• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "tree-checker.h"
53 
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57 
58 static const struct extent_io_ops btree_extent_io_ops;
59 static void end_workqueue_fn(struct btrfs_work *work);
60 static void free_fs_root(struct btrfs_root *root);
61 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
62 				    int read_only);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 				      struct btrfs_root *root);
66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
67 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
68 					struct extent_io_tree *dirty_pages,
69 					int mark);
70 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
71 				       struct extent_io_tree *pinned_extents);
72 static int btrfs_cleanup_transaction(struct btrfs_root *root);
73 static void btrfs_error_commit_super(struct btrfs_root *root);
74 
75 /*
76  * btrfs_end_io_wq structs are used to do processing in task context when an IO
77  * is complete.  This is used during reads to verify checksums, and it is used
78  * by writes to insert metadata for new file extents after IO is complete.
79  */
80 struct btrfs_end_io_wq {
81 	struct bio *bio;
82 	bio_end_io_t *end_io;
83 	void *private;
84 	struct btrfs_fs_info *info;
85 	int error;
86 	enum btrfs_wq_endio_type metadata;
87 	struct list_head list;
88 	struct btrfs_work work;
89 };
90 
91 static struct kmem_cache *btrfs_end_io_wq_cache;
92 
btrfs_end_io_wq_init(void)93 int __init btrfs_end_io_wq_init(void)
94 {
95 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
96 					sizeof(struct btrfs_end_io_wq),
97 					0,
98 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
99 					NULL);
100 	if (!btrfs_end_io_wq_cache)
101 		return -ENOMEM;
102 	return 0;
103 }
104 
btrfs_end_io_wq_exit(void)105 void btrfs_end_io_wq_exit(void)
106 {
107 	if (btrfs_end_io_wq_cache)
108 		kmem_cache_destroy(btrfs_end_io_wq_cache);
109 }
110 
111 /*
112  * async submit bios are used to offload expensive checksumming
113  * onto the worker threads.  They checksum file and metadata bios
114  * just before they are sent down the IO stack.
115  */
116 struct async_submit_bio {
117 	struct inode *inode;
118 	struct bio *bio;
119 	struct list_head list;
120 	extent_submit_bio_hook_t *submit_bio_start;
121 	extent_submit_bio_hook_t *submit_bio_done;
122 	int rw;
123 	int mirror_num;
124 	unsigned long bio_flags;
125 	/*
126 	 * bio_offset is optional, can be used if the pages in the bio
127 	 * can't tell us where in the file the bio should go
128 	 */
129 	u64 bio_offset;
130 	struct btrfs_work work;
131 	int error;
132 };
133 
134 /*
135  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
136  * eb, the lockdep key is determined by the btrfs_root it belongs to and
137  * the level the eb occupies in the tree.
138  *
139  * Different roots are used for different purposes and may nest inside each
140  * other and they require separate keysets.  As lockdep keys should be
141  * static, assign keysets according to the purpose of the root as indicated
142  * by btrfs_root->objectid.  This ensures that all special purpose roots
143  * have separate keysets.
144  *
145  * Lock-nesting across peer nodes is always done with the immediate parent
146  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
147  * subclass to avoid triggering lockdep warning in such cases.
148  *
149  * The key is set by the readpage_end_io_hook after the buffer has passed
150  * csum validation but before the pages are unlocked.  It is also set by
151  * btrfs_init_new_buffer on freshly allocated blocks.
152  *
153  * We also add a check to make sure the highest level of the tree is the
154  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
155  * needs update as well.
156  */
157 #ifdef CONFIG_DEBUG_LOCK_ALLOC
158 # if BTRFS_MAX_LEVEL != 8
159 #  error
160 # endif
161 
162 static struct btrfs_lockdep_keyset {
163 	u64			id;		/* root objectid */
164 	const char		*name_stem;	/* lock name stem */
165 	char			names[BTRFS_MAX_LEVEL + 1][20];
166 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
167 } btrfs_lockdep_keysets[] = {
168 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
169 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
170 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
171 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
172 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
173 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
174 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
175 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
176 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
177 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
178 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
179 	{ .id = 0,				.name_stem = "tree"	},
180 };
181 
btrfs_init_lockdep(void)182 void __init btrfs_init_lockdep(void)
183 {
184 	int i, j;
185 
186 	/* initialize lockdep class names */
187 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
188 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
189 
190 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
191 			snprintf(ks->names[j], sizeof(ks->names[j]),
192 				 "btrfs-%s-%02d", ks->name_stem, j);
193 	}
194 }
195 
btrfs_set_buffer_lockdep_class(u64 objectid,struct extent_buffer * eb,int level)196 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
197 				    int level)
198 {
199 	struct btrfs_lockdep_keyset *ks;
200 
201 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
202 
203 	/* find the matching keyset, id 0 is the default entry */
204 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
205 		if (ks->id == objectid)
206 			break;
207 
208 	lockdep_set_class_and_name(&eb->lock,
209 				   &ks->keys[level], ks->names[level]);
210 }
211 
212 #endif
213 
214 /*
215  * extents on the btree inode are pretty simple, there's one extent
216  * that covers the entire device
217  */
btree_get_extent(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)218 static struct extent_map *btree_get_extent(struct inode *inode,
219 		struct page *page, size_t pg_offset, u64 start, u64 len,
220 		int create)
221 {
222 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
223 	struct extent_map *em;
224 	int ret;
225 
226 	read_lock(&em_tree->lock);
227 	em = lookup_extent_mapping(em_tree, start, len);
228 	if (em) {
229 		em->bdev =
230 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
231 		read_unlock(&em_tree->lock);
232 		goto out;
233 	}
234 	read_unlock(&em_tree->lock);
235 
236 	em = alloc_extent_map();
237 	if (!em) {
238 		em = ERR_PTR(-ENOMEM);
239 		goto out;
240 	}
241 	em->start = 0;
242 	em->len = (u64)-1;
243 	em->block_len = (u64)-1;
244 	em->block_start = 0;
245 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
246 
247 	write_lock(&em_tree->lock);
248 	ret = add_extent_mapping(em_tree, em, 0);
249 	if (ret == -EEXIST) {
250 		free_extent_map(em);
251 		em = lookup_extent_mapping(em_tree, start, len);
252 		if (!em)
253 			em = ERR_PTR(-EIO);
254 	} else if (ret) {
255 		free_extent_map(em);
256 		em = ERR_PTR(ret);
257 	}
258 	write_unlock(&em_tree->lock);
259 
260 out:
261 	return em;
262 }
263 
btrfs_csum_data(char * data,u32 seed,size_t len)264 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
265 {
266 	return btrfs_crc32c(seed, data, len);
267 }
268 
btrfs_csum_final(u32 crc,char * result)269 void btrfs_csum_final(u32 crc, char *result)
270 {
271 	put_unaligned_le32(~crc, result);
272 }
273 
274 /*
275  * compute the csum for a btree block, and either verify it or write it
276  * into the csum field of the block.
277  */
csum_tree_block(struct btrfs_fs_info * fs_info,struct extent_buffer * buf,int verify)278 static int csum_tree_block(struct btrfs_fs_info *fs_info,
279 			   struct extent_buffer *buf,
280 			   int verify)
281 {
282 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
283 	char *result = NULL;
284 	unsigned long len;
285 	unsigned long cur_len;
286 	unsigned long offset = BTRFS_CSUM_SIZE;
287 	char *kaddr;
288 	unsigned long map_start;
289 	unsigned long map_len;
290 	int err;
291 	u32 crc = ~(u32)0;
292 	unsigned long inline_result;
293 
294 	len = buf->len - offset;
295 	while (len > 0) {
296 		err = map_private_extent_buffer(buf, offset, 32,
297 					&kaddr, &map_start, &map_len);
298 		if (err)
299 			return 1;
300 		cur_len = min(len, map_len - (offset - map_start));
301 		crc = btrfs_csum_data(kaddr + offset - map_start,
302 				      crc, cur_len);
303 		len -= cur_len;
304 		offset += cur_len;
305 	}
306 	if (csum_size > sizeof(inline_result)) {
307 		result = kzalloc(csum_size, GFP_NOFS);
308 		if (!result)
309 			return 1;
310 	} else {
311 		result = (char *)&inline_result;
312 	}
313 
314 	btrfs_csum_final(crc, result);
315 
316 	if (verify) {
317 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
318 			u32 val;
319 			u32 found = 0;
320 			memcpy(&found, result, csum_size);
321 
322 			read_extent_buffer(buf, &val, 0, csum_size);
323 			btrfs_warn_rl(fs_info,
324 				"%s checksum verify failed on %llu wanted %X found %X "
325 				"level %d",
326 				fs_info->sb->s_id, buf->start,
327 				val, found, btrfs_header_level(buf));
328 			if (result != (char *)&inline_result)
329 				kfree(result);
330 			return 1;
331 		}
332 	} else {
333 		write_extent_buffer(buf, result, 0, csum_size);
334 	}
335 	if (result != (char *)&inline_result)
336 		kfree(result);
337 	return 0;
338 }
339 
340 /*
341  * we can't consider a given block up to date unless the transid of the
342  * block matches the transid in the parent node's pointer.  This is how we
343  * detect blocks that either didn't get written at all or got written
344  * in the wrong place.
345  */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)346 static int verify_parent_transid(struct extent_io_tree *io_tree,
347 				 struct extent_buffer *eb, u64 parent_transid,
348 				 int atomic)
349 {
350 	struct extent_state *cached_state = NULL;
351 	int ret;
352 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
353 
354 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
355 		return 0;
356 
357 	if (atomic)
358 		return -EAGAIN;
359 
360 	if (need_lock) {
361 		btrfs_tree_read_lock(eb);
362 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
363 	}
364 
365 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
366 			 0, &cached_state);
367 	if (extent_buffer_uptodate(eb) &&
368 	    btrfs_header_generation(eb) == parent_transid) {
369 		ret = 0;
370 		goto out;
371 	}
372 	btrfs_err_rl(eb->fs_info,
373 		"parent transid verify failed on %llu wanted %llu found %llu",
374 			eb->start,
375 			parent_transid, btrfs_header_generation(eb));
376 	ret = 1;
377 
378 	/*
379 	 * Things reading via commit roots that don't have normal protection,
380 	 * like send, can have a really old block in cache that may point at a
381 	 * block that has been free'd and re-allocated.  So don't clear uptodate
382 	 * if we find an eb that is under IO (dirty/writeback) because we could
383 	 * end up reading in the stale data and then writing it back out and
384 	 * making everybody very sad.
385 	 */
386 	if (!extent_buffer_under_io(eb))
387 		clear_extent_buffer_uptodate(eb);
388 out:
389 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
390 			     &cached_state, GFP_NOFS);
391 	if (need_lock)
392 		btrfs_tree_read_unlock_blocking(eb);
393 	return ret;
394 }
395 
396 /*
397  * Return 0 if the superblock checksum type matches the checksum value of that
398  * algorithm. Pass the raw disk superblock data.
399  */
btrfs_check_super_csum(char * raw_disk_sb)400 static int btrfs_check_super_csum(char *raw_disk_sb)
401 {
402 	struct btrfs_super_block *disk_sb =
403 		(struct btrfs_super_block *)raw_disk_sb;
404 	u16 csum_type = btrfs_super_csum_type(disk_sb);
405 	int ret = 0;
406 
407 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
408 		u32 crc = ~(u32)0;
409 		const int csum_size = sizeof(crc);
410 		char result[csum_size];
411 
412 		/*
413 		 * The super_block structure does not span the whole
414 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
415 		 * is filled with zeros and is included in the checkum.
416 		 */
417 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
418 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
419 		btrfs_csum_final(crc, result);
420 
421 		if (memcmp(raw_disk_sb, result, csum_size))
422 			ret = 1;
423 	}
424 
425 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
426 		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
427 				csum_type);
428 		ret = 1;
429 	}
430 
431 	return ret;
432 }
433 
434 /*
435  * helper to read a given tree block, doing retries as required when
436  * the checksums don't match and we have alternate mirrors to try.
437  */
btree_read_extent_buffer_pages(struct btrfs_root * root,struct extent_buffer * eb,u64 start,u64 parent_transid)438 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
439 					  struct extent_buffer *eb,
440 					  u64 start, u64 parent_transid)
441 {
442 	struct extent_io_tree *io_tree;
443 	int failed = 0;
444 	int ret;
445 	int num_copies = 0;
446 	int mirror_num = 0;
447 	int failed_mirror = 0;
448 
449 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450 	while (1) {
451 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
452 		ret = read_extent_buffer_pages(io_tree, eb, start,
453 					       WAIT_COMPLETE,
454 					       btree_get_extent, mirror_num);
455 		if (!ret) {
456 			if (!verify_parent_transid(io_tree, eb,
457 						   parent_transid, 0))
458 				break;
459 			else
460 				ret = -EIO;
461 		}
462 
463 		num_copies = btrfs_num_copies(root->fs_info,
464 					      eb->start, eb->len);
465 		if (num_copies == 1)
466 			break;
467 
468 		if (!failed_mirror) {
469 			failed = 1;
470 			failed_mirror = eb->read_mirror;
471 		}
472 
473 		mirror_num++;
474 		if (mirror_num == failed_mirror)
475 			mirror_num++;
476 
477 		if (mirror_num > num_copies)
478 			break;
479 	}
480 
481 	if (failed && !ret && failed_mirror)
482 		repair_eb_io_failure(root, eb, failed_mirror);
483 
484 	return ret;
485 }
486 
487 /*
488  * checksum a dirty tree block before IO.  This has extra checks to make sure
489  * we only fill in the checksum field in the first page of a multi-page block
490  */
491 
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct page * page)492 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
493 {
494 	u64 start = page_offset(page);
495 	u64 found_start;
496 	struct extent_buffer *eb;
497 
498 	eb = (struct extent_buffer *)page->private;
499 	if (page != eb->pages[0])
500 		return 0;
501 	found_start = btrfs_header_bytenr(eb);
502 	if (WARN_ON(found_start != start || !PageUptodate(page)))
503 		return 0;
504 	csum_tree_block(fs_info, eb, 0);
505 	return 0;
506 }
507 
check_tree_block_fsid(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)508 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
509 				 struct extent_buffer *eb)
510 {
511 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
512 	u8 fsid[BTRFS_UUID_SIZE];
513 	int ret = 1;
514 
515 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
516 	while (fs_devices) {
517 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
518 			ret = 0;
519 			break;
520 		}
521 		fs_devices = fs_devices->seed;
522 	}
523 	return ret;
524 }
525 
btree_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)526 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
527 				      u64 phy_offset, struct page *page,
528 				      u64 start, u64 end, int mirror)
529 {
530 	u64 found_start;
531 	int found_level;
532 	struct extent_buffer *eb;
533 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
534 	int ret = 0;
535 	int reads_done;
536 
537 	if (!page->private)
538 		goto out;
539 
540 	eb = (struct extent_buffer *)page->private;
541 
542 	/* the pending IO might have been the only thing that kept this buffer
543 	 * in memory.  Make sure we have a ref for all this other checks
544 	 */
545 	extent_buffer_get(eb);
546 
547 	reads_done = atomic_dec_and_test(&eb->io_pages);
548 	if (!reads_done)
549 		goto err;
550 
551 	eb->read_mirror = mirror;
552 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
553 		ret = -EIO;
554 		goto err;
555 	}
556 
557 	found_start = btrfs_header_bytenr(eb);
558 	if (found_start != eb->start) {
559 		btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
560 			       found_start, eb->start);
561 		ret = -EIO;
562 		goto err;
563 	}
564 	if (check_tree_block_fsid(root->fs_info, eb)) {
565 		btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
566 			       eb->start);
567 		ret = -EIO;
568 		goto err;
569 	}
570 	found_level = btrfs_header_level(eb);
571 	if (found_level >= BTRFS_MAX_LEVEL) {
572 		btrfs_err(root->fs_info, "bad tree block level %d",
573 			   (int)btrfs_header_level(eb));
574 		ret = -EIO;
575 		goto err;
576 	}
577 
578 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
579 				       eb, found_level);
580 
581 	ret = csum_tree_block(root->fs_info, eb, 1);
582 	if (ret) {
583 		ret = -EIO;
584 		goto err;
585 	}
586 
587 	/*
588 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
589 	 * that we don't try and read the other copies of this block, just
590 	 * return -EIO.
