• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 	<http://rt2x00.serialmonkey.com>
6 
7 	This program is free software; you can redistribute it and/or modify
8 	it under the terms of the GNU General Public License as published by
9 	the Free Software Foundation; either version 2 of the License, or
10 	(at your option) any later version.
11 
12 	This program is distributed in the hope that it will be useful,
13 	but WITHOUT ANY WARRANTY; without even the implied warranty of
14 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 	GNU General Public License for more details.
16 
17 	You should have received a copy of the GNU General Public License
18 	along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 /*
22 	Module: rt2x00
23 	Abstract: rt2x00 global information.
24  */
25 
26 #ifndef RT2X00_H
27 #define RT2X00_H
28 
29 #include <linux/bitops.h>
30 #include <linux/interrupt.h>
31 #include <linux/skbuff.h>
32 #include <linux/workqueue.h>
33 #include <linux/firmware.h>
34 #include <linux/leds.h>
35 #include <linux/mutex.h>
36 #include <linux/etherdevice.h>
37 #include <linux/input-polldev.h>
38 #include <linux/kfifo.h>
39 #include <linux/hrtimer.h>
40 #include <linux/average.h>
41 
42 #include <net/mac80211.h>
43 
44 #include "rt2x00debug.h"
45 #include "rt2x00dump.h"
46 #include "rt2x00leds.h"
47 #include "rt2x00reg.h"
48 #include "rt2x00queue.h"
49 
50 /*
51  * Module information.
52  */
53 #define DRV_VERSION	"2.3.0"
54 #define DRV_PROJECT	"http://rt2x00.serialmonkey.com"
55 
56 /* Debug definitions.
57  * Debug output has to be enabled during compile time.
58  */
59 #ifdef CONFIG_RT2X00_DEBUG
60 #define DEBUG
61 #endif /* CONFIG_RT2X00_DEBUG */
62 
63 /* Utility printing macros
64  * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized
65  */
66 #define rt2x00_probe_err(fmt, ...)					\
67 	printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt,		\
68 	       __func__, ##__VA_ARGS__)
69 #define rt2x00_err(dev, fmt, ...)					\
70 	wiphy_err((dev)->hw->wiphy, "%s: Error - " fmt,			\
71 		  __func__, ##__VA_ARGS__)
72 #define rt2x00_warn(dev, fmt, ...)					\
73 	wiphy_warn((dev)->hw->wiphy, "%s: Warning - " fmt,		\
74 		   __func__, ##__VA_ARGS__)
75 #define rt2x00_info(dev, fmt, ...)					\
76 	wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt,			\
77 		   __func__, ##__VA_ARGS__)
78 
79 /* Various debug levels */
80 #define rt2x00_dbg(dev, fmt, ...)					\
81 	wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt,			\
82 		  __func__, ##__VA_ARGS__)
83 #define rt2x00_eeprom_dbg(dev, fmt, ...)				\
84 	wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt,	\
85 		  __func__, ##__VA_ARGS__)
86 
87 /*
88  * Duration calculations
89  * The rate variable passed is: 100kbs.
90  * To convert from bytes to bits we multiply size with 8,
91  * then the size is multiplied with 10 to make the
92  * real rate -> rate argument correction.
93  */
94 #define GET_DURATION(__size, __rate)	(((__size) * 8 * 10) / (__rate))
95 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate))
96 
97 /*
98  * Determine the number of L2 padding bytes required between the header and
99  * the payload.
100  */
101 #define L2PAD_SIZE(__hdrlen)	(-(__hdrlen) & 3)
102 
103 /*
104  * Determine the alignment requirement,
105  * to make sure the 802.11 payload is padded to a 4-byte boundrary
106  * we must determine the address of the payload and calculate the
107  * amount of bytes needed to move the data.
108  */
109 #define ALIGN_SIZE(__skb, __header) \
110 	(  ((unsigned long)((__skb)->data + (__header))) & 3 )
111 
112 /*
113  * Constants for extra TX headroom for alignment purposes.
114  */
115 #define RT2X00_ALIGN_SIZE	4 /* Only whole frame needs alignment */
116 #define RT2X00_L2PAD_SIZE	8 /* Both header & payload need alignment */
117 
118 /*
119  * Standard timing and size defines.
120  * These values should follow the ieee80211 specifications.
121  */
122 #define ACK_SIZE		14
123 #define IEEE80211_HEADER	24
124 #define PLCP			48
125 #define BEACON			100
126 #define PREAMBLE		144
127 #define SHORT_PREAMBLE		72
128 #define SLOT_TIME		20
129 #define SHORT_SLOT_TIME		9
130 #define SIFS			10
131 #define PIFS			( SIFS + SLOT_TIME )
132 #define SHORT_PIFS		( SIFS + SHORT_SLOT_TIME )
133 #define DIFS			( PIFS + SLOT_TIME )
134 #define SHORT_DIFS		( SHORT_PIFS + SHORT_SLOT_TIME )
135 #define EIFS			( SIFS + DIFS + \
136 				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10) )
137 #define SHORT_EIFS		( SIFS + SHORT_DIFS + \
138 				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10) )
139 
140 enum rt2x00_chip_intf {
141 	RT2X00_CHIP_INTF_PCI,
142 	RT2X00_CHIP_INTF_PCIE,
143 	RT2X00_CHIP_INTF_USB,
144 	RT2X00_CHIP_INTF_SOC,
145 };
146 
147 /*
148  * Chipset identification
149  * The chipset on the device is composed of a RT and RF chip.
150  * The chipset combination is important for determining device capabilities.
151  */
152 struct rt2x00_chip {
153 	u16 rt;
154 #define RT2460		0x2460
155 #define RT2560		0x2560
156 #define RT2570		0x2570
157 #define RT2661		0x2661
158 #define RT2573		0x2573
159 #define RT2860		0x2860	/* 2.4GHz */
160 #define RT2872		0x2872	/* WSOC */
161 #define RT2883		0x2883	/* WSOC */
162 #define RT3070		0x3070
163 #define RT3071		0x3071
164 #define RT3090		0x3090	/* 2.4GHz PCIe */
165 #define RT3290		0x3290
166 #define RT3352		0x3352  /* WSOC */
167 #define RT3390		0x3390
168 #define RT3572		0x3572
169 #define RT3593		0x3593
170 #define RT3883		0x3883	/* WSOC */
171 #define RT5390		0x5390  /* 2.4GHz */
172 #define RT5392		0x5392  /* 2.4GHz */
173 #define RT5592		0x5592
174 
175 	u16 rf;
176 	u16 rev;
177 
178 	enum rt2x00_chip_intf intf;
179 };
180 
181 /*
182  * RF register values that belong to a particular channel.
