1 /**********************************************************************
2 * Author: Cavium, Inc.
3 *
4 * Contact: support@cavium.com
5 * Please include "LiquidIO" in the subject.
6 *
7 * Copyright (c) 2003-2015 Cavium, Inc.
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT. See the GNU General Public License for more
17 * details.
18 *
19 * This file may also be available under a different license from Cavium.
20 * Contact Cavium, Inc. for more information
21 **********************************************************************/
22 #include <linux/version.h>
23 #include <linux/types.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/pci.h>
27 #include <linux/kthread.h>
28 #include <linux/netdevice.h>
29 #include "octeon_config.h"
30 #include "liquidio_common.h"
31 #include "octeon_droq.h"
32 #include "octeon_iq.h"
33 #include "response_manager.h"
34 #include "octeon_device.h"
35 #include "octeon_nic.h"
36 #include "octeon_main.h"
37 #include "octeon_network.h"
38 #include "cn66xx_regs.h"
39 #include "cn66xx_device.h"
40 #include "liquidio_image.h"
41 #include "octeon_mem_ops.h"
42
lio_cn6xxx_soft_reset(struct octeon_device * oct)43 int lio_cn6xxx_soft_reset(struct octeon_device *oct)
44 {
45 octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF);
46
47 dev_dbg(&oct->pci_dev->dev, "BIST enabled for soft reset\n");
48
49 lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_BIST);
50 octeon_write_csr64(oct, CN6XXX_SLI_SCRATCH1, 0x1234ULL);
51
52 lio_pci_readq(oct, CN6XXX_CIU_SOFT_RST);
53 lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_RST);
54
55 /* make sure that the reset is written before starting timer */
56 mmiowb();
57
58 /* Wait for 10ms as Octeon resets. */
59 mdelay(100);
60
61 if (octeon_read_csr64(oct, CN6XXX_SLI_SCRATCH1) == 0x1234ULL) {
62 dev_err(&oct->pci_dev->dev, "Soft reset failed\n");
63 return 1;
64 }
65
66 dev_dbg(&oct->pci_dev->dev, "Reset completed\n");
67 octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF);
68
69 return 0;
70 }
71
lio_cn6xxx_enable_error_reporting(struct octeon_device * oct)72 void lio_cn6xxx_enable_error_reporting(struct octeon_device *oct)
73 {
74 u32 val;
75
76 pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
77 if (val & 0x000f0000) {
78 dev_err(&oct->pci_dev->dev, "PCI-E Link error detected: 0x%08x\n",
79 val & 0x000f0000);
80 }
81
82 val |= 0xf; /* Enable Link error reporting */
83
84 dev_dbg(&oct->pci_dev->dev, "Enabling PCI-E error reporting..\n");
85 pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
86 }
87
lio_cn6xxx_setup_pcie_mps(struct octeon_device * oct,enum octeon_pcie_mps mps)88 void lio_cn6xxx_setup_pcie_mps(struct octeon_device *oct,
89 enum octeon_pcie_mps mps)
90 {
91 u32 val;
92 u64 r64;
93
94 /* Read config register for MPS */
95 pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
96
97 if (mps == PCIE_MPS_DEFAULT) {
98 mps = ((val & (0x7 << 5)) >> 5);
99 } else {
100 val &= ~(0x7 << 5); /* Turn off any MPS bits */
101 val |= (mps << 5); /* Set MPS */
102 pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
103 }
104
105 /* Set MPS in DPI_SLI_PRT0_CFG to the same value. */
106 r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
107 r64 |= (mps << 4);
108 lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
109 }
110
lio_cn6xxx_setup_pcie_mrrs(struct octeon_device * oct,enum octeon_pcie_mrrs mrrs)111 void lio_cn6xxx_setup_pcie_mrrs(struct octeon_device *oct,
112 enum octeon_pcie_mrrs mrrs)
113 {
114 u32 val;
115 u64 r64;
116
117 /* Read config register for MRRS */
118 pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
119
120 if (mrrs == PCIE_MRRS_DEFAULT) {
121 mrrs = ((val & (0x7 << 12)) >> 12);
122 } else {
123 val &= ~(0x7 << 12); /* Turn off any MRRS bits */
124 val |= (mrrs << 12); /* Set MRRS */
125 pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
126 }
127
128 /* Set MRRS in SLI_S2M_PORT0_CTL to the same value. */
129 r64 = octeon_read_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port));
130 r64 |= mrrs;
131 octeon_write_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port), r64);
132
133 /* Set MRRS in DPI_SLI_PRT0_CFG to the same value. */
134 r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
135 r64 |= mrrs;
136 lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
137 }
138
lio_cn6xxx_coprocessor_clock(struct octeon_device * oct)139 u32 lio_cn6xxx_coprocessor_clock(struct octeon_device *oct)
140 {
141 /* Bits 29:24 of MIO_RST_BOOT holds the ref. clock multiplier
142 * for SLI.