591 	 */
592 	if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
593 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
594 		ret = -EIO;
595 	}
596 
597 	if (found_level > 0 && btrfs_check_node(root, eb))
598 		ret = -EIO;
599 
600 	if (!ret)
601 		set_extent_buffer_uptodate(eb);
602 err:
603 	if (reads_done &&
604 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
605 		btree_readahead_hook(root, eb, eb->start, ret);
606 
607 	if (ret) {
608 		/*
609 		 * our io error hook is going to dec the io pages
610 		 * again, we have to make sure it has something
611 		 * to decrement
612 		 */
613 		atomic_inc(&eb->io_pages);
614 		clear_extent_buffer_uptodate(eb);
615 	}
616 	free_extent_buffer(eb);
617 out:
618 	return ret;
619 }
620 
btree_io_failed_hook(struct page * page,int failed_mirror)621 static int btree_io_failed_hook(struct page *page, int failed_mirror)
622 {
623 	struct extent_buffer *eb;
624 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
625 
626 	eb = (struct extent_buffer *)page->private;
627 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
628 	eb->read_mirror = failed_mirror;
629 	atomic_dec(&eb->io_pages);
630 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
631 		btree_readahead_hook(root, eb, eb->start, -EIO);
632 	return -EIO;	/* we fixed nothing */
633 }
634 
end_workqueue_bio(struct bio * bio)635 static void end_workqueue_bio(struct bio *bio)
636 {
637 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
638 	struct btrfs_fs_info *fs_info;
639 	struct btrfs_workqueue *wq;
640 	btrfs_work_func_t func;
641 
642 	fs_info = end_io_wq->info;
643 	end_io_wq->error = bio->bi_error;
644 
645 	if (bio->bi_rw & REQ_WRITE) {
646 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
647 			wq = fs_info->endio_meta_write_workers;
648 			func = btrfs_endio_meta_write_helper;
649 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
650 			wq = fs_info->endio_freespace_worker;
651 			func = btrfs_freespace_write_helper;
652 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
653 			wq = fs_info->endio_raid56_workers;
654 			func = btrfs_endio_raid56_helper;
655 		} else {
656 			wq = fs_info->endio_write_workers;
657 			func = btrfs_endio_write_helper;
658 		}
659 	} else {
660 		if (unlikely(end_io_wq->metadata ==
661 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
662 			wq = fs_info->endio_repair_workers;
663 			func = btrfs_endio_repair_helper;
664 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
665 			wq = fs_info->endio_raid56_workers;
666 			func = btrfs_endio_raid56_helper;
667 		} else if (end_io_wq->metadata) {
668 			wq = fs_info->endio_meta_workers;
669 			func = btrfs_endio_meta_helper;
670 		} else {
671 			wq = fs_info->endio_workers;
672 			func = btrfs_endio_helper;
673 		}
674 	}
675 
676 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
677 	btrfs_queue_work(wq, &end_io_wq->work);
678 }
679 
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,enum btrfs_wq_endio_type metadata)680 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
681 			enum btrfs_wq_endio_type metadata)
682 {
683 	struct btrfs_end_io_wq *end_io_wq;
684 
685 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
686 	if (!end_io_wq)
687 		return -ENOMEM;
688 
689 	end_io_wq->private = bio->bi_private;
690 	end_io_wq->end_io = bio->bi_end_io;
691 	end_io_wq->info = info;
692 	end_io_wq->error = 0;
693 	end_io_wq->bio = bio;
694 	end_io_wq->metadata = metadata;
695 
696 	bio->bi_private = end_io_wq;
697 	bio->bi_end_io = end_workqueue_bio;
698 	return 0;
699 }
700 
btrfs_async_submit_limit(struct btrfs_fs_info * info)701 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
702 {
703 	unsigned long limit = min_t(unsigned long,
704 				    info->thread_pool_size,
705 				    info->fs_devices->open_devices);
706 	return 256 * limit;
707 }
708 
run_one_async_start(struct btrfs_work * work)709 static void run_one_async_start(struct btrfs_work *work)
710 {
711 	struct async_submit_bio *async;
712 	int ret;
713 
714 	async = container_of(work, struct  async_submit_bio, work);
715 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
716 				      async->mirror_num, async->bio_flags,
717 				      async->bio_offset);
718 	if (ret)
719 		async->error = ret;
720 }
721 
run_one_async_done(struct btrfs_work * work)722 static void run_one_async_done(struct btrfs_work *work)
723 {
724 	struct btrfs_fs_info *fs_info;
725 	struct async_submit_bio *async;
726 	int limit;
727 
728 	async = container_of(work, struct  async_submit_bio, work);
729 	fs_info = BTRFS_I(async->inode)->root->fs_info;
730 
731 	limit = btrfs_async_submit_limit(fs_info);
732 	limit = limit * 2 / 3;
733 
734 	/*
735 	 * atomic_dec_return implies a barrier for waitqueue_active
736 	 */
737 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
738 	    waitqueue_active(&fs_info->async_submit_wait))
739 		wake_up(&fs_info->async_submit_wait);
740 
741 	/* If an error occured we just want to clean up the bio and move on */
742 	if (async->error) {
743 		async->bio->bi_error = async->error;
744 		bio_endio(async->bio);
745 		return;
746 	}
747 
748 	async->submit_bio_done(async->inode, async->rw, async->bio,
749 			       async->mirror_num, async->bio_flags,
750 			       async->bio_offset);
751 }
752 
run_one_async_free(struct btrfs_work * work)753 static void run_one_async_free(struct btrfs_work *work)
754 {
755 	struct async_submit_bio *async;
756 
757 	async = container_of(work, struct  async_submit_bio, work);
758 	kfree(async);
759 }
760 
btrfs_wq_submit_bio(struct btrfs_fs_info * fs_info,struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset,extent_submit_bio_hook_t * submit_bio_start,extent_submit_bio_hook_t * submit_bio_done)761 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
762 			int rw, struct bio *bio, int mirror_num,
763 			unsigned long bio_flags,
764 			u64 bio_offset,
765 			extent_submit_bio_hook_t *submit_bio_start,
766 			extent_submit_bio_hook_t *submit_bio_done)
767 {
768 	struct async_submit_bio *async;
769 
770 	async = kmalloc(sizeof(*async), GFP_NOFS);
771 	if (!async)
772 		return -ENOMEM;
773 
774 	async->inode = inode;
775 	async->rw = rw;
776 	async->bio = bio;
777 	async->mirror_num = mirror_num;
778 	async->submit_bio_start = submit_bio_start;
779 	async->submit_bio_done = submit_bio_done;
780 
781 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
782 			run_one_async_done, run_one_async_free);
783 
784 	async->bio_flags = bio_flags;
785 	async->bio_offset = bio_offset;
786 
787 	async->error = 0;
788 
789 	atomic_inc(&fs_info->nr_async_submits);
790 
791 	if (rw & REQ_SYNC)
792 		btrfs_set_work_high_priority(&async->work);
793 
794 	btrfs_queue_work(fs_info->workers, &async->work);
795 
796 	while (atomic_read(&fs_info->async_submit_draining) &&
797 	      atomic_read(&fs_info->nr_async_submits)) {
798 		wait_event(fs_info->async_submit_wait,
799 			   (atomic_read(&fs_info->nr_async_submits) == 0));
800 	}
801 
802 	return 0;
803 }
804 
btree_csum_one_bio(struct bio * bio)805 static int btree_csum_one_bio(struct bio *bio)
806 {
807 	struct bio_vec *bvec;
808 	struct btrfs_root *root;
809 	int i, ret = 0;
810 
811 	bio_for_each_segment_all(bvec, bio, i) {
812 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
813 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
814 		if (ret)
815 			break;
816 	}
817 
818 	return ret;
819 }
820 
__btree_submit_bio_start(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)821 static int __btree_submit_bio_start(struct inode *inode, int rw,
822 				    struct bio *bio, int mirror_num,
823 				    unsigned long bio_flags,
824 				    u64 bio_offset)
825 {
826 	/*
827 	 * when we're called for a write, we're already in the async
828 	 * submission context.  Just jump into btrfs_map_bio
829 	 */
830 	return btree_csum_one_bio(bio);
831 }
832 
__btree_submit_bio_done(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)833 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
834 				 int mirror_num, unsigned long bio_flags,
835 				 u64 bio_offset)
836 {
837 	int ret;
838 
839 	/*
840 	 * when we're called for a write, we're already in the async
841 	 * submission context.  Just jump into btrfs_map_bio
842 	 */
843 	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
844 	if (ret) {
845 		bio->bi_error = ret;
846 		bio_endio(bio);
847 	}
848 	return ret;
849 }
850 
check_async_write(struct inode * inode,unsigned long bio_flags)851 static int check_async_write(struct inode *inode, unsigned long bio_flags)
852 {
853 	if (bio_flags & EXTENT_BIO_TREE_LOG)
854 		return 0;
855 #ifdef CONFIG_X86
856 	if (static_cpu_has(X86_FEATURE_XMM4_2))
857 		return 0;
858 #endif
859 	return 1;
860 }
861 
btree_submit_bio_hook(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)862 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
863 				 int mirror_num, unsigned long bio_flags,
864 				 u64 bio_offset)
865 {
866 	int async = check_async_write(inode, bio_flags);
867 	int ret;
868 
869 	if (!(rw & REQ_WRITE)) {
870 		/*
871 		 * called for a read, do the setup so that checksum validation
872 		 * can happen in the async kernel threads
873 		 */
874 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
875 					  bio, BTRFS_WQ_ENDIO_METADATA);
876 		if (ret)
877 			goto out_w_error;
878 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
879 				    mirror_num, 0);
880 	} else if (!async) {
881 		ret = btree_csum_one_bio(bio);
882 		if (ret)
883 			goto out_w_error;
884 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
885 				    mirror_num, 0);
886 	} else {
887 		/*
888 		 * kthread helpers are used to submit writes so that
889 		 * checksumming can happen in parallel across all CPUs
890 		 */
891 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
892 					  inode, rw, bio, mirror_num, 0,
893 					  bio_offset,
894 					  __btree_submit_bio_start,
895 					  __btree_submit_bio_done);
896 	}
897 
898 	if (ret)
899 		goto out_w_error;
900 	return 0;
901 
902 out_w_error:
903 	bio->bi_error = ret;
904 	bio_endio(bio);
905 	return ret;
906 }
907 
908 #ifdef CONFIG_MIGRATION
btree_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)909 static int btree_migratepage(struct address_space *mapping,
910 			struct page *newpage, struct page *page,
911 			enum migrate_mode mode)
912 {
913 	/*
914 	 * we can't safely write a btree page from here,
915 	 * we haven't done the locking hook
916 	 */
917 	if (PageDirty(page))
918 		return -EAGAIN;
919 	/*
920 	 * Buffers may be managed in a filesystem specific way.
921 	 * We must have no buffers or drop them.
922 	 */
923 	if (page_has_private(page) &&
924 	    !try_to_release_page(page, GFP_KERNEL))
925 		return -EAGAIN;
926 	return migrate_page(mapping, newpage, page, mode);
927 }
928 #endif
929 
930 
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)931 static int btree_writepages(struct address_space *mapping,
932 			    struct writeback_control *wbc)
933 {
934 	struct btrfs_fs_info *fs_info;
935 	int ret;
936 
937 	if (wbc->sync_mode == WB_SYNC_NONE) {
938 
939 		if (wbc->for_kupdate)
940 			return 0;
941 
942 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
943 		/* this is a bit racy, but that's ok */
944 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
945 					     BTRFS_DIRTY_METADATA_THRESH,
946 					     fs_info->dirty_metadata_batch);
947 		if (ret < 0)
948 			return 0;
949 	}
950 	return btree_write_cache_pages(mapping, wbc);
951 }
952 
btree_readpage(struct file * file,struct page * page)953 static int btree_readpage(struct file *file, struct page *page)
954 {
955 	struct extent_io_tree *tree;
956 	tree = &BTRFS_I(page->mapping->host)->io_tree;
957 	return extent_read_full_page(tree, page, btree_get_extent, 0);
958 }
959 
btree_releasepage(struct page * page,gfp_t gfp_flags)960 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
961 {
962 	if (PageWriteback(page) || PageDirty(page))
963 		return 0;
964 
965 	return try_release_extent_buffer(page);
966 }
967 
btree_invalidatepage(struct page * page,unsigned int offset,unsigned int length)968 static void btree_invalidatepage(struct page *page, unsigned int offset,
969 				 unsigned int length)
970 {
971 	struct extent_io_tree *tree;
972 	tree = &BTRFS_I(page->mapping->host)->io_tree;
973 	extent_invalidatepage(tree, page, offset);
974 	btree_releasepage(page, GFP_NOFS);
975 	if (PagePrivate(page)) {
976 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
977 			   "page private not zero on page %llu",
978 			   (unsigned long long)page_offset(page));
979 		ClearPagePrivate(page);
980 		set_page_private(page, 0);
981 		page_cache_release(page);
982 	}
983 }
984 
btree_set_page_dirty(struct page * page)985 static int btree_set_page_dirty(struct page *page)
986 {
987 #ifdef DEBUG
988 	struct extent_buffer *eb;
989 
990 	BUG_ON(!PagePrivate(page));
991 	eb = (struct extent_buffer *)page->private;
992 	BUG_ON(!eb);
993 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
994 	BUG_ON(!atomic_read(&eb->refs));
995 	btrfs_assert_tree_locked(eb);
996 #endif
997 	return __set_page_dirty_nobuffers(page);
998 }
999 
1000 static const struct address_space_operations btree_aops = {
1001 	.readpage	= btree_readpage,
1002 	.writepages	= btree_writepages,
1003 	.releasepage	= btree_releasepage,
1004 	.invalidatepage = btree_invalidatepage,
1005 #ifdef CONFIG_MIGRATION
1006 	.migratepage	= btree_migratepage,
1007 #endif
1008 	.set_page_dirty = btree_set_page_dirty,
1009 };
1010 
readahead_tree_block(struct btrfs_root * root,u64 bytenr)1011 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1012 {
1013 	struct extent_buffer *buf = NULL;
1014 	struct inode *btree_inode = root->fs_info->btree_inode;
1015 
1016 	buf = btrfs_find_create_tree_block(root, bytenr);
1017 	if (!buf)
1018 		return;
1019 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1020 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1021 	free_extent_buffer(buf);
1022 }
1023 
reada_tree_block_flagged(struct btrfs_root * root,u64 bytenr,int mirror_num,struct extent_buffer ** eb)1024 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1025 			 int mirror_num, struct extent_buffer **eb)
1026 {
1027 	struct extent_buffer *buf = NULL;
1028 	struct inode *btree_inode = root->fs_info->btree_inode;
1029 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1030 	int ret;
1031 
1032 	buf = btrfs_find_create_tree_block(root, bytenr);
1033 	if (!buf)
1034 		return 0;
1035 
1036 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1037 
1038 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1039 				       btree_get_extent, mirror_num);
1040 	if (ret) {
1041 		free_extent_buffer(buf);
1042 		return ret;
1043 	}
1044 
1045 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1046 		free_extent_buffer(buf);
1047 		return -EIO;
1048 	} else if (extent_buffer_uptodate(buf)) {
1049 		*eb = buf;
1050 	} else {
1051 		free_extent_buffer(buf);
1052 	}
1053 	return 0;
1054 }
1055 
btrfs_find_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)1056 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1057 					    u64 bytenr)
1058 {
1059 	return find_extent_buffer(fs_info, bytenr);
1060 }
1061 
btrfs_find_create_tree_block(struct btrfs_root * root,u64 bytenr)1062 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1063 						 u64 bytenr)
1064 {
1065 	if (btrfs_test_is_dummy_root(root))
1066 		return alloc_test_extent_buffer(root->fs_info, bytenr);
1067 	return alloc_extent_buffer(root->fs_info, bytenr);
1068 }
1069 
1070 
btrfs_write_tree_block(struct extent_buffer * buf)1071 int btrfs_write_tree_block(struct extent_buffer *buf)
1072 {
1073 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1074 					buf->start + buf->len - 1);
1075 }
1076 
btrfs_wait_tree_block_writeback(struct extent_buffer * buf)1077 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1078 {
1079 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1080 				       buf->start, buf->start + buf->len - 1);
1081 }
1082 
read_tree_block(struct btrfs_root * root,u64 bytenr,u64 parent_transid)1083 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1084 				      u64 parent_transid)
1085 {
1086 	struct extent_buffer *buf = NULL;
1087 	int ret;
1088 
1089 	buf = btrfs_find_create_tree_block(root, bytenr);
1090 	if (!buf)
1091 		return ERR_PTR(-ENOMEM);
1092 
1093 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1094 	if (ret) {
1095 		free_extent_buffer(buf);
1096 		return ERR_PTR(ret);
1097 	}
1098 	return buf;
1099 
1100 }
1101 
clean_tree_block(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct extent_buffer * buf)1102 void clean_tree_block(struct btrfs_trans_handle *trans,
1103 		      struct btrfs_fs_info *fs_info,
1104 		      struct extent_buffer *buf)
1105 {
1106 	if (btrfs_header_generation(buf) ==
1107 	    fs_info->running_transaction->transid) {
1108 		btrfs_assert_tree_locked(buf);
1109 
1110 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1111 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1112 					     -buf->len,
1113 					     fs_info->dirty_metadata_batch);
1114 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1115 			btrfs_set_lock_blocking(buf);
1116 			clear_extent_buffer_dirty(buf);
1117 		}
1118 	}
1119 }
1120 
btrfs_alloc_subvolume_writers(void)1121 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1122 {
1123 	struct btrfs_subvolume_writers *writers;
1124 	int ret;
1125 
1126 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1127 	if (!writers)
1128 		return ERR_PTR(-ENOMEM);
1129 
1130 	ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1131 	if (ret < 0) {
1132 		kfree(writers);
1133 		return ERR_PTR(ret);
1134 	}
1135 
1136 	init_waitqueue_head(&writers->wait);
1137 	return writers;
1138 }
1139 
1140 static void
btrfs_free_subvolume_writers(struct btrfs_subvolume_writers * writers)1141 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1142 {
1143 	percpu_counter_destroy(&writers->counter);
1144 	kfree(writers);
1145 }
1146 
__setup_root(u32 nodesize,u32 sectorsize,u32 stripesize,struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)1147 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1148 			 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1149 			 u64 objectid)
1150 {
1151 	root->node = NULL;
1152 	root->commit_root = NULL;
1153 	root->sectorsize = sectorsize;
1154 	root->nodesize = nodesize;
1155 	root->stripesize = stripesize;
1156 	root->state = 0;
1157 	root->orphan_cleanup_state = 0;
1158 
1159 	root->objectid = objectid;
1160 	root->last_trans = 0;
1161 	root->highest_objectid = 0;
1162 	root->nr_delalloc_inodes = 0;
1163 	root->nr_ordered_extents = 0;
1164 	root->name = NULL;
1165 	root->inode_tree = RB_ROOT;
1166 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1167 	root->block_rsv = NULL;
