• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Intel Cache Quality-of-Service Monitoring (CQM) support.
3  *
4  * Based very, very heavily on work by Peter Zijlstra.
5  */
6 
7 #include <linux/perf_event.h>
8 #include <linux/slab.h>
9 #include <asm/cpu_device_id.h>
10 #include "perf_event.h"
11 
12 #define MSR_IA32_PQR_ASSOC	0x0c8f
13 #define MSR_IA32_QM_CTR		0x0c8e
14 #define MSR_IA32_QM_EVTSEL	0x0c8d
15 
16 static u32 cqm_max_rmid = -1;
17 static unsigned int cqm_l3_scale; /* supposedly cacheline size */
18 
19 /**
20  * struct intel_pqr_state - State cache for the PQR MSR
21  * @rmid:		The cached Resource Monitoring ID
22  * @closid:		The cached Class Of Service ID
23  * @rmid_usecnt:	The usage counter for rmid
24  *
25  * The upper 32 bits of MSR_IA32_PQR_ASSOC contain closid and the
26  * lower 10 bits rmid. The update to MSR_IA32_PQR_ASSOC always
27  * contains both parts, so we need to cache them.
28  *
29  * The cache also helps to avoid pointless updates if the value does
30  * not change.
31  */
32 struct intel_pqr_state {
33 	u32			rmid;
34 	u32			closid;
35 	int			rmid_usecnt;
36 };
37 
38 /*
39  * The cached intel_pqr_state is strictly per CPU and can never be
40  * updated from a remote CPU. Both functions which modify the state
41  * (intel_cqm_event_start and intel_cqm_event_stop) are called with
42  * interrupts disabled, which is sufficient for the protection.
43  */
44 static DEFINE_PER_CPU(struct intel_pqr_state, pqr_state);
45 
46 /*
47  * Protects cache_cgroups and cqm_rmid_free_lru and cqm_rmid_limbo_lru.
48  * Also protects event->hw.cqm_rmid
49  *
50  * Hold either for stability, both for modification of ->hw.cqm_rmid.
51  */
52 static DEFINE_MUTEX(cache_mutex);
53 static DEFINE_RAW_SPINLOCK(cache_lock);
54 
55 /*
56  * Groups of events that have the same target(s), one RMID per group.
57  */
58 static LIST_HEAD(cache_groups);
59 
60 /*
61  * Mask of CPUs for reading CQM values. We only need one per-socket.
62  */
63 static cpumask_t cqm_cpumask;
64 
65 #define RMID_VAL_ERROR		(1ULL << 63)
66 #define RMID_VAL_UNAVAIL	(1ULL << 62)
67 
68 #define QOS_L3_OCCUP_EVENT_ID	(1 << 0)
69 
70 #define QOS_EVENT_MASK	QOS_L3_OCCUP_EVENT_ID
71 
72 /*
73  * This is central to the rotation algorithm in __intel_cqm_rmid_rotate().
74  *
75  * This rmid is always free and is guaranteed to have an associated
76  * near-zero occupancy value, i.e. no cachelines are tagged with this
77  * RMID, once __intel_cqm_rmid_rotate() returns.
78  */
79 static u32 intel_cqm_rotation_rmid;
80 
81 #define INVALID_RMID		(-1)
82 
83 /*
84  * Is @rmid valid for programming the hardware?
85  *
86  * rmid 0 is reserved by the hardware for all non-monitored tasks, which
87  * means that we should never come across an rmid with that value.
88  * Likewise, an rmid value of -1 is used to indicate "no rmid currently
89  * assigned" and is used as part of the rotation code.
90  */
__rmid_valid(u32 rmid)91 static inline bool __rmid_valid(u32 rmid)
92 {
93 	if (!rmid || rmid == INVALID_RMID)
94 		return false;
95 
96 	return true;
97 }
98 
__rmid_read(u32 rmid)99 static u64 __rmid_read(u32 rmid)
100 {
101 	u64 val;
102 
103 	/*
104 	 * Ignore the SDM, this thing is _NOTHING_ like a regular perfcnt,
105 	 * it just says that to increase confusion.
106 	 */
107 	wrmsr(MSR_IA32_QM_EVTSEL, QOS_L3_OCCUP_EVENT_ID, rmid);
108 	rdmsrl(MSR_IA32_QM_CTR, val);
109 
110 	/*
111 	 * Aside from the ERROR and UNAVAIL bits, assume this thing returns
112 	 * the number of cachelines tagged with @rmid.
113 	 */
114 	return val;
115 }
116 
117 enum rmid_recycle_state {
118 	RMID_YOUNG = 0,
119 	RMID_AVAILABLE,
120 	RMID_DIRTY,
121 };
122 
123 struct cqm_rmid_entry {
124 	u32 rmid;
125 	enum rmid_recycle_state state;
126 	struct list_head list;
127 	unsigned long queue_time;
128 };
129 
130 /*
131  * cqm_rmid_free_lru - A least recently used list of RMIDs.
132  *
133  * Oldest entry at the head, newest (most recently used) entry at the
134  * tail. This list is never traversed, it's only used to keep track of
135  * the lru order. That is, we only pick entries of the head or insert
136  * them on the tail.
137  *
138  * All entries on the list are 'free', and their RMIDs are not currently
139  * in use. To mark an RMID as in use, remove its entry from the lru
140  * list.
141  *
142  *
143  * cqm_rmid_limbo_lru - list of currently unused but (potentially) dirty RMIDs.
144  *
145  * This list is contains RMIDs that no one is currently using but that
146  * may have a non-zero occupancy value associated with them. The
147  * rotation worker moves RMIDs from the limbo list to the free list once
148  * the occupancy value drops below __intel_cqm_threshold.
149  *
150  * Both lists are protected by cache_mutex.
151  */
152 static LIST_HEAD(cqm_rmid_free_lru);
153 static LIST_HEAD(cqm_rmid_limbo_lru);
154 
155 /*
156  * We use a simple array of pointers so that we can lookup a struct
157  * cqm_rmid_entry in O(1). This alleviates the callers of __get_rmid()
158  * and __put_rmid() from having to worry about dealing with struct
159  * cqm_rmid_entry - they just deal with rmids, i.e. integers.
160  *
161  * Once this array is initialized it is read-only. No locks are required
162  * to access it.
163  *
164  * All entries for all RMIDs can be looked up in the this array at all
165  * times.
