1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
21
22 #ifdef CONFIG_COMPACTION
count_compact_event(enum vm_event_item item)23 static inline void count_compact_event(enum vm_event_item item)
24 {
25 count_vm_event(item);
26 }
27
count_compact_events(enum vm_event_item item,long delta)28 static inline void count_compact_events(enum vm_event_item item, long delta)
29 {
30 count_vm_events(item, delta);
31 }
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
36
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/compaction.h>
41
release_freepages(struct list_head * freelist)42 static unsigned long release_freepages(struct list_head *freelist)
43 {
44 struct page *page, *next;
45 unsigned long high_pfn = 0;
46
47 list_for_each_entry_safe(page, next, freelist, lru) {
48 unsigned long pfn = page_to_pfn(page);
49 list_del(&page->lru);
50 __free_page(page);
51 if (pfn > high_pfn)
52 high_pfn = pfn;
53 }
54
55 return high_pfn;
56 }
57
map_pages(struct list_head * list)58 static void map_pages(struct list_head *list)
59 {
60 struct page *page;
61
62 list_for_each_entry(page, list, lru) {
63 arch_alloc_page(page, 0);
64 kernel_map_pages(page, 1, 1);
65 kasan_alloc_pages(page, 0);
66 }
67 }
68
migrate_async_suitable(int migratetype)69 static inline bool migrate_async_suitable(int migratetype)
70 {
71 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
72 }
73
74 /*
75 * Check that the whole (or subset of) a pageblock given by the interval of
76 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
77 * with the migration of free compaction scanner. The scanners then need to
78 * use only pfn_valid_within() check for arches that allow holes within
79 * pageblocks.
80 *
81 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
82 *
83 * It's possible on some configurations to have a setup like node0 node1 node0
84 * i.e. it's possible that all pages within a zones range of pages do not
85 * belong to a single zone. We assume that a border between node0 and node1
86 * can occur within a single pageblock, but not a node0 node1 node0
87 * interleaving within a single pageblock. It is therefore sufficient to check
88 * the first and last page of a pageblock and avoid checking each individual
89 * page in a pageblock.
90 */
pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)91 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
92 unsigned long end_pfn, struct zone *zone)
93 {
94 struct page *start_page;
95 struct page *end_page;
96
97 /* end_pfn is one past the range we are checking */
98 end_pfn--;
99
100 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
101 return NULL;
102
103 start_page = pfn_to_page(start_pfn);
104
105 if (page_zone(start_page) != zone)
106 return NULL;
107
108 end_page = pfn_to_page(end_pfn);
109
110 /* This gives a shorter code than deriving page_zone(end_page) */
111 if (page_zone_id(start_page) != page_zone_id(end_page))
112 return NULL;
113
114 return start_page;
115 }
116
117 #ifdef CONFIG_COMPACTION
118
119 /* Do not skip compaction more than 64 times */
120 #define COMPACT_MAX_DEFER_SHIFT 6
121
122 /*
123 * Compaction is deferred when compaction fails to result in a page
124 * allocation success. 1 << compact_defer_limit compactions are skipped up
125 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
126 */
defer_compaction(struct zone * zone,int order)127 void defer_compaction(struct zone *zone, int order)
128 {
129 zone->compact_considered = 0;
130 zone->compact_defer_shift++;
131
132 if (order < zone->compact_order_failed)
133 zone->compact_order_failed = order;
134
135 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
136 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
137
138 trace_mm_compaction_defer_compaction(zone, order);
139 }
140
141 /* Returns true if compaction should be skipped this time */
compaction_deferred(struct zone * zone,int order)142 bool compaction_deferred(struct zone *zone, int order)
143 {
144 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
145
146 if (order < zone->compact_order_failed)
147 return false;
148
149 /* Avoid possible overflow */
150 if (++zone->compact_considered > defer_limit)
151 zone->compact_considered = defer_limit;
152
153 if (zone->compact_considered >= defer_limit)
154 return false;
155
156 trace_mm_compaction_deferred(zone, order);
157
158 return true;
159 }
160
161 /*
162 * Update defer tracking counters after successful compaction of given order,
163 * which means an allocation either succeeded (alloc_success == true) or is
164 * expected to succeed.
165 */
compaction_defer_reset(struct zone * zone,int order,bool alloc_success)166 void compaction_defer_reset(struct zone *zone, int order,
167 bool alloc_success)
168 {
169 if (alloc_success) {
170 zone->compact_considered = 0;
171 zone->compact_defer_shift = 0;
172 }
173 if (order >= zone->compact_order_failed)
174 zone->compact_order_failed = order + 1;
175
176 trace_mm_compaction_defer_reset(zone, order);
177 }
178
179 /* Returns true if restarting compaction after many failures */
compaction_restarting(struct zone * zone,int order)180 bool compaction_restarting(struct zone *zone, int order)
181 {
182 if (order < zone->compact_order_failed)
183 return false;
184
185 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
186 zone->compact_considered >= 1UL << zone->compact_defer_shift;
187 }
188
189 /* Returns true if the pageblock should be scanned for pages to isolate. */
isolation_suitable(struct compact_control * cc,struct page * page)190 static inline bool isolation_suitable(struct compact_control *cc,
191 struct page *page)
192 {
193 if (cc->ignore_skip_hint)
194 return true;
195
196 return !get_pageblock_skip(page);
197 }
198
reset_cached_positions(struct zone * zone)199 static void reset_cached_positions(struct zone *zone)
200 {
201 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
202 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
203 zone->compact_cached_free_pfn =
204 round_down(zone_end_pfn(zone) - 1, pageblock_nr_pages);
205 }
206
207 /*
208 * This function is called to clear all cached information on pageblocks that
209 * should be skipped for page isolation when the migrate and free page scanner
210 * meet.
211 */
__reset_isolation_suitable(struct zone * zone)212 static void __reset_isolation_suitable(struct zone *zone)
213 {
214 unsigned long start_pfn = zone->zone_start_pfn;
215 unsigned long end_pfn = zone_end_pfn(zone);
216 unsigned long pfn;
217
218 zone->compact_blockskip_flush = false;
219
220 /* Walk the zone and mark every pageblock as suitable for isolation */
221 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
222 struct page *page;
223
224 cond_resched();
225
226 if (!pfn_valid(pfn))
227 continue;
228
229 page = pfn_to_page(pfn);
230 if (zone != page_zone(page))
231 continue;
232
233 clear_pageblock_skip(page);
234 }
235
236 reset_cached_positions(zone);
237 }
238
reset_isolation_suitable(pg_data_t * pgdat)239 void reset_isolation_suitable(pg_data_t *pgdat)
240 {
241 int zoneid;
242
243 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
244 struct zone *zone = &pgdat->node_zones[zoneid];
245 if (!populated_zone(zone))
246 continue;
247
248 /* Only flush if a full compaction finished recently */
249 if (zone->compact_blockskip_flush)
250 __reset_isolation_suitable(zone);
251 }
252 }
253
254 /*
255 * If no pages were isolated then mark this pageblock to be skipped in the
256 * future. The information is later cleared by __reset_isolation_suitable().
