• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42 
43 enum {
44 	ACTIVE_LIST,
45 	INACTIVE_LIST,
46 	PINNED_LIST,
47 };
48 
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50  * allocated we need to hook into the minor for release. */
51 static int
drm_add_fake_info_node(struct drm_minor * minor,struct dentry * ent,const void * key)52 drm_add_fake_info_node(struct drm_minor *minor,
53 		       struct dentry *ent,
54 		       const void *key)
55 {
56 	struct drm_info_node *node;
57 
58 	node = kmalloc(sizeof(*node), GFP_KERNEL);
59 	if (node == NULL) {
60 		debugfs_remove(ent);
61 		return -ENOMEM;
62 	}
63 
64 	node->minor = minor;
65 	node->dent = ent;
66 	node->info_ent = (void *) key;
67 
68 	mutex_lock(&minor->debugfs_lock);
69 	list_add(&node->list, &minor->debugfs_list);
70 	mutex_unlock(&minor->debugfs_lock);
71 
72 	return 0;
73 }
74 
i915_capabilities(struct seq_file * m,void * data)75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77 	struct drm_info_node *node = m->private;
78 	struct drm_device *dev = node->minor->dev;
79 	const struct intel_device_info *info = INTEL_INFO(dev);
80 
81 	seq_printf(m, "gen: %d\n", info->gen);
82 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88 
89 	return 0;
90 }
91 
get_pin_flag(struct drm_i915_gem_object * obj)92 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
93 {
94 	if (obj->pin_display)
95 		return "p";
96 	else
97 		return " ";
98 }
99 
get_tiling_flag(struct drm_i915_gem_object * obj)100 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
101 {
102 	switch (obj->tiling_mode) {
103 	default:
104 	case I915_TILING_NONE: return " ";
105 	case I915_TILING_X: return "X";
106 	case I915_TILING_Y: return "Y";
107 	}
108 }
109 
get_global_flag(struct drm_i915_gem_object * obj)110 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
111 {
112 	return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
113 }
114 
i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object * obj)115 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
116 {
117 	u64 size = 0;
118 	struct i915_vma *vma;
119 
120 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
121 		if (i915_is_ggtt(vma->vm) &&
122 		    drm_mm_node_allocated(&vma->node))
123 			size += vma->node.size;
124 	}
125 
126 	return size;
127 }
128 
129 static void
describe_obj(struct seq_file * m,struct drm_i915_gem_object * obj)130 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
131 {
132 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
133 	struct intel_engine_cs *ring;
134 	struct i915_vma *vma;
135 	int pin_count = 0;
136 	int i;
137 
138 	seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
139 		   &obj->base,
140 		   obj->active ? "*" : " ",
141 		   get_pin_flag(obj),
142 		   get_tiling_flag(obj),
143 		   get_global_flag(obj),
144 		   obj->base.size / 1024,
145 		   obj->base.read_domains,
146 		   obj->base.write_domain);
147 	for_each_ring(ring, dev_priv, i)
148 		seq_printf(m, "%x ",
149 				i915_gem_request_get_seqno(obj->last_read_req[i]));
150 	seq_printf(m, "] %x %x%s%s%s",
151 		   i915_gem_request_get_seqno(obj->last_write_req),
152 		   i915_gem_request_get_seqno(obj->last_fenced_req),
153 		   i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
154 		   obj->dirty ? " dirty" : "",
155 		   obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
156 	if (obj->base.name)
157 		seq_printf(m, " (name: %d)", obj->base.name);
158 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
159 		if (vma->pin_count > 0)
160 			pin_count++;
161 	}
162 	seq_printf(m, " (pinned x %d)", pin_count);
163 	if (obj->pin_display)
164 		seq_printf(m, " (display)");
165 	if (obj->fence_reg != I915_FENCE_REG_NONE)
166 		seq_printf(m, " (fence: %d)", obj->fence_reg);
167 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
168 		seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
169 			   i915_is_ggtt(vma->vm) ? "g" : "pp",
170 			   vma->node.start, vma->node.size);
171 		if (i915_is_ggtt(vma->vm))
172 			seq_printf(m, ", type: %u)", vma->ggtt_view.type);
173 		else
174 			seq_puts(m, ")");
175 	}
176 	if (obj->stolen)
177 		seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
178 	if (obj->pin_display || obj->fault_mappable) {
179 		char s[3], *t = s;
180 		if (obj->pin_display)
181 			*t++ = 'p';
182 		if (obj->fault_mappable)
183 			*t++ = 'f';
184 		*t = '\0';
185 		seq_printf(m, " (%s mappable)", s);
186 	}
187 	if (obj->last_write_req != NULL)
188 		seq_printf(m, " (%s)",
189 			   i915_gem_request_get_ring(obj->last_write_req)->name);
190 	if (obj->frontbuffer_bits)
191 		seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
192 }
193 
describe_ctx(struct seq_file * m,struct intel_context * ctx)194 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
195 {
196 	seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
197 	seq_putc(m, ctx->remap_slice ? 'R' : 'r');
198 	seq_putc(m, ' ');
199 }
200 
i915_gem_object_list_info(struct seq_file * m,void * data)201 static int i915_gem_object_list_info(struct seq_file *m, void *data)
202 {
203 	struct drm_info_node *node = m->private;
204 	uintptr_t list = (uintptr_t) node->info_ent->data;
205 	struct list_head *head;
206 	struct drm_device *dev = node->minor->dev;
207 	struct drm_i915_private *dev_priv = dev->dev_private;
208 	struct i915_address_space *vm = &dev_priv->gtt.base;
209 	struct i915_vma *vma;
210 	u64 total_obj_size, total_gtt_size;
211 	int count, ret;
212 
213 	ret = mutex_lock_interruptible(&dev->struct_mutex);
214 	if (ret)
215 		return ret;
216 
217 	/* FIXME: the user of this interface might want more than just GGTT */
218 	switch (list) {
219 	case ACTIVE_LIST:
220 		seq_puts(m, "Active:\n");
221 		head = &vm->active_list;
222 		break;
223 	case INACTIVE_LIST:
224 		seq_puts(m, "Inactive:\n");
225 		head = &vm->inactive_list;
226 		break;
227 	default:
228 		mutex_unlock(&dev->struct_mutex);
229 		return -EINVAL;
230 	}
231 
232 	total_obj_size = total_gtt_size = count = 0;
233 	list_for_each_entry(vma, head, mm_list) {
234 		seq_printf(m, "   ");
235 		describe_obj(m, vma->obj);
236 		seq_printf(m, "\n");
237 		total_obj_size += vma->obj->base.size;
238 		total_gtt_size += vma->node.size;
239 		count++;
240 	}
241 	mutex_unlock(&dev->struct_mutex);
242 
243 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
244 		   count, total_obj_size, total_gtt_size);
245 	return 0;
246 }
247 
obj_rank_by_stolen(void * priv,struct list_head * A,struct list_head * B)248 static int obj_rank_by_stolen(void *priv,
249 			      struct list_head *A, struct list_head *B)
250 {
251 	struct drm_i915_gem_object *a =
252 		container_of(A, struct drm_i915_gem_object, obj_exec_link);
253 	struct drm_i915_gem_object *b =
254 		container_of(B, struct drm_i915_gem_object, obj_exec_link);
255 
256 	if (a->stolen->start < b->stolen->start)
257 		return -1;
258 	if (a->stolen->start > b->stolen->start)
259 		return 1;
260 	return 0;
261 }
262 
i915_gem_stolen_list_info(struct seq_file * m,void * data)263 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
264 {
265 	struct drm_info_node *node = m->private;
266 	struct drm_device *dev = node->minor->dev;
267 	struct drm_i915_private *dev_priv = dev->dev_private;
268 	struct drm_i915_gem_object *obj;
269 	u64 total_obj_size, total_gtt_size;
270 	LIST_HEAD(stolen);
271 	int count, ret;
272 
273 	ret = mutex_lock_interruptible(&dev->struct_mutex);
274 	if (ret)
275 		return ret;
276 
277 	total_obj_size = total_gtt_size = count = 0;
278 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
279 		if (obj->stolen == NULL)
280 			continue;
281 
282 		list_add(&obj->obj_exec_link, &stolen);
283 
284 		total_obj_size += obj->base.size;
285 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
286 		count++;
287 	}
288 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
289 		if (obj->stolen == NULL)
290 			continue;
291 
292 		list_add(&obj->obj_exec_link, &stolen);
293 
294 		total_obj_size += obj->base.size;
295 		count++;
296 	}
297 	list_sort(NULL, &stolen, obj_rank_by_stolen);
298 	seq_puts(m, "Stolen:\n");
299 	while (!list_empty(&stolen)) {
300 		obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
301 		seq_puts(m, "   ");
302 		describe_obj(m, obj);
303 		seq_putc(m, '\n');
304 		list_del_init(&obj->obj_exec_link);
305 	}
306 	mutex_unlock(&dev->struct_mutex);
307 
308 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
309 		   count, total_obj_size, total_gtt_size);
310 	return 0;
311 }
312 
313 #define count_objects(list, member) do { \
314 	list_for_each_entry(obj, list, member) { \
315 		size += i915_gem_obj_total_ggtt_size(obj); \
316 		++count; \
317 		if (obj->map_and_fenceable) { \
318 			mappable_size += i915_gem_obj_ggtt_size(obj); \
319 			++mappable_count; \
320 		} \
321 	} \
322 } while (0)
323 
324 struct file_stats {
325 	struct drm_i915_file_private *file_priv;
326 	unsigned long count;
327 	u64 total, unbound;
328 	u64 global, shared;
329 	u64 active, inactive;
330 };
331 
per_file_stats(int id,void * ptr,void * data)332 static int per_file_stats(int id, void *ptr, void *data)
333 {
334 	struct drm_i915_gem_object *obj = ptr;
335 	struct file_stats *stats = data;
336 	struct i915_vma *vma;
337 
338 	stats->count++;
339 	stats->total += obj->base.size;
340 
341 	if (obj->base.name || obj->base.dma_buf)
342 		stats->shared += obj->base.size;
343 
344 	if (USES_FULL_PPGTT(obj->base.dev)) {
345 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
346 			struct i915_hw_ppgtt *ppgtt;
347 
348 			if (!drm_mm_node_allocated(&vma->node))
349 				continue;
350 
351 			if (i915_is_ggtt(vma->vm)) {
352 				stats->global += obj->base.size;
353 				continue;
354 			}
355 
356 			ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
357 			if (ppgtt->file_priv != stats->file_priv)
358 				continue;
359 
360 			if (obj->active) /* XXX per-vma statistic */
361 				stats->active += obj->base.size;
362 			else
363 				stats->inactive += obj->base.size;
364 
365 			return 0;
366 		}
367 	} else {
368 		if (i915_gem_obj_ggtt_bound(obj)) {
369 			stats->global += obj->base.size;
370 			if (obj->active)
371 				stats->active += obj->base.size;
372 			else
373 				stats->inactive += obj->base.size;
374 			return 0;
375 		}
376 	}
377 
378 	if (!list_empty(&obj->global_list))
379 		stats->unbound += obj->base.size;
380 
381 	return 0;
382 }
383 
384 #define print_file_stats(m, name, stats) do { \
385 	if (stats.count) \
386 		seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
387 			   name, \
388 			   stats.count, \
389 			   stats.total, \
390 			   stats.active, \
391 			   stats.inactive, \
392 			   stats.global, \
393 			   stats.shared, \
394 			   stats.unbound); \
395 } while (0)
396 
print_batch_pool_stats(struct seq_file * m,struct drm_i915_private * dev_priv)397 static void print_batch_pool_stats(struct seq_file *m,
398 				   struct drm_i915_private *dev_priv)
399 {
400 	struct drm_i915_gem_object *obj;
401 	struct file_stats stats;
402 	struct intel_engine_cs *ring;
403 	int i, j;
404 
405 	memset(&stats, 0, sizeof(stats));
406 
407 	for_each_ring(ring, dev_priv, i) {
408 		for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
409 			list_for_each_entry(obj,
410 					    &ring->batch_pool.cache_list[j],
411 					    batch_pool_link)
412 				per_file_stats(0, obj, &stats);
413 		}
414 	}
415 
416 	print_file_stats(m, "[k]batch pool", stats);
417 }
418 
419 #define count_vmas(list, member) do { \
420 	list_for_each_entry(vma, list, member) { \
421 		size += i915_gem_obj_total_ggtt_size(vma->obj); \
422 		++count; \
423 		if (vma->obj->map_and_fenceable) { \
424 			mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
425 			++mappable_count; \
426 		} \
427 	} \
428 } while (0)
429 
i915_gem_object_info(struct seq_file * m,void * data)430 static int i915_gem_object_info(struct seq_file *m, void* data)
431 {
432 	struct drm_info_node *node = m->private;
433 	struct drm_device *dev = node->minor->dev;
434 	struct drm_i915_private *dev_priv = dev->dev_private;
435 	u32 count, mappable_count, purgeable_count;
436 	u64 size, mappable_size, purgeable_size;
437 	struct drm_i915_gem_object *obj;
438 	struct i915_address_space *vm = &dev_priv->gtt.base;
439 	struct drm_file *file;
440 	struct i915_vma *vma;
441 	int ret;
442 
443 	ret = mutex_lock_interruptible(&dev->struct_mutex);
444 	if (ret)
445 		return ret;
446 
447 	seq_printf(m, "%u objects, %zu bytes\n",
448 		   dev_priv->mm.object_count,
449 		   dev_priv->mm.object_memory);
450 
451 	size = count = mappable_size = mappable_count = 0;
452 	count_objects(&dev_priv->mm.bound_list, global_list);
453 	seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
454 		   count, mappable_count, size, mappable_size);
455 
456 	size = count = mappable_size = mappable_count = 0;
457 	count_vmas(&vm->active_list, mm_list);
458 	seq_printf(m, "  %u [%u] active objects, %llu [%llu] bytes\n",
459 		   count, mappable_count, size, mappable_size);
460 
461 	size = count = mappable_size = mappable_count = 0;
462 	count_vmas(&vm->inactive_list, mm_list);
463 	seq_printf(m, "  %u [%u] inactive objects, %llu [%llu] bytes\n",
464 		   count, mappable_count, size, mappable_size);
465 
466 	size = count = purgeable_size = purgeable_count = 0;
467 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
468 		size += obj->base.size, ++count;
469 		if (obj->madv == I915_MADV_DONTNEED)
470 			purgeable_size += obj->base.size, ++purgeable_count;
471 	}
472 	seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
473 
474 	size = count = mappable_size = mappable_count = 0;
475 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
476 		if (obj->fault_mappable) {
477 			size += i915_gem_obj_ggtt_size(obj);
478 			++count;
479 		}
480 		if (obj->pin_display) {
481 			mappable_size += i915_gem_obj_ggtt_size(obj);
482 			++mappable_count;
483 		}
484 		if (obj->madv == I915_MADV_DONTNEED) {
485 			purgeable_size += obj->base.size;
486 			++purgeable_count;
487 		}
488 	}
489 	seq_printf(m, "%u purgeable objects, %llu bytes\n",
490 		   purgeable_count, purgeable_size);
491 	seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
492 		   mappable_count, mappable_size);
493 	seq_printf(m, "%u fault mappable objects, %llu bytes\n",
494 		   count, size);
495 
496 	seq_printf(m, "%llu [%llu] gtt total\n",
497 		   dev_priv->gtt.base.total,
498 		   (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
499 
500 	seq_putc(m, '\n');
501 	print_batch_pool_stats(m, dev_priv);
502 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
503 		struct file_stats stats;
504 		struct task_struct *task;
505 
506 		memset(&stats, 0, sizeof(stats));
507 		stats.file_priv = file->driver_priv;
508 		spin_lock(&file->table_lock);
509 		idr_for_each(&file->object_idr, per_file_stats, &stats);
510 		spin_unlock(&file->table_lock);
511 		/*
512 		 * Although we have a valid reference on file->pid, that does
513 		 * not guarantee that the task_struct who called get_pid() is
514 		 * still alive (e.g. get_pid(current) => fork() => exit()).
515 		 * Therefore, we need to protect this ->comm access using RCU.