143 */
144 return ((lio_pci_readq(oct, CN6XXX_MIO_RST_BOOT) >> 24) & 0x3f) * 50;
145 }
146
lio_cn6xxx_get_oq_ticks(struct octeon_device * oct,u32 time_intr_in_us)147 u32 lio_cn6xxx_get_oq_ticks(struct octeon_device *oct,
148 u32 time_intr_in_us)
149 {
150 /* This gives the SLI clock per microsec */
151 u32 oqticks_per_us = lio_cn6xxx_coprocessor_clock(oct);
152
153 /* core clock per us / oq ticks will be fractional. TO avoid that
154 * we use the method below.
155 */
156
157 /* This gives the clock cycles per millisecond */
158 oqticks_per_us *= 1000;
159
160 /* This gives the oq ticks (1024 core clock cycles) per millisecond */
161 oqticks_per_us /= 1024;
162
163 /* time_intr is in microseconds. The next 2 steps gives the oq ticks
164 * corressponding to time_intr.
165 */
166 oqticks_per_us *= time_intr_in_us;
167 oqticks_per_us /= 1000;
168
169 return oqticks_per_us;
170 }
171
lio_cn6xxx_setup_global_input_regs(struct octeon_device * oct)172 void lio_cn6xxx_setup_global_input_regs(struct octeon_device *oct)
173 {
174 /* Select Round-Robin Arb, ES, RO, NS for Input Queues */
175 octeon_write_csr(oct, CN6XXX_SLI_PKT_INPUT_CONTROL,
176 CN6XXX_INPUT_CTL_MASK);
177
178 /* Instruction Read Size - Max 4 instructions per PCIE Read */
179 octeon_write_csr64(oct, CN6XXX_SLI_PKT_INSTR_RD_SIZE,
180 0xFFFFFFFFFFFFFFFFULL);
181
182 /* Select PCIE Port for all Input rings. */
183 octeon_write_csr64(oct, CN6XXX_SLI_IN_PCIE_PORT,
184 (oct->pcie_port * 0x5555555555555555ULL));
185 }
186
lio_cn66xx_setup_pkt_ctl_regs(struct octeon_device * oct)187 static void lio_cn66xx_setup_pkt_ctl_regs(struct octeon_device *oct)
188 {
189 u64 pktctl;
190
191 struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
192
193 pktctl = octeon_read_csr64(oct, CN6XXX_SLI_PKT_CTL);
194
195 /* 66XX SPECIFIC */
196 if (CFG_GET_OQ_MAX_Q(cn6xxx->conf) <= 4)
197 /* Disable RING_EN if only upto 4 rings are used. */
198 pktctl &= ~(1 << 4);
199 else
200 pktctl |= (1 << 4);
201
202 if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf))
203 pktctl |= 0xF;
204 else
205 /* Disable per-port backpressure. */
206 pktctl &= ~0xF;
207 octeon_write_csr64(oct, CN6XXX_SLI_PKT_CTL, pktctl);
208 }
209
lio_cn6xxx_setup_global_output_regs(struct octeon_device * oct)210 void lio_cn6xxx_setup_global_output_regs(struct octeon_device *oct)
211 {
212 u32 time_threshold;
213 struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
214
215 /* / Select PCI-E Port for all Output queues */
216 octeon_write_csr64(oct, CN6XXX_SLI_PKT_PCIE_PORT64,
217 (oct->pcie_port * 0x5555555555555555ULL));
218
219 if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf)) {
220 octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 32);
221 } else {
222 /* / Set Output queue watermark to 0 to disable backpressure */
223 octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 0);
224 }
225
226 /* / Select Info Ptr for length & data */
227 octeon_write_csr(oct, CN6XXX_SLI_PKT_IPTR, 0xFFFFFFFF);
228
229 /* / Select Packet count instead of bytes for SLI_PKTi_CNTS[CNT] */
230 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_BMODE, 0);
231
232 /* / Select ES,RO,NS setting from register for Output Queue Packet
233 * Address
234 */
235 octeon_write_csr(oct, CN6XXX_SLI_PKT_DPADDR, 0xFFFFFFFF);