166  */
167 static struct cqm_rmid_entry **cqm_rmid_ptrs;
168 
__rmid_entry(u32 rmid)169 static inline struct cqm_rmid_entry *__rmid_entry(u32 rmid)
170 {
171 	struct cqm_rmid_entry *entry;
172 
173 	entry = cqm_rmid_ptrs[rmid];
174 	WARN_ON(entry->rmid != rmid);
175 
176 	return entry;
177 }
178 
179 /*
180  * Returns < 0 on fail.
181  *
182  * We expect to be called with cache_mutex held.
183  */
__get_rmid(void)184 static u32 __get_rmid(void)
185 {
186 	struct cqm_rmid_entry *entry;
187 
188 	lockdep_assert_held(&cache_mutex);
189 
190 	if (list_empty(&cqm_rmid_free_lru))
191 		return INVALID_RMID;
192 
193 	entry = list_first_entry(&cqm_rmid_free_lru, struct cqm_rmid_entry, list);
194 	list_del(&entry->list);
195 
196 	return entry->rmid;
197 }
198 
__put_rmid(u32 rmid)199 static void __put_rmid(u32 rmid)
200 {
201 	struct cqm_rmid_entry *entry;
202 
203 	lockdep_assert_held(&cache_mutex);
204 
205 	WARN_ON(!__rmid_valid(rmid));
206 	entry = __rmid_entry(rmid);
207 
208 	entry->queue_time = jiffies;
209 	entry->state = RMID_YOUNG;
210 
211 	list_add_tail(&entry->list, &cqm_rmid_limbo_lru);
212 }
213 
cqm_cleanup(void)214 static void cqm_cleanup(void)
215 {
216 	int i;
217 
218 	if (!cqm_rmid_ptrs)
219 		return;
220 
221 	for (i = 0; i < cqm_max_rmid; i++)
222 		kfree(cqm_rmid_ptrs[i]);
223 
224 	kfree(cqm_rmid_ptrs);
225 	cqm_rmid_ptrs = NULL;
226 }
227 
intel_cqm_setup_rmid_cache(void)228 static int intel_cqm_setup_rmid_cache(void)
229 {
230 	struct cqm_rmid_entry *entry;
231 	unsigned int nr_rmids;
232 	int r = 0;
233 
234 	nr_rmids = cqm_max_rmid + 1;
235 	cqm_rmid_ptrs = kzalloc(sizeof(struct cqm_rmid_entry *) *
236 				nr_rmids, GFP_KERNEL);
237 	if (!cqm_rmid_ptrs)
238 		return -ENOMEM;
239 
240 	for (; r <= cqm_max_rmid; r++) {
241 		struct cqm_rmid_entry *entry;
242 
243 		entry = kmalloc(sizeof(*entry), GFP_KERNEL);
244 		if (!entry)
245 			goto fail;
246 
247 		INIT_LIST_HEAD(&entry->list);
248 		entry->rmid = r;
249 		cqm_rmid_ptrs[r] = entry;
250 
251 		list_add_tail(&entry->list, &cqm_rmid_free_lru);
252 	}
253 
254 	/*
255 	 * RMID 0 is special and is always allocated. It's used for all
256 	 * tasks that are not monitored.
257 	 */
258 	entry = __rmid_entry(0);
259 	list_del(&entry->list);
260 
261 	mutex_lock(&cache_mutex);
262 	intel_cqm_rotation_rmid = __get_rmid();
263 	mutex_unlock(&cache_mutex);
264 
265 	return 0;
266 
267 fail:
268 	cqm_cleanup();
269 	return -ENOMEM;
270 }
271 
272 /*
273  * Determine if @a and @b measure the same set of tasks.
274  *
275  * If @a and @b measure the same set of tasks then we want to share a
276  * single RMID.
277  */
__match_event(struct perf_event * a,struct perf_event * b)278 static bool __match_event(struct perf_event *a, struct perf_event *b)
279 {
280 	/* Per-cpu and task events don't mix */
281 	if ((a->attach_state & PERF_ATTACH_TASK) !=
282 	    (b->attach_state & PERF_ATTACH_TASK))
283 		return false;
284 
285 #ifdef CONFIG_CGROUP_PERF
286 	if (a->cgrp != b->cgrp)
287 		return false;
288 #endif
289 
290 	/* If not task event, we're machine wide */
291 	if (!(b->attach_state & PERF_ATTACH_TASK))
292 		return true;
293 
294 	/*
295 	 * Events that target same task are placed into the same cache group.
296 	 * Mark it as a multi event group, so that we update ->count
297 	 * for every event rather than just the group leader later.
298 	 */
299 	if (a->hw.target == b->hw.target) {
300 		b->hw.is_group_event = true;
301 		return true;
302 	}
303 
304 	/*
305 	 * Are we an inherited event?
306 	 */
307 	if (b->parent == a)
308 		return true;
309 
310 	return false;
311 }
312 
313 #ifdef CONFIG_CGROUP_PERF
event_to_cgroup(struct perf_event * event)314 static inline struct perf_cgroup *event_to_cgroup(struct perf_event *event)
315 {
316 	if (event->attach_state & PERF_ATTACH_TASK)
317 		return perf_cgroup_from_task(event->hw.target, event->ctx);
318 
319 	return event->cgrp;
320 }
321 #endif
322 
323 /*
324  * Determine if @a's tasks intersect with @b's tasks
325  *
326  * There are combinations of events that we explicitly prohibit,
327  *
328  *		   PROHIBITS
329  *     system-wide    -> 	cgroup and task
330  *     cgroup 	      ->	system-wide
331  *     		      ->	task in cgroup
332  *     task 	      -> 	system-wide
333  *     		      ->	task in cgroup
334  *
335  * Call this function before allocating an RMID.
336  */
__conflict_event(struct perf_event * a,struct perf_event * b)337 static bool __conflict_event(struct perf_event *a, struct perf_event *b)
338 {
339 #ifdef CONFIG_CGROUP_PERF
340 	/*
341 	 * We can have any number of cgroups but only one system-wide
342 	 * event at a time.
343 	 */
344 	if (a->cgrp && b->cgrp) {
345 		struct perf_cgroup *ac = a->cgrp;
346 		struct perf_cgroup *bc = b->cgrp;
347 
348 		/*
349 		 * This condition should have been caught in
350 		 * __match_event() and we should be sharing an RMID.
