1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
9 *
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
13 *
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
18 */
19
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/swap.h>
26 #include <linux/timex.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpuset.h>
29 #include <linux/export.h>
30 #include <linux/notifier.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mempolicy.h>
33 #include <linux/security.h>
34 #include <linux/ptrace.h>
35 #include <linux/freezer.h>
36 #include <linux/ftrace.h>
37 #include <linux/ratelimit.h>
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/oom.h>
41
42 int sysctl_panic_on_oom;
43 int sysctl_oom_kill_allocating_task;
44 int sysctl_oom_dump_tasks = 1;
45
46 DEFINE_MUTEX(oom_lock);
47
48 #ifdef CONFIG_NUMA
49 /**
50 * has_intersects_mems_allowed() - check task eligiblity for kill
51 * @start: task struct of which task to consider
52 * @mask: nodemask passed to page allocator for mempolicy ooms
53 *
54 * Task eligibility is determined by whether or not a candidate task, @tsk,
55 * shares the same mempolicy nodes as current if it is bound by such a policy
56 * and whether or not it has the same set of allowed cpuset nodes.
57 */
has_intersects_mems_allowed(struct task_struct * start,const nodemask_t * mask)58 static bool has_intersects_mems_allowed(struct task_struct *start,
59 const nodemask_t *mask)
60 {
61 struct task_struct *tsk;
62 bool ret = false;
63
64 rcu_read_lock();
65 for_each_thread(start, tsk) {
66 if (mask) {
67 /*
68 * If this is a mempolicy constrained oom, tsk's
69 * cpuset is irrelevant. Only return true if its
70 * mempolicy intersects current, otherwise it may be
71 * needlessly killed.
72 */
73 ret = mempolicy_nodemask_intersects(tsk, mask);
74 } else {
75 /*
76 * This is not a mempolicy constrained oom, so only
77 * check the mems of tsk's cpuset.
78 */
79 ret = cpuset_mems_allowed_intersects(current, tsk);
80 }
81 if (ret)
82 break;
83 }
84 rcu_read_unlock();
85
86 return ret;
87 }
88 #else
has_intersects_mems_allowed(struct task_struct * tsk,const nodemask_t * mask)89 static bool has_intersects_mems_allowed(struct task_struct *tsk,
90 const nodemask_t *mask)
91 {
92 return true;
93 }
94 #endif /* CONFIG_NUMA */
95
96 /*
97 * The process p may have detached its own ->mm while exiting or through
98 * use_mm(), but one or more of its subthreads may still have a valid
99 * pointer. Return p, or any of its subthreads with a valid ->mm, with
100 * task_lock() held.
101 */
find_lock_task_mm(struct task_struct * p)102 struct task_struct *find_lock_task_mm(struct task_struct *p)
103 {
104 struct task_struct *t;
105
106 rcu_read_lock();
107
108 for_each_thread(p, t) {
109 task_lock(t);
110 if (likely(t->mm))
111 goto found;
112 task_unlock(t);
113 }
114 t = NULL;
115 found:
116 rcu_read_unlock();
117
118 return t;
119 }
120
121 /*
122 * order == -1 means the oom kill is required by sysrq, otherwise only
123 * for display purposes.
124 */
is_sysrq_oom(struct oom_control * oc)125 static inline bool is_sysrq_oom(struct oom_control *oc)
126 {
127 return oc->order == -1;
128 }
129
130 /* return true if the task is not adequate as candidate victim task. */
oom_unkillable_task(struct task_struct * p,struct mem_cgroup * memcg,const nodemask_t * nodemask)131 static bool oom_unkillable_task(struct task_struct *p,
132 struct mem_cgroup *memcg, const nodemask_t *nodemask)
133 {
134 if (is_global_init(p))
135 return true;
136 if (p->flags & PF_KTHREAD)
137 return true;
138
139 /* When mem_cgroup_out_of_memory() and p is not member of the group */
140 if (memcg && !task_in_mem_cgroup(p, memcg))
141 return true;
142
143 /* p may not have freeable memory in nodemask */
144 if (!has_intersects_mems_allowed(p, nodemask))
145 return true;
146
147 return false;
148 }
149
150 /**
151 * oom_badness - heuristic function to determine which candidate task to kill
152 * @p: task struct of which task we should calculate
153 * @totalpages: total present RAM allowed for page allocation
154 *
155 * The heuristic for determining which task to kill is made to be as simple and
156 * predictable as possible. The goal is to return the highest value for the
157 * task consuming the most memory to avoid subsequent oom failures.