236
237 /* No Relaxed Ordering, No Snoop, 64-bit swap for Output
238 * Queue ScatterList
239 */
240 octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_ROR, 0);
241 octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_NS, 0);
242
243 /* / ENDIAN_SPECIFIC CHANGES - 0 works for LE. */
244 #ifdef __BIG_ENDIAN_BITFIELD
245 octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64,
246 0x5555555555555555ULL);
247 #else
248 octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64, 0ULL);
249 #endif
250
251 /* / No Relaxed Ordering, No Snoop, 64-bit swap for Output Queue Data */
252 octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_ROR, 0);
253 octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_NS, 0);
254 octeon_write_csr64(oct, CN6XXX_SLI_PKT_DATA_OUT_ES64,
255 0x5555555555555555ULL);
256
257 /* / Set up interrupt packet and time threshold */
258 octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_PKTS,
259 (u32)CFG_GET_OQ_INTR_PKT(cn6xxx->conf));
260 time_threshold =
261 lio_cn6xxx_get_oq_ticks(oct, (u32)
262 CFG_GET_OQ_INTR_TIME(cn6xxx->conf));
263
264 octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_TIME, time_threshold);
265 }
266
lio_cn6xxx_setup_device_regs(struct octeon_device * oct)267 static int lio_cn6xxx_setup_device_regs(struct octeon_device *oct)
268 {
269 lio_cn6xxx_setup_pcie_mps(oct, PCIE_MPS_DEFAULT);
270 lio_cn6xxx_setup_pcie_mrrs(oct, PCIE_MRRS_512B);
271 lio_cn6xxx_enable_error_reporting(oct);
272
273 lio_cn6xxx_setup_global_input_regs(oct);
274 lio_cn66xx_setup_pkt_ctl_regs(oct);
275 lio_cn6xxx_setup_global_output_regs(oct);
276
277 /* Default error timeout value should be 0x200000 to avoid host hang
278 * when reads invalid register
279 */
280 octeon_write_csr64(oct, CN6XXX_SLI_WINDOW_CTL, 0x200000ULL);
281 return 0;
282 }
283
lio_cn6xxx_setup_iq_regs(struct octeon_device * oct,u32 iq_no)284 void lio_cn6xxx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
285 {
286 struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
287
288 /* Disable Packet-by-Packet mode; No Parse Mode or Skip length */
289 octeon_write_csr64(oct, CN6XXX_SLI_IQ_PKT_INSTR_HDR64(iq_no), 0);
290
291 /* Write the start of the input queue's ring and its size */
292 octeon_write_csr64(oct, CN6XXX_SLI_IQ_BASE_ADDR64(iq_no),
293 iq->base_addr_dma);
294 octeon_write_csr(oct, CN6XXX_SLI_IQ_SIZE(iq_no), iq->max_count);
295
296 /* Remember the doorbell & instruction count register addr for this
297 * queue
298 */
299 iq->doorbell_reg = oct->mmio[0].hw_addr + CN6XXX_SLI_IQ_DOORBELL(iq_no);
300 iq->inst_cnt_reg = oct->mmio[0].hw_addr
301 + CN6XXX_SLI_IQ_INSTR_COUNT(iq_no);
302 dev_dbg(&oct->pci_dev->dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n",
303 iq_no, iq->doorbell_reg, iq->inst_cnt_reg);
304
305 /* Store the current instruction counter
306 * (used in flush_iq calculation)
307 */
308 iq->reset_instr_cnt = readl(iq->inst_cnt_reg);
309 }
310
lio_cn66xx_setup_iq_regs(struct octeon_device * oct,u32 iq_no)311 static void lio_cn66xx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
312 {
313 lio_cn6xxx_setup_iq_regs(oct, iq_no);
314
315 /* Backpressure for this queue - WMARK set to all F's. This effectively
316 * disables the backpressure mechanism.