351 		 */
352 		WARN_ON_ONCE(ac == bc);
353 
354 		if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
355 		    cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
356 			return true;
357 
358 		return false;
359 	}
360 
361 	if (a->cgrp || b->cgrp) {
362 		struct perf_cgroup *ac, *bc;
363 
364 		/*
365 		 * cgroup and system-wide events are mutually exclusive
366 		 */
367 		if ((a->cgrp && !(b->attach_state & PERF_ATTACH_TASK)) ||
368 		    (b->cgrp && !(a->attach_state & PERF_ATTACH_TASK)))
369 			return true;
370 
371 		/*
372 		 * Ensure neither event is part of the other's cgroup
373 		 */
374 		ac = event_to_cgroup(a);
375 		bc = event_to_cgroup(b);
376 		if (ac == bc)
377 			return true;
378 
379 		/*
380 		 * Must have cgroup and non-intersecting task events.
381 		 */
382 		if (!ac || !bc)
383 			return false;
384 
385 		/*
386 		 * We have cgroup and task events, and the task belongs
387 		 * to a cgroup. Check for for overlap.
388 		 */
389 		if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
390 		    cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
391 			return true;
392 
393 		return false;
394 	}
395 #endif
396 	/*
397 	 * If one of them is not a task, same story as above with cgroups.
398 	 */
399 	if (!(a->attach_state & PERF_ATTACH_TASK) ||
400 	    !(b->attach_state & PERF_ATTACH_TASK))
401 		return true;
402 
403 	/*
404 	 * Must be non-overlapping.
405 	 */
406 	return false;
407 }
408 
409 struct rmid_read {
410 	u32 rmid;
411 	atomic64_t value;
412 };
413 
414 static void __intel_cqm_event_count(void *info);
415 
416 /*
417  * Exchange the RMID of a group of events.
418  */
intel_cqm_xchg_rmid(struct perf_event * group,u32 rmid)419 static u32 intel_cqm_xchg_rmid(struct perf_event *group, u32 rmid)
420 {
421 	struct perf_event *event;
422 	struct list_head *head = &group->hw.cqm_group_entry;
423 	u32 old_rmid = group->hw.cqm_rmid;
424 
425 	lockdep_assert_held(&cache_mutex);
426 
427 	/*
428 	 * If our RMID is being deallocated, perform a read now.
429 	 */
430 	if (__rmid_valid(old_rmid) && !__rmid_valid(rmid)) {
431 		struct rmid_read rr = {
432 			.value = ATOMIC64_INIT(0),
433 			.rmid = old_rmid,
434 		};
435 
436 		on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count,
437 				 &rr, 1);
438 		local64_set(&group->count, atomic64_read(&rr.value));
439 	}
440 
441 	raw_spin_lock_irq(&cache_lock);
442 
443 	group->hw.cqm_rmid = rmid;
444 	list_for_each_entry(event, head, hw.cqm_group_entry)
445 		event->hw.cqm_rmid = rmid;
446 
447 	raw_spin_unlock_irq(&cache_lock);
448 
449 	return old_rmid;
450 }
451 
452 /*
453  * If we fail to assign a new RMID for intel_cqm_rotation_rmid because
454  * cachelines are still tagged with RMIDs in limbo, we progressively
455  * increment the threshold until we find an RMID in limbo with <=
456  * __intel_cqm_threshold lines tagged. This is designed to mitigate the
457  * problem where cachelines tagged with an RMID are not steadily being
458  * evicted.
459  *
460  * On successful rotations we decrease the threshold back towards zero.
461  *
462  * __intel_cqm_max_threshold provides an upper bound on the threshold,
463  * and is measured in bytes because it's exposed to userland.
464  */
465 static unsigned int __intel_cqm_threshold;
466 static unsigned int __intel_cqm_max_threshold;
467 
468 /*
469  * Test whether an RMID has a zero occupancy value on this cpu.
470  */
intel_cqm_stable(void * arg)471 static void intel_cqm_stable(void *arg)
472 {
473 	struct cqm_rmid_entry *entry;
474 
475 	list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
476 		if (entry->state != RMID_AVAILABLE)
477 			break;
478 
479 		if (__rmid_read(entry->rmid) > __intel_cqm_threshold)
480 			entry->state = RMID_DIRTY;
481 	}
482 }
483 
484 /*
485  * If we have group events waiting for an RMID that don't conflict with
486  * events already running, assign @rmid.
487  */
intel_cqm_sched_in_event(u32 rmid)488 static bool intel_cqm_sched_in_event(u32 rmid)
489 {
490 	struct perf_event *leader, *event;
491 
492 	lockdep_assert_held(&cache_mutex);
493 
494 	leader = list_first_entry(&cache_groups, struct perf_event,
495 				  hw.cqm_groups_entry);
496 	event = leader;
497 
498 	list_for_each_entry_continue(event, &cache_groups,
499 				     hw.cqm_groups_entry) {
500 		if (__rmid_valid(event->hw.cqm_rmid))
501 			continue;
502 
503 		if (__conflict_event(event, leader))
504 			continue;
505 
506 		intel_cqm_xchg_rmid(event, rmid);
507 		return true;
508 	}
509 
510 	return false;
511 }
512 
513 /*
514  * Initially use this constant for both the limbo queue time and the
515  * rotation timer interval, pmu::hrtimer_interval_ms.
516  *
517  * They don't need to be the same, but the two are related since if you
518  * rotate faster than you recycle RMIDs, you may run out of available
519  * RMIDs.
520  */
521 #define RMID_DEFAULT_QUEUE_TIME 250	/* ms */
522 
523 static unsigned int __rmid_queue_time_ms = RMID_DEFAULT_QUEUE_TIME;
524 
525 /*
526  * intel_cqm_rmid_stabilize - move RMIDs from limbo to free list
527  * @nr_available: number of freeable RMIDs on the limbo list
528  *
529  * Quiescent state; wait for all 'freed' RMIDs to become unused, i.e. no
530  * cachelines are tagged with those RMIDs. After this we can reuse them
531  * and know that the current set of active RMIDs is stable.
532  *
533  * Return %true or %false depending on whether stabilization needs to be
534  * reattempted.
535  *
536  * If we return %true then @nr_available is updated to indicate the
537  * number of RMIDs on the limbo list that have been queued for the
538  * minimum queue time (RMID_AVAILABLE), but whose data occupancy values
539  * are above __intel_cqm_threshold.
540  */
intel_cqm_rmid_stabilize(unsigned int * available)541 static bool intel_cqm_rmid_stabilize(unsigned int *available)
542 {
543 	struct cqm_rmid_entry *entry, *tmp;
544 
545 	lockdep_assert_held(&cache_mutex);
546 
547 	*available = 0;
548 	list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
549 		unsigned long min_queue_time;
550 		unsigned long now = jiffies;
551 
552 		/*
553 		 * We hold RMIDs placed into limbo for a minimum queue
554 		 * time. Before the minimum queue time has elapsed we do
555 		 * not recycle RMIDs.
