• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * cl code shared between vvp and liblustre (and other Lustre clients in the
37  * future).
38  *
39  *   Author: Nikita Danilov <nikita.danilov@sun.com>
40  */
41 
42 #define DEBUG_SUBSYSTEM S_LLITE
43 
44 #include "../../include/linux/libcfs/libcfs.h"
45 # include <linux/fs.h>
46 # include <linux/sched.h>
47 # include <linux/mm.h>
48 # include <linux/quotaops.h>
49 # include <linux/highmem.h>
50 # include <linux/pagemap.h>
51 # include <linux/rbtree.h>
52 
53 #include "../include/obd.h"
54 #include "../include/obd_support.h"
55 #include "../include/lustre_fid.h"
56 #include "../include/lustre_lite.h"
57 #include "../include/lustre_dlm.h"
58 #include "../include/lustre_ver.h"
59 #include "../include/lustre_mdc.h"
60 #include "../include/cl_object.h"
61 
62 #include "../include/lclient.h"
63 
64 #include "../llite/llite_internal.h"
65 
66 static const struct cl_req_operations ccc_req_ops;
67 
68 /*
69  * ccc_ prefix stands for "Common Client Code".
70  */
71 
72 static struct kmem_cache *ccc_lock_kmem;
73 static struct kmem_cache *ccc_object_kmem;
74 static struct kmem_cache *ccc_thread_kmem;
75 static struct kmem_cache *ccc_session_kmem;
76 static struct kmem_cache *ccc_req_kmem;
77 
78 static struct lu_kmem_descr ccc_caches[] = {
79 	{
80 		.ckd_cache = &ccc_lock_kmem,
81 		.ckd_name  = "ccc_lock_kmem",
82 		.ckd_size  = sizeof(struct ccc_lock)
83 	},
84 	{
85 		.ckd_cache = &ccc_object_kmem,
86 		.ckd_name  = "ccc_object_kmem",
87 		.ckd_size  = sizeof(struct ccc_object)
88 	},
89 	{
90 		.ckd_cache = &ccc_thread_kmem,
91 		.ckd_name  = "ccc_thread_kmem",
92 		.ckd_size  = sizeof(struct ccc_thread_info),
93 	},
94 	{
95 		.ckd_cache = &ccc_session_kmem,
96 		.ckd_name  = "ccc_session_kmem",
97 		.ckd_size  = sizeof(struct ccc_session)
98 	},
99 	{
100 		.ckd_cache = &ccc_req_kmem,
101 		.ckd_name  = "ccc_req_kmem",
102 		.ckd_size  = sizeof(struct ccc_req)
103 	},
104 	{
105 		.ckd_cache = NULL
106 	}
107 };
108 
109 /*****************************************************************************
110  *
111  * Vvp device and device type functions.
112  *
113  */
114 
ccc_key_init(const struct lu_context * ctx,struct lu_context_key * key)115 void *ccc_key_init(const struct lu_context *ctx, struct lu_context_key *key)
116 {
117 	struct ccc_thread_info *info;
118 
119 	info = kmem_cache_alloc(ccc_thread_kmem, GFP_NOFS | __GFP_ZERO);
120 	if (info == NULL)
121 		info = ERR_PTR(-ENOMEM);
122 	return info;
123 }
124 
ccc_key_fini(const struct lu_context * ctx,struct lu_context_key * key,void * data)125 void ccc_key_fini(const struct lu_context *ctx,
126 			 struct lu_context_key *key, void *data)
127 {
128 	struct ccc_thread_info *info = data;
129 
130 	kmem_cache_free(ccc_thread_kmem, info);
131 }
132 
ccc_session_key_init(const struct lu_context * ctx,struct lu_context_key * key)133 void *ccc_session_key_init(const struct lu_context *ctx,
134 				  struct lu_context_key *key)
135 {
136 	struct ccc_session *session;
137 
138 	session = kmem_cache_alloc(ccc_session_kmem, GFP_NOFS | __GFP_ZERO);
139 	if (session == NULL)
140 		session = ERR_PTR(-ENOMEM);
141 	return session;
142 }
143 
ccc_session_key_fini(const struct lu_context * ctx,struct lu_context_key * key,void * data)144 void ccc_session_key_fini(const struct lu_context *ctx,
145 				 struct lu_context_key *key, void *data)
146 {
147 	struct ccc_session *session = data;
148 
149 	kmem_cache_free(ccc_session_kmem, session);
150 }
151 
152 struct lu_context_key ccc_key = {
153 	.lct_tags = LCT_CL_THREAD,
154 	.lct_init = ccc_key_init,
155 	.lct_fini = ccc_key_fini
156 };
157 
158 struct lu_context_key ccc_session_key = {
159 	.lct_tags = LCT_SESSION,
160 	.lct_init = ccc_session_key_init,
161 	.lct_fini = ccc_session_key_fini
162 };
163 
164 /* type constructor/destructor: ccc_type_{init,fini,start,stop}(). */
165 /* LU_TYPE_INIT_FINI(ccc, &ccc_key, &ccc_session_key); */
166 
ccc_device_init(const struct lu_env * env,struct lu_device * d,const char * name,struct lu_device * next)167 int ccc_device_init(const struct lu_env *env, struct lu_device *d,
168 			   const char *name, struct lu_device *next)
169 {
170 	struct ccc_device  *vdv;
171 	int rc;
172 
173 	vdv = lu2ccc_dev(d);
174 	vdv->cdv_next = lu2cl_dev(next);
175 
176 	LASSERT(d->ld_site != NULL && next->ld_type != NULL);