317 */
318 octeon_write_csr64(oct, CN66XX_SLI_IQ_BP64(iq_no),
319 (0xFFFFFFFFULL << 32));
320 }
321
lio_cn6xxx_setup_oq_regs(struct octeon_device * oct,u32 oq_no)322 void lio_cn6xxx_setup_oq_regs(struct octeon_device *oct, u32 oq_no)
323 {
324 u32 intr;
325 struct octeon_droq *droq = oct->droq[oq_no];
326
327 octeon_write_csr64(oct, CN6XXX_SLI_OQ_BASE_ADDR64(oq_no),
328 droq->desc_ring_dma);
329 octeon_write_csr(oct, CN6XXX_SLI_OQ_SIZE(oq_no), droq->max_count);
330
331 octeon_write_csr(oct, CN6XXX_SLI_OQ_BUFF_INFO_SIZE(oq_no),
332 (droq->buffer_size | (OCT_RH_SIZE << 16)));
333
334 /* Get the mapped address of the pkt_sent and pkts_credit regs */
335 droq->pkts_sent_reg =
336 oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_SENT(oq_no);
337 droq->pkts_credit_reg =
338 oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_CREDIT(oq_no);
339
340 /* Enable this output queue to generate Packet Timer Interrupt */
341 intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB);
342 intr |= (1 << oq_no);
343 octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB, intr);
344
345 /* Enable this output queue to generate Packet Timer Interrupt */
346 intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB);
347 intr |= (1 << oq_no);
348 octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB, intr);
349 }
350
lio_cn6xxx_enable_io_queues(struct octeon_device * oct)351 void lio_cn6xxx_enable_io_queues(struct octeon_device *oct)
352 {
353 u32 mask;
354
355 mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE);
356 mask |= oct->io_qmask.iq64B;
357 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE, mask);
358
359 mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB);
360 mask |= oct->io_qmask.iq;
361 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask);
362
363 mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
364 mask |= oct->io_qmask.oq;
365 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask);
366 }
367
lio_cn6xxx_disable_io_queues(struct octeon_device * oct)368 void lio_cn6xxx_disable_io_queues(struct octeon_device *oct)
369 {
370 u32 mask, i, loop = HZ;
371 u32 d32;
372
373 /* Reset the Enable bits for Input Queues. */
374 mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB);
375 mask ^= oct->io_qmask.iq;
376 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask);
377
378 /* Wait until hardware indicates that the queues are out of reset. */
379 mask = oct->io_qmask.iq;
380 d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ);
381 while (((d32 & mask) != mask) && loop--) {
382 d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ);
383 schedule_timeout_uninterruptible(1);
384 }
385
386 /* Reset the doorbell register for each Input queue. */
387 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES; i++) {
388 if (!(oct->io_qmask.iq & (1UL << i)))
389 continue;
390 octeon_write_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i), 0xFFFFFFFF);
391 d32 = octeon_read_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i));
392 }
393
394 /* Reset the Enable bits for Output Queues. */
395 mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
396 mask ^= oct->io_qmask.oq;
397 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask);
398
399 /* Wait until hardware indicates that the queues are out of reset. */
400 loop = HZ;
401 mask = oct->io_qmask.oq;
402 d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ);
403 while (((d32 & mask) != mask) && loop--) {
404 d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ);
405 schedule_timeout_uninterruptible(1);