556 		 *
557 		 * The reasoning is that until a sufficient time has
558 		 * passed since we stopped using an RMID, any RMID
559 		 * placed onto the limbo list will likely still have
560 		 * data tagged in the cache, which means we'll probably
561 		 * fail to recycle it anyway.
562 		 *
563 		 * We can save ourselves an expensive IPI by skipping
564 		 * any RMIDs that have not been queued for the minimum
565 		 * time.
566 		 */
567 		min_queue_time = entry->queue_time +
568 			msecs_to_jiffies(__rmid_queue_time_ms);
569 
570 		if (time_after(min_queue_time, now))
571 			break;
572 
573 		entry->state = RMID_AVAILABLE;
574 		(*available)++;
575 	}
576 
577 	/*
578 	 * Fast return if none of the RMIDs on the limbo list have been
579 	 * sitting on the queue for the minimum queue time.
580 	 */
581 	if (!*available)
582 		return false;
583 
584 	/*
585 	 * Test whether an RMID is free for each package.
586 	 */
587 	on_each_cpu_mask(&cqm_cpumask, intel_cqm_stable, NULL, true);
588 
589 	list_for_each_entry_safe(entry, tmp, &cqm_rmid_limbo_lru, list) {
590 		/*
591 		 * Exhausted all RMIDs that have waited min queue time.
592 		 */
593 		if (entry->state == RMID_YOUNG)
594 			break;
595 
596 		if (entry->state == RMID_DIRTY)
597 			continue;
598 
599 		list_del(&entry->list);	/* remove from limbo */
600 
601 		/*
602 		 * The rotation RMID gets priority if it's
603 		 * currently invalid. In which case, skip adding
604 		 * the RMID to the the free lru.
605 		 */
606 		if (!__rmid_valid(intel_cqm_rotation_rmid)) {
607 			intel_cqm_rotation_rmid = entry->rmid;
608 			continue;
609 		}
610 
611 		/*
612 		 * If we have groups waiting for RMIDs, hand
613 		 * them one now provided they don't conflict.
614 		 */
615 		if (intel_cqm_sched_in_event(entry->rmid))
616 			continue;
617 
618 		/*
619 		 * Otherwise place it onto the free list.
620 		 */
621 		list_add_tail(&entry->list, &cqm_rmid_free_lru);
622 	}
623 
624 
625 	return __rmid_valid(intel_cqm_rotation_rmid);
626 }
627 
628 /*
629  * Pick a victim group and move it to the tail of the group list.
630  * @next: The first group without an RMID
631  */
__intel_cqm_pick_and_rotate(struct perf_event * next)632 static void __intel_cqm_pick_and_rotate(struct perf_event *next)
633 {
634 	struct perf_event *rotor;
635 	u32 rmid;
636 
637 	lockdep_assert_held(&cache_mutex);
638 
639 	rotor = list_first_entry(&cache_groups, struct perf_event,
640 				 hw.cqm_groups_entry);
641 
642 	/*
643 	 * The group at the front of the list should always have a valid
644 	 * RMID. If it doesn't then no groups have RMIDs assigned and we
645 	 * don't need to rotate the list.
646 	 */
647 	if (next == rotor)
648 		return;
649 
650 	rmid = intel_cqm_xchg_rmid(rotor, INVALID_RMID);
651 	__put_rmid(rmid);
652 
653 	list_rotate_left(&cache_groups);
654 }
655 
656 /*
657  * Deallocate the RMIDs from any events that conflict with @event, and
658  * place them on the back of the group list.
659  */
intel_cqm_sched_out_conflicting_events(struct perf_event * event)660 static void intel_cqm_sched_out_conflicting_events(struct perf_event *event)
661 {
662 	struct perf_event *group, *g;
663 	u32 rmid;
664 
665 	lockdep_assert_held(&cache_mutex);
666 
667 	list_for_each_entry_safe(group, g, &cache_groups, hw.cqm_groups_entry) {
668 		if (group == event)
669 			continue;
670 
671 		rmid = group->hw.cqm_rmid;
672 
673 		/*
674 		 * Skip events that don't have a valid RMID.
675 		 */
676 		if (!__rmid_valid(rmid))
677 			continue;
678 
679 		/*
680 		 * No conflict? No problem! Leave the event alone.
681 		 */
682 		if (!__conflict_event(group, event))
683 			continue;
684 
685 		intel_cqm_xchg_rmid(group, INVALID_RMID);
686 		__put_rmid(rmid);
687 	}
688 }
689 
690 /*
691  * Attempt to rotate the groups and assign new RMIDs.
692  *
693  * We rotate for two reasons,
694  *   1. To handle the scheduling of conflicting events
695  *   2. To recycle RMIDs
696  *
697  * Rotating RMIDs is complicated because the hardware doesn't give us
698  * any clues.
699  *
700  * There's problems with the hardware interface; when you change the
701  * task:RMID map cachelines retain their 'old' tags, giving a skewed
702  * picture. In order to work around this, we must always keep one free
703  * RMID - intel_cqm_rotation_rmid.
704  *
705  * Rotation works by taking away an RMID from a group (the old RMID),
706  * and assigning the free RMID to another group (the new RMID). We must
707  * then wait for the old RMID to not be used (no cachelines tagged).
708  * This ensure that all cachelines are tagged with 'active' RMIDs. At
709  * this point we can start reading values for the new RMID and treat the
710  * old RMID as the free RMID for the next rotation.
711  *
712  * Return %true or %false depending on whether we did any rotating.
713  */
__intel_cqm_rmid_rotate(void)714 static bool __intel_cqm_rmid_rotate(void)
715 {
716 	struct perf_event *group, *start = NULL;
717 	unsigned int threshold_limit;
718 	unsigned int nr_needed = 0;
719 	unsigned int nr_available;
720 	bool rotated = false;
721 
722 	mutex_lock(&cache_mutex);
723 
724 again:
725 	/*
726 	 * Fast path through this function if there are no groups and no
727 	 * RMIDs that need cleaning.