158 */
oom_badness(struct task_struct * p,struct mem_cgroup * memcg,const nodemask_t * nodemask,unsigned long totalpages)159 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
160 const nodemask_t *nodemask, unsigned long totalpages)
161 {
162 long points;
163 long adj;
164
165 if (oom_unkillable_task(p, memcg, nodemask))
166 return 0;
167
168 p = find_lock_task_mm(p);
169 if (!p)
170 return 0;
171
172 adj = (long)p->signal->oom_score_adj;
173 if (adj == OOM_SCORE_ADJ_MIN) {
174 task_unlock(p);
175 return 0;
176 }
177
178 /*
179 * The baseline for the badness score is the proportion of RAM that each
180 * task's rss, pagetable and swap space use.
181 */
182 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
183 atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
184 task_unlock(p);
185
186 /*
187 * Root processes get 3% bonus, just like the __vm_enough_memory()
188 * implementation used by LSMs.
189 */
190 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
191 points -= (points * 3) / 100;
192
193 /* Normalize to oom_score_adj units */
194 adj *= totalpages / 1000;
195 points += adj;
196
197 /*
198 * Never return 0 for an eligible task regardless of the root bonus and
199 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
200 */
201 return points > 0 ? points : 1;
202 }
203
204 /*
205 * Determine the type of allocation constraint.
206 */
207 #ifdef CONFIG_NUMA
constrained_alloc(struct oom_control * oc,unsigned long * totalpages)208 static enum oom_constraint constrained_alloc(struct oom_control *oc,
209 unsigned long *totalpages)
210 {
211 struct zone *zone;
212 struct zoneref *z;
213 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
214 bool cpuset_limited = false;
215 int nid;
216
217 /* Default to all available memory */
218 *totalpages = totalram_pages + total_swap_pages;
219
220 if (!oc->zonelist)
221 return CONSTRAINT_NONE;
222 /*
223 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
224 * to kill current.We have to random task kill in this case.
225 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
226 */
227 if (oc->gfp_mask & __GFP_THISNODE)
228 return CONSTRAINT_NONE;
229
230 /*
231 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
232 * the page allocator means a mempolicy is in effect. Cpuset policy
233 * is enforced in get_page_from_freelist().
234 */
235 if (oc->nodemask &&
236 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
237 *totalpages = total_swap_pages;
238 for_each_node_mask(nid, *oc->nodemask)
239 *totalpages += node_spanned_pages(nid);
240 return CONSTRAINT_MEMORY_POLICY;
241 }
242
243 /* Check this allocation failure is caused by cpuset's wall function */
244 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
245 high_zoneidx, oc->nodemask)
246 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
247 cpuset_limited = true;
248
249 if (cpuset_limited) {
250 *totalpages = total_swap_pages;
251 for_each_node_mask(nid, cpuset_current_mems_allowed)
252 *totalpages += node_spanned_pages(nid);
253 return CONSTRAINT_CPUSET;
254 }
255 return CONSTRAINT_NONE;
256 }
257 #else
constrained_alloc(struct oom_control * oc,unsigned long * totalpages)258 static enum oom_constraint constrained_alloc(struct oom_control *oc,
259 unsigned long *totalpages)
260 {
261 *totalpages = totalram_pages + total_swap_pages;
262 return CONSTRAINT_NONE;
263 }
264 #endif
265
oom_scan_process_thread(struct oom_control * oc,struct task_struct * task,unsigned long totalpages)266 enum oom_scan_t oom_scan_process_thread(struct oom_control *oc,
267 struct task_struct *task, unsigned long totalpages)
268 {
269 if (oom_unkillable_task(task, NULL, oc->nodemask))
270 return OOM_SCAN_CONTINUE;
271
272 /*
273 * This task already has access to memory reserves and is being killed.
274 * Don't allow any other task to have access to the reserves.