516 		 */
517 		rcu_read_lock();
518 		task = pid_task(file->pid, PIDTYPE_PID);
519 		print_file_stats(m, task ? task->comm : "<unknown>", stats);
520 		rcu_read_unlock();
521 	}
522 
523 	mutex_unlock(&dev->struct_mutex);
524 
525 	return 0;
526 }
527 
i915_gem_gtt_info(struct seq_file * m,void * data)528 static int i915_gem_gtt_info(struct seq_file *m, void *data)
529 {
530 	struct drm_info_node *node = m->private;
531 	struct drm_device *dev = node->minor->dev;
532 	uintptr_t list = (uintptr_t) node->info_ent->data;
533 	struct drm_i915_private *dev_priv = dev->dev_private;
534 	struct drm_i915_gem_object *obj;
535 	u64 total_obj_size, total_gtt_size;
536 	int count, ret;
537 
538 	ret = mutex_lock_interruptible(&dev->struct_mutex);
539 	if (ret)
540 		return ret;
541 
542 	total_obj_size = total_gtt_size = count = 0;
543 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
544 		if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
545 			continue;
546 
547 		seq_puts(m, "   ");
548 		describe_obj(m, obj);
549 		seq_putc(m, '\n');
550 		total_obj_size += obj->base.size;
551 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
552 		count++;
553 	}
554 
555 	mutex_unlock(&dev->struct_mutex);
556 
557 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
558 		   count, total_obj_size, total_gtt_size);
559 
560 	return 0;
561 }
562 
i915_gem_pageflip_info(struct seq_file * m,void * data)563 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
564 {
565 	struct drm_info_node *node = m->private;
566 	struct drm_device *dev = node->minor->dev;
567 	struct drm_i915_private *dev_priv = dev->dev_private;
568 	struct intel_crtc *crtc;
569 	int ret;
570 
571 	ret = mutex_lock_interruptible(&dev->struct_mutex);
572 	if (ret)
573 		return ret;
574 
575 	for_each_intel_crtc(dev, crtc) {
576 		const char pipe = pipe_name(crtc->pipe);
577 		const char plane = plane_name(crtc->plane);
578 		struct intel_unpin_work *work;
579 
580 		spin_lock_irq(&dev->event_lock);
581 		work = crtc->unpin_work;
582 		if (work == NULL) {
583 			seq_printf(m, "No flip due on pipe %c (plane %c)\n",
584 				   pipe, plane);
585 		} else {
586 			u32 addr;
587 
588 			if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
589 				seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
590 					   pipe, plane);
591 			} else {
592 				seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
593 					   pipe, plane);
594 			}
595 			if (work->flip_queued_req) {
596 				struct intel_engine_cs *ring =
597 					i915_gem_request_get_ring(work->flip_queued_req);
598 
599 				seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
600 					   ring->name,
601 					   i915_gem_request_get_seqno(work->flip_queued_req),
602 					   dev_priv->next_seqno,
603 					   ring->get_seqno(ring, true),
604 					   i915_gem_request_completed(work->flip_queued_req, true));
605 			} else
606 				seq_printf(m, "Flip not associated with any ring\n");
607 			seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
608 				   work->flip_queued_vblank,
609 				   work->flip_ready_vblank,
610 				   drm_crtc_vblank_count(&crtc->base));
611 			if (work->enable_stall_check)
612 				seq_puts(m, "Stall check enabled, ");
613 			else
614 				seq_puts(m, "Stall check waiting for page flip ioctl, ");
615 			seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
616 
617 			if (INTEL_INFO(dev)->gen >= 4)
618 				addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
619 			else
620 				addr = I915_READ(DSPADDR(crtc->plane));
621 			seq_printf(m, "Current scanout address 0x%08x\n", addr);
622 
623 			if (work->pending_flip_obj) {
624 				seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
625 				seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
626 			}
627 		}
628 		spin_unlock_irq(&dev->event_lock);
629 	}
630 
631 	mutex_unlock(&dev->struct_mutex);
632 
633 	return 0;
634 }
635 
i915_gem_batch_pool_info(struct seq_file * m,void * data)636 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
637 {
638 	struct drm_info_node *node = m->private;
639 	struct drm_device *dev = node->minor->dev;
640 	struct drm_i915_private *dev_priv = dev->dev_private;
641 	struct drm_i915_gem_object *obj;
642 	struct intel_engine_cs *ring;
643 	int total = 0;
644 	int ret, i, j;
645 
646 	ret = mutex_lock_interruptible(&dev->struct_mutex);
647 	if (ret)
648 		return ret;
649 
650 	for_each_ring(ring, dev_priv, i) {
651 		for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
652 			int count;
653 
654 			count = 0;
655 			list_for_each_entry(obj,
656 					    &ring->batch_pool.cache_list[j],
657 					    batch_pool_link)
658 				count++;
659 			seq_printf(m, "%s cache[%d]: %d objects\n",
660 				   ring->name, j, count);
661 
662 			list_for_each_entry(obj,
663 					    &ring->batch_pool.cache_list[j],
664 					    batch_pool_link) {
665 				seq_puts(m, "   ");
666 				describe_obj(m, obj);
667 				seq_putc(m, '\n');
668 			}
669 
670 			total += count;
671 		}
672 	}
673 
674 	seq_printf(m, "total: %d\n", total);
675 
676 	mutex_unlock(&dev->struct_mutex);
677 
678 	return 0;
679 }
680 
i915_gem_request_info(struct seq_file * m,void * data)681 static int i915_gem_request_info(struct seq_file *m, void *data)
682 {
683 	struct drm_info_node *node = m->private;
684 	struct drm_device *dev = node->minor->dev;
685 	struct drm_i915_private *dev_priv = dev->dev_private;
686 	struct intel_engine_cs *ring;
687 	struct drm_i915_gem_request *req;
688 	int ret, any, i;
689 
690 	ret = mutex_lock_interruptible(&dev->struct_mutex);
691 	if (ret)
692 		return ret;
693 
694 	any = 0;
695 	for_each_ring(ring, dev_priv, i) {
696 		int count;
697 
698 		count = 0;
699 		list_for_each_entry(req, &ring->request_list, list)
700 			count++;
701 		if (count == 0)
702 			continue;
703 
704 		seq_printf(m, "%s requests: %d\n", ring->name, count);
705 		list_for_each_entry(req, &ring->request_list, list) {
706 			struct task_struct *task;
707 
708 			rcu_read_lock();
709 			task = NULL;
710 			if (req->pid)
711 				task = pid_task(req->pid, PIDTYPE_PID);
712 			seq_printf(m, "    %x @ %d: %s [%d]\n",
713 				   req->seqno,
714 				   (int) (jiffies - req->emitted_jiffies),
715 				   task ? task->comm : "<unknown>",
716 				   task ? task->pid : -1);
717 			rcu_read_unlock();
718 		}
719 
720 		any++;
721 	}
722 	mutex_unlock(&dev->struct_mutex);
723 
724 	if (any == 0)
725 		seq_puts(m, "No requests\n");
726 
727 	return 0;
728 }
729 
i915_ring_seqno_info(struct seq_file * m,struct intel_engine_cs * ring)730 static void i915_ring_seqno_info(struct seq_file *m,
731 				 struct intel_engine_cs *ring)
732 {
733 	if (ring->get_seqno) {
734 		seq_printf(m, "Current sequence (%s): %x\n",
735 			   ring->name, ring->get_seqno(ring, false));
736 	}
737 }
738 
i915_gem_seqno_info(struct seq_file * m,void * data)739 static int i915_gem_seqno_info(struct seq_file *m, void *data)
740 {
741 	struct drm_info_node *node = m->private;
742 	struct drm_device *dev = node->minor->dev;
743 	struct drm_i915_private *dev_priv = dev->dev_private;
744 	struct intel_engine_cs *ring;
745 	int ret, i;
746 
747 	ret = mutex_lock_interruptible(&dev->struct_mutex);
748 	if (ret)
749 		return ret;
750 	intel_runtime_pm_get(dev_priv);
751 
752 	for_each_ring(ring, dev_priv, i)
753 		i915_ring_seqno_info(m, ring);
754 
755 	intel_runtime_pm_put(dev_priv);
756 	mutex_unlock(&dev->struct_mutex);
757 
758 	return 0;
759 }
760 
761 
i915_interrupt_info(struct seq_file * m,void * data)762 static int i915_interrupt_info(struct seq_file *m, void *data)
763 {
764 	struct drm_info_node *node = m->private;
765 	struct drm_device *dev = node->minor->dev;
766 	struct drm_i915_private *dev_priv = dev->dev_private;
767 	struct intel_engine_cs *ring;
768 	int ret, i, pipe;
769 
770 	ret = mutex_lock_interruptible(&dev->struct_mutex);
771 	if (ret)
772 		return ret;
773 	intel_runtime_pm_get(dev_priv);
774 
775 	if (IS_CHERRYVIEW(dev)) {
776 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
777 			   I915_READ(GEN8_MASTER_IRQ));
778 
779 		seq_printf(m, "Display IER:\t%08x\n",
780 			   I915_READ(VLV_IER));
781 		seq_printf(m, "Display IIR:\t%08x\n",
782 			   I915_READ(VLV_IIR));
783 		seq_printf(m, "Display IIR_RW:\t%08x\n",
784 			   I915_READ(VLV_IIR_RW));
785 		seq_printf(m, "Display IMR:\t%08x\n",
786 			   I915_READ(VLV_IMR));
787 		for_each_pipe(dev_priv, pipe)
788 			seq_printf(m, "Pipe %c stat:\t%08x\n",
789 				   pipe_name(pipe),
790 				   I915_READ(PIPESTAT(pipe)));
791 
792 		seq_printf(m, "Port hotplug:\t%08x\n",
793 			   I915_READ(PORT_HOTPLUG_EN));
794 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
795 			   I915_READ(VLV_DPFLIPSTAT));
796 		seq_printf(m, "DPINVGTT:\t%08x\n",
797 			   I915_READ(DPINVGTT));
798 
799 		for (i = 0; i < 4; i++) {
800 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
801 				   i, I915_READ(GEN8_GT_IMR(i)));
802 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
803 				   i, I915_READ(GEN8_GT_IIR(i)));
804 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
805 				   i, I915_READ(GEN8_GT_IER(i)));
806 		}
807 
808 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
809 			   I915_READ(GEN8_PCU_IMR));
810 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
811 			   I915_READ(GEN8_PCU_IIR));
812 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
813 			   I915_READ(GEN8_PCU_IER));
814 	} else if (INTEL_INFO(dev)->gen >= 8) {
815 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
816 			   I915_READ(GEN8_MASTER_IRQ));
817 
818 		for (i = 0; i < 4; i++) {
819 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
820 				   i, I915_READ(GEN8_GT_IMR(i)));
821 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
822 				   i, I915_READ(GEN8_GT_IIR(i)));
823 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
824 				   i, I915_READ(GEN8_GT_IER(i)));
825 		}
826 
827 		for_each_pipe(dev_priv, pipe) {
828 			if (!intel_display_power_is_enabled(dev_priv,
829 						POWER_DOMAIN_PIPE(pipe))) {
830 				seq_printf(m, "Pipe %c power disabled\n",
831 					   pipe_name(pipe));
832 				continue;
833 			}
834 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
835 				   pipe_name(pipe),
836 				   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
837 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
838 				   pipe_name(pipe),
839 				   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
840 			seq_printf(m, "Pipe %c IER:\t%08x\n",
841 				   pipe_name(pipe),
842 				   I915_READ(GEN8_DE_PIPE_IER(pipe)));
843 		}
844 
845 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
846 			   I915_READ(GEN8_DE_PORT_IMR));
847 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
848 			   I915_READ(GEN8_DE_PORT_IIR));
849 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
850 			   I915_READ(GEN8_DE_PORT_IER));
851 
852 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
853 			   I915_READ(GEN8_DE_MISC_IMR));
854 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
855 			   I915_READ(GEN8_DE_MISC_IIR));
856 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
857 			   I915_READ(GEN8_DE_MISC_IER));
858 
859 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
860 			   I915_READ(GEN8_PCU_IMR));
861 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
862 			   I915_READ(GEN8_PCU_IIR));
863 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
864 			   I915_READ(GEN8_PCU_IER));
865 	} else if (IS_VALLEYVIEW(dev)) {
866 		seq_printf(m, "Display IER:\t%08x\n",
867 			   I915_READ(VLV_IER));
868 		seq_printf(m, "Display IIR:\t%08x\n",
869 			   I915_READ(VLV_IIR));
870 		seq_printf(m, "Display IIR_RW:\t%08x\n",
871 			   I915_READ(VLV_IIR_RW));
872 		seq_printf(m, "Display IMR:\t%08x\n",
873 			   I915_READ(VLV_IMR));
874 		for_each_pipe(dev_priv, pipe)
875 			seq_printf(m, "Pipe %c stat:\t%08x\n",
876 				   pipe_name(pipe),
877 				   I915_READ(PIPESTAT(pipe)));
878 
879 		seq_printf(m, "Master IER:\t%08x\n",
880 			   I915_READ(VLV_MASTER_IER));
881 
882 		seq_printf(m, "Render IER:\t%08x\n",
883 			   I915_READ(GTIER));
884 		seq_printf(m, "Render IIR:\t%08x\n",
885 			   I915_READ(GTIIR));
886 		seq_printf(m, "Render IMR:\t%08x\n",
887 			   I915_READ(GTIMR));
888 
889 		seq_printf(m, "PM IER:\t\t%08x\n",
890 			   I915_READ(GEN6_PMIER));
891 		seq_printf(m, "PM IIR:\t\t%08x\n",
892 			   I915_READ(GEN6_PMIIR));
893 		seq_printf(m, "PM IMR:\t\t%08x\n",
894 			   I915_READ(GEN6_PMIMR));
895 
896 		seq_printf(m, "Port hotplug:\t%08x\n",
897 			   I915_READ(PORT_HOTPLUG_EN));
898 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
899 			   I915_READ(VLV_DPFLIPSTAT));
900 		seq_printf(m, "DPINVGTT:\t%08x\n",
901 			   I915_READ(DPINVGTT));
902 
903 	} else if (!HAS_PCH_SPLIT(dev)) {
904 		seq_printf(m, "Interrupt enable:    %08x\n",
905 			   I915_READ(IER));
906 		seq_printf(m, "Interrupt identity:  %08x\n",
907 			   I915_READ(IIR));
908 		seq_printf(m, "Interrupt mask:      %08x\n",
909 			   I915_READ(IMR));
910 		for_each_pipe(dev_priv, pipe)
911 			seq_printf(m, "Pipe %c stat:         %08x\n",
912 				   pipe_name(pipe),
913 				   I915_READ(PIPESTAT(pipe)));
914 	} else {
915 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
916 			   I915_READ(DEIER));
917 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
918 			   I915_READ(DEIIR));
919 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
920 			   I915_READ(DEIMR));
921 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
922 			   I915_READ(SDEIER));
923 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
924 			   I915_READ(SDEIIR));
925 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
926 			   I915_READ(SDEIMR));
927 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
928 			   I915_READ(GTIER));
929 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
930 			   I915_READ(GTIIR));
931 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
932 			   I915_READ(GTIMR));
933 	}
934 	for_each_ring(ring, dev_priv, i) {
935 		if (INTEL_INFO(dev)->gen >= 6) {
936 			seq_printf(m,
937 				   "Graphics Interrupt mask (%s):	%08x\n",
938 				   ring->name, I915_READ_IMR(ring));
939 		}
940 		i915_ring_seqno_info(m, ring);
941 	}
942 	intel_runtime_pm_put(dev_priv);
943 	mutex_unlock(&dev->struct_mutex);
944 
945 	return 0;
946 }
947 
i915_gem_fence_regs_info(struct seq_file * m,void * data)948 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
949 {
950 	struct drm_info_node *node = m->private;
951 	struct drm_device *dev = node->minor->dev;
952 	struct drm_i915_private *dev_priv = dev->dev_private;
953 	int i, ret;
954 
955 	ret = mutex_lock_interruptible(&dev->struct_mutex);
956 	if (ret)
957 		return ret;
958 
959 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
960 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
961 		struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
962 
963 		seq_printf(m, "Fence %d, pin count = %d, object = ",
964 			   i, dev_priv->fence_regs[i].pin_count);
965 		if (obj == NULL)
966 			seq_puts(m, "unused");
967 		else
968 			describe_obj(m, obj);
969 		seq_putc(m, '\n');
970 	}
971 
972 	mutex_unlock(&dev->struct_mutex);
973 	return 0;
974 }
975 
i915_hws_info(struct seq_file * m,void * data)976 static int i915_hws_info(struct seq_file *m, void *data)
977 {
978 	struct drm_info_node *node = m->private;
979 	struct drm_device *dev = node->minor->dev;
980 	struct drm_i915_private *dev_priv = dev->dev_private;
981 	struct intel_engine_cs *ring;
982 	const u32 *hws;
983 	int i;
984 
985 	ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
986 	hws = ring->status_page.page_addr;
987 	if (hws == NULL)
988 		return 0;
989 
990 	for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
991 		seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
992 			   i * 4,
993 			   hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
994 	}
995 	return 0;
996 }
997 
998 static ssize_t
i915_error_state_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)999 i915_error_state_write(struct file *filp,
1000 		       const char __user *ubuf,
1001 		       size_t cnt,
1002 		       loff_t *ppos)
1003 {
1004 	struct i915_error_state_file_priv *error_priv = filp->private_data;
1005 	struct drm_device *dev = error_priv->dev;
1006 	int ret;
1007 
1008 	DRM_DEBUG_DRIVER("Resetting error state\n");
1009 
1010 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1011 	if (ret)
1012 		return ret;
1013 
1014 	i915_destroy_error_state(dev);
1015 	mutex_unlock(&dev->struct_mutex);
1016 
1017 	return cnt;
1018 }
1019 
i915_error_state_open(struct inode * inode,struct file * file)1020 static int i915_error_state_open(struct inode *inode, struct file *file)
1021 {
1022 	struct drm_device *dev = inode->i_private;
1023 	struct i915_error_state_file_priv *error_priv;
1024 
1025 	error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1026 	if (!error_priv)
1027 		return -ENOMEM;
1028 
1029 	error_priv->dev = dev;
1030 
1031 	i915_error_state_get(dev, error_priv);
1032 
1033 	file->private_data = error_priv;
1034 
1035 	return 0;
1036 }
1037 
i915_error_state_release(struct inode * inode,struct file * file)1038 static int i915_error_state_release(struct inode *inode, struct file *file)
1039 {
1040 	struct i915_error_state_file_priv *error_priv = file->private_data;
1041 
1042 	i915_error_state_put(error_priv);
1043 	kfree(error_priv);
1044 
1045 	return 0;
1046 }
1047 
i915_error_state_read(struct file * file,char __user * userbuf,size_t count,loff_t * pos)1048 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1049 				     size_t count, loff_t *pos)
1050 {
1051 	struct i915_error_state_file_priv *error_priv = file->private_data;
1052 	struct drm_i915_error_state_buf error_str;
1053 	loff_t tmp_pos = 0;
1054 	ssize_t ret_count = 0;
1055 	int ret;
1056 
1057 	ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1058 	if (ret)
1059 		return ret;
1060 
1061 	ret = i915_error_state_to_str(&error_str, error_priv);
1062 	if (ret)
1063 		goto out;
1064 
1065 	ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1066 					    error_str.buf,
1067 					    error_str.bytes);
1068 
1069 	if (ret_count < 0)
1070 		ret = ret_count;
1071 	else
1072 		*pos = error_str.start + ret_count;
1073 out:
1074 	i915_error_state_buf_release(&error_str);
1075 	return ret ?: ret_count;
1076 }
1077 
1078 static const struct file_operations i915_error_state_fops = {
1079 	.owner = THIS_MODULE,
1080 	.open = i915_error_state_open,
1081 	.read = i915_error_state_read,
1082 	.write = i915_error_state_write,
1083 	.llseek = default_llseek,
1084 	.release = i915_error_state_release,
1085 };
1086 
1087 static int
i915_next_seqno_get(void * data,u64 * val)1088 i915_next_seqno_get(void *data, u64 *val)
1089 {
1090 	struct drm_device *dev = data;
1091 	struct drm_i915_private *dev_priv = dev->dev_private;
1092 	int ret;
1093 
1094 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1095 	if (ret)
1096 		return ret;
1097 
1098 	*val = dev_priv->next_seqno;
1099 	mutex_unlock(&dev->struct_mutex);
1100 
1101 	return 0;
1102 }
1103 
1104 static int
i915_next_seqno_set(void * data,u64 val)1105 i915_next_seqno_set(void *data, u64 val)
1106 {
1107 	struct drm_device *dev = data;
1108 	int ret;
1109 
1110 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1111 	if (ret)
1112 		return ret;
1113 
1114 	ret = i915_gem_set_seqno(dev, val);
1115 	mutex_unlock(&dev->struct_mutex);
1116 
1117 	return ret;
1118 }
1119 
1120 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1121 			i915_next_seqno_get, i915_next_seqno_set,
1122 			"0x%llx\n");
1123 
i915_frequency_info(struct seq_file * m,void * unused)1124 static int i915_frequency_info(struct seq_file *m, void *unused)
1125 {
1126 	struct drm_info_node *node = m->private;
1127 	struct drm_device *dev = node->minor->dev;
1128 	struct drm_i915_private *dev_priv = dev->dev_private;
1129 	int ret = 0;
1130 
1131 	intel_runtime_pm_get(dev_priv);
1132 
1133 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1134 
1135 	if (IS_GEN5(dev)) {
1136 		u16 rgvswctl = I915_READ16(MEMSWCTL);
1137 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1138 