257 */
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long nr_isolated,bool migrate_scanner)258 static void update_pageblock_skip(struct compact_control *cc,
259 struct page *page, unsigned long nr_isolated,
260 bool migrate_scanner)
261 {
262 struct zone *zone = cc->zone;
263 unsigned long pfn;
264
265 if (cc->ignore_skip_hint)
266 return;
267
268 if (!page)
269 return;
270
271 if (nr_isolated)
272 return;
273
274 set_pageblock_skip(page);
275
276 pfn = page_to_pfn(page);
277
278 /* Update where async and sync compaction should restart */
279 if (migrate_scanner) {
280 if (pfn > zone->compact_cached_migrate_pfn[0])
281 zone->compact_cached_migrate_pfn[0] = pfn;
282 if (cc->mode != MIGRATE_ASYNC &&
283 pfn > zone->compact_cached_migrate_pfn[1])
284 zone->compact_cached_migrate_pfn[1] = pfn;
285 } else {
286 if (pfn < zone->compact_cached_free_pfn)
287 zone->compact_cached_free_pfn = pfn;
288 }
289 }
290 #else
isolation_suitable(struct compact_control * cc,struct page * page)291 static inline bool isolation_suitable(struct compact_control *cc,
292 struct page *page)
293 {
294 return true;
295 }
296
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long nr_isolated,bool migrate_scanner)297 static void update_pageblock_skip(struct compact_control *cc,
298 struct page *page, unsigned long nr_isolated,
299 bool migrate_scanner)
300 {
301 }
302 #endif /* CONFIG_COMPACTION */
303
304 /*
305 * Compaction requires the taking of some coarse locks that are potentially
306 * very heavily contended. For async compaction, back out if the lock cannot
307 * be taken immediately. For sync compaction, spin on the lock if needed.
308 *
309 * Returns true if the lock is held
310 * Returns false if the lock is not held and compaction should abort
311 */
compact_trylock_irqsave(spinlock_t * lock,unsigned long * flags,struct compact_control * cc)312 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
313 struct compact_control *cc)
314 {
315 if (cc->mode == MIGRATE_ASYNC) {
316 if (!spin_trylock_irqsave(lock, *flags)) {
317 cc->contended = COMPACT_CONTENDED_LOCK;
318 return false;
319 }
320 } else {
321 spin_lock_irqsave(lock, *flags);
322 }
323
324 return true;
325 }
326
327 /*
328 * Compaction requires the taking of some coarse locks that are potentially
329 * very heavily contended. The lock should be periodically unlocked to avoid
330 * having disabled IRQs for a long time, even when there is nobody waiting on
331 * the lock. It might also be that allowing the IRQs will result in
332 * need_resched() becoming true. If scheduling is needed, async compaction
333 * aborts. Sync compaction schedules.
334 * Either compaction type will also abort if a fatal signal is pending.
335 * In either case if the lock was locked, it is dropped and not regained.
336 *
337 * Returns true if compaction should abort due to fatal signal pending, or
338 * async compaction due to need_resched()
339 * Returns false when compaction can continue (sync compaction might have
340 * scheduled)
341 */
compact_unlock_should_abort(spinlock_t * lock,unsigned long flags,bool * locked,struct compact_control * cc)342 static bool compact_unlock_should_abort(spinlock_t *lock,
343 unsigned long flags, bool *locked, struct compact_control *cc)
344 {
345 if (*locked) {
346 spin_unlock_irqrestore(lock, flags);
347 *locked = false;
348 }
349
350 if (fatal_signal_pending(current)) {
351 cc->contended = COMPACT_CONTENDED_SCHED;
352 return true;
353 }
354
355 if (need_resched()) {
356 if (cc->mode == MIGRATE_ASYNC) {
357 cc->contended = COMPACT_CONTENDED_SCHED;
358 return true;
359 }
360 cond_resched();
361 }
362
363 return false;
364 }
365
366 /*
367 * Aside from avoiding lock contention, compaction also periodically checks
368 * need_resched() and either schedules in sync compaction or aborts async
369 * compaction. This is similar to what compact_unlock_should_abort() does, but
370 * is used where no lock is concerned.
371 *
372 * Returns false when no scheduling was needed, or sync compaction scheduled.
373 * Returns true when async compaction should abort.
374 */
compact_should_abort(struct compact_control * cc)375 static inline bool compact_should_abort(struct compact_control *cc)
376 {
377 /* async compaction aborts if contended */
378 if (need_resched()) {
379 if (cc->mode == MIGRATE_ASYNC) {
380 cc->contended = COMPACT_CONTENDED_SCHED;
381 return true;
382 }
383
384 cond_resched();
385 }
386
387 return false;
388 }
389
390 /*
391 * Isolate free pages onto a private freelist. If @strict is true, will abort
392 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
393 * (even though it may still end up isolating some pages).
394 */
isolate_freepages_block(struct compact_control * cc,unsigned long * start_pfn,unsigned long end_pfn,struct list_head * freelist,bool strict)395 static unsigned long isolate_freepages_block(struct compact_control *cc,
396 unsigned long *start_pfn,
397 unsigned long end_pfn,
398 struct list_head *freelist,
399 bool strict)
400 {
401 int nr_scanned = 0, total_isolated = 0;
402 struct page *cursor, *valid_page = NULL;
403 unsigned long flags = 0;
404 bool locked = false;
405 unsigned long blockpfn = *start_pfn;
406
407 cursor = pfn_to_page(blockpfn);
408
409 /* Isolate free pages. */
410 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
411 int isolated, i;
412 struct page *page = cursor;
413
414 /*
415 * Periodically drop the lock (if held) regardless of its
416 * contention, to give chance to IRQs. Abort if fatal signal
417 * pending or async compaction detects need_resched()
418 */
419 if (!(blockpfn % SWAP_CLUSTER_MAX)
420 && compact_unlock_should_abort(&cc->zone->lock, flags,
421 &locked, cc))
422 break;
423
424 nr_scanned++;
425 if (!pfn_valid_within(blockpfn))
426 goto isolate_fail;
427
428 if (!valid_page)
429 valid_page = page;
430
431 /*
432 * For compound pages such as THP and hugetlbfs, we can save
433 * potentially a lot of iterations if we skip them at once.
434 * The check is racy, but we can consider only valid values
435 * and the only danger is skipping too much.
436 */
437 if (PageCompound(page)) {
438 unsigned int comp_order = compound_order(page);
439
440 if (likely(comp_order < MAX_ORDER)) {
441 blockpfn += (1UL << comp_order) - 1;
442 cursor += (1UL << comp_order) - 1;
443 }
444
445 goto isolate_fail;
446 }
447
448 if (!PageBuddy(page))
449 goto isolate_fail;
450
451 /*
452 * If we already hold the lock, we can skip some rechecking.
453 * Note that if we hold the lock now, checked_pageblock was
454 * already set in some previous iteration (or strict is true),
455 * so it is correct to skip the suitable migration target
456 * recheck as well.
457 */
458 if (!locked) {
459 /*
460 * The zone lock must be held to isolate freepages.
461 * Unfortunately this is a very coarse lock and can be
462 * heavily contended if there are parallel allocations
463 * or parallel compactions. For async compaction do not
464 * spin on the lock and we acquire the lock as late as
465 * possible.