183  */
184 struct rf_channel {
185 	int channel;
186 	u32 rf1;
187 	u32 rf2;
188 	u32 rf3;
189 	u32 rf4;
190 };
191 
192 /*
193  * Channel information structure
194  */
195 struct channel_info {
196 	unsigned int flags;
197 #define GEOGRAPHY_ALLOWED	0x00000001
198 
199 	short max_power;
200 	short default_power1;
201 	short default_power2;
202 	short default_power3;
203 };
204 
205 /*
206  * Antenna setup values.
207  */
208 struct antenna_setup {
209 	enum antenna rx;
210 	enum antenna tx;
211 	u8 rx_chain_num;
212 	u8 tx_chain_num;
213 };
214 
215 /*
216  * Quality statistics about the currently active link.
217  */
218 struct link_qual {
219 	/*
220 	 * Statistics required for Link tuning by driver
221 	 * The rssi value is provided by rt2x00lib during the
222 	 * link_tuner() callback function.
223 	 * The false_cca field is filled during the link_stats()
224 	 * callback function and could be used during the
225 	 * link_tuner() callback function.
226 	 */
227 	int rssi;
228 	int false_cca;
229 
230 	/*
231 	 * VGC levels
232 	 * Hardware driver will tune the VGC level during each call
233 	 * to the link_tuner() callback function. This vgc_level is
234 	 * is determined based on the link quality statistics like
235 	 * average RSSI and the false CCA count.
236 	 *
237 	 * In some cases the drivers need to differentiate between
238 	 * the currently "desired" VGC level and the level configured
239 	 * in the hardware. The latter is important to reduce the
240 	 * number of BBP register reads to reduce register access
241 	 * overhead. For this reason we store both values here.
242 	 */
243 	u8 vgc_level;
244 	u8 vgc_level_reg;
245 
246 	/*
247 	 * Statistics required for Signal quality calculation.
248 	 * These fields might be changed during the link_stats()
249 	 * callback function.
250 	 */
251 	int rx_success;
252 	int rx_failed;
253 	int tx_success;
254 	int tx_failed;
255 };
256 
257 DECLARE_EWMA(rssi, 1024, 8)
258 
259 /*
260  * Antenna settings about the currently active link.
261  */
262 struct link_ant {
263 	/*
264 	 * Antenna flags
265 	 */
266 	unsigned int flags;
267 #define ANTENNA_RX_DIVERSITY	0x00000001
268 #define ANTENNA_TX_DIVERSITY	0x00000002
269 #define ANTENNA_MODE_SAMPLE	0x00000004
270 
271 	/*
272 	 * Currently active TX/RX antenna setup.
273 	 * When software diversity is used, this will indicate
274 	 * which antenna is actually used at this time.
275 	 */
276 	struct antenna_setup active;
277 
278 	/*
279 	 * RSSI history information for the antenna.
280 	 * Used to determine when to switch antenna
281 	 * when using software diversity.
282 	 */
283 	int rssi_history;
284 
285 	/*
286 	 * Current RSSI average of the currently active antenna.
287 	 * Similar to the avg_rssi in the link_qual structure
288 	 * this value is updated by using the walking average.
289 	 */
290 	struct ewma_rssi rssi_ant;
291 };
292 
293 /*
294  * To optimize the quality of the link we need to store
295  * the quality of received frames and periodically
296  * optimize the link.
297  */
298 struct link {
299 	/*
300 	 * Link tuner counter
301 	 * The number of times the link has been tuned
302 	 * since the radio has been switched on.
303 	 */
304 	u32 count;
305 
306 	/*
307 	 * Quality measurement values.
308 	 */
309 	struct link_qual qual;
310 
311 	/*
312 	 * TX/RX antenna setup.
313 	 */
314 	struct link_ant ant;
315 
316 	/*
317 	 * Currently active average RSSI value
318 	 */
319 	struct ewma_rssi avg_rssi;
320 
321 	/*
322 	 * Work structure for scheduling periodic link tuning.
323 	 */
324 	struct delayed_work work;
325 
326 	/*
327 	 * Work structure for scheduling periodic watchdog monitoring.
328 	 * This work must be scheduled on the kernel workqueue, while
329 	 * all other work structures must be queued on the mac80211
330 	 * workqueue. This guarantees that the watchdog can schedule
331 	 * other work structures and wait for their completion in order
332 	 * to bring the device/driver back into the desired state.
333 	 */
334 	struct delayed_work watchdog_work;
335 
336 	/*
337 	 * Work structure for scheduling periodic AGC adjustments.
338 	 */
339 	struct delayed_work agc_work;
340 
341 	/*
342 	 * Work structure for scheduling periodic VCO calibration.
343 	 */
344 	struct delayed_work vco_work;
345 };
346 
347 enum rt2x00_delayed_flags {
348 	DELAYED_UPDATE_BEACON,
349 };
350 
351 /*
352  * Interface structure
353  * Per interface configuration details, this structure
354  * is allocated as the private data for ieee80211_vif.
355  */
356 struct rt2x00_intf {
357 	/*
358 	 * beacon->skb must be protected with the mutex.
359 	 */
360 	struct mutex beacon_skb_mutex;
361 
362 	/*
363 	 * Entry in the beacon queue which belongs to
364 	 * this interface. Each interface has its own
365 	 * dedicated beacon entry.
366 	 */
367 	struct queue_entry *beacon;
368 	bool enable_beacon;
369 
370 	/*
371 	 * Actions that needed rescheduling.
372 	 */
373 	unsigned long delayed_flags;
374 
375 	/*
376 	 * Software sequence counter, this is only required
377 	 * for hardware which doesn't support hardware
378 	 * sequence counting.