1168 	root->orphan_block_rsv = NULL;
1169 
1170 	INIT_LIST_HEAD(&root->dirty_list);
1171 	INIT_LIST_HEAD(&root->root_list);
1172 	INIT_LIST_HEAD(&root->delalloc_inodes);
1173 	INIT_LIST_HEAD(&root->delalloc_root);
1174 	INIT_LIST_HEAD(&root->ordered_extents);
1175 	INIT_LIST_HEAD(&root->ordered_root);
1176 	INIT_LIST_HEAD(&root->logged_list[0]);
1177 	INIT_LIST_HEAD(&root->logged_list[1]);
1178 	spin_lock_init(&root->orphan_lock);
1179 	spin_lock_init(&root->inode_lock);
1180 	spin_lock_init(&root->delalloc_lock);
1181 	spin_lock_init(&root->ordered_extent_lock);
1182 	spin_lock_init(&root->accounting_lock);
1183 	spin_lock_init(&root->log_extents_lock[0]);
1184 	spin_lock_init(&root->log_extents_lock[1]);
1185 	mutex_init(&root->objectid_mutex);
1186 	mutex_init(&root->log_mutex);
1187 	mutex_init(&root->ordered_extent_mutex);
1188 	mutex_init(&root->delalloc_mutex);
1189 	init_waitqueue_head(&root->log_writer_wait);
1190 	init_waitqueue_head(&root->log_commit_wait[0]);
1191 	init_waitqueue_head(&root->log_commit_wait[1]);
1192 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1193 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1194 	atomic_set(&root->log_commit[0], 0);
1195 	atomic_set(&root->log_commit[1], 0);
1196 	atomic_set(&root->log_writers, 0);
1197 	atomic_set(&root->log_batch, 0);
1198 	atomic_set(&root->orphan_inodes, 0);
1199 	atomic_set(&root->refs, 1);
1200 	atomic_set(&root->will_be_snapshoted, 0);
1201 	atomic_set(&root->qgroup_meta_rsv, 0);
1202 	root->log_transid = 0;
1203 	root->log_transid_committed = -1;
1204 	root->last_log_commit = 0;
1205 	if (fs_info)
1206 		extent_io_tree_init(&root->dirty_log_pages,
1207 				     fs_info->btree_inode->i_mapping);
1208 
1209 	memset(&root->root_key, 0, sizeof(root->root_key));
1210 	memset(&root->root_item, 0, sizeof(root->root_item));
1211 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1212 	if (fs_info)
1213 		root->defrag_trans_start = fs_info->generation;
1214 	else
1215 		root->defrag_trans_start = 0;
1216 	root->root_key.objectid = objectid;
1217 	root->anon_dev = 0;
1218 
1219 	spin_lock_init(&root->root_item_lock);
1220 }
1221 
btrfs_alloc_root(struct btrfs_fs_info * fs_info)1222 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1223 {
1224 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1225 	if (root)
1226 		root->fs_info = fs_info;
1227 	return root;
1228 }
1229 
1230 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1231 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(void)1232 struct btrfs_root *btrfs_alloc_dummy_root(void)
1233 {
1234 	struct btrfs_root *root;
1235 
1236 	root = btrfs_alloc_root(NULL);
1237 	if (!root)
1238 		return ERR_PTR(-ENOMEM);
1239 	__setup_root(4096, 4096, 4096, root, NULL, 1);
1240 	set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1241 	root->alloc_bytenr = 0;
1242 
1243 	return root;
1244 }
1245 #endif
1246 
btrfs_create_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 objectid)1247 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1248 				     struct btrfs_fs_info *fs_info,
1249 				     u64 objectid)
1250 {
1251 	struct extent_buffer *leaf;
1252 	struct btrfs_root *tree_root = fs_info->tree_root;
1253 	struct btrfs_root *root;
1254 	struct btrfs_key key;
1255 	int ret = 0;
1256 	uuid_le uuid;
1257 
1258 	root = btrfs_alloc_root(fs_info);
1259 	if (!root)
1260 		return ERR_PTR(-ENOMEM);
1261 
1262 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1263 		tree_root->stripesize, root, fs_info, objectid);
1264 	root->root_key.objectid = objectid;
1265 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1266 	root->root_key.offset = 0;
1267 
1268 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1269 	if (IS_ERR(leaf)) {
1270 		ret = PTR_ERR(leaf);
1271 		leaf = NULL;
1272 		goto fail;
1273 	}
1274 
1275 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1276 	btrfs_set_header_bytenr(leaf, leaf->start);
1277 	btrfs_set_header_generation(leaf, trans->transid);
1278 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1279 	btrfs_set_header_owner(leaf, objectid);
1280 	root->node = leaf;
1281 
1282 	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1283 			    BTRFS_FSID_SIZE);
1284 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1285 			    btrfs_header_chunk_tree_uuid(leaf),
1286 			    BTRFS_UUID_SIZE);
1287 	btrfs_mark_buffer_dirty(leaf);
1288 
1289 	root->commit_root = btrfs_root_node(root);
1290 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1291 
1292 	root->root_item.flags = 0;
1293 	root->root_item.byte_limit = 0;
1294 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1295 	btrfs_set_root_generation(&root->root_item, trans->transid);
1296 	btrfs_set_root_level(&root->root_item, 0);
1297 	btrfs_set_root_refs(&root->root_item, 1);
1298 	btrfs_set_root_used(&root->root_item, leaf->len);
1299 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1300 	btrfs_set_root_dirid(&root->root_item, 0);
1301 	uuid_le_gen(&uuid);
1302 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1303 	root->root_item.drop_level = 0;
1304 
1305 	key.objectid = objectid;
1306 	key.type = BTRFS_ROOT_ITEM_KEY;
1307 	key.offset = 0;
1308 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1309 	if (ret)
1310 		goto fail;
1311 
1312 	btrfs_tree_unlock(leaf);
1313 
1314 	return root;
1315 
1316 fail:
1317 	if (leaf) {
1318 		btrfs_tree_unlock(leaf);
1319 		free_extent_buffer(root->commit_root);
1320 		free_extent_buffer(leaf);
1321 	}
1322 	kfree(root);
1323 
1324 	return ERR_PTR(ret);
1325 }
1326 
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1327 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1328 					 struct btrfs_fs_info *fs_info)
1329 {
1330 	struct btrfs_root *root;
1331 	struct btrfs_root *tree_root = fs_info->tree_root;
1332 	struct extent_buffer *leaf;
1333 
1334 	root = btrfs_alloc_root(fs_info);
1335 	if (!root)
1336 		return ERR_PTR(-ENOMEM);
1337 
1338 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1339 		     tree_root->stripesize, root, fs_info,
1340 		     BTRFS_TREE_LOG_OBJECTID);
1341 
1342 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1343 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1344 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1345 
1346 	/*
1347 	 * DON'T set REF_COWS for log trees
1348 	 *
1349 	 * log trees do not get reference counted because they go away
1350 	 * before a real commit is actually done.  They do store pointers
1351 	 * to file data extents, and those reference counts still get
1352 	 * updated (along with back refs to the log tree).
1353 	 */
1354 
1355 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1356 			NULL, 0, 0, 0);
1357 	if (IS_ERR(leaf)) {
1358 		kfree(root);
1359 		return ERR_CAST(leaf);
1360 	}
1361 
1362 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1363 	btrfs_set_header_bytenr(leaf, leaf->start);
1364 	btrfs_set_header_generation(leaf, trans->transid);
1365 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1366 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1367 	root->node = leaf;
1368 
1369 	write_extent_buffer(root->node, root->fs_info->fsid,
1370 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
1371 	btrfs_mark_buffer_dirty(root->node);
1372 	btrfs_tree_unlock(root->node);
1373 	return root;
1374 }
1375 
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1376 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1377 			     struct btrfs_fs_info *fs_info)
1378 {
1379 	struct btrfs_root *log_root;
1380 
1381 	log_root = alloc_log_tree(trans, fs_info);
1382 	if (IS_ERR(log_root))
1383 		return PTR_ERR(log_root);
1384 	WARN_ON(fs_info->log_root_tree);
1385 	fs_info->log_root_tree = log_root;
1386 	return 0;
1387 }
1388 
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1389 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1390 		       struct btrfs_root *root)
1391 {
1392 	struct btrfs_root *log_root;
1393 	struct btrfs_inode_item *inode_item;
1394 
1395 	log_root = alloc_log_tree(trans, root->fs_info);
1396 	if (IS_ERR(log_root))
1397 		return PTR_ERR(log_root);
1398 
1399 	log_root->last_trans = trans->transid;
1400 	log_root->root_key.offset = root->root_key.objectid;
1401 
1402 	inode_item = &log_root->root_item.inode;
1403 	btrfs_set_stack_inode_generation(inode_item, 1);
1404 	btrfs_set_stack_inode_size(inode_item, 3);
1405 	btrfs_set_stack_inode_nlink(inode_item, 1);
1406 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1407 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1408 
1409 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1410 
1411 	WARN_ON(root->log_root);
1412 	root->log_root = log_root;
1413 	root->log_transid = 0;
1414 	root->log_transid_committed = -1;
1415 	root->last_log_commit = 0;
1416 	return 0;
1417 }
1418 
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1419 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1420 					       struct btrfs_key *key)
1421 {
1422 	struct btrfs_root *root;
1423 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1424 	struct btrfs_path *path;
1425 	u64 generation;
1426 	int ret;
1427 
1428 	path = btrfs_alloc_path();
1429 	if (!path)
1430 		return ERR_PTR(-ENOMEM);
1431 
1432 	root = btrfs_alloc_root(fs_info);
1433 	if (!root) {
1434 		ret = -ENOMEM;
1435 		goto alloc_fail;
1436 	}
1437 
1438 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1439 		tree_root->stripesize, root, fs_info, key->objectid);
1440 
1441 	ret = btrfs_find_root(tree_root, key, path,
1442 			      &root->root_item, &root->root_key);
1443 	if (ret) {
1444 		if (ret > 0)
1445 			ret = -ENOENT;
1446 		goto find_fail;
1447 	}
1448 
1449 	generation = btrfs_root_generation(&root->root_item);
1450 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1451 				     generation);
1452 	if (IS_ERR(root->node)) {
1453 		ret = PTR_ERR(root->node);
1454 		goto find_fail;
1455 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1456 		ret = -EIO;
1457 		free_extent_buffer(root->node);
1458 		goto find_fail;
1459 	}
1460 	root->commit_root = btrfs_root_node(root);
1461 out:
1462 	btrfs_free_path(path);
1463 	return root;
1464 
1465 find_fail:
1466 	kfree(root);
1467 alloc_fail:
1468 	root = ERR_PTR(ret);
1469 	goto out;
1470 }
1471 
btrfs_read_fs_root(struct btrfs_root * tree_root,struct btrfs_key * location)1472 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1473 				      struct btrfs_key *location)
1474 {
1475 	struct btrfs_root *root;
1476 
1477 	root = btrfs_read_tree_root(tree_root, location);
1478 	if (IS_ERR(root))
1479 		return root;
1480 
1481 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1482 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1483 		btrfs_check_and_init_root_item(&root->root_item);
1484 	}
1485 
1486 	return root;
1487 }
1488 
btrfs_init_fs_root(struct btrfs_root * root)1489 int btrfs_init_fs_root(struct btrfs_root *root)
1490 {
1491 	int ret;
1492 	struct btrfs_subvolume_writers *writers;
1493 
1494 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1495 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1496 					GFP_NOFS);
1497 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1498 		ret = -ENOMEM;
1499 		goto fail;
1500 	}
1501 
1502 	writers = btrfs_alloc_subvolume_writers();
1503 	if (IS_ERR(writers)) {
1504 		ret = PTR_ERR(writers);
1505 		goto fail;
1506 	}
1507 	root->subv_writers = writers;
1508 
1509 	btrfs_init_free_ino_ctl(root);
1510 	spin_lock_init(&root->ino_cache_lock);
1511 	init_waitqueue_head(&root->ino_cache_wait);
1512 
1513 	ret = get_anon_bdev(&root->anon_dev);
1514 	if (ret)
1515 		goto free_writers;
1516 
1517 	mutex_lock(&root->objectid_mutex);
1518 	ret = btrfs_find_highest_objectid(root,
1519 					&root->highest_objectid);
1520 	if (ret) {
1521 		mutex_unlock(&root->objectid_mutex);
1522 		goto free_root_dev;
1523 	}
1524 
1525 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1526 
1527 	mutex_unlock(&root->objectid_mutex);
1528 
1529 	return 0;
1530 
1531 free_root_dev:
1532 	free_anon_bdev(root->anon_dev);
1533 free_writers:
1534 	btrfs_free_subvolume_writers(root->subv_writers);
1535 fail:
1536 	kfree(root->free_ino_ctl);
1537 	kfree(root->free_ino_pinned);
1538 	return ret;
1539 }
1540 
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1541 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1542 					u64 root_id)
1543 {
1544 	struct btrfs_root *root;
1545 
1546 	spin_lock(&fs_info->fs_roots_radix_lock);
1547 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1548 				 (unsigned long)root_id);
1549 	spin_unlock(&fs_info->fs_roots_radix_lock);
1550 	return root;
1551 }
1552 
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1553 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1554 			 struct btrfs_root *root)
1555 {
1556 	int ret;
1557 
1558 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1559 	if (ret)
1560 		return ret;
1561 
1562 	spin_lock(&fs_info->fs_roots_radix_lock);
1563 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1564 				(unsigned long)root->root_key.objectid,
1565 				root);
1566 	if (ret == 0)
1567 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1568 	spin_unlock(&fs_info->fs_roots_radix_lock);
1569 	radix_tree_preload_end();
1570 
1571 	return ret;
1572 }
1573 
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_key * location,bool check_ref)1574 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1575 				     struct btrfs_key *location,
1576 				     bool check_ref)
1577 {
1578 	struct btrfs_root *root;
1579 	struct btrfs_path *path;
1580 	struct btrfs_key key;
1581 	int ret;
1582 
1583 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1584 		return fs_info->tree_root;
1585 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1586 		return fs_info->extent_root;
1587 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1588 		return fs_info->chunk_root;
1589 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1590 		return fs_info->dev_root;
1591 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1592 		return fs_info->csum_root;
1593 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1594 		return fs_info->quota_root ? fs_info->quota_root :
1595 					     ERR_PTR(-ENOENT);
1596 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1597 		return fs_info->uuid_root ? fs_info->uuid_root :
1598 					    ERR_PTR(-ENOENT);
1599 again:
1600 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1601 	if (root) {
1602 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1603 			return ERR_PTR(-ENOENT);
1604 		return root;
1605 	}
1606 
1607 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1608 	if (IS_ERR(root))
1609 		return root;
1610 
1611 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1612 		ret = -ENOENT;
1613 		goto fail;
1614 	}
1615 
1616 	ret = btrfs_init_fs_root(root);
1617 	if (ret)
1618 		goto fail;
1619 
1620 	path = btrfs_alloc_path();
1621 	if (!path) {
1622 		ret = -ENOMEM;
1623 		goto fail;
1624 	}
1625 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1626 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1627 	key.offset = location->objectid;
1628 
1629 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1630 	btrfs_free_path(path);
1631 	if (ret < 0)
1632 		goto fail;
1633 	if (ret == 0)
1634 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1635 
1636 	ret = btrfs_insert_fs_root(fs_info, root);
1637 	if (ret) {
1638 		if (ret == -EEXIST) {
1639 			free_fs_root(root);
1640 			goto again;
1641 		}
1642 		goto fail;
1643 	}
1644 	return root;
1645 fail:
1646 	free_fs_root(root);
1647 	return ERR_PTR(ret);
1648 }
1649 
btrfs_congested_fn(void * congested_data,int bdi_bits)1650 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1651 {
1652 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1653 	int ret = 0;
1654 	struct btrfs_device *device;
1655 	struct backing_dev_info *bdi;
1656 
1657 	rcu_read_lock();
1658 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1659 		if (!device->bdev)
1660 			continue;
1661 		bdi = blk_get_backing_dev_info(device->bdev);
1662 		if (bdi_congested(bdi, bdi_bits)) {
1663 			ret = 1;
1664 			break;
1665 		}
1666 	}
1667 	rcu_read_unlock();
1668 	return ret;
1669 }
1670 
setup_bdi(struct btrfs_fs_info * info,struct backing_dev_info * bdi)1671 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1672 {
1673 	int err;
1674 
1675 	err = bdi_setup_and_register(bdi, "btrfs");
1676 	if (err)
1677 		return err;
1678 
1679 	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1680 	bdi->congested_fn	= btrfs_congested_fn;
1681 	bdi->congested_data	= info;
1682 	bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1683 	return 0;
1684 }
1685 
1686 /*
1687  * called by the kthread helper functions to finally call the bio end_io
1688  * functions.  This is where read checksum verification actually happens
1689  */
end_workqueue_fn(struct btrfs_work * work)1690 static void end_workqueue_fn(struct btrfs_work *work)
1691 {
1692 	struct bio *bio;
1693 	struct btrfs_end_io_wq *end_io_wq;
1694 
1695 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1696 	bio = end_io_wq->bio;
1697 
1698 	bio->bi_error = end_io_wq->error;
1699 	bio->bi_private = end_io_wq->private;
1700 	bio->bi_end_io = end_io_wq->end_io;
1701 	bio_endio(bio);
1702 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1703 }
1704 
cleaner_kthread(void * arg)1705 static int cleaner_kthread(void *arg)
1706 {
1707 	struct btrfs_root *root = arg;
1708 	int again;
1709 	struct btrfs_trans_handle *trans;
1710 
1711 	do {
1712 		again = 0;
1713 
1714 		/* Make the cleaner go to sleep early. */
1715 		if (btrfs_need_cleaner_sleep(root))
1716 			goto sleep;
1717 
1718 		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1719 			goto sleep;
1720 
1721 		/*
1722 		 * Avoid the problem that we change the status of the fs
1723 		 * during the above check and trylock.
1724 		 */
1725 		if (btrfs_need_cleaner_sleep(root)) {
1726 			mutex_unlock(&root->fs_info->cleaner_mutex);
1727 			goto sleep;
1728 		}
1729 
1730 		mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1731 		btrfs_run_delayed_iputs(root);
1732 		mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1733 
1734 		again = btrfs_clean_one_deleted_snapshot(root);
1735 		mutex_unlock(&root->fs_info->cleaner_mutex);
1736 
1737 		/*
1738 		 * The defragger has dealt with the R/O remount and umount,
1739 		 * needn't do anything special here.
1740 		 */
1741 		btrfs_run_defrag_inodes(root->fs_info);
1742 
1743 		/*
1744 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1745 		 * with relocation (btrfs_relocate_chunk) and relocation
1746 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1747 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1748 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1749 		 * unused block groups.
