * or may not be inlined. All these cases are dealt the same way.
3514 	 */
3515 	if (i_size_read(dst) > datal) {
3516 		/*
3517 		 * If the destination inode has an inline extent...
3518 		 * This would require copying the data from the source inline
3519 		 * extent into the beginning of the destination's inline extent.
3520 		 * But this is really complex, both extents can be compressed
3521 		 * or just one of them, which would require decompressing and
3522 		 * re-compressing data (which could increase the new compressed
3523 		 * size, not allowing the compressed data to fit anymore in an
3524 		 * inline extent).
3525 		 * So just don't support this case for now (it should be rare,
3526 		 * we are not really saving space when cloning inline extents).
3527 		 */
3528 		return -EOPNOTSUPP;
3529 	}
3530 
3531 	btrfs_release_path(path);
3532 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3533 	if (ret)
3534 		return ret;
3535 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3536 	if (ret)
3537 		return ret;
3538 
3539 	if (skip) {
3540 		const u32 start = btrfs_file_extent_calc_inline_size(0);
3541 
3542 		memmove(inline_data + start, inline_data + start + skip, datal);
3543 	}
3544 
3545 	write_extent_buffer(path->nodes[0], inline_data,
3546 			    btrfs_item_ptr_offset(path->nodes[0],
3547 						  path->slots[0]),
3548 			    size);
3549 	inode_add_bytes(dst, datal);
3550 
3551 	return 0;
3552 }
3553 
3554 /**
3555  * btrfs_clone() - clone a range from inode file to another
3556  *
3557  * @src: Inode to clone from
3558  * @inode: Inode to clone to
3559  * @off: Offset within source to start clone from
3560  * @olen: Original length, passed by user, of range to clone
3561  * @olen_aligned: Block-aligned value of olen
3562  * @destoff: Offset within @inode to start clone
3563  * @no_time_update: Whether to update mtime/ctime on the target inode
3564  */
btrfs_clone(struct inode * src,struct inode * inode,const u64 off,const u64 olen,const u64 olen_aligned,const u64 destoff,int no_time_update)3565 static int btrfs_clone(struct inode *src, struct inode *inode,
3566 		       const u64 off, const u64 olen, const u64 olen_aligned,
3567 		       const u64 destoff, int no_time_update)
3568 {
3569 	struct btrfs_root *root = BTRFS_I(inode)->root;
3570 	struct btrfs_path *path = NULL;
3571 	struct extent_buffer *leaf;
3572 	struct btrfs_trans_handle *trans;
3573 	char *buf = NULL;
3574 	struct btrfs_key key;
3575 	u32 nritems;
3576 	int slot;
3577 	int ret;
3578 	const u64 len = olen_aligned;
3579 	u64 last_dest_end = destoff;
3580 
3581 	ret = -ENOMEM;
3582 	buf = vmalloc(root->nodesize);
3583 	if (!buf)
3584 		return ret;
3585 
3586 	path = btrfs_alloc_path();
3587 	if (!path) {
3588 		vfree(buf);
3589 		return ret;
3590 	}
3591 
3592 	path->reada = 2;
3593 	/* clone data */
3594 	key.objectid = btrfs_ino(src);
3595 	key.type = BTRFS_EXTENT_DATA_KEY;
3596 	key.offset = off;
3597 
3598 	while (1) {
3599 		u64 next_key_min_offset = key.offset + 1;
3600 
3601 		/*
3602 		 * note the key will change type as we walk through the
3603 		 * tree.
3604 		 */
3605 		path->leave_spinning = 1;
3606 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3607 				0, 0);
3608 		if (ret < 0)
3609 			goto out;
3610 		/*
3611 		 * First search, if no extent item that starts at offset off was
3612 		 * found but the previous item is an extent item, it's possible
3613 		 * it might overlap our target range, therefore process it.
3614 		 */
3615 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3616 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3617 					      path->slots[0] - 1);
3618 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3619 				path->slots[0]--;
3620 		}
3621 
3622 		nritems = btrfs_header_nritems(path->nodes[0]);
3623 process_slot:
3624 		if (path->slots[0] >= nritems) {
3625 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3626 			if (ret < 0)
3627 				goto out;
3628 			if (ret > 0)
3629 				break;
3630 			nritems = btrfs_header_nritems(path->nodes[0]);
3631 		}
3632 		leaf = path->nodes[0];
3633 		slot = path->slots[0];
3634 
3635 		btrfs_item_key_to_cpu(leaf, &key, slot);
3636 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3637 		    key.objectid != btrfs_ino(src))
3638 			break;
3639 
3640 		if (key.type == BTRFS_EXTENT_DATA_KEY) {
3641 			struct btrfs_file_extent_item *extent;
3642 			int type;
3643 			u32 size;
3644 			struct btrfs_key new_key;
3645 			u64 disko = 0, diskl = 0;
3646 			u64 datao = 0, datal = 0;
3647 			u8 comp;
3648 			u64 drop_start;
3649 
3650 			extent = btrfs_item_ptr(leaf, slot,
3651 						struct btrfs_file_extent_item);
3652 			comp = btrfs_file_extent_compression(leaf, extent);
3653 			type = btrfs_file_extent_type(leaf, extent);
3654 			if (type == BTRFS_FILE_EXTENT_REG ||
3655 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3656 				disko = btrfs_file_extent_disk_bytenr(leaf,
3657 								      extent);
3658 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3659 								 extent);
3660 				datao = btrfs_file_extent_offset(leaf, extent);
3661 				datal = btrfs_file_extent_num_bytes(leaf,
3662 								    extent);
3663 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3664 				/* take upper bound, may be compressed */
3665 				datal = btrfs_file_extent_ram_bytes(leaf,
3666 								    extent);
3667 			}
3668 
3669 			/*
3670 			 * The first search might have left us at an extent
3671 			 * item that ends before our target range's start, can
3672 			 * happen if we have holes and NO_HOLES feature enabled.
3673 			 */
3674 			if (key.offset + datal <= off) {
3675 				path->slots[0]++;
3676 				goto process_slot;
3677 			} else if (key.offset >= off + len) {
3678 				break;
3679 			}
3680 			next_key_min_offset = key.offset + datal;
3681 			size = btrfs_item_size_nr(leaf, slot);
3682 			read_extent_buffer(leaf, buf,
3683 					   btrfs_item_ptr_offset(leaf, slot),
3684 					   size);
3685 
3686 			btrfs_release_path(path);
3687 			path->leave_spinning = 0;
3688 
3689 			memcpy(&new_key, &key, sizeof(new_key));
3690 			new_key.objectid = btrfs_ino(inode);
3691 			if (off <= key.offset)
3692 				new_key.offset = key.offset + destoff - off;
3693 			else
3694 				new_key.offset = destoff;
3695 
3696 			/*
3697 			 * Deal with a hole that doesn't have an extent item
3698 			 * that represents it (NO_HOLES feature enabled).
3699 			 * This hole is either in the middle of the cloning
3700 			 * range or at the beginning (fully overlaps it or
3701 			 * partially overlaps it).