379 	 */
380 	atomic_t seqno;
381 };
382 
vif_to_intf(struct ieee80211_vif * vif)383 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif)
384 {
385 	return (struct rt2x00_intf *)vif->drv_priv;
386 }
387 
388 /**
389  * struct hw_mode_spec: Hardware specifications structure
390  *
391  * Details about the supported modes, rates and channels
392  * of a particular chipset. This is used by rt2x00lib
393  * to build the ieee80211_hw_mode array for mac80211.
394  *
395  * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz).
396  * @supported_rates: Rate types which are supported (CCK, OFDM).
397  * @num_channels: Number of supported channels. This is used as array size
398  *	for @tx_power_a, @tx_power_bg and @channels.
399  * @channels: Device/chipset specific channel values (See &struct rf_channel).
400  * @channels_info: Additional information for channels (See &struct channel_info).
401  * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap).
402  */
403 struct hw_mode_spec {
404 	unsigned int supported_bands;
405 #define SUPPORT_BAND_2GHZ	0x00000001
406 #define SUPPORT_BAND_5GHZ	0x00000002
407 
408 	unsigned int supported_rates;
409 #define SUPPORT_RATE_CCK	0x00000001
410 #define SUPPORT_RATE_OFDM	0x00000002
411 
412 	unsigned int num_channels;
413 	const struct rf_channel *channels;
414 	const struct channel_info *channels_info;
415 
416 	struct ieee80211_sta_ht_cap ht;
417 };
418 
419 /*
420  * Configuration structure wrapper around the
421  * mac80211 configuration structure.
422  * When mac80211 configures the driver, rt2x00lib
423  * can precalculate values which are equal for all
424  * rt2x00 drivers. Those values can be stored in here.
425  */
426 struct rt2x00lib_conf {
427 	struct ieee80211_conf *conf;
428 
429 	struct rf_channel rf;
430 	struct channel_info channel;
431 };
432 
433 /*
434  * Configuration structure for erp settings.
435  */
436 struct rt2x00lib_erp {
437 	int short_preamble;
438 	int cts_protection;
439 
440 	u32 basic_rates;
441 
442 	int slot_time;
443 
444 	short sifs;
445 	short pifs;
446 	short difs;
447 	short eifs;
448 
449 	u16 beacon_int;
450 	u16 ht_opmode;
451 };
452 
453 /*
454  * Configuration structure for hardware encryption.
455  */
456 struct rt2x00lib_crypto {
457 	enum cipher cipher;
458 
459 	enum set_key_cmd cmd;
460 	const u8 *address;
461 
462 	u32 bssidx;
463 
464 	u8 key[16];
465 	u8 tx_mic[8];
466 	u8 rx_mic[8];
467 
468 	int wcid;
469 };
470 
471 /*
472  * Configuration structure wrapper around the
473  * rt2x00 interface configuration handler.
474  */
475 struct rt2x00intf_conf {
476 	/*
477 	 * Interface type
478 	 */
479 	enum nl80211_iftype type;
480 
481 	/*
482 	 * TSF sync value, this is dependent on the operation type.
483 	 */
484 	enum tsf_sync sync;
485 
486 	/*
487 	 * The MAC and BSSID addresses are simple array of bytes,
488 	 * these arrays are little endian, so when sending the addresses
489 	 * to the drivers, copy the it into a endian-signed variable.
490 	 *
491 	 * Note that all devices (except rt2500usb) have 32 bits
492 	 * register word sizes. This means that whatever variable we
493 	 * pass _must_ be a multiple of 32 bits. Otherwise the device
494 	 * might not accept what we are sending to it.
495 	 * This will also make it easier for the driver to write
496 	 * the data to the device.
497 	 */
498 	__le32 mac[2];
499 	__le32 bssid[2];
500 };
501 
502 /*
503  * Private structure for storing STA details
504  * wcid: Wireless Client ID
505  */
506 struct rt2x00_sta {
507 	int wcid;
508 };
509 
sta_to_rt2x00_sta(struct ieee80211_sta * sta)510 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta)
511 {
512 	return (struct rt2x00_sta *)sta->drv_priv;
513 }
514 
515 /*
516  * rt2x00lib callback functions.
517  */
518 struct rt2x00lib_ops {
519 	/*
520 	 * Interrupt handlers.
521 	 */
522 	irq_handler_t irq_handler;
523 
524 	/*
525 	 * TX status tasklet handler.
526 	 */
527 	void (*txstatus_tasklet) (unsigned long data);
528 	void (*pretbtt_tasklet) (unsigned long data);
529 	void (*tbtt_tasklet) (unsigned long data);
530 	void (*rxdone_tasklet) (unsigned long data);
531 	void (*autowake_tasklet) (unsigned long data);
532 
533 	/*
534 	 * Device init handlers.
535 	 */
536 	int (*probe_hw) (struct rt2x00_dev *rt2x00dev);
537 	char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev);
538 	int (*check_firmware) (struct rt2x00_dev *rt2x00dev,
539 			       const u8 *data, const size_t len);
540 	int (*load_firmware) (struct rt2x00_dev *rt2x00dev,
541 			      const u8 *data, const size_t len);
542 
543 	/*
544 	 * Device initialization/deinitialization handlers.
545 	 */
546 	int (*initialize) (struct rt2x00_dev *rt2x00dev);
547 	void (*uninitialize) (struct rt2x00_dev *rt2x00dev);
548 
549 	/*
550 	 * queue initialization handlers
551 	 */
552 	bool (*get_entry_state) (struct queue_entry *entry);
553 	void (*clear_entry) (struct queue_entry *entry);
554 
555 	/*
556 	 * Radio control handlers.
557 	 */
558 	int (*set_device_state) (struct rt2x00_dev *rt2x00dev,
559 				 enum dev_state state);
560 	int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev);
561 	void (*link_stats) (struct rt2x00_dev *rt2x00dev,
562 			    struct link_qual *qual);
563 	void (*reset_tuner) (struct rt2x00_dev *rt2x00dev,
564 			     struct link_qual *qual);
565 	void (*link_tuner) (struct rt2x00_dev *rt2x00dev,
566 			    struct link_qual *qual, const u32 count);
567 	void (*gain_calibration) (struct rt2x00_dev *rt2x00dev);
568 	void (*vco_calibration) (struct rt2x00_dev *rt2x00dev);
569 
570 	/*
571 	 * Data queue handlers.