1750 		 */
1751 		btrfs_delete_unused_bgs(root->fs_info);
1752 sleep:
1753 		if (!again) {
1754 			set_current_state(TASK_INTERRUPTIBLE);
1755 			if (!kthread_should_stop())
1756 				schedule();
1757 			__set_current_state(TASK_RUNNING);
1758 		}
1759 	} while (!kthread_should_stop());
1760 
1761 	/*
1762 	 * Transaction kthread is stopped before us and wakes us up.
1763 	 * However we might have started a new transaction and COWed some
1764 	 * tree blocks when deleting unused block groups for example. So
1765 	 * make sure we commit the transaction we started to have a clean
1766 	 * shutdown when evicting the btree inode - if it has dirty pages
1767 	 * when we do the final iput() on it, eviction will trigger a
1768 	 * writeback for it which will fail with null pointer dereferences
1769 	 * since work queues and other resources were already released and
1770 	 * destroyed by the time the iput/eviction/writeback is made.
1771 	 */
1772 	trans = btrfs_attach_transaction(root);
1773 	if (IS_ERR(trans)) {
1774 		if (PTR_ERR(trans) != -ENOENT)
1775 			btrfs_err(root->fs_info,
1776 				  "cleaner transaction attach returned %ld",
1777 				  PTR_ERR(trans));
1778 	} else {
1779 		int ret;
1780 
1781 		ret = btrfs_commit_transaction(trans, root);
1782 		if (ret)
1783 			btrfs_err(root->fs_info,
1784 				  "cleaner open transaction commit returned %d",
1785 				  ret);
1786 	}
1787 
1788 	return 0;
1789 }
1790 
transaction_kthread(void * arg)1791 static int transaction_kthread(void *arg)
1792 {
1793 	struct btrfs_root *root = arg;
1794 	struct btrfs_trans_handle *trans;
1795 	struct btrfs_transaction *cur;
1796 	u64 transid;
1797 	unsigned long now;
1798 	unsigned long delay;
1799 	bool cannot_commit;
1800 
1801 	do {
1802 		cannot_commit = false;
1803 		delay = HZ * root->fs_info->commit_interval;
1804 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1805 
1806 		spin_lock(&root->fs_info->trans_lock);
1807 		cur = root->fs_info->running_transaction;
1808 		if (!cur) {
1809 			spin_unlock(&root->fs_info->trans_lock);
1810 			goto sleep;
1811 		}
1812 
1813 		now = get_seconds();
1814 		if (cur->state < TRANS_STATE_BLOCKED &&
1815 		    (now < cur->start_time ||
1816 		     now - cur->start_time < root->fs_info->commit_interval)) {
1817 			spin_unlock(&root->fs_info->trans_lock);
1818 			delay = HZ * 5;
1819 			goto sleep;
1820 		}
1821 		transid = cur->transid;
1822 		spin_unlock(&root->fs_info->trans_lock);
1823 
1824 		/* If the file system is aborted, this will always fail. */
1825 		trans = btrfs_attach_transaction(root);
1826 		if (IS_ERR(trans)) {
1827 			if (PTR_ERR(trans) != -ENOENT)
1828 				cannot_commit = true;
1829 			goto sleep;
1830 		}
1831 		if (transid == trans->transid) {
1832 			btrfs_commit_transaction(trans, root);
1833 		} else {
1834 			btrfs_end_transaction(trans, root);
1835 		}
1836 sleep:
1837 		wake_up_process(root->fs_info->cleaner_kthread);
1838 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1839 
1840 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1841 				      &root->fs_info->fs_state)))
1842 			btrfs_cleanup_transaction(root);
1843 		if (!try_to_freeze()) {
1844 			set_current_state(TASK_INTERRUPTIBLE);
1845 			if (!kthread_should_stop() &&
1846 			    (!btrfs_transaction_blocked(root->fs_info) ||
1847 			     cannot_commit))
1848 				schedule_timeout(delay);
1849 			__set_current_state(TASK_RUNNING);
1850 		}
1851 	} while (!kthread_should_stop());
1852 	return 0;
1853 }
1854 
1855 /*
1856  * this will find the highest generation in the array of
1857  * root backups.  The index of the highest array is returned,
1858  * or -1 if we can't find anything.
1859  *
1860  * We check to make sure the array is valid by comparing the
1861  * generation of the latest  root in the array with the generation
1862  * in the super block.  If they don't match we pitch it.
1863  */
find_newest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1864 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1865 {
1866 	u64 cur;
1867 	int newest_index = -1;
1868 	struct btrfs_root_backup *root_backup;
1869 	int i;
1870 
1871 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1872 		root_backup = info->super_copy->super_roots + i;
1873 		cur = btrfs_backup_tree_root_gen(root_backup);
1874 		if (cur == newest_gen)
1875 			newest_index = i;
1876 	}
1877 
1878 	/* check to see if we actually wrapped around */
1879 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1880 		root_backup = info->super_copy->super_roots;
1881 		cur = btrfs_backup_tree_root_gen(root_backup);
1882 		if (cur == newest_gen)
1883 			newest_index = 0;
1884 	}
1885 	return newest_index;
1886 }
1887 
1888 
1889 /*
1890  * find the oldest backup so we know where to store new entries
1891  * in the backup array.  This will set the backup_root_index
1892  * field in the fs_info struct
1893  */
find_oldest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1894 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1895 				     u64 newest_gen)
1896 {
1897 	int newest_index = -1;
1898 
1899 	newest_index = find_newest_super_backup(info, newest_gen);
1900 	/* if there was garbage in there, just move along */
1901 	if (newest_index == -1) {
1902 		info->backup_root_index = 0;
1903 	} else {
1904 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1905 	}
1906 }
1907 
1908 /*
1909  * copy all the root pointers into the super backup array.
1910  * this will bump the backup pointer by one when it is
1911  * done
1912  */
backup_super_roots(struct btrfs_fs_info * info)1913 static void backup_super_roots(struct btrfs_fs_info *info)
1914 {
1915 	int next_backup;
1916 	struct btrfs_root_backup *root_backup;
1917 	int last_backup;
1918 
1919 	next_backup = info->backup_root_index;
1920 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1921 		BTRFS_NUM_BACKUP_ROOTS;
1922 
1923 	/*
1924 	 * just overwrite the last backup if we're at the same generation
1925 	 * this happens only at umount
1926 	 */
1927 	root_backup = info->super_for_commit->super_roots + last_backup;
1928 	if (btrfs_backup_tree_root_gen(root_backup) ==
1929 	    btrfs_header_generation(info->tree_root->node))
1930 		next_backup = last_backup;
1931 
1932 	root_backup = info->super_for_commit->super_roots + next_backup;
1933 
1934 	/*
1935 	 * make sure all of our padding and empty slots get zero filled
1936 	 * regardless of which ones we use today
1937 	 */
1938 	memset(root_backup, 0, sizeof(*root_backup));
1939 
1940 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1941 
1942 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1943 	btrfs_set_backup_tree_root_gen(root_backup,
1944 			       btrfs_header_generation(info->tree_root->node));
1945 
1946 	btrfs_set_backup_tree_root_level(root_backup,
1947 			       btrfs_header_level(info->tree_root->node));
1948 
1949 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1950 	btrfs_set_backup_chunk_root_gen(root_backup,
1951 			       btrfs_header_generation(info->chunk_root->node));
1952 	btrfs_set_backup_chunk_root_level(root_backup,
1953 			       btrfs_header_level(info->chunk_root->node));
1954 
1955 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1956 	btrfs_set_backup_extent_root_gen(root_backup,
1957 			       btrfs_header_generation(info->extent_root->node));
1958 	btrfs_set_backup_extent_root_level(root_backup,
1959 			       btrfs_header_level(info->extent_root->node));
1960 
1961 	/*
1962 	 * we might commit during log recovery, which happens before we set
1963 	 * the fs_root.  Make sure it is valid before we fill it in.
1964 	 */
1965 	if (info->fs_root && info->fs_root->node) {
1966 		btrfs_set_backup_fs_root(root_backup,
1967 					 info->fs_root->node->start);
1968 		btrfs_set_backup_fs_root_gen(root_backup,
1969 			       btrfs_header_generation(info->fs_root->node));
1970 		btrfs_set_backup_fs_root_level(root_backup,
1971 			       btrfs_header_level(info->fs_root->node));
1972 	}
1973 
1974 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1975 	btrfs_set_backup_dev_root_gen(root_backup,
1976 			       btrfs_header_generation(info->dev_root->node));
1977 	btrfs_set_backup_dev_root_level(root_backup,
1978 				       btrfs_header_level(info->dev_root->node));
1979 
1980 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1981 	btrfs_set_backup_csum_root_gen(root_backup,
1982 			       btrfs_header_generation(info->csum_root->node));
1983 	btrfs_set_backup_csum_root_level(root_backup,
1984 			       btrfs_header_level(info->csum_root->node));
1985 
1986 	btrfs_set_backup_total_bytes(root_backup,
1987 			     btrfs_super_total_bytes(info->super_copy));
1988 	btrfs_set_backup_bytes_used(root_backup,
1989 			     btrfs_super_bytes_used(info->super_copy));
1990 	btrfs_set_backup_num_devices(root_backup,
1991 			     btrfs_super_num_devices(info->super_copy));
1992 
1993 	/*
1994 	 * if we don't copy this out to the super_copy, it won't get remembered
1995 	 * for the next commit
1996 	 */
1997 	memcpy(&info->super_copy->super_roots,
1998 	       &info->super_for_commit->super_roots,
1999 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2000 }
2001 
2002 /*
2003  * this copies info out of the root backup array and back into
2004  * the in-memory super block.  It is meant to help iterate through
2005  * the array, so you send it the number of backups you've already
2006  * tried and the last backup index you used.
2007  *
2008  * this returns -1 when it has tried all the backups
2009  */
next_root_backup(struct btrfs_fs_info * info,struct btrfs_super_block * super,int * num_backups_tried,int * backup_index)2010 static noinline int next_root_backup(struct btrfs_fs_info *info,
2011 				     struct btrfs_super_block *super,
2012 				     int *num_backups_tried, int *backup_index)
2013 {
2014 	struct btrfs_root_backup *root_backup;
2015 	int newest = *backup_index;
2016 
2017 	if (*num_backups_tried == 0) {
2018 		u64 gen = btrfs_super_generation(super);
2019 
2020 		newest = find_newest_super_backup(info, gen);
2021 		if (newest == -1)
2022 			return -1;
2023 
2024 		*backup_index = newest;
2025 		*num_backups_tried = 1;
2026 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2027 		/* we've tried all the backups, all done */
2028 		return -1;
2029 	} else {
2030 		/* jump to the next oldest backup */
2031 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2032 			BTRFS_NUM_BACKUP_ROOTS;
2033 		*backup_index = newest;
2034 		*num_backups_tried += 1;
2035 	}
2036 	root_backup = super->super_roots + newest;
2037 
2038 	btrfs_set_super_generation(super,
2039 				   btrfs_backup_tree_root_gen(root_backup));
2040 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2041 	btrfs_set_super_root_level(super,
2042 				   btrfs_backup_tree_root_level(root_backup));
2043 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2044 
2045 	/*
2046 	 * fixme: the total bytes and num_devices need to match or we should
2047 	 * need a fsck
2048 	 */
2049 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2050 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2051 	return 0;
2052 }
2053 
2054 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)2055 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2056 {
2057 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2058 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2059 	btrfs_destroy_workqueue(fs_info->workers);
2060 	btrfs_destroy_workqueue(fs_info->endio_workers);
2061 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2062 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2063 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2064 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2065 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2066 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2067 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2068 	btrfs_destroy_workqueue(fs_info->submit_workers);
2069 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2070 	btrfs_destroy_workqueue(fs_info->caching_workers);
2071 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2072 	btrfs_destroy_workqueue(fs_info->flush_workers);
2073 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2074 	btrfs_destroy_workqueue(fs_info->extent_workers);
2075 }
2076 
free_root_extent_buffers(struct btrfs_root * root)2077 static void free_root_extent_buffers(struct btrfs_root *root)
2078 {
2079 	if (root) {
2080 		free_extent_buffer(root->node);
2081 		free_extent_buffer(root->commit_root);
2082 		root->node = NULL;
2083 		root->commit_root = NULL;
2084 	}
2085 }
2086 
2087 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,int chunk_root)2088 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2089 {
2090 	free_root_extent_buffers(info->tree_root);
2091 
2092 	free_root_extent_buffers(info->dev_root);
2093 	free_root_extent_buffers(info->extent_root);
2094 	free_root_extent_buffers(info->csum_root);
2095 	free_root_extent_buffers(info->quota_root);
2096 	free_root_extent_buffers(info->uuid_root);
2097 	if (chunk_root)
2098 		free_root_extent_buffers(info->chunk_root);
2099 }
2100 
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2101 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2102 {
2103 	int ret;
2104 	struct btrfs_root *gang[8];
2105 	int i;
2106 
2107 	while (!list_empty(&fs_info->dead_roots)) {
2108 		gang[0] = list_entry(fs_info->dead_roots.next,
2109 				     struct btrfs_root, root_list);
2110 		list_del(&gang[0]->root_list);
2111 
2112 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2113 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2114 		} else {
2115 			free_extent_buffer(gang[0]->node);
2116 			free_extent_buffer(gang[0]->commit_root);
2117 			btrfs_put_fs_root(gang[0]);
2118 		}
2119 	}
2120 
2121 	while (1) {
2122 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2123 					     (void **)gang, 0,
2124 					     ARRAY_SIZE(gang));
2125 		if (!ret)
2126 			break;
2127 		for (i = 0; i < ret; i++)
2128 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2129 	}
2130 
2131 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2132 		btrfs_free_log_root_tree(NULL, fs_info);
2133 		btrfs_destroy_pinned_extent(fs_info->tree_root,
2134 					    fs_info->pinned_extents);
2135 	}
2136 }
2137 
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2138 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2139 {
2140 	mutex_init(&fs_info->scrub_lock);
2141 	atomic_set(&fs_info->scrubs_running, 0);
2142 	atomic_set(&fs_info->scrub_pause_req, 0);
2143 	atomic_set(&fs_info->scrubs_paused, 0);
2144 	atomic_set(&fs_info->scrub_cancel_req, 0);
2145 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2146 	fs_info->scrub_workers_refcnt = 0;
2147 }
2148 
btrfs_init_balance(struct btrfs_fs_info * fs_info)2149 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2150 {
2151 	spin_lock_init(&fs_info->balance_lock);
2152 	mutex_init(&fs_info->balance_mutex);
2153 	atomic_set(&fs_info->balance_running, 0);
2154 	atomic_set(&fs_info->balance_pause_req, 0);
2155 	atomic_set(&fs_info->balance_cancel_req, 0);
2156 	fs_info->balance_ctl = NULL;
2157 	init_waitqueue_head(&fs_info->balance_wait_q);
2158 }
2159 
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info,struct btrfs_root * tree_root)2160 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2161 				   struct btrfs_root *tree_root)
2162 {
2163 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2164 	set_nlink(fs_info->btree_inode, 1);
2165 	/*
2166 	 * we set the i_size on the btree inode to the max possible int.