3702 			 */
3703 			if (new_key.offset != last_dest_end)
3704 				drop_start = last_dest_end;
3705 			else
3706 				drop_start = new_key.offset;
3707 
3708 			/*
3709 			 * 1 - adjusting old extent (we may have to split it)
3710 			 * 1 - add new extent
3711 			 * 1 - inode update
3712 			 */
3713 			trans = btrfs_start_transaction(root, 3);
3714 			if (IS_ERR(trans)) {
3715 				ret = PTR_ERR(trans);
3716 				goto out;
3717 			}
3718 
3719 			if (type == BTRFS_FILE_EXTENT_REG ||
3720 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3721 				/*
3722 				 *    a  | --- range to clone ---|  b
3723 				 * | ------------- extent ------------- |
3724 				 */
3725 
3726 				/* subtract range b */
3727 				if (key.offset + datal > off + len)
3728 					datal = off + len - key.offset;
3729 
3730 				/* subtract range a */
3731 				if (off > key.offset) {
3732 					datao += off - key.offset;
3733 					datal -= off - key.offset;
3734 				}
3735 
3736 				ret = btrfs_drop_extents(trans, root, inode,
3737 							 drop_start,
3738 							 new_key.offset + datal,
3739 							 1);
3740 				if (ret) {
3741 					if (ret != -EOPNOTSUPP)
3742 						btrfs_abort_transaction(trans,
3743 								root, ret);
3744 					btrfs_end_transaction(trans, root);
3745 					goto out;
3746 				}
3747 
3748 				ret = btrfs_insert_empty_item(trans, root, path,
3749 							      &new_key, size);
3750 				if (ret) {
3751 					btrfs_abort_transaction(trans, root,
3752 								ret);
3753 					btrfs_end_transaction(trans, root);
3754 					goto out;
3755 				}
3756 
3757 				leaf = path->nodes[0];
3758 				slot = path->slots[0];
3759 				write_extent_buffer(leaf, buf,
3760 					    btrfs_item_ptr_offset(leaf, slot),
3761 					    size);
3762 
3763 				extent = btrfs_item_ptr(leaf, slot,
3764 						struct btrfs_file_extent_item);
3765 
3766 				/* disko == 0 means it's a hole */
3767 				if (!disko)
3768 					datao = 0;
3769 
3770 				btrfs_set_file_extent_offset(leaf, extent,
3771 							     datao);
3772 				btrfs_set_file_extent_num_bytes(leaf, extent,
3773 								datal);
3774 
3775 				if (disko) {
3776 					inode_add_bytes(inode, datal);
3777 					ret = btrfs_inc_extent_ref(trans, root,
3778 							disko, diskl, 0,
3779 							root->root_key.objectid,
3780 							btrfs_ino(inode),
3781 							new_key.offset - datao);
3782 					if (ret) {
3783 						btrfs_abort_transaction(trans,
3784 									root,
3785 									ret);
3786 						btrfs_end_transaction(trans,
3787 								      root);
3788 						goto out;
3789 
3790 					}
3791 				}
3792 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3793 				u64 skip = 0;
3794 				u64 trim = 0;
3795 
3796 				if (off > key.offset) {
3797 					skip = off - key.offset;
3798 					new_key.offset += skip;
3799 				}
3800 
3801 				if (key.offset + datal > off + len)
3802 					trim = key.offset + datal - (off + len);
3803 
3804 				if (comp && (skip || trim)) {
3805 					ret = -EINVAL;
3806 					btrfs_end_transaction(trans, root);
3807 					goto out;
3808 				}
3809 				size -= skip + trim;
3810 				datal -= skip + trim;
3811 
3812 				ret = clone_copy_inline_extent(src, inode,
3813 							       trans, path,
3814 							       &new_key,
3815 							       drop_start,
3816 							       datal,
3817 							       skip, size, buf);
3818 				if (ret) {
3819 					if (ret != -EOPNOTSUPP)
3820 						btrfs_abort_transaction(trans,
3821 									root,
3822 									ret);
3823 					btrfs_end_transaction(trans, root);
3824 					goto out;
3825 				}
3826 				leaf = path->nodes[0];
3827 				slot = path->slots[0];
3828 			}
3829 
3830 			/* If we have an implicit hole (NO_HOLES feature). */
3831 			if (drop_start < new_key.offset)
3832 				clone_update_extent_map(inode, trans,
3833 						NULL, drop_start,
3834 						new_key.offset - drop_start);
3835 
3836 			clone_update_extent_map(inode, trans, path, 0, 0);
3837 
3838 			btrfs_mark_buffer_dirty(leaf);
3839 			btrfs_release_path(path);
3840 
3841 			last_dest_end = ALIGN(new_key.offset + datal,
3842 					      root->sectorsize);
3843 			ret = clone_finish_inode_update(trans, inode,
3844 							last_dest_end,
3845 							destoff, olen,
3846 							no_time_update);
3847 			if (ret)
3848 				goto out;
3849 			if (new_key.offset + datal >= destoff + len)
3850 				break;
3851 		}
3852 		btrfs_release_path(path);
3853 		key.offset = next_key_min_offset;
3854 
3855 		if (fatal_signal_pending(current)) {
3856 			ret = -EINTR;
3857 			goto out;
3858 		}
3859 
3860 		cond_resched();
3861 	}
3862 	ret = 0;
3863 
3864 	if (last_dest_end < destoff + len) {
3865 		/*
3866 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3867 		 * fully or partially overlaps our cloning range at its end.
3868 		 */
3869 		btrfs_release_path(path);
3870 
3871 		/*
3872 		 * 1 - remove extent(s)
3873 		 * 1 - inode update
3874 		 */
3875 		trans = btrfs_start_transaction(root, 2);
3876 		if (IS_ERR(trans)) {
3877 			ret = PTR_ERR(trans);
3878 			goto out;
3879 		}
3880 		ret = btrfs_drop_extents(trans, root, inode,
3881 					 last_dest_end, destoff + len, 1);
3882 		if (ret) {
3883 			if (ret != -EOPNOTSUPP)
3884 				btrfs_abort_transaction(trans, root, ret);
3885 			btrfs_end_transaction(trans, root);
3886 			goto out;
3887 		}
3888 		clone_update_extent_map(inode, trans, NULL, last_dest_end,
3889 					destoff + len - last_dest_end);
3890 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3891 						destoff, olen, no_time_update);
3892 	}
3893 
3894 out:
3895 	btrfs_free_path(path);
3896 	vfree(buf);
3897 	return ret;
3898 }
3899 
btrfs_ioctl_clone(struct file * file,unsigned long srcfd,u64 off,u64 olen,u64 destoff)3900 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3901 				       u64 off, u64 olen, u64 destoff)
3902 {
3903 	struct inode *inode = file_inode(file);
3904 	struct btrfs_root *root = BTRFS_I(inode)->root;
3905 	struct fd src_file;
3906 	struct inode *src;
3907 	int ret;
3908 	u64 len = olen;
3909 	u64 bs = root->fs_info->sb->s_blocksize;
3910 	int same_inode = 0;
3911 
3912 	/*
3913 	 * TODO:
3914 	 * - split compressed inline extents.  annoying: we need to
3915 	 *   decompress into destination's address_space (the file offset
3916 	 *   may change, so source mapping won't do), then recompress (or
3917 	 *   otherwise reinsert) a subrange.
3918 	 *
3919 	 * - split destination inode's inline extents.  The inline extents can
3920 	 *   be either compressed or non-compressed.
3921 	 */
3922 
3923 	/* the destination must be opened for writing */
3924 	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3925 		return -EINVAL;
3926 
3927 	if (btrfs_root_readonly(root))
3928 		return -EROFS;
3929 
3930 	ret = mnt_want_write_file(file);
3931 	if (ret)
3932 		return ret;
3933 
3934 	src_file = fdget(srcfd);
3935 	if (!src_file.file) {
3936 		ret = -EBADF;
3937 		goto out_drop_write;
3938 	}
3939 
3940 	ret = -EXDEV;
3941 	if (src_file.file->f_path.mnt != file->f_path.mnt)
3942 		goto out_fput;
3943 
3944 	src = file_inode(src_file.file);
3945 
3946 	ret = -EINVAL;
3947 	if (src == inode)
3948 		same_inode = 1;
3949 
3950 	/* the src must be open for reading */
3951 	if (!(src_file.file->f_mode & FMODE_READ))
3952 		goto out_fput;
3953 
3954 	ret = -EISDIR;
3955 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3956 		goto out_fput;
3957 
3958 	ret = -EXDEV;
3959 	if (src->i_sb != inode->i_sb)
3960 		goto out_fput;
3961 
3962 	if (!same_inode) {
3963 		btrfs_double_inode_lock(src, inode);
3964 	} else {
3965 		mutex_lock(&src->i_mutex);
3966 	}
3967 
3968 	/* don't make the dst file partly checksummed */
3969 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3970 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
3971 		ret = -EINVAL;
3972 		goto out_unlock;
3973 	}
3974 
3975 	/* determine range to clone */
3976 	ret = -EINVAL;
3977 	if (off + len > src->i_size || off + len < off)
3978 		goto out_unlock;
3979 	if (len == 0)
3980 		olen = len = src->i_size - off;
3981 	/*
3982 	 * If we extend to eof, continue to block boundary if and only if the
3983 	 * destination end offset matches the destination file's size, otherwise
3984 	 * we would be corrupting data by placing the eof block into the middle
3985 	 * of a file.
3986 	 */
3987 	if (off + len == src->i_size) {
3988 		if (!IS_ALIGNED(len, bs) && destoff + len < inode->i_size)
3989 			goto out_unlock;
3990 		len = ALIGN(src->i_size, bs) - off;
3991 	}
3992 
3993 	if (len == 0) {
3994 		ret = 0;
3995 		goto out_unlock;
3996 	}
3997 
3998 	/* verify the end result is block aligned */
3999 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
4000 	    !IS_ALIGNED(destoff, bs))
4001 		goto out_unlock;
4002 
4003 	/* verify if ranges are overlapped within the same file */
4004 	if (same_inode) {
4005 		if (destoff + len > off && destoff < off + len)
4006 			goto out_unlock;
4007 	}
4008 
4009 	if (destoff > inode->i_size) {
4010 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
4011 		if (ret)
4012 			goto out_unlock;
4013 	}
4014 
4015 	/*
4016 	 * Lock the target range too. Right after we replace the file extent
4017 	 * items in the fs tree (which now point to the cloned data), we might
4018 	 * have a worker replace them with extent items relative to a write
4019 	 * operation that was issued before this clone operation (i.e. confront
4020 	 * with inode.c:btrfs_finish_ordered_io).
4021 	 */
4022 	if (same_inode) {
4023 		u64 lock_start = min_t(u64, off, destoff);
4024 		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
4025 
4026 		ret = lock_extent_range(src, lock_start, lock_len, true);
4027 	} else {
4028 		ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
4029 					       true);
4030 	}
4031 	ASSERT(ret == 0);
4032 	if (WARN_ON(ret)) {
4033 		/* ranges in the io trees already unlocked */
4034 		goto out_unlock;
4035 	}
4036 
4037 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
4038 
4039 	if (same_inode) {
4040 		u64 lock_start = min_t(u64, off, destoff);
4041 		u64 lock_end = max_t(u64, off, destoff) + len - 1;
4042 
4043 		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
4044 	} else {
4045 		btrfs_double_extent_unlock(src, off, inode, destoff, len);
4046 	}
4047 	/*
4048 	 * Truncate page cache pages so that future reads will see the cloned
4049 	 * data immediately and not the previous data.