406 }
407 ;
408
409 /* Reset the doorbell register for each Output queue. */
410 /* for (i = 0; i < oct->num_oqs; i++) { */
411 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) {
412 if (!(oct->io_qmask.oq & (1UL << i)))
413 continue;
414 octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i), 0xFFFFFFFF);
415 d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i));
416
417 d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i));
418 octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i), d32);
419 }
420
421 d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT);
422 if (d32)
423 octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, d32);
424
425 d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT);
426 if (d32)
427 octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, d32);
428 }
429
lio_cn6xxx_reinit_regs(struct octeon_device * oct)430 void lio_cn6xxx_reinit_regs(struct octeon_device *oct)
431 {
432 u32 i;
433
434 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES; i++) {
435 if (!(oct->io_qmask.iq & (1UL << i)))
436 continue;
437 oct->fn_list.setup_iq_regs(oct, i);
438 }
439
440 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) {
441 if (!(oct->io_qmask.oq & (1UL << i)))
442 continue;
443 oct->fn_list.setup_oq_regs(oct, i);
444 }
445
446 oct->fn_list.setup_device_regs(oct);
447
448 oct->fn_list.enable_interrupt(oct->chip);
449
450 oct->fn_list.enable_io_queues(oct);
451
452 /* for (i = 0; i < oct->num_oqs; i++) { */
453 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) {
454 if (!(oct->io_qmask.oq & (1UL << i)))
455 continue;
456 writel(oct->droq[i]->max_count, oct->droq[i]->pkts_credit_reg);
457 }
458 }
459
460 void
lio_cn6xxx_bar1_idx_setup(struct octeon_device * oct,u64 core_addr,u32 idx,int valid)461 lio_cn6xxx_bar1_idx_setup(struct octeon_device *oct,
462 u64 core_addr,
463 u32 idx,
464 int valid)
465 {
466 u64 bar1;
467
468 if (valid == 0) {
469 bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
470 lio_pci_writeq(oct, (bar1 & 0xFFFFFFFEULL),
471 CN6XXX_BAR1_REG(idx, oct->pcie_port));
472 bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
473 return;
474 }
475
476 /* Bits 17:4 of the PCI_BAR1_INDEXx stores bits 35:22 of
477 * the Core Addr
478 */
479 lio_pci_writeq(oct, (((core_addr >> 22) << 4) | PCI_BAR1_MASK),
480 CN6XXX_BAR1_REG(idx, oct->pcie_port));
481
482 bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
483 }
484
lio_cn6xxx_bar1_idx_write(struct octeon_device * oct,u32 idx,u32 mask)485 void lio_cn6xxx_bar1_idx_write(struct octeon_device *oct,
486 u32 idx,
487 u32 mask)
488 {
489 lio_pci_writeq(oct, mask, CN6XXX_BAR1_REG(idx, oct->pcie_port));
490 }
491
lio_cn6xxx_bar1_idx_read(struct octeon_device * oct,u32 idx)492 u32 lio_cn6xxx_bar1_idx_read(struct octeon_device *oct, u32 idx)
493 {
494 return (u32)lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
495 }
496
497 u32
lio_cn6xxx_update_read_index(struct octeon_device * oct,struct octeon_instr_queue * iq)498 lio_cn6xxx_update_read_index(struct octeon_device *oct __attribute__((unused)),
499 struct octeon_instr_queue *iq)
500 {
501 u32 new_idx = readl(iq->inst_cnt_reg);
502
503 /* The new instr cnt reg is a 32-bit counter that can roll over. We have
504 * noted the counter's initial value at init time into
505 * reset_instr_cnt
506 */
507 if (iq->reset_instr_cnt < new_idx)
508 new_idx -= iq->reset_instr_cnt;
509 else
510 new_idx += (0xffffffff - iq->reset_instr_cnt) + 1;
511
512 /* Modulo of the new index with the IQ size will give us
513 * the new index.