572 	 */
573 	void (*watchdog) (struct rt2x00_dev *rt2x00dev);
574 	void (*start_queue) (struct data_queue *queue);
575 	void (*kick_queue) (struct data_queue *queue);
576 	void (*stop_queue) (struct data_queue *queue);
577 	void (*flush_queue) (struct data_queue *queue, bool drop);
578 	void (*tx_dma_done) (struct queue_entry *entry);
579 
580 	/*
581 	 * TX control handlers
582 	 */
583 	void (*write_tx_desc) (struct queue_entry *entry,
584 			       struct txentry_desc *txdesc);
585 	void (*write_tx_data) (struct queue_entry *entry,
586 			       struct txentry_desc *txdesc);
587 	void (*write_beacon) (struct queue_entry *entry,
588 			      struct txentry_desc *txdesc);
589 	void (*clear_beacon) (struct queue_entry *entry);
590 	int (*get_tx_data_len) (struct queue_entry *entry);
591 
592 	/*
593 	 * RX control handlers
594 	 */
595 	void (*fill_rxdone) (struct queue_entry *entry,
596 			     struct rxdone_entry_desc *rxdesc);
597 
598 	/*
599 	 * Configuration handlers.
600 	 */
601 	int (*config_shared_key) (struct rt2x00_dev *rt2x00dev,
602 				  struct rt2x00lib_crypto *crypto,
603 				  struct ieee80211_key_conf *key);
604 	int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev,
605 				    struct rt2x00lib_crypto *crypto,
606 				    struct ieee80211_key_conf *key);
607 	void (*config_filter) (struct rt2x00_dev *rt2x00dev,
608 			       const unsigned int filter_flags);
609 	void (*config_intf) (struct rt2x00_dev *rt2x00dev,
610 			     struct rt2x00_intf *intf,
611 			     struct rt2x00intf_conf *conf,
612 			     const unsigned int flags);
613 #define CONFIG_UPDATE_TYPE		( 1 << 1 )
614 #define CONFIG_UPDATE_MAC		( 1 << 2 )
615 #define CONFIG_UPDATE_BSSID		( 1 << 3 )
616 
617 	void (*config_erp) (struct rt2x00_dev *rt2x00dev,
618 			    struct rt2x00lib_erp *erp,
619 			    u32 changed);
620 	void (*config_ant) (struct rt2x00_dev *rt2x00dev,
621 			    struct antenna_setup *ant);
622 	void (*config) (struct rt2x00_dev *rt2x00dev,
623 			struct rt2x00lib_conf *libconf,
624 			const unsigned int changed_flags);
625 	int (*sta_add) (struct rt2x00_dev *rt2x00dev,
626 			struct ieee80211_vif *vif,
627 			struct ieee80211_sta *sta);
628 	int (*sta_remove) (struct rt2x00_dev *rt2x00dev,
629 			   int wcid);
630 };
631 
632 /*
633  * rt2x00 driver callback operation structure.
634  */
635 struct rt2x00_ops {
636 	const char *name;
637 	const unsigned int drv_data_size;
638 	const unsigned int max_ap_intf;
639 	const unsigned int eeprom_size;
640 	const unsigned int rf_size;
641 	const unsigned int tx_queues;
642 	void (*queue_init)(struct data_queue *queue);
643 	const struct rt2x00lib_ops *lib;
644 	const void *drv;
645 	const struct ieee80211_ops *hw;
646 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
647 	const struct rt2x00debug *debugfs;
648 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
649 };
650 
651 /*
652  * rt2x00 state flags
653  */
654 enum rt2x00_state_flags {
655 	/*
656 	 * Device flags
657 	 */
658 	DEVICE_STATE_PRESENT,
659 	DEVICE_STATE_REGISTERED_HW,
660 	DEVICE_STATE_INITIALIZED,
661 	DEVICE_STATE_STARTED,
662 	DEVICE_STATE_ENABLED_RADIO,
663 	DEVICE_STATE_SCANNING,
664 
665 	/*
666 	 * Driver configuration
667 	 */
668 	CONFIG_CHANNEL_HT40,
669 	CONFIG_POWERSAVING,
670 	CONFIG_HT_DISABLED,
671 	CONFIG_QOS_DISABLED,
672 
673 	/*
674 	 * Mark we currently are sequentially reading TX_STA_FIFO register
675 	 * FIXME: this is for only rt2800usb, should go to private data
676 	 */
677 	TX_STATUS_READING,
678 };
679 
680 /*
681  * rt2x00 capability flags
682  */
683 enum rt2x00_capability_flags {
684 	/*
685 	 * Requirements
686 	 */
687 	REQUIRE_FIRMWARE,
688 	REQUIRE_BEACON_GUARD,
689 	REQUIRE_ATIM_QUEUE,
690 	REQUIRE_DMA,
691 	REQUIRE_COPY_IV,
692 	REQUIRE_L2PAD,
693 	REQUIRE_TXSTATUS_FIFO,
694 	REQUIRE_TASKLET_CONTEXT,
695 	REQUIRE_SW_SEQNO,
696 	REQUIRE_HT_TX_DESC,
697 	REQUIRE_PS_AUTOWAKE,
698 	REQUIRE_DELAYED_RFKILL,
699 
700 	/*
701 	 * Capabilities
702 	 */
703 	CAPABILITY_HW_BUTTON,
704 	CAPABILITY_HW_CRYPTO,
705 	CAPABILITY_POWER_LIMIT,
706 	CAPABILITY_CONTROL_FILTERS,
707 	CAPABILITY_CONTROL_FILTER_PSPOLL,
708 	CAPABILITY_PRE_TBTT_INTERRUPT,
709 	CAPABILITY_LINK_TUNING,
710 	CAPABILITY_FRAME_TYPE,
711 	CAPABILITY_RF_SEQUENCE,
712 	CAPABILITY_EXTERNAL_LNA_A,
713 	CAPABILITY_EXTERNAL_LNA_BG,
714 	CAPABILITY_DOUBLE_ANTENNA,
715 	CAPABILITY_BT_COEXIST,
716 	CAPABILITY_VCO_RECALIBRATION,
717 };
718 
719 /*
720  * Interface combinations
721  */
722 enum {
723 	IF_COMB_AP = 0,
724 	NUM_IF_COMB,
725 };
726 
727 /*
728  * rt2x00 device structure.