4050 	 */
4051 	truncate_inode_pages_range(&inode->i_data, destoff,
4052 				   PAGE_CACHE_ALIGN(destoff + len) - 1);
4053 out_unlock:
4054 	if (!same_inode)
4055 		btrfs_double_inode_unlock(src, inode);
4056 	else
4057 		mutex_unlock(&src->i_mutex);
4058 out_fput:
4059 	fdput(src_file);
4060 out_drop_write:
4061 	mnt_drop_write_file(file);
4062 	return ret;
4063 }
4064 
btrfs_ioctl_clone_range(struct file * file,void __user * argp)4065 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
4066 {
4067 	struct btrfs_ioctl_clone_range_args args;
4068 
4069 	if (copy_from_user(&args, argp, sizeof(args)))
4070 		return -EFAULT;
4071 	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
4072 				 args.src_length, args.dest_offset);
4073 }
4074 
4075 /*
4076  * there are many ways the trans_start and trans_end ioctls can lead
4077  * to deadlocks.  They should only be used by applications that
4078  * basically own the machine, and have a very in depth understanding
4079  * of all the possible deadlocks and enospc problems.
4080  */
btrfs_ioctl_trans_start(struct file * file)4081 static long btrfs_ioctl_trans_start(struct file *file)
4082 {
4083 	struct inode *inode = file_inode(file);
4084 	struct btrfs_root *root = BTRFS_I(inode)->root;
4085 	struct btrfs_trans_handle *trans;
4086 	int ret;
4087 
4088 	ret = -EPERM;
4089 	if (!capable(CAP_SYS_ADMIN))
4090 		goto out;
4091 
4092 	ret = -EINPROGRESS;
4093 	if (file->private_data)
4094 		goto out;
4095 
4096 	ret = -EROFS;
4097 	if (btrfs_root_readonly(root))
4098 		goto out;
4099 
4100 	ret = mnt_want_write_file(file);
4101 	if (ret)
4102 		goto out;
4103 
4104 	atomic_inc(&root->fs_info->open_ioctl_trans);
4105 
4106 	ret = -ENOMEM;
4107 	trans = btrfs_start_ioctl_transaction(root);
4108 	if (IS_ERR(trans))
4109 		goto out_drop;
4110 
4111 	file->private_data = trans;
4112 	return 0;
4113 
4114 out_drop:
4115 	atomic_dec(&root->fs_info->open_ioctl_trans);
4116 	mnt_drop_write_file(file);
4117 out:
4118 	return ret;
4119 }
4120 
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)4121 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4122 {
4123 	struct inode *inode = file_inode(file);
4124 	struct btrfs_root *root = BTRFS_I(inode)->root;
4125 	struct btrfs_root *new_root;
4126 	struct btrfs_dir_item *di;
4127 	struct btrfs_trans_handle *trans;
4128 	struct btrfs_path *path;
4129 	struct btrfs_key location;
4130 	struct btrfs_disk_key disk_key;
4131 	u64 objectid = 0;
4132 	u64 dir_id;
4133 	int ret;
4134 
4135 	if (!capable(CAP_SYS_ADMIN))
4136 		return -EPERM;
4137 
4138 	ret = mnt_want_write_file(file);
4139 	if (ret)
4140 		return ret;
4141 
4142 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4143 		ret = -EFAULT;
4144 		goto out;
4145 	}
4146 
4147 	if (!objectid)
4148 		objectid = BTRFS_FS_TREE_OBJECTID;
4149 
4150 	location.objectid = objectid;
4151 	location.type = BTRFS_ROOT_ITEM_KEY;
4152 	location.offset = (u64)-1;
4153 
4154 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
4155 	if (IS_ERR(new_root)) {
4156 		ret = PTR_ERR(new_root);
4157 		goto out;
4158 	}
4159 	if (!is_fstree(new_root->objectid)) {
4160 		ret = -ENOENT;
4161 		goto out;
4162 	}
4163 
4164 	path = btrfs_alloc_path();
4165 	if (!path) {
4166 		ret = -ENOMEM;
4167 		goto out;
4168 	}
4169 	path->leave_spinning = 1;
4170 
4171 	trans = btrfs_start_transaction(root, 1);
4172 	if (IS_ERR(trans)) {
4173 		btrfs_free_path(path);
4174 		ret = PTR_ERR(trans);
4175 		goto out;
4176 	}
4177 
4178 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
4179 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
4180 				   dir_id, "default", 7, 1);
4181 	if (IS_ERR_OR_NULL(di)) {
4182 		btrfs_free_path(path);
4183 		btrfs_end_transaction(trans, root);
4184 		btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
4185 			   "item, this isn't going to work");
4186 		ret = -ENOENT;
4187 		goto out;
4188 	}
4189 
4190 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4191 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4192 	btrfs_mark_buffer_dirty(path->nodes[0]);
4193 	btrfs_free_path(path);
4194 
4195 	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
4196 	btrfs_end_transaction(trans, root);
4197 out:
4198 	mnt_drop_write_file(file);
4199 	return ret;
4200 }
4201 
btrfs_get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)4202 void btrfs_get_block_group_info(struct list_head *groups_list,
4203 				struct btrfs_ioctl_space_info *space)
4204 {
4205 	struct btrfs_block_group_cache *block_group;
4206 
4207 	space->total_bytes = 0;
4208 	space->used_bytes = 0;
4209 	space->flags = 0;
4210 	list_for_each_entry(block_group, groups_list, list) {
4211 		space->flags = block_group->flags;
4212 		space->total_bytes += block_group->key.offset;
4213 		space->used_bytes +=
4214 			btrfs_block_group_used(&block_group->item);
4215 	}
4216 }
4217 
btrfs_ioctl_space_info(struct btrfs_root * root,void __user * arg)4218 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
4219 {
4220 	struct btrfs_ioctl_space_args space_args;
4221 	struct btrfs_ioctl_space_info space;
4222 	struct btrfs_ioctl_space_info *dest;
4223 	struct btrfs_ioctl_space_info *dest_orig;
4224 	struct btrfs_ioctl_space_info __user *user_dest;
4225 	struct btrfs_space_info *info;
4226 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4227 		       BTRFS_BLOCK_GROUP_SYSTEM,
4228 		       BTRFS_BLOCK_GROUP_METADATA,
4229 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4230 	int num_types = 4;
4231 	int alloc_size;
4232 	int ret = 0;
4233 	u64 slot_count = 0;
4234 	int i, c;
4235 
4236 	if (copy_from_user(&space_args,
4237 			   (struct btrfs_ioctl_space_args __user *)arg,
4238 			   sizeof(space_args)))
4239 		return -EFAULT;
4240 
4241 	for (i = 0; i < num_types; i++) {
4242 		struct btrfs_space_info *tmp;
4243 
4244 		info = NULL;
4245 		rcu_read_lock();
4246 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4247 					list) {
4248 			if (tmp->flags == types[i]) {
4249 				info = tmp;
4250 				break;
4251 			}
4252 		}
4253 		rcu_read_unlock();
4254 
4255 		if (!info)
4256 			continue;
4257 
4258 		down_read(&info->groups_sem);
4259 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4260 			if (!list_empty(&info->block_groups[c]))
4261 				slot_count++;
4262 		}
4263 		up_read(&info->groups_sem);
4264 	}
4265 
4266 	/*
4267 	 * Global block reserve, exported as a space_info
4268 	 */
4269 	slot_count++;
4270 
4271 	/* space_slots == 0 means they are asking for a count */
4272 	if (space_args.space_slots == 0) {
4273 		space_args.total_spaces = slot_count;
4274 		goto out;
4275 	}
4276 
4277 	slot_count = min_t(u64, space_args.space_slots, slot_count);
4278 
4279 	alloc_size = sizeof(*dest) * slot_count;
4280 
4281 	/* we generally have at most 6 or so space infos, one for each raid
4282 	 * level.  So, a whole page should be more than enough for everyone
4283 	 */
4284 	if (alloc_size > PAGE_CACHE_SIZE)
4285 		return -ENOMEM;
4286 
4287 	space_args.total_spaces = 0;
4288 	dest = kmalloc(alloc_size, GFP_NOFS);
4289 	if (!dest)
4290 		return -ENOMEM;
4291 	dest_orig = dest;
4292 
4293 	/* now we have a buffer to copy into */
4294 	for (i = 0; i < num_types; i++) {
4295 		struct btrfs_space_info *tmp;
4296 
4297 		if (!slot_count)
4298 			break;
4299 
4300 		info = NULL;
4301 		rcu_read_lock();
4302 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4303 					list) {
4304 			if (tmp->flags == types[i]) {
4305 				info = tmp;
4306 				break;
4307 			}
4308 		}
4309 		rcu_read_unlock();
4310 
4311 		if (!info)
4312 			continue;
4313 		down_read(&info->groups_sem);
4314 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4315 			if (!list_empty(&info->block_groups[c])) {
4316 				btrfs_get_block_group_info(
4317 					&info->block_groups[c], &space);
4318 				memcpy(dest, &space, sizeof(space));
4319 				dest++;
4320 				space_args.total_spaces++;
4321 				slot_count--;
4322 			}
4323 			if (!slot_count)
4324 				break;
4325 		}
4326 		up_read(&info->groups_sem);
4327 	}
4328 
4329 	/*
4330 	 * Add global block reserve
4331 	 */
4332 	if (slot_count) {
4333 		struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4334 
4335 		spin_lock(&block_rsv->lock);
4336 		space.total_bytes = block_rsv->size;
4337 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4338 		spin_unlock(&block_rsv->lock);
4339 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4340 		memcpy(dest, &space, sizeof(space));
4341 		space_args.total_spaces++;
4342 	}
4343 
4344 	user_dest = (struct btrfs_ioctl_space_info __user *)
4345 		(arg + sizeof(struct btrfs_ioctl_space_args));
4346 
4347 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4348 		ret = -EFAULT;
4349 
4350 	kfree(dest_orig);
4351 out:
4352 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4353 		ret = -EFAULT;
4354 
4355 	return ret;
4356 }
4357 
4358 /*
4359  * there are many ways the trans_start and trans_end ioctls can lead
4360  * to deadlocks.  They should only be used by applications that
4361  * basically own the machine, and have a very in depth understanding
4362  * of all the possible deadlocks and enospc problems.