275 */
276 if (test_tsk_thread_flag(task, TIF_MEMDIE)) {
277 if (!is_sysrq_oom(oc))
278 return OOM_SCAN_ABORT;
279 }
280 if (!task->mm)
281 return OOM_SCAN_CONTINUE;
282
283 /*
284 * If task is allocating a lot of memory and has been marked to be
285 * killed first if it triggers an oom, then select it.
286 */
287 if (oom_task_origin(task))
288 return OOM_SCAN_SELECT;
289
290 if (task_will_free_mem(task) && !is_sysrq_oom(oc))
291 return OOM_SCAN_ABORT;
292
293 return OOM_SCAN_OK;
294 }
295
296 /*
297 * Simple selection loop. We chose the process with the highest
298 * number of 'points'. Returns -1 on scan abort.
299 */
select_bad_process(struct oom_control * oc,unsigned int * ppoints,unsigned long totalpages)300 static struct task_struct *select_bad_process(struct oom_control *oc,
301 unsigned int *ppoints, unsigned long totalpages)
302 {
303 struct task_struct *g, *p;
304 struct task_struct *chosen = NULL;
305 unsigned long chosen_points = 0;
306
307 rcu_read_lock();
308 for_each_process_thread(g, p) {
309 unsigned int points;
310
311 switch (oom_scan_process_thread(oc, p, totalpages)) {
312 case OOM_SCAN_SELECT:
313 chosen = p;
314 chosen_points = ULONG_MAX;
315 /* fall through */
316 case OOM_SCAN_CONTINUE:
317 continue;
318 case OOM_SCAN_ABORT:
319 rcu_read_unlock();
320 return (struct task_struct *)(-1UL);
321 case OOM_SCAN_OK:
322 break;
323 };
324 points = oom_badness(p, NULL, oc->nodemask, totalpages);
325 if (!points || points < chosen_points)
326 continue;
327 /* Prefer thread group leaders for display purposes */
328 if (points == chosen_points && thread_group_leader(chosen))
329 continue;
330
331 chosen = p;
332 chosen_points = points;
333 }
334 if (chosen)
335 get_task_struct(chosen);
336 rcu_read_unlock();
337
338 *ppoints = chosen_points * 1000 / totalpages;
339 return chosen;
340 }
341
342 /**
343 * dump_tasks - dump current memory state of all system tasks
344 * @memcg: current's memory controller, if constrained
345 * @nodemask: nodemask passed to page allocator for mempolicy ooms
346 *
347 * Dumps the current memory state of all eligible tasks. Tasks not in the same
348 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
349 * are not shown.
350 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
351 * swapents, oom_score_adj value, and name.
352 */
dump_tasks(struct mem_cgroup * memcg,const nodemask_t * nodemask)353 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
354 {
355 struct task_struct *p;
356 struct task_struct *task;
357
358 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
359 rcu_read_lock();
360 for_each_process(p) {
361 if (oom_unkillable_task(p, memcg, nodemask))
362 continue;
363
364 task = find_lock_task_mm(p);
365 if (!task) {
366 /*
367 * This is a kthread or all of p's threads have already
368 * detached their mm's. There's no need to report
369 * them; they can't be oom killed anyway.
370 */
371 continue;
372 }
373
374 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
375 task->pid, from_kuid(&init_user_ns, task_uid(task)),
376 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
377 atomic_long_read(&task->mm->nr_ptes),
378 mm_nr_pmds(task->mm),
379 get_mm_counter(task->mm, MM_SWAPENTS),
380 task->signal->oom_score_adj, task->comm);
381 task_unlock(task);
382 }
383 rcu_read_unlock();
384 }
385
dump_header(struct oom_control * oc,struct task_struct * p,struct mem_cgroup * memcg)386 static void dump_header(struct oom_control *oc, struct task_struct *p,
387 struct mem_cgroup *memcg)
388 {
389 pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, oom_score_adj=%hd\n",
390 current->comm, oc->gfp_mask, oc->order,
391 current->signal->oom_score_adj);
392 cpuset_print_current_mems_allowed();
393 dump_stack();
394 if (memcg)
395 mem_cgroup_print_oom_info(memcg, p);
396 else
397 show_mem(SHOW_MEM_FILTER_NODES);
398 if (sysctl_oom_dump_tasks)
399 dump_tasks(memcg, oc->nodemask);
400 }
401
402 /*
403 * Number of OOM victims in flight
404 */
405 static atomic_t oom_victims = ATOMIC_INIT(0);
406 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
407
408 bool oom_killer_disabled __read_mostly;
409
410 /**
411 * mark_oom_victim - mark the given task as OOM victim
412 * @tsk: task to mark
413 *
414 * Has to be called with oom_lock held and never after
415 * oom has been disabled already.