466 */
467 locked = compact_trylock_irqsave(&cc->zone->lock,
468 &flags, cc);
469 if (!locked)
470 break;
471
472 /* Recheck this is a buddy page under lock */
473 if (!PageBuddy(page))
474 goto isolate_fail;
475 }
476
477 /* Found a free page, break it into order-0 pages */
478 isolated = split_free_page(page);
479 if (!isolated)
480 break;
481
482 total_isolated += isolated;
483 cc->nr_freepages += isolated;
484 for (i = 0; i < isolated; i++) {
485 list_add(&page->lru, freelist);
486 page++;
487 }
488 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
489 blockpfn += isolated;
490 break;
491 }
492 /* Advance to the end of split page */
493 blockpfn += isolated - 1;
494 cursor += isolated - 1;
495 continue;
496
497 isolate_fail:
498 if (strict)
499 break;
500 else
501 continue;
502
503 }
504
505 if (locked)
506 spin_unlock_irqrestore(&cc->zone->lock, flags);
507
508 /*
509 * There is a tiny chance that we have read bogus compound_order(),
510 * so be careful to not go outside of the pageblock.
511 */
512 if (unlikely(blockpfn > end_pfn))
513 blockpfn = end_pfn;
514
515 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
516 nr_scanned, total_isolated);
517
518 /* Record how far we have got within the block */
519 *start_pfn = blockpfn;
520
521 /*
522 * If strict isolation is requested by CMA then check that all the
523 * pages requested were isolated. If there were any failures, 0 is
524 * returned and CMA will fail.
525 */
526 if (strict && blockpfn < end_pfn)
527 total_isolated = 0;
528
529 /* Update the pageblock-skip if the whole pageblock was scanned */
530 if (blockpfn == end_pfn)
531 update_pageblock_skip(cc, valid_page, total_isolated, false);
532
533 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
534 if (total_isolated)
535 count_compact_events(COMPACTISOLATED, total_isolated);
536 return total_isolated;
537 }
538
539 /**
540 * isolate_freepages_range() - isolate free pages.
541 * @start_pfn: The first PFN to start isolating.
542 * @end_pfn: The one-past-last PFN.
543 *
544 * Non-free pages, invalid PFNs, or zone boundaries within the
545 * [start_pfn, end_pfn) range are considered errors, cause function to
546 * undo its actions and return zero.
547 *
548 * Otherwise, function returns one-past-the-last PFN of isolated page
549 * (which may be greater then end_pfn if end fell in a middle of
550 * a free page).
551 */
552 unsigned long
isolate_freepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)553 isolate_freepages_range(struct compact_control *cc,
554 unsigned long start_pfn, unsigned long end_pfn)
555 {
556 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
557 LIST_HEAD(freelist);
558
559 pfn = start_pfn;
560 block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
561 if (block_start_pfn < cc->zone->zone_start_pfn)
562 block_start_pfn = cc->zone->zone_start_pfn;
563 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
564
565 for (; pfn < end_pfn; pfn += isolated,
566 block_start_pfn = block_end_pfn,
567 block_end_pfn += pageblock_nr_pages) {
568 /* Protect pfn from changing by isolate_freepages_block */
569 unsigned long isolate_start_pfn = pfn;
570
571 block_end_pfn = min(block_end_pfn, end_pfn);
572
573 /*
574 * pfn could pass the block_end_pfn if isolated freepage
575 * is more than pageblock order. In this case, we adjust
576 * scanning range to right one.
577 */
578 if (pfn >= block_end_pfn) {
579 block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
580 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
581 block_end_pfn = min(block_end_pfn, end_pfn);
582 }
583
584 if (!pageblock_pfn_to_page(block_start_pfn,
585 block_end_pfn, cc->zone))
586 break;
587
588 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
589 block_end_pfn, &freelist, true);
590
591 /*
592 * In strict mode, isolate_freepages_block() returns 0 if
593 * there are any holes in the block (ie. invalid PFNs or
594 * non-free pages).
595 */
596 if (!isolated)
597 break;
598
599 /*
600 * If we managed to isolate pages, it is always (1 << n) *
601 * pageblock_nr_pages for some non-negative n. (Max order
602 * page may span two pageblocks).
603 */
604 }
605
606 /* split_free_page does not map the pages */
607 map_pages(&freelist);
608
609 if (pfn < end_pfn) {
610 /* Loop terminated early, cleanup. */
611 release_freepages(&freelist);
612 return 0;
613 }
614
615 /* We don't use freelists for anything. */
616 return pfn;
617 }
618
619 /* Update the number of anon and file isolated pages in the zone */
acct_isolated(struct zone * zone,struct compact_control * cc)620 static void acct_isolated(struct zone *zone, struct compact_control *cc)
621 {
622 struct page *page;
623 unsigned int count[2] = { 0, };
624
625 if (list_empty(&cc->migratepages))
626 return;
627
628 list_for_each_entry(page, &cc->migratepages, lru)
629 count[!!page_is_file_cache(page)]++;
630
631 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
632 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
633 }
634
635 /* Similar to reclaim, but different enough that they don't share logic */
too_many_isolated(struct zone * zone)636 static bool too_many_isolated(struct zone *zone)
637 {
638 unsigned long active, inactive, isolated;
639
640 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
641 zone_page_state(zone, NR_INACTIVE_ANON);
642 active = zone_page_state(zone, NR_ACTIVE_FILE) +
643 zone_page_state(zone, NR_ACTIVE_ANON);
644 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
645 zone_page_state(zone, NR_ISOLATED_ANON);
646
647 return isolated > (inactive + active) / 2;
648 }
649
650 /**
651 * isolate_migratepages_block() - isolate all migrate-able pages within
652 * a single pageblock
653 * @cc: Compaction control structure.
654 * @low_pfn: The first PFN to isolate
655 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
656 * @isolate_mode: Isolation mode to be used.
657 *
658 * Isolate all pages that can be migrated from the range specified by
659 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
660 * Returns zero if there is a fatal signal pending, otherwise PFN of the
661 * first page that was not scanned (which may be both less, equal to or more
662 * than end_pfn).
663 *
664 * The pages are isolated on cc->migratepages list (not required to be empty),
665 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
666 * is neither read nor updated.
667 */
668 static unsigned long
isolate_migratepages_block(struct compact_control * cc,unsigned long low_pfn,unsigned long end_pfn,isolate_mode_t isolate_mode)669 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
670 unsigned long end_pfn, isolate_mode_t isolate_mode)
671 {
672 struct zone *zone = cc->zone;
673 unsigned long nr_scanned = 0, nr_isolated = 0;
674 struct list_head *migratelist = &cc->migratepages;
675 struct lruvec *lruvec;
676 unsigned long flags = 0;
677 bool locked = false;
678 struct page *page = NULL, *valid_page = NULL;
679 unsigned long start_pfn = low_pfn;
680
681 /*
682 * Ensure that there are not too many pages isolated from the LRU
683 * list by either parallel reclaimers or compaction. If there are,
684 * delay for some time until fewer pages are isolated
685 */
686 while (unlikely(too_many_isolated(zone))) {
687 /* async migration should just abort */
688 if (cc->mode == MIGRATE_ASYNC)
689 return 0;
690
691 congestion_wait(BLK_RW_ASYNC, HZ/10);
692
693 if (fatal_signal_pending(current))
694 return 0;
695 }
696
697 if (compact_should_abort(cc))
698 return 0;
699
700 /* Time to isolate some pages for migration */
701 for (; low_pfn < end_pfn; low_pfn++) {
702 bool is_lru;
703
704 /*
705 * Periodically drop the lock (if held) regardless of its
706 * contention, to give chance to IRQs. Abort async compaction
707 * if contended.