177 	next->ld_site = d->ld_site;
178 	rc = next->ld_type->ldt_ops->ldto_device_init(
179 			env, next, next->ld_type->ldt_name, NULL);
180 	if (rc == 0) {
181 		lu_device_get(next);
182 		lu_ref_add(&next->ld_reference, "lu-stack", &lu_site_init);
183 	}
184 	return rc;
185 }
186 
ccc_device_fini(const struct lu_env * env,struct lu_device * d)187 struct lu_device *ccc_device_fini(const struct lu_env *env,
188 					 struct lu_device *d)
189 {
190 	return cl2lu_dev(lu2ccc_dev(d)->cdv_next);
191 }
192 
ccc_device_alloc(const struct lu_env * env,struct lu_device_type * t,struct lustre_cfg * cfg,const struct lu_device_operations * luops,const struct cl_device_operations * clops)193 struct lu_device *ccc_device_alloc(const struct lu_env *env,
194 				   struct lu_device_type *t,
195 				   struct lustre_cfg *cfg,
196 				   const struct lu_device_operations *luops,
197 				   const struct cl_device_operations *clops)
198 {
199 	struct ccc_device *vdv;
200 	struct lu_device  *lud;
201 	struct cl_site    *site;
202 	int rc;
203 
204 	vdv = kzalloc(sizeof(*vdv), GFP_NOFS);
205 	if (!vdv)
206 		return ERR_PTR(-ENOMEM);
207 
208 	lud = &vdv->cdv_cl.cd_lu_dev;
209 	cl_device_init(&vdv->cdv_cl, t);
210 	ccc2lu_dev(vdv)->ld_ops = luops;
211 	vdv->cdv_cl.cd_ops = clops;
212 
213 	site = kzalloc(sizeof(*site), GFP_NOFS);
214 	if (site != NULL) {
215 		rc = cl_site_init(site, &vdv->cdv_cl);
216 		if (rc == 0)
217 			rc = lu_site_init_finish(&site->cs_lu);
218 		else {
219 			LASSERT(lud->ld_site == NULL);
220 			CERROR("Cannot init lu_site, rc %d.\n", rc);
221 			kfree(site);
222 		}
223 	} else
224 		rc = -ENOMEM;
225 	if (rc != 0) {
226 		ccc_device_free(env, lud);
227 		lud = ERR_PTR(rc);
228 	}
229 	return lud;
230 }
231 
ccc_device_free(const struct lu_env * env,struct lu_device * d)232 struct lu_device *ccc_device_free(const struct lu_env *env,
233 					 struct lu_device *d)
234 {
235 	struct ccc_device *vdv  = lu2ccc_dev(d);
236 	struct cl_site    *site = lu2cl_site(d->ld_site);
237 	struct lu_device  *next = cl2lu_dev(vdv->cdv_next);
238 
239 	if (d->ld_site != NULL) {
240 		cl_site_fini(site);
241 		kfree(site);
242 	}
243 	cl_device_fini(lu2cl_dev(d));
244 	kfree(vdv);
245 	return next;
246 }
247 
ccc_req_init(const struct lu_env * env,struct cl_device * dev,struct cl_req * req)248 int ccc_req_init(const struct lu_env *env, struct cl_device *dev,
249 			struct cl_req *req)
250 {
251 	struct ccc_req *vrq;
252 	int result;
253 
254 	vrq = kmem_cache_alloc(ccc_req_kmem, GFP_NOFS | __GFP_ZERO);
255 	if (vrq != NULL) {
256 		cl_req_slice_add(req, &vrq->crq_cl, dev, &ccc_req_ops);
257 		result = 0;
258 	} else
259 		result = -ENOMEM;
260 	return result;
261 }
262 
263 /**
264  * An `emergency' environment used by ccc_inode_fini() when cl_env_get()
265  * fails. Access to this environment is serialized by ccc_inode_fini_guard
266  * mutex.
267  */
268 static struct lu_env *ccc_inode_fini_env;
269 
270 /**
271  * A mutex serializing calls to slp_inode_fini() under extreme memory
272  * pressure, when environments cannot be allocated.
273  */
274 static DEFINE_MUTEX(ccc_inode_fini_guard);
275 static int dummy_refcheck;
276 
ccc_global_init(struct lu_device_type * device_type)277 int ccc_global_init(struct lu_device_type *device_type)
278 {
279 	int result;
280 
281 	result = lu_kmem_init(ccc_caches);
282 	if (result)
283 		return result;
284 
285 	result = lu_device_type_init(device_type);
286 	if (result)
287 		goto out_kmem;
288 
289 	ccc_inode_fini_env = cl_env_alloc(&dummy_refcheck,
290 					  LCT_REMEMBER|LCT_NOREF);
291 	if (IS_ERR(ccc_inode_fini_env)) {
292 		result = PTR_ERR(ccc_inode_fini_env);
293 		goto out_device;
294 	}
295 
296 	ccc_inode_fini_env->le_ctx.lc_cookie = 0x4;
297 	return 0;
298 out_device:
299 	lu_device_type_fini(device_type);
300 out_kmem:
301 	lu_kmem_fini(ccc_caches);
302 	return result;
303 }
304 
ccc_global_fini(struct lu_device_type * device_type)305 void ccc_global_fini(struct lu_device_type *device_type)
306 {
307 	if (ccc_inode_fini_env != NULL) {
308 		cl_env_put(ccc_inode_fini_env, &dummy_refcheck);
309 		ccc_inode_fini_env = NULL;
310 	}
311 	lu_device_type_fini(device_type);
312 	lu_kmem_fini(ccc_caches);
313 }
314 
315 /*****************************************************************************
316  *
317  * Object operations.