728 	 */
729 	if (list_empty(&cache_groups) && list_empty(&cqm_rmid_limbo_lru))
730 		goto out;
731 
732 	list_for_each_entry(group, &cache_groups, hw.cqm_groups_entry) {
733 		if (!__rmid_valid(group->hw.cqm_rmid)) {
734 			if (!start)
735 				start = group;
736 			nr_needed++;
737 		}
738 	}
739 
740 	/*
741 	 * We have some event groups, but they all have RMIDs assigned
742 	 * and no RMIDs need cleaning.
743 	 */
744 	if (!nr_needed && list_empty(&cqm_rmid_limbo_lru))
745 		goto out;
746 
747 	if (!nr_needed)
748 		goto stabilize;
749 
750 	/*
751 	 * We have more event groups without RMIDs than available RMIDs,
752 	 * or we have event groups that conflict with the ones currently
753 	 * scheduled.
754 	 *
755 	 * We force deallocate the rmid of the group at the head of
756 	 * cache_groups. The first event group without an RMID then gets
757 	 * assigned intel_cqm_rotation_rmid. This ensures we always make
758 	 * forward progress.
759 	 *
760 	 * Rotate the cache_groups list so the previous head is now the
761 	 * tail.
762 	 */
763 	__intel_cqm_pick_and_rotate(start);
764 
765 	/*
766 	 * If the rotation is going to succeed, reduce the threshold so
767 	 * that we don't needlessly reuse dirty RMIDs.
768 	 */
769 	if (__rmid_valid(intel_cqm_rotation_rmid)) {
770 		intel_cqm_xchg_rmid(start, intel_cqm_rotation_rmid);
771 		intel_cqm_rotation_rmid = __get_rmid();
772 
773 		intel_cqm_sched_out_conflicting_events(start);
774 
775 		if (__intel_cqm_threshold)
776 			__intel_cqm_threshold--;
777 	}
778 
779 	rotated = true;
780 
781 stabilize:
782 	/*
783 	 * We now need to stablize the RMID we freed above (if any) to
784 	 * ensure that the next time we rotate we have an RMID with zero
785 	 * occupancy value.
786 	 *
787 	 * Alternatively, if we didn't need to perform any rotation,
788 	 * we'll have a bunch of RMIDs in limbo that need stabilizing.
789 	 */
790 	threshold_limit = __intel_cqm_max_threshold / cqm_l3_scale;
791 
792 	while (intel_cqm_rmid_stabilize(&nr_available) &&
793 	       __intel_cqm_threshold < threshold_limit) {
794 		unsigned int steal_limit;
795 
796 		/*
797 		 * Don't spin if nobody is actively waiting for an RMID,
798 		 * the rotation worker will be kicked as soon as an
799 		 * event needs an RMID anyway.
800 		 */
801 		if (!nr_needed)
802 			break;
803 
804 		/* Allow max 25% of RMIDs to be in limbo. */
805 		steal_limit = (cqm_max_rmid + 1) / 4;
806 
807 		/*
808 		 * We failed to stabilize any RMIDs so our rotation
809 		 * logic is now stuck. In order to make forward progress
810 		 * we have a few options:
811 		 *
812 		 *   1. rotate ("steal") another RMID
813 		 *   2. increase the threshold
814 		 *   3. do nothing
815 		 *
816 		 * We do both of 1. and 2. until we hit the steal limit.
817 		 *
818 		 * The steal limit prevents all RMIDs ending up on the
819 		 * limbo list. This can happen if every RMID has a
820 		 * non-zero occupancy above threshold_limit, and the
821 		 * occupancy values aren't dropping fast enough.
822 		 *
823 		 * Note that there is prioritisation at work here - we'd
824 		 * rather increase the number of RMIDs on the limbo list
825 		 * than increase the threshold, because increasing the
826 		 * threshold skews the event data (because we reuse
827 		 * dirty RMIDs) - threshold bumps are a last resort.
828 		 */
829 		if (nr_available < steal_limit)
830 			goto again;
831 
832 		__intel_cqm_threshold++;
833 	}
834 
835 out:
836 	mutex_unlock(&cache_mutex);
837 	return rotated;
838 }
839 
840 static void intel_cqm_rmid_rotate(struct work_struct *work);
841 
842 static DECLARE_DELAYED_WORK(intel_cqm_rmid_work, intel_cqm_rmid_rotate);
843 
844 static struct pmu intel_cqm_pmu;
845 
intel_cqm_rmid_rotate(struct work_struct * work)846 static void intel_cqm_rmid_rotate(struct work_struct *work)
847 {
848 	unsigned long delay;
849 
850 	__intel_cqm_rmid_rotate();
851 
852 	delay = msecs_to_jiffies(intel_cqm_pmu.hrtimer_interval_ms);
853 	schedule_delayed_work(&intel_cqm_rmid_work, delay);
854 }
855 
856 /*
857  * Find a group and setup RMID.
858  *
859  * If we're part of a group, we use the group's RMID.
860  */
intel_cqm_setup_event(struct perf_event * event,struct perf_event ** group)861 static void intel_cqm_setup_event(struct perf_event *event,
862 				  struct perf_event **group)
863 {
864 	struct perf_event *iter;
865 	bool conflict = false;
866 	u32 rmid;
867 
868 	event->hw.is_group_event = false;
869 	list_for_each_entry(iter, &cache_groups, hw.cqm_groups_entry) {
870 		rmid = iter->hw.cqm_rmid;
871 
872 		if (__match_event(iter, event)) {
873 			/* All tasks in a group share an RMID */
874 			event->hw.cqm_rmid = rmid;
875 			*group = iter;
876 			return;
877 		}
878 
879 		/*
880 		 * We only care about conflicts for events that are
881 		 * actually scheduled in (and hence have a valid RMID).
882 		 */
883 		if (__conflict_event(iter, event) && __rmid_valid(rmid))
884 			conflict = true;
885 	}
886 
887 	if (conflict)
888 		rmid = INVALID_RMID;
889 	else
890 		rmid = __get_rmid();
891 
892 	event->hw.cqm_rmid = rmid;
893 }
894 
intel_cqm_event_read(struct perf_event * event)895 static void intel_cqm_event_read(struct perf_event *event)
896 {
897 	unsigned long flags;
898 	u32 rmid;
899 	u64 val;
900 
901 	/*
902 	 * Task events are handled by intel_cqm_event_count().
903 	 */
904 	if (event->cpu == -1)
905 		return;
906 
907 	raw_spin_lock_irqsave(&cache_lock, flags);
908 	rmid = event->hw.cqm_rmid;
909 
910 	if (!__rmid_valid(rmid))
911 		goto out;
912 
913 	val = __rmid_read(rmid);
914 
915 	/*
916 	 * Ignore this reading on error states and do not update the value.