1139 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1140 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1141 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1142 			   MEMSTAT_VID_SHIFT);
1143 		seq_printf(m, "Current P-state: %d\n",
1144 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1145 	} else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1146 		   IS_BROADWELL(dev) || IS_GEN9(dev)) {
1147 		u32 rp_state_limits;
1148 		u32 gt_perf_status;
1149 		u32 rp_state_cap;
1150 		u32 rpmodectl, rpinclimit, rpdeclimit;
1151 		u32 rpstat, cagf, reqf;
1152 		u32 rpupei, rpcurup, rpprevup;
1153 		u32 rpdownei, rpcurdown, rpprevdown;
1154 		u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1155 		int max_freq;
1156 
1157 		rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1158 		if (IS_BROXTON(dev)) {
1159 			rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1160 			gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1161 		} else {
1162 			rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1163 			gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1164 		}
1165 
1166 		/* RPSTAT1 is in the GT power well */
1167 		ret = mutex_lock_interruptible(&dev->struct_mutex);
1168 		if (ret)
1169 			goto out;
1170 
1171 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1172 
1173 		reqf = I915_READ(GEN6_RPNSWREQ);
1174 		if (IS_GEN9(dev))
1175 			reqf >>= 23;
1176 		else {
1177 			reqf &= ~GEN6_TURBO_DISABLE;
1178 			if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1179 				reqf >>= 24;
1180 			else
1181 				reqf >>= 25;
1182 		}
1183 		reqf = intel_gpu_freq(dev_priv, reqf);
1184 
1185 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1186 		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1187 		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1188 
1189 		rpstat = I915_READ(GEN6_RPSTAT1);
1190 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1191 		rpcurup = I915_READ(GEN6_RP_CUR_UP);
1192 		rpprevup = I915_READ(GEN6_RP_PREV_UP);
1193 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1194 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1195 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1196 		if (IS_GEN9(dev))
1197 			cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1198 		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1199 			cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1200 		else
1201 			cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1202 		cagf = intel_gpu_freq(dev_priv, cagf);
1203 
1204 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1205 		mutex_unlock(&dev->struct_mutex);
1206 
1207 		if (IS_GEN6(dev) || IS_GEN7(dev)) {
1208 			pm_ier = I915_READ(GEN6_PMIER);
1209 			pm_imr = I915_READ(GEN6_PMIMR);
1210 			pm_isr = I915_READ(GEN6_PMISR);
1211 			pm_iir = I915_READ(GEN6_PMIIR);
1212 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1213 		} else {
1214 			pm_ier = I915_READ(GEN8_GT_IER(2));
1215 			pm_imr = I915_READ(GEN8_GT_IMR(2));
1216 			pm_isr = I915_READ(GEN8_GT_ISR(2));
1217 			pm_iir = I915_READ(GEN8_GT_IIR(2));
1218 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1219 		}
1220 		seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1221 			   pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1222 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1223 		seq_printf(m, "Render p-state ratio: %d\n",
1224 			   (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1225 		seq_printf(m, "Render p-state VID: %d\n",
1226 			   gt_perf_status & 0xff);
1227 		seq_printf(m, "Render p-state limit: %d\n",
1228 			   rp_state_limits & 0xff);
1229 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1230 		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1231 		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1232 		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1233 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1234 		seq_printf(m, "CAGF: %dMHz\n", cagf);
1235 		seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1236 			   GEN6_CURICONT_MASK);
1237 		seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1238 			   GEN6_CURBSYTAVG_MASK);
1239 		seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1240 			   GEN6_CURBSYTAVG_MASK);
1241 		seq_printf(m, "Up threshold: %d%%\n",
1242 			   dev_priv->rps.up_threshold);
1243 
1244 		seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1245 			   GEN6_CURIAVG_MASK);
1246 		seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1247 			   GEN6_CURBSYTAVG_MASK);
1248 		seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1249 			   GEN6_CURBSYTAVG_MASK);
1250 		seq_printf(m, "Down threshold: %d%%\n",
1251 			   dev_priv->rps.down_threshold);
1252 
1253 		max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1254 			    rp_state_cap >> 16) & 0xff;
1255 		max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1256 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1257 			   intel_gpu_freq(dev_priv, max_freq));
1258 
1259 		max_freq = (rp_state_cap & 0xff00) >> 8;
1260 		max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1261 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1262 			   intel_gpu_freq(dev_priv, max_freq));
1263 
1264 		max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1265 			    rp_state_cap >> 0) & 0xff;
1266 		max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1267 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1268 			   intel_gpu_freq(dev_priv, max_freq));
1269 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1270 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1271 
1272 		seq_printf(m, "Current freq: %d MHz\n",
1273 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1274 		seq_printf(m, "Actual freq: %d MHz\n", cagf);
1275 		seq_printf(m, "Idle freq: %d MHz\n",
1276 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1277 		seq_printf(m, "Min freq: %d MHz\n",
1278 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1279 		seq_printf(m, "Max freq: %d MHz\n",
1280 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1281 		seq_printf(m,
1282 			   "efficient (RPe) frequency: %d MHz\n",
1283 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1284 	} else if (IS_VALLEYVIEW(dev)) {
1285 		u32 freq_sts;
1286 
1287 		mutex_lock(&dev_priv->rps.hw_lock);
1288 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1289 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1290 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1291 
1292 		seq_printf(m, "actual GPU freq: %d MHz\n",
1293 			   intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1294 
1295 		seq_printf(m, "current GPU freq: %d MHz\n",
1296 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1297 
1298 		seq_printf(m, "max GPU freq: %d MHz\n",
1299 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1300 
1301 		seq_printf(m, "min GPU freq: %d MHz\n",
1302 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1303 
1304 		seq_printf(m, "idle GPU freq: %d MHz\n",
1305 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1306 
1307 		seq_printf(m,
1308 			   "efficient (RPe) frequency: %d MHz\n",
1309 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1310 		mutex_unlock(&dev_priv->rps.hw_lock);
1311 	} else {
1312 		seq_puts(m, "no P-state info available\n");
1313 	}
1314 
1315 	seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1316 	seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1317 	seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1318 
1319 out:
1320 	intel_runtime_pm_put(dev_priv);
1321 	return ret;
1322 }
1323 
i915_hangcheck_info(struct seq_file * m,void * unused)1324 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1325 {
1326 	struct drm_info_node *node = m->private;
1327 	struct drm_device *dev = node->minor->dev;
1328 	struct drm_i915_private *dev_priv = dev->dev_private;
1329 	struct intel_engine_cs *ring;
1330 	u64 acthd[I915_NUM_RINGS];
1331 	u32 seqno[I915_NUM_RINGS];
1332 	int i;
1333 
1334 	if (!i915.enable_hangcheck) {
1335 		seq_printf(m, "Hangcheck disabled\n");
1336 		return 0;
1337 	}
1338 
1339 	intel_runtime_pm_get(dev_priv);
1340 
1341 	for_each_ring(ring, dev_priv, i) {
1342 		seqno[i] = ring->get_seqno(ring, false);
1343 		acthd[i] = intel_ring_get_active_head(ring);
1344 	}
1345 
1346 	intel_runtime_pm_put(dev_priv);
1347 
1348 	if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1349 		seq_printf(m, "Hangcheck active, fires in %dms\n",
1350 			   jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1351 					    jiffies));
1352 	} else
1353 		seq_printf(m, "Hangcheck inactive\n");
1354 
1355 	for_each_ring(ring, dev_priv, i) {
1356 		seq_printf(m, "%s:\n", ring->name);
1357 		seq_printf(m, "\tseqno = %x [current %x]\n",
1358 			   ring->hangcheck.seqno, seqno[i]);
1359 		seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1360 			   (long long)ring->hangcheck.acthd,
1361 			   (long long)acthd[i]);
1362 		seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1363 			   (long long)ring->hangcheck.max_acthd);
1364 		seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1365 		seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1366 	}
1367 
1368 	return 0;
1369 }
1370 
ironlake_drpc_info(struct seq_file * m)1371 static int ironlake_drpc_info(struct seq_file *m)
1372 {
1373 	struct drm_info_node *node = m->private;
1374 	struct drm_device *dev = node->minor->dev;
1375 	struct drm_i915_private *dev_priv = dev->dev_private;
1376 	u32 rgvmodectl, rstdbyctl;
1377 	u16 crstandvid;
1378 	int ret;
1379 
1380 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1381 	if (ret)
1382 		return ret;
1383 	intel_runtime_pm_get(dev_priv);
1384 
1385 	rgvmodectl = I915_READ(MEMMODECTL);
1386 	rstdbyctl = I915_READ(RSTDBYCTL);
1387 	crstandvid = I915_READ16(CRSTANDVID);
1388 
1389 	intel_runtime_pm_put(dev_priv);
1390 	mutex_unlock(&dev->struct_mutex);
1391 
1392 	seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1393 	seq_printf(m, "Boost freq: %d\n",
1394 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1395 		   MEMMODE_BOOST_FREQ_SHIFT);
1396 	seq_printf(m, "HW control enabled: %s\n",
1397 		   yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1398 	seq_printf(m, "SW control enabled: %s\n",
1399 		   yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1400 	seq_printf(m, "Gated voltage change: %s\n",
1401 		   yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1402 	seq_printf(m, "Starting frequency: P%d\n",
1403 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1404 	seq_printf(m, "Max P-state: P%d\n",
1405 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1406 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1407 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1408 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1409 	seq_printf(m, "Render standby enabled: %s\n",
1410 		   yesno(!(rstdbyctl & RCX_SW_EXIT)));
1411 	seq_puts(m, "Current RS state: ");
1412 	switch (rstdbyctl & RSX_STATUS_MASK) {
1413 	case RSX_STATUS_ON:
1414 		seq_puts(m, "on\n");
1415 		break;
1416 	case RSX_STATUS_RC1:
1417 		seq_puts(m, "RC1\n");
1418 		break;
1419 	case RSX_STATUS_RC1E:
1420 		seq_puts(m, "RC1E\n");
1421 		break;
1422 	case RSX_STATUS_RS1:
1423 		seq_puts(m, "RS1\n");
1424 		break;
1425 	case RSX_STATUS_RS2:
1426 		seq_puts(m, "RS2 (RC6)\n");
1427 		break;
1428 	case RSX_STATUS_RS3:
1429 		seq_puts(m, "RC3 (RC6+)\n");
1430 		break;
1431 	default:
1432 		seq_puts(m, "unknown\n");
1433 		break;
1434 	}
1435 
1436 	return 0;
1437 }
1438 
i915_forcewake_domains(struct seq_file * m,void * data)1439 static int i915_forcewake_domains(struct seq_file *m, void *data)
1440 {
1441 	struct drm_info_node *node = m->private;
1442 	struct drm_device *dev = node->minor->dev;
1443 	struct drm_i915_private *dev_priv = dev->dev_private;
1444 	struct intel_uncore_forcewake_domain *fw_domain;
1445 	int i;
1446 
1447 	spin_lock_irq(&dev_priv->uncore.lock);
1448 	for_each_fw_domain(fw_domain, dev_priv, i) {
1449 		seq_printf(m, "%s.wake_count = %u\n",
1450 			   intel_uncore_forcewake_domain_to_str(i),
1451 			   fw_domain->wake_count);
1452 	}
1453 	spin_unlock_irq(&dev_priv->uncore.lock);
1454 
1455 	return 0;
1456 }
1457 
vlv_drpc_info(struct seq_file * m)1458 static int vlv_drpc_info(struct seq_file *m)
1459 {
1460 	struct drm_info_node *node = m->private;
1461 	struct drm_device *dev = node->minor->dev;
1462 	struct drm_i915_private *dev_priv = dev->dev_private;
1463 	u32 rpmodectl1, rcctl1, pw_status;
1464 
1465 	intel_runtime_pm_get(dev_priv);
1466 
1467 	pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1468 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1469 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1470 
1471 	intel_runtime_pm_put(dev_priv);
1472 
1473 	seq_printf(m, "Video Turbo Mode: %s\n",
1474 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1475 	seq_printf(m, "Turbo enabled: %s\n",
1476 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1477 	seq_printf(m, "HW control enabled: %s\n",
1478 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1479 	seq_printf(m, "SW control enabled: %s\n",
1480 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1481 			  GEN6_RP_MEDIA_SW_MODE));
1482 	seq_printf(m, "RC6 Enabled: %s\n",
1483 		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1484 					GEN6_RC_CTL_EI_MODE(1))));
1485 	seq_printf(m, "Render Power Well: %s\n",
1486 		   (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1487 	seq_printf(m, "Media Power Well: %s\n",
1488 		   (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1489 
1490 	seq_printf(m, "Render RC6 residency since boot: %u\n",
1491 		   I915_READ(VLV_GT_RENDER_RC6));
1492 	seq_printf(m, "Media RC6 residency since boot: %u\n",
1493 		   I915_READ(VLV_GT_MEDIA_RC6));
1494 
1495 	return i915_forcewake_domains(m, NULL);
1496 }
1497 
gen6_drpc_info(struct seq_file * m)1498 static int gen6_drpc_info(struct seq_file *m)
1499 {
1500 	struct drm_info_node *node = m->private;
1501 	struct drm_device *dev = node->minor->dev;
1502 	struct drm_i915_private *dev_priv = dev->dev_private;
1503 	u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1504 	unsigned forcewake_count;
1505 	int count = 0, ret;
1506 
1507 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1508 	if (ret)
1509 		return ret;
1510 	intel_runtime_pm_get(dev_priv);
1511 
1512 	spin_lock_irq(&dev_priv->uncore.lock);
1513 	forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1514 	spin_unlock_irq(&dev_priv->uncore.lock);
1515 
1516 	if (forcewake_count) {
1517 		seq_puts(m, "RC information inaccurate because somebody "
1518 			    "holds a forcewake reference \n");
1519 	} else {
1520 		/* NB: we cannot use forcewake, else we read the wrong values */
1521 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1522 			udelay(10);
1523 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1524 	}
1525 
1526 	gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1527 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1528 
1529 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1530 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1531 	mutex_unlock(&dev->struct_mutex);
1532 	mutex_lock(&dev_priv->rps.hw_lock);
1533 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1534 	mutex_unlock(&dev_priv->rps.hw_lock);
1535 
1536 	intel_runtime_pm_put(dev_priv);
1537 
1538 	seq_printf(m, "Video Turbo Mode: %s\n",
1539 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1540 	seq_printf(m, "HW control enabled: %s\n",
1541 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1542 	seq_printf(m, "SW control enabled: %s\n",
1543 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1544 			  GEN6_RP_MEDIA_SW_MODE));
1545 	seq_printf(m, "RC1e Enabled: %s\n",
1546 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1547 	seq_printf(m, "RC6 Enabled: %s\n",
1548 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1549 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1550 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1551 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1552 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1553 	seq_puts(m, "Current RC state: ");
1554 	switch (gt_core_status & GEN6_RCn_MASK) {
1555 	case GEN6_RC0:
1556 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1557 			seq_puts(m, "Core Power Down\n");
1558 		else
1559 			seq_puts(m, "on\n");
1560 		break;
1561 	case GEN6_RC3:
1562 		seq_puts(m, "RC3\n");
1563 		break;
1564 	case GEN6_RC6:
1565 		seq_puts(m, "RC6\n");
1566 		break;
1567 	case GEN6_RC7:
1568 		seq_puts(m, "RC7\n");
1569 		break;
1570 	default:
1571 		seq_puts(m, "Unknown\n");
1572 		break;
1573 	}
1574 
1575 	seq_printf(m, "Core Power Down: %s\n",
1576 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1577 
1578 	/* Not exactly sure what this is */
1579 	seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1580 		   I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1581 	seq_printf(m, "RC6 residency since boot: %u\n",
1582 		   I915_READ(GEN6_GT_GFX_RC6));
1583 	seq_printf(m, "RC6+ residency since boot: %u\n",
1584 		   I915_READ(GEN6_GT_GFX_RC6p));
1585 	seq_printf(m, "RC6++ residency since boot: %u\n",
1586 		   I915_READ(GEN6_GT_GFX_RC6pp));
1587 
1588 	seq_printf(m, "RC6   voltage: %dmV\n",
1589 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1590 	seq_printf(m, "RC6+  voltage: %dmV\n",
1591 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1592 	seq_printf(m, "RC6++ voltage: %dmV\n",
1593 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1594 	return 0;
1595 }
1596 
i915_drpc_info(struct seq_file * m,void * unused)1597 static int i915_drpc_info(struct seq_file *m, void *unused)
1598 {
1599 	struct drm_info_node *node = m->private;
1600 	struct drm_device *dev = node->minor->dev;
1601 
1602 	if (IS_VALLEYVIEW(dev))
1603 		return vlv_drpc_info(m);
1604 	else if (INTEL_INFO(dev)->gen >= 6)
1605 		return gen6_drpc_info(m);
1606 	else
1607 		return ironlake_drpc_info(m);
1608 }
1609 
i915_frontbuffer_tracking(struct seq_file * m,void * unused)1610 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1611 {
1612 	struct drm_info_node *node = m->private;
1613 	struct drm_device *dev = node->minor->dev;
1614 	struct drm_i915_private *dev_priv = dev->dev_private;
1615 
1616 	seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1617 		   dev_priv->fb_tracking.busy_bits);
1618 
1619 	seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1620 		   dev_priv->fb_tracking.flip_bits);
1621 
1622 	return 0;
1623 }
1624 
i915_fbc_status(struct seq_file * m,void * unused)1625 static int i915_fbc_status(struct seq_file *m, void *unused)
1626 {
1627 	struct drm_info_node *node = m->private;
1628 	struct drm_device *dev = node->minor->dev;
1629 	struct drm_i915_private *dev_priv = dev->dev_private;
1630 
1631 	if (!HAS_FBC(dev)) {
1632 		seq_puts(m, "FBC unsupported on this chipset\n");
1633 		return 0;
1634 	}
1635 
1636 	intel_runtime_pm_get(dev_priv);
1637 	mutex_lock(&dev_priv->fbc.lock);
1638 
1639 	if (intel_fbc_enabled(dev_priv))
1640 		seq_puts(m, "FBC enabled\n");
1641 	else
1642 		seq_printf(m, "FBC disabled: %s\n",
1643 			  intel_no_fbc_reason_str(dev_priv->fbc.no_fbc_reason));
1644 
1645 	if (INTEL_INFO(dev_priv)->gen >= 7)
1646 		seq_printf(m, "Compressing: %s\n",
1647 			   yesno(I915_READ(FBC_STATUS2) &
1648 				 FBC_COMPRESSION_MASK));
1649 
1650 	mutex_unlock(&dev_priv->fbc.lock);
1651 	intel_runtime_pm_put(dev_priv);
1652 
1653 	return 0;
1654 }
1655 
i915_fbc_fc_get(void * data,u64 * val)1656 static int i915_fbc_fc_get(void *data, u64 *val)
1657 {
1658 	struct drm_device *dev = data;
1659 	struct drm_i915_private *dev_priv = dev->dev_private;
1660 
1661 	if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1662 		return -ENODEV;
1663 
1664 	*val = dev_priv->fbc.false_color;
1665 
1666 	return 0;
1667 }
1668 
i915_fbc_fc_set(void * data,u64 val)1669 static int i915_fbc_fc_set(void *data, u64 val)
1670 {
1671 	struct drm_device *dev = data;
1672 	struct drm_i915_private *dev_priv = dev->dev_private;
1673 	u32 reg;
1674 
1675 	if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1676 		return -ENODEV;
1677 
1678 	mutex_lock(&dev_priv->fbc.lock);
1679 
1680 	reg = I915_READ(ILK_DPFC_CONTROL);
1681 	dev_priv->fbc.false_color = val;