4363  */
btrfs_ioctl_trans_end(struct file * file)4364 long btrfs_ioctl_trans_end(struct file *file)
4365 {
4366 	struct inode *inode = file_inode(file);
4367 	struct btrfs_root *root = BTRFS_I(inode)->root;
4368 	struct btrfs_trans_handle *trans;
4369 
4370 	trans = file->private_data;
4371 	if (!trans)
4372 		return -EINVAL;
4373 	file->private_data = NULL;
4374 
4375 	btrfs_end_transaction(trans, root);
4376 
4377 	atomic_dec(&root->fs_info->open_ioctl_trans);
4378 
4379 	mnt_drop_write_file(file);
4380 	return 0;
4381 }
4382 
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)4383 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4384 					    void __user *argp)
4385 {
4386 	struct btrfs_trans_handle *trans;
4387 	u64 transid;
4388 	int ret;
4389 
4390 	trans = btrfs_attach_transaction_barrier(root);
4391 	if (IS_ERR(trans)) {
4392 		if (PTR_ERR(trans) != -ENOENT)
4393 			return PTR_ERR(trans);
4394 
4395 		/* No running transaction, don't bother */
4396 		transid = root->fs_info->last_trans_committed;
4397 		goto out;
4398 	}
4399 	transid = trans->transid;
4400 	ret = btrfs_commit_transaction_async(trans, root, 0);
4401 	if (ret) {
4402 		btrfs_end_transaction(trans, root);
4403 		return ret;
4404 	}
4405 out:
4406 	if (argp)
4407 		if (copy_to_user(argp, &transid, sizeof(transid)))
4408 			return -EFAULT;
4409 	return 0;
4410 }
4411 
btrfs_ioctl_wait_sync(struct btrfs_root * root,void __user * argp)4412 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4413 					   void __user *argp)
4414 {
4415 	u64 transid;
4416 
4417 	if (argp) {
4418 		if (copy_from_user(&transid, argp, sizeof(transid)))
4419 			return -EFAULT;
4420 	} else {
4421 		transid = 0;  /* current trans */
4422 	}
4423 	return btrfs_wait_for_commit(root, transid);
4424 }
4425 
btrfs_ioctl_scrub(struct file * file,void __user * arg)4426 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4427 {
4428 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4429 	struct btrfs_ioctl_scrub_args *sa;
4430 	int ret;
4431 
4432 	if (!capable(CAP_SYS_ADMIN))
4433 		return -EPERM;
4434 
4435 	sa = memdup_user(arg, sizeof(*sa));
4436 	if (IS_ERR(sa))
4437 		return PTR_ERR(sa);
4438 
4439 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4440 		ret = mnt_want_write_file(file);
4441 		if (ret)
4442 			goto out;
4443 	}
4444 
4445 	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4446 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4447 			      0);
4448 
4449 	if (copy_to_user(arg, sa, sizeof(*sa)))
4450 		ret = -EFAULT;
4451 
4452 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4453 		mnt_drop_write_file(file);
4454 out:
4455 	kfree(sa);
4456 	return ret;
4457 }
4458 
btrfs_ioctl_scrub_cancel(struct btrfs_root * root,void __user * arg)4459 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4460 {
4461 	if (!capable(CAP_SYS_ADMIN))
4462 		return -EPERM;
4463 
4464 	return btrfs_scrub_cancel(root->fs_info);
4465 }
4466 
btrfs_ioctl_scrub_progress(struct btrfs_root * root,void __user * arg)4467 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4468 				       void __user *arg)
4469 {
4470 	struct btrfs_ioctl_scrub_args *sa;
4471 	int ret;
4472 
4473 	if (!capable(CAP_SYS_ADMIN))
4474 		return -EPERM;
4475 
4476 	sa = memdup_user(arg, sizeof(*sa));
4477 	if (IS_ERR(sa))
4478 		return PTR_ERR(sa);
4479 
4480 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4481 
4482 	if (copy_to_user(arg, sa, sizeof(*sa)))
4483 		ret = -EFAULT;
4484 
4485 	kfree(sa);
4486 	return ret;
4487 }
4488 
btrfs_ioctl_get_dev_stats(struct btrfs_root * root,void __user * arg)4489 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4490 				      void __user *arg)
4491 {
4492 	struct btrfs_ioctl_get_dev_stats *sa;
4493 	int ret;
4494 
4495 	sa = memdup_user(arg, sizeof(*sa));
4496 	if (IS_ERR(sa))
4497 		return PTR_ERR(sa);
4498 
4499 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4500 		kfree(sa);
4501 		return -EPERM;
4502 	}
4503 
4504 	ret = btrfs_get_dev_stats(root, sa);
4505 
4506 	if (copy_to_user(arg, sa, sizeof(*sa)))
4507 		ret = -EFAULT;
4508 
4509 	kfree(sa);
4510 	return ret;
4511 }
4512 
btrfs_ioctl_dev_replace(struct btrfs_root * root,void __user * arg)4513 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4514 {
4515 	struct btrfs_ioctl_dev_replace_args *p;
4516 	int ret;
4517 
4518 	if (!capable(CAP_SYS_ADMIN))
4519 		return -EPERM;
4520 
4521 	p = memdup_user(arg, sizeof(*p));
4522 	if (IS_ERR(p))
4523 		return PTR_ERR(p);
4524 
4525 	switch (p->cmd) {
4526 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4527 		if (root->fs_info->sb->s_flags & MS_RDONLY) {
4528 			ret = -EROFS;
4529 			goto out;
4530 		}
4531 		if (atomic_xchg(
4532 			&root->fs_info->mutually_exclusive_operation_running,
4533 			1)) {
4534 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4535 		} else {
4536 			ret = btrfs_dev_replace_start(root, p);
4537 			atomic_set(
4538 			 &root->fs_info->mutually_exclusive_operation_running,
4539 			 0);
4540 		}
4541 		break;
4542 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4543 		btrfs_dev_replace_status(root->fs_info, p);
4544 		ret = 0;
4545 		break;
4546 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4547 		ret = btrfs_dev_replace_cancel(root->fs_info, p);
4548 		break;
4549 	default:
4550 		ret = -EINVAL;
4551 		break;
4552 	}
4553 
4554 	if (copy_to_user(arg, p, sizeof(*p)))
4555 		ret = -EFAULT;
4556 out:
4557 	kfree(p);
4558 	return ret;
4559 }
4560 
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)4561 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4562 {
4563 	int ret = 0;
4564 	int i;
4565 	u64 rel_ptr;
4566 	int size;
4567 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4568 	struct inode_fs_paths *ipath = NULL;
4569 	struct btrfs_path *path;
4570 
4571 	if (!capable(CAP_DAC_READ_SEARCH))
4572 		return -EPERM;
4573 
4574 	path = btrfs_alloc_path();
4575 	if (!path) {
4576 		ret = -ENOMEM;
4577 		goto out;
4578 	}
4579 
4580 	ipa = memdup_user(arg, sizeof(*ipa));
4581 	if (IS_ERR(ipa)) {
4582 		ret = PTR_ERR(ipa);
4583 		ipa = NULL;
4584 		goto out;
4585 	}
4586 
4587 	size = min_t(u32, ipa->size, 4096);
4588 	ipath = init_ipath(size, root, path);
4589 	if (IS_ERR(ipath)) {
4590 		ret = PTR_ERR(ipath);
4591 		ipath = NULL;
4592 		goto out;
4593 	}
4594 
4595 	ret = paths_from_inode(ipa->inum, ipath);
4596 	if (ret < 0)
4597 		goto out;
4598 
4599 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4600 		rel_ptr = ipath->fspath->val[i] -
4601 			  (u64)(unsigned long)ipath->fspath->val;
4602 		ipath->fspath->val[i] = rel_ptr;
4603 	}
4604 
4605 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4606 			   (void *)(unsigned long)ipath->fspath, size);
4607 	if (ret) {
4608 		ret = -EFAULT;
4609 		goto out;
4610 	}
4611 
4612 out:
4613 	btrfs_free_path(path);
4614 	free_ipath(ipath);
4615 	kfree(ipa);
4616 
4617 	return ret;
4618 }
4619 
build_ino_list(u64 inum,u64 offset,u64 root,void * ctx)4620 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4621 {
4622 	struct btrfs_data_container *inodes = ctx;
4623 	const size_t c = 3 * sizeof(u64);
4624 
4625 	if (inodes->bytes_left >= c) {
4626 		inodes->bytes_left -= c;
4627 		inodes->val[inodes->elem_cnt] = inum;
4628 		inodes->val[inodes->elem_cnt + 1] = offset;
4629 		inodes->val[inodes->elem_cnt + 2] = root;
4630 		inodes->elem_cnt += 3;
4631 	} else {
4632 		inodes->bytes_missing += c - inodes->bytes_left;
4633 		inodes->bytes_left = 0;
4634 		inodes->elem_missed += 3;
4635 	}
4636 
4637 	return 0;
4638 }
4639 
btrfs_ioctl_logical_to_ino(struct btrfs_root * root,void __user * arg)4640 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4641 					void __user *arg)
4642 {
4643 	int ret = 0;
4644 	int size;
4645 	struct btrfs_ioctl_logical_ino_args *loi;
4646 	struct btrfs_data_container *inodes = NULL;
4647 	struct btrfs_path *path = NULL;
4648 
4649 	if (!capable(CAP_SYS_ADMIN))
4650 		return -EPERM;
4651 
4652 	loi = memdup_user(arg, sizeof(*loi));
4653 	if (IS_ERR(loi)) {
4654 		ret = PTR_ERR(loi);
4655 		loi = NULL;
4656 		goto out;
4657 	}
4658 
4659 	path = btrfs_alloc_path();
4660 	if (!path) {
4661 		ret = -ENOMEM;
4662 		goto out;
4663 	}
4664 
4665 	size = min_t(u32, loi->size, 64 * 1024);
4666 	inodes = init_data_container(size);
4667 	if (IS_ERR(inodes)) {
4668 		ret = PTR_ERR(inodes);
4669 		inodes = NULL;
4670 		goto out;
4671 	}
4672 
4673 	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4674 					  build_ino_list, inodes);
4675 	if (ret == -EINVAL)
4676 		ret = -ENOENT;
4677 	if (ret < 0)
4678 		goto out;
4679 
4680 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
4681 			   (void *)(unsigned long)inodes, size);
4682 	if (ret)
4683 		ret = -EFAULT;
4684 
4685 out:
4686 	btrfs_free_path(path);
4687 	vfree(inodes);
4688 	kfree(loi);
4689 
4690 	return ret;
4691 }
4692 
update_ioctl_balance_args(struct btrfs_fs_info * fs_info,int lock,struct btrfs_ioctl_balance_args * bargs)4693 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4694 			       struct btrfs_ioctl_balance_args *bargs)
4695 {
4696 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4697 
4698 	bargs->flags = bctl->flags;
4699 
4700 	if (atomic_read(&fs_info->balance_running))
4701 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4702 	if (atomic_read(&fs_info->balance_pause_req))
4703 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4704 	if (atomic_read(&fs_info->balance_cancel_req))
4705 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4706 
4707 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4708 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4709 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4710 
4711 	if (lock) {
4712 		spin_lock(&fs_info->balance_lock);
4713 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4714 		spin_unlock(&fs_info->balance_lock);
4715 	} else {
4716 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4717 	}
4718 }
4719 
btrfs_ioctl_balance(struct file * file,void __user * arg)4720 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4721 {
4722 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4723 	struct btrfs_fs_info *fs_info = root->fs_info;
4724 	struct btrfs_ioctl_balance_args *bargs;
4725 	struct btrfs_balance_control *bctl;
4726 	bool need_unlock; /* for mut. excl. ops lock */
4727 	int ret;
4728 
4729 	if (!capable(CAP_SYS_ADMIN))
4730 		return -EPERM;
4731 
4732 	ret = mnt_want_write_file(file);
4733 	if (ret)
4734 		return ret;
4735 
4736 again:
4737 	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4738 		mutex_lock(&fs_info->volume_mutex);
4739 		mutex_lock(&fs_info->balance_mutex);
4740 		need_unlock = true;
4741 		goto locked;
4742 	}
4743 
4744 	/*
4745 	 * mut. excl. ops lock is locked.  Three possibilites:
4746 	 *   (1) some other op is running
4747 	 *   (2) balance is running
4748 	 *   (3) balance is paused -- special case (think resume)
4749 	 */
4750 	mutex_lock(&fs_info->balance_mutex);
4751 	if (fs_info->balance_ctl) {
4752 		/* this is either (2) or (3) */
4753 		if (!atomic_read(&fs_info->balance_running)) {
4754 			mutex_unlock(&fs_info->balance_mutex);
4755 			if (!mutex_trylock(&fs_info->volume_mutex))
4756 				goto again;
4757 			mutex_lock(&fs_info->balance_mutex);
4758 
4759 			if (fs_info->balance_ctl &&
4760 			    !atomic_read(&fs_info->balance_running)) {
4761 				/* this is (3) */
4762 				need_unlock = false;
4763 				goto locked;
4764 			}
4765 
4766 			mutex_unlock(&fs_info->balance_mutex);
4767 			mutex_unlock(&fs_info->volume_mutex);
4768 			goto again;
4769 		} else {
4770 			/* this is (2) */
4771 			mutex_unlock(&fs_info->balance_mutex);
4772 			ret = -EINPROGRESS;
4773 			goto out;
4774 		}
4775 	} else {
4776 		/* this is (1) */
4777 		mutex_unlock(&fs_info->balance_mutex);
4778 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4779 		goto out;
4780 	}
4781 
4782 locked:
4783 	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4784 
4785 	if (arg) {
4786 		bargs = memdup_user(arg, sizeof(*bargs));
4787 		if (IS_ERR(bargs)) {
4788 			ret = PTR_ERR(bargs);
4789 			goto out_unlock;
4790 		}
4791 
4792 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4793 			if (!fs_info->balance_ctl) {
4794 				ret = -ENOTCONN;
4795 				goto out_bargs;
4796 			}
4797 
4798 			bctl = fs_info->balance_ctl;
4799 			spin_lock(&fs_info->balance_lock);
4800 			bctl->flags |= BTRFS_BALANCE_RESUME;
4801 			spin_unlock(&fs_info->balance_lock);
4802 
4803 			goto do_balance;
4804 		}
4805 	} else {
4806 		bargs = NULL;
4807 	}
4808 
4809 	if (fs_info->balance_ctl) {
4810 		ret = -EINPROGRESS;
4811 		goto out_bargs;
4812 	}
4813 
4814 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4815 	if (!bctl) {
4816 		ret = -ENOMEM;
4817 		goto out_bargs;
4818 	}
4819 
4820 	bctl->fs_info = fs_info;
4821 	if (arg) {
4822 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4823 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4824 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4825 
4826 		bctl->flags = bargs->flags;
4827 	} else {
4828 		/* balance everything - no filters */
4829 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4830 	}
4831 
4832 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4833 		ret = -EINVAL;
4834 		goto out_bctl;
4835 	}
4836 
4837 do_balance:
4838 	/*
4839 	 * Ownership of bctl and mutually_exclusive_operation_running
4840 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4841 	 * or, if restriper was paused all the way until unmount, in
4842 	 * free_fs_info.  mutually_exclusive_operation_running is
4843 	 * cleared in __cancel_balance.