416 */
mark_oom_victim(struct task_struct * tsk)417 void mark_oom_victim(struct task_struct *tsk)
418 {
419 WARN_ON(oom_killer_disabled);
420 /* OOM killer might race with memcg OOM */
421 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
422 return;
423 /*
424 * Make sure that the task is woken up from uninterruptible sleep
425 * if it is frozen because OOM killer wouldn't be able to free
426 * any memory and livelock. freezing_slow_path will tell the freezer
427 * that TIF_MEMDIE tasks should be ignored.
428 */
429 __thaw_task(tsk);
430 atomic_inc(&oom_victims);
431 }
432
433 /**
434 * exit_oom_victim - note the exit of an OOM victim
435 */
exit_oom_victim(void)436 void exit_oom_victim(void)
437 {
438 clear_thread_flag(TIF_MEMDIE);
439
440 if (!atomic_dec_return(&oom_victims))
441 wake_up_all(&oom_victims_wait);
442 }
443
444 /**
445 * oom_killer_disable - disable OOM killer
446 *
447 * Forces all page allocations to fail rather than trigger OOM killer.
448 * Will block and wait until all OOM victims are killed.
449 *
450 * The function cannot be called when there are runnable user tasks because
451 * the userspace would see unexpected allocation failures as a result. Any
452 * new usage of this function should be consulted with MM people.
453 *
454 * Returns true if successful and false if the OOM killer cannot be
455 * disabled.
456 */
oom_killer_disable(void)457 bool oom_killer_disable(void)
458 {
459 /*
460 * Make sure to not race with an ongoing OOM killer
461 * and that the current is not the victim.
462 */
463 mutex_lock(&oom_lock);
464 if (test_thread_flag(TIF_MEMDIE)) {
465 mutex_unlock(&oom_lock);
466 return false;
467 }
468
469 oom_killer_disabled = true;
470 mutex_unlock(&oom_lock);
471
472 wait_event(oom_victims_wait, !atomic_read(&oom_victims));
473
474 return true;
475 }
476
477 /**
478 * oom_killer_enable - enable OOM killer
479 */
oom_killer_enable(void)480 void oom_killer_enable(void)
481 {
482 oom_killer_disabled = false;
483 }
484
485 /*
486 * task->mm can be NULL if the task is the exited group leader. So to
487 * determine whether the task is using a particular mm, we examine all the
488 * task's threads: if one of those is using this mm then this task was also
489 * using it.
490 */
process_shares_mm(struct task_struct * p,struct mm_struct * mm)491 static bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
492 {
493 struct task_struct *t;
494
495 for_each_thread(p, t) {
496 struct mm_struct *t_mm = READ_ONCE(t->mm);
497 if (t_mm)
498 return t_mm == mm;
499 }
500 return false;
501 }
502
503 #define K(x) ((x) << (PAGE_SHIFT-10))
504 /*
505 * Must be called while holding a reference to p, which will be released upon
506 * returning.