708 */
709 if (!(low_pfn % SWAP_CLUSTER_MAX)
710 && compact_unlock_should_abort(&zone->lru_lock, flags,
711 &locked, cc))
712 break;
713
714 if (!pfn_valid_within(low_pfn))
715 continue;
716 nr_scanned++;
717
718 page = pfn_to_page(low_pfn);
719
720 if (!valid_page)
721 valid_page = page;
722
723 /*
724 * Skip if free. We read page order here without zone lock
725 * which is generally unsafe, but the race window is small and
726 * the worst thing that can happen is that we skip some
727 * potential isolation targets.
728 */
729 if (PageBuddy(page)) {
730 unsigned long freepage_order = page_order_unsafe(page);
731
732 /*
733 * Without lock, we cannot be sure that what we got is
734 * a valid page order. Consider only values in the
735 * valid order range to prevent low_pfn overflow.
736 */
737 if (freepage_order > 0 && freepage_order < MAX_ORDER)
738 low_pfn += (1UL << freepage_order) - 1;
739 continue;
740 }
741
742 /*
743 * Check may be lockless but that's ok as we recheck later.
744 * It's possible to migrate LRU pages and balloon pages
745 * Skip any other type of page
746 */
747 is_lru = PageLRU(page);
748 if (!is_lru) {
749 if (unlikely(balloon_page_movable(page))) {
750 if (balloon_page_isolate(page)) {
751 /* Successfully isolated */
752 goto isolate_success;
753 }
754 }
755 }
756
757 /*
758 * Regardless of being on LRU, compound pages such as THP and
759 * hugetlbfs are not to be compacted. We can potentially save
760 * a lot of iterations if we skip them at once. The check is
761 * racy, but we can consider only valid values and the only
762 * danger is skipping too much.
763 */
764 if (PageCompound(page)) {
765 unsigned int comp_order = compound_order(page);
766
767 if (likely(comp_order < MAX_ORDER))
768 low_pfn += (1UL << comp_order) - 1;
769
770 continue;
771 }
772
773 if (!is_lru)
774 continue;
775
776 /*
777 * Migration will fail if an anonymous page is pinned in memory,
778 * so avoid taking lru_lock and isolating it unnecessarily in an
779 * admittedly racy check.
780 */
781 if (!page_mapping(page) &&
782 page_count(page) > page_mapcount(page))
783 continue;
784
785 /* If we already hold the lock, we can skip some rechecking */
786 if (!locked) {
787 locked = compact_trylock_irqsave(&zone->lru_lock,
788 &flags, cc);
789 if (!locked)
790 break;
791
792 /* Recheck PageLRU and PageCompound under lock */
793 if (!PageLRU(page))
794 continue;
795
796 /*
797 * Page become compound since the non-locked check,
798 * and it's on LRU. It can only be a THP so the order
799 * is safe to read and it's 0 for tail pages.
800 */
801 if (unlikely(PageCompound(page))) {
802 low_pfn += (1UL << compound_order(page)) - 1;
803 continue;
804 }
805 }
806
807 lruvec = mem_cgroup_page_lruvec(page, zone);
808
809 /* Try isolate the page */
810 if (__isolate_lru_page(page, isolate_mode) != 0)
811 continue;
812
813 VM_BUG_ON_PAGE(PageCompound(page), page);
814
815 /* Successfully isolated */
816 del_page_from_lru_list(page, lruvec, page_lru(page));
817
818 isolate_success:
819 list_add(&page->lru, migratelist);
820 cc->nr_migratepages++;
821 nr_isolated++;
822
823 /* Avoid isolating too much */
824 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
825 ++low_pfn;
826 break;
827 }
828 }
829
830 /*
831 * The PageBuddy() check could have potentially brought us outside
832 * the range to be scanned.
833 */
834 if (unlikely(low_pfn > end_pfn))
835 low_pfn = end_pfn;
836
837 if (locked)
838 spin_unlock_irqrestore(&zone->lru_lock, flags);
839
840 /*
841 * Update the pageblock-skip information and cached scanner pfn,
842 * if the whole pageblock was scanned without isolating any page.
843 */
844 if (low_pfn == end_pfn)
845 update_pageblock_skip(cc, valid_page, nr_isolated, true);
846
847 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
848 nr_scanned, nr_isolated);
849
850 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
851 if (nr_isolated)
852 count_compact_events(COMPACTISOLATED, nr_isolated);
853
854 return low_pfn;
855 }
856
857 /**
858 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
859 * @cc: Compaction control structure.
860 * @start_pfn: The first PFN to start isolating.
861 * @end_pfn: The one-past-last PFN.
862 *
863 * Returns zero if isolation fails fatally due to e.g. pending signal.
864 * Otherwise, function returns one-past-the-last PFN of isolated page
865 * (which may be greater than end_pfn if end fell in a middle of a THP page).
866 */
867 unsigned long
isolate_migratepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)868 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
869 unsigned long end_pfn)
870 {
871 unsigned long pfn, block_start_pfn, block_end_pfn;
872
873 /* Scan block by block. First and last block may be incomplete */
874 pfn = start_pfn;
875 block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
876 if (block_start_pfn < cc->zone->zone_start_pfn)
877 block_start_pfn = cc->zone->zone_start_pfn;
878 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
879
880 for (; pfn < end_pfn; pfn = block_end_pfn,
881 block_start_pfn = block_end_pfn,
882 block_end_pfn += pageblock_nr_pages) {
883
884 block_end_pfn = min(block_end_pfn, end_pfn);
885
886 if (!pageblock_pfn_to_page(block_start_pfn,
887 block_end_pfn, cc->zone))
888 continue;
889
890 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
891 ISOLATE_UNEVICTABLE);
892
893 if (!pfn)
894 break;
895
896 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
897 break;
898 }
899 acct_isolated(cc->zone, cc);
900
901 return pfn;
902 }
903
904 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
905 #ifdef CONFIG_COMPACTION
906
907 /* Returns true if the page is within a block suitable for migration to */
suitable_migration_target(struct page * page)908 static bool suitable_migration_target(struct page *page)
909 {
910 /* If the page is a large free page, then disallow migration */
911 if (PageBuddy(page)) {
912 /*
913 * We are checking page_order without zone->lock taken. But
914 * the only small danger is that we skip a potentially suitable
915 * pageblock, so it's not worth to check order for valid range.