1682 
1683 	I915_WRITE(ILK_DPFC_CONTROL, val ?
1684 		   (reg | FBC_CTL_FALSE_COLOR) :
1685 		   (reg & ~FBC_CTL_FALSE_COLOR));
1686 
1687 	mutex_unlock(&dev_priv->fbc.lock);
1688 	return 0;
1689 }
1690 
1691 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1692 			i915_fbc_fc_get, i915_fbc_fc_set,
1693 			"%llu\n");
1694 
i915_ips_status(struct seq_file * m,void * unused)1695 static int i915_ips_status(struct seq_file *m, void *unused)
1696 {
1697 	struct drm_info_node *node = m->private;
1698 	struct drm_device *dev = node->minor->dev;
1699 	struct drm_i915_private *dev_priv = dev->dev_private;
1700 
1701 	if (!HAS_IPS(dev)) {
1702 		seq_puts(m, "not supported\n");
1703 		return 0;
1704 	}
1705 
1706 	intel_runtime_pm_get(dev_priv);
1707 
1708 	seq_printf(m, "Enabled by kernel parameter: %s\n",
1709 		   yesno(i915.enable_ips));
1710 
1711 	if (INTEL_INFO(dev)->gen >= 8) {
1712 		seq_puts(m, "Currently: unknown\n");
1713 	} else {
1714 		if (I915_READ(IPS_CTL) & IPS_ENABLE)
1715 			seq_puts(m, "Currently: enabled\n");
1716 		else
1717 			seq_puts(m, "Currently: disabled\n");
1718 	}
1719 
1720 	intel_runtime_pm_put(dev_priv);
1721 
1722 	return 0;
1723 }
1724 
i915_sr_status(struct seq_file * m,void * unused)1725 static int i915_sr_status(struct seq_file *m, void *unused)
1726 {
1727 	struct drm_info_node *node = m->private;
1728 	struct drm_device *dev = node->minor->dev;
1729 	struct drm_i915_private *dev_priv = dev->dev_private;
1730 	bool sr_enabled = false;
1731 
1732 	intel_runtime_pm_get(dev_priv);
1733 
1734 	if (HAS_PCH_SPLIT(dev))
1735 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1736 	else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1737 		 IS_I945G(dev) || IS_I945GM(dev))
1738 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1739 	else if (IS_I915GM(dev))
1740 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1741 	else if (IS_PINEVIEW(dev))
1742 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1743 	else if (IS_VALLEYVIEW(dev))
1744 		sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1745 
1746 	intel_runtime_pm_put(dev_priv);
1747 
1748 	seq_printf(m, "self-refresh: %s\n",
1749 		   sr_enabled ? "enabled" : "disabled");
1750 
1751 	return 0;
1752 }
1753 
i915_emon_status(struct seq_file * m,void * unused)1754 static int i915_emon_status(struct seq_file *m, void *unused)
1755 {
1756 	struct drm_info_node *node = m->private;
1757 	struct drm_device *dev = node->minor->dev;
1758 	struct drm_i915_private *dev_priv = dev->dev_private;
1759 	unsigned long temp, chipset, gfx;
1760 	int ret;
1761 
1762 	if (!IS_GEN5(dev))
1763 		return -ENODEV;
1764 
1765 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1766 	if (ret)
1767 		return ret;
1768 
1769 	temp = i915_mch_val(dev_priv);
1770 	chipset = i915_chipset_val(dev_priv);
1771 	gfx = i915_gfx_val(dev_priv);
1772 	mutex_unlock(&dev->struct_mutex);
1773 
1774 	seq_printf(m, "GMCH temp: %ld\n", temp);
1775 	seq_printf(m, "Chipset power: %ld\n", chipset);
1776 	seq_printf(m, "GFX power: %ld\n", gfx);
1777 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1778 
1779 	return 0;
1780 }
1781 
i915_ring_freq_table(struct seq_file * m,void * unused)1782 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1783 {
1784 	struct drm_info_node *node = m->private;
1785 	struct drm_device *dev = node->minor->dev;
1786 	struct drm_i915_private *dev_priv = dev->dev_private;
1787 	int ret = 0;
1788 	int gpu_freq, ia_freq;
1789 	unsigned int max_gpu_freq, min_gpu_freq;
1790 
1791 	if (!HAS_CORE_RING_FREQ(dev)) {
1792 		seq_puts(m, "unsupported on this chipset\n");
1793 		return 0;
1794 	}
1795 
1796 	intel_runtime_pm_get(dev_priv);
1797 
1798 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1799 
1800 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1801 	if (ret)
1802 		goto out;
1803 
1804 	if (IS_SKYLAKE(dev)) {
1805 		/* Convert GT frequency to 50 HZ units */
1806 		min_gpu_freq =
1807 			dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1808 		max_gpu_freq =
1809 			dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1810 	} else {
1811 		min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1812 		max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1813 	}
1814 
1815 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1816 
1817 	for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1818 		ia_freq = gpu_freq;
1819 		sandybridge_pcode_read(dev_priv,
1820 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1821 				       &ia_freq);
1822 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1823 			   intel_gpu_freq(dev_priv, (gpu_freq *
1824 				(IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1))),
1825 			   ((ia_freq >> 0) & 0xff) * 100,
1826 			   ((ia_freq >> 8) & 0xff) * 100);
1827 	}
1828 
1829 	mutex_unlock(&dev_priv->rps.hw_lock);
1830 
1831 out:
1832 	intel_runtime_pm_put(dev_priv);
1833 	return ret;
1834 }
1835 
i915_opregion(struct seq_file * m,void * unused)1836 static int i915_opregion(struct seq_file *m, void *unused)
1837 {
1838 	struct drm_info_node *node = m->private;
1839 	struct drm_device *dev = node->minor->dev;
1840 	struct drm_i915_private *dev_priv = dev->dev_private;
1841 	struct intel_opregion *opregion = &dev_priv->opregion;
1842 	void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1843 	int ret;
1844 
1845 	if (data == NULL)
1846 		return -ENOMEM;
1847 
1848 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1849 	if (ret)
1850 		goto out;
1851 
1852 	if (opregion->header) {
1853 		memcpy(data, opregion->header, OPREGION_SIZE);
1854 		seq_write(m, data, OPREGION_SIZE);
1855 	}
1856 
1857 	mutex_unlock(&dev->struct_mutex);
1858 
1859 out:
1860 	kfree(data);
1861 	return 0;
1862 }
1863 
i915_gem_framebuffer_info(struct seq_file * m,void * data)1864 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1865 {
1866 	struct drm_info_node *node = m->private;
1867 	struct drm_device *dev = node->minor->dev;
1868 	struct intel_fbdev *ifbdev = NULL;
1869 	struct intel_framebuffer *fb;
1870 	struct drm_framebuffer *drm_fb;
1871 
1872 #ifdef CONFIG_DRM_FBDEV_EMULATION
1873 	struct drm_i915_private *dev_priv = dev->dev_private;
1874 
1875 	ifbdev = dev_priv->fbdev;
1876 	fb = to_intel_framebuffer(ifbdev->helper.fb);
1877 
1878 	seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1879 		   fb->base.width,
1880 		   fb->base.height,
1881 		   fb->base.depth,
1882 		   fb->base.bits_per_pixel,
1883 		   fb->base.modifier[0],
1884 		   atomic_read(&fb->base.refcount.refcount));
1885 	describe_obj(m, fb->obj);
1886 	seq_putc(m, '\n');
1887 #endif
1888 
1889 	mutex_lock(&dev->mode_config.fb_lock);
1890 	drm_for_each_fb(drm_fb, dev) {
1891 		fb = to_intel_framebuffer(drm_fb);
1892 		if (ifbdev && &fb->base == ifbdev->helper.fb)
1893 			continue;
1894 
1895 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1896 			   fb->base.width,
1897 			   fb->base.height,
1898 			   fb->base.depth,
1899 			   fb->base.bits_per_pixel,
1900 			   fb->base.modifier[0],
1901 			   atomic_read(&fb->base.refcount.refcount));
1902 		describe_obj(m, fb->obj);
1903 		seq_putc(m, '\n');
1904 	}
1905 	mutex_unlock(&dev->mode_config.fb_lock);
1906 
1907 	return 0;
1908 }
1909 
describe_ctx_ringbuf(struct seq_file * m,struct intel_ringbuffer * ringbuf)1910 static void describe_ctx_ringbuf(struct seq_file *m,
1911 				 struct intel_ringbuffer *ringbuf)
1912 {
1913 	seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1914 		   ringbuf->space, ringbuf->head, ringbuf->tail,
1915 		   ringbuf->last_retired_head);
1916 }
1917 
i915_context_status(struct seq_file * m,void * unused)1918 static int i915_context_status(struct seq_file *m, void *unused)
1919 {
1920 	struct drm_info_node *node = m->private;
1921 	struct drm_device *dev = node->minor->dev;
1922 	struct drm_i915_private *dev_priv = dev->dev_private;
1923 	struct intel_engine_cs *ring;
1924 	struct intel_context *ctx;
1925 	int ret, i;
1926 
1927 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1928 	if (ret)
1929 		return ret;
1930 
1931 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1932 		if (!i915.enable_execlists &&
1933 		    ctx->legacy_hw_ctx.rcs_state == NULL)
1934 			continue;
1935 
1936 		seq_puts(m, "HW context ");
1937 		describe_ctx(m, ctx);
1938 		for_each_ring(ring, dev_priv, i) {
1939 			if (ring->default_context == ctx)
1940 				seq_printf(m, "(default context %s) ",
1941 					   ring->name);
1942 		}
1943 
1944 		if (i915.enable_execlists) {
1945 			seq_putc(m, '\n');
1946 			for_each_ring(ring, dev_priv, i) {
1947 				struct drm_i915_gem_object *ctx_obj =
1948 					ctx->engine[i].state;
1949 				struct intel_ringbuffer *ringbuf =
1950 					ctx->engine[i].ringbuf;
1951 
1952 				seq_printf(m, "%s: ", ring->name);
1953 				if (ctx_obj)
1954 					describe_obj(m, ctx_obj);
1955 				if (ringbuf)
1956 					describe_ctx_ringbuf(m, ringbuf);
1957 				seq_putc(m, '\n');
1958 			}
1959 		} else {
1960 			describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1961 		}
1962 
1963 		seq_putc(m, '\n');
1964 	}
1965 
1966 	mutex_unlock(&dev->struct_mutex);
1967 
1968 	return 0;
1969 }
1970 
i915_dump_lrc_obj(struct seq_file * m,struct intel_engine_cs * ring,struct drm_i915_gem_object * ctx_obj)1971 static void i915_dump_lrc_obj(struct seq_file *m,
1972 			      struct intel_engine_cs *ring,
1973 			      struct drm_i915_gem_object *ctx_obj)
1974 {
1975 	struct page *page;
1976 	uint32_t *reg_state;
1977 	int j;
1978 	unsigned long ggtt_offset = 0;
1979 
1980 	if (ctx_obj == NULL) {
1981 		seq_printf(m, "Context on %s with no gem object\n",
1982 			   ring->name);
1983 		return;
1984 	}
1985 
1986 	seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1987 		   intel_execlists_ctx_id(ctx_obj));
1988 
1989 	if (!i915_gem_obj_ggtt_bound(ctx_obj))
1990 		seq_puts(m, "\tNot bound in GGTT\n");
1991 	else
1992 		ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
1993 
1994 	if (i915_gem_object_get_pages(ctx_obj)) {
1995 		seq_puts(m, "\tFailed to get pages for context object\n");
1996 		return;
1997 	}
1998 
1999 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2000 	if (!WARN_ON(page == NULL)) {
2001 		reg_state = kmap_atomic(page);
2002 
2003 		for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2004 			seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2005 				   ggtt_offset + 4096 + (j * 4),
2006 				   reg_state[j], reg_state[j + 1],
2007 				   reg_state[j + 2], reg_state[j + 3]);
2008 		}
2009 		kunmap_atomic(reg_state);
2010 	}
2011 
2012 	seq_putc(m, '\n');
2013 }
2014 
i915_dump_lrc(struct seq_file * m,void * unused)2015 static int i915_dump_lrc(struct seq_file *m, void *unused)
2016 {
2017 	struct drm_info_node *node = (struct drm_info_node *) m->private;
2018 	struct drm_device *dev = node->minor->dev;
2019 	struct drm_i915_private *dev_priv = dev->dev_private;
2020 	struct intel_engine_cs *ring;
2021 	struct intel_context *ctx;
2022 	int ret, i;
2023 
2024 	if (!i915.enable_execlists) {
2025 		seq_printf(m, "Logical Ring Contexts are disabled\n");
2026 		return 0;
2027 	}
2028 
2029 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2030 	if (ret)
2031 		return ret;
2032 
2033 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2034 		for_each_ring(ring, dev_priv, i) {
2035 			if (ring->default_context != ctx)
2036 				i915_dump_lrc_obj(m, ring,
2037 						  ctx->engine[i].state);
2038 		}
2039 	}
2040 
2041 	mutex_unlock(&dev->struct_mutex);
2042 
2043 	return 0;
2044 }
2045 
i915_execlists(struct seq_file * m,void * data)2046 static int i915_execlists(struct seq_file *m, void *data)
2047 {
2048 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2049 	struct drm_device *dev = node->minor->dev;
2050 	struct drm_i915_private *dev_priv = dev->dev_private;
2051 	struct intel_engine_cs *ring;
2052 	u32 status_pointer;
2053 	u8 read_pointer;
2054 	u8 write_pointer;
2055 	u32 status;
2056 	u32 ctx_id;
2057 	struct list_head *cursor;
2058 	int ring_id, i;
2059 	int ret;
2060 
2061 	if (!i915.enable_execlists) {
2062 		seq_puts(m, "Logical Ring Contexts are disabled\n");
2063 		return 0;
2064 	}
2065 
2066 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2067 	if (ret)
2068 		return ret;
2069 
2070 	intel_runtime_pm_get(dev_priv);
2071 
2072 	for_each_ring(ring, dev_priv, ring_id) {
2073 		struct drm_i915_gem_request *head_req = NULL;
2074 		int count = 0;
2075 		unsigned long flags;
2076 
2077 		seq_printf(m, "%s\n", ring->name);
2078 
2079 		status = I915_READ(RING_EXECLIST_STATUS_LO(ring));
2080 		ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(ring));
2081 		seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2082 			   status, ctx_id);
2083 
2084 		status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2085 		seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2086 
2087 		read_pointer = ring->next_context_status_buffer;
2088 		write_pointer = status_pointer & 0x07;
2089 		if (read_pointer > write_pointer)
2090 			write_pointer += 6;
2091 		seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2092 			   read_pointer, write_pointer);
2093 
2094 		for (i = 0; i < 6; i++) {
2095 			status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, i));
2096 			ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, i));
2097 
2098 			seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2099 				   i, status, ctx_id);
2100 		}
2101 
2102 		spin_lock_irqsave(&ring->execlist_lock, flags);
2103 		list_for_each(cursor, &ring->execlist_queue)
2104 			count++;
2105 		head_req = list_first_entry_or_null(&ring->execlist_queue,
2106 				struct drm_i915_gem_request, execlist_link);
2107 		spin_unlock_irqrestore(&ring->execlist_lock, flags);
2108 
2109 		seq_printf(m, "\t%d requests in queue\n", count);
2110 		if (head_req) {
2111 			struct drm_i915_gem_object *ctx_obj;
2112 
2113 			ctx_obj = head_req->ctx->engine[ring_id].state;
2114 			seq_printf(m, "\tHead request id: %u\n",
2115 				   intel_execlists_ctx_id(ctx_obj));
2116 			seq_printf(m, "\tHead request tail: %u\n",
2117 				   head_req->tail);
2118 		}
2119 
2120 		seq_putc(m, '\n');
2121 	}
2122 
2123 	intel_runtime_pm_put(dev_priv);
2124 	mutex_unlock(&dev->struct_mutex);
2125 
2126 	return 0;
2127 }
2128 
swizzle_string(unsigned swizzle)2129 static const char *swizzle_string(unsigned swizzle)
2130 {
2131 	switch (swizzle) {
2132 	case I915_BIT_6_SWIZZLE_NONE:
2133 		return "none";
2134 	case I915_BIT_6_SWIZZLE_9:
2135 		return "bit9";
2136 	case I915_BIT_6_SWIZZLE_9_10:
2137 		return "bit9/bit10";
2138 	case I915_BIT_6_SWIZZLE_9_11:
2139 		return "bit9/bit11";
2140 	case I915_BIT_6_SWIZZLE_9_10_11:
2141 		return "bit9/bit10/bit11";
2142 	case I915_BIT_6_SWIZZLE_9_17:
2143 		return "bit9/bit17";
2144 	case I915_BIT_6_SWIZZLE_9_10_17:
2145 		return "bit9/bit10/bit17";
2146 	case I915_BIT_6_SWIZZLE_UNKNOWN:
2147 		return "unknown";
2148 	}
2149 
2150 	return "bug";
2151 }
2152 
i915_swizzle_info(struct seq_file * m,void * data)2153 static int i915_swizzle_info(struct seq_file *m, void *data)
2154 {
2155 	struct drm_info_node *node = m->private;
2156 	struct drm_device *dev = node->minor->dev;
2157 	struct drm_i915_private *dev_priv = dev->dev_private;
2158 	int ret;
2159 
2160 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2161 	if (ret)
2162 		return ret;
2163 	intel_runtime_pm_get(dev_priv);
2164 
2165 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2166 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2167 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2168 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2169 
2170 	if (IS_GEN3(dev) || IS_GEN4(dev)) {
2171 		seq_printf(m, "DDC = 0x%08x\n",
2172 			   I915_READ(DCC));
2173 		seq_printf(m, "DDC2 = 0x%08x\n",
2174 			   I915_READ(DCC2));
2175 		seq_printf(m, "C0DRB3 = 0x%04x\n",
2176 			   I915_READ16(C0DRB3));
2177 		seq_printf(m, "C1DRB3 = 0x%04x\n",
2178 			   I915_READ16(C1DRB3));
2179 	} else if (INTEL_INFO(dev)->gen >= 6) {
2180 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2181 			   I915_READ(MAD_DIMM_C0));
2182 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2183 			   I915_READ(MAD_DIMM_C1));
2184 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2185 			   I915_READ(MAD_DIMM_C2));
2186 		seq_printf(m, "TILECTL = 0x%08x\n",
2187 			   I915_READ(TILECTL));
2188 		if (INTEL_INFO(dev)->gen >= 8)
2189 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2190 				   I915_READ(GAMTARBMODE));
2191 		else
2192 			seq_printf(m, "ARB_MODE = 0x%08x\n",
2193 				   I915_READ(ARB_MODE));
2194 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2195 			   I915_READ(DISP_ARB_CTL));
2196 	}
2197 
2198 	if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2199 		seq_puts(m, "L-shaped memory detected\n");
2200 
2201 	intel_runtime_pm_put(dev_priv);
2202 	mutex_unlock(&dev->struct_mutex);
2203 
2204 	return 0;
2205 }
2206 
per_file_ctx(int id,void * ptr,void * data)2207 static int per_file_ctx(int id, void *ptr, void *data)
2208 {
2209 	struct intel_context *ctx = ptr;
2210 	struct seq_file *m = data;
2211 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2212 
2213 	if (!ppgtt) {
2214 		seq_printf(m, "  no ppgtt for context %d\n",
2215 			   ctx->user_handle);
2216 		return 0;
2217 	}
2218 
2219 	if (i915_gem_context_is_default(ctx))
2220 		seq_puts(m, "  default context:\n");
2221 	else
2222 		seq_printf(m, "  context %d:\n", ctx->user_handle);
2223 	ppgtt->debug_dump(ppgtt, m);
2224 
2225 	return 0;
2226 }
2227 
gen8_ppgtt_info(struct seq_file * m,struct drm_device * dev)2228 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2229 {
2230 	struct drm_i915_private *dev_priv = dev->dev_private;
2231 	struct intel_engine_cs *ring;
2232 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2233 	int unused, i;
2234 
2235 	if (!ppgtt)
2236 		return;
2237 
2238 	for_each_ring(ring, dev_priv, unused) {
2239 		seq_printf(m, "%s\n", ring->name);
2240 		for (i = 0; i < 4; i++) {
2241 			u64 pdp = I915_READ(GEN8_RING_PDP_UDW(ring, i));
2242 			pdp <<= 32;
2243 			pdp |= I915_READ(GEN8_RING_PDP_LDW(ring, i));
2244 			seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2245 		}
2246 	}
2247 }
2248 
gen6_ppgtt_info(struct seq_file * m,struct drm_device * dev)2249 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2250 {
2251 	struct drm_i915_private *dev_priv = dev->dev_private;
2252 	struct intel_engine_cs *ring;
2253 	int i;
2254 
2255 	if (INTEL_INFO(dev)->gen == 6)
2256 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2257 
2258 	for_each_ring(ring, dev_priv, i) {
2259 		seq_printf(m, "%s\n", ring->name);
2260 		if (INTEL_INFO(dev)->gen == 7)
2261 			seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2262 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2263 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2264 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2265 	}
2266 	if (dev_priv->mm.aliasing_ppgtt) {
2267 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2268 
2269 		seq_puts(m, "aliasing PPGTT:\n");
2270 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2271 
2272 		ppgtt->debug_dump(ppgtt, m);
2273 	}
2274 
2275 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2276 }
2277 
i915_ppgtt_info(struct seq_file * m,void * data)2278 static int i915_ppgtt_info(struct seq_file *m, void *data)