4844 	 */
4845 	need_unlock = false;
4846 
4847 	ret = btrfs_balance(bctl, bargs);
4848 	bctl = NULL;
4849 
4850 	if (arg) {
4851 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4852 			ret = -EFAULT;
4853 	}
4854 
4855 out_bctl:
4856 	kfree(bctl);
4857 out_bargs:
4858 	kfree(bargs);
4859 out_unlock:
4860 	mutex_unlock(&fs_info->balance_mutex);
4861 	mutex_unlock(&fs_info->volume_mutex);
4862 	if (need_unlock)
4863 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4864 out:
4865 	mnt_drop_write_file(file);
4866 	return ret;
4867 }
4868 
btrfs_ioctl_balance_ctl(struct btrfs_root * root,int cmd)4869 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4870 {
4871 	if (!capable(CAP_SYS_ADMIN))
4872 		return -EPERM;
4873 
4874 	switch (cmd) {
4875 	case BTRFS_BALANCE_CTL_PAUSE:
4876 		return btrfs_pause_balance(root->fs_info);
4877 	case BTRFS_BALANCE_CTL_CANCEL:
4878 		return btrfs_cancel_balance(root->fs_info);
4879 	}
4880 
4881 	return -EINVAL;
4882 }
4883 
btrfs_ioctl_balance_progress(struct btrfs_root * root,void __user * arg)4884 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4885 					 void __user *arg)
4886 {
4887 	struct btrfs_fs_info *fs_info = root->fs_info;
4888 	struct btrfs_ioctl_balance_args *bargs;
4889 	int ret = 0;
4890 
4891 	if (!capable(CAP_SYS_ADMIN))
4892 		return -EPERM;
4893 
4894 	mutex_lock(&fs_info->balance_mutex);
4895 	if (!fs_info->balance_ctl) {
4896 		ret = -ENOTCONN;
4897 		goto out;
4898 	}
4899 
4900 	bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4901 	if (!bargs) {
4902 		ret = -ENOMEM;
4903 		goto out;
4904 	}
4905 
4906 	update_ioctl_balance_args(fs_info, 1, bargs);
4907 
4908 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4909 		ret = -EFAULT;
4910 
4911 	kfree(bargs);
4912 out:
4913 	mutex_unlock(&fs_info->balance_mutex);
4914 	return ret;
4915 }
4916 
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)4917 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4918 {
4919 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4920 	struct btrfs_ioctl_quota_ctl_args *sa;
4921 	struct btrfs_trans_handle *trans = NULL;
4922 	int ret;
4923 	int err;
4924 
4925 	if (!capable(CAP_SYS_ADMIN))
4926 		return -EPERM;
4927 
4928 	ret = mnt_want_write_file(file);
4929 	if (ret)
4930 		return ret;
4931 
4932 	sa = memdup_user(arg, sizeof(*sa));
4933 	if (IS_ERR(sa)) {
4934 		ret = PTR_ERR(sa);
4935 		goto drop_write;
4936 	}
4937 
4938 	down_write(&root->fs_info->subvol_sem);
4939 	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4940 	if (IS_ERR(trans)) {
4941 		ret = PTR_ERR(trans);
4942 		goto out;
4943 	}
4944 
4945 	switch (sa->cmd) {
4946 	case BTRFS_QUOTA_CTL_ENABLE:
4947 		ret = btrfs_quota_enable(trans, root->fs_info);
4948 		break;
4949 	case BTRFS_QUOTA_CTL_DISABLE:
4950 		ret = btrfs_quota_disable(trans, root->fs_info);
4951 		break;
4952 	default:
4953 		ret = -EINVAL;
4954 		break;
4955 	}
4956 
4957 	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4958 	if (err && !ret)
4959 		ret = err;
4960 out:
4961 	kfree(sa);
4962 	up_write(&root->fs_info->subvol_sem);
4963 drop_write:
4964 	mnt_drop_write_file(file);
4965 	return ret;
4966 }
4967 
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)4968 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4969 {
4970 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4971 	struct btrfs_ioctl_qgroup_assign_args *sa;
4972 	struct btrfs_trans_handle *trans;
4973 	int ret;
4974 	int err;
4975 
4976 	if (!capable(CAP_SYS_ADMIN))
4977 		return -EPERM;
4978 
4979 	ret = mnt_want_write_file(file);
4980 	if (ret)
4981 		return ret;
4982 
4983 	sa = memdup_user(arg, sizeof(*sa));
4984 	if (IS_ERR(sa)) {
4985 		ret = PTR_ERR(sa);
4986 		goto drop_write;
4987 	}
4988 
4989 	trans = btrfs_join_transaction(root);
4990 	if (IS_ERR(trans)) {
4991 		ret = PTR_ERR(trans);
4992 		goto out;
4993 	}
4994 
4995 	/* FIXME: check if the IDs really exist */
4996 	if (sa->assign) {
4997 		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4998 						sa->src, sa->dst);
4999 	} else {
5000 		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
5001 						sa->src, sa->dst);
5002 	}
5003 
5004 	/* update qgroup status and info */
5005 	err = btrfs_run_qgroups(trans, root->fs_info);
5006 	if (err < 0)
5007 		btrfs_std_error(root->fs_info, ret,
5008 			    "failed to update qgroup status and info\n");
5009 	err = btrfs_end_transaction(trans, root);
5010 	if (err && !ret)
5011 		ret = err;
5012 
5013 out:
5014 	kfree(sa);
5015 drop_write:
5016 	mnt_drop_write_file(file);
5017 	return ret;
5018 }
5019 
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)5020 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
5021 {
5022 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5023 	struct btrfs_ioctl_qgroup_create_args *sa;
5024 	struct btrfs_trans_handle *trans;
5025 	int ret;
5026 	int err;
5027 
5028 	if (!capable(CAP_SYS_ADMIN))
5029 		return -EPERM;
5030 
5031 	ret = mnt_want_write_file(file);
5032 	if (ret)
5033 		return ret;
5034 
5035 	sa = memdup_user(arg, sizeof(*sa));
5036 	if (IS_ERR(sa)) {
5037 		ret = PTR_ERR(sa);
5038 		goto drop_write;
5039 	}
5040 
5041 	if (!sa->qgroupid) {
5042 		ret = -EINVAL;
5043 		goto out;
5044 	}
5045 
5046 	trans = btrfs_join_transaction(root);
5047 	if (IS_ERR(trans)) {
5048 		ret = PTR_ERR(trans);
5049 		goto out;
5050 	}
5051 
5052 	/* FIXME: check if the IDs really exist */
5053 	if (sa->create) {
5054 		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
5055 	} else {
5056 		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
5057 	}
5058 
5059 	err = btrfs_end_transaction(trans, root);
5060 	if (err && !ret)
5061 		ret = err;
5062 
5063 out:
5064 	kfree(sa);
5065 drop_write:
5066 	mnt_drop_write_file(file);
5067 	return ret;
5068 }
5069 
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)5070 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
5071 {
5072 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5073 	struct btrfs_ioctl_qgroup_limit_args *sa;
5074 	struct btrfs_trans_handle *trans;
5075 	int ret;
5076 	int err;
5077 	u64 qgroupid;
5078 
5079 	if (!capable(CAP_SYS_ADMIN))
5080 		return -EPERM;
5081 
5082 	ret = mnt_want_write_file(file);
5083 	if (ret)
5084 		return ret;
5085 
5086 	sa = memdup_user(arg, sizeof(*sa));
5087 	if (IS_ERR(sa)) {
5088 		ret = PTR_ERR(sa);
5089 		goto drop_write;
5090 	}
5091 
5092 	trans = btrfs_join_transaction(root);
5093 	if (IS_ERR(trans)) {
5094 		ret = PTR_ERR(trans);
5095 		goto out;
5096 	}
5097 
5098 	qgroupid = sa->qgroupid;
5099 	if (!qgroupid) {
5100 		/* take the current subvol as qgroup */
5101 		qgroupid = root->root_key.objectid;
5102 	}
5103 
5104 	/* FIXME: check if the IDs really exist */
5105 	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
5106 
5107 	err = btrfs_end_transaction(trans, root);
5108 	if (err && !ret)
5109 		ret = err;
5110 
5111 out:
5112 	kfree(sa);
5113 drop_write:
5114 	mnt_drop_write_file(file);
5115 	return ret;
5116 }
5117 
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)5118 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5119 {
5120 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5121 	struct btrfs_ioctl_quota_rescan_args *qsa;
5122 	int ret;
5123 
5124 	if (!capable(CAP_SYS_ADMIN))
5125 		return -EPERM;
5126 
5127 	ret = mnt_want_write_file(file);
5128 	if (ret)
5129 		return ret;
5130 
5131 	qsa = memdup_user(arg, sizeof(*qsa));
5132 	if (IS_ERR(qsa)) {
5133 		ret = PTR_ERR(qsa);
5134 		goto drop_write;
5135 	}
5136 
5137 	if (qsa->flags) {
5138 		ret = -EINVAL;
5139 		goto out;
5140 	}
5141 
5142 	ret = btrfs_qgroup_rescan(root->fs_info);
5143 
5144 out:
5145 	kfree(qsa);
5146 drop_write:
5147 	mnt_drop_write_file(file);
5148 	return ret;
5149 }
5150 
btrfs_ioctl_quota_rescan_status(struct file * file,void __user * arg)5151 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5152 {
5153 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5154 	struct btrfs_ioctl_quota_rescan_args *qsa;
5155 	int ret = 0;
5156 
5157 	if (!capable(CAP_SYS_ADMIN))
5158 		return -EPERM;
5159 
5160 	qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
5161 	if (!qsa)
5162 		return -ENOMEM;
5163 
5164 	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5165 		qsa->flags = 1;
5166 		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
5167 	}
5168 
5169 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
5170 		ret = -EFAULT;
5171 
5172 	kfree(qsa);
5173 	return ret;
5174 }
5175 
btrfs_ioctl_quota_rescan_wait(struct file * file,void __user * arg)5176 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5177 {
5178 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5179 
5180 	if (!capable(CAP_SYS_ADMIN))
5181 		return -EPERM;
5182 
5183 	return btrfs_qgroup_wait_for_completion(root->fs_info, true);
5184 }
5185 
_btrfs_ioctl_set_received_subvol(struct file * file,struct btrfs_ioctl_received_subvol_args * sa)5186 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5187 					    struct btrfs_ioctl_received_subvol_args *sa)
5188 {
5189 	struct inode *inode = file_inode(file);