916 */
917 if (page_order_unsafe(page) >= pageblock_order)
918 return false;
919 }
920
921 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
922 if (migrate_async_suitable(get_pageblock_migratetype(page)))
923 return true;
924
925 /* Otherwise skip the block */
926 return false;
927 }
928
929 /*
930 * Test whether the free scanner has reached the same or lower pageblock than
931 * the migration scanner, and compaction should thus terminate.
932 */
compact_scanners_met(struct compact_control * cc)933 static inline bool compact_scanners_met(struct compact_control *cc)
934 {
935 return (cc->free_pfn >> pageblock_order)
936 <= (cc->migrate_pfn >> pageblock_order);
937 }
938
939 /*
940 * Based on information in the current compact_control, find blocks
941 * suitable for isolating free pages from and then isolate them.
942 */
isolate_freepages(struct compact_control * cc)943 static void isolate_freepages(struct compact_control *cc)
944 {
945 struct zone *zone = cc->zone;
946 struct page *page;
947 unsigned long block_start_pfn; /* start of current pageblock */
948 unsigned long isolate_start_pfn; /* exact pfn we start at */
949 unsigned long block_end_pfn; /* end of current pageblock */
950 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
951 struct list_head *freelist = &cc->freepages;
952
953 /*
954 * Initialise the free scanner. The starting point is where we last
955 * successfully isolated from, zone-cached value, or the end of the
956 * zone when isolating for the first time. For looping we also need
957 * this pfn aligned down to the pageblock boundary, because we do
958 * block_start_pfn -= pageblock_nr_pages in the for loop.
959 * For ending point, take care when isolating in last pageblock of a
960 * a zone which ends in the middle of a pageblock.
961 * The low boundary is the end of the pageblock the migration scanner
962 * is using.
963 */
964 isolate_start_pfn = cc->free_pfn;
965 block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
966 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
967 zone_end_pfn(zone));
968 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
969
970 /*
971 * Isolate free pages until enough are available to migrate the
972 * pages on cc->migratepages. We stop searching if the migrate
973 * and free page scanners meet or enough free pages are isolated.
974 */
975 for (; block_start_pfn >= low_pfn;
976 block_end_pfn = block_start_pfn,
977 block_start_pfn -= pageblock_nr_pages,
978 isolate_start_pfn = block_start_pfn) {
979 /*
980 * This can iterate a massively long zone without finding any
981 * suitable migration targets, so periodically check if we need
982 * to schedule, or even abort async compaction.
983 */
984 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
985 && compact_should_abort(cc))
986 break;
987
988 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
989 zone);
990 if (!page)
991 continue;
992
993 /* Check the block is suitable for migration */
994 if (!suitable_migration_target(page))
995 continue;
996
997 /* If isolation recently failed, do not retry */
998 if (!isolation_suitable(cc, page))
999 continue;
1000
1001 /* Found a block suitable for isolating free pages from. */
1002 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1003 freelist, false);
1004
1005 /*
1006 * If we isolated enough freepages, or aborted due to lock
1007 * contention, terminate.
1008 */
1009 if ((cc->nr_freepages >= cc->nr_migratepages)
1010 || cc->contended) {
1011 if (isolate_start_pfn >= block_end_pfn) {
1012 /*
1013 * Restart at previous pageblock if more
1014 * freepages can be isolated next time.
1015 */
1016 isolate_start_pfn =
1017 block_start_pfn - pageblock_nr_pages;
1018 }
1019 break;
1020 } else if (isolate_start_pfn < block_end_pfn) {
1021 /*
1022 * If isolation failed early, do not continue
1023 * needlessly.
1024 */
1025 break;
1026 }
1027 }
1028
1029 /* split_free_page does not map the pages */
1030 map_pages(freelist);
1031
1032 /*
1033 * Record where the free scanner will restart next time. Either we
1034 * broke from the loop and set isolate_start_pfn based on the last
1035 * call to isolate_freepages_block(), or we met the migration scanner
1036 * and the loop terminated due to isolate_start_pfn < low_pfn
1037 */
1038 cc->free_pfn = isolate_start_pfn;
1039 }
1040
1041 /*
1042 * This is a migrate-callback that "allocates" freepages by taking pages
1043 * from the isolated freelists in the block we are migrating to.
1044 */
compaction_alloc(struct page * migratepage,unsigned long data,int ** result)1045 static struct page *compaction_alloc(struct page *migratepage,
1046 unsigned long data,
1047 int **result)
1048 {
1049 struct compact_control *cc = (struct compact_control *)data;
1050 struct page *freepage;
1051
1052 /*
1053 * Isolate free pages if necessary, and if we are not aborting due to
1054 * contention.
1055 */
1056 if (list_empty(&cc->freepages)) {
1057 if (!cc->contended)
1058 isolate_freepages(cc);
1059
1060 if (list_empty(&cc->freepages))
1061 return NULL;
1062 }
1063
1064 freepage = list_entry(cc->freepages.next, struct page, lru);
1065 list_del(&freepage->lru);
1066 cc->nr_freepages--;
1067
1068 return freepage;
1069 }
1070
1071 /*
1072 * This is a migrate-callback that "frees" freepages back to the isolated
1073 * freelist. All pages on the freelist are from the same zone, so there is no
1074 * special handling needed for NUMA.
1075 */
compaction_free(struct page * page,unsigned long data)1076 static void compaction_free(struct page *page, unsigned long data)
1077 {
1078 struct compact_control *cc = (struct compact_control *)data;
1079
1080 list_add(&page->lru, &cc->freepages);
1081 cc->nr_freepages++;
1082 }
1083
1084 /* possible outcome of isolate_migratepages */
1085 typedef enum {
1086 ISOLATE_ABORT, /* Abort compaction now */
1087 ISOLATE_NONE, /* No pages isolated, continue scanning */
1088 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1089 } isolate_migrate_t;
1090
1091 /*
1092 * Allow userspace to control policy on scanning the unevictable LRU for
1093 * compactable pages.
1094 */
1095 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1096
1097 /*
1098 * Isolate all pages that can be migrated from the first suitable block,
1099 * starting at the block pointed to by the migrate scanner pfn within
1100 * compact_control.
1101 */
isolate_migratepages(struct zone * zone,struct compact_control * cc)1102 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1103 struct compact_control *cc)
1104 {
1105 unsigned long block_start_pfn;
1106 unsigned long block_end_pfn;
1107 unsigned long low_pfn;
1108 unsigned long isolate_start_pfn;
1109 struct page *page;
1110 const isolate_mode_t isolate_mode =
1111 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1112 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1113
1114 /*
1115 * Start at where we last stopped, or beginning of the zone as
1116 * initialized by compact_zone()
1117 */
1118 low_pfn = cc->migrate_pfn;
1119 block_start_pfn = cc->migrate_pfn & ~(pageblock_nr_pages - 1);
1120 if (block_start_pfn < zone->zone_start_pfn)
1121 block_start_pfn = zone->zone_start_pfn;
1122
1123 /* Only scan within a pageblock boundary */
1124 block_end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1125
1126 /*
1127 * Iterate over whole pageblocks until we find the first suitable.
1128 * Do not cross the free scanner.