917 	 */
918 	if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
919 		goto out;
920 
921 	local64_set(&event->count, val);
922 out:
923 	raw_spin_unlock_irqrestore(&cache_lock, flags);
924 }
925 
__intel_cqm_event_count(void * info)926 static void __intel_cqm_event_count(void *info)
927 {
928 	struct rmid_read *rr = info;
929 	u64 val;
930 
931 	val = __rmid_read(rr->rmid);
932 
933 	if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
934 		return;
935 
936 	atomic64_add(val, &rr->value);
937 }
938 
cqm_group_leader(struct perf_event * event)939 static inline bool cqm_group_leader(struct perf_event *event)
940 {
941 	return !list_empty(&event->hw.cqm_groups_entry);
942 }
943 
intel_cqm_event_count(struct perf_event * event)944 static u64 intel_cqm_event_count(struct perf_event *event)
945 {
946 	unsigned long flags;
947 	struct rmid_read rr = {
948 		.value = ATOMIC64_INIT(0),
949 	};
950 
951 	/*
952 	 * We only need to worry about task events. System-wide events
953 	 * are handled like usual, i.e. entirely with
954 	 * intel_cqm_event_read().
955 	 */
956 	if (event->cpu != -1)
957 		return __perf_event_count(event);
958 
959 	/*
960 	 * Only the group leader gets to report values except in case of
961 	 * multiple events in the same group, we still need to read the
962 	 * other events.This stops us
963 	 * reporting duplicate values to userspace, and gives us a clear
964 	 * rule for which task gets to report the values.
965 	 *
966 	 * Note that it is impossible to attribute these values to
967 	 * specific packages - we forfeit that ability when we create
968 	 * task events.
969 	 */
970 	if (!cqm_group_leader(event) && !event->hw.is_group_event)
971 		return 0;
972 
973 	/*
974 	 * Getting up-to-date values requires an SMP IPI which is not
975 	 * possible if we're being called in interrupt context. Return
976 	 * the cached values instead.
977 	 */
978 	if (unlikely(in_interrupt()))
979 		goto out;
980 
981 	/*
982 	 * Notice that we don't perform the reading of an RMID
983 	 * atomically, because we can't hold a spin lock across the
984 	 * IPIs.
985 	 *
986 	 * Speculatively perform the read, since @event might be
987 	 * assigned a different (possibly invalid) RMID while we're
988 	 * busying performing the IPI calls. It's therefore necessary to
989 	 * check @event's RMID afterwards, and if it has changed,
990 	 * discard the result of the read.
991 	 */
992 	rr.rmid = ACCESS_ONCE(event->hw.cqm_rmid);
993 
994 	if (!__rmid_valid(rr.rmid))
995 		goto out;
996 
997 	on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count, &rr, 1);
998 
999 	raw_spin_lock_irqsave(&cache_lock, flags);
1000 	if (event->hw.cqm_rmid == rr.rmid)
1001 		local64_set(&event->count, atomic64_read(&rr.value));
1002 	raw_spin_unlock_irqrestore(&cache_lock, flags);
1003 out:
1004 	return __perf_event_count(event);
1005 }
1006 
intel_cqm_event_start(struct perf_event * event,int mode)1007 static void intel_cqm_event_start(struct perf_event *event, int mode)
1008 {
1009 	struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
1010 	u32 rmid = event->hw.cqm_rmid;
1011 
1012 	if (!(event->hw.cqm_state & PERF_HES_STOPPED))
1013 		return;
1014 
1015 	event->hw.cqm_state &= ~PERF_HES_STOPPED;
1016 
1017 	if (state->rmid_usecnt++) {
1018 		if (!WARN_ON_ONCE(state->rmid != rmid))
1019 			return;
1020 	} else {
1021 		WARN_ON_ONCE(state->rmid);
1022 	}
1023 
1024 	state->rmid = rmid;
1025 	wrmsr(MSR_IA32_PQR_ASSOC, rmid, state->closid);
1026 }
1027 
intel_cqm_event_stop(struct perf_event * event,int mode)1028 static void intel_cqm_event_stop(struct perf_event *event, int mode)
1029 {
1030 	struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
1031 
1032 	if (event->hw.cqm_state & PERF_HES_STOPPED)
1033 		return;
1034 
1035 	event->hw.cqm_state |= PERF_HES_STOPPED;
1036 
1037 	intel_cqm_event_read(event);
1038 
1039 	if (!--state->rmid_usecnt) {
1040 		state->rmid = 0;
1041 		wrmsr(MSR_IA32_PQR_ASSOC, 0, state->closid);
1042 	} else {
1043 		WARN_ON_ONCE(!state->rmid);
1044 	}
1045 }
1046 
intel_cqm_event_add(struct perf_event * event,int mode)1047 static int intel_cqm_event_add(struct perf_event *event, int mode)
1048 {
1049 	unsigned long flags;
1050 	u32 rmid;
1051 
1052 	raw_spin_lock_irqsave(&cache_lock, flags);
1053 
1054 	event->hw.cqm_state = PERF_HES_STOPPED;
1055 	rmid = event->hw.cqm_rmid;
1056 
1057 	if (__rmid_valid(rmid) && (mode & PERF_EF_START))
1058 		intel_cqm_event_start(event, mode);
1059 
1060 	raw_spin_unlock_irqrestore(&cache_lock, flags);
1061 
1062 	return 0;
1063 }
1064 
intel_cqm_event_destroy(struct perf_event * event)1065 static void intel_cqm_event_destroy(struct perf_event *event)
1066 {
1067 	struct perf_event *group_other = NULL;
1068 
1069 	mutex_lock(&cache_mutex);
1070 
1071 	/*
1072 	 * If there's another event in this group...
1073 	 */
1074 	if (!list_empty(&event->hw.cqm_group_entry)) {
1075 		group_other = list_first_entry(&event->hw.cqm_group_entry,
1076 					       struct perf_event,
1077 					       hw.cqm_group_entry);
1078 		list_del(&event->hw.cqm_group_entry);
1079 	}
1080 
1081 	/*
1082 	 * And we're the group leader..
1083 	 */
1084 	if (cqm_group_leader(event)) {
1085 		/*
1086 		 * If there was a group_other, make that leader, otherwise
1087 		 * destroy the group and return the RMID.