729  */
730 struct rt2x00_dev {
731 	/*
732 	 * Device structure.
733 	 * The structure stored in here depends on the
734 	 * system bus (PCI or USB).
735 	 * When accessing this variable, the rt2x00dev_{pci,usb}
736 	 * macros should be used for correct typecasting.
737 	 */
738 	struct device *dev;
739 
740 	/*
741 	 * Callback functions.
742 	 */
743 	const struct rt2x00_ops *ops;
744 
745 	/*
746 	 * Driver data.
747 	 */
748 	void *drv_data;
749 
750 	/*
751 	 * IEEE80211 control structure.
752 	 */
753 	struct ieee80211_hw *hw;
754 	struct ieee80211_supported_band bands[IEEE80211_NUM_BANDS];
755 	enum ieee80211_band curr_band;
756 	int curr_freq;
757 
758 	/*
759 	 * If enabled, the debugfs interface structures
760 	 * required for deregistration of debugfs.
761 	 */
762 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
763 	struct rt2x00debug_intf *debugfs_intf;
764 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
765 
766 	/*
767 	 * LED structure for changing the LED status
768 	 * by mac8011 or the kernel.
769 	 */
770 #ifdef CONFIG_RT2X00_LIB_LEDS
771 	struct rt2x00_led led_radio;
772 	struct rt2x00_led led_assoc;
773 	struct rt2x00_led led_qual;
774 	u16 led_mcu_reg;
775 #endif /* CONFIG_RT2X00_LIB_LEDS */
776 
777 	/*
778 	 * Device state flags.
779 	 * In these flags the current status is stored.
780 	 * Access to these flags should occur atomically.
781 	 */
782 	unsigned long flags;
783 
784 	/*
785 	 * Device capabiltiy flags.
786 	 * In these flags the device/driver capabilities are stored.
787 	 * Access to these flags should occur non-atomically.
788 	 */
789 	unsigned long cap_flags;
790 
791 	/*
792 	 * Device information, Bus IRQ and name (PCI, SoC)
793 	 */
794 	int irq;
795 	const char *name;
796 
797 	/*
798 	 * Chipset identification.
799 	 */
800 	struct rt2x00_chip chip;
801 
802 	/*
803 	 * hw capability specifications.
804 	 */
805 	struct hw_mode_spec spec;
806 
807 	/*
808 	 * This is the default TX/RX antenna setup as indicated
809 	 * by the device's EEPROM.
810 	 */
811 	struct antenna_setup default_ant;
812 
813 	/*
814 	 * Register pointers
815 	 * csr.base: CSR base register address. (PCI)
816 	 * csr.cache: CSR cache for usb_control_msg. (USB)
817 	 */
818 	union csr {
819 		void __iomem *base;
820 		void *cache;
821 	} csr;
822 
823 	/*
824 	 * Mutex to protect register accesses.
825 	 * For PCI and USB devices it protects against concurrent indirect
826 	 * register access (BBP, RF, MCU) since accessing those
827 	 * registers require multiple calls to the CSR registers.
828 	 * For USB devices it also protects the csr_cache since that
829 	 * field is used for normal CSR access and it cannot support
830 	 * multiple callers simultaneously.
831 	 */
832 	struct mutex csr_mutex;
833 
834 	/*
835 	 * Current packet filter configuration for the device.
836 	 * This contains all currently active FIF_* flags send
837 	 * to us by mac80211 during configure_filter().
838 	 */
839 	unsigned int packet_filter;
840 
841 	/*
842 	 * Interface details:
843 	 *  - Open ap interface count.
844 	 *  - Open sta interface count.
845 	 *  - Association count.
846 	 *  - Beaconing enabled count.
847 	 */
848 	unsigned int intf_ap_count;
849 	unsigned int intf_sta_count;
850 	unsigned int intf_associated;
851 	unsigned int intf_beaconing;
852 
853 	/*
854 	 * Interface combinations
855 	 */
856 	struct ieee80211_iface_limit if_limits_ap;
857 	struct ieee80211_iface_combination if_combinations[NUM_IF_COMB];
858 
859 	/*
860 	 * Link quality
861 	 */
862 	struct link link;
863 
864 	/*
865 	 * EEPROM data.
866 	 */
867 	__le16 *eeprom;
868 
869 	/*
870 	 * Active RF register values.
871 	 * These are stored here so we don't need
872 	 * to read the rf registers and can directly
873 	 * use this value instead.
874 	 * This field should be accessed by using
875 	 * rt2x00_rf_read() and rt2x00_rf_write().
876 	 */
877 	u32 *rf;
878 
879 	/*
880 	 * LNA gain
881 	 */
882 	short lna_gain;
883 
884 	/*
885 	 * Current TX power value.
886 	 */
887 	u16 tx_power;
888 
889 	/*
890 	 * Current retry values.
891 	 */
892 	u8 short_retry;
893 	u8 long_retry;
894 
895 	/*
896 	 * Rssi <-> Dbm offset
897 	 */
898 	u8 rssi_offset;
899 
900 	/*
901 	 * Frequency offset.
902 	 */
903 	u8 freq_offset;
904 
905 	/*
906 	 * Association id.
907 	 */
908 	u16 aid;
909 
910 	/*
911 	 * Beacon interval.
912 	 */
913 	u16 beacon_int;
914 
915 	/**
916 	 * Timestamp of last received beacon
917 	 */
918 	unsigned long last_beacon;
919 
920 	/*
921 	 * Low level statistics which will have
922 	 * to be kept up to date while device is running.
923 	 */
924 	struct ieee80211_low_level_stats low_level_stats;
925 
926 	/**
927 	 * Work queue for all work which should not be placed
928 	 * on the mac80211 workqueue (because of dependencies
929 	 * between various work structures).