2279 {
2280 	struct drm_info_node *node = m->private;
2281 	struct drm_device *dev = node->minor->dev;
2282 	struct drm_i915_private *dev_priv = dev->dev_private;
2283 	struct drm_file *file;
2284 
2285 	int ret = mutex_lock_interruptible(&dev->struct_mutex);
2286 	if (ret)
2287 		return ret;
2288 	intel_runtime_pm_get(dev_priv);
2289 
2290 	if (INTEL_INFO(dev)->gen >= 8)
2291 		gen8_ppgtt_info(m, dev);
2292 	else if (INTEL_INFO(dev)->gen >= 6)
2293 		gen6_ppgtt_info(m, dev);
2294 
2295 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2296 		struct drm_i915_file_private *file_priv = file->driver_priv;
2297 		struct task_struct *task;
2298 
2299 		task = get_pid_task(file->pid, PIDTYPE_PID);
2300 		if (!task) {
2301 			ret = -ESRCH;
2302 			goto out_put;
2303 		}
2304 		seq_printf(m, "\nproc: %s\n", task->comm);
2305 		put_task_struct(task);
2306 		idr_for_each(&file_priv->context_idr, per_file_ctx,
2307 			     (void *)(unsigned long)m);
2308 	}
2309 
2310 out_put:
2311 	intel_runtime_pm_put(dev_priv);
2312 	mutex_unlock(&dev->struct_mutex);
2313 
2314 	return ret;
2315 }
2316 
count_irq_waiters(struct drm_i915_private * i915)2317 static int count_irq_waiters(struct drm_i915_private *i915)
2318 {
2319 	struct intel_engine_cs *ring;
2320 	int count = 0;
2321 	int i;
2322 
2323 	for_each_ring(ring, i915, i)
2324 		count += ring->irq_refcount;
2325 
2326 	return count;
2327 }
2328 
i915_rps_boost_info(struct seq_file * m,void * data)2329 static int i915_rps_boost_info(struct seq_file *m, void *data)
2330 {
2331 	struct drm_info_node *node = m->private;
2332 	struct drm_device *dev = node->minor->dev;
2333 	struct drm_i915_private *dev_priv = dev->dev_private;
2334 	struct drm_file *file;
2335 
2336 	seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2337 	seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2338 	seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2339 	seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2340 		   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2341 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2342 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2343 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2344 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2345 	spin_lock(&dev_priv->rps.client_lock);
2346 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2347 		struct drm_i915_file_private *file_priv = file->driver_priv;
2348 		struct task_struct *task;
2349 
2350 		rcu_read_lock();
2351 		task = pid_task(file->pid, PIDTYPE_PID);
2352 		seq_printf(m, "%s [%d]: %d boosts%s\n",
2353 			   task ? task->comm : "<unknown>",
2354 			   task ? task->pid : -1,
2355 			   file_priv->rps.boosts,
2356 			   list_empty(&file_priv->rps.link) ? "" : ", active");
2357 		rcu_read_unlock();
2358 	}
2359 	seq_printf(m, "Semaphore boosts: %d%s\n",
2360 		   dev_priv->rps.semaphores.boosts,
2361 		   list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2362 	seq_printf(m, "MMIO flip boosts: %d%s\n",
2363 		   dev_priv->rps.mmioflips.boosts,
2364 		   list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2365 	seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2366 	spin_unlock(&dev_priv->rps.client_lock);
2367 
2368 	return 0;
2369 }
2370 
i915_llc(struct seq_file * m,void * data)2371 static int i915_llc(struct seq_file *m, void *data)
2372 {
2373 	struct drm_info_node *node = m->private;
2374 	struct drm_device *dev = node->minor->dev;
2375 	struct drm_i915_private *dev_priv = dev->dev_private;
2376 
2377 	/* Size calculation for LLC is a bit of a pain. Ignore for now. */
2378 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2379 	seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2380 
2381 	return 0;
2382 }
2383 
i915_guc_load_status_info(struct seq_file * m,void * data)2384 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2385 {
2386 	struct drm_info_node *node = m->private;
2387 	struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2388 	struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2389 	u32 tmp, i;
2390 
2391 	if (!HAS_GUC_UCODE(dev_priv->dev))
2392 		return 0;
2393 
2394 	seq_printf(m, "GuC firmware status:\n");
2395 	seq_printf(m, "\tpath: %s\n",
2396 		guc_fw->guc_fw_path);
2397 	seq_printf(m, "\tfetch: %s\n",
2398 		intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2399 	seq_printf(m, "\tload: %s\n",
2400 		intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2401 	seq_printf(m, "\tversion wanted: %d.%d\n",
2402 		guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2403 	seq_printf(m, "\tversion found: %d.%d\n",
2404 		guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2405 
2406 	tmp = I915_READ(GUC_STATUS);
2407 
2408 	seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2409 	seq_printf(m, "\tBootrom status = 0x%x\n",
2410 		(tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2411 	seq_printf(m, "\tuKernel status = 0x%x\n",
2412 		(tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2413 	seq_printf(m, "\tMIA Core status = 0x%x\n",
2414 		(tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2415 	seq_puts(m, "\nScratch registers:\n");
2416 	for (i = 0; i < 16; i++)
2417 		seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2418 
2419 	return 0;
2420 }
2421 
i915_guc_client_info(struct seq_file * m,struct drm_i915_private * dev_priv,struct i915_guc_client * client)2422 static void i915_guc_client_info(struct seq_file *m,
2423 				 struct drm_i915_private *dev_priv,
2424 				 struct i915_guc_client *client)
2425 {
2426 	struct intel_engine_cs *ring;
2427 	uint64_t tot = 0;
2428 	uint32_t i;
2429 
2430 	seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2431 		client->priority, client->ctx_index, client->proc_desc_offset);
2432 	seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2433 		client->doorbell_id, client->doorbell_offset, client->cookie);
2434 	seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2435 		client->wq_size, client->wq_offset, client->wq_tail);
2436 
2437 	seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2438 	seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2439 	seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2440 
2441 	for_each_ring(ring, dev_priv, i) {
2442 		seq_printf(m, "\tSubmissions: %llu %s\n",
2443 				client->submissions[i],
2444 				ring->name);
2445 		tot += client->submissions[i];
2446 	}
2447 	seq_printf(m, "\tTotal: %llu\n", tot);
2448 }
2449 
i915_guc_info(struct seq_file * m,void * data)2450 static int i915_guc_info(struct seq_file *m, void *data)
2451 {
2452 	struct drm_info_node *node = m->private;
2453 	struct drm_device *dev = node->minor->dev;
2454 	struct drm_i915_private *dev_priv = dev->dev_private;
2455 	struct intel_guc guc;
2456 	struct i915_guc_client client = {};
2457 	struct intel_engine_cs *ring;
2458 	enum intel_ring_id i;
2459 	u64 total = 0;
2460 
2461 	if (!HAS_GUC_SCHED(dev_priv->dev))
2462 		return 0;
2463 
2464 	/* Take a local copy of the GuC data, so we can dump it at leisure */
2465 	spin_lock(&dev_priv->guc.host2guc_lock);
2466 	guc = dev_priv->guc;
2467 	if (guc.execbuf_client) {
2468 		spin_lock(&guc.execbuf_client->wq_lock);
2469 		client = *guc.execbuf_client;
2470 		spin_unlock(&guc.execbuf_client->wq_lock);
2471 	}
2472 	spin_unlock(&dev_priv->guc.host2guc_lock);
2473 
2474 	seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2475 	seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2476 	seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2477 	seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2478 	seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2479 
2480 	seq_printf(m, "\nGuC submissions:\n");
2481 	for_each_ring(ring, dev_priv, i) {
2482 		seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x %9d\n",
2483 			ring->name, guc.submissions[i],
2484 			guc.last_seqno[i], guc.last_seqno[i]);
2485 		total += guc.submissions[i];
2486 	}
2487 	seq_printf(m, "\t%s: %llu\n", "Total", total);
2488 
2489 	seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2490 	i915_guc_client_info(m, dev_priv, &client);
2491 
2492 	/* Add more as required ... */
2493 
2494 	return 0;
2495 }
2496 
i915_guc_log_dump(struct seq_file * m,void * data)2497 static int i915_guc_log_dump(struct seq_file *m, void *data)
2498 {
2499 	struct drm_info_node *node = m->private;
2500 	struct drm_device *dev = node->minor->dev;
2501 	struct drm_i915_private *dev_priv = dev->dev_private;
2502 	struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2503 	u32 *log;
2504 	int i = 0, pg;
2505 
2506 	if (!log_obj)
2507 		return 0;
2508 
2509 	for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2510 		log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2511 
2512 		for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2513 			seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2514 				   *(log + i), *(log + i + 1),
2515 				   *(log + i + 2), *(log + i + 3));
2516 
2517 		kunmap_atomic(log);
2518 	}
2519 
2520 	seq_putc(m, '\n');
2521 
2522 	return 0;
2523 }
2524 
i915_edp_psr_status(struct seq_file * m,void * data)2525 static int i915_edp_psr_status(struct seq_file *m, void *data)
2526 {
2527 	struct drm_info_node *node = m->private;
2528 	struct drm_device *dev = node->minor->dev;
2529 	struct drm_i915_private *dev_priv = dev->dev_private;
2530 	u32 psrperf = 0;
2531 	u32 stat[3];
2532 	enum pipe pipe;
2533 	bool enabled = false;
2534 
2535 	if (!HAS_PSR(dev)) {
2536 		seq_puts(m, "PSR not supported\n");
2537 		return 0;
2538 	}
2539 
2540 	intel_runtime_pm_get(dev_priv);
2541 
2542 	mutex_lock(&dev_priv->psr.lock);
2543 	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2544 	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2545 	seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2546 	seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2547 	seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2548 		   dev_priv->psr.busy_frontbuffer_bits);
2549 	seq_printf(m, "Re-enable work scheduled: %s\n",
2550 		   yesno(work_busy(&dev_priv->psr.work.work)));
2551 
2552 	if (HAS_DDI(dev))
2553 		enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2554 	else {
2555 		for_each_pipe(dev_priv, pipe) {
2556 			stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2557 				VLV_EDP_PSR_CURR_STATE_MASK;
2558 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2559 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2560 				enabled = true;
2561 		}
2562 	}
2563 	seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2564 
2565 	if (!HAS_DDI(dev))
2566 		for_each_pipe(dev_priv, pipe) {
2567 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2568 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2569 				seq_printf(m, " pipe %c", pipe_name(pipe));
2570 		}
2571 	seq_puts(m, "\n");
2572 
2573 	/* CHV PSR has no kind of performance counter */
2574 	if (HAS_DDI(dev)) {
2575 		psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2576 			EDP_PSR_PERF_CNT_MASK;
2577 
2578 		seq_printf(m, "Performance_Counter: %u\n", psrperf);
2579 	}
2580 	mutex_unlock(&dev_priv->psr.lock);
2581 
2582 	intel_runtime_pm_put(dev_priv);
2583 	return 0;
2584 }
2585 
i915_sink_crc(struct seq_file * m,void * data)2586 static int i915_sink_crc(struct seq_file *m, void *data)
2587 {
2588 	struct drm_info_node *node = m->private;
2589 	struct drm_device *dev = node->minor->dev;
2590 	struct intel_encoder *encoder;
2591 	struct intel_connector *connector;
2592 	struct intel_dp *intel_dp = NULL;
2593 	int ret;
2594 	u8 crc[6];
2595 
2596 	drm_modeset_lock_all(dev);
2597 	for_each_intel_connector(dev, connector) {
2598 
2599 		if (connector->base.dpms != DRM_MODE_DPMS_ON)
2600 			continue;
2601 
2602 		if (!connector->base.encoder)
2603 			continue;
2604 
2605 		encoder = to_intel_encoder(connector->base.encoder);
2606 		if (encoder->type != INTEL_OUTPUT_EDP)
2607 			continue;
2608 
2609 		intel_dp = enc_to_intel_dp(&encoder->base);
2610 
2611 		ret = intel_dp_sink_crc(intel_dp, crc);
2612 		if (ret)
2613 			goto out;
2614 
2615 		seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2616 			   crc[0], crc[1], crc[2],
2617 			   crc[3], crc[4], crc[5]);
2618 		goto out;
2619 	}
2620 	ret = -ENODEV;
2621 out:
2622 	drm_modeset_unlock_all(dev);
2623 	return ret;
2624 }
2625 
i915_energy_uJ(struct seq_file * m,void * data)2626 static int i915_energy_uJ(struct seq_file *m, void *data)
2627 {
2628 	struct drm_info_node *node = m->private;
2629 	struct drm_device *dev = node->minor->dev;
2630 	struct drm_i915_private *dev_priv = dev->dev_private;
2631 	u64 power;
2632 	u32 units;
2633 
2634 	if (INTEL_INFO(dev)->gen < 6)
2635 		return -ENODEV;
2636 
2637 	intel_runtime_pm_get(dev_priv);
2638 
2639 	rdmsrl(MSR_RAPL_POWER_UNIT, power);
2640 	power = (power & 0x1f00) >> 8;
2641 	units = 1000000 / (1 << power); /* convert to uJ */
2642 	power = I915_READ(MCH_SECP_NRG_STTS);
2643 	power *= units;
2644 
2645 	intel_runtime_pm_put(dev_priv);
2646 
2647 	seq_printf(m, "%llu", (long long unsigned)power);
2648 
2649 	return 0;
2650 }
2651 
i915_runtime_pm_status(struct seq_file * m,void * unused)2652 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2653 {
2654 	struct drm_info_node *node = m->private;
2655 	struct drm_device *dev = node->minor->dev;
2656 	struct drm_i915_private *dev_priv = dev->dev_private;
2657 
2658 	if (!HAS_RUNTIME_PM(dev)) {
2659 		seq_puts(m, "not supported\n");
2660 		return 0;
2661 	}
2662 
2663 	seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2664 	seq_printf(m, "IRQs disabled: %s\n",
2665 		   yesno(!intel_irqs_enabled(dev_priv)));
2666 #ifdef CONFIG_PM
2667 	seq_printf(m, "Usage count: %d\n",
2668 		   atomic_read(&dev->dev->power.usage_count));
2669 #else
2670 	seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2671 #endif
2672 
2673 	return 0;
2674 }
2675 
power_domain_str(enum intel_display_power_domain domain)2676 static const char *power_domain_str(enum intel_display_power_domain domain)
2677 {
2678 	switch (domain) {
2679 	case POWER_DOMAIN_PIPE_A:
2680 		return "PIPE_A";
2681 	case POWER_DOMAIN_PIPE_B:
2682 		return "PIPE_B";
2683 	case POWER_DOMAIN_PIPE_C:
2684 		return "PIPE_C";
2685 	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2686 		return "PIPE_A_PANEL_FITTER";
2687 	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2688 		return "PIPE_B_PANEL_FITTER";
2689 	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2690 		return "PIPE_C_PANEL_FITTER";
2691 	case POWER_DOMAIN_TRANSCODER_A:
2692 		return "TRANSCODER_A";
2693 	case POWER_DOMAIN_TRANSCODER_B:
2694 		return "TRANSCODER_B";
2695 	case POWER_DOMAIN_TRANSCODER_C:
2696 		return "TRANSCODER_C";
2697 	case POWER_DOMAIN_TRANSCODER_EDP:
2698 		return "TRANSCODER_EDP";
2699 	case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2700 		return "PORT_DDI_A_2_LANES";
2701 	case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2702 		return "PORT_DDI_A_4_LANES";
2703 	case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2704 		return "PORT_DDI_B_2_LANES";
2705 	case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2706 		return "PORT_DDI_B_4_LANES";
2707 	case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2708 		return "PORT_DDI_C_2_LANES";
2709 	case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2710 		return "PORT_DDI_C_4_LANES";
2711 	case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2712 		return "PORT_DDI_D_2_LANES";
2713 	case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2714 		return "PORT_DDI_D_4_LANES";
2715 	case POWER_DOMAIN_PORT_DDI_E_2_LANES:
2716 		return "PORT_DDI_E_2_LANES";
2717 	case POWER_DOMAIN_PORT_DSI:
2718 		return "PORT_DSI";
2719 	case POWER_DOMAIN_PORT_CRT:
2720 		return "PORT_CRT";
2721 	case POWER_DOMAIN_PORT_OTHER:
2722 		return "PORT_OTHER";
2723 	case POWER_DOMAIN_VGA:
2724 		return "VGA";
2725 	case POWER_DOMAIN_AUDIO:
2726 		return "AUDIO";
2727 	case POWER_DOMAIN_PLLS:
2728 		return "PLLS";
2729 	case POWER_DOMAIN_AUX_A:
2730 		return "AUX_A";
2731 	case POWER_DOMAIN_AUX_B:
2732 		return "AUX_B";
2733 	case POWER_DOMAIN_AUX_C:
2734 		return "AUX_C";
2735 	case POWER_DOMAIN_AUX_D:
2736 		return "AUX_D";
2737 	case POWER_DOMAIN_GMBUS:
2738 		return "GMBUS";
2739 	case POWER_DOMAIN_INIT:
2740 		return "INIT";
2741 	default:
2742 		MISSING_CASE(domain);
2743 		return "?";
2744 	}
2745 }
2746 
i915_power_domain_info(struct seq_file * m,void * unused)2747 static int i915_power_domain_info(struct seq_file *m, void *unused)
2748 {
2749 	struct drm_info_node *node = m->private;
2750 	struct drm_device *dev = node->minor->dev;
2751 	struct drm_i915_private *dev_priv = dev->dev_private;
2752 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2753 	int i;
2754 
2755 	mutex_lock(&power_domains->lock);
2756 
2757 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2758 	for (i = 0; i < power_domains->power_well_count; i++) {
2759 		struct i915_power_well *power_well;
2760 		enum intel_display_power_domain power_domain;
2761 
2762 		power_well = &power_domains->power_wells[i];
2763 		seq_printf(m, "%-25s %d\n", power_well->name,
2764 			   power_well->count);
2765 
2766 		for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2767 		     power_domain++) {
2768 			if (!(BIT(power_domain) & power_well->domains))
2769 				continue;
2770 
2771 			seq_printf(m, "  %-23s %d\n",
2772 				 power_domain_str(power_domain),
2773 				 power_domains->domain_use_count[power_domain]);
2774 		}
2775 	}
2776 
2777 	mutex_unlock(&power_domains->lock);
2778 
2779 	return 0;
2780 }
2781 
intel_seq_print_mode(struct seq_file * m,int tabs,struct drm_display_mode * mode)2782 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2783 				 struct drm_display_mode *mode)
2784 {
2785 	int i;
2786 
2787 	for (i = 0; i < tabs; i++)
2788 		seq_putc(m, '\t');
2789 
2790 	seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2791 		   mode->base.id, mode->name,
2792 		   mode->vrefresh, mode->clock,
2793 		   mode->hdisplay, mode->hsync_start,
2794 		   mode->hsync_end, mode->htotal,
2795 		   mode->vdisplay, mode->vsync_start,
2796 		   mode->vsync_end, mode->vtotal,
2797 		   mode->type, mode->flags);
2798 }
2799 
intel_encoder_info(struct seq_file * m,struct intel_crtc * intel_crtc,struct intel_encoder * intel_encoder)2800 static void intel_encoder_info(struct seq_file *m,
2801 			       struct intel_crtc *intel_crtc,
2802 			       struct intel_encoder *intel_encoder)
2803 {
2804 	struct drm_info_node *node = m->private;
2805 	struct drm_device *dev = node->minor->dev;
2806 	struct drm_crtc *crtc = &intel_crtc->base;
2807 	struct intel_connector *intel_connector;
2808 	struct drm_encoder *encoder;
2809 
2810 	encoder = &intel_encoder->base;
2811 	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2812 		   encoder->base.id, encoder->name);
2813 	for_each_connector_on_encoder(dev, encoder, intel_connector) {
2814 		struct drm_connector *connector = &intel_connector->base;
2815 		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2816 			   connector->base.id,
2817 			   connector->name,
2818 			   drm_get_connector_status_name(connector->status));
2819 		if (connector->status == connector_status_connected) {
2820 			struct drm_display_mode *mode = &crtc->mode;