318  *
319  */
320 
ccc_object_alloc(const struct lu_env * env,const struct lu_object_header * unused,struct lu_device * dev,const struct cl_object_operations * clops,const struct lu_object_operations * luops)321 struct lu_object *ccc_object_alloc(const struct lu_env *env,
322 				   const struct lu_object_header *unused,
323 				   struct lu_device *dev,
324 				   const struct cl_object_operations *clops,
325 				   const struct lu_object_operations *luops)
326 {
327 	struct ccc_object *vob;
328 	struct lu_object  *obj;
329 
330 	vob = kmem_cache_alloc(ccc_object_kmem, GFP_NOFS | __GFP_ZERO);
331 	if (vob != NULL) {
332 		struct cl_object_header *hdr;
333 
334 		obj = ccc2lu(vob);
335 		hdr = &vob->cob_header;
336 		cl_object_header_init(hdr);
337 		lu_object_init(obj, &hdr->coh_lu, dev);
338 		lu_object_add_top(&hdr->coh_lu, obj);
339 
340 		vob->cob_cl.co_ops = clops;
341 		obj->lo_ops = luops;
342 	} else
343 		obj = NULL;
344 	return obj;
345 }
346 
ccc_object_init0(const struct lu_env * env,struct ccc_object * vob,const struct cl_object_conf * conf)347 int ccc_object_init0(const struct lu_env *env,
348 			    struct ccc_object *vob,
349 			    const struct cl_object_conf *conf)
350 {
351 	vob->cob_inode = conf->coc_inode;
352 	vob->cob_transient_pages = 0;
353 	cl_object_page_init(&vob->cob_cl, sizeof(struct ccc_page));
354 	return 0;
355 }
356 
ccc_object_init(const struct lu_env * env,struct lu_object * obj,const struct lu_object_conf * conf)357 int ccc_object_init(const struct lu_env *env, struct lu_object *obj,
358 			   const struct lu_object_conf *conf)
359 {
360 	struct ccc_device *dev = lu2ccc_dev(obj->lo_dev);
361 	struct ccc_object *vob = lu2ccc(obj);
362 	struct lu_object  *below;
363 	struct lu_device  *under;
364 	int result;
365 
366 	under = &dev->cdv_next->cd_lu_dev;
367 	below = under->ld_ops->ldo_object_alloc(env, obj->lo_header, under);
368 	if (below != NULL) {
369 		const struct cl_object_conf *cconf;
370 
371 		cconf = lu2cl_conf(conf);
372 		INIT_LIST_HEAD(&vob->cob_pending_list);
373 		lu_object_add(obj, below);
374 		result = ccc_object_init0(env, vob, cconf);
375 	} else
376 		result = -ENOMEM;
377 	return result;
378 }
379 
ccc_object_free(const struct lu_env * env,struct lu_object * obj)380 void ccc_object_free(const struct lu_env *env, struct lu_object *obj)
381 {
382 	struct ccc_object *vob = lu2ccc(obj);
383 
384 	lu_object_fini(obj);
385 	lu_object_header_fini(obj->lo_header);
386 	kmem_cache_free(ccc_object_kmem, vob);
387 }
388 
ccc_lock_init(const struct lu_env * env,struct cl_object * obj,struct cl_lock * lock,const struct cl_io * unused,const struct cl_lock_operations * lkops)389 int ccc_lock_init(const struct lu_env *env,
390 		  struct cl_object *obj, struct cl_lock *lock,
391 		  const struct cl_io *unused,
392 		  const struct cl_lock_operations *lkops)
393 {
394 	struct ccc_lock *clk;
395 	int result;
396 
397 	CLOBINVRNT(env, obj, ccc_object_invariant(obj));
398 
399 	clk = kmem_cache_alloc(ccc_lock_kmem, GFP_NOFS | __GFP_ZERO);
400 	if (clk != NULL) {
401 		cl_lock_slice_add(lock, &clk->clk_cl, obj, lkops);
402 		result = 0;
403 	} else
404 		result = -ENOMEM;
405 	return result;
406 }
407 
ccc_object_glimpse(const struct lu_env * env,const struct cl_object * obj,struct ost_lvb * lvb)408 int ccc_object_glimpse(const struct lu_env *env,
409 		       const struct cl_object *obj, struct ost_lvb *lvb)
410 {
411 	struct inode *inode = ccc_object_inode(obj);
412 
413 	lvb->lvb_mtime = cl_inode_mtime(inode);
414 	lvb->lvb_atime = cl_inode_atime(inode);
415 	lvb->lvb_ctime = cl_inode_ctime(inode);
416 	/*
417 	 * LU-417: Add dirty pages block count lest i_blocks reports 0, some
418 	 * "cp" or "tar" on remote node may think it's a completely sparse file
419 	 * and skip it.
420 	 */
421 	if (lvb->lvb_size > 0 && lvb->lvb_blocks == 0)
422 		lvb->lvb_blocks = dirty_cnt(inode);
423 	return 0;
424 }
425 
ccc_object_size_lock(struct cl_object * obj)426 static void ccc_object_size_lock(struct cl_object *obj)
427 {
428 	struct inode *inode = ccc_object_inode(obj);
429 
430 	cl_isize_lock(inode);
431 	cl_object_attr_lock(obj);
432 }
433 
ccc_object_size_unlock(struct cl_object * obj)434 static void ccc_object_size_unlock(struct cl_object *obj)
435 {
436 	struct inode *inode = ccc_object_inode(obj);
437 
438 	cl_object_attr_unlock(obj);
439 	cl_isize_unlock(inode);
440 }
441 
442 /*****************************************************************************
443  *
444  * Page operations.
445  *
446  */
447 
ccc_page_vmpage(const struct lu_env * env,const struct cl_page_slice * slice)448 struct page *ccc_page_vmpage(const struct lu_env *env,
449 			    const struct cl_page_slice *slice)
450 {
451 	return cl2vm_page(slice);
452 }
453 
ccc_page_is_under_lock(const struct lu_env * env,const struct cl_page_slice * slice,struct cl_io * io)454 int ccc_page_is_under_lock(const struct lu_env *env,
455 			   const struct cl_page_slice *slice,
456 			   struct cl_io *io)
457 {
458 	struct ccc_io	*cio  = ccc_env_io(env);
459 	struct cl_lock_descr *desc = &ccc_env_info(env)->cti_descr;
460 	struct cl_page       *page = slice->cpl_page;
461 
462 	int result;
463 
464 	if (io->ci_type == CIT_READ || io->ci_type == CIT_WRITE ||
465 	    io->ci_type == CIT_FAULT) {
466 		if (cio->cui_fd->fd_flags & LL_FILE_GROUP_LOCKED)
467 			result = -EBUSY;
468 		else {
469 			desc->cld_start = page->cp_index;
470 			desc->cld_end   = page->cp_index;
471 			desc->cld_obj   = page->cp_obj;
472 			desc->cld_mode  = CLM_READ;
473 			result = cl_queue_match(&io->ci_lockset.cls_done,
474 						desc) ? -EBUSY : 0;
475 		}
476 	} else
477 		result = 0;
478 	return result;
479 }
480 
ccc_fail(const struct lu_env * env,const struct cl_page_slice * slice)481 int ccc_fail(const struct lu_env *env, const struct cl_page_slice *slice)
482 {
483 	/*
484 	 * Cached read?
485 	 */
486 	LBUG();
487 	return 0;
488 }
489 
ccc_transient_page_prep(const struct lu_env * env,const struct cl_page_slice * slice,struct cl_io * unused)490 int ccc_transient_page_prep(const struct lu_env *env,
491 				   const struct cl_page_slice *slice,
492 				   struct cl_io *unused)
493 {
494 	/* transient page should always be sent. */
495 	return 0;
496 }
497 
498 /*****************************************************************************
499  *
500  * Lock operations.