930 	 */
931 	struct workqueue_struct *workqueue;
932 
933 	/*
934 	 * Scheduled work.
935 	 * NOTE: intf_work will use ieee80211_iterate_active_interfaces()
936 	 * which means it cannot be placed on the hw->workqueue
937 	 * due to RTNL locking requirements.
938 	 */
939 	struct work_struct intf_work;
940 
941 	/**
942 	 * Scheduled work for TX/RX done handling (USB devices)
943 	 */
944 	struct work_struct rxdone_work;
945 	struct work_struct txdone_work;
946 
947 	/*
948 	 * Powersaving work
949 	 */
950 	struct delayed_work autowakeup_work;
951 	struct work_struct sleep_work;
952 
953 	/*
954 	 * Data queue arrays for RX, TX, Beacon and ATIM.
955 	 */
956 	unsigned int data_queues;
957 	struct data_queue *rx;
958 	struct data_queue *tx;
959 	struct data_queue *bcn;
960 	struct data_queue *atim;
961 
962 	/*
963 	 * Firmware image.
964 	 */
965 	const struct firmware *fw;
966 
967 	/*
968 	 * FIFO for storing tx status reports between isr and tasklet.
969 	 */
970 	DECLARE_KFIFO_PTR(txstatus_fifo, u32);
971 
972 	/*
973 	 * Timer to ensure tx status reports are read (rt2800usb).
974 	 */
975 	struct hrtimer txstatus_timer;
976 
977 	/*
978 	 * Tasklet for processing tx status reports (rt2800pci).
979 	 */
980 	struct tasklet_struct txstatus_tasklet;
981 	struct tasklet_struct pretbtt_tasklet;
982 	struct tasklet_struct tbtt_tasklet;
983 	struct tasklet_struct rxdone_tasklet;
984 	struct tasklet_struct autowake_tasklet;
985 
986 	/*
987 	 * Used for VCO periodic calibration.
988 	 */
989 	int rf_channel;
990 
991 	/*
992 	 * Protect the interrupt mask register.
993 	 */
994 	spinlock_t irqmask_lock;
995 
996 	/*
997 	 * List of BlockAckReq TX entries that need driver BlockAck processing.
998 	 */
999 	struct list_head bar_list;
1000 	spinlock_t bar_list_lock;
1001 
1002 	/* Extra TX headroom required for alignment purposes. */
1003 	unsigned int extra_tx_headroom;
1004 };
1005 
1006 struct rt2x00_bar_list_entry {
1007 	struct list_head list;
1008 	struct rcu_head head;
1009 
1010 	struct queue_entry *entry;
1011 	int block_acked;
1012 
1013 	/* Relevant parts of the IEEE80211 BAR header */
1014 	__u8 ra[6];
1015 	__u8 ta[6];
1016 	__le16 control;
1017 	__le16 start_seq_num;
1018 };
1019 
1020 /*
1021  * Register defines.
1022  * Some registers require multiple attempts before success,
1023  * in those cases REGISTER_BUSY_COUNT attempts should be
1024  * taken with a REGISTER_BUSY_DELAY interval. Due to USB
1025  * bus delays, we do not have to loop so many times to wait
1026  * for valid register value on that bus.
1027  */
1028 #define REGISTER_BUSY_COUNT	100
1029 #define REGISTER_USB_BUSY_COUNT 20
1030 #define REGISTER_BUSY_DELAY	100
1031 
1032 /*
1033  * Generic RF access.
1034  * The RF is being accessed by word index.
1035  */
rt2x00_rf_read(struct rt2x00_dev * rt2x00dev,const unsigned int word,u32 * data)1036 static inline void rt2x00_rf_read(struct rt2x00_dev *rt2x00dev,
1037 				  const unsigned int word, u32 *data)
1038 {
1039 	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1040 	*data = rt2x00dev->rf[word - 1];
1041 }
1042 
rt2x00_rf_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u32 data)1043 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev,
1044 				   const unsigned int word, u32 data)
1045 {
1046 	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1047 	rt2x00dev->rf[word - 1] = data;
1048 }
1049 
1050 /*
1051  * Generic EEPROM access. The EEPROM is being accessed by word or byte index.
1052  */
rt2x00_eeprom_addr(struct rt2x00_dev * rt2x00dev,const unsigned int word)1053 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev,
1054 				       const unsigned int word)
1055 {
1056 	return (void *)&rt2x00dev->eeprom[word];
1057 }
1058 
rt2x00_eeprom_read(struct rt2x00_dev * rt2x00dev,const unsigned int word,u16 * data)1059 static inline void rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev,
1060 				      const unsigned int word, u16 *data)
1061 {
1062 	*data = le16_to_cpu(rt2x00dev->eeprom[word]);
1063 }
1064 
rt2x00_eeprom_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u16 data)1065 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev,
1066 				       const unsigned int word, u16 data)
1067 {
1068 	rt2x00dev->eeprom[word] = cpu_to_le16(data);
1069 }
1070 
rt2x00_eeprom_byte(struct rt2x00_dev * rt2x00dev,const unsigned int byte)1071 static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev,
1072 				    const unsigned int byte)
1073 {
1074 	return *(((u8 *)rt2x00dev->eeprom) + byte);
1075 }
1076 
1077 /*
1078  * Chipset handlers
1079  */
rt2x00_set_chip(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rf,const u16 rev)1080 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev,
1081 				   const u16 rt, const u16 rf, const u16 rev)
1082 {
1083 	rt2x00dev->chip.rt = rt;
1084 	rt2x00dev->chip.rf = rf;
1085 	rt2x00dev->chip.rev = rev;
1086 
1087 	rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n",
1088 		    rt2x00dev->chip.rt, rt2x00dev->chip.rf,
1089 		    rt2x00dev->chip.rev);
1090 }
1091 
rt2x00_set_rt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1092 static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev,
1093 				 const u16 rt, const u16 rev)
1094 {
1095 	rt2x00dev->chip.rt = rt;
1096 	rt2x00dev->chip.rev = rev;
1097 
1098 	rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n",
1099 		    rt2x00dev->chip.rt, rt2x00dev->chip.rev);
1100 }
1101 
rt2x00_set_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1102 static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1103 {
1104 	rt2x00dev->chip.rf = rf;
1105 
1106 	rt2x00_info(rt2x00dev, "RF chipset %04x detected\n",
1107 		    rt2x00dev->chip.rf);
1108 }
1109 
rt2x00_rt(struct rt2x00_dev * rt2x00dev,const u16 rt)1110 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt)
1111 {
1112 	return (rt2x00dev->chip.rt == rt);
1113 }
1114 
rt2x00_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1115 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1116 {
1117 	return (rt2x00dev->chip.rf == rf);
1118 }
1119 
rt2x00_rev(struct rt2x00_dev * rt2x00dev)1120 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev)
1121 {
1122 	return rt2x00dev->chip.rev;
1123 }
1124 
rt2x00_rt_rev(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1125 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev,
1126 				 const u16 rt, const u16 rev)
1127 {