2167 	 * the real end of the address space is determined by all of
2168 	 * the devices in the system
2169 	 */
2170 	fs_info->btree_inode->i_size = OFFSET_MAX;
2171 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2172 
2173 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2174 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2175 			     fs_info->btree_inode->i_mapping);
2176 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2177 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2178 
2179 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2180 
2181 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2182 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2183 	       sizeof(struct btrfs_key));
2184 	set_bit(BTRFS_INODE_DUMMY,
2185 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2186 	btrfs_insert_inode_hash(fs_info->btree_inode);
2187 }
2188 
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2189 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2190 {
2191 	fs_info->dev_replace.lock_owner = 0;
2192 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2193 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2194 	mutex_init(&fs_info->dev_replace.lock_management_lock);
2195 	mutex_init(&fs_info->dev_replace.lock);
2196 	init_waitqueue_head(&fs_info->replace_wait);
2197 }
2198 
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2199 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2200 {
2201 	spin_lock_init(&fs_info->qgroup_lock);
2202 	mutex_init(&fs_info->qgroup_ioctl_lock);
2203 	fs_info->qgroup_tree = RB_ROOT;
2204 	fs_info->qgroup_op_tree = RB_ROOT;
2205 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2206 	fs_info->qgroup_seq = 1;
2207 	fs_info->quota_enabled = 0;
2208 	fs_info->pending_quota_state = 0;
2209 	fs_info->qgroup_ulist = NULL;
2210 	fs_info->qgroup_rescan_running = false;
2211 	mutex_init(&fs_info->qgroup_rescan_lock);
2212 }
2213 
btrfs_init_workqueues(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2214 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2215 		struct btrfs_fs_devices *fs_devices)
2216 {
2217 	int max_active = fs_info->thread_pool_size;
2218 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2219 
2220 	fs_info->workers =
2221 		btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2222 				      max_active, 16);
2223 
2224 	fs_info->delalloc_workers =
2225 		btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2226 
2227 	fs_info->flush_workers =
2228 		btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2229 
2230 	fs_info->caching_workers =
2231 		btrfs_alloc_workqueue("cache", flags, max_active, 0);
2232 
2233 	/*
2234 	 * a higher idle thresh on the submit workers makes it much more
2235 	 * likely that bios will be send down in a sane order to the
2236 	 * devices
2237 	 */
2238 	fs_info->submit_workers =
2239 		btrfs_alloc_workqueue("submit", flags,
2240 				      min_t(u64, fs_devices->num_devices,
2241 					    max_active), 64);
2242 
2243 	fs_info->fixup_workers =
2244 		btrfs_alloc_workqueue("fixup", flags, 1, 0);
2245 
2246 	/*
2247 	 * endios are largely parallel and should have a very
2248 	 * low idle thresh
2249 	 */
2250 	fs_info->endio_workers =
2251 		btrfs_alloc_workqueue("endio", flags, max_active, 4);
2252 	fs_info->endio_meta_workers =
2253 		btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2254 	fs_info->endio_meta_write_workers =
2255 		btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2256 	fs_info->endio_raid56_workers =
2257 		btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2258 	fs_info->endio_repair_workers =
2259 		btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2260 	fs_info->rmw_workers =
2261 		btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2262 	fs_info->endio_write_workers =
2263 		btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2264 	fs_info->endio_freespace_worker =
2265 		btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2266 	fs_info->delayed_workers =
2267 		btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2268 	fs_info->readahead_workers =
2269 		btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2270 	fs_info->qgroup_rescan_workers =
2271 		btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2272 	fs_info->extent_workers =
2273 		btrfs_alloc_workqueue("extent-refs", flags,
2274 				      min_t(u64, fs_devices->num_devices,
2275 					    max_active), 8);
2276 
2277 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2278 	      fs_info->submit_workers && fs_info->flush_workers &&
2279 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2280 	      fs_info->endio_meta_write_workers &&
2281 	      fs_info->endio_repair_workers &&
2282 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2283 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2284 	      fs_info->caching_workers && fs_info->readahead_workers &&
2285 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2286 	      fs_info->extent_workers &&
2287 	      fs_info->qgroup_rescan_workers)) {
2288 		return -ENOMEM;
2289 	}
2290 
2291 	return 0;
2292 }
2293 
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2294 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2295 			    struct btrfs_fs_devices *fs_devices)
2296 {
2297 	int ret;
2298 	struct btrfs_root *tree_root = fs_info->tree_root;
2299 	struct btrfs_root *log_tree_root;
2300 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2301 	u64 bytenr = btrfs_super_log_root(disk_super);
2302 
2303 	if (fs_devices->rw_devices == 0) {
2304 		btrfs_warn(fs_info, "log replay required on RO media");
2305 		return -EIO;
2306 	}
2307 
2308 	log_tree_root = btrfs_alloc_root(fs_info);
2309 	if (!log_tree_root)
2310 		return -ENOMEM;
2311 
2312 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
2313 			tree_root->stripesize, log_tree_root, fs_info,
2314 			BTRFS_TREE_LOG_OBJECTID);
2315 
2316 	log_tree_root->node = read_tree_block(tree_root, bytenr,
2317 			fs_info->generation + 1);
2318 	if (IS_ERR(log_tree_root->node)) {
2319 		btrfs_warn(fs_info, "failed to read log tree");
2320 		ret = PTR_ERR(log_tree_root->node);
2321 		kfree(log_tree_root);
2322 		return ret;
2323 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2324 		btrfs_err(fs_info, "failed to read log tree");
2325 		free_extent_buffer(log_tree_root->node);
2326 		kfree(log_tree_root);
2327 		return -EIO;
2328 	}
2329 	/* returns with log_tree_root freed on success */
2330 	ret = btrfs_recover_log_trees(log_tree_root);
2331 	if (ret) {
2332 		btrfs_std_error(tree_root->fs_info, ret,
2333 			    "Failed to recover log tree");
2334 		free_extent_buffer(log_tree_root->node);
2335 		kfree(log_tree_root);
2336 		return ret;
2337 	}
2338 
2339 	if (fs_info->sb->s_flags & MS_RDONLY) {
2340 		ret = btrfs_commit_super(tree_root);
2341 		if (ret)
2342 			return ret;
2343 	}
2344 
2345 	return 0;
2346 }
2347 
btrfs_read_roots(struct btrfs_fs_info * fs_info,struct btrfs_root * tree_root)2348 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2349 			    struct btrfs_root *tree_root)
2350 {
2351 	struct btrfs_root *root;
2352 	struct btrfs_key location;
2353 	int ret;
2354 
2355 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2356 	location.type = BTRFS_ROOT_ITEM_KEY;
2357 	location.offset = 0;
2358 
2359 	root = btrfs_read_tree_root(tree_root, &location);
2360 	if (IS_ERR(root))
2361 		return PTR_ERR(root);
2362 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2363 	fs_info->extent_root = root;
2364 
2365 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2366 	root = btrfs_read_tree_root(tree_root, &location);
2367 	if (IS_ERR(root))
2368 		return PTR_ERR(root);
2369 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2370 	fs_info->dev_root = root;
2371 	btrfs_init_devices_late(fs_info);
2372 
2373 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2374 	root = btrfs_read_tree_root(tree_root, &location);
2375 	if (IS_ERR(root))
2376 		return PTR_ERR(root);
2377 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2378 	fs_info->csum_root = root;
2379 
2380 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2381 	root = btrfs_read_tree_root(tree_root, &location);
2382 	if (!IS_ERR(root)) {
2383 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2384 		fs_info->quota_enabled = 1;
2385 		fs_info->pending_quota_state = 1;
2386 		fs_info->quota_root = root;
2387 	}
2388 
2389 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2390 	root = btrfs_read_tree_root(tree_root, &location);
2391 	if (IS_ERR(root)) {
2392 		ret = PTR_ERR(root);
2393 		if (ret != -ENOENT)
2394 			return ret;
2395 	} else {
2396 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2397 		fs_info->uuid_root = root;
2398 	}
2399 
2400 	return 0;
2401 }
2402 
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)2403 int open_ctree(struct super_block *sb,
2404 	       struct btrfs_fs_devices *fs_devices,
2405 	       char *options)
2406 {
2407 	u32 sectorsize;
2408 	u32 nodesize;
2409 	u32 stripesize;
2410 	u64 generation;
2411 	u64 features;
2412 	struct btrfs_key location;
2413 	struct buffer_head *bh;
2414 	struct btrfs_super_block *disk_super;
2415 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2416 	struct btrfs_root *tree_root;
2417 	struct btrfs_root *chunk_root;
2418 	int ret;
2419 	int err = -EINVAL;
2420 	int num_backups_tried = 0;
2421 	int backup_index = 0;
2422 	int max_active;
2423 
2424 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2425 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2426 	if (!tree_root || !chunk_root) {
2427 		err = -ENOMEM;
2428 		goto fail;
2429 	}
2430 
2431 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2432 	if (ret) {
2433 		err = ret;
2434 		goto fail;
2435 	}
2436 
2437 	ret = setup_bdi(fs_info, &fs_info->bdi);
2438 	if (ret) {
2439 		err = ret;
2440 		goto fail_srcu;
2441 	}
2442 
2443 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2444 	if (ret) {
2445 		err = ret;
2446 		goto fail_bdi;
2447 	}
2448 	fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2449 					(1 + ilog2(nr_cpu_ids));
2450 
2451 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2452 	if (ret) {
2453 		err = ret;
2454 		goto fail_dirty_metadata_bytes;
2455 	}
2456 
2457 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2458 	if (ret) {
2459 		err = ret;
2460 		goto fail_delalloc_bytes;
2461 	}
2462 
2463 	fs_info->btree_inode = new_inode(sb);
2464 	if (!fs_info->btree_inode) {
2465 		err = -ENOMEM;
2466 		goto fail_bio_counter;
2467 	}
2468 
2469 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2470 
2471 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2472 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2473 	INIT_LIST_HEAD(&fs_info->trans_list);
2474 	INIT_LIST_HEAD(&fs_info->dead_roots);
2475 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2476 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2477 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2478 	spin_lock_init(&fs_info->delalloc_root_lock);
2479 	spin_lock_init(&fs_info->trans_lock);
2480 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2481 	spin_lock_init(&fs_info->delayed_iput_lock);
2482 	spin_lock_init(&fs_info->defrag_inodes_lock);
2483 	spin_lock_init(&fs_info->free_chunk_lock);
2484 	spin_lock_init(&fs_info->super_lock);
2485 	spin_lock_init(&fs_info->qgroup_op_lock);
2486 	spin_lock_init(&fs_info->buffer_lock);
2487 	spin_lock_init(&fs_info->unused_bgs_lock);
2488 	rwlock_init(&fs_info->tree_mod_log_lock);
2489 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2490 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2491 	mutex_init(&fs_info->reloc_mutex);
2492 	mutex_init(&fs_info->delalloc_root_mutex);
2493 	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2494 	seqlock_init(&fs_info->profiles_lock);
2495 
2496 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2497 	INIT_LIST_HEAD(&fs_info->space_info);
2498 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2499 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2500 	btrfs_mapping_init(&fs_info->mapping_tree);
2501 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2502 			     BTRFS_BLOCK_RSV_GLOBAL);
2503 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2504 			     BTRFS_BLOCK_RSV_DELALLOC);
2505 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2506 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2507 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2508 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2509 			     BTRFS_BLOCK_RSV_DELOPS);
2510 	atomic_set(&fs_info->nr_async_submits, 0);
2511 	atomic_set(&fs_info->async_delalloc_pages, 0);
2512 	atomic_set(&fs_info->async_submit_draining, 0);
2513 	atomic_set(&fs_info->nr_async_bios, 0);
2514 	atomic_set(&fs_info->defrag_running, 0);
2515 	atomic_set(&fs_info->qgroup_op_seq, 0);
2516 	atomic64_set(&fs_info->tree_mod_seq, 0);
2517 	fs_info->sb = sb;
2518 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2519 	fs_info->metadata_ratio = 0;
2520 	fs_info->defrag_inodes = RB_ROOT;
2521 	fs_info->free_chunk_space = 0;
2522 	fs_info->tree_mod_log = RB_ROOT;
2523 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2524 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2525 	/* readahead state */
2526 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2527 	spin_lock_init(&fs_info->reada_lock);
2528 
2529 	fs_info->thread_pool_size = min_t(unsigned long,
2530 					  num_online_cpus() + 2, 8);
2531 
2532 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2533 	spin_lock_init(&fs_info->ordered_root_lock);
2534 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2535 					GFP_NOFS);
2536 	if (!fs_info->delayed_root) {
2537 		err = -ENOMEM;
2538 		goto fail_iput;
2539 	}
2540 	btrfs_init_delayed_root(fs_info->delayed_root);
2541 
2542 	btrfs_init_scrub(fs_info);
2543 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2544 	fs_info->check_integrity_print_mask = 0;
2545 #endif
2546 	btrfs_init_balance(fs_info);
2547 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2548 
2549 	sb->s_blocksize = 4096;
2550 	sb->s_blocksize_bits = blksize_bits(4096);
2551 	sb->s_bdi = &fs_info->bdi;
2552 
2553 	btrfs_init_btree_inode(fs_info, tree_root);
2554 
2555 	spin_lock_init(&fs_info->block_group_cache_lock);
2556 	fs_info->block_group_cache_tree = RB_ROOT;
2557 	fs_info->first_logical_byte = (u64)-1;
2558 
2559 	extent_io_tree_init(&fs_info->freed_extents[0],
2560 			     fs_info->btree_inode->i_mapping);
2561 	extent_io_tree_init(&fs_info->freed_extents[1],
2562 			     fs_info->btree_inode->i_mapping);
2563 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2564 	fs_info->do_barriers = 1;
2565 
2566 
2567 	mutex_init(&fs_info->ordered_operations_mutex);
2568 	mutex_init(&fs_info->tree_log_mutex);
2569 	mutex_init(&fs_info->chunk_mutex);
2570 	mutex_init(&fs_info->transaction_kthread_mutex);
2571 	mutex_init(&fs_info->cleaner_mutex);
2572 	mutex_init(&fs_info->volume_mutex);
2573 	mutex_init(&fs_info->ro_block_group_mutex);
2574 	init_rwsem(&fs_info->commit_root_sem);
2575 	init_rwsem(&fs_info->cleanup_work_sem);
2576 	init_rwsem(&fs_info->subvol_sem);
2577 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2578 
2579 	btrfs_init_dev_replace_locks(fs_info);
2580 	btrfs_init_qgroup(fs_info);
2581 
2582 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2583 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2584 
2585 	init_waitqueue_head(&fs_info->transaction_throttle);
2586 	init_waitqueue_head(&fs_info->transaction_wait);
2587 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2588 	init_waitqueue_head(&fs_info->async_submit_wait);
2589 
2590 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2591 
2592 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2593 	if (ret) {
2594 		err = ret;
2595 		goto fail_alloc;
2596 	}
2597 
2598 	__setup_root(4096, 4096, 4096, tree_root,
2599 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2600 
2601 	invalidate_bdev(fs_devices->latest_bdev);
2602 
2603 	/*
2604 	 * Read super block and check the signature bytes only
2605 	 */
2606 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2607 	if (IS_ERR(bh)) {
2608 		err = PTR_ERR(bh);
2609 		goto fail_alloc;
2610 	}
2611 
2612 	/*
2613 	 * We want to check superblock checksum, the type is stored inside.
2614 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2615 	 */
2616 	if (btrfs_check_super_csum(bh->b_data)) {
2617 		printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2618 		err = -EINVAL;
2619 		brelse(bh);
2620 		goto fail_alloc;
2621 	}
2622 
2623 	/*
2624 	 * super_copy is zeroed at allocation time and we never touch the
2625 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2626 	 * the whole block of INFO_SIZE
2627 	 */
2628 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2629 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2630 	       sizeof(*fs_info->super_for_commit));
2631 	brelse(bh);
2632 
2633 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2634 
2635 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2636 	if (ret) {
2637 		printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2638 		err = -EINVAL;
2639 		goto fail_alloc;
2640 	}
2641 
2642 	disk_super = fs_info->super_copy;
2643 	if (!btrfs_super_root(disk_super))
2644 		goto fail_alloc;
2645 
2646 	/* check FS state, whether FS is broken. */
2647 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2648 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2649 
2650 	/*
2651 	 * run through our array of backup supers and setup
2652 	 * our ring pointer to the oldest one
2653 	 */
2654 	generation = btrfs_super_generation(disk_super);
2655 	find_oldest_super_backup(fs_info, generation);
2656 
2657 	/*
2658 	 * In the long term, we'll store the compression type in the super
2659 	 * block, and it'll be used for per file compression control.
2660 	 */
2661 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2662 
2663 	ret = btrfs_parse_options(tree_root, options);
2664 	if (ret) {
2665 		err = ret;
2666 		goto fail_alloc;
2667 	}
2668 
2669 	features = btrfs_super_incompat_flags(disk_super) &
2670 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2671 	if (features) {
2672 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2673 		       "unsupported optional features (%Lx).\n",
2674 		       features);
2675 		err = -EINVAL;
2676 		goto fail_alloc;
2677 	}
2678 
2679 	/*
2680 	 * Leafsize and nodesize were always equal, this is only a sanity check.
2681 	 */
2682 	if (le32_to_cpu(disk_super->__unused_leafsize) !=
2683 	    btrfs_super_nodesize(disk_super)) {
2684 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2685 		       "blocksizes don't match.  node %d leaf %d\n",
2686 		       btrfs_super_nodesize(disk_super),
2687 		       le32_to_cpu(disk_super->__unused_leafsize));
2688 		err = -EINVAL;
2689 		goto fail_alloc;
2690 	}
2691 	if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2692 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2693 		       "blocksize (%d) was too large\n",
2694 		       btrfs_super_nodesize(disk_super));
2695 		err = -EINVAL;
2696 		goto fail_alloc;
2697 	}
2698 
2699 	features = btrfs_super_incompat_flags(disk_super);
2700 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2701 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2702 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2703 
2704 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2705 		printk(KERN_INFO "BTRFS: has skinny extents\n");
2706 
2707 	/*
2708 	 * flag our filesystem as having big metadata blocks if
2709 	 * they are bigger than the page size
2710 	 */
2711 	if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2712 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2713 			printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2714 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2715 	}
2716 
2717 	nodesize = btrfs_super_nodesize(disk_super);
2718 	sectorsize = btrfs_super_sectorsize(disk_super);
2719 	stripesize = btrfs_super_stripesize(disk_super);
2720 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2721 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2722 
2723 	/*
2724 	 * mixed block groups end up with duplicate but slightly offset
2725 	 * extent buffers for the same range.  It leads to corruptions
2726 	 */
2727 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2728 	    (sectorsize != nodesize)) {
2729 		printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2730 				"are not allowed for mixed block groups on %s\n",
2731 				sb->s_id);
2732 		goto fail_alloc;
2733 	}
2734 
2735 	/*
2736 	 * Needn't use the lock because there is no other task which will
2737 	 * update the flag.