501  *
502  */
503 
ccc_lock_delete(const struct lu_env * env,const struct cl_lock_slice * slice)504 void ccc_lock_delete(const struct lu_env *env,
505 		     const struct cl_lock_slice *slice)
506 {
507 	CLOBINVRNT(env, slice->cls_obj, ccc_object_invariant(slice->cls_obj));
508 }
509 
ccc_lock_fini(const struct lu_env * env,struct cl_lock_slice * slice)510 void ccc_lock_fini(const struct lu_env *env, struct cl_lock_slice *slice)
511 {
512 	struct ccc_lock *clk = cl2ccc_lock(slice);
513 
514 	kmem_cache_free(ccc_lock_kmem, clk);
515 }
516 
ccc_lock_enqueue(const struct lu_env * env,const struct cl_lock_slice * slice,struct cl_io * unused,__u32 enqflags)517 int ccc_lock_enqueue(const struct lu_env *env,
518 		     const struct cl_lock_slice *slice,
519 		     struct cl_io *unused, __u32 enqflags)
520 {
521 	CLOBINVRNT(env, slice->cls_obj, ccc_object_invariant(slice->cls_obj));
522 	return 0;
523 }
524 
ccc_lock_use(const struct lu_env * env,const struct cl_lock_slice * slice)525 int ccc_lock_use(const struct lu_env *env, const struct cl_lock_slice *slice)
526 {
527 	CLOBINVRNT(env, slice->cls_obj, ccc_object_invariant(slice->cls_obj));
528 	return 0;
529 }
530 
ccc_lock_unuse(const struct lu_env * env,const struct cl_lock_slice * slice)531 int ccc_lock_unuse(const struct lu_env *env, const struct cl_lock_slice *slice)
532 {
533 	CLOBINVRNT(env, slice->cls_obj, ccc_object_invariant(slice->cls_obj));
534 	return 0;
535 }
536 
ccc_lock_wait(const struct lu_env * env,const struct cl_lock_slice * slice)537 int ccc_lock_wait(const struct lu_env *env, const struct cl_lock_slice *slice)
538 {
539 	CLOBINVRNT(env, slice->cls_obj, ccc_object_invariant(slice->cls_obj));
540 	return 0;
541 }
542 
543 /**
544  * Implementation of cl_lock_operations::clo_fits_into() methods for ccc
545  * layer. This function is executed every time io finds an existing lock in
546  * the lock cache while creating new lock. This function has to decide whether
547  * cached lock "fits" into io.
548  *
549  * \param slice lock to be checked
550  * \param io    IO that wants a lock.
551  *
552  * \see lov_lock_fits_into().
553  */
ccc_lock_fits_into(const struct lu_env * env,const struct cl_lock_slice * slice,const struct cl_lock_descr * need,const struct cl_io * io)554 int ccc_lock_fits_into(const struct lu_env *env,
555 		       const struct cl_lock_slice *slice,
556 		       const struct cl_lock_descr *need,
557 		       const struct cl_io *io)
558 {
559 	const struct cl_lock       *lock  = slice->cls_lock;
560 	const struct cl_lock_descr *descr = &lock->cll_descr;
561 	const struct ccc_io	*cio   = ccc_env_io(env);
562 	int			 result;
563 
564 	/*
565 	 * Work around DLM peculiarity: it assumes that glimpse
566 	 * (LDLM_FL_HAS_INTENT) lock is always LCK_PR, and returns reads lock
567 	 * when asked for LCK_PW lock with LDLM_FL_HAS_INTENT flag set. Make
568 	 * sure that glimpse doesn't get CLM_WRITE top-lock, so that it
569 	 * doesn't enqueue CLM_WRITE sub-locks.
570 	 */
571 	if (cio->cui_glimpse)
572 		result = descr->cld_mode != CLM_WRITE;
573 
574 	/*
575 	 * Also, don't match incomplete write locks for read, otherwise read
576 	 * would enqueue missing sub-locks in the write mode.
577 	 */
578 	else if (need->cld_mode != descr->cld_mode)
579 		result = lock->cll_state >= CLS_ENQUEUED;
580 	else
581 		result = 1;
582 	return result;
583 }
584 
585 /**
586  * Implements cl_lock_operations::clo_state() method for ccc layer, invoked
587  * whenever lock state changes. Transfers object attributes, that might be
588  * updated as a result of lock acquiring into inode.
589  */
ccc_lock_state(const struct lu_env * env,const struct cl_lock_slice * slice,enum cl_lock_state state)590 void ccc_lock_state(const struct lu_env *env,
591 		    const struct cl_lock_slice *slice,
592 		    enum cl_lock_state state)
593 {
594 	struct cl_lock *lock = slice->cls_lock;
595 
596 	/*
597 	 * Refresh inode attributes when the lock is moving into CLS_HELD
598 	 * state, and only when this is a result of real enqueue, rather than
599 	 * of finding lock in the cache.
600 	 */
601 	if (state == CLS_HELD && lock->cll_state < CLS_HELD) {
602 		struct cl_object *obj;
603 		struct inode     *inode;
604 
605 		obj   = slice->cls_obj;
606 		inode = ccc_object_inode(obj);
607 
608 		/* vmtruncate() sets the i_size
609 		 * under both a DLM lock and the
610 		 * ll_inode_size_lock().  If we don't get the
611 		 * ll_inode_size_lock() here we can match the DLM lock and
612 		 * reset i_size.  generic_file_write can then trust the
613 		 * stale i_size when doing appending writes and effectively
614 		 * cancel the result of the truncate.  Getting the
615 		 * ll_inode_size_lock() after the enqueue maintains the DLM
616 		 * -> ll_inode_size_lock() acquiring order. */
617 		if (lock->cll_descr.cld_start == 0 &&
618 		    lock->cll_descr.cld_end == CL_PAGE_EOF)
619 			cl_merge_lvb(env, inode);
620 	}
621 }
622 
623 /*****************************************************************************
624  *
625  * io operations.