1129 */
1130 for (; block_end_pfn <= cc->free_pfn;
1131 low_pfn = block_end_pfn,
1132 block_start_pfn = block_end_pfn,
1133 block_end_pfn += pageblock_nr_pages) {
1134
1135 /*
1136 * This can potentially iterate a massively long zone with
1137 * many pageblocks unsuitable, so periodically check if we
1138 * need to schedule, or even abort async compaction.
1139 */
1140 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1141 && compact_should_abort(cc))
1142 break;
1143
1144 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1145 zone);
1146 if (!page)
1147 continue;
1148
1149 /* If isolation recently failed, do not retry */
1150 if (!isolation_suitable(cc, page))
1151 continue;
1152
1153 /*
1154 * For async compaction, also only scan in MOVABLE blocks.
1155 * Async compaction is optimistic to see if the minimum amount
1156 * of work satisfies the allocation.
1157 */
1158 if (cc->mode == MIGRATE_ASYNC &&
1159 !migrate_async_suitable(get_pageblock_migratetype(page)))
1160 continue;
1161
1162 /* Perform the isolation */
1163 isolate_start_pfn = low_pfn;
1164 low_pfn = isolate_migratepages_block(cc, low_pfn,
1165 block_end_pfn, isolate_mode);
1166
1167 if (!low_pfn || cc->contended) {
1168 acct_isolated(zone, cc);
1169 return ISOLATE_ABORT;
1170 }
1171
1172 /*
1173 * Record where we could have freed pages by migration and not
1174 * yet flushed them to buddy allocator.
1175 * - this is the lowest page that could have been isolated and
1176 * then freed by migration.
1177 */
1178 if (cc->nr_migratepages && !cc->last_migrated_pfn)
1179 cc->last_migrated_pfn = isolate_start_pfn;
1180
1181 /*
1182 * Either we isolated something and proceed with migration. Or
1183 * we failed and compact_zone should decide if we should
1184 * continue or not.
1185 */
1186 break;
1187 }
1188
1189 acct_isolated(zone, cc);
1190 /* Record where migration scanner will be restarted. */
1191 cc->migrate_pfn = low_pfn;
1192
1193 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1194 }
1195
1196 /*
1197 * order == -1 is expected when compacting via
1198 * /proc/sys/vm/compact_memory
1199 */
is_via_compact_memory(int order)1200 static inline bool is_via_compact_memory(int order)
1201 {
1202 return order == -1;
1203 }
1204
__compact_finished(struct zone * zone,struct compact_control * cc,const int migratetype)1205 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1206 const int migratetype)
1207 {
1208 unsigned int order;
1209 unsigned long watermark;
1210
1211 if (cc->contended || fatal_signal_pending(current))
1212 return COMPACT_CONTENDED;
1213
1214 /* Compaction run completes if the migrate and free scanner meet */
1215 if (compact_scanners_met(cc)) {
1216 /* Let the next compaction start anew. */
1217 reset_cached_positions(zone);
1218
1219 /*
1220 * Mark that the PG_migrate_skip information should be cleared
1221 * by kswapd when it goes to sleep. kswapd does not set the
1222 * flag itself as the decision to be clear should be directly
1223 * based on an allocation request.
1224 */
1225 if (!current_is_kswapd())
1226 zone->compact_blockskip_flush = true;
1227
1228 return COMPACT_COMPLETE;
1229 }
1230
1231 if (is_via_compact_memory(cc->order))
1232 return COMPACT_CONTINUE;
1233
1234 /* Compaction run is not finished if the watermark is not met */
1235 watermark = low_wmark_pages(zone);
1236
1237 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1238 cc->alloc_flags))
1239 return COMPACT_CONTINUE;
1240
1241 /* Direct compactor: Is a suitable page free? */
1242 for (order = cc->order; order < MAX_ORDER; order++) {
1243 struct free_area *area = &zone->free_area[order];
1244 bool can_steal;
1245
1246 /* Job done if page is free of the right migratetype */
1247 if (!list_empty(&area->free_list[migratetype]))
1248 return COMPACT_PARTIAL;
1249
1250 #ifdef CONFIG_CMA
1251 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1252 if (migratetype == MIGRATE_MOVABLE &&
1253 !list_empty(&area->free_list[MIGRATE_CMA]))
1254 return COMPACT_PARTIAL;
1255 #endif
1256 /*
1257 * Job done if allocation would steal freepages from
1258 * other migratetype buddy lists.
1259 */
1260 if (find_suitable_fallback(area, order, migratetype,
1261 true, &can_steal) != -1)
1262 return COMPACT_PARTIAL;
1263 }
1264
1265 return COMPACT_NO_SUITABLE_PAGE;
1266 }
1267
compact_finished(struct zone * zone,struct compact_control * cc,const int migratetype)1268 static int compact_finished(struct zone *zone, struct compact_control *cc,
1269 const int migratetype)
1270 {
1271 int ret;
1272
1273 ret = __compact_finished(zone, cc, migratetype);
1274 trace_mm_compaction_finished(zone, cc->order, ret);
1275 if (ret == COMPACT_NO_SUITABLE_PAGE)
1276 ret = COMPACT_CONTINUE;
1277
1278 return ret;
1279 }
1280
1281 /*
1282 * compaction_suitable: Is this suitable to run compaction on this zone now?
1283 * Returns
1284 * COMPACT_SKIPPED - If there are too few free pages for compaction
1285 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1286 * COMPACT_CONTINUE - If compaction should run now
1287 */
__compaction_suitable(struct zone * zone,int order,int alloc_flags,int classzone_idx)1288 static unsigned long __compaction_suitable(struct zone *zone, int order,
1289 int alloc_flags, int classzone_idx)
1290 {
1291 int fragindex;
1292 unsigned long watermark;
1293
1294 if (is_via_compact_memory(order))
1295 return COMPACT_CONTINUE;
1296
1297 watermark = low_wmark_pages(zone);
1298 /*
1299 * If watermarks for high-order allocation are already met, there
1300 * should be no need for compaction at all.
1301 */
1302 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1303 alloc_flags))
1304 return COMPACT_PARTIAL;
1305
1306 /*
1307 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1308 * This is because during migration, copies of pages need to be
1309 * allocated and for a short time, the footprint is higher
1310 */
1311 watermark += (2UL << order);
1312 if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1313 return COMPACT_SKIPPED;
1314
1315 /*
1316 * fragmentation index determines if allocation failures are due to
1317 * low memory or external fragmentation
1318 *
1319 * index of -1000 would imply allocations might succeed depending on
1320 * watermarks, but we already failed the high-order watermark check
1321 * index towards 0 implies failure is due to lack of memory
1322 * index towards 1000 implies failure is due to fragmentation
1323 *
1324 * Only compact if a failure would be due to fragmentation.