2738 	 */
2739 	btrfs_set_super_incompat_flags(disk_super, features);
2740 
2741 	features = btrfs_super_compat_ro_flags(disk_super) &
2742 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2743 	if (!(sb->s_flags & MS_RDONLY) && features) {
2744 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2745 		       "unsupported option features (%Lx).\n",
2746 		       features);
2747 		err = -EINVAL;
2748 		goto fail_alloc;
2749 	}
2750 
2751 	max_active = fs_info->thread_pool_size;
2752 
2753 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2754 	if (ret) {
2755 		err = ret;
2756 		goto fail_sb_buffer;
2757 	}
2758 
2759 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2760 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2761 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2762 
2763 	tree_root->nodesize = nodesize;
2764 	tree_root->sectorsize = sectorsize;
2765 	tree_root->stripesize = stripesize;
2766 
2767 	sb->s_blocksize = sectorsize;
2768 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2769 
2770 	if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2771 		printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2772 		goto fail_sb_buffer;
2773 	}
2774 
2775 	if (sectorsize != PAGE_SIZE) {
2776 		printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2777 		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2778 		goto fail_sb_buffer;
2779 	}
2780 
2781 	mutex_lock(&fs_info->chunk_mutex);
2782 	ret = btrfs_read_sys_array(tree_root);
2783 	mutex_unlock(&fs_info->chunk_mutex);
2784 	if (ret) {
2785 		printk(KERN_ERR "BTRFS: failed to read the system "
2786 		       "array on %s\n", sb->s_id);
2787 		goto fail_sb_buffer;
2788 	}
2789 
2790 	generation = btrfs_super_chunk_root_generation(disk_super);
2791 
2792 	__setup_root(nodesize, sectorsize, stripesize, chunk_root,
2793 		     fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2794 
2795 	chunk_root->node = read_tree_block(chunk_root,
2796 					   btrfs_super_chunk_root(disk_super),
2797 					   generation);
2798 	if (IS_ERR(chunk_root->node) ||
2799 	    !extent_buffer_uptodate(chunk_root->node)) {
2800 		printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2801 		       sb->s_id);
2802 		if (!IS_ERR(chunk_root->node))
2803 			free_extent_buffer(chunk_root->node);
2804 		chunk_root->node = NULL;
2805 		goto fail_tree_roots;
2806 	}
2807 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2808 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2809 
2810 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2811 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2812 
2813 	ret = btrfs_read_chunk_tree(chunk_root);
2814 	if (ret) {
2815 		printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2816 		       sb->s_id);
2817 		goto fail_tree_roots;
2818 	}
2819 
2820 	/*
2821 	 * keep the device that is marked to be the target device for the
2822 	 * dev_replace procedure
2823 	 */
2824 	btrfs_close_extra_devices(fs_devices, 0);
2825 
2826 	if (!fs_devices->latest_bdev) {
2827 		printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2828 		       sb->s_id);
2829 		goto fail_tree_roots;
2830 	}
2831 
2832 retry_root_backup:
2833 	generation = btrfs_super_generation(disk_super);
2834 
2835 	tree_root->node = read_tree_block(tree_root,
2836 					  btrfs_super_root(disk_super),
2837 					  generation);
2838 	if (IS_ERR(tree_root->node) ||
2839 	    !extent_buffer_uptodate(tree_root->node)) {
2840 		printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2841 		       sb->s_id);
2842 		if (!IS_ERR(tree_root->node))
2843 			free_extent_buffer(tree_root->node);
2844 		tree_root->node = NULL;
2845 		goto recovery_tree_root;
2846 	}
2847 
2848 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2849 	tree_root->commit_root = btrfs_root_node(tree_root);
2850 	btrfs_set_root_refs(&tree_root->root_item, 1);
2851 
2852 	mutex_lock(&tree_root->objectid_mutex);
2853 	ret = btrfs_find_highest_objectid(tree_root,
2854 					&tree_root->highest_objectid);
2855 	if (ret) {
2856 		mutex_unlock(&tree_root->objectid_mutex);
2857 		goto recovery_tree_root;
2858 	}
2859 
2860 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2861 
2862 	mutex_unlock(&tree_root->objectid_mutex);
2863 
2864 	ret = btrfs_read_roots(fs_info, tree_root);
2865 	if (ret)
2866 		goto recovery_tree_root;
2867 
2868 	fs_info->generation = generation;
2869 	fs_info->last_trans_committed = generation;
2870 
2871 	ret = btrfs_recover_balance(fs_info);
2872 	if (ret) {
2873 		printk(KERN_ERR "BTRFS: failed to recover balance\n");
2874 		goto fail_block_groups;
2875 	}
2876 
2877 	ret = btrfs_init_dev_stats(fs_info);
2878 	if (ret) {
2879 		printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2880 		       ret);
2881 		goto fail_block_groups;
2882 	}
2883 
2884 	ret = btrfs_init_dev_replace(fs_info);
2885 	if (ret) {
2886 		pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2887 		goto fail_block_groups;
2888 	}
2889 
2890 	btrfs_close_extra_devices(fs_devices, 1);
2891 
2892 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2893 	if (ret) {
2894 		pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2895 		goto fail_block_groups;
2896 	}
2897 
2898 	ret = btrfs_sysfs_add_device(fs_devices);
2899 	if (ret) {
2900 		pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2901 		goto fail_fsdev_sysfs;
2902 	}
2903 
2904 	ret = btrfs_sysfs_add_mounted(fs_info);
2905 	if (ret) {
2906 		pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2907 		goto fail_fsdev_sysfs;
2908 	}
2909 
2910 	ret = btrfs_init_space_info(fs_info);
2911 	if (ret) {
2912 		printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2913 		goto fail_sysfs;
2914 	}
2915 
2916 	ret = btrfs_read_block_groups(fs_info->extent_root);
2917 	if (ret) {
2918 		printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2919 		goto fail_sysfs;
2920 	}
2921 	fs_info->num_tolerated_disk_barrier_failures =
2922 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2923 	if (fs_info->fs_devices->missing_devices >
2924 	     fs_info->num_tolerated_disk_barrier_failures &&
2925 	    !(sb->s_flags & MS_RDONLY)) {
2926 		pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2927 			fs_info->fs_devices->missing_devices,
2928 			fs_info->num_tolerated_disk_barrier_failures);
2929 		goto fail_sysfs;
2930 	}
2931 
2932 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2933 					       "btrfs-cleaner");
2934 	if (IS_ERR(fs_info->cleaner_kthread))
2935 		goto fail_sysfs;
2936 
2937 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2938 						   tree_root,
2939 						   "btrfs-transaction");
2940 	if (IS_ERR(fs_info->transaction_kthread))
2941 		goto fail_cleaner;
2942 
2943 	if (!btrfs_test_opt(tree_root, SSD) &&
2944 	    !btrfs_test_opt(tree_root, NOSSD) &&
2945 	    !fs_info->fs_devices->rotating) {
2946 		printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2947 		       "mode\n");
2948 		btrfs_set_opt(fs_info->mount_opt, SSD);
2949 	}
2950 
2951 	/*
2952 	 * Mount does not set all options immediatelly, we can do it now and do
2953 	 * not have to wait for transaction commit
2954 	 */
2955 	btrfs_apply_pending_changes(fs_info);
2956 
2957 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2958 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2959 		ret = btrfsic_mount(tree_root, fs_devices,
2960 				    btrfs_test_opt(tree_root,
2961 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2962 				    1 : 0,
2963 				    fs_info->check_integrity_print_mask);
2964 		if (ret)
2965 			printk(KERN_WARNING "BTRFS: failed to initialize"
2966 			       " integrity check module %s\n", sb->s_id);
2967 	}
2968 #endif
2969 	ret = btrfs_read_qgroup_config(fs_info);
2970 	if (ret)
2971 		goto fail_trans_kthread;
2972 
2973 	/* do not make disk changes in broken FS */
2974 	if (btrfs_super_log_root(disk_super) != 0) {
2975 		btrfs_info(fs_info, "start tree-log replay");
2976 		ret = btrfs_replay_log(fs_info, fs_devices);
2977 		if (ret) {
2978 			err = ret;
2979 			goto fail_qgroup;
2980 		}
2981 	}
2982 
2983 	ret = btrfs_find_orphan_roots(tree_root);
2984 	if (ret)
2985 		goto fail_qgroup;
2986 
2987 	if (!(sb->s_flags & MS_RDONLY)) {
2988 		ret = btrfs_cleanup_fs_roots(fs_info);
2989 		if (ret)
2990 			goto fail_qgroup;
2991 
2992 		mutex_lock(&fs_info->cleaner_mutex);
2993 		ret = btrfs_recover_relocation(tree_root);
2994 		mutex_unlock(&fs_info->cleaner_mutex);
2995 		if (ret < 0) {
2996 			printk(KERN_WARNING
2997 			       "BTRFS: failed to recover relocation\n");
2998 			err = -EINVAL;
2999 			goto fail_qgroup;
3000 		}
3001 	}
3002 
3003 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3004 	location.type = BTRFS_ROOT_ITEM_KEY;
3005 	location.offset = 0;
3006 
3007 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3008 	if (IS_ERR(fs_info->fs_root)) {
3009 		err = PTR_ERR(fs_info->fs_root);
3010 		goto fail_qgroup;
3011 	}
3012 
3013 	if (sb->s_flags & MS_RDONLY)
3014 		return 0;
3015 
3016 	down_read(&fs_info->cleanup_work_sem);
3017 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3018 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3019 		up_read(&fs_info->cleanup_work_sem);
3020 		close_ctree(tree_root);
3021 		return ret;
3022 	}
3023 	up_read(&fs_info->cleanup_work_sem);
3024 
3025 	ret = btrfs_resume_balance_async(fs_info);
3026 	if (ret) {
3027 		printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3028 		close_ctree(tree_root);
3029 		return ret;
3030 	}
3031 
3032 	ret = btrfs_resume_dev_replace_async(fs_info);
3033 	if (ret) {
3034 		pr_warn("BTRFS: failed to resume dev_replace\n");
3035 		close_ctree(tree_root);
3036 		return ret;
3037 	}
3038 
3039 	btrfs_qgroup_rescan_resume(fs_info);
3040 
3041 	if (!fs_info->uuid_root) {
3042 		pr_info("BTRFS: creating UUID tree\n");
3043 		ret = btrfs_create_uuid_tree(fs_info);
3044 		if (ret) {
3045 			pr_warn("BTRFS: failed to create the UUID tree %d\n",
3046 				ret);
3047 			close_ctree(tree_root);
3048 			return ret;
3049 		}
3050 	} else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3051 		   fs_info->generation !=
3052 				btrfs_super_uuid_tree_generation(disk_super)) {
3053 		pr_info("BTRFS: checking UUID tree\n");
3054 		ret = btrfs_check_uuid_tree(fs_info);
3055 		if (ret) {
3056 			pr_warn("BTRFS: failed to check the UUID tree %d\n",
3057 				ret);
3058 			close_ctree(tree_root);
3059 			return ret;
3060 		}
3061 	} else {
3062 		fs_info->update_uuid_tree_gen = 1;
3063 	}
3064 
3065 	fs_info->open = 1;
3066 
3067 	return 0;
3068 
3069 fail_qgroup:
3070 	btrfs_free_qgroup_config(fs_info);
3071 fail_trans_kthread:
3072 	kthread_stop(fs_info->transaction_kthread);
3073 	btrfs_cleanup_transaction(fs_info->tree_root);
3074 	btrfs_free_fs_roots(fs_info);
3075 fail_cleaner:
3076 	kthread_stop(fs_info->cleaner_kthread);
3077 
3078 	/*
3079 	 * make sure we're done with the btree inode before we stop our
3080 	 * kthreads
3081 	 */
3082 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3083 
3084 fail_sysfs:
3085 	btrfs_sysfs_remove_mounted(fs_info);
3086 
3087 fail_fsdev_sysfs:
3088 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3089 
3090 fail_block_groups:
3091 	btrfs_put_block_group_cache(fs_info);
3092 	btrfs_free_block_groups(fs_info);
3093 
3094 fail_tree_roots:
3095 	free_root_pointers(fs_info, 1);
3096 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3097 
3098 fail_sb_buffer:
3099 	btrfs_stop_all_workers(fs_info);
3100 fail_alloc:
3101 fail_iput:
3102 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3103 
3104 	iput(fs_info->btree_inode);
3105 fail_bio_counter:
3106 	percpu_counter_destroy(&fs_info->bio_counter);
3107 fail_delalloc_bytes:
3108 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3109 fail_dirty_metadata_bytes:
3110 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3111 fail_bdi:
3112 	bdi_destroy(&fs_info->bdi);
3113 fail_srcu:
3114 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3115 fail:
3116 	btrfs_free_stripe_hash_table(fs_info);
3117 	btrfs_close_devices(fs_info->fs_devices);
3118 	return err;
3119 
3120 recovery_tree_root:
3121 	if (!btrfs_test_opt(tree_root, RECOVERY))
3122 		goto fail_tree_roots;
3123 
3124 	free_root_pointers(fs_info, 0);
3125 
3126 	/* don't use the log in recovery mode, it won't be valid */
3127 	btrfs_set_super_log_root(disk_super, 0);
3128 
3129 	/* we can't trust the free space cache either */
3130 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3131 
3132 	ret = next_root_backup(fs_info, fs_info->super_copy,
3133 			       &num_backups_tried, &backup_index);
3134 	if (ret == -1)
3135 		goto fail_block_groups;
3136 	goto retry_root_backup;
3137 }
3138 
btrfs_end_buffer_write_sync(struct buffer_head * bh,int uptodate)3139 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3140 {
3141 	if (uptodate) {
3142 		set_buffer_uptodate(bh);
3143 	} else {
3144 		struct btrfs_device *device = (struct btrfs_device *)
3145 			bh->b_private;
3146 
3147 		btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3148 				"lost page write due to IO error on %s",
3149 					  rcu_str_deref(device->name));
3150 		/* note, we dont' set_buffer_write_io_error because we have
3151 		 * our own ways of dealing with the IO errors
3152 		 */
3153 		clear_buffer_uptodate(bh);
3154 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3155 	}
3156 	unlock_buffer(bh);
3157 	put_bh(bh);
3158 }
3159 
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num,struct buffer_head ** bh_ret)3160 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3161 			struct buffer_head **bh_ret)
3162 {
3163 	struct buffer_head *bh;
3164 	struct btrfs_super_block *super;
3165 	u64 bytenr;
3166 
3167 	bytenr = btrfs_sb_offset(copy_num);
3168 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3169 		return -EINVAL;
3170 
3171 	bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3172 	/*
3173 	 * If we fail to read from the underlying devices, as of now
3174 	 * the best option we have is to mark it EIO.
3175 	 */
3176 	if (!bh)
3177 		return -EIO;
3178 
3179 	super = (struct btrfs_super_block *)bh->b_data;
3180 	if (btrfs_super_bytenr(super) != bytenr ||
3181 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3182 		brelse(bh);
3183 		return -EINVAL;
3184 	}
3185 
3186 	*bh_ret = bh;
3187 	return 0;
3188 }
3189 
3190 
btrfs_read_dev_super(struct block_device * bdev)3191 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3192 {
3193 	struct buffer_head *bh;
3194 	struct buffer_head *latest = NULL;
3195 	struct btrfs_super_block *super;
3196 	int i;
3197 	u64 transid = 0;
3198 	int ret = -EINVAL;
3199 
3200 	/* we would like to check all the supers, but that would make
3201 	 * a btrfs mount succeed after a mkfs from a different FS.
3202 	 * So, we need to add a special mount option to scan for
3203 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3204 	 */
3205 	for (i = 0; i < 1; i++) {
3206 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3207 		if (ret)
3208 			continue;
3209 
3210 		super = (struct btrfs_super_block *)bh->b_data;
3211 
3212 		if (!latest || btrfs_super_generation(super) > transid) {
3213 			brelse(latest);
3214 			latest = bh;
3215 			transid = btrfs_super_generation(super);
3216 		} else {
3217 			brelse(bh);
3218 		}
3219 	}
3220 
3221 	if (!latest)
3222 		return ERR_PTR(ret);
3223 
3224 	return latest;
3225 }
3226 
3227 /*
3228  * this should be called twice, once with wait == 0 and
3229  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3230  * we write are pinned.
3231  *
3232  * They are released when wait == 1 is done.
3233  * max_mirrors must be the same for both runs, and it indicates how
3234  * many supers on this one device should be written.
3235  *
3236  * max_mirrors == 0 means to write them all.
3237  */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int do_barriers,int wait,int max_mirrors)3238 static int write_dev_supers(struct btrfs_device *device,
3239 			    struct btrfs_super_block *sb,
3240 			    int do_barriers, int wait, int max_mirrors)
3241 {
3242 	struct buffer_head *bh;
3243 	int i;
3244 	int ret;
3245 	int errors = 0;
3246 	u32 crc;
3247 	u64 bytenr;
3248 
3249 	if (max_mirrors == 0)
3250 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3251 
3252 	for (i = 0; i < max_mirrors; i++) {
3253 		bytenr = btrfs_sb_offset(i);
3254 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3255 		    device->commit_total_bytes)
3256 			break;
3257 
3258 		if (wait) {
3259 			bh = __find_get_block(device->bdev, bytenr / 4096,
3260 					      BTRFS_SUPER_INFO_SIZE);
3261 			if (!bh) {
3262 				errors++;
3263 				continue;
3264 			}
3265 			wait_on_buffer(bh);
3266 			if (!buffer_uptodate(bh))
3267 				errors++;
3268 
3269 			/* drop our reference */
3270 			brelse(bh);
3271 
3272 			/* drop the reference from the wait == 0 run */
3273 			brelse(bh);
3274 			continue;
3275 		} else {
3276 			btrfs_set_super_bytenr(sb, bytenr);
3277 
3278 			crc = ~(u32)0;
3279 			crc = btrfs_csum_data((char *)sb +
3280 					      BTRFS_CSUM_SIZE, crc,
3281 					      BTRFS_SUPER_INFO_SIZE -
3282 					      BTRFS_CSUM_SIZE);
3283 			btrfs_csum_final(crc, sb->csum);
3284 
3285 			/*
3286 			 * one reference for us, and we leave it for the
3287 			 * caller
3288 			 */
3289 			bh = __getblk(device->bdev, bytenr / 4096,
3290 				      BTRFS_SUPER_INFO_SIZE);
3291 			if (!bh) {
3292 				btrfs_err(device->dev_root->fs_info,
3293 				    "couldn't get super buffer head for bytenr %llu",
3294 				    bytenr);
3295 				errors++;
3296 				continue;
3297 			}
3298 
3299 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3300 
3301 			/* one reference for submit_bh */
3302 			get_bh(bh);
3303 
3304 			set_buffer_uptodate(bh);
3305 			lock_buffer(bh);
3306 			bh->b_end_io = btrfs_end_buffer_write_sync;
3307 			bh->b_private = device;
3308 		}
3309 
3310 		/*
3311 		 * we fua the first super.  The others we allow
3312 		 * to go down lazy.
3313 		 */
3314 		if (i == 0)
3315 			ret = btrfsic_submit_bh(WRITE_FUA, bh);
3316 		else
3317 			ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3318 		if (ret)
3319 			errors++;
3320 	}
3321 	return errors < i ? 0 : -1;
3322 }
3323 
3324 /*
3325  * endio for the write_dev_flush, this will wake anyone waiting
3326  * for the barrier when it is done
3327  */
btrfs_end_empty_barrier(struct bio * bio)3328 static void btrfs_end_empty_barrier(struct bio *bio)
3329 {
3330 	if (bio->bi_private)
3331 		complete(bio->bi_private);
3332 	bio_put(bio);
3333 }
3334 
3335 /*
3336  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3337  * sent down.  With wait == 1, it waits for the previous flush.