626  *
627  */
628 
ccc_io_one_lock_index(const struct lu_env * env,struct cl_io * io,__u32 enqflags,enum cl_lock_mode mode,pgoff_t start,pgoff_t end)629 int ccc_io_one_lock_index(const struct lu_env *env, struct cl_io *io,
630 			  __u32 enqflags, enum cl_lock_mode mode,
631 			  pgoff_t start, pgoff_t end)
632 {
633 	struct ccc_io	  *cio   = ccc_env_io(env);
634 	struct cl_lock_descr   *descr = &cio->cui_link.cill_descr;
635 	struct cl_object       *obj   = io->ci_obj;
636 
637 	CLOBINVRNT(env, obj, ccc_object_invariant(obj));
638 
639 	CDEBUG(D_VFSTRACE, "lock: %d [%lu, %lu]\n", mode, start, end);
640 
641 	memset(&cio->cui_link, 0, sizeof(cio->cui_link));
642 
643 	if (cio->cui_fd && (cio->cui_fd->fd_flags & LL_FILE_GROUP_LOCKED)) {
644 		descr->cld_mode = CLM_GROUP;
645 		descr->cld_gid  = cio->cui_fd->fd_grouplock.cg_gid;
646 	} else {
647 		descr->cld_mode  = mode;
648 	}
649 	descr->cld_obj   = obj;
650 	descr->cld_start = start;
651 	descr->cld_end   = end;
652 	descr->cld_enq_flags = enqflags;
653 
654 	cl_io_lock_add(env, io, &cio->cui_link);
655 	return 0;
656 }
657 
ccc_io_update_iov(const struct lu_env * env,struct ccc_io * cio,struct cl_io * io)658 void ccc_io_update_iov(const struct lu_env *env,
659 		       struct ccc_io *cio, struct cl_io *io)
660 {
661 	size_t size = io->u.ci_rw.crw_count;
662 
663 	if (!cl_is_normalio(env, io) || cio->cui_iter == NULL)
664 		return;
665 
666 	iov_iter_truncate(cio->cui_iter, size);
667 }
668 
ccc_io_one_lock(const struct lu_env * env,struct cl_io * io,__u32 enqflags,enum cl_lock_mode mode,loff_t start,loff_t end)669 int ccc_io_one_lock(const struct lu_env *env, struct cl_io *io,
670 		    __u32 enqflags, enum cl_lock_mode mode,
671 		    loff_t start, loff_t end)
672 {
673 	struct cl_object *obj = io->ci_obj;
674 
675 	return ccc_io_one_lock_index(env, io, enqflags, mode,
676 				     cl_index(obj, start), cl_index(obj, end));
677 }
678 
ccc_io_end(const struct lu_env * env,const struct cl_io_slice * ios)679 void ccc_io_end(const struct lu_env *env, const struct cl_io_slice *ios)
680 {
681 	CLOBINVRNT(env, ios->cis_io->ci_obj,
682 		   ccc_object_invariant(ios->cis_io->ci_obj));
683 }
684 
ccc_io_advance(const struct lu_env * env,const struct cl_io_slice * ios,size_t nob)685 void ccc_io_advance(const struct lu_env *env,
686 		    const struct cl_io_slice *ios,
687 		    size_t nob)
688 {
689 	struct ccc_io    *cio = cl2ccc_io(env, ios);
690 	struct cl_io     *io  = ios->cis_io;
691 	struct cl_object *obj = ios->cis_io->ci_obj;
692 
693 	CLOBINVRNT(env, obj, ccc_object_invariant(obj));
694 
695 	if (!cl_is_normalio(env, io))
696 		return;
697 
698 	iov_iter_reexpand(cio->cui_iter, cio->cui_tot_count  -= nob);
699 }
700 
701 /**
702  * Helper function that if necessary adjusts file size (inode->i_size), when
703  * position at the offset \a pos is accessed. File size can be arbitrary stale
704  * on a Lustre client, but client at least knows KMS. If accessed area is
705  * inside [0, KMS], set file size to KMS, otherwise glimpse file size.
706  *
707  * Locking: cl_isize_lock is used to serialize changes to inode size and to
708  * protect consistency between inode size and cl_object
709  * attributes. cl_object_size_lock() protects consistency between cl_attr's of
710  * top-object and sub-objects.
711  */
ccc_prep_size(const struct lu_env * env,struct cl_object * obj,struct cl_io * io,loff_t start,size_t count,int * exceed)712 int ccc_prep_size(const struct lu_env *env, struct cl_object *obj,
713 		  struct cl_io *io, loff_t start, size_t count, int *exceed)
714 {
715 	struct cl_attr *attr  = ccc_env_thread_attr(env);
716 	struct inode   *inode = ccc_object_inode(obj);
717 	loff_t	  pos   = start + count - 1;
718 	loff_t kms;
719 	int result;
720 
721 	/*
722 	 * Consistency guarantees: following possibilities exist for the
723 	 * relation between region being accessed and real file size at this
724 	 * moment:
725 	 *
726 	 *  (A): the region is completely inside of the file;
727 	 *
728 	 *  (B-x): x bytes of region are inside of the file, the rest is
729 	 *  outside;
730 	 *
731 	 *  (C): the region is completely outside of the file.
732 	 *
733 	 * This classification is stable under DLM lock already acquired by
734 	 * the caller, because to change the class, other client has to take
735 	 * DLM lock conflicting with our lock. Also, any updates to ->i_size
736 	 * by other threads on this client are serialized by
737 	 * ll_inode_size_lock(). This guarantees that short reads are handled
738 	 * correctly in the face of concurrent writes and truncates.
739 	 */
740 	ccc_object_size_lock(obj);
741 	result = cl_object_attr_get(env, obj, attr);
742 	if (result == 0) {
743 		kms = attr->cat_kms;
744 		if (pos > kms) {
745 			/*
746 			 * A glimpse is necessary to determine whether we
747 			 * return a short read (B) or some zeroes at the end
748 			 * of the buffer (C)
749 			 */
750 			ccc_object_size_unlock(obj);
751 			result = cl_glimpse_lock(env, io, inode, obj, 0);
752 			if (result == 0 && exceed != NULL) {
753 				/* If objective page index exceed end-of-file
754 				 * page index, return directly. Do not expect
755 				 * kernel will check such case correctly.
756 				 * linux-2.6.18-128.1.1 miss to do that.