514 */
515 new_idx %= iq->max_count;
516
517 return new_idx;
518 }
519
lio_cn6xxx_enable_interrupt(void * chip)520 void lio_cn6xxx_enable_interrupt(void *chip)
521 {
522 struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)chip;
523 u64 mask = cn6xxx->intr_mask64 | CN6XXX_INTR_DMA0_FORCE;
524
525 /* Enable Interrupt */
526 writeq(mask, cn6xxx->intr_enb_reg64);
527 }
528
lio_cn6xxx_disable_interrupt(void * chip)529 void lio_cn6xxx_disable_interrupt(void *chip)
530 {
531 struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)chip;
532
533 /* Disable Interrupts */
534 writeq(0, cn6xxx->intr_enb_reg64);
535
536 /* make sure interrupts are really disabled */
537 mmiowb();
538 }
539
lio_cn6xxx_get_pcie_qlmport(struct octeon_device * oct)540 static void lio_cn6xxx_get_pcie_qlmport(struct octeon_device *oct)
541 {
542 /* CN63xx Pass2 and newer parts implements the SLI_MAC_NUMBER register
543 * to determine the PCIE port #
544 */
545 oct->pcie_port = octeon_read_csr(oct, CN6XXX_SLI_MAC_NUMBER) & 0xff;
546
547 dev_dbg(&oct->pci_dev->dev, "Using PCIE Port %d\n", oct->pcie_port);
548 }
549
550 void
lio_cn6xxx_process_pcie_error_intr(struct octeon_device * oct,u64 intr64)551 lio_cn6xxx_process_pcie_error_intr(struct octeon_device *oct, u64 intr64)
552 {
553 dev_err(&oct->pci_dev->dev, "Error Intr: 0x%016llx\n",
554 CVM_CAST64(intr64));
555 }
556
lio_cn6xxx_process_droq_intr_regs(struct octeon_device * oct)557 int lio_cn6xxx_process_droq_intr_regs(struct octeon_device *oct)
558 {
559 struct octeon_droq *droq;
560 u32 oq_no, pkt_count, droq_time_mask, droq_mask, droq_int_enb;
561 u32 droq_cnt_enb, droq_cnt_mask;
562
563 droq_cnt_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB);
564 droq_cnt_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT);
565 droq_mask = droq_cnt_mask & droq_cnt_enb;
566
567 droq_time_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT);
568 droq_int_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB);
569 droq_mask |= (droq_time_mask & droq_int_enb);
570
571 droq_mask &= oct->io_qmask.oq;
572
573 oct->droq_intr = 0;
574
575 /* for (oq_no = 0; oq_no < oct->num_oqs; oq_no++) { */
576 for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES; oq_no++) {
577 if (!(droq_mask & (1 << oq_no)))
578 continue;
579
580 droq = oct->droq[oq_no];
581 pkt_count = octeon_droq_check_hw_for_pkts(oct, droq);
582 if (pkt_count) {
583 oct->droq_intr |= (1ULL << oq_no);
584 if (droq->ops.poll_mode) {
585 u32 value;
586 u32 reg;
587
588 struct octeon_cn6xxx *cn6xxx =
589 (struct octeon_cn6xxx *)oct->chip;
590
591 /* disable interrupts for this droq */
592 spin_lock
593 (&cn6xxx->lock_for_droq_int_enb_reg);
594 reg = CN6XXX_SLI_PKT_TIME_INT_ENB;
595 value = octeon_read_csr(oct, reg);
596 value &= ~(1 << oq_no);
597 octeon_write_csr(oct, reg, value);
598 reg = CN6XXX_SLI_PKT_CNT_INT_ENB;
599 value = octeon_read_csr(oct, reg);
600 value &= ~(1 << oq_no);
601 octeon_write_csr(oct, reg, value);
602
603 /* Ensure that the enable register is written.