3338  *
3339  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3340  * capable
3341  */
write_dev_flush(struct btrfs_device * device,int wait)3342 static int write_dev_flush(struct btrfs_device *device, int wait)
3343 {
3344 	struct bio *bio;
3345 	int ret = 0;
3346 
3347 	if (device->nobarriers)
3348 		return 0;
3349 
3350 	if (wait) {
3351 		bio = device->flush_bio;
3352 		if (!bio)
3353 			return 0;
3354 
3355 		wait_for_completion(&device->flush_wait);
3356 
3357 		if (bio->bi_error) {
3358 			ret = bio->bi_error;
3359 			btrfs_dev_stat_inc_and_print(device,
3360 				BTRFS_DEV_STAT_FLUSH_ERRS);
3361 		}
3362 
3363 		/* drop the reference from the wait == 0 run */
3364 		bio_put(bio);
3365 		device->flush_bio = NULL;
3366 
3367 		return ret;
3368 	}
3369 
3370 	/*
3371 	 * one reference for us, and we leave it for the
3372 	 * caller
3373 	 */
3374 	device->flush_bio = NULL;
3375 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3376 	if (!bio)
3377 		return -ENOMEM;
3378 
3379 	bio->bi_end_io = btrfs_end_empty_barrier;
3380 	bio->bi_bdev = device->bdev;
3381 	init_completion(&device->flush_wait);
3382 	bio->bi_private = &device->flush_wait;
3383 	device->flush_bio = bio;
3384 
3385 	bio_get(bio);
3386 	btrfsic_submit_bio(WRITE_FLUSH, bio);
3387 
3388 	return 0;
3389 }
3390 
3391 /*
3392  * send an empty flush down to each device in parallel,
3393  * then wait for them
3394  */
barrier_all_devices(struct btrfs_fs_info * info)3395 static int barrier_all_devices(struct btrfs_fs_info *info)
3396 {
3397 	struct list_head *head;
3398 	struct btrfs_device *dev;
3399 	int errors_send = 0;
3400 	int errors_wait = 0;
3401 	int ret;
3402 
3403 	/* send down all the barriers */
3404 	head = &info->fs_devices->devices;
3405 	list_for_each_entry_rcu(dev, head, dev_list) {
3406 		if (dev->missing)
3407 			continue;
3408 		if (!dev->bdev) {
3409 			errors_send++;
3410 			continue;
3411 		}
3412 		if (!dev->in_fs_metadata || !dev->writeable)
3413 			continue;
3414 
3415 		ret = write_dev_flush(dev, 0);
3416 		if (ret)
3417 			errors_send++;
3418 	}
3419 
3420 	/* wait for all the barriers */
3421 	list_for_each_entry_rcu(dev, head, dev_list) {
3422 		if (dev->missing)
3423 			continue;
3424 		if (!dev->bdev) {
3425 			errors_wait++;
3426 			continue;
3427 		}
3428 		if (!dev->in_fs_metadata || !dev->writeable)
3429 			continue;
3430 
3431 		ret = write_dev_flush(dev, 1);
3432 		if (ret)
3433 			errors_wait++;
3434 	}
3435 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3436 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3437 		return -EIO;
3438 	return 0;
3439 }
3440 
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)3441 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3442 {
3443 	int raid_type;
3444 	int min_tolerated = INT_MAX;
3445 
3446 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3447 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3448 		min_tolerated = min(min_tolerated,
3449 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3450 				    tolerated_failures);
3451 
3452 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3453 		if (raid_type == BTRFS_RAID_SINGLE)
3454 			continue;
3455 		if (!(flags & btrfs_raid_group[raid_type]))
3456 			continue;
3457 		min_tolerated = min(min_tolerated,
3458 				    btrfs_raid_array[raid_type].
3459 				    tolerated_failures);
3460 	}
3461 
3462 	if (min_tolerated == INT_MAX) {
3463 		pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3464 		min_tolerated = 0;
3465 	}
3466 
3467 	return min_tolerated;
3468 }
3469 
btrfs_calc_num_tolerated_disk_barrier_failures(struct btrfs_fs_info * fs_info)3470 int btrfs_calc_num_tolerated_disk_barrier_failures(
3471 	struct btrfs_fs_info *fs_info)
3472 {
3473 	struct btrfs_ioctl_space_info space;
3474 	struct btrfs_space_info *sinfo;
3475 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3476 		       BTRFS_BLOCK_GROUP_SYSTEM,
3477 		       BTRFS_BLOCK_GROUP_METADATA,
3478 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3479 	int i;
3480 	int c;
3481 	int num_tolerated_disk_barrier_failures =
3482 		(int)fs_info->fs_devices->num_devices;
3483 
3484 	for (i = 0; i < ARRAY_SIZE(types); i++) {
3485 		struct btrfs_space_info *tmp;
3486 
3487 		sinfo = NULL;
3488 		rcu_read_lock();
3489 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3490 			if (tmp->flags == types[i]) {
3491 				sinfo = tmp;
3492 				break;
3493 			}
3494 		}
3495 		rcu_read_unlock();
3496 
3497 		if (!sinfo)
3498 			continue;
3499 
3500 		down_read(&sinfo->groups_sem);
3501 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3502 			u64 flags;
3503 
3504 			if (list_empty(&sinfo->block_groups[c]))
3505 				continue;
3506 
3507 			btrfs_get_block_group_info(&sinfo->block_groups[c],
3508 						   &space);
3509 			if (space.total_bytes == 0 || space.used_bytes == 0)
3510 				continue;
3511 			flags = space.flags;
3512 
3513 			num_tolerated_disk_barrier_failures = min(
3514 				num_tolerated_disk_barrier_failures,
3515 				btrfs_get_num_tolerated_disk_barrier_failures(
3516 					flags));
3517 		}
3518 		up_read(&sinfo->groups_sem);
3519 	}
3520 
3521 	return num_tolerated_disk_barrier_failures;
3522 }
3523 
write_all_supers(struct btrfs_root * root,int max_mirrors)3524 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3525 {
3526 	struct list_head *head;
3527 	struct btrfs_device *dev;
3528 	struct btrfs_super_block *sb;
3529 	struct btrfs_dev_item *dev_item;
3530 	int ret;
3531 	int do_barriers;
3532 	int max_errors;
3533 	int total_errors = 0;
3534 	u64 flags;
3535 
3536 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3537 	backup_super_roots(root->fs_info);
3538 
3539 	sb = root->fs_info->super_for_commit;
3540 	dev_item = &sb->dev_item;
3541 
3542 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3543 	head = &root->fs_info->fs_devices->devices;
3544 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3545 
3546 	if (do_barriers) {
3547 		ret = barrier_all_devices(root->fs_info);
3548 		if (ret) {
3549 			mutex_unlock(
3550 				&root->fs_info->fs_devices->device_list_mutex);
3551 			btrfs_std_error(root->fs_info, ret,
3552 				    "errors while submitting device barriers.");
3553 			return ret;
3554 		}
3555 	}
3556 
3557 	list_for_each_entry_rcu(dev, head, dev_list) {
3558 		if (!dev->bdev) {
3559 			total_errors++;
3560 			continue;
3561 		}
3562 		if (!dev->in_fs_metadata || !dev->writeable)
3563 			continue;
3564 
3565 		btrfs_set_stack_device_generation(dev_item, 0);
3566 		btrfs_set_stack_device_type(dev_item, dev->type);
3567 		btrfs_set_stack_device_id(dev_item, dev->devid);
3568 		btrfs_set_stack_device_total_bytes(dev_item,
3569 						   dev->commit_total_bytes);
3570 		btrfs_set_stack_device_bytes_used(dev_item,
3571 						  dev->commit_bytes_used);
3572 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3573 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3574 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3575 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3576 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3577 
3578 		flags = btrfs_super_flags(sb);
3579 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3580 
3581 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3582 		if (ret)
3583 			total_errors++;
3584 	}
3585 	if (total_errors > max_errors) {
3586 		btrfs_err(root->fs_info, "%d errors while writing supers",
3587 		       total_errors);
3588 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3589 
3590 		/* FUA is masked off if unsupported and can't be the reason */
3591 		btrfs_std_error(root->fs_info, -EIO,
3592 			    "%d errors while writing supers", total_errors);
3593 		return -EIO;
3594 	}
3595 
3596 	total_errors = 0;
3597 	list_for_each_entry_rcu(dev, head, dev_list) {
3598 		if (!dev->bdev)
3599 			continue;
3600 		if (!dev->in_fs_metadata || !dev->writeable)
3601 			continue;
3602 
3603 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3604 		if (ret)
3605 			total_errors++;
3606 	}
3607 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3608 	if (total_errors > max_errors) {
3609 		btrfs_std_error(root->fs_info, -EIO,
3610 			    "%d errors while writing supers", total_errors);
3611 		return -EIO;
3612 	}
3613 	return 0;
3614 }
3615 
write_ctree_super(struct btrfs_trans_handle * trans,struct btrfs_root * root,int max_mirrors)3616 int write_ctree_super(struct btrfs_trans_handle *trans,
3617 		      struct btrfs_root *root, int max_mirrors)
3618 {
3619 	return write_all_supers(root, max_mirrors);
3620 }
3621 
3622 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)3623 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3624 				  struct btrfs_root *root)
3625 {
3626 	spin_lock(&fs_info->fs_roots_radix_lock);
3627 	radix_tree_delete(&fs_info->fs_roots_radix,
3628 			  (unsigned long)root->root_key.objectid);
3629 	spin_unlock(&fs_info->fs_roots_radix_lock);
3630 
3631 	if (btrfs_root_refs(&root->root_item) == 0)
3632 		synchronize_srcu(&fs_info->subvol_srcu);
3633 
3634 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3635 		btrfs_free_log(NULL, root);
3636 
3637 	if (root->free_ino_pinned)
3638 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3639 	if (root->free_ino_ctl)
3640 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3641 	free_fs_root(root);
3642 }
3643 
free_fs_root(struct btrfs_root * root)3644 static void free_fs_root(struct btrfs_root *root)
3645 {
3646 	iput(root->ino_cache_inode);
3647 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3648 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3649 	root->orphan_block_rsv = NULL;
3650 	if (root->anon_dev)
3651 		free_anon_bdev(root->anon_dev);
3652 	if (root->subv_writers)
3653 		btrfs_free_subvolume_writers(root->subv_writers);
3654 	free_extent_buffer(root->node);
3655 	free_extent_buffer(root->commit_root);
3656 	kfree(root->free_ino_ctl);
3657 	kfree(root->free_ino_pinned);
3658 	kfree(root->name);
3659 	btrfs_put_fs_root(root);
3660 }
3661 
btrfs_free_fs_root(struct btrfs_root * root)3662 void btrfs_free_fs_root(struct btrfs_root *root)
3663 {
3664 	free_fs_root(root);
3665 }
3666 
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)3667 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3668 {
3669 	u64 root_objectid = 0;
3670 	struct btrfs_root *gang[8];
3671 	int i = 0;
3672 	int err = 0;
3673 	unsigned int ret = 0;
3674 	int index;
3675 
3676 	while (1) {
3677 		index = srcu_read_lock(&fs_info->subvol_srcu);
3678 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3679 					     (void **)gang, root_objectid,
3680 					     ARRAY_SIZE(gang));
3681 		if (!ret) {
3682 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3683 			break;
3684 		}
3685 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3686 
3687 		for (i = 0; i < ret; i++) {
3688 			/* Avoid to grab roots in dead_roots */
3689 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3690 				gang[i] = NULL;
3691 				continue;
3692 			}
3693 			/* grab all the search result for later use */
3694 			gang[i] = btrfs_grab_fs_root(gang[i]);
3695 		}
3696 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3697 
3698 		for (i = 0; i < ret; i++) {
3699 			if (!gang[i])
3700 				continue;
3701 			root_objectid = gang[i]->root_key.objectid;
3702 			err = btrfs_orphan_cleanup(gang[i]);
3703 			if (err)
3704 				break;
3705 			btrfs_put_fs_root(gang[i]);
3706 		}
3707 		root_objectid++;
3708 	}
3709 
3710 	/* release the uncleaned roots due to error */
3711 	for (; i < ret; i++) {
3712 		if (gang[i])
3713 			btrfs_put_fs_root(gang[i]);
3714 	}
3715 	return err;
3716 }
3717 
btrfs_commit_super(struct btrfs_root * root)3718 int btrfs_commit_super(struct btrfs_root *root)
3719 {
3720 	struct btrfs_trans_handle *trans;
3721 
3722 	mutex_lock(&root->fs_info->cleaner_mutex);
3723 	btrfs_run_delayed_iputs(root);
3724 	mutex_unlock(&root->fs_info->cleaner_mutex);
3725 	wake_up_process(root->fs_info->cleaner_kthread);
3726 
3727 	/* wait until ongoing cleanup work done */
3728 	down_write(&root->fs_info->cleanup_work_sem);
3729 	up_write(&root->fs_info->cleanup_work_sem);
3730 
3731 	trans = btrfs_join_transaction(root);
3732 	if (IS_ERR(trans))
3733 		return PTR_ERR(trans);
3734 	return btrfs_commit_transaction(trans, root);
3735 }
3736 
close_ctree(struct btrfs_root * root)3737 void close_ctree(struct btrfs_root *root)
3738 {
3739 	struct btrfs_fs_info *fs_info = root->fs_info;
3740 	int ret;
3741 
3742 	fs_info->closing = 1;
3743 	smp_mb();
3744 
3745 	/* wait for the qgroup rescan worker to stop */
3746 	btrfs_qgroup_wait_for_completion(fs_info, false);
3747 
3748 	/* wait for the uuid_scan task to finish */
3749 	down(&fs_info->uuid_tree_rescan_sem);
3750 	/* avoid complains from lockdep et al., set sem back to initial state */
3751 	up(&fs_info->uuid_tree_rescan_sem);
3752 
3753 	/* pause restriper - we want to resume on mount */
3754 	btrfs_pause_balance(fs_info);
3755 
3756 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3757 
3758 	btrfs_scrub_cancel(fs_info);
3759 
3760 	/* wait for any defraggers to finish */
3761 	wait_event(fs_info->transaction_wait,
3762 		   (atomic_read(&fs_info->defrag_running) == 0));
3763 
3764 	/* clear out the rbtree of defraggable inodes */
3765 	btrfs_cleanup_defrag_inodes(fs_info);
3766 
3767 	cancel_work_sync(&fs_info->async_reclaim_work);
3768 
3769 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3770 		/*
3771 		 * If the cleaner thread is stopped and there are
3772 		 * block groups queued for removal, the deletion will be
3773 		 * skipped when we quit the cleaner thread.
3774 		 */
3775 		btrfs_delete_unused_bgs(root->fs_info);
3776 
3777 		/*
3778 		 * There might be existing delayed inode workers still running
3779 		 * and holding an empty delayed inode item. We must wait for
3780 		 * them to complete first because they can create a transaction.
3781 		 * This happens when someone calls btrfs_balance_delayed_items()
3782 		 * and then a transaction commit runs the same delayed nodes
3783 		 * before any delayed worker has done something with the nodes.
3784 		 * We must wait for any worker here and not at transaction
3785 		 * commit time since that could cause a deadlock.
3786 		 * This is a very rare case.
3787 		 */
3788 		btrfs_flush_workqueue(fs_info->delayed_workers);
3789 
3790 		ret = btrfs_commit_super(root);
3791 		if (ret)
3792 			btrfs_err(fs_info, "commit super ret %d", ret);
3793 	}
3794 
3795 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3796 		btrfs_error_commit_super(root);
3797 
3798 	kthread_stop(fs_info->transaction_kthread);
3799 	kthread_stop(fs_info->cleaner_kthread);
3800 
3801 	fs_info->closing = 2;
3802 	smp_mb();
3803 
3804 	btrfs_free_qgroup_config(fs_info);
3805 
3806 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3807 		btrfs_info(fs_info, "at unmount delalloc count %lld",
3808 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3809 	}
3810 
3811 	btrfs_sysfs_remove_mounted(fs_info);
3812 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3813 
3814 	btrfs_free_fs_roots(fs_info);
3815 
3816 	btrfs_put_block_group_cache(fs_info);
3817 
3818 	btrfs_free_block_groups(fs_info);
3819 
3820 	/*
3821 	 * we must make sure there is not any read request to
3822 	 * submit after we stopping all workers.
3823 	 */
3824 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3825 	btrfs_stop_all_workers(fs_info);
3826 
3827 	fs_info->open = 0;
3828 	free_root_pointers(fs_info, 1);
3829 
3830 	iput(fs_info->btree_inode);
3831 
3832 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3833 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3834 		btrfsic_unmount(root, fs_info->fs_devices);
3835 #endif
3836 
3837 	btrfs_close_devices(fs_info->fs_devices);
3838 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3839 
3840 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3841 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3842 	percpu_counter_destroy(&fs_info->bio_counter);
3843 	bdi_destroy(&fs_info->bdi);
3844 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3845 
3846 	btrfs_free_stripe_hash_table(fs_info);
3847 
3848 	__btrfs_free_block_rsv(root->orphan_block_rsv);
3849 	root->orphan_block_rsv = NULL;
3850 
3851 	lock_chunks(root);
3852 	while (!list_empty(&fs_info->pinned_chunks)) {
3853 		struct extent_map *em;
3854 
3855 		em = list_first_entry(&fs_info->pinned_chunks,
3856 				      struct extent_map, list);
3857 		list_del_init(&em->list);
3858 		free_extent_map(em);
3859 	}
3860 	unlock_chunks(root);
3861 }
3862 
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)3863 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3864 			  int atomic)
3865 {
3866 	int ret;
3867 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3868 
3869 	ret = extent_buffer_uptodate(buf);
3870 	if (!ret)
3871 		return ret;
3872 
3873 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3874 				    parent_transid, atomic);
3875 	if (ret == -EAGAIN)
3876 		return ret;
3877 	return !ret;
3878 }
3879 
btrfs_set_buffer_uptodate(struct extent_buffer * buf)3880 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3881 {
3882 	return set_extent_buffer_uptodate(buf);
3883 }
3884 
btrfs_mark_buffer_dirty(struct extent_buffer * buf)3885 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3886 {
3887 	struct btrfs_root *root;
3888 	u64 transid = btrfs_header_generation(buf);
3889 	int was_dirty;
3890 
3891 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3892 	/*
3893 	 * This is a fast path so only do this check if we have sanity tests
3894 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3895 	 * outside of the sanity tests.