2821 			seq_printf(m, ", mode:\n");
2822 			intel_seq_print_mode(m, 2, mode);
2823 		} else {
2824 			seq_putc(m, '\n');
2825 		}
2826 	}
2827 }
2828 
intel_crtc_info(struct seq_file * m,struct intel_crtc * intel_crtc)2829 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2830 {
2831 	struct drm_info_node *node = m->private;
2832 	struct drm_device *dev = node->minor->dev;
2833 	struct drm_crtc *crtc = &intel_crtc->base;
2834 	struct intel_encoder *intel_encoder;
2835 	struct drm_plane_state *plane_state = crtc->primary->state;
2836 	struct drm_framebuffer *fb = plane_state->fb;
2837 
2838 	if (fb)
2839 		seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2840 			   fb->base.id, plane_state->src_x >> 16,
2841 			   plane_state->src_y >> 16, fb->width, fb->height);
2842 	else
2843 		seq_puts(m, "\tprimary plane disabled\n");
2844 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2845 		intel_encoder_info(m, intel_crtc, intel_encoder);
2846 }
2847 
intel_panel_info(struct seq_file * m,struct intel_panel * panel)2848 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2849 {
2850 	struct drm_display_mode *mode = panel->fixed_mode;
2851 
2852 	seq_printf(m, "\tfixed mode:\n");
2853 	intel_seq_print_mode(m, 2, mode);
2854 }
2855 
intel_dp_info(struct seq_file * m,struct intel_connector * intel_connector)2856 static void intel_dp_info(struct seq_file *m,
2857 			  struct intel_connector *intel_connector)
2858 {
2859 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2860 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2861 
2862 	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2863 	seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2864 	if (intel_encoder->type == INTEL_OUTPUT_EDP)
2865 		intel_panel_info(m, &intel_connector->panel);
2866 }
2867 
intel_hdmi_info(struct seq_file * m,struct intel_connector * intel_connector)2868 static void intel_hdmi_info(struct seq_file *m,
2869 			    struct intel_connector *intel_connector)
2870 {
2871 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2872 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2873 
2874 	seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2875 }
2876 
intel_lvds_info(struct seq_file * m,struct intel_connector * intel_connector)2877 static void intel_lvds_info(struct seq_file *m,
2878 			    struct intel_connector *intel_connector)
2879 {
2880 	intel_panel_info(m, &intel_connector->panel);
2881 }
2882 
intel_connector_info(struct seq_file * m,struct drm_connector * connector)2883 static void intel_connector_info(struct seq_file *m,
2884 				 struct drm_connector *connector)
2885 {
2886 	struct intel_connector *intel_connector = to_intel_connector(connector);
2887 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2888 	struct drm_display_mode *mode;
2889 
2890 	seq_printf(m, "connector %d: type %s, status: %s\n",
2891 		   connector->base.id, connector->name,
2892 		   drm_get_connector_status_name(connector->status));
2893 	if (connector->status == connector_status_connected) {
2894 		seq_printf(m, "\tname: %s\n", connector->display_info.name);
2895 		seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2896 			   connector->display_info.width_mm,
2897 			   connector->display_info.height_mm);
2898 		seq_printf(m, "\tsubpixel order: %s\n",
2899 			   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2900 		seq_printf(m, "\tCEA rev: %d\n",
2901 			   connector->display_info.cea_rev);
2902 	}
2903 	if (intel_encoder) {
2904 		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2905 		    intel_encoder->type == INTEL_OUTPUT_EDP)
2906 			intel_dp_info(m, intel_connector);
2907 		else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2908 			intel_hdmi_info(m, intel_connector);
2909 		else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2910 			intel_lvds_info(m, intel_connector);
2911 	}
2912 
2913 	seq_printf(m, "\tmodes:\n");
2914 	list_for_each_entry(mode, &connector->modes, head)
2915 		intel_seq_print_mode(m, 2, mode);
2916 }
2917 
cursor_active(struct drm_device * dev,int pipe)2918 static bool cursor_active(struct drm_device *dev, int pipe)
2919 {
2920 	struct drm_i915_private *dev_priv = dev->dev_private;
2921 	u32 state;
2922 
2923 	if (IS_845G(dev) || IS_I865G(dev))
2924 		state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2925 	else
2926 		state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2927 
2928 	return state;
2929 }
2930 
cursor_position(struct drm_device * dev,int pipe,int * x,int * y)2931 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2932 {
2933 	struct drm_i915_private *dev_priv = dev->dev_private;
2934 	u32 pos;
2935 
2936 	pos = I915_READ(CURPOS(pipe));
2937 
2938 	*x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2939 	if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2940 		*x = -*x;
2941 
2942 	*y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2943 	if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2944 		*y = -*y;
2945 
2946 	return cursor_active(dev, pipe);
2947 }
2948 
i915_display_info(struct seq_file * m,void * unused)2949 static int i915_display_info(struct seq_file *m, void *unused)
2950 {
2951 	struct drm_info_node *node = m->private;
2952 	struct drm_device *dev = node->minor->dev;
2953 	struct drm_i915_private *dev_priv = dev->dev_private;
2954 	struct intel_crtc *crtc;
2955 	struct drm_connector *connector;
2956 
2957 	intel_runtime_pm_get(dev_priv);
2958 	drm_modeset_lock_all(dev);
2959 	seq_printf(m, "CRTC info\n");
2960 	seq_printf(m, "---------\n");
2961 	for_each_intel_crtc(dev, crtc) {
2962 		bool active;
2963 		struct intel_crtc_state *pipe_config;
2964 		int x, y;
2965 
2966 		pipe_config = to_intel_crtc_state(crtc->base.state);
2967 
2968 		seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2969 			   crtc->base.base.id, pipe_name(crtc->pipe),
2970 			   yesno(pipe_config->base.active),
2971 			   pipe_config->pipe_src_w, pipe_config->pipe_src_h);
2972 		if (pipe_config->base.active) {
2973 			intel_crtc_info(m, crtc);
2974 
2975 			active = cursor_position(dev, crtc->pipe, &x, &y);
2976 			seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2977 				   yesno(crtc->cursor_base),
2978 				   x, y, crtc->base.cursor->state->crtc_w,
2979 				   crtc->base.cursor->state->crtc_h,
2980 				   crtc->cursor_addr, yesno(active));
2981 		}
2982 
2983 		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2984 			   yesno(!crtc->cpu_fifo_underrun_disabled),
2985 			   yesno(!crtc->pch_fifo_underrun_disabled));
2986 	}
2987 
2988 	seq_printf(m, "\n");
2989 	seq_printf(m, "Connector info\n");
2990 	seq_printf(m, "--------------\n");
2991 	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2992 		intel_connector_info(m, connector);
2993 	}
2994 	drm_modeset_unlock_all(dev);
2995 	intel_runtime_pm_put(dev_priv);
2996 
2997 	return 0;
2998 }
2999 
i915_semaphore_status(struct seq_file * m,void * unused)3000 static int i915_semaphore_status(struct seq_file *m, void *unused)
3001 {
3002 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3003 	struct drm_device *dev = node->minor->dev;
3004 	struct drm_i915_private *dev_priv = dev->dev_private;
3005 	struct intel_engine_cs *ring;
3006 	int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3007 	int i, j, ret;
3008 
3009 	if (!i915_semaphore_is_enabled(dev)) {
3010 		seq_puts(m, "Semaphores are disabled\n");
3011 		return 0;
3012 	}
3013 
3014 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3015 	if (ret)
3016 		return ret;
3017 	intel_runtime_pm_get(dev_priv);
3018 
3019 	if (IS_BROADWELL(dev)) {
3020 		struct page *page;
3021 		uint64_t *seqno;
3022 
3023 		page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3024 
3025 		seqno = (uint64_t *)kmap_atomic(page);
3026 		for_each_ring(ring, dev_priv, i) {
3027 			uint64_t offset;
3028 
3029 			seq_printf(m, "%s\n", ring->name);
3030 
3031 			seq_puts(m, "  Last signal:");
3032 			for (j = 0; j < num_rings; j++) {
3033 				offset = i * I915_NUM_RINGS + j;
3034 				seq_printf(m, "0x%08llx (0x%02llx) ",
3035 					   seqno[offset], offset * 8);
3036 			}
3037 			seq_putc(m, '\n');
3038 
3039 			seq_puts(m, "  Last wait:  ");
3040 			for (j = 0; j < num_rings; j++) {
3041 				offset = i + (j * I915_NUM_RINGS);
3042 				seq_printf(m, "0x%08llx (0x%02llx) ",
3043 					   seqno[offset], offset * 8);
3044 			}
3045 			seq_putc(m, '\n');
3046 
3047 		}
3048 		kunmap_atomic(seqno);
3049 	} else {
3050 		seq_puts(m, "  Last signal:");
3051 		for_each_ring(ring, dev_priv, i)
3052 			for (j = 0; j < num_rings; j++)
3053 				seq_printf(m, "0x%08x\n",
3054 					   I915_READ(ring->semaphore.mbox.signal[j]));
3055 		seq_putc(m, '\n');
3056 	}
3057 
3058 	seq_puts(m, "\nSync seqno:\n");
3059 	for_each_ring(ring, dev_priv, i) {
3060 		for (j = 0; j < num_rings; j++) {
3061 			seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
3062 		}
3063 		seq_putc(m, '\n');
3064 	}
3065 	seq_putc(m, '\n');
3066 
3067 	intel_runtime_pm_put(dev_priv);
3068 	mutex_unlock(&dev->struct_mutex);
3069 	return 0;
3070 }
3071 
i915_shared_dplls_info(struct seq_file * m,void * unused)3072 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3073 {
3074 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3075 	struct drm_device *dev = node->minor->dev;
3076 	struct drm_i915_private *dev_priv = dev->dev_private;
3077 	int i;
3078 
3079 	drm_modeset_lock_all(dev);
3080 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3081 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3082 
3083 		seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3084 		seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
3085 			   pll->config.crtc_mask, pll->active, yesno(pll->on));
3086 		seq_printf(m, " tracked hardware state:\n");
3087 		seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3088 		seq_printf(m, " dpll_md: 0x%08x\n",
3089 			   pll->config.hw_state.dpll_md);
3090 		seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3091 		seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3092 		seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3093 	}
3094 	drm_modeset_unlock_all(dev);
3095 
3096 	return 0;
3097 }
3098 
i915_wa_registers(struct seq_file * m,void * unused)3099 static int i915_wa_registers(struct seq_file *m, void *unused)
3100 {
3101 	int i;
3102 	int ret;
3103 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3104 	struct drm_device *dev = node->minor->dev;
3105 	struct drm_i915_private *dev_priv = dev->dev_private;
3106 
3107 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3108 	if (ret)
3109 		return ret;
3110 
3111 	intel_runtime_pm_get(dev_priv);
3112 
3113 	seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
3114 	for (i = 0; i < dev_priv->workarounds.count; ++i) {
3115 		u32 addr, mask, value, read;
3116 		bool ok;
3117 
3118 		addr = dev_priv->workarounds.reg[i].addr;
3119 		mask = dev_priv->workarounds.reg[i].mask;
3120 		value = dev_priv->workarounds.reg[i].value;
3121 		read = I915_READ(addr);
3122 		ok = (value & mask) == (read & mask);
3123 		seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3124 			   addr, value, mask, read, ok ? "OK" : "FAIL");
3125 	}
3126 
3127 	intel_runtime_pm_put(dev_priv);
3128 	mutex_unlock(&dev->struct_mutex);
3129 
3130 	return 0;
3131 }
3132 
i915_ddb_info(struct seq_file * m,void * unused)3133 static int i915_ddb_info(struct seq_file *m, void *unused)
3134 {
3135 	struct drm_info_node *node = m->private;
3136 	struct drm_device *dev = node->minor->dev;
3137 	struct drm_i915_private *dev_priv = dev->dev_private;
3138 	struct skl_ddb_allocation *ddb;
3139 	struct skl_ddb_entry *entry;
3140 	enum pipe pipe;
3141 	int plane;
3142 
3143 	if (INTEL_INFO(dev)->gen < 9)
3144 		return 0;
3145 
3146 	drm_modeset_lock_all(dev);
3147 
3148 	ddb = &dev_priv->wm.skl_hw.ddb;
3149 
3150 	seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3151 
3152 	for_each_pipe(dev_priv, pipe) {
3153 		seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3154 
3155 		for_each_plane(dev_priv, pipe, plane) {
3156 			entry = &ddb->plane[pipe][plane];
3157 			seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3158 				   entry->start, entry->end,
3159 				   skl_ddb_entry_size(entry));
3160 		}
3161 
3162 		entry = &ddb->plane[pipe][PLANE_CURSOR];
3163 		seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3164 			   entry->end, skl_ddb_entry_size(entry));
3165 	}
3166 
3167 	drm_modeset_unlock_all(dev);
3168 
3169 	return 0;
3170 }
3171 
drrs_status_per_crtc(struct seq_file * m,struct drm_device * dev,struct intel_crtc * intel_crtc)3172 static void drrs_status_per_crtc(struct seq_file *m,
3173 		struct drm_device *dev, struct intel_crtc *intel_crtc)
3174 {
3175 	struct intel_encoder *intel_encoder;
3176 	struct drm_i915_private *dev_priv = dev->dev_private;
3177 	struct i915_drrs *drrs = &dev_priv->drrs;
3178 	int vrefresh = 0;
3179 
3180 	for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3181 		/* Encoder connected on this CRTC */
3182 		switch (intel_encoder->type) {
3183 		case INTEL_OUTPUT_EDP:
3184 			seq_puts(m, "eDP:\n");
3185 			break;
3186 		case INTEL_OUTPUT_DSI:
3187 			seq_puts(m, "DSI:\n");
3188 			break;
3189 		case INTEL_OUTPUT_HDMI:
3190 			seq_puts(m, "HDMI:\n");
3191 			break;
3192 		case INTEL_OUTPUT_DISPLAYPORT:
3193 			seq_puts(m, "DP:\n");
3194 			break;
3195 		default:
3196 			seq_printf(m, "Other encoder (id=%d).\n",
3197 						intel_encoder->type);
3198 			return;
3199 		}
3200 	}
3201 
3202 	if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3203 		seq_puts(m, "\tVBT: DRRS_type: Static");
3204 	else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3205 		seq_puts(m, "\tVBT: DRRS_type: Seamless");
3206 	else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3207 		seq_puts(m, "\tVBT: DRRS_type: None");
3208 	else
3209 		seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3210 
3211 	seq_puts(m, "\n\n");
3212 
3213 	if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3214 		struct intel_panel *panel;
3215 
3216 		mutex_lock(&drrs->mutex);
3217 		/* DRRS Supported */
3218 		seq_puts(m, "\tDRRS Supported: Yes\n");
3219 
3220 		/* disable_drrs() will make drrs->dp NULL */
3221 		if (!drrs->dp) {
3222 			seq_puts(m, "Idleness DRRS: Disabled");
3223 			mutex_unlock(&drrs->mutex);
3224 			return;
3225 		}
3226 
3227 		panel = &drrs->dp->attached_connector->panel;
3228 		seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3229 					drrs->busy_frontbuffer_bits);
3230 
3231 		seq_puts(m, "\n\t\t");
3232 		if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3233 			seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3234 			vrefresh = panel->fixed_mode->vrefresh;
3235 		} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3236 			seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3237 			vrefresh = panel->downclock_mode->vrefresh;
3238 		} else {
3239 			seq_printf(m, "DRRS_State: Unknown(%d)\n",
3240 						drrs->refresh_rate_type);
3241 			mutex_unlock(&drrs->mutex);
3242 			return;
3243 		}
3244 		seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3245 
3246 		seq_puts(m, "\n\t\t");
3247 		mutex_unlock(&drrs->mutex);
3248 	} else {
3249 		/* DRRS not supported. Print the VBT parameter*/
3250 		seq_puts(m, "\tDRRS Supported : No");
3251 	}
3252 	seq_puts(m, "\n");
3253 }
3254 
i915_drrs_status(struct seq_file * m,void * unused)3255 static int i915_drrs_status(struct seq_file *m, void *unused)
3256 {
3257 	struct drm_info_node *node = m->private;
3258 	struct drm_device *dev = node->minor->dev;
3259 	struct intel_crtc *intel_crtc;
3260 	int active_crtc_cnt = 0;
3261 
3262 	for_each_intel_crtc(dev, intel_crtc) {
3263 		drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3264 
3265 		if (intel_crtc->base.state->active) {
3266 			active_crtc_cnt++;
3267 			seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3268 
3269 			drrs_status_per_crtc(m, dev, intel_crtc);
3270 		}
3271 
3272 		drm_modeset_unlock(&intel_crtc->base.mutex);
3273 	}
3274 
3275 	if (!active_crtc_cnt)
3276 		seq_puts(m, "No active crtc found\n");
3277 
3278 	return 0;
3279 }
3280 
3281 struct pipe_crc_info {
3282 	const char *name;
3283 	struct drm_device *dev;
3284 	enum pipe pipe;
3285 };
3286 
i915_dp_mst_info(struct seq_file * m,void * unused)3287 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3288 {
3289 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3290 	struct drm_device *dev = node->minor->dev;
3291 	struct drm_encoder *encoder;
3292 	struct intel_encoder *intel_encoder;
3293 	struct intel_digital_port *intel_dig_port;
3294 	drm_modeset_lock_all(dev);
3295 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3296 		intel_encoder = to_intel_encoder(encoder);
3297 		if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3298 			continue;
3299 		intel_dig_port = enc_to_dig_port(encoder);
3300 		if (!intel_dig_port->dp.can_mst)
3301 			continue;
3302 
3303 		drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3304 	}
3305 	drm_modeset_unlock_all(dev);
3306 	return 0;
3307 }
3308 
i915_pipe_crc_open(struct inode * inode,struct file * filep)3309 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3310 {
3311 	struct pipe_crc_info *info = inode->i_private;
3312 	struct drm_i915_private *dev_priv = info->dev->dev_private;
3313 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3314 
3315 	if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3316 		return -ENODEV;
3317 
3318 	spin_lock_irq(&pipe_crc->lock);
3319 
3320 	if (pipe_crc->opened) {
3321 		spin_unlock_irq(&pipe_crc->lock);
3322 		return -EBUSY; /* already open */
3323 	}
3324 
3325 	pipe_crc->opened = true;
3326 	filep->private_data = inode->i_private;
3327 
3328 	spin_unlock_irq(&pipe_crc->lock);
3329 
3330 	return 0;
3331 }
3332 
i915_pipe_crc_release(struct inode * inode,struct file * filep)3333 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3334 {
3335 	struct pipe_crc_info *info = inode->i_private;
3336 	struct drm_i915_private *dev_priv = info->dev->dev_private;
3337 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3338 
3339 	spin_lock_irq(&pipe_crc->lock);
3340 	pipe_crc->opened = false;
3341 	spin_unlock_irq(&pipe_crc->lock);
3342 
3343 	return 0;
3344 }
3345 
3346 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3347 #define PIPE_CRC_LINE_LEN	(6 * 8 + 5 + 1)
3348 /* account for \'0' */
3349 #define PIPE_CRC_BUFFER_LEN	(PIPE_CRC_LINE_LEN + 1)
3350 
pipe_crc_data_count(struct intel_pipe_crc * pipe_crc)3351 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3352 {
3353 	assert_spin_locked(&pipe_crc->lock);
3354 	return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3355 			INTEL_PIPE_CRC_ENTRIES_NR);
3356 }
3357 
3358 static ssize_t
i915_pipe_crc_read(struct file * filep,char __user * user_buf,size_t count,loff_t * pos)3359 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3360 		   loff_t *pos)
3361 {
3362 	struct pipe_crc_info *info = filep->private_data;
3363 	struct drm_device *dev = info->dev;
3364 	struct drm_i915_private *dev_priv = dev->dev_private;
3365 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3366 	char buf[PIPE_CRC_BUFFER_LEN];
3367 	int n_entries;
3368 	ssize_t bytes_read;
3369 
3370 	/*
3371 	 * Don't allow user space to provide buffers not big enough to hold
3372 	 * a line of data.