507 */
oom_kill_process(struct oom_control * oc,struct task_struct * p,unsigned int points,unsigned long totalpages,struct mem_cgroup * memcg,const char * message)508 void oom_kill_process(struct oom_control *oc, struct task_struct *p,
509 unsigned int points, unsigned long totalpages,
510 struct mem_cgroup *memcg, const char *message)
511 {
512 struct task_struct *victim = p;
513 struct task_struct *child;
514 struct task_struct *t;
515 struct mm_struct *mm;
516 unsigned int victim_points = 0;
517 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
518 DEFAULT_RATELIMIT_BURST);
519
520 /*
521 * If the task is already exiting, don't alarm the sysadmin or kill
522 * its children or threads, just set TIF_MEMDIE so it can die quickly
523 */
524 task_lock(p);
525 if (p->mm && task_will_free_mem(p)) {
526 mark_oom_victim(p);
527 task_unlock(p);
528 put_task_struct(p);
529 return;
530 }
531 task_unlock(p);
532
533 if (__ratelimit(&oom_rs))
534 dump_header(oc, p, memcg);
535
536 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
537 message, task_pid_nr(p), p->comm, points);
538
539 /*
540 * If any of p's children has a different mm and is eligible for kill,
541 * the one with the highest oom_badness() score is sacrificed for its
542 * parent. This attempts to lose the minimal amount of work done while
543 * still freeing memory.
544 */
545 read_lock(&tasklist_lock);
546
547 /*
548 * The task 'p' might have already exited before reaching here. The
549 * put_task_struct() will free task_struct 'p' while the loop still try
550 * to access the field of 'p', so, get an extra reference.
551 */
552 get_task_struct(p);
553 for_each_thread(p, t) {
554 list_for_each_entry(child, &t->children, sibling) {
555 unsigned int child_points;
556
557 if (process_shares_mm(child, p->mm))
558 continue;
559 /*
560 * oom_badness() returns 0 if the thread is unkillable
561 */
562 child_points = oom_badness(child, memcg, oc->nodemask,
563 totalpages);
564 if (child_points > victim_points) {
565 put_task_struct(victim);
566 victim = child;
567 victim_points = child_points;
568 get_task_struct(victim);
569 }
570 }
571 }
572 put_task_struct(p);
573 read_unlock(&tasklist_lock);
574
575 p = find_lock_task_mm(victim);
576 if (!p) {
577 put_task_struct(victim);
578 return;
579 } else if (victim != p) {
580 get_task_struct(p);
581 put_task_struct(victim);
582 victim = p;
583 }
584
585 /* Get a reference to safely compare mm after task_unlock(victim) */
586 mm = victim->mm;
587 atomic_inc(&mm->mm_count);
588 /*
589 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
590 * the OOM victim from depleting the memory reserves from the user
591 * space under its control.
592 */
593 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
594 mark_oom_victim(victim);
595 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
596 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
597 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
598 K(get_mm_counter(victim->mm, MM_FILEPAGES)));
599 task_unlock(victim);
600
601 /*
602 * Kill all user processes sharing victim->mm in other thread groups, if
603 * any. They don't get access to memory reserves, though, to avoid
604 * depletion of all memory. This prevents mm->mmap_sem livelock when an
605 * oom killed thread cannot exit because it requires the semaphore and
606 * its contended by another thread trying to allocate memory itself.
607 * That thread will now get access to memory reserves since it has a
608 * pending fatal signal.
609 */
610 rcu_read_lock();
611 for_each_process(p) {
612 if (!process_shares_mm(p, mm))
613 continue;
614 if (same_thread_group(p, victim))
615 continue;
616 if (unlikely(p->flags & PF_KTHREAD))
617 continue;
618 if (is_global_init(p))
619 continue;
620 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
621 continue;
622
623 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
624 }
625 rcu_read_unlock();
626
627 mmdrop(mm);
628 put_task_struct(victim);
629 }
630 #undef K
631
632 /*
633 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
634 */
check_panic_on_oom(struct oom_control * oc,enum oom_constraint constraint,struct mem_cgroup * memcg)635 void check_panic_on_oom(struct oom_control *oc, enum oom_constraint constraint,
636 struct mem_cgroup *memcg)
637 {
638 if (likely(!sysctl_panic_on_oom))
639 return;
640 if (sysctl_panic_on_oom != 2) {
641 /*
642 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
643 * does not panic for cpuset, mempolicy, or memcg allocation
644 * failures.