1325 */
1326 fragindex = fragmentation_index(zone, order);
1327 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1328 return COMPACT_NOT_SUITABLE_ZONE;
1329
1330 return COMPACT_CONTINUE;
1331 }
1332
compaction_suitable(struct zone * zone,int order,int alloc_flags,int classzone_idx)1333 unsigned long compaction_suitable(struct zone *zone, int order,
1334 int alloc_flags, int classzone_idx)
1335 {
1336 unsigned long ret;
1337
1338 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1339 trace_mm_compaction_suitable(zone, order, ret);
1340 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1341 ret = COMPACT_SKIPPED;
1342
1343 return ret;
1344 }
1345
compact_zone(struct zone * zone,struct compact_control * cc)1346 static int compact_zone(struct zone *zone, struct compact_control *cc)
1347 {
1348 int ret;
1349 unsigned long start_pfn = zone->zone_start_pfn;
1350 unsigned long end_pfn = zone_end_pfn(zone);
1351 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1352 const bool sync = cc->mode != MIGRATE_ASYNC;
1353
1354 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1355 cc->classzone_idx);
1356 switch (ret) {
1357 case COMPACT_PARTIAL:
1358 case COMPACT_SKIPPED:
1359 /* Compaction is likely to fail */
1360 return ret;
1361 case COMPACT_CONTINUE:
1362 /* Fall through to compaction */
1363 ;
1364 }
1365
1366 /*
1367 * Clear pageblock skip if there were failures recently and compaction
1368 * is about to be retried after being deferred. kswapd does not do
1369 * this reset as it'll reset the cached information when going to sleep.
1370 */
1371 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1372 __reset_isolation_suitable(zone);
1373
1374 /*
1375 * Setup to move all movable pages to the end of the zone. Used cached
1376 * information on where the scanners should start but check that it
1377 * is initialised by ensuring the values are within zone boundaries.
1378 */
1379 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1380 cc->free_pfn = zone->compact_cached_free_pfn;
1381 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1382 cc->free_pfn = round_down(end_pfn - 1, pageblock_nr_pages);
1383 zone->compact_cached_free_pfn = cc->free_pfn;
1384 }
1385 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1386 cc->migrate_pfn = start_pfn;
1387 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1388 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1389 }
1390 cc->last_migrated_pfn = 0;
1391
1392 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1393 cc->free_pfn, end_pfn, sync);
1394
1395 migrate_prep_local();
1396
1397 while ((ret = compact_finished(zone, cc, migratetype)) ==
1398 COMPACT_CONTINUE) {
1399 int err;
1400
1401 switch (isolate_migratepages(zone, cc)) {
1402 case ISOLATE_ABORT:
1403 ret = COMPACT_CONTENDED;
1404 putback_movable_pages(&cc->migratepages);
1405 cc->nr_migratepages = 0;
1406 goto out;
1407 case ISOLATE_NONE:
1408 /*
1409 * We haven't isolated and migrated anything, but
1410 * there might still be unflushed migrations from
1411 * previous cc->order aligned block.
1412 */
1413 goto check_drain;
1414 case ISOLATE_SUCCESS:
1415 ;
1416 }
1417
1418 err = migrate_pages(&cc->migratepages, compaction_alloc,
1419 compaction_free, (unsigned long)cc, cc->mode,
1420 MR_COMPACTION);
1421
1422 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1423 &cc->migratepages);
1424
1425 /* All pages were either migrated or will be released */
1426 cc->nr_migratepages = 0;
1427 if (err) {
1428 putback_movable_pages(&cc->migratepages);
1429 /*
1430 * migrate_pages() may return -ENOMEM when scanners meet
1431 * and we want compact_finished() to detect it
1432 */
1433 if (err == -ENOMEM && !compact_scanners_met(cc)) {
1434 ret = COMPACT_CONTENDED;
1435 goto out;
1436 }
1437 }
1438
1439 check_drain:
1440 /*
1441 * Has the migration scanner moved away from the previous
1442 * cc->order aligned block where we migrated from? If yes,
1443 * flush the pages that were freed, so that they can merge and
1444 * compact_finished() can detect immediately if allocation
1445 * would succeed.
1446 */
1447 if (cc->order > 0 && cc->last_migrated_pfn) {
1448 int cpu;
1449 unsigned long current_block_start =
1450 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1451
1452 if (cc->last_migrated_pfn < current_block_start) {
1453 cpu = get_cpu();
1454 lru_add_drain_cpu(cpu);
1455 drain_local_pages(zone);
1456 put_cpu();
1457 /* No more flushing until we migrate again */
1458 cc->last_migrated_pfn = 0;
1459 }
1460 }
1461
1462 }
1463
1464 out:
1465 /*
1466 * Release free pages and update where the free scanner should restart,
1467 * so we don't leave any returned pages behind in the next attempt.
1468 */
1469 if (cc->nr_freepages > 0) {
1470 unsigned long free_pfn = release_freepages(&cc->freepages);
1471
1472 cc->nr_freepages = 0;
1473 VM_BUG_ON(free_pfn == 0);
1474 /* The cached pfn is always the first in a pageblock */
1475 free_pfn &= ~(pageblock_nr_pages-1);
1476 /*
1477 * Only go back, not forward. The cached pfn might have been
1478 * already reset to zone end in compact_finished()
1479 */
1480 if (free_pfn > zone->compact_cached_free_pfn)
1481 zone->compact_cached_free_pfn = free_pfn;
1482 }
1483
1484 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1485 cc->free_pfn, end_pfn, sync, ret);
1486
1487 if (ret == COMPACT_CONTENDED)
1488 ret = COMPACT_PARTIAL;
1489
1490 return ret;
1491 }
1492
compact_zone_order(struct zone * zone,int order,gfp_t gfp_mask,enum migrate_mode mode,int * contended,int alloc_flags,int classzone_idx)1493 static unsigned long compact_zone_order(struct zone *zone, int order,
1494 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1495 int alloc_flags, int classzone_idx)
1496 {
1497 unsigned long ret;
1498 struct compact_control cc = {
1499 .nr_freepages = 0,
1500 .nr_migratepages = 0,
1501 .order = order,
1502 .gfp_mask = gfp_mask,
1503 .zone = zone,
1504 .mode = mode,
1505 .alloc_flags = alloc_flags,
1506 .classzone_idx = classzone_idx,
1507 };
1508 INIT_LIST_HEAD(&cc.freepages);
1509 INIT_LIST_HEAD(&cc.migratepages);
1510
1511 ret = compact_zone(zone, &cc);
1512
1513 VM_BUG_ON(!list_empty(&cc.freepages));
1514 VM_BUG_ON(!list_empty(&cc.migratepages));
1515
1516 *contended = cc.contended;
1517 return ret;
1518 }
1519
1520 int sysctl_extfrag_threshold = 500;
1521
1522 /**
1523 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1524 * @gfp_mask: The GFP mask of the current allocation
1525 * @order: The order of the current allocation
1526 * @alloc_flags: The allocation flags of the current allocation
1527 * @ac: The context of current allocation
1528 * @mode: The migration mode for async, sync light, or sync migration
1529 * @contended: Return value that determines if compaction was aborted due to
1530 * need_resched() or lock contention
1531 *
1532 * This is the main entry point for direct page compaction.