3896 	 */
3897 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3898 		return;
3899 #endif
3900 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3901 	btrfs_assert_tree_locked(buf);
3902 	if (transid != root->fs_info->generation)
3903 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3904 		       "found %llu running %llu\n",
3905 			buf->start, transid, root->fs_info->generation);
3906 	was_dirty = set_extent_buffer_dirty(buf);
3907 	if (!was_dirty)
3908 		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3909 				     buf->len,
3910 				     root->fs_info->dirty_metadata_batch);
3911 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3912 	/*
3913 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3914 	 * but item data not updated.
3915 	 * So here we should only check item pointers, not item data.
3916 	 */
3917 	if (btrfs_header_level(buf) == 0 &&
3918 	    btrfs_check_leaf_relaxed(root, buf)) {
3919 		btrfs_print_leaf(root, buf);
3920 		ASSERT(0);
3921 	}
3922 #endif
3923 }
3924 
__btrfs_btree_balance_dirty(struct btrfs_root * root,int flush_delayed)3925 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3926 					int flush_delayed)
3927 {
3928 	/*
3929 	 * looks as though older kernels can get into trouble with
3930 	 * this code, they end up stuck in balance_dirty_pages forever
3931 	 */
3932 	int ret;
3933 
3934 	if (current->flags & PF_MEMALLOC)
3935 		return;
3936 
3937 	if (flush_delayed)
3938 		btrfs_balance_delayed_items(root);
3939 
3940 	ret = __percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3941 				     BTRFS_DIRTY_METADATA_THRESH,
3942 				     root->fs_info->dirty_metadata_batch);
3943 	if (ret > 0) {
3944 		balance_dirty_pages_ratelimited(
3945 				   root->fs_info->btree_inode->i_mapping);
3946 	}
3947 	return;
3948 }
3949 
btrfs_btree_balance_dirty(struct btrfs_root * root)3950 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3951 {
3952 	__btrfs_btree_balance_dirty(root, 1);
3953 }
3954 
btrfs_btree_balance_dirty_nodelay(struct btrfs_root * root)3955 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3956 {
3957 	__btrfs_btree_balance_dirty(root, 0);
3958 }
3959 
btrfs_read_buffer(struct extent_buffer * buf,u64 parent_transid)3960 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3961 {
3962 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3963 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3964 }
3965 
btrfs_check_super_valid(struct btrfs_fs_info * fs_info,int read_only)3966 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3967 			      int read_only)
3968 {
3969 	struct btrfs_super_block *sb = fs_info->super_copy;
3970 	int ret = 0;
3971 
3972 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3973 		printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3974 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3975 		ret = -EINVAL;
3976 	}
3977 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3978 		printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3979 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3980 		ret = -EINVAL;
3981 	}
3982 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3983 		printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3984 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3985 		ret = -EINVAL;
3986 	}
3987 
3988 	/*
3989 	 * The common minimum, we don't know if we can trust the nodesize/sectorsize
3990 	 * items yet, they'll be verified later. Issue just a warning.
3991 	 */
3992 	if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
3993 		printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
3994 				btrfs_super_root(sb));
3995 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
3996 		printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
3997 				btrfs_super_chunk_root(sb));
3998 	if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
3999 		printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4000 				btrfs_super_log_root(sb));
4001 
4002 	/*
4003 	 * Check the lower bound, the alignment and other constraints are
4004 	 * checked later.
4005 	 */
4006 	if (btrfs_super_nodesize(sb) < 4096) {
4007 		printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
4008 				btrfs_super_nodesize(sb));
4009 		ret = -EINVAL;
4010 	}
4011 	if (btrfs_super_sectorsize(sb) < 4096) {
4012 		printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
4013 				btrfs_super_sectorsize(sb));
4014 		ret = -EINVAL;
4015 	}
4016 
4017 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4018 		printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4019 				fs_info->fsid, sb->dev_item.fsid);
4020 		ret = -EINVAL;
4021 	}
4022 
4023 	/*
4024 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4025 	 * done later
4026 	 */
4027 	if (btrfs_super_num_devices(sb) > (1UL << 31))
4028 		printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4029 				btrfs_super_num_devices(sb));
4030 	if (btrfs_super_num_devices(sb) == 0) {
4031 		printk(KERN_ERR "BTRFS: number of devices is 0\n");
4032 		ret = -EINVAL;
4033 	}
4034 
4035 	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4036 		printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4037 				btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4038 		ret = -EINVAL;
4039 	}
4040 
4041 	/*
4042 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4043 	 * and one chunk
4044 	 */
4045 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4046 		printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4047 				btrfs_super_sys_array_size(sb),
4048 				BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4049 		ret = -EINVAL;
4050 	}
4051 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4052 			+ sizeof(struct btrfs_chunk)) {
4053 		printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4054 				btrfs_super_sys_array_size(sb),
4055 				sizeof(struct btrfs_disk_key)
4056 				+ sizeof(struct btrfs_chunk));
4057 		ret = -EINVAL;
4058 	}
4059 
4060 	/*
4061 	 * The generation is a global counter, we'll trust it more than the others
4062 	 * but it's still possible that it's the one that's wrong.
4063 	 */
4064 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4065 		printk(KERN_WARNING
4066 			"BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4067 			btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4068 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4069 	    && btrfs_super_cache_generation(sb) != (u64)-1)
4070 		printk(KERN_WARNING
4071 			"BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4072 			btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4073 
4074 	return ret;
4075 }
4076 
btrfs_error_commit_super(struct btrfs_root * root)4077 static void btrfs_error_commit_super(struct btrfs_root *root)
4078 {
4079 	mutex_lock(&root->fs_info->cleaner_mutex);
4080 	btrfs_run_delayed_iputs(root);
4081 	mutex_unlock(&root->fs_info->cleaner_mutex);
4082 
4083 	down_write(&root->fs_info->cleanup_work_sem);
4084 	up_write(&root->fs_info->cleanup_work_sem);
4085 
4086 	/* cleanup FS via transaction */
4087 	btrfs_cleanup_transaction(root);
4088 }
4089 
btrfs_destroy_ordered_extents(struct btrfs_root * root)4090 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4091 {
4092 	struct btrfs_ordered_extent *ordered;
4093 
4094 	spin_lock(&root->ordered_extent_lock);
4095 	/*
4096 	 * This will just short circuit the ordered completion stuff which will
4097 	 * make sure the ordered extent gets properly cleaned up.
4098 	 */
4099 	list_for_each_entry(ordered, &root->ordered_extents,
4100 			    root_extent_list)
4101 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4102 	spin_unlock(&root->ordered_extent_lock);
4103 }
4104 
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4105 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4106 {
4107 	struct btrfs_root *root;
4108 	struct list_head splice;
4109 
4110 	INIT_LIST_HEAD(&splice);
4111 
4112 	spin_lock(&fs_info->ordered_root_lock);
4113 	list_splice_init(&fs_info->ordered_roots, &splice);
4114 	while (!list_empty(&splice)) {
4115 		root = list_first_entry(&splice, struct btrfs_root,
4116 					ordered_root);
4117 		list_move_tail(&root->ordered_root,
4118 			       &fs_info->ordered_roots);
4119 
4120 		spin_unlock(&fs_info->ordered_root_lock);
4121 		btrfs_destroy_ordered_extents(root);
4122 
4123 		cond_resched();
4124 		spin_lock(&fs_info->ordered_root_lock);
4125 	}
4126 	spin_unlock(&fs_info->ordered_root_lock);
4127 
4128 	/*
4129 	 * We need this here because if we've been flipped read-only we won't
4130 	 * get sync() from the umount, so we need to make sure any ordered
4131 	 * extents that haven't had their dirty pages IO start writeout yet
4132 	 * actually get run and error out properly.
4133 	 */
4134 	btrfs_wait_ordered_roots(fs_info, -1);
4135 }
4136 
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_root * root)4137 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4138 				      struct btrfs_root *root)
4139 {
4140 	struct rb_node *node;
4141 	struct btrfs_delayed_ref_root *delayed_refs;
4142 	struct btrfs_delayed_ref_node *ref;
4143 	int ret = 0;
4144 
4145 	delayed_refs = &trans->delayed_refs;
4146 
4147 	spin_lock(&delayed_refs->lock);
4148 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4149 		spin_unlock(&delayed_refs->lock);
4150 		btrfs_info(root->fs_info, "delayed_refs has NO entry");
4151 		return ret;
4152 	}
4153 
4154 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4155 		struct btrfs_delayed_ref_head *head;
4156 		struct btrfs_delayed_ref_node *tmp;
4157 		bool pin_bytes = false;
4158 
4159 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4160 				href_node);
4161 		if (!mutex_trylock(&head->mutex)) {
4162 			atomic_inc(&head->node.refs);
4163 			spin_unlock(&delayed_refs->lock);
4164 
4165 			mutex_lock(&head->mutex);
4166 			mutex_unlock(&head->mutex);
4167 			btrfs_put_delayed_ref(&head->node);
4168 			spin_lock(&delayed_refs->lock);
4169 			continue;
4170 		}
4171 		spin_lock(&head->lock);
4172 		list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4173 						 list) {
4174 			ref->in_tree = 0;
4175 			list_del(&ref->list);
4176 			atomic_dec(&delayed_refs->num_entries);
4177 			btrfs_put_delayed_ref(ref);
4178 		}
4179 		if (head->must_insert_reserved)
4180 			pin_bytes = true;
4181 		btrfs_free_delayed_extent_op(head->extent_op);
4182 		delayed_refs->num_heads--;
4183 		if (head->processing == 0)
4184 			delayed_refs->num_heads_ready--;
4185 		atomic_dec(&delayed_refs->num_entries);
4186 		head->node.in_tree = 0;
4187 		rb_erase(&head->href_node, &delayed_refs->href_root);
4188 		spin_unlock(&head->lock);
4189 		spin_unlock(&delayed_refs->lock);
4190 		mutex_unlock(&head->mutex);
4191 
4192 		if (pin_bytes)
4193 			btrfs_pin_extent(root, head->node.bytenr,
4194 					 head->node.num_bytes, 1);
4195 		btrfs_put_delayed_ref(&head->node);
4196 		cond_resched();
4197 		spin_lock(&delayed_refs->lock);
4198 	}
4199 
4200 	spin_unlock(&delayed_refs->lock);
4201 
4202 	return ret;
4203 }
4204 
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4205 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4206 {
4207 	struct btrfs_inode *btrfs_inode;
4208 	struct list_head splice;
4209 
4210 	INIT_LIST_HEAD(&splice);
4211 
4212 	spin_lock(&root->delalloc_lock);
4213 	list_splice_init(&root->delalloc_inodes, &splice);
4214 
4215 	while (!list_empty(&splice)) {
4216 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4217 					       delalloc_inodes);
4218 
4219 		list_del_init(&btrfs_inode->delalloc_inodes);
4220 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4221 			  &btrfs_inode->runtime_flags);
4222 		spin_unlock(&root->delalloc_lock);
4223 
4224 		btrfs_invalidate_inodes(btrfs_inode->root);
4225 
4226 		spin_lock(&root->delalloc_lock);
4227 	}
4228 
4229 	spin_unlock(&root->delalloc_lock);
4230 }
4231 
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4232 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4233 {
4234 	struct btrfs_root *root;
4235 	struct list_head splice;
4236 
4237 	INIT_LIST_HEAD(&splice);
4238 
4239 	spin_lock(&fs_info->delalloc_root_lock);
4240 	list_splice_init(&fs_info->delalloc_roots, &splice);
4241 	while (!list_empty(&splice)) {
4242 		root = list_first_entry(&splice, struct btrfs_root,
4243 					 delalloc_root);
4244 		list_del_init(&root->delalloc_root);
4245 		root = btrfs_grab_fs_root(root);
4246 		BUG_ON(!root);
4247 		spin_unlock(&fs_info->delalloc_root_lock);
4248 
4249 		btrfs_destroy_delalloc_inodes(root);
4250 		btrfs_put_fs_root(root);
4251 
4252 		spin_lock(&fs_info->delalloc_root_lock);
4253 	}
4254 	spin_unlock(&fs_info->delalloc_root_lock);
4255 }
4256 
btrfs_destroy_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)4257 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4258 					struct extent_io_tree *dirty_pages,
4259 					int mark)
4260 {
4261 	int ret;
4262 	struct extent_buffer *eb;
4263 	u64 start = 0;
4264 	u64 end;
4265 
4266 	while (1) {
4267 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4268 					    mark, NULL);
4269 		if (ret)
4270 			break;
4271 
4272 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4273 		while (start <= end) {
4274 			eb = btrfs_find_tree_block(root->fs_info, start);
4275 			start += root->nodesize;
4276 			if (!eb)
4277 				continue;
4278 			wait_on_extent_buffer_writeback(eb);
4279 
4280 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4281 					       &eb->bflags))
4282 				clear_extent_buffer_dirty(eb);
4283 			free_extent_buffer_stale(eb);
4284 		}
4285 	}
4286 
4287 	return ret;
4288 }
4289 
btrfs_destroy_pinned_extent(struct btrfs_root * root,struct extent_io_tree * pinned_extents)4290 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4291 				       struct extent_io_tree *pinned_extents)
4292 {
4293 	struct btrfs_fs_info *fs_info = root->fs_info;
4294 	struct extent_io_tree *unpin;
4295 	u64 start;
4296 	u64 end;
4297 	int ret;
4298 	bool loop = true;
4299 
4300 	unpin = pinned_extents;
4301 again:
4302 	while (1) {
4303 		/*
4304 		 * The btrfs_finish_extent_commit() may get the same range as
4305 		 * ours between find_first_extent_bit and clear_extent_dirty.
4306 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4307 		 * the same extent range.
4308 		 */
4309 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4310 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4311 					    EXTENT_DIRTY, NULL);
4312 		if (ret) {
4313 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4314 			break;
4315 		}
4316 
4317 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4318 		btrfs_error_unpin_extent_range(root, start, end);
4319 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4320 		cond_resched();
4321 	}
4322 
4323 	if (loop) {
4324 		if (unpin == &fs_info->freed_extents[0])
4325 			unpin = &fs_info->freed_extents[1];
4326 		else
4327 			unpin = &fs_info->freed_extents[0];
4328 		loop = false;
4329 		goto again;
4330 	}
4331 
4332 	return 0;
4333 }
4334 
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_root * root)4335 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4336 				   struct btrfs_root *root)
4337 {
4338 	btrfs_destroy_delayed_refs(cur_trans, root);
4339 
4340 	cur_trans->state = TRANS_STATE_COMMIT_START;
4341 	wake_up(&root->fs_info->transaction_blocked_wait);
4342 
4343 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4344 	wake_up(&root->fs_info->transaction_wait);
4345 
4346 	btrfs_destroy_delayed_inodes(root);
4347 	btrfs_assert_delayed_root_empty(root);
4348 
4349 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4350 				     EXTENT_DIRTY);
4351 	btrfs_destroy_pinned_extent(root,
4352 				    root->fs_info->pinned_extents);
4353 
4354 	cur_trans->state =TRANS_STATE_COMPLETED;
4355 	wake_up(&cur_trans->commit_wait);
4356 
4357 	/*
4358 	memset(cur_trans, 0, sizeof(*cur_trans));
4359 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4360 	*/
4361 }
4362 
btrfs_cleanup_transaction(struct btrfs_root * root)4363 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4364 {
4365 	struct btrfs_transaction *t;
4366 
4367 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4368 
4369 	spin_lock(&root->fs_info->trans_lock);
4370 	while (!list_empty(&root->fs_info->trans_list)) {
4371 		t = list_first_entry(&root->fs_info->trans_list,
4372 				     struct btrfs_transaction, list);
4373 		if (t->state >= TRANS_STATE_COMMIT_START) {
4374 			atomic_inc(&t->use_count);
4375 			spin_unlock(&root->fs_info->trans_lock);
4376 			btrfs_wait_for_commit(root, t->transid);
4377 			btrfs_put_transaction(t);
4378 			spin_lock(&root->fs_info->trans_lock);
4379 			continue;
4380 		}
4381 		if (t == root->fs_info->running_transaction) {
4382 			t->state = TRANS_STATE_COMMIT_DOING;
4383 			spin_unlock(&root->fs_info->trans_lock);
4384 			/*
4385 			 * We wait for 0 num_writers since we don't hold a trans
4386 			 * handle open currently for this transaction.
4387 			 */
4388 			wait_event(t->writer_wait,
4389 				   atomic_read(&t->num_writers) == 0);
4390 		} else {
4391 			spin_unlock(&root->fs_info->trans_lock);
4392 		}
4393 		btrfs_cleanup_one_transaction(t, root);
4394 
4395 		spin_lock(&root->fs_info->trans_lock);
4396 		if (t == root->fs_info->running_transaction)
4397 			root->fs_info->running_transaction = NULL;
4398 		list_del_init(&t->list);
4399 		spin_unlock(&root->fs_info->trans_lock);
4400 
4401 		btrfs_put_transaction(t);
4402 		trace_btrfs_transaction_commit(root);
4403 		spin_lock(&root->fs_info->trans_lock);
4404 	}
4405 	spin_unlock(&root->fs_info->trans_lock);
4406 	btrfs_destroy_all_ordered_extents(root->fs_info);
4407 	btrfs_destroy_delayed_inodes(root);
4408 	btrfs_assert_delayed_root_empty(root);
4409 	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4410 	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4411 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4412 
4413 	return 0;
4414 }
4415 
4416 static const struct extent_io_ops btree_extent_io_ops = {
4417 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4418 	.readpage_io_failed_hook = btree_io_failed_hook,
4419 	.submit_bio_hook = btree_submit_bio_hook,
4420 	/* note we're sharing with inode.c for the merge bio hook */
4421 	.merge_bio_hook = btrfs_merge_bio_hook,
4422 };
4423