5190 	struct btrfs_root *root = BTRFS_I(inode)->root;
5191 	struct btrfs_root_item *root_item = &root->root_item;
5192 	struct btrfs_trans_handle *trans;
5193 	struct timespec ct = CURRENT_TIME;
5194 	int ret = 0;
5195 	int received_uuid_changed;
5196 
5197 	if (!inode_owner_or_capable(inode))
5198 		return -EPERM;
5199 
5200 	ret = mnt_want_write_file(file);
5201 	if (ret < 0)
5202 		return ret;
5203 
5204 	down_write(&root->fs_info->subvol_sem);
5205 
5206 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
5207 		ret = -EINVAL;
5208 		goto out;
5209 	}
5210 
5211 	if (btrfs_root_readonly(root)) {
5212 		ret = -EROFS;
5213 		goto out;
5214 	}
5215 
5216 	/*
5217 	 * 1 - root item
5218 	 * 2 - uuid items (received uuid + subvol uuid)
5219 	 */
5220 	trans = btrfs_start_transaction(root, 3);
5221 	if (IS_ERR(trans)) {
5222 		ret = PTR_ERR(trans);
5223 		trans = NULL;
5224 		goto out;
5225 	}
5226 
5227 	sa->rtransid = trans->transid;
5228 	sa->rtime.sec = ct.tv_sec;
5229 	sa->rtime.nsec = ct.tv_nsec;
5230 
5231 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5232 				       BTRFS_UUID_SIZE);
5233 	if (received_uuid_changed &&
5234 	    !btrfs_is_empty_uuid(root_item->received_uuid))
5235 		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
5236 				    root_item->received_uuid,
5237 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5238 				    root->root_key.objectid);
5239 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5240 	btrfs_set_root_stransid(root_item, sa->stransid);
5241 	btrfs_set_root_rtransid(root_item, sa->rtransid);
5242 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5243 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5244 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5245 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5246 
5247 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
5248 				&root->root_key, &root->root_item);
5249 	if (ret < 0) {
5250 		btrfs_end_transaction(trans, root);
5251 		goto out;
5252 	}
5253 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5254 		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
5255 					  sa->uuid,
5256 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5257 					  root->root_key.objectid);
5258 		if (ret < 0 && ret != -EEXIST) {
5259 			btrfs_abort_transaction(trans, root, ret);
5260 			goto out;
5261 		}
5262 	}
5263 	ret = btrfs_commit_transaction(trans, root);
5264 	if (ret < 0) {
5265 		btrfs_abort_transaction(trans, root, ret);
5266 		goto out;
5267 	}
5268 
5269 out:
5270 	up_write(&root->fs_info->subvol_sem);
5271 	mnt_drop_write_file(file);
5272 	return ret;
5273 }
5274 
5275 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)5276 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5277 						void __user *arg)
5278 {
5279 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5280 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5281 	int ret = 0;
5282 
5283 	args32 = memdup_user(arg, sizeof(*args32));
5284 	if (IS_ERR(args32)) {
5285 		ret = PTR_ERR(args32);
5286 		args32 = NULL;
5287 		goto out;
5288 	}
5289 
5290 	args64 = kmalloc(sizeof(*args64), GFP_NOFS);
5291 	if (!args64) {
5292 		ret = -ENOMEM;
5293 		goto out;
5294 	}
5295 
5296 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5297 	args64->stransid = args32->stransid;
5298 	args64->rtransid = args32->rtransid;
5299 	args64->stime.sec = args32->stime.sec;
5300 	args64->stime.nsec = args32->stime.nsec;
5301 	args64->rtime.sec = args32->rtime.sec;
5302 	args64->rtime.nsec = args32->rtime.nsec;
5303 	args64->flags = args32->flags;
5304 
5305 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5306 	if (ret)
5307 		goto out;
5308 
5309 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5310 	args32->stransid = args64->stransid;
5311 	args32->rtransid = args64->rtransid;
5312 	args32->stime.sec = args64->stime.sec;
5313 	args32->stime.nsec = args64->stime.nsec;
5314 	args32->rtime.sec = args64->rtime.sec;
5315 	args32->rtime.nsec = args64->rtime.nsec;
5316 	args32->flags = args64->flags;
5317 
5318 	ret = copy_to_user(arg, args32, sizeof(*args32));
5319 	if (ret)
5320 		ret = -EFAULT;
5321 
5322 out:
5323 	kfree(args32);
5324 	kfree(args64);
5325 	return ret;
5326 }
5327 #endif
5328 
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)5329 static long btrfs_ioctl_set_received_subvol(struct file *file,
5330 					    void __user *arg)
5331 {
5332 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5333 	int ret = 0;
5334 
5335 	sa = memdup_user(arg, sizeof(*sa));
5336 	if (IS_ERR(sa)) {
5337 		ret = PTR_ERR(sa);
5338 		sa = NULL;
5339 		goto out;
5340 	}
5341 
5342 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5343 
5344 	if (ret)
5345 		goto out;
5346 
5347 	ret = copy_to_user(arg, sa, sizeof(*sa));
5348 	if (ret)
5349 		ret = -EFAULT;
5350 
5351 out:
5352 	kfree(sa);
5353 	return ret;
5354 }
5355 
btrfs_ioctl_get_fslabel(struct file * file,void __user * arg)5356 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5357 {
5358 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5359 	size_t len;
5360 	int ret;
5361 	char label[BTRFS_LABEL_SIZE];
5362 
5363 	spin_lock(&root->fs_info->super_lock);
5364 	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5365 	spin_unlock(&root->fs_info->super_lock);
5366 
5367 	len = strnlen(label, BTRFS_LABEL_SIZE);
5368 
5369 	if (len == BTRFS_LABEL_SIZE) {
5370 		btrfs_warn(root->fs_info,
5371 			"label is too long, return the first %zu bytes", --len);
5372 	}
5373 
5374 	ret = copy_to_user(arg, label, len);
5375 
5376 	return ret ? -EFAULT : 0;
5377 }
5378 
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)5379 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5380 {
5381 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5382 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5383 	struct btrfs_trans_handle *trans;
5384 	char label[BTRFS_LABEL_SIZE];
5385 	int ret;
5386 
5387 	if (!capable(CAP_SYS_ADMIN))
5388 		return -EPERM;
5389 
5390 	if (copy_from_user(label, arg, sizeof(label)))
5391 		return -EFAULT;
5392 
5393 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5394 		btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5395 		       BTRFS_LABEL_SIZE - 1);
5396 		return -EINVAL;
5397 	}
5398 
5399 	ret = mnt_want_write_file(file);
5400 	if (ret)
5401 		return ret;
5402 
5403 	trans = btrfs_start_transaction(root, 0);
5404 	if (IS_ERR(trans)) {
5405 		ret = PTR_ERR(trans);
5406 		goto out_unlock;
5407 	}
5408 
5409 	spin_lock(&root->fs_info->super_lock);
5410 	strcpy(super_block->label, label);
5411 	spin_unlock(&root->fs_info->super_lock);
5412 	ret = btrfs_commit_transaction(trans, root);
5413 
5414 out_unlock:
5415 	mnt_drop_write_file(file);
5416 	return ret;
5417 }
5418 
5419 #define INIT_FEATURE_FLAGS(suffix) \
5420 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5421 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5422 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5423 
btrfs_ioctl_get_supported_features(struct file * file,void __user * arg)5424 static int btrfs_ioctl_get_supported_features(struct file *file,
5425 					      void __user *arg)
5426 {
5427 	static struct btrfs_ioctl_feature_flags features[3] = {
5428 		INIT_FEATURE_FLAGS(SUPP),
5429 		INIT_FEATURE_FLAGS(SAFE_SET),
5430 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5431 	};
5432 
5433 	if (copy_to_user(arg, &features, sizeof(features)))
5434 		return -EFAULT;
5435 
5436 	return 0;
5437 }
5438 
btrfs_ioctl_get_features(struct file * file,void __user * arg)5439 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5440 {
5441 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5442 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5443 	struct btrfs_ioctl_feature_flags features;
5444 
5445 	features.compat_flags = btrfs_super_compat_flags(super_block);
5446 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5447 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5448 
5449 	if (copy_to_user(arg, &features, sizeof(features)))
5450 		return -EFAULT;
5451 
5452 	return 0;
5453 }
5454 
check_feature_bits(struct btrfs_root * root,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)5455 static int check_feature_bits(struct btrfs_root *root,
5456 			      enum btrfs_feature_set set,
5457 			      u64 change_mask, u64 flags, u64 supported_flags,
5458 			      u64 safe_set, u64 safe_clear)
5459 {
5460 	const char *type = btrfs_feature_set_names[set];
5461 	char *names;
5462 	u64 disallowed, unsupported;
5463 	u64 set_mask = flags & change_mask;
5464 	u64 clear_mask = ~flags & change_mask;
5465 
5466 	unsupported = set_mask & ~supported_flags;
5467 	if (unsupported) {
5468 		names = btrfs_printable_features(set, unsupported);
5469 		if (names) {
5470 			btrfs_warn(root->fs_info,
5471 			   "this kernel does not support the %s feature bit%s",
5472 			   names, strchr(names, ',') ? "s" : "");
5473 			kfree(names);
5474 		} else
5475 			btrfs_warn(root->fs_info,
5476 			   "this kernel does not support %s bits 0x%llx",
5477 			   type, unsupported);
5478 		return -EOPNOTSUPP;
5479 	}
5480 
5481 	disallowed = set_mask & ~safe_set;