645 */
646 if (constraint != CONSTRAINT_NONE)
647 return;
648 }
649 /* Do not panic for oom kills triggered by sysrq */
650 if (is_sysrq_oom(oc))
651 return;
652 dump_header(oc, NULL, memcg);
653 panic("Out of memory: %s panic_on_oom is enabled\n",
654 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
655 }
656
657 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
658
register_oom_notifier(struct notifier_block * nb)659 int register_oom_notifier(struct notifier_block *nb)
660 {
661 return blocking_notifier_chain_register(&oom_notify_list, nb);
662 }
663 EXPORT_SYMBOL_GPL(register_oom_notifier);
664
unregister_oom_notifier(struct notifier_block * nb)665 int unregister_oom_notifier(struct notifier_block *nb)
666 {
667 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
668 }
669 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
670
671 /**
672 * out_of_memory - kill the "best" process when we run out of memory
673 * @oc: pointer to struct oom_control
674 *
675 * If we run out of memory, we have the choice between either
676 * killing a random task (bad), letting the system crash (worse)
677 * OR try to be smart about which process to kill. Note that we
678 * don't have to be perfect here, we just have to be good.
679 */
out_of_memory(struct oom_control * oc)680 bool out_of_memory(struct oom_control *oc)
681 {
682 struct task_struct *p;
683 unsigned long totalpages;
684 unsigned long freed = 0;
685 unsigned int uninitialized_var(points);
686 enum oom_constraint constraint = CONSTRAINT_NONE;
687
688 if (oom_killer_disabled)
689 return false;
690
691 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
692 if (freed > 0)
693 /* Got some memory back in the last second. */
694 return true;
695
696 /*
697 * If current has a pending SIGKILL or is exiting, then automatically
698 * select it. The goal is to allow it to allocate so that it may
699 * quickly exit and free its memory.
700 *
701 * But don't select if current has already released its mm and cleared
702 * TIF_MEMDIE flag at exit_mm(), otherwise an OOM livelock may occur.
703 */
704 if (current->mm &&
705 (fatal_signal_pending(current) || task_will_free_mem(current))) {
706 mark_oom_victim(current);
707 return true;
708 }
709
710 /*
711 * Check if there were limitations on the allocation (only relevant for
712 * NUMA) that may require different handling.
713 */
714 constraint = constrained_alloc(oc, &totalpages);
715 if (constraint != CONSTRAINT_MEMORY_POLICY)
716 oc->nodemask = NULL;
717 check_panic_on_oom(oc, constraint, NULL);
718
719 if (sysctl_oom_kill_allocating_task && current->mm &&
720 !oom_unkillable_task(current, NULL, oc->nodemask) &&
721 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
722 get_task_struct(current);
723 oom_kill_process(oc, current, 0, totalpages, NULL,
724 "Out of memory (oom_kill_allocating_task)");
725 return true;
726 }
727
728 p = select_bad_process(oc, &points, totalpages);
729 /* Found nothing?!?! Either we hang forever, or we panic. */
730 if (!p && !is_sysrq_oom(oc)) {
731 dump_header(oc, NULL, NULL);
732 panic("Out of memory and no killable processes...\n");
733 }
734 if (p && p != (void *)-1UL) {
735 oom_kill_process(oc, p, points, totalpages, NULL,
736 "Out of memory");
737 /*
738 * Give the killed process a good chance to exit before trying
739 * to allocate memory again.
740 */
741 schedule_timeout_killable(1);
742 }
743 return true;
744 }
745
746 /*
747 * The pagefault handler calls here because it is out of memory, so kill a
748 * memory-hogging task. If any populated zone has ZONE_OOM_LOCKED set, a
749 * parallel oom killing is already in progress so do nothing.
750 */
pagefault_out_of_memory(void)751 void pagefault_out_of_memory(void)
752 {
753 struct oom_control oc = {
754 .zonelist = NULL,
755 .nodemask = NULL,
756 .gfp_mask = 0,
757 .order = 0,
758 };
759
760 if (mem_cgroup_oom_synchronize(true))
761 return;
762
763 if (fatal_signal_pending(current))
764 return;
765
766 if (!mutex_trylock(&oom_lock))
767 return;
768
769 if (!out_of_memory(&oc)) {
770 /*
771 * There shouldn't be any user tasks runnable while the
772 * OOM killer is disabled, so the current task has to
773 * be a racing OOM victim for which oom_killer_disable()
774 * is waiting for.
775 */
776 WARN_ON(test_thread_flag(TIF_MEMDIE));
777 }
778
779 mutex_unlock(&oom_lock);
780 }
781