3373 	 */
3374 	if (count < PIPE_CRC_LINE_LEN)
3375 		return -EINVAL;
3376 
3377 	if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3378 		return 0;
3379 
3380 	/* nothing to read */
3381 	spin_lock_irq(&pipe_crc->lock);
3382 	while (pipe_crc_data_count(pipe_crc) == 0) {
3383 		int ret;
3384 
3385 		if (filep->f_flags & O_NONBLOCK) {
3386 			spin_unlock_irq(&pipe_crc->lock);
3387 			return -EAGAIN;
3388 		}
3389 
3390 		ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3391 				pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3392 		if (ret) {
3393 			spin_unlock_irq(&pipe_crc->lock);
3394 			return ret;
3395 		}
3396 	}
3397 
3398 	/* We now have one or more entries to read */
3399 	n_entries = count / PIPE_CRC_LINE_LEN;
3400 
3401 	bytes_read = 0;
3402 	while (n_entries > 0) {
3403 		struct intel_pipe_crc_entry *entry =
3404 			&pipe_crc->entries[pipe_crc->tail];
3405 		int ret;
3406 
3407 		if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3408 			     INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3409 			break;
3410 
3411 		BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3412 		pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3413 
3414 		bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3415 				       "%8u %8x %8x %8x %8x %8x\n",
3416 				       entry->frame, entry->crc[0],
3417 				       entry->crc[1], entry->crc[2],
3418 				       entry->crc[3], entry->crc[4]);
3419 
3420 		spin_unlock_irq(&pipe_crc->lock);
3421 
3422 		ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3423 		if (ret == PIPE_CRC_LINE_LEN)
3424 			return -EFAULT;
3425 
3426 		user_buf += PIPE_CRC_LINE_LEN;
3427 		n_entries--;
3428 
3429 		spin_lock_irq(&pipe_crc->lock);
3430 	}
3431 
3432 	spin_unlock_irq(&pipe_crc->lock);
3433 
3434 	return bytes_read;
3435 }
3436 
3437 static const struct file_operations i915_pipe_crc_fops = {
3438 	.owner = THIS_MODULE,
3439 	.open = i915_pipe_crc_open,
3440 	.read = i915_pipe_crc_read,
3441 	.release = i915_pipe_crc_release,
3442 };
3443 
3444 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3445 	{
3446 		.name = "i915_pipe_A_crc",
3447 		.pipe = PIPE_A,
3448 	},
3449 	{
3450 		.name = "i915_pipe_B_crc",
3451 		.pipe = PIPE_B,
3452 	},
3453 	{
3454 		.name = "i915_pipe_C_crc",
3455 		.pipe = PIPE_C,
3456 	},
3457 };
3458 
i915_pipe_crc_create(struct dentry * root,struct drm_minor * minor,enum pipe pipe)3459 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3460 				enum pipe pipe)
3461 {
3462 	struct drm_device *dev = minor->dev;
3463 	struct dentry *ent;
3464 	struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3465 
3466 	info->dev = dev;
3467 	ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3468 				  &i915_pipe_crc_fops);
3469 	if (!ent)
3470 		return -ENOMEM;
3471 
3472 	return drm_add_fake_info_node(minor, ent, info);
3473 }
3474 
3475 static const char * const pipe_crc_sources[] = {
3476 	"none",
3477 	"plane1",
3478 	"plane2",
3479 	"pf",
3480 	"pipe",
3481 	"TV",
3482 	"DP-B",
3483 	"DP-C",
3484 	"DP-D",
3485 	"auto",
3486 };
3487 
pipe_crc_source_name(enum intel_pipe_crc_source source)3488 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3489 {
3490 	BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3491 	return pipe_crc_sources[source];
3492 }
3493 
display_crc_ctl_show(struct seq_file * m,void * data)3494 static int display_crc_ctl_show(struct seq_file *m, void *data)
3495 {
3496 	struct drm_device *dev = m->private;
3497 	struct drm_i915_private *dev_priv = dev->dev_private;
3498 	int i;
3499 
3500 	for (i = 0; i < I915_MAX_PIPES; i++)
3501 		seq_printf(m, "%c %s\n", pipe_name(i),
3502 			   pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3503 
3504 	return 0;
3505 }
3506 
display_crc_ctl_open(struct inode * inode,struct file * file)3507 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3508 {
3509 	struct drm_device *dev = inode->i_private;
3510 
3511 	return single_open(file, display_crc_ctl_show, dev);
3512 }
3513 
i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source * source,uint32_t * val)3514 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3515 				 uint32_t *val)
3516 {
3517 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3518 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3519 
3520 	switch (*source) {
3521 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3522 		*val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3523 		break;
3524 	case INTEL_PIPE_CRC_SOURCE_NONE:
3525 		*val = 0;
3526 		break;
3527 	default:
3528 		return -EINVAL;
3529 	}
3530 
3531 	return 0;
3532 }
3533 
i9xx_pipe_crc_auto_source(struct drm_device * dev,enum pipe pipe,enum intel_pipe_crc_source * source)3534 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3535 				     enum intel_pipe_crc_source *source)
3536 {
3537 	struct intel_encoder *encoder;
3538 	struct intel_crtc *crtc;
3539 	struct intel_digital_port *dig_port;
3540 	int ret = 0;
3541 
3542 	*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3543 
3544 	drm_modeset_lock_all(dev);
3545 	for_each_intel_encoder(dev, encoder) {
3546 		if (!encoder->base.crtc)
3547 			continue;
3548 
3549 		crtc = to_intel_crtc(encoder->base.crtc);
3550 
3551 		if (crtc->pipe != pipe)
3552 			continue;
3553 
3554 		switch (encoder->type) {
3555 		case INTEL_OUTPUT_TVOUT:
3556 			*source = INTEL_PIPE_CRC_SOURCE_TV;
3557 			break;
3558 		case INTEL_OUTPUT_DISPLAYPORT:
3559 		case INTEL_OUTPUT_EDP:
3560 			dig_port = enc_to_dig_port(&encoder->base);
3561 			switch (dig_port->port) {
3562 			case PORT_B:
3563 				*source = INTEL_PIPE_CRC_SOURCE_DP_B;
3564 				break;
3565 			case PORT_C:
3566 				*source = INTEL_PIPE_CRC_SOURCE_DP_C;
3567 				break;
3568 			case PORT_D:
3569 				*source = INTEL_PIPE_CRC_SOURCE_DP_D;
3570 				break;
3571 			default:
3572 				WARN(1, "nonexisting DP port %c\n",
3573 				     port_name(dig_port->port));
3574 				break;
3575 			}
3576 			break;
3577 		default:
3578 			break;
3579 		}
3580 	}
3581 	drm_modeset_unlock_all(dev);
3582 
3583 	return ret;
3584 }
3585 
vlv_pipe_crc_ctl_reg(struct drm_device * dev,enum pipe pipe,enum intel_pipe_crc_source * source,uint32_t * val)3586 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3587 				enum pipe pipe,
3588 				enum intel_pipe_crc_source *source,
3589 				uint32_t *val)
3590 {
3591 	struct drm_i915_private *dev_priv = dev->dev_private;
3592 	bool need_stable_symbols = false;
3593 
3594 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3595 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3596 		if (ret)
3597 			return ret;
3598 	}
3599 
3600 	switch (*source) {
3601 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3602 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3603 		break;
3604 	case INTEL_PIPE_CRC_SOURCE_DP_B:
3605 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3606 		need_stable_symbols = true;
3607 		break;
3608 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3609 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3610 		need_stable_symbols = true;
3611 		break;
3612 	case INTEL_PIPE_CRC_SOURCE_DP_D:
3613 		if (!IS_CHERRYVIEW(dev))
3614 			return -EINVAL;
3615 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3616 		need_stable_symbols = true;
3617 		break;
3618 	case INTEL_PIPE_CRC_SOURCE_NONE:
3619 		*val = 0;
3620 		break;
3621 	default:
3622 		return -EINVAL;
3623 	}
3624 
3625 	/*
3626 	 * When the pipe CRC tap point is after the transcoders we need
3627 	 * to tweak symbol-level features to produce a deterministic series of
3628 	 * symbols for a given frame. We need to reset those features only once
3629 	 * a frame (instead of every nth symbol):
3630 	 *   - DC-balance: used to ensure a better clock recovery from the data
3631 	 *     link (SDVO)
3632 	 *   - DisplayPort scrambling: used for EMI reduction
3633 	 */
3634 	if (need_stable_symbols) {
3635 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3636 
3637 		tmp |= DC_BALANCE_RESET_VLV;
3638 		switch (pipe) {
3639 		case PIPE_A:
3640 			tmp |= PIPE_A_SCRAMBLE_RESET;
3641 			break;
3642 		case PIPE_B:
3643 			tmp |= PIPE_B_SCRAMBLE_RESET;
3644 			break;
3645 		case PIPE_C:
3646 			tmp |= PIPE_C_SCRAMBLE_RESET;
3647 			break;
3648 		default:
3649 			return -EINVAL;
3650 		}
3651 		I915_WRITE(PORT_DFT2_G4X, tmp);
3652 	}
3653 
3654 	return 0;
3655 }
3656 
i9xx_pipe_crc_ctl_reg(struct drm_device * dev,enum pipe pipe,enum intel_pipe_crc_source * source,uint32_t * val)3657 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3658 				 enum pipe pipe,
3659 				 enum intel_pipe_crc_source *source,
3660 				 uint32_t *val)
3661 {
3662 	struct drm_i915_private *dev_priv = dev->dev_private;
3663 	bool need_stable_symbols = false;
3664 
3665 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3666 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3667 		if (ret)
3668 			return ret;
3669 	}
3670 
3671 	switch (*source) {
3672 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3673 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3674 		break;
3675 	case INTEL_PIPE_CRC_SOURCE_TV:
3676 		if (!SUPPORTS_TV(dev))
3677 			return -EINVAL;
3678 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3679 		break;
3680 	case INTEL_PIPE_CRC_SOURCE_DP_B:
3681 		if (!IS_G4X(dev))
3682 			return -EINVAL;
3683 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3684 		need_stable_symbols = true;
3685 		break;
3686 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3687 		if (!IS_G4X(dev))
3688 			return -EINVAL;
3689 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3690 		need_stable_symbols = true;
3691 		break;
3692 	case INTEL_PIPE_CRC_SOURCE_DP_D:
3693 		if (!IS_G4X(dev))
3694 			return -EINVAL;
3695 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3696 		need_stable_symbols = true;
3697 		break;
3698 	case INTEL_PIPE_CRC_SOURCE_NONE:
3699 		*val = 0;
3700 		break;
3701 	default:
3702 		return -EINVAL;
3703 	}
3704 
3705 	/*
3706 	 * When the pipe CRC tap point is after the transcoders we need
3707 	 * to tweak symbol-level features to produce a deterministic series of
3708 	 * symbols for a given frame. We need to reset those features only once
3709 	 * a frame (instead of every nth symbol):
3710 	 *   - DC-balance: used to ensure a better clock recovery from the data
3711 	 *     link (SDVO)
3712 	 *   - DisplayPort scrambling: used for EMI reduction
3713 	 */
3714 	if (need_stable_symbols) {
3715 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3716 
3717 		WARN_ON(!IS_G4X(dev));
3718 
3719 		I915_WRITE(PORT_DFT_I9XX,
3720 			   I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3721 
3722 		if (pipe == PIPE_A)
3723 			tmp |= PIPE_A_SCRAMBLE_RESET;
3724 		else
3725 			tmp |= PIPE_B_SCRAMBLE_RESET;
3726 
3727 		I915_WRITE(PORT_DFT2_G4X, tmp);
3728 	}
3729 
3730 	return 0;
3731 }
3732 
vlv_undo_pipe_scramble_reset(struct drm_device * dev,enum pipe pipe)3733 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3734 					 enum pipe pipe)
3735 {
3736 	struct drm_i915_private *dev_priv = dev->dev_private;
3737 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3738 
3739 	switch (pipe) {
3740 	case PIPE_A:
3741 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3742 		break;
3743 	case PIPE_B:
3744 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3745 		break;
3746 	case PIPE_C:
3747 		tmp &= ~PIPE_C_SCRAMBLE_RESET;
3748 		break;
3749 	default:
3750 		return;
3751 	}
3752 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3753 		tmp &= ~DC_BALANCE_RESET_VLV;
3754 	I915_WRITE(PORT_DFT2_G4X, tmp);
3755 
3756 }
3757 
g4x_undo_pipe_scramble_reset(struct drm_device * dev,enum pipe pipe)3758 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3759 					 enum pipe pipe)
3760 {
3761 	struct drm_i915_private *dev_priv = dev->dev_private;
3762 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3763 
3764 	if (pipe == PIPE_A)
3765 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3766 	else
3767 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3768 	I915_WRITE(PORT_DFT2_G4X, tmp);
3769 
3770 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3771 		I915_WRITE(PORT_DFT_I9XX,
3772 			   I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3773 	}
3774 }
3775 
ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source * source,uint32_t * val)3776 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3777 				uint32_t *val)
3778 {
3779 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3780 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3781 
3782 	switch (*source) {
3783 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
3784 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3785 		break;
3786 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
3787 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3788 		break;
3789 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3790 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3791 		break;
3792 	case INTEL_PIPE_CRC_SOURCE_NONE:
3793 		*val = 0;
3794 		break;
3795 	default:
3796 		return -EINVAL;
3797 	}
3798 
3799 	return 0;
3800 }
3801 
hsw_trans_edp_pipe_A_crc_wa(struct drm_device * dev,bool enable)3802 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3803 {
3804 	struct drm_i915_private *dev_priv = dev->dev_private;
3805 	struct intel_crtc *crtc =
3806 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3807 	struct intel_crtc_state *pipe_config;
3808 	struct drm_atomic_state *state;
3809 	int ret = 0;
3810 
3811 	drm_modeset_lock_all(dev);
3812 	state = drm_atomic_state_alloc(dev);
3813 	if (!state) {
3814 		ret = -ENOMEM;
3815 		goto out;
3816 	}
3817 
3818 	state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3819 	pipe_config = intel_atomic_get_crtc_state(state, crtc);
3820 	if (IS_ERR(pipe_config)) {
3821 		ret = PTR_ERR(pipe_config);
3822 		goto out;
3823 	}
3824 
3825 	pipe_config->pch_pfit.force_thru = enable;
3826 	if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3827 	    pipe_config->pch_pfit.enabled != enable)
3828 		pipe_config->base.connectors_changed = true;
3829 
3830 	ret = drm_atomic_commit(state);
3831 out:
3832 	drm_modeset_unlock_all(dev);
3833 	WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3834 	if (ret)
3835 		drm_atomic_state_free(state);
3836 }
3837 
ivb_pipe_crc_ctl_reg(struct drm_device * dev,enum pipe pipe,enum intel_pipe_crc_source * source,uint32_t * val)3838 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3839 				enum pipe pipe,
3840 				enum intel_pipe_crc_source *source,
3841 				uint32_t *val)
3842 {
3843 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3844 		*source = INTEL_PIPE_CRC_SOURCE_PF;
3845 
3846 	switch (*source) {
3847 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
3848 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3849 		break;
3850 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
3851 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3852 		break;
3853 	case INTEL_PIPE_CRC_SOURCE_PF:
3854 		if (IS_HASWELL(dev) && pipe == PIPE_A)
3855 			hsw_trans_edp_pipe_A_crc_wa(dev, true);
3856 
3857 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3858 		break;
3859 	case INTEL_PIPE_CRC_SOURCE_NONE:
3860 		*val = 0;
3861 		break;
3862 	default:
3863 		return -EINVAL;
3864 	}
3865 
3866 	return 0;
3867 }
3868 
pipe_crc_set_source(struct drm_device * dev,enum pipe pipe,enum intel_pipe_crc_source source)3869 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3870 			       enum intel_pipe_crc_source source)
3871 {
3872 	struct drm_i915_private *dev_priv = dev->dev_private;
3873 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3874 	struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3875 									pipe));
3876 	u32 val = 0; /* shut up gcc */
3877 	int ret;
3878 
3879 	if (pipe_crc->source == source)
3880 		return 0;
3881 
3882 	/* forbid changing the source without going back to 'none' */
3883 	if (pipe_crc->source && source)
3884 		return -EINVAL;
3885 
3886 	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3887 		DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
3888 		return -EIO;
3889 	}
3890 
3891 	if (IS_GEN2(dev))
3892 		ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3893 	else if (INTEL_INFO(dev)->gen < 5)
3894 		ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3895 	else if (IS_VALLEYVIEW(dev))
3896 		ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3897 	else if (IS_GEN5(dev) || IS_GEN6(dev))
3898 		ret = ilk_pipe_crc_ctl_reg(&source, &val);
3899 	else
3900 		ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3901 
3902 	if (ret != 0)
3903 		return ret;
3904 
3905 	/* none -> real source transition */
3906 	if (source) {
3907 		struct intel_pipe_crc_entry *entries;
3908 
3909 		DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3910 				 pipe_name(pipe), pipe_crc_source_name(source));
3911 
3912 		entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
3913 				  sizeof(pipe_crc->entries[0]),
3914 				  GFP_KERNEL);
3915 		if (!entries)
3916 			return -ENOMEM;
3917 
3918 		/*
3919 		 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
3920 		 * enabled and disabled dynamically based on package C states,
3921 		 * user space can't make reliable use of the CRCs, so let's just
3922 		 * completely disable it.