5482 	if (disallowed) {
5483 		names = btrfs_printable_features(set, disallowed);
5484 		if (names) {
5485 			btrfs_warn(root->fs_info,
5486 			   "can't set the %s feature bit%s while mounted",
5487 			   names, strchr(names, ',') ? "s" : "");
5488 			kfree(names);
5489 		} else
5490 			btrfs_warn(root->fs_info,
5491 			   "can't set %s bits 0x%llx while mounted",
5492 			   type, disallowed);
5493 		return -EPERM;
5494 	}
5495 
5496 	disallowed = clear_mask & ~safe_clear;
5497 	if (disallowed) {
5498 		names = btrfs_printable_features(set, disallowed);
5499 		if (names) {
5500 			btrfs_warn(root->fs_info,
5501 			   "can't clear the %s feature bit%s while mounted",
5502 			   names, strchr(names, ',') ? "s" : "");
5503 			kfree(names);
5504 		} else
5505 			btrfs_warn(root->fs_info,
5506 			   "can't clear %s bits 0x%llx while mounted",
5507 			   type, disallowed);
5508 		return -EPERM;
5509 	}
5510 
5511 	return 0;
5512 }
5513 
5514 #define check_feature(root, change_mask, flags, mask_base)	\
5515 check_feature_bits(root, FEAT_##mask_base, change_mask, flags,	\
5516 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5517 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5518 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5519 
btrfs_ioctl_set_features(struct file * file,void __user * arg)5520 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5521 {
5522 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5523 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5524 	struct btrfs_ioctl_feature_flags flags[2];
5525 	struct btrfs_trans_handle *trans;
5526 	u64 newflags;
5527 	int ret;
5528 
5529 	if (!capable(CAP_SYS_ADMIN))
5530 		return -EPERM;
5531 
5532 	if (copy_from_user(flags, arg, sizeof(flags)))
5533 		return -EFAULT;
5534 
5535 	/* Nothing to do */
5536 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5537 	    !flags[0].incompat_flags)
5538 		return 0;
5539 
5540 	ret = check_feature(root, flags[0].compat_flags,
5541 			    flags[1].compat_flags, COMPAT);
5542 	if (ret)
5543 		return ret;
5544 
5545 	ret = check_feature(root, flags[0].compat_ro_flags,
5546 			    flags[1].compat_ro_flags, COMPAT_RO);
5547 	if (ret)
5548 		return ret;
5549 
5550 	ret = check_feature(root, flags[0].incompat_flags,
5551 			    flags[1].incompat_flags, INCOMPAT);
5552 	if (ret)
5553 		return ret;
5554 
5555 	trans = btrfs_start_transaction(root, 0);
5556 	if (IS_ERR(trans))
5557 		return PTR_ERR(trans);
5558 
5559 	spin_lock(&root->fs_info->super_lock);
5560 	newflags = btrfs_super_compat_flags(super_block);
5561 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5562 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5563 	btrfs_set_super_compat_flags(super_block, newflags);
5564 
5565 	newflags = btrfs_super_compat_ro_flags(super_block);
5566 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5567 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5568 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5569 
5570 	newflags = btrfs_super_incompat_flags(super_block);
5571 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5572 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5573 	btrfs_set_super_incompat_flags(super_block, newflags);
5574 	spin_unlock(&root->fs_info->super_lock);
5575 
5576 	return btrfs_commit_transaction(trans, root);
5577 }
5578 
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5579 long btrfs_ioctl(struct file *file, unsigned int
5580 		cmd, unsigned long arg)
5581 {
5582 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5583 	void __user *argp = (void __user *)arg;
5584 
5585 	switch (cmd) {
5586 	case FS_IOC_GETFLAGS:
5587 		return btrfs_ioctl_getflags(file, argp);
5588 	case FS_IOC_SETFLAGS:
5589 		return btrfs_ioctl_setflags(file, argp);
5590 	case FS_IOC_GETVERSION:
5591 		return btrfs_ioctl_getversion(file, argp);
5592 	case FITRIM:
5593 		return btrfs_ioctl_fitrim(file, argp);
5594 	case BTRFS_IOC_SNAP_CREATE:
5595 		return btrfs_ioctl_snap_create(file, argp, 0);
5596 	case BTRFS_IOC_SNAP_CREATE_V2:
5597 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5598 	case BTRFS_IOC_SUBVOL_CREATE:
5599 		return btrfs_ioctl_snap_create(file, argp, 1);
5600 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5601 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5602 	case BTRFS_IOC_SNAP_DESTROY:
5603 		return btrfs_ioctl_snap_destroy(file, argp);
5604 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5605 		return btrfs_ioctl_subvol_getflags(file, argp);
5606 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5607 		return btrfs_ioctl_subvol_setflags(file, argp);
5608 	case BTRFS_IOC_DEFAULT_SUBVOL:
5609 		return btrfs_ioctl_default_subvol(file, argp);
5610 	case BTRFS_IOC_DEFRAG:
5611 		return btrfs_ioctl_defrag(file, NULL);
5612 	case BTRFS_IOC_DEFRAG_RANGE:
5613 		return btrfs_ioctl_defrag(file, argp);
5614 	case BTRFS_IOC_RESIZE:
5615 		return btrfs_ioctl_resize(file, argp);
5616 	case BTRFS_IOC_ADD_DEV:
5617 		return btrfs_ioctl_add_dev(root, argp);
5618 	case BTRFS_IOC_RM_DEV:
5619 		return btrfs_ioctl_rm_dev(file, argp);
5620 	case BTRFS_IOC_FS_INFO:
5621 		return btrfs_ioctl_fs_info(root, argp);
5622 	case BTRFS_IOC_DEV_INFO:
5623 		return btrfs_ioctl_dev_info(root, argp);
5624 	case BTRFS_IOC_BALANCE:
5625 		return btrfs_ioctl_balance(file, NULL);
5626 	case BTRFS_IOC_CLONE:
5627 		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
5628 	case BTRFS_IOC_CLONE_RANGE:
5629 		return btrfs_ioctl_clone_range(file, argp);
5630 	case BTRFS_IOC_TRANS_START:
5631 		return btrfs_ioctl_trans_start(file);
5632 	case BTRFS_IOC_TRANS_END:
5633 		return btrfs_ioctl_trans_end(file);
5634 	case BTRFS_IOC_TREE_SEARCH:
5635 		return btrfs_ioctl_tree_search(file, argp);
5636 	case BTRFS_IOC_TREE_SEARCH_V2:
5637 		return btrfs_ioctl_tree_search_v2(file, argp);
5638 	case BTRFS_IOC_INO_LOOKUP:
5639 		return btrfs_ioctl_ino_lookup(file, argp);
5640 	case BTRFS_IOC_INO_PATHS:
5641 		return btrfs_ioctl_ino_to_path(root, argp);
5642 	case BTRFS_IOC_LOGICAL_INO:
5643 		return btrfs_ioctl_logical_to_ino(root, argp);
5644 	case BTRFS_IOC_SPACE_INFO:
5645 		return btrfs_ioctl_space_info(root, argp);
5646 	case BTRFS_IOC_SYNC: {
5647 		int ret;
5648 
5649 		ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5650 		if (ret)
5651 			return ret;
5652 		ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5653 		/*
5654 		 * The transaction thread may want to do more work,
5655 		 * namely it pokes the cleaner ktread that will start
5656 		 * processing uncleaned subvols.
5657 		 */
5658 		wake_up_process(root->fs_info->transaction_kthread);
5659 		return ret;
5660 	}
5661 	case BTRFS_IOC_START_SYNC:
5662 		return btrfs_ioctl_start_sync(root, argp);
5663 	case BTRFS_IOC_WAIT_SYNC:
5664 		return btrfs_ioctl_wait_sync(root, argp);
5665 	case BTRFS_IOC_SCRUB:
5666 		return btrfs_ioctl_scrub(file, argp);
5667 	case BTRFS_IOC_SCRUB_CANCEL:
5668 		return btrfs_ioctl_scrub_cancel(root, argp);
5669 	case BTRFS_IOC_SCRUB_PROGRESS:
5670 		return btrfs_ioctl_scrub_progress(root, argp);
5671 	case BTRFS_IOC_BALANCE_V2:
5672 		return btrfs_ioctl_balance(file, argp);
5673 	case BTRFS_IOC_BALANCE_CTL:
5674 		return btrfs_ioctl_balance_ctl(root, arg);
5675 	case BTRFS_IOC_BALANCE_PROGRESS:
5676 		return btrfs_ioctl_balance_progress(root, argp);
5677 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5678 		return btrfs_ioctl_set_received_subvol(file, argp);
5679 #ifdef CONFIG_64BIT
5680 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5681 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5682 #endif
5683 	case BTRFS_IOC_SEND:
5684 		return btrfs_ioctl_send(file, argp);
5685 	case BTRFS_IOC_GET_DEV_STATS:
5686 		return btrfs_ioctl_get_dev_stats(root, argp);
5687 	case BTRFS_IOC_QUOTA_CTL:
5688 		return btrfs_ioctl_quota_ctl(file, argp);
5689 	case BTRFS_IOC_QGROUP_ASSIGN:
5690 		return btrfs_ioctl_qgroup_assign(file, argp);
5691 	case BTRFS_IOC_QGROUP_CREATE:
5692 		return btrfs_ioctl_qgroup_create(file, argp);
5693 	case BTRFS_IOC_QGROUP_LIMIT:
5694 		return btrfs_ioctl_qgroup_limit(file, argp);
5695 	case BTRFS_IOC_QUOTA_RESCAN:
5696 		return btrfs_ioctl_quota_rescan(file, argp);
5697 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5698 		return btrfs_ioctl_quota_rescan_status(file, argp);
5699 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5700 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5701 	case BTRFS_IOC_DEV_REPLACE:
5702 		return btrfs_ioctl_dev_replace(root, argp);
5703 	case BTRFS_IOC_GET_FSLABEL:
5704 		return btrfs_ioctl_get_fslabel(file, argp);
5705 	case BTRFS_IOC_SET_FSLABEL:
5706 		return btrfs_ioctl_set_fslabel(file, argp);
5707 	case BTRFS_IOC_FILE_EXTENT_SAME:
5708 		return btrfs_ioctl_file_extent_same(file, argp);
5709 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5710 		return btrfs_ioctl_get_supported_features(file, argp);
5711 	case BTRFS_IOC_GET_FEATURES:
5712 		return btrfs_ioctl_get_features(file, argp);
5713 	case BTRFS_IOC_SET_FEATURES:
5714 		return btrfs_ioctl_set_features(file, argp);
5715 	}
5716 
5717 	return -ENOTTY;
5718 }
5719