604 */
605 mmiowb();
606
607 spin_unlock(&cn6xxx->lock_for_droq_int_enb_reg);
608 }
609 }
610 }
611
612 droq_time_mask &= oct->io_qmask.oq;
613 droq_cnt_mask &= oct->io_qmask.oq;
614
615 /* Reset the PKT_CNT/TIME_INT registers. */
616 if (droq_time_mask)
617 octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, droq_time_mask);
618
619 if (droq_cnt_mask) /* reset PKT_CNT register:66xx */
620 octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, droq_cnt_mask);
621
622 return 0;
623 }
624
lio_cn6xxx_process_interrupt_regs(void * dev)625 irqreturn_t lio_cn6xxx_process_interrupt_regs(void *dev)
626 {
627 struct octeon_device *oct = (struct octeon_device *)dev;
628 struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
629 u64 intr64;
630
631 intr64 = readq(cn6xxx->intr_sum_reg64);
632
633 /* If our device has interrupted, then proceed.
634 * Also check for all f's if interrupt was triggered on an error
635 * and the PCI read fails.
636 */
637 if (!intr64 || (intr64 == 0xFFFFFFFFFFFFFFFFULL))
638 return IRQ_NONE;
639
640 oct->int_status = 0;
641
642 if (intr64 & CN6XXX_INTR_ERR)
643 lio_cn6xxx_process_pcie_error_intr(oct, intr64);
644
645 if (intr64 & CN6XXX_INTR_PKT_DATA) {
646 lio_cn6xxx_process_droq_intr_regs(oct);
647 oct->int_status |= OCT_DEV_INTR_PKT_DATA;
648 }
649
650 if (intr64 & CN6XXX_INTR_DMA0_FORCE)
651 oct->int_status |= OCT_DEV_INTR_DMA0_FORCE;
652
653 if (intr64 & CN6XXX_INTR_DMA1_FORCE)
654 oct->int_status |= OCT_DEV_INTR_DMA1_FORCE;
655
656 /* Clear the current interrupts */
657 writeq(intr64, cn6xxx->intr_sum_reg64);
658
659 return IRQ_HANDLED;
660 }
661
lio_cn6xxx_setup_reg_address(struct octeon_device * oct,void * chip,struct octeon_reg_list * reg_list)662 void lio_cn6xxx_setup_reg_address(struct octeon_device *oct,
663 void *chip,
664 struct octeon_reg_list *reg_list)
665 {
666 u8 __iomem *bar0_pciaddr = oct->mmio[0].hw_addr;
667 struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)chip;
668
669 reg_list->pci_win_wr_addr_hi =
670 (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_HI);
671 reg_list->pci_win_wr_addr_lo =
672 (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_LO);
673 reg_list->pci_win_wr_addr =
674 (u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR64);
675
676 reg_list->pci_win_rd_addr_hi =
677 (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_HI);
678 reg_list->pci_win_rd_addr_lo =
679 (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_LO);
680 reg_list->pci_win_rd_addr =
681 (u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR64);
682
683 reg_list->pci_win_wr_data_hi =
684 (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_HI);
685 reg_list->pci_win_wr_data_lo =
686 (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_LO);
687 reg_list->pci_win_wr_data =
688 (u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA64);
689
690 reg_list->pci_win_rd_data_hi =
691 (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_HI);
692 reg_list->pci_win_rd_data_lo =
693 (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_LO);
694 reg_list->pci_win_rd_data =
695 (u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA64);
696
697 lio_cn6xxx_get_pcie_qlmport(oct);
698
699 cn6xxx->intr_sum_reg64 = bar0_pciaddr + CN6XXX_SLI_INT_SUM64;
700 cn6xxx->intr_mask64 = CN6XXX_INTR_MASK;