757 				 * --bug 17336 */
758 				loff_t size = cl_isize_read(inode);
759 				loff_t cur_index = start >> PAGE_CACHE_SHIFT;
760 				loff_t size_index = (size - 1) >>
761 						    PAGE_CACHE_SHIFT;
762 
763 				if ((size == 0 && cur_index != 0) ||
764 				    size_index < cur_index)
765 					*exceed = 1;
766 			}
767 			return result;
768 		}
769 		/*
770 		 * region is within kms and, hence, within real file
771 		 * size (A). We need to increase i_size to cover the
772 		 * read region so that generic_file_read() will do its
773 		 * job, but that doesn't mean the kms size is
774 		 * _correct_, it is only the _minimum_ size. If
775 		 * someone does a stat they will get the correct size
776 		 * which will always be >= the kms value here.
777 		 * b=11081
778 		 */
779 		if (cl_isize_read(inode) < kms) {
780 			cl_isize_write_nolock(inode, kms);
781 			CDEBUG(D_VFSTRACE,
782 					DFID" updating i_size %llu\n",
783 					PFID(lu_object_fid(&obj->co_lu)),
784 					(__u64)cl_isize_read(inode));
785 
786 		}
787 	}
788 	ccc_object_size_unlock(obj);
789 	return result;
790 }
791 
792 /*****************************************************************************
793  *
794  * Transfer operations.
795  *
796  */
797 
ccc_req_completion(const struct lu_env * env,const struct cl_req_slice * slice,int ioret)798 void ccc_req_completion(const struct lu_env *env,
799 			const struct cl_req_slice *slice, int ioret)
800 {
801 	struct ccc_req *vrq;
802 
803 	if (ioret > 0)
804 		cl_stats_tally(slice->crs_dev, slice->crs_req->crq_type, ioret);
805 
806 	vrq = cl2ccc_req(slice);
807 	kmem_cache_free(ccc_req_kmem, vrq);
808 }
809 
810 /**
811  * Implementation of struct cl_req_operations::cro_attr_set() for ccc
812  * layer. ccc is responsible for
813  *
814  *    - o_[mac]time
815  *
816  *    - o_mode
817  *
818  *    - o_parent_seq
819  *
820  *    - o_[ug]id
821  *
822  *    - o_parent_oid
823  *
824  *    - o_parent_ver
825  *
826  *    - o_ioepoch,
827  *
828  */
ccc_req_attr_set(const struct lu_env * env,const struct cl_req_slice * slice,const struct cl_object * obj,struct cl_req_attr * attr,u64 flags)829 void ccc_req_attr_set(const struct lu_env *env,
830 		      const struct cl_req_slice *slice,
831 		      const struct cl_object *obj,
832 		      struct cl_req_attr *attr, u64 flags)
833 {
834 	struct inode *inode;
835 	struct obdo  *oa;
836 	u32	      valid_flags;
837 
838 	oa = attr->cra_oa;
839 	inode = ccc_object_inode(obj);
840 	valid_flags = OBD_MD_FLTYPE;
841 
842 	if (slice->crs_req->crq_type == CRT_WRITE) {
843 		if (flags & OBD_MD_FLEPOCH) {
844 			oa->o_valid |= OBD_MD_FLEPOCH;
845 			oa->o_ioepoch = cl_i2info(inode)->lli_ioepoch;
846 			valid_flags |= OBD_MD_FLMTIME | OBD_MD_FLCTIME |
847 				       OBD_MD_FLUID | OBD_MD_FLGID;
848 		}
849 	}
850 	obdo_from_inode(oa, inode, valid_flags & flags);
851 	obdo_set_parent_fid(oa, &cl_i2info(inode)->lli_fid);
852 	memcpy(attr->cra_jobid, cl_i2info(inode)->lli_jobid,
853 	       JOBSTATS_JOBID_SIZE);
854 }
855 
856 static const struct cl_req_operations ccc_req_ops = {
857 	.cro_attr_set   = ccc_req_attr_set,
858 	.cro_completion = ccc_req_completion
859 };
860 
cl_setattr_ost(struct inode * inode,const struct iattr * attr)861 int cl_setattr_ost(struct inode *inode, const struct iattr *attr)
862 {
863 	struct lu_env *env;
864 	struct cl_io  *io;
865 	int	    result;
866 	int	    refcheck;
867 
868 	env = cl_env_get(&refcheck);
869 	if (IS_ERR(env))
870 		return PTR_ERR(env);
871 
872 	io = ccc_env_thread_io(env);
873 	io->ci_obj = cl_i2info(inode)->lli_clob;
874 
875 	io->u.ci_setattr.sa_attr.lvb_atime = LTIME_S(attr->ia_atime);
876 	io->u.ci_setattr.sa_attr.lvb_mtime = LTIME_S(attr->ia_mtime);
877 	io->u.ci_setattr.sa_attr.lvb_ctime = LTIME_S(attr->ia_ctime);
878 	io->u.ci_setattr.sa_attr.lvb_size = attr->ia_size;
879 	io->u.ci_setattr.sa_valid = attr->ia_valid;
880 
881 again:
882 	if (cl_io_init(env, io, CIT_SETATTR, io->ci_obj) == 0) {
883 		struct ccc_io *cio = ccc_env_io(env);
884 
885 		if (attr->ia_valid & ATTR_FILE)
886 			/* populate the file descriptor for ftruncate to honor
887 			 * group lock - see LU-787 */
888 			cio->cui_fd = cl_iattr2fd(inode, attr);
889 
890 		result = cl_io_loop(env, io);
891 	} else {
892 		result = io->ci_result;
893 	}
894 	cl_io_fini(env, io);
895 	if (unlikely(io->ci_need_restart))
896 		goto again;
897 	/* HSM import case: file is released, cannot be restored
898 	 * no need to fail except if restore registration failed
899 	 * with -ENODATA */
900 	if (result == -ENODATA && io->ci_restore_needed &&
901 	    io->ci_result != -ENODATA)
902 		result = 0;
903 	cl_env_put(env, &refcheck);
904 	return result;
905 }
906 
907 /*****************************************************************************
908  *
909  * Type conversions.