1128 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev);
1129 }
1130 
rt2x00_rt_rev_lt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1131 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev,
1132 				    const u16 rt, const u16 rev)
1133 {
1134 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev);
1135 }
1136 
rt2x00_rt_rev_gte(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1137 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev,
1138 				     const u16 rt, const u16 rev)
1139 {
1140 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev);
1141 }
1142 
rt2x00_set_chip_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1143 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev,
1144 					enum rt2x00_chip_intf intf)
1145 {
1146 	rt2x00dev->chip.intf = intf;
1147 }
1148 
rt2x00_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1149 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev,
1150 			       enum rt2x00_chip_intf intf)
1151 {
1152 	return (rt2x00dev->chip.intf == intf);
1153 }
1154 
rt2x00_is_pci(struct rt2x00_dev * rt2x00dev)1155 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev)
1156 {
1157 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) ||
1158 	       rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1159 }
1160 
rt2x00_is_pcie(struct rt2x00_dev * rt2x00dev)1161 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev)
1162 {
1163 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1164 }
1165 
rt2x00_is_usb(struct rt2x00_dev * rt2x00dev)1166 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev)
1167 {
1168 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
1169 }
1170 
rt2x00_is_soc(struct rt2x00_dev * rt2x00dev)1171 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev)
1172 {
1173 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
1174 }
1175 
1176 /* Helpers for capability flags */
1177 
1178 static inline bool
rt2x00_has_cap_flag(struct rt2x00_dev * rt2x00dev,enum rt2x00_capability_flags cap_flag)1179 rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev,
1180 		    enum rt2x00_capability_flags cap_flag)
1181 {
1182 	return test_bit(cap_flag, &rt2x00dev->cap_flags);
1183 }
1184 
1185 static inline bool
rt2x00_has_cap_hw_crypto(struct rt2x00_dev * rt2x00dev)1186 rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev)
1187 {
1188 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO);
1189 }
1190 
1191 static inline bool
rt2x00_has_cap_power_limit(struct rt2x00_dev * rt2x00dev)1192 rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev)
1193 {
1194 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT);
1195 }
1196 
1197 static inline bool
rt2x00_has_cap_control_filters(struct rt2x00_dev * rt2x00dev)1198 rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev)
1199 {
1200 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS);
1201 }
1202 
1203 static inline bool
rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev * rt2x00dev)1204 rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev)
1205 {
1206 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL);
1207 }
1208 
1209 static inline bool
rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev * rt2x00dev)1210 rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev)
1211 {
1212 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT);
1213 }
1214 
1215 static inline bool
rt2x00_has_cap_link_tuning(struct rt2x00_dev * rt2x00dev)1216 rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev)
1217 {
1218 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING);
1219 }
1220 
1221 static inline bool
rt2x00_has_cap_frame_type(struct rt2x00_dev * rt2x00dev)1222 rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev)
1223 {
1224 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE);
1225 }
1226 
1227 static inline bool
rt2x00_has_cap_rf_sequence(struct rt2x00_dev * rt2x00dev)1228 rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev)
1229 {
1230 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE);
1231 }
1232 
1233 static inline bool
rt2x00_has_cap_external_lna_a(struct rt2x00_dev * rt2x00dev)1234 rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev)
1235 {
1236 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A);
1237 }
1238 
1239 static inline bool
rt2x00_has_cap_external_lna_bg(struct rt2x00_dev * rt2x00dev)1240 rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev)
1241 {
1242 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG);
1243 }
1244 
1245 static inline bool
rt2x00_has_cap_double_antenna(struct rt2x00_dev * rt2x00dev)1246 rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev)
1247 {
1248 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA);
1249 }
1250 
1251 static inline bool
rt2x00_has_cap_bt_coexist(struct rt2x00_dev * rt2x00dev)1252 rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev)
1253 {
1254 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST);
1255 }
1256 
1257 static inline bool
rt2x00_has_cap_vco_recalibration(struct rt2x00_dev * rt2x00dev)1258 rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev)
1259 {
1260 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION);
1261 }
1262 
1263 /**
1264  * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes.
1265  * @entry: Pointer to &struct queue_entry
1266  *
1267  * Returns -ENOMEM if mapping fail, 0 otherwise.
1268  */
1269 int rt2x00queue_map_txskb(struct queue_entry *entry);
1270 
1271 /**
1272  * rt2x00queue_unmap_skb - Unmap a skb from DMA.
1273  * @entry: Pointer to &struct queue_entry
1274  */
1275 void rt2x00queue_unmap_skb(struct queue_entry *entry);
1276 
1277 /**
1278  * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer
1279  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1280  * @queue: rt2x00 queue index (see &enum data_queue_qid).
1281  *
1282  * Returns NULL for non tx queues.
1283  */
1284 static inline struct data_queue *
rt2x00queue_get_tx_queue(struct rt2x00_dev * rt2x00dev,const enum data_queue_qid queue)1285 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev,
1286 			 const enum data_queue_qid queue)
1287 {
1288 	if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
1289 		return &rt2x00dev->tx[queue];
1290 
1291 	if (queue == QID_ATIM)
1292 		return rt2x00dev->atim;
1293 
1294 	return NULL;
1295 }
1296 
1297 /**
1298  * rt2x00queue_get_entry - Get queue entry where the given index points to.