701 cn6xxx->intr_enb_reg64 =
702 bar0_pciaddr + CN6XXX_SLI_INT_ENB64(oct->pcie_port);
703 }
704
lio_setup_cn66xx_octeon_device(struct octeon_device * oct)705 int lio_setup_cn66xx_octeon_device(struct octeon_device *oct)
706 {
707 struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
708
709 if (octeon_map_pci_barx(oct, 0, 0))
710 return 1;
711
712 if (octeon_map_pci_barx(oct, 1, MAX_BAR1_IOREMAP_SIZE)) {
713 dev_err(&oct->pci_dev->dev, "%s CN66XX BAR1 map failed\n",
714 __func__);
715 octeon_unmap_pci_barx(oct, 0);
716 return 1;
717 }
718
719 spin_lock_init(&cn6xxx->lock_for_droq_int_enb_reg);
720
721 oct->fn_list.setup_iq_regs = lio_cn66xx_setup_iq_regs;
722 oct->fn_list.setup_oq_regs = lio_cn6xxx_setup_oq_regs;
723
724 oct->fn_list.soft_reset = lio_cn6xxx_soft_reset;
725 oct->fn_list.setup_device_regs = lio_cn6xxx_setup_device_regs;
726 oct->fn_list.reinit_regs = lio_cn6xxx_reinit_regs;
727 oct->fn_list.update_iq_read_idx = lio_cn6xxx_update_read_index;
728
729 oct->fn_list.bar1_idx_setup = lio_cn6xxx_bar1_idx_setup;
730 oct->fn_list.bar1_idx_write = lio_cn6xxx_bar1_idx_write;
731 oct->fn_list.bar1_idx_read = lio_cn6xxx_bar1_idx_read;
732
733 oct->fn_list.process_interrupt_regs = lio_cn6xxx_process_interrupt_regs;
734 oct->fn_list.enable_interrupt = lio_cn6xxx_enable_interrupt;
735 oct->fn_list.disable_interrupt = lio_cn6xxx_disable_interrupt;
736
737 oct->fn_list.enable_io_queues = lio_cn6xxx_enable_io_queues;
738 oct->fn_list.disable_io_queues = lio_cn6xxx_disable_io_queues;
739
740 lio_cn6xxx_setup_reg_address(oct, oct->chip, &oct->reg_list);
741
742 cn6xxx->conf = (struct octeon_config *)
743 oct_get_config_info(oct, LIO_210SV);
744 if (!cn6xxx->conf) {
745 dev_err(&oct->pci_dev->dev, "%s No Config found for CN66XX\n",
746 __func__);
747 octeon_unmap_pci_barx(oct, 0);
748 octeon_unmap_pci_barx(oct, 1);
749 return 1;
750 }
751
752 oct->coproc_clock_rate = 1000000ULL * lio_cn6xxx_coprocessor_clock(oct);
753
754 return 0;
755 }
756
lio_validate_cn6xxx_config_info(struct octeon_device * oct,struct octeon_config * conf6xxx)757 int lio_validate_cn6xxx_config_info(struct octeon_device *oct,
758 struct octeon_config *conf6xxx)
759 {
760 /* int total_instrs = 0; */
761
762 if (CFG_GET_IQ_MAX_Q(conf6xxx) > CN6XXX_MAX_INPUT_QUEUES) {
763 dev_err(&oct->pci_dev->dev, "%s: Num IQ (%d) exceeds Max (%d)\n",
764 __func__, CFG_GET_IQ_MAX_Q(conf6xxx),
765 CN6XXX_MAX_INPUT_QUEUES);
766 return 1;
767 }
768
769 if (CFG_GET_OQ_MAX_Q(conf6xxx) > CN6XXX_MAX_OUTPUT_QUEUES) {
770 dev_err(&oct->pci_dev->dev, "%s: Num OQ (%d) exceeds Max (%d)\n",
771 __func__, CFG_GET_OQ_MAX_Q(conf6xxx),
772 CN6XXX_MAX_OUTPUT_QUEUES);
773 return 1;
774 }
775
776 if (CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_32BYTE_INSTR &&
777 CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_64BYTE_INSTR) {
778 dev_err(&oct->pci_dev->dev, "%s: Invalid instr type for IQ\n",
779 __func__);
780 return 1;
781 }
782 if (!(CFG_GET_OQ_INFO_PTR(conf6xxx)) ||
783 !(CFG_GET_OQ_REFILL_THRESHOLD(conf6xxx))) {
784 dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n",
785 __func__);
786 return 1;
787 }
788
789 if (!(CFG_GET_OQ_INTR_TIME(conf6xxx))) {
790 dev_err(&oct->pci_dev->dev, "%s: No Time Interrupt for OQ\n",
791 __func__);
792 return 1;
793 }
794
795 return 0;
796 }
797