910  *
911  */
912 
ccc2lu_dev(struct ccc_device * vdv)913 struct lu_device *ccc2lu_dev(struct ccc_device *vdv)
914 {
915 	return &vdv->cdv_cl.cd_lu_dev;
916 }
917 
lu2ccc_dev(const struct lu_device * d)918 struct ccc_device *lu2ccc_dev(const struct lu_device *d)
919 {
920 	return container_of0(d, struct ccc_device, cdv_cl.cd_lu_dev);
921 }
922 
cl2ccc_dev(const struct cl_device * d)923 struct ccc_device *cl2ccc_dev(const struct cl_device *d)
924 {
925 	return container_of0(d, struct ccc_device, cdv_cl);
926 }
927 
ccc2lu(struct ccc_object * vob)928 struct lu_object *ccc2lu(struct ccc_object *vob)
929 {
930 	return &vob->cob_cl.co_lu;
931 }
932 
lu2ccc(const struct lu_object * obj)933 struct ccc_object *lu2ccc(const struct lu_object *obj)
934 {
935 	return container_of0(obj, struct ccc_object, cob_cl.co_lu);
936 }
937 
cl2ccc(const struct cl_object * obj)938 struct ccc_object *cl2ccc(const struct cl_object *obj)
939 {
940 	return container_of0(obj, struct ccc_object, cob_cl);
941 }
942 
cl2ccc_lock(const struct cl_lock_slice * slice)943 struct ccc_lock *cl2ccc_lock(const struct cl_lock_slice *slice)
944 {
945 	return container_of(slice, struct ccc_lock, clk_cl);
946 }
947 
cl2ccc_io(const struct lu_env * env,const struct cl_io_slice * slice)948 struct ccc_io *cl2ccc_io(const struct lu_env *env,
949 			 const struct cl_io_slice *slice)
950 {
951 	struct ccc_io *cio;
952 
953 	cio = container_of(slice, struct ccc_io, cui_cl);
954 	LASSERT(cio == ccc_env_io(env));
955 	return cio;
956 }
957 
cl2ccc_req(const struct cl_req_slice * slice)958 struct ccc_req *cl2ccc_req(const struct cl_req_slice *slice)
959 {
960 	return container_of0(slice, struct ccc_req, crq_cl);
961 }
962 
cl2vm_page(const struct cl_page_slice * slice)963 struct page *cl2vm_page(const struct cl_page_slice *slice)
964 {
965 	return cl2ccc_page(slice)->cpg_page;
966 }
967 
968 /*****************************************************************************
969  *
970  * Accessors.
971  *
972  */
ccc_object_invariant(const struct cl_object * obj)973 int ccc_object_invariant(const struct cl_object *obj)
974 {
975 	struct inode	 *inode = ccc_object_inode(obj);
976 	struct cl_inode_info *lli   = cl_i2info(inode);
977 
978 	return (S_ISREG(cl_inode_mode(inode)) ||
979 		/* i_mode of unlinked inode is zeroed. */
980 		cl_inode_mode(inode) == 0) && lli->lli_clob == obj;
981 }
982 
ccc_object_inode(const struct cl_object * obj)983 struct inode *ccc_object_inode(const struct cl_object *obj)
984 {
985 	return cl2ccc(obj)->cob_inode;
986 }
987 
988 /**
989  * Returns a pointer to cl_page associated with \a vmpage, without acquiring
990  * additional reference to the resulting page. This is an unsafe version of
991  * cl_vmpage_page() that can only be used under vmpage lock.
992  */
ccc_vmpage_page_transient(struct page * vmpage)993 struct cl_page *ccc_vmpage_page_transient(struct page *vmpage)
994 {
995 	KLASSERT(PageLocked(vmpage));
996 	return (struct cl_page *)vmpage->private;
997 }
998 
999 /**
1000  * Initialize or update CLIO structures for regular files when new
1001  * meta-data arrives from the server.
1002  *
1003  * \param inode regular file inode
1004  * \param md    new file metadata from MDS
1005  * - allocates cl_object if necessary,
1006  * - updated layout, if object was already here.
1007  */
cl_file_inode_init(struct inode * inode,struct lustre_md * md)1008 int cl_file_inode_init(struct inode *inode, struct lustre_md *md)
1009 {
1010 	struct lu_env	*env;
1011 	struct cl_inode_info *lli;
1012 	struct cl_object     *clob;
1013 	struct lu_site       *site;
1014 	struct lu_fid	*fid;
1015 	struct cl_object_conf conf = {
1016 		.coc_inode = inode,
1017 		.u = {
1018 			.coc_md    = md
1019 		}
1020 	};
1021 	int result = 0;
1022 	int refcheck;
1023 
1024 	LASSERT(md->body->valid & OBD_MD_FLID);
1025 	LASSERT(S_ISREG(cl_inode_mode(inode)));
1026 
1027 	env = cl_env_get(&refcheck);
1028 	if (IS_ERR(env))
1029 		return PTR_ERR(env);
1030 
1031 	site = cl_i2sbi(inode)->ll_site;
1032 	lli  = cl_i2info(inode);
1033 	fid  = &lli->lli_fid;
1034 	LASSERT(fid_is_sane(fid));
1035 
1036 	if (lli->lli_clob == NULL) {
1037 		/* clob is slave of inode, empty lli_clob means for new inode,
1038 		 * there is no clob in cache with the given fid, so it is
1039 		 * unnecessary to perform lookup-alloc-lookup-insert, just
1040 		 * alloc and insert directly. */
1041 		LASSERT(inode->i_state & I_NEW);
1042 		conf.coc_lu.loc_flags = LOC_F_NEW;
1043 		clob = cl_object_find(env, lu2cl_dev(site->ls_top_dev),
1044 				      fid, &conf);
1045 		if (!IS_ERR(clob)) {
1046 			/*
1047 			 * No locking is necessary, as new inode is
1048 			 * locked by I_NEW bit.
1049 			 */
1050 			lli->lli_clob = clob;
1051 			lli->lli_has_smd = lsm_has_objects(md->lsm);
1052 			lu_object_ref_add(&clob->co_lu, "inode", inode);
1053 		} else
1054 			result = PTR_ERR(clob);
1055 	} else {
1056 		result = cl_conf_set(env, lli->lli_clob, &conf);
1057 	}
1058 
1059 	cl_env_put(env, &refcheck);
1060 
1061 	if (result != 0)
1062 		CERROR("Failure to initialize cl object "DFID": %d\n",
1063 		       PFID(fid), result);
1064 	return result;
1065 }
1066 
1067 /**
1068  * Wait for others drop their references of the object at first, then we drop
1069  * the last one, which will lead to the object be destroyed immediately.