1299  * @queue: Pointer to &struct data_queue from where we obtain the entry.
1300  * @index: Index identifier for obtaining the correct index.
1301  */
1302 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
1303 					  enum queue_index index);
1304 
1305 /**
1306  * rt2x00queue_pause_queue - Pause a data queue
1307  * @queue: Pointer to &struct data_queue.
1308  *
1309  * This function will pause the data queue locally, preventing
1310  * new frames to be added to the queue (while the hardware is
1311  * still allowed to run).
1312  */
1313 void rt2x00queue_pause_queue(struct data_queue *queue);
1314 
1315 /**
1316  * rt2x00queue_unpause_queue - unpause a data queue
1317  * @queue: Pointer to &struct data_queue.
1318  *
1319  * This function will unpause the data queue locally, allowing
1320  * new frames to be added to the queue again.
1321  */
1322 void rt2x00queue_unpause_queue(struct data_queue *queue);
1323 
1324 /**
1325  * rt2x00queue_start_queue - Start a data queue
1326  * @queue: Pointer to &struct data_queue.
1327  *
1328  * This function will start handling all pending frames in the queue.
1329  */
1330 void rt2x00queue_start_queue(struct data_queue *queue);
1331 
1332 /**
1333  * rt2x00queue_stop_queue - Halt a data queue
1334  * @queue: Pointer to &struct data_queue.
1335  *
1336  * This function will stop all pending frames in the queue.
1337  */
1338 void rt2x00queue_stop_queue(struct data_queue *queue);
1339 
1340 /**
1341  * rt2x00queue_flush_queue - Flush a data queue
1342  * @queue: Pointer to &struct data_queue.
1343  * @drop: True to drop all pending frames.
1344  *
1345  * This function will flush the queue. After this call
1346  * the queue is guaranteed to be empty.
1347  */
1348 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop);
1349 
1350 /**
1351  * rt2x00queue_start_queues - Start all data queues
1352  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1353  *
1354  * This function will loop through all available queues to start them
1355  */
1356 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev);
1357 
1358 /**
1359  * rt2x00queue_stop_queues - Halt all data queues
1360  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1361  *
1362  * This function will loop through all available queues to stop
1363  * any pending frames.
1364  */
1365 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev);
1366 
1367 /**
1368  * rt2x00queue_flush_queues - Flush all data queues
1369  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1370  * @drop: True to drop all pending frames.
1371  *
1372  * This function will loop through all available queues to flush
1373  * any pending frames.
1374  */
1375 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop);
1376 
1377 /*
1378  * Debugfs handlers.
1379  */
1380 /**
1381  * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs.
1382  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1383  * @type: The type of frame that is being dumped.
1384  * @skb: The skb containing the frame to be dumped.
1385  */
1386 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1387 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1388 			    enum rt2x00_dump_type type, struct sk_buff *skb);
1389 #else
rt2x00debug_dump_frame(struct rt2x00_dev * rt2x00dev,enum rt2x00_dump_type type,struct sk_buff * skb)1390 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1391 					  enum rt2x00_dump_type type,
1392 					  struct sk_buff *skb)
1393 {
1394 }
1395 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1396 
1397 /*
1398  * Utility functions.
1399  */
1400 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
1401 			 struct ieee80211_vif *vif);
1402 
1403 /*
1404  * Interrupt context handlers.
1405  */
1406 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev);
1407 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev);
1408 void rt2x00lib_dmastart(struct queue_entry *entry);
1409 void rt2x00lib_dmadone(struct queue_entry *entry);
1410 void rt2x00lib_txdone(struct queue_entry *entry,
1411 		      struct txdone_entry_desc *txdesc);
1412 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status);
1413 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp);
1414 
1415 /*
1416  * mac80211 handlers.
1417  */
1418 void rt2x00mac_tx(struct ieee80211_hw *hw,
1419 		  struct ieee80211_tx_control *control,
1420 		  struct sk_buff *skb);
1421 int rt2x00mac_start(struct ieee80211_hw *hw);
1422 void rt2x00mac_stop(struct ieee80211_hw *hw);
1423 int rt2x00mac_add_interface(struct ieee80211_hw *hw,
1424 			    struct ieee80211_vif *vif);
1425 void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
1426 				struct ieee80211_vif *vif);
1427 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed);
1428 void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
1429 				unsigned int changed_flags,
1430 				unsigned int *total_flags,
1431 				u64 multicast);
1432 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1433 		      bool set);
1434 #ifdef CONFIG_RT2X00_LIB_CRYPTO
1435 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1436 		      struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1437 		      struct ieee80211_key_conf *key);
1438 #else
1439 #define rt2x00mac_set_key	NULL
1440 #endif /* CONFIG_RT2X00_LIB_CRYPTO */
1441 int rt2x00mac_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1442 		      struct ieee80211_sta *sta);
1443 int rt2x00mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1444 			 struct ieee80211_sta *sta);
1445 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw,
1446 			     struct ieee80211_vif *vif,
1447 			     const u8 *mac_addr);
1448 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw,
1449 				struct ieee80211_vif *vif);
1450 int rt2x00mac_get_stats(struct ieee80211_hw *hw,
1451 			struct ieee80211_low_level_stats *stats);
1452 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
1453 				struct ieee80211_vif *vif,
1454 				struct ieee80211_bss_conf *bss_conf,
1455 				u32 changes);
1456 int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
1457 		      struct ieee80211_vif *vif, u16 queue,
1458 		      const struct ieee80211_tx_queue_params *params);
1459 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw);
1460 void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1461 		     u32 queues, bool drop);
1462 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
1463 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
1464 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
1465 			     u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
1466 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw);
1467 
1468 /*
1469  * Driver allocation handlers.
1470  */
1471 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev);
1472 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev);
1473 #ifdef CONFIG_PM
1474 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state);
1475 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev);
1476 #endif /* CONFIG_PM */
1477 
1478 #endif /* RT2X00_H */
1479