1088 		 */
1089 		if (group_other) {
1090 			list_replace(&event->hw.cqm_groups_entry,
1091 				     &group_other->hw.cqm_groups_entry);
1092 		} else {
1093 			u32 rmid = event->hw.cqm_rmid;
1094 
1095 			if (__rmid_valid(rmid))
1096 				__put_rmid(rmid);
1097 			list_del(&event->hw.cqm_groups_entry);
1098 		}
1099 	}
1100 
1101 	mutex_unlock(&cache_mutex);
1102 }
1103 
intel_cqm_event_init(struct perf_event * event)1104 static int intel_cqm_event_init(struct perf_event *event)
1105 {
1106 	struct perf_event *group = NULL;
1107 	bool rotate = false;
1108 
1109 	if (event->attr.type != intel_cqm_pmu.type)
1110 		return -ENOENT;
1111 
1112 	if (event->attr.config & ~QOS_EVENT_MASK)
1113 		return -EINVAL;
1114 
1115 	/* unsupported modes and filters */
1116 	if (event->attr.exclude_user   ||
1117 	    event->attr.exclude_kernel ||
1118 	    event->attr.exclude_hv     ||
1119 	    event->attr.exclude_idle   ||
1120 	    event->attr.exclude_host   ||
1121 	    event->attr.exclude_guest  ||
1122 	    event->attr.sample_period) /* no sampling */
1123 		return -EINVAL;
1124 
1125 	INIT_LIST_HEAD(&event->hw.cqm_group_entry);
1126 	INIT_LIST_HEAD(&event->hw.cqm_groups_entry);
1127 
1128 	event->destroy = intel_cqm_event_destroy;
1129 
1130 	mutex_lock(&cache_mutex);
1131 
1132 	/* Will also set rmid */
1133 	intel_cqm_setup_event(event, &group);
1134 
1135 	if (group) {
1136 		list_add_tail(&event->hw.cqm_group_entry,
1137 			      &group->hw.cqm_group_entry);
1138 	} else {
1139 		list_add_tail(&event->hw.cqm_groups_entry,
1140 			      &cache_groups);
1141 
1142 		/*
1143 		 * All RMIDs are either in use or have recently been
1144 		 * used. Kick the rotation worker to clean/free some.
1145 		 *
1146 		 * We only do this for the group leader, rather than for
1147 		 * every event in a group to save on needless work.
1148 		 */
1149 		if (!__rmid_valid(event->hw.cqm_rmid))
1150 			rotate = true;
1151 	}
1152 
1153 	mutex_unlock(&cache_mutex);
1154 
1155 	if (rotate)
1156 		schedule_delayed_work(&intel_cqm_rmid_work, 0);
1157 
1158 	return 0;
1159 }
1160 
1161 EVENT_ATTR_STR(llc_occupancy, intel_cqm_llc, "event=0x01");
1162 EVENT_ATTR_STR(llc_occupancy.per-pkg, intel_cqm_llc_pkg, "1");
1163 EVENT_ATTR_STR(llc_occupancy.unit, intel_cqm_llc_unit, "Bytes");
1164 EVENT_ATTR_STR(llc_occupancy.scale, intel_cqm_llc_scale, NULL);
1165 EVENT_ATTR_STR(llc_occupancy.snapshot, intel_cqm_llc_snapshot, "1");
1166 
1167 static struct attribute *intel_cqm_events_attr[] = {
1168 	EVENT_PTR(intel_cqm_llc),
1169 	EVENT_PTR(intel_cqm_llc_pkg),
1170 	EVENT_PTR(intel_cqm_llc_unit),
1171 	EVENT_PTR(intel_cqm_llc_scale),
1172 	EVENT_PTR(intel_cqm_llc_snapshot),
1173 	NULL,
1174 };
1175 
1176 static struct attribute_group intel_cqm_events_group = {
1177 	.name = "events",
1178 	.attrs = intel_cqm_events_attr,
1179 };
1180 
1181 PMU_FORMAT_ATTR(event, "config:0-7");
1182 static struct attribute *intel_cqm_formats_attr[] = {
1183 	&format_attr_event.attr,
1184 	NULL,
1185 };
1186 
1187 static struct attribute_group intel_cqm_format_group = {
1188 	.name = "format",
1189 	.attrs = intel_cqm_formats_attr,
1190 };
1191 
1192 static ssize_t
max_recycle_threshold_show(struct device * dev,struct device_attribute * attr,char * page)1193 max_recycle_threshold_show(struct device *dev, struct device_attribute *attr,
1194 			   char *page)
1195 {
1196 	ssize_t rv;
1197 
1198 	mutex_lock(&cache_mutex);
1199 	rv = snprintf(page, PAGE_SIZE-1, "%u\n", __intel_cqm_max_threshold);
1200 	mutex_unlock(&cache_mutex);
1201 
1202 	return rv;
1203 }
1204 
1205 static ssize_t
max_recycle_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1206 max_recycle_threshold_store(struct device *dev,
1207 			    struct device_attribute *attr,
1208 			    const char *buf, size_t count)
1209 {
1210 	unsigned int bytes, cachelines;
1211 	int ret;
1212 
1213 	ret = kstrtouint(buf, 0, &bytes);
1214 	if (ret)
1215 		return ret;
1216 
1217 	mutex_lock(&cache_mutex);
1218 
1219 	__intel_cqm_max_threshold = bytes;
1220 	cachelines = bytes / cqm_l3_scale;
1221 
1222 	/*
1223 	 * The new maximum takes effect immediately.