1533 */
try_to_compact_pages(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac,enum migrate_mode mode,int * contended)1534 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1535 int alloc_flags, const struct alloc_context *ac,
1536 enum migrate_mode mode, int *contended)
1537 {
1538 int may_enter_fs = gfp_mask & __GFP_FS;
1539 int may_perform_io = gfp_mask & __GFP_IO;
1540 struct zoneref *z;
1541 struct zone *zone;
1542 int rc = COMPACT_DEFERRED;
1543 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1544
1545 *contended = COMPACT_CONTENDED_NONE;
1546
1547 /* Check if the GFP flags allow compaction */
1548 if (!order || !may_enter_fs || !may_perform_io)
1549 return COMPACT_SKIPPED;
1550
1551 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1552
1553 /* Compact each zone in the list */
1554 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1555 ac->nodemask) {
1556 int status;
1557 int zone_contended;
1558
1559 if (compaction_deferred(zone, order))
1560 continue;
1561
1562 status = compact_zone_order(zone, order, gfp_mask, mode,
1563 &zone_contended, alloc_flags,
1564 ac->classzone_idx);
1565 rc = max(status, rc);
1566 /*
1567 * It takes at least one zone that wasn't lock contended
1568 * to clear all_zones_contended.
1569 */
1570 all_zones_contended &= zone_contended;
1571
1572 /* If a normal allocation would succeed, stop compacting */
1573 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1574 ac->classzone_idx, alloc_flags)) {
1575 /*
1576 * We think the allocation will succeed in this zone,
1577 * but it is not certain, hence the false. The caller
1578 * will repeat this with true if allocation indeed
1579 * succeeds in this zone.
1580 */
1581 compaction_defer_reset(zone, order, false);
1582 /*
1583 * It is possible that async compaction aborted due to
1584 * need_resched() and the watermarks were ok thanks to
1585 * somebody else freeing memory. The allocation can
1586 * however still fail so we better signal the
1587 * need_resched() contention anyway (this will not
1588 * prevent the allocation attempt).
1589 */
1590 if (zone_contended == COMPACT_CONTENDED_SCHED)
1591 *contended = COMPACT_CONTENDED_SCHED;
1592
1593 goto break_loop;
1594 }
1595
1596 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1597 /*
1598 * We think that allocation won't succeed in this zone
1599 * so we defer compaction there. If it ends up
1600 * succeeding after all, it will be reset.
1601 */
1602 defer_compaction(zone, order);
1603 }
1604
1605 /*
1606 * We might have stopped compacting due to need_resched() in
1607 * async compaction, or due to a fatal signal detected. In that
1608 * case do not try further zones and signal need_resched()
1609 * contention.
1610 */
1611 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1612 || fatal_signal_pending(current)) {
1613 *contended = COMPACT_CONTENDED_SCHED;
1614 goto break_loop;
1615 }
1616
1617 continue;
1618 break_loop:
1619 /*
1620 * We might not have tried all the zones, so be conservative
1621 * and assume they are not all lock contended.
1622 */
1623 all_zones_contended = 0;
1624 break;
1625 }
1626
1627 /*
1628 * If at least one zone wasn't deferred or skipped, we report if all
1629 * zones that were tried were lock contended.
1630 */
1631 if (rc > COMPACT_SKIPPED && all_zones_contended)
1632 *contended = COMPACT_CONTENDED_LOCK;
1633
1634 return rc;
1635 }
1636
1637
1638 /* Compact all zones within a node */
__compact_pgdat(pg_data_t * pgdat,struct compact_control * cc)1639 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1640 {
1641 int zoneid;
1642 struct zone *zone;
1643
1644 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1645
1646 zone = &pgdat->node_zones[zoneid];
1647 if (!populated_zone(zone))
1648 continue;
1649
1650 cc->nr_freepages = 0;
1651 cc->nr_migratepages = 0;
1652 cc->zone = zone;
1653 INIT_LIST_HEAD(&cc->freepages);
1654 INIT_LIST_HEAD(&cc->migratepages);
1655
1656 /*
1657 * When called via /proc/sys/vm/compact_memory
1658 * this makes sure we compact the whole zone regardless of
1659 * cached scanner positions.
1660 */
1661 if (is_via_compact_memory(cc->order))
1662 __reset_isolation_suitable(zone);
1663
1664 if (is_via_compact_memory(cc->order) ||
1665 !compaction_deferred(zone, cc->order))
1666 compact_zone(zone, cc);
1667
1668 if (cc->order > 0) {
1669 if (zone_watermark_ok(zone, cc->order,
1670 low_wmark_pages(zone), 0, 0))
1671 compaction_defer_reset(zone, cc->order, false);
1672 }
1673
1674 VM_BUG_ON(!list_empty(&cc->freepages));
1675 VM_BUG_ON(!list_empty(&cc->migratepages));
1676 }
1677 }
1678
compact_pgdat(pg_data_t * pgdat,int order)1679 void compact_pgdat(pg_data_t *pgdat, int order)
1680 {
1681 struct compact_control cc = {
1682 .order = order,
1683 .mode = MIGRATE_ASYNC,
1684 };
1685
1686 if (!order)
1687 return;
1688
1689 __compact_pgdat(pgdat, &cc);
1690 }
1691
compact_node(int nid)1692 static void compact_node(int nid)
1693 {
1694 struct compact_control cc = {
1695 .order = -1,
1696 .mode = MIGRATE_SYNC,
1697 .ignore_skip_hint = true,
1698 };
1699
1700 __compact_pgdat(NODE_DATA(nid), &cc);
1701 }
1702
1703 /* Compact all nodes in the system */
compact_nodes(void)1704 static void compact_nodes(void)
1705 {
1706 int nid;
1707
1708 /* Flush pending updates to the LRU lists */
1709 lru_add_drain_all();
1710
1711 for_each_online_node(nid)
1712 compact_node(nid);
1713 }
1714
1715 /* The written value is actually unused, all memory is compacted */
1716 int sysctl_compact_memory;
1717
1718 /* This is the entry point for compacting all nodes via /proc/sys/vm */
sysctl_compaction_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)1719 int sysctl_compaction_handler(struct ctl_table *table, int write,
1720 void __user *buffer, size_t *length, loff_t *ppos)
1721 {
1722 if (write)
1723 compact_nodes();
1724
1725 return 0;
1726 }
1727
sysctl_extfrag_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)1728 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1729 void __user *buffer, size_t *length, loff_t *ppos)
1730 {
1731 proc_dointvec_minmax(table, write, buffer, length, ppos);
1732
1733 return 0;
1734 }
1735
1736 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
sysfs_compact_node(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1737 static ssize_t sysfs_compact_node(struct device *dev,
1738 struct device_attribute *attr,
1739 const char *buf, size_t count)
1740 {
1741 int nid = dev->id;
1742
1743 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1744 /* Flush pending updates to the LRU lists */
1745 lru_add_drain_all();
1746
1747 compact_node(nid);
1748 }
1749
1750 return count;
1751 }
1752 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1753
compaction_register_node(struct node * node)1754 int compaction_register_node(struct node *node)
1755 {
1756 return device_create_file(&node->dev, &dev_attr_compact);
1757 }
1758
compaction_unregister_node(struct node * node)1759 void compaction_unregister_node(struct node *node)
1760 {
1761 return device_remove_file(&node->dev, &dev_attr_compact);
1762 }
1763 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1764
1765 #endif /* CONFIG_COMPACTION */
1766