1070  * Must be called after cl_object_kill() against this object.
1071  *
1072  * The reason we want to do this is: destroying top object will wait for sub
1073  * objects being destroyed first, so we can't let bottom layer (e.g. from ASTs)
1074  * to initiate top object destroying which may deadlock. See bz22520.
1075  */
cl_object_put_last(struct lu_env * env,struct cl_object * obj)1076 static void cl_object_put_last(struct lu_env *env, struct cl_object *obj)
1077 {
1078 	struct lu_object_header *header = obj->co_lu.lo_header;
1079 	wait_queue_t	   waiter;
1080 
1081 	if (unlikely(atomic_read(&header->loh_ref) != 1)) {
1082 		struct lu_site *site = obj->co_lu.lo_dev->ld_site;
1083 		struct lu_site_bkt_data *bkt;
1084 
1085 		bkt = lu_site_bkt_from_fid(site, &header->loh_fid);
1086 
1087 		init_waitqueue_entry(&waiter, current);
1088 		add_wait_queue(&bkt->lsb_marche_funebre, &waiter);
1089 
1090 		while (1) {
1091 			set_current_state(TASK_UNINTERRUPTIBLE);
1092 			if (atomic_read(&header->loh_ref) == 1)
1093 				break;
1094 			schedule();
1095 		}
1096 
1097 		set_current_state(TASK_RUNNING);
1098 		remove_wait_queue(&bkt->lsb_marche_funebre, &waiter);
1099 	}
1100 
1101 	cl_object_put(env, obj);
1102 }
1103 
cl_inode_fini(struct inode * inode)1104 void cl_inode_fini(struct inode *inode)
1105 {
1106 	struct lu_env	   *env;
1107 	struct cl_inode_info    *lli  = cl_i2info(inode);
1108 	struct cl_object	*clob = lli->lli_clob;
1109 	int refcheck;
1110 	int emergency;
1111 
1112 	if (clob != NULL) {
1113 		void		    *cookie;
1114 
1115 		cookie = cl_env_reenter();
1116 		env = cl_env_get(&refcheck);
1117 		emergency = IS_ERR(env);
1118 		if (emergency) {
1119 			mutex_lock(&ccc_inode_fini_guard);
1120 			LASSERT(ccc_inode_fini_env != NULL);
1121 			cl_env_implant(ccc_inode_fini_env, &refcheck);
1122 			env = ccc_inode_fini_env;
1123 		}
1124 		/*
1125 		 * cl_object cache is a slave to inode cache (which, in turn
1126 		 * is a slave to dentry cache), don't keep cl_object in memory
1127 		 * when its master is evicted.
1128 		 */
1129 		cl_object_kill(env, clob);
1130 		lu_object_ref_del(&clob->co_lu, "inode", inode);
1131 		cl_object_put_last(env, clob);
1132 		lli->lli_clob = NULL;
1133 		if (emergency) {
1134 			cl_env_unplant(ccc_inode_fini_env, &refcheck);
1135 			mutex_unlock(&ccc_inode_fini_guard);
1136 		} else
1137 			cl_env_put(env, &refcheck);
1138 		cl_env_reexit(cookie);
1139 	}
1140 }
1141 
1142 /**
1143  * return IF_* type for given lu_dirent entry.
1144  * IF_* flag shld be converted to particular OS file type in
1145  * platform llite module.
1146  */
ll_dirent_type_get(struct lu_dirent * ent)1147 __u16 ll_dirent_type_get(struct lu_dirent *ent)
1148 {
1149 	__u16 type = 0;
1150 	struct luda_type *lt;
1151 	int len = 0;
1152 
1153 	if (le32_to_cpu(ent->lde_attrs) & LUDA_TYPE) {
1154 		const unsigned align = sizeof(struct luda_type) - 1;
1155 
1156 		len = le16_to_cpu(ent->lde_namelen);
1157 		len = (len + align) & ~align;
1158 		lt = (void *)ent->lde_name + len;
1159 		type = IFTODT(le16_to_cpu(lt->lt_type));
1160 	}
1161 	return type;
1162 }
1163 
1164 /**
1165  * build inode number from passed @fid */
cl_fid_build_ino(const struct lu_fid * fid,int api32)1166 __u64 cl_fid_build_ino(const struct lu_fid *fid, int api32)
1167 {
1168 	if (BITS_PER_LONG == 32 || api32)
1169 		return fid_flatten32(fid);
1170 	else
1171 		return fid_flatten(fid);
1172 }
1173 
1174 /**
1175  * build inode generation from passed @fid.  If our FID overflows the 32-bit
1176  * inode number then return a non-zero generation to distinguish them. */
cl_fid_build_gen(const struct lu_fid * fid)1177 __u32 cl_fid_build_gen(const struct lu_fid *fid)
1178 {
1179 	__u32 gen;
1180 
1181 	if (fid_is_igif(fid)) {
1182 		gen = lu_igif_gen(fid);
1183 		return gen;
1184 	}
1185 
1186 	gen = fid_flatten(fid) >> 32;
1187 	return gen;
1188 }
1189 
1190 /* lsm is unreliable after hsm implementation as layout can be changed at
1191  * any time. This is only to support old, non-clio-ized interfaces. It will
1192  * cause deadlock if clio operations are called with this extra layout refcount
1193  * because in case the layout changed during the IO, ll_layout_refresh() will
1194  * have to wait for the refcount to become zero to destroy the older layout.
1195  *
1196  * Notice that the lsm returned by this function may not be valid unless called
1197  * inside layout lock - MDS_INODELOCK_LAYOUT. */
ccc_inode_lsm_get(struct inode * inode)1198 struct lov_stripe_md *ccc_inode_lsm_get(struct inode *inode)
1199 {
1200 	return lov_lsm_get(cl_i2info(inode)->lli_clob);
1201 }
1202 
ccc_inode_lsm_put(struct inode * inode,struct lov_stripe_md * lsm)1203 inline void ccc_inode_lsm_put(struct inode *inode, struct lov_stripe_md *lsm)
1204 {
1205 	lov_lsm_put(cl_i2info(inode)->lli_clob, lsm);
1206 }
1207