1224 	 */
1225 	if (__intel_cqm_threshold > cachelines)
1226 		__intel_cqm_threshold = cachelines;
1227 
1228 	mutex_unlock(&cache_mutex);
1229 
1230 	return count;
1231 }
1232 
1233 static DEVICE_ATTR_RW(max_recycle_threshold);
1234 
1235 static struct attribute *intel_cqm_attrs[] = {
1236 	&dev_attr_max_recycle_threshold.attr,
1237 	NULL,
1238 };
1239 
1240 static const struct attribute_group intel_cqm_group = {
1241 	.attrs = intel_cqm_attrs,
1242 };
1243 
1244 static const struct attribute_group *intel_cqm_attr_groups[] = {
1245 	&intel_cqm_events_group,
1246 	&intel_cqm_format_group,
1247 	&intel_cqm_group,
1248 	NULL,
1249 };
1250 
1251 static struct pmu intel_cqm_pmu = {
1252 	.hrtimer_interval_ms = RMID_DEFAULT_QUEUE_TIME,
1253 	.attr_groups	     = intel_cqm_attr_groups,
1254 	.task_ctx_nr	     = perf_sw_context,
1255 	.event_init	     = intel_cqm_event_init,
1256 	.add		     = intel_cqm_event_add,
1257 	.del		     = intel_cqm_event_stop,
1258 	.start		     = intel_cqm_event_start,
1259 	.stop		     = intel_cqm_event_stop,
1260 	.read		     = intel_cqm_event_read,
1261 	.count		     = intel_cqm_event_count,
1262 };
1263 
cqm_pick_event_reader(int cpu)1264 static inline void cqm_pick_event_reader(int cpu)
1265 {
1266 	int phys_id = topology_physical_package_id(cpu);
1267 	int i;
1268 
1269 	for_each_cpu(i, &cqm_cpumask) {
1270 		if (phys_id == topology_physical_package_id(i))
1271 			return;	/* already got reader for this socket */
1272 	}
1273 
1274 	cpumask_set_cpu(cpu, &cqm_cpumask);
1275 }
1276 
intel_cqm_cpu_starting(unsigned int cpu)1277 static void intel_cqm_cpu_starting(unsigned int cpu)
1278 {
1279 	struct intel_pqr_state *state = &per_cpu(pqr_state, cpu);
1280 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1281 
1282 	state->rmid = 0;
1283 	state->closid = 0;
1284 	state->rmid_usecnt = 0;
1285 
1286 	WARN_ON(c->x86_cache_max_rmid != cqm_max_rmid);
1287 	WARN_ON(c->x86_cache_occ_scale != cqm_l3_scale);
1288 }
1289 
intel_cqm_cpu_exit(unsigned int cpu)1290 static void intel_cqm_cpu_exit(unsigned int cpu)
1291 {
1292 	int phys_id = topology_physical_package_id(cpu);
1293 	int i;
1294 
1295 	/*
1296 	 * Is @cpu a designated cqm reader?
1297 	 */
1298 	if (!cpumask_test_and_clear_cpu(cpu, &cqm_cpumask))
1299 		return;
1300 
1301 	for_each_online_cpu(i) {
1302 		if (i == cpu)
1303 			continue;
1304 
1305 		if (phys_id == topology_physical_package_id(i)) {
1306 			cpumask_set_cpu(i, &cqm_cpumask);
1307 			break;
1308 		}
1309 	}
1310 }
1311 
intel_cqm_cpu_notifier(struct notifier_block * nb,unsigned long action,void * hcpu)1312 static int intel_cqm_cpu_notifier(struct notifier_block *nb,
1313 				  unsigned long action, void *hcpu)
1314 {
1315 	unsigned int cpu  = (unsigned long)hcpu;
1316 
1317 	switch (action & ~CPU_TASKS_FROZEN) {
1318 	case CPU_DOWN_PREPARE:
1319 		intel_cqm_cpu_exit(cpu);
1320 		break;
1321 	case CPU_STARTING:
1322 		intel_cqm_cpu_starting(cpu);
1323 		cqm_pick_event_reader(cpu);
1324 		break;
1325 	}
1326 
1327 	return NOTIFY_OK;
1328 }
1329 
1330 static const struct x86_cpu_id intel_cqm_match[] = {
1331 	{ .vendor = X86_VENDOR_INTEL, .feature = X86_FEATURE_CQM_OCCUP_LLC },
1332 	{}
1333 };
1334 
intel_cqm_init(void)1335 static int __init intel_cqm_init(void)
1336 {
1337 	char *str = NULL, scale[20];
1338 	int i, cpu, ret;
1339 
1340 	if (!x86_match_cpu(intel_cqm_match))
1341 		return -ENODEV;
1342 
1343 	cqm_l3_scale = boot_cpu_data.x86_cache_occ_scale;
1344 
1345 	/*
1346 	 * It's possible that not all resources support the same number
1347 	 * of RMIDs. Instead of making scheduling much more complicated
1348 	 * (where we have to match a task's RMID to a cpu that supports
1349 	 * that many RMIDs) just find the minimum RMIDs supported across
1350 	 * all cpus.
1351 	 *
1352 	 * Also, check that the scales match on all cpus.
1353 	 */
1354 	cpu_notifier_register_begin();
1355 
1356 	for_each_online_cpu(cpu) {
1357 		struct cpuinfo_x86 *c = &cpu_data(cpu);
1358 
1359 		if (c->x86_cache_max_rmid < cqm_max_rmid)
1360 			cqm_max_rmid = c->x86_cache_max_rmid;
1361 
1362 		if (c->x86_cache_occ_scale != cqm_l3_scale) {
1363 			pr_err("Multiple LLC scale values, disabling\n");
1364 			ret = -EINVAL;
1365 			goto out;
1366 		}
1367 	}
1368 
1369 	/*
1370 	 * A reasonable upper limit on the max threshold is the number
1371 	 * of lines tagged per RMID if all RMIDs have the same number of
1372 	 * lines tagged in the LLC.
1373 	 *
1374 	 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
1375 	 */
1376 	__intel_cqm_max_threshold =
1377 		boot_cpu_data.x86_cache_size * 1024 / (cqm_max_rmid + 1);
1378 
1379 	snprintf(scale, sizeof(scale), "%u", cqm_l3_scale);
1380 	str = kstrdup(scale, GFP_KERNEL);
1381 	if (!str) {
1382 		ret = -ENOMEM;
1383 		goto out;
1384 	}
1385 
1386 	event_attr_intel_cqm_llc_scale.event_str = str;
1387 
1388 	ret = intel_cqm_setup_rmid_cache();
1389 	if (ret)
1390 		goto out;
1391 
1392 	for_each_online_cpu(i) {
1393 		intel_cqm_cpu_starting(i);
1394 		cqm_pick_event_reader(i);
1395 	}
1396 
1397 	ret = perf_pmu_register(&intel_cqm_pmu, "intel_cqm", -1);
1398 	if (ret) {
1399 		pr_err("Intel CQM perf registration failed: %d\n", ret);
1400 		goto out;
1401 	}
1402 
1403 	pr_info("Intel CQM monitoring enabled\n");
1404 
1405 	/*
1406 	 * Register the hot cpu notifier once we are sure cqm
1407 	 * is enabled to avoid notifier leak.
1408 	 */
1409 	__perf_cpu_notifier(intel_cqm_cpu_notifier);
1410 out:
1411 	cpu_notifier_register_done();
1412 	if (ret) {
1413 		kfree(str);
1414 		cqm_cleanup();
1415 	}
1416 
1417 	return ret;
1418 }
1419 device_initcall(intel_cqm_init);
1420