3923 		 */
3924 		hsw_disable_ips(crtc);
3925 
3926 		spin_lock_irq(&pipe_crc->lock);
3927 		kfree(pipe_crc->entries);
3928 		pipe_crc->entries = entries;
3929 		pipe_crc->head = 0;
3930 		pipe_crc->tail = 0;
3931 		spin_unlock_irq(&pipe_crc->lock);
3932 	}
3933 
3934 	pipe_crc->source = source;
3935 
3936 	I915_WRITE(PIPE_CRC_CTL(pipe), val);
3937 	POSTING_READ(PIPE_CRC_CTL(pipe));
3938 
3939 	/* real source -> none transition */
3940 	if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3941 		struct intel_pipe_crc_entry *entries;
3942 		struct intel_crtc *crtc =
3943 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3944 
3945 		DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3946 				 pipe_name(pipe));
3947 
3948 		drm_modeset_lock(&crtc->base.mutex, NULL);
3949 		if (crtc->base.state->active)
3950 			intel_wait_for_vblank(dev, pipe);
3951 		drm_modeset_unlock(&crtc->base.mutex);
3952 
3953 		spin_lock_irq(&pipe_crc->lock);
3954 		entries = pipe_crc->entries;
3955 		pipe_crc->entries = NULL;
3956 		pipe_crc->head = 0;
3957 		pipe_crc->tail = 0;
3958 		spin_unlock_irq(&pipe_crc->lock);
3959 
3960 		kfree(entries);
3961 
3962 		if (IS_G4X(dev))
3963 			g4x_undo_pipe_scramble_reset(dev, pipe);
3964 		else if (IS_VALLEYVIEW(dev))
3965 			vlv_undo_pipe_scramble_reset(dev, pipe);
3966 		else if (IS_HASWELL(dev) && pipe == PIPE_A)
3967 			hsw_trans_edp_pipe_A_crc_wa(dev, false);
3968 
3969 		hsw_enable_ips(crtc);
3970 	}
3971 
3972 	return 0;
3973 }
3974 
3975 /*
3976  * Parse pipe CRC command strings:
3977  *   command: wsp* object wsp+ name wsp+ source wsp*
3978  *   object: 'pipe'
3979  *   name: (A | B | C)
3980  *   source: (none | plane1 | plane2 | pf)
3981  *   wsp: (#0x20 | #0x9 | #0xA)+
3982  *
3983  * eg.:
3984  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
3985  *  "pipe A none"    ->  Stop CRC
3986  */
display_crc_ctl_tokenize(char * buf,char * words[],int max_words)3987 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3988 {
3989 	int n_words = 0;
3990 
3991 	while (*buf) {
3992 		char *end;
3993 
3994 		/* skip leading white space */
3995 		buf = skip_spaces(buf);
3996 		if (!*buf)
3997 			break;	/* end of buffer */
3998 
3999 		/* find end of word */
4000 		for (end = buf; *end && !isspace(*end); end++)
4001 			;
4002 
4003 		if (n_words == max_words) {
4004 			DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4005 					 max_words);
4006 			return -EINVAL;	/* ran out of words[] before bytes */
4007 		}
4008 
4009 		if (*end)
4010 			*end++ = '\0';
4011 		words[n_words++] = buf;
4012 		buf = end;
4013 	}
4014 
4015 	return n_words;
4016 }
4017 
4018 enum intel_pipe_crc_object {
4019 	PIPE_CRC_OBJECT_PIPE,
4020 };
4021 
4022 static const char * const pipe_crc_objects[] = {
4023 	"pipe",
4024 };
4025 
4026 static int
display_crc_ctl_parse_object(const char * buf,enum intel_pipe_crc_object * o)4027 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4028 {
4029 	int i;
4030 
4031 	for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4032 		if (!strcmp(buf, pipe_crc_objects[i])) {
4033 			*o = i;
4034 			return 0;
4035 		    }
4036 
4037 	return -EINVAL;
4038 }
4039 
display_crc_ctl_parse_pipe(const char * buf,enum pipe * pipe)4040 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4041 {
4042 	const char name = buf[0];
4043 
4044 	if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4045 		return -EINVAL;
4046 
4047 	*pipe = name - 'A';
4048 
4049 	return 0;
4050 }
4051 
4052 static int
display_crc_ctl_parse_source(const char * buf,enum intel_pipe_crc_source * s)4053 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4054 {
4055 	int i;
4056 
4057 	for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4058 		if (!strcmp(buf, pipe_crc_sources[i])) {
4059 			*s = i;
4060 			return 0;
4061 		    }
4062 
4063 	return -EINVAL;
4064 }
4065 
display_crc_ctl_parse(struct drm_device * dev,char * buf,size_t len)4066 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4067 {
4068 #define N_WORDS 3
4069 	int n_words;
4070 	char *words[N_WORDS];
4071 	enum pipe pipe;
4072 	enum intel_pipe_crc_object object;
4073 	enum intel_pipe_crc_source source;
4074 
4075 	n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4076 	if (n_words != N_WORDS) {
4077 		DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4078 				 N_WORDS);
4079 		return -EINVAL;
4080 	}
4081 
4082 	if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4083 		DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4084 		return -EINVAL;
4085 	}
4086 
4087 	if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4088 		DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4089 		return -EINVAL;
4090 	}
4091 
4092 	if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4093 		DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4094 		return -EINVAL;
4095 	}
4096 
4097 	return pipe_crc_set_source(dev, pipe, source);
4098 }
4099 
display_crc_ctl_write(struct file * file,const char __user * ubuf,size_t len,loff_t * offp)4100 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4101 				     size_t len, loff_t *offp)
4102 {
4103 	struct seq_file *m = file->private_data;
4104 	struct drm_device *dev = m->private;
4105 	char *tmpbuf;
4106 	int ret;
4107 
4108 	if (len == 0)
4109 		return 0;
4110 
4111 	if (len > PAGE_SIZE - 1) {
4112 		DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4113 				 PAGE_SIZE);
4114 		return -E2BIG;
4115 	}
4116 
4117 	tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4118 	if (!tmpbuf)
4119 		return -ENOMEM;
4120 
4121 	if (copy_from_user(tmpbuf, ubuf, len)) {
4122 		ret = -EFAULT;
4123 		goto out;
4124 	}
4125 	tmpbuf[len] = '\0';
4126 
4127 	ret = display_crc_ctl_parse(dev, tmpbuf, len);
4128 
4129 out:
4130 	kfree(tmpbuf);
4131 	if (ret < 0)
4132 		return ret;
4133 
4134 	*offp += len;
4135 	return len;
4136 }
4137 
4138 static const struct file_operations i915_display_crc_ctl_fops = {
4139 	.owner = THIS_MODULE,
4140 	.open = display_crc_ctl_open,
4141 	.read = seq_read,
4142 	.llseek = seq_lseek,
4143 	.release = single_release,
4144 	.write = display_crc_ctl_write
4145 };
4146 
i915_displayport_test_active_write(struct file * file,const char __user * ubuf,size_t len,loff_t * offp)4147 static ssize_t i915_displayport_test_active_write(struct file *file,
4148 					    const char __user *ubuf,
4149 					    size_t len, loff_t *offp)
4150 {
4151 	char *input_buffer;
4152 	int status = 0;
4153 	struct drm_device *dev;
4154 	struct drm_connector *connector;
4155 	struct list_head *connector_list;
4156 	struct intel_dp *intel_dp;
4157 	int val = 0;
4158 
4159 	dev = ((struct seq_file *)file->private_data)->private;
4160 
4161 	connector_list = &dev->mode_config.connector_list;
4162 
4163 	if (len == 0)
4164 		return 0;
4165 
4166 	input_buffer = kmalloc(len + 1, GFP_KERNEL);
4167 	if (!input_buffer)
4168 		return -ENOMEM;
4169 
4170 	if (copy_from_user(input_buffer, ubuf, len)) {
4171 		status = -EFAULT;
4172 		goto out;
4173 	}
4174 
4175 	input_buffer[len] = '\0';
4176 	DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4177 
4178 	list_for_each_entry(connector, connector_list, head) {
4179 
4180 		if (connector->connector_type !=
4181 		    DRM_MODE_CONNECTOR_DisplayPort)
4182 			continue;
4183 
4184 		if (connector->status == connector_status_connected &&
4185 		    connector->encoder != NULL) {
4186 			intel_dp = enc_to_intel_dp(connector->encoder);
4187 			status = kstrtoint(input_buffer, 10, &val);
4188 			if (status < 0)
4189 				goto out;
4190 			DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4191 			/* To prevent erroneous activation of the compliance
4192 			 * testing code, only accept an actual value of 1 here
4193 			 */
4194 			if (val == 1)
4195 				intel_dp->compliance_test_active = 1;
4196 			else
4197 				intel_dp->compliance_test_active = 0;
4198 		}
4199 	}
4200 out:
4201 	kfree(input_buffer);
4202 	if (status < 0)
4203 		return status;
4204 
4205 	*offp += len;
4206 	return len;
4207 }
4208 
i915_displayport_test_active_show(struct seq_file * m,void * data)4209 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4210 {
4211 	struct drm_device *dev = m->private;
4212 	struct drm_connector *connector;
4213 	struct list_head *connector_list = &dev->mode_config.connector_list;
4214 	struct intel_dp *intel_dp;
4215 
4216 	list_for_each_entry(connector, connector_list, head) {
4217 
4218 		if (connector->connector_type !=
4219 		    DRM_MODE_CONNECTOR_DisplayPort)
4220 			continue;
4221 
4222 		if (connector->status == connector_status_connected &&
4223 		    connector->encoder != NULL) {
4224 			intel_dp = enc_to_intel_dp(connector->encoder);
4225 			if (intel_dp->compliance_test_active)
4226 				seq_puts(m, "1");
4227 			else
4228 				seq_puts(m, "0");
4229 		} else
4230 			seq_puts(m, "0");
4231 	}
4232 
4233 	return 0;
4234 }
4235 
i915_displayport_test_active_open(struct inode * inode,struct file * file)4236 static int i915_displayport_test_active_open(struct inode *inode,
4237 				       struct file *file)
4238 {
4239 	struct drm_device *dev = inode->i_private;
4240 
4241 	return single_open(file, i915_displayport_test_active_show, dev);
4242 }
4243 
4244 static const struct file_operations i915_displayport_test_active_fops = {
4245 	.owner = THIS_MODULE,
4246 	.open = i915_displayport_test_active_open,
4247 	.read = seq_read,
4248 	.llseek = seq_lseek,
4249 	.release = single_release,
4250 	.write = i915_displayport_test_active_write
4251 };
4252 
i915_displayport_test_data_show(struct seq_file * m,void * data)4253 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4254 {
4255 	struct drm_device *dev = m->private;
4256 	struct drm_connector *connector;
4257 	struct list_head *connector_list = &dev->mode_config.connector_list;
4258 	struct intel_dp *intel_dp;
4259 
4260 	list_for_each_entry(connector, connector_list, head) {
4261 
4262 		if (connector->connector_type !=
4263 		    DRM_MODE_CONNECTOR_DisplayPort)
4264 			continue;
4265 
4266 		if (connector->status == connector_status_connected &&
4267 		    connector->encoder != NULL) {
4268 			intel_dp = enc_to_intel_dp(connector->encoder);
4269 			seq_printf(m, "%lx", intel_dp->compliance_test_data);
4270 		} else
4271 			seq_puts(m, "0");
4272 	}
4273 
4274 	return 0;
4275 }
i915_displayport_test_data_open(struct inode * inode,struct file * file)4276 static int i915_displayport_test_data_open(struct inode *inode,
4277 				       struct file *file)
4278 {
4279 	struct drm_device *dev = inode->i_private;
4280 
4281 	return single_open(file, i915_displayport_test_data_show, dev);
4282 }
4283 
4284 static const struct file_operations i915_displayport_test_data_fops = {
4285 	.owner = THIS_MODULE,
4286 	.open = i915_displayport_test_data_open,
4287 	.read = seq_read,
4288 	.llseek = seq_lseek,
4289 	.release = single_release
4290 };
4291 
i915_displayport_test_type_show(struct seq_file * m,void * data)4292 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4293 {
4294 	struct drm_device *dev = m->private;
4295 	struct drm_connector *connector;
4296 	struct list_head *connector_list = &dev->mode_config.connector_list;
4297 	struct intel_dp *intel_dp;
4298 
4299 	list_for_each_entry(connector, connector_list, head) {
4300 
4301 		if (connector->connector_type !=
4302 		    DRM_MODE_CONNECTOR_DisplayPort)
4303 			continue;
4304 
4305 		if (connector->status == connector_status_connected &&
4306 		    connector->encoder != NULL) {
4307 			intel_dp = enc_to_intel_dp(connector->encoder);
4308 			seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4309 		} else
4310 			seq_puts(m, "0");
4311 	}
4312 
4313 	return 0;
4314 }
4315 
i915_displayport_test_type_open(struct inode * inode,struct file * file)4316 static int i915_displayport_test_type_open(struct inode *inode,
4317 				       struct file *file)
4318 {
4319 	struct drm_device *dev = inode->i_private;
4320 
4321 	return single_open(file, i915_displayport_test_type_show, dev);
4322 }
4323 
4324 static const struct file_operations i915_displayport_test_type_fops = {
4325 	.owner = THIS_MODULE,
4326 	.open = i915_displayport_test_type_open,
4327 	.read = seq_read,
4328 	.llseek = seq_lseek,
4329 	.release = single_release
4330 };
4331 
wm_latency_show(struct seq_file * m,const uint16_t wm[8])4332 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4333 {
4334 	struct drm_device *dev = m->private;
4335 	int level;
4336 	int num_levels;
4337 
4338 	if (IS_CHERRYVIEW(dev))
4339 		num_levels = 3;
4340 	else if (IS_VALLEYVIEW(dev))
4341 		num_levels = 1;
4342 	else
4343 		num_levels = ilk_wm_max_level(dev) + 1;
4344 
4345 	drm_modeset_lock_all(dev);
4346 
4347 	for (level = 0; level < num_levels; level++) {
4348 		unsigned int latency = wm[level];
4349 
4350 		/*
4351 		 * - WM1+ latency values in 0.5us units
4352 		 * - latencies are in us on gen9/vlv/chv
4353 		 */
4354 		if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev))
4355 			latency *= 10;
4356 		else if (level > 0)
4357 			latency *= 5;
4358 
4359 		seq_printf(m, "WM%d %u (%u.%u usec)\n",
4360 			   level, wm[level], latency / 10, latency % 10);
4361 	}
4362 
4363 	drm_modeset_unlock_all(dev);
4364 }
4365 
pri_wm_latency_show(struct seq_file * m,void * data)4366 static int pri_wm_latency_show(struct seq_file *m, void *data)
4367 {
4368 	struct drm_device *dev = m->private;
4369 	struct drm_i915_private *dev_priv = dev->dev_private;
4370 	const uint16_t *latencies;
4371 
4372 	if (INTEL_INFO(dev)->gen >= 9)
4373 		latencies = dev_priv->wm.skl_latency;
4374 	else
4375 		latencies = to_i915(dev)->wm.pri_latency;
4376 
4377 	wm_latency_show(m, latencies);
4378 
4379 	return 0;
4380 }
4381 
spr_wm_latency_show(struct seq_file * m,void * data)4382 static int spr_wm_latency_show(struct seq_file *m, void *data)
4383 {
4384 	struct drm_device *dev = m->private;
4385 	struct drm_i915_private *dev_priv = dev->dev_private;
4386 	const uint16_t *latencies;
4387 
4388 	if (INTEL_INFO(dev)->gen >= 9)
4389 		latencies = dev_priv->wm.skl_latency;
4390 	else
4391 		latencies = to_i915(dev)->wm.spr_latency;
4392 
4393 	wm_latency_show(m, latencies);
4394 
4395 	return 0;
4396 }
4397 
cur_wm_latency_show(struct seq_file * m,void * data)4398 static int cur_wm_latency_show(struct seq_file *m, void *data)
4399 {
4400 	struct drm_device *dev = m->private;
4401 	struct drm_i915_private *dev_priv = dev->dev_private;
4402 	const uint16_t *latencies;
4403 
4404 	if (INTEL_INFO(dev)->gen >= 9)
4405 		latencies = dev_priv->wm.skl_latency;
4406 	else
4407 		latencies = to_i915(dev)->wm.cur_latency;
4408 
4409 	wm_latency_show(m, latencies);
4410 
4411 	return 0;
4412 }
4413 
pri_wm_latency_open(struct inode * inode,struct file * file)4414 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4415 {
4416 	struct drm_device *dev = inode->i_private;
4417 
4418 	if (INTEL_INFO(dev)->gen < 5)
4419 		return -ENODEV;
4420 
4421 	return single_open(file, pri_wm_latency_show, dev);
4422 }
4423 
spr_wm_latency_open(struct inode * inode,struct file * file)4424 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4425 {
4426 	struct drm_device *dev = inode->i_private;
4427 
4428 	if (HAS_GMCH_DISPLAY(dev))
4429 		return -ENODEV;
4430 
4431 	return single_open(file, spr_wm_latency_show, dev);
4432 }
4433 
cur_wm_latency_open(struct inode * inode,struct file * file)4434 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4435 {
4436 	struct drm_device *dev = inode->i_private;
4437 
4438 	if (HAS_GMCH_DISPLAY(dev))
4439 		return -ENODEV;
4440 
4441 	return single_open(file, cur_wm_latency_show, dev);
4442 }
4443 
wm_latency_write(struct file * file,const char __user * ubuf,size_t len,loff_t * offp,uint16_t wm[8])4444 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4445 				size_t len, loff_t *offp, uint16_t wm[8])
4446 {
4447 	struct seq_file *m = file->private_data;
4448 	struct drm_device *dev = m->private;
4449 	uint16_t new[8] = { 0 };
4450 	int num_levels;
4451 	int level;
4452 	int ret;
4453 	char tmp[32];
4454 
4455 	if (IS_CHERRYVIEW(dev))
4456 		num_levels = 3;
4457 	else if (IS_VALLEYVIEW(dev))
4458 		num_levels = 1;
4459 	else
4460 		num_levels = ilk_wm_max_level(dev) + 1;
4461 
4462 	if (len >= sizeof(tmp))
4463 		return -EINVAL;
4464 
4465 	if (copy_from_user(tmp, ubuf, len))
4466 		return -EFAULT;
4467 
4468 	tmp[len] = '\0';
4469 
4470 	ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4471 		     &new[0], &new[1], &new[2], &new[3],
4472 		     &new[4], &new[5], &new[6], &new[7]);
4473 	if (ret != num_levels)
4474 		return -EINVAL;
4475 
4476 	drm_modeset_lock_all(dev);
4477 
4478 	for (level = 0; level < num_levels; level++)
4479 		wm[level] = new[level];
4480 
4481 	drm_modeset_unlock_all(dev);
4482 
4483 	return len;
4484 }
4485 
4486 
pri_wm_latency_write(struct file * file,const char __user * ubuf,size_t len,loff_t * offp)4487 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4488 				    size_t len, loff_t *offp)
4489 {
4490 	struct seq_file *m = file->private_data;
4491 	struct drm_device *dev = m->private;
4492 	struct drm_i915_private *dev_priv = dev->dev_private;
4493 	uint16_t *latencies;
4494 
4495 	if (INTEL_INFO(dev)->gen >= 9)
4496 		latencies = dev_priv->wm.skl_latency;
4497 	else
4498 		latencies = to_i915(dev)->wm.pri_latency;
4499 
4500 	return wm_latency_write(file, ubuf, len, offp, latencies);
4501 }
4502 
spr_wm_latency_write(struct file * file,const char __user * ubuf,size_t len,loff_t * offp)4503 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4504 				    size_t len, loff_t *offp)
4505 {
4506 	struct seq_file *m = file->private_data;
4507 	struct drm_device *dev = m->private;
4508 	struct drm_i915_private *dev_priv = dev->dev_private;
4509 	uint16_t *latencies;
4510 
4511 	if (INTEL_INFO(dev)->gen >= 9)
4512 		latencies = dev_priv->wm.skl_latency;
4513 	else
4514 		latencies = to_i915(dev)->wm.spr_latency;
4515 
4516 	return wm_latency_write(file, ubuf, len, offp, latencies);
4517 }
4518 
cur_wm_latency_write(struct file * file,const char __user * ubuf,size_t len,loff_t * offp)4519 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4520 				    size_t len, loff_t *offp)
4521 {
4522 	struct seq_file *m = file->private_data;
4523 	struct drm_device *dev = m->private;
4524 	struct drm_i915_private *dev_priv = dev->dev_private;
4525 	uint16_t *latencies;
4526 
4527 	if (INTEL_INFO(dev)->gen >= 9)
4528 		latencies = dev_priv->wm.skl_latency;
4529 	else
4530 		latencies = to_i915(dev)->wm.cur_latency;
4531 
4532 	return wm_latency_write(file, ubuf, len, offp, latencies);
4533 }
4534 
4535 static const struct file_operations i915_pri_wm_latency_fops = {
4536 	.owner = THIS_MODULE,
4537 	.open = pri_wm_latency_open,
4538 	.read = seq_read,
4539 	.llseek = seq_lseek,
4540 	.release = single_release,
4541 	.write = pri_wm_latency_write
4542 };
4543 
4544 static const struct file_operations i915_spr_wm_latency_fops = {
4545 	.owner = THIS_MODULE,
4546 	.open = spr_wm_latency_open,
4547 	.read = seq_read,
4548 	.llseek = seq_lseek,
4549 	.release = single_release,
4550 	.write = spr_wm_latency_write
4551 };
4552 
4553 static const struct file_operations i915_cur_wm_latency_fops = {
4554 	.owner = THIS_MODULE,
4555 	.open = cur_wm_latency_open,
4556 	.read = seq_read,
4557 	.llseek = seq_lseek,
4558 	.release = single_release,
4559 	.write = cur_wm_latency_write
4560 };
4561 
4562 static int
i915_wedged_get(void * data,u64 * val)4563 i915_wedged_get(void *data, u64 *val)
4564 {
4565 	struct drm_device *dev = data;
4566 	struct drm_i915_private *dev_priv = dev->dev_private;
4567 
4568 	*val = atomic_read(&dev_priv->gpu_error.reset_counter);
4569 
4570 	return 0;
4571 }
4572 
4573 static int
i915_wedged_set(void * data,u64 val)4574 i915_wedged_set(void *data, u64 val)
4575 {
4576 	struct drm_device *dev = data;
4577 	struct drm_i915_private *dev_priv = dev->dev_private;
4578 
4579 	/*
4580 	 * There is no safeguard against this debugfs entry colliding
4581 	 * with the hangcheck calling same i915_handle_error() in
4582 	 * parallel, causing an explosion. For now we assume that the
4583 	 * test harness is responsible enough not to inject gpu hangs
4584 	 * while it is writing to 'i915_wedged'
4585 	 */
4586 
4587 	if (i915_reset_in_progress(&dev_priv->gpu_error))
4588 		return -EAGAIN;
4589 
4590 	intel_runtime_pm_get(dev_priv);
4591 
4592 	i915_handle_error(dev, val,
4593 			  "Manually setting wedged to %llu", val);
4594 
4595 	intel_runtime_pm_put(dev_priv);
4596 
4597 	return 0;
4598 }
4599 
4600 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4601 			i915_wedged_get, i915_wedged_set,
4602 			"%llu\n");
4603 
4604 static int
i915_ring_stop_get(void * data,u64 * val)4605 i915_ring_stop_get(void *data, u64 *val)
4606 {
4607 	struct drm_device *dev = data;
4608 	struct drm_i915_private *dev_priv = dev->dev_private;
4609 
4610 	*val = dev_priv->gpu_error.stop_rings;
4611 
4612 	return 0;
4613 }
4614 
4615 static int
i915_ring_stop_set(void * data,u64 val)4616 i915_ring_stop_set(void *data, u64 val)
4617 {
4618 	struct drm_device *dev = data;
4619 	struct drm_i915_private *dev_priv = dev->dev_private;
4620 	int ret;
4621 
4622 	DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4623 
4624 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4625 	if (ret)
4626 		return ret;
4627 
4628 	dev_priv->gpu_error.stop_rings = val;
4629 	mutex_unlock(&dev->struct_mutex);
4630 
4631 	return 0;
4632 }
4633 
4634 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4635 			i915_ring_stop_get, i915_ring_stop_set,
4636 			"0x%08llx\n");
4637 
4638 static int
i915_ring_missed_irq_get(void * data,u64 * val)4639 i915_ring_missed_irq_get(void *data, u64 *val)
4640 {
4641 	struct drm_device *dev = data;
4642 	struct drm_i915_private *dev_priv = dev->dev_private;
4643 
4644 	*val = dev_priv->gpu_error.missed_irq_rings;
4645 	return 0;
4646 }
4647 
4648 static int
i915_ring_missed_irq_set(void * data,u64 val)4649 i915_ring_missed_irq_set(void *data, u64 val)
4650 {
4651 	struct drm_device *dev = data;
4652 	struct drm_i915_private *dev_priv = dev->dev_private;
4653 	int ret;
4654 
4655 	/* Lock against concurrent debugfs callers */
4656 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4657 	if (ret)
4658 		return ret;
4659 	dev_priv->gpu_error.missed_irq_rings = val;
4660 	mutex_unlock(&dev->struct_mutex);
4661 
4662 	return 0;
4663 }
4664 
4665 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4666 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4667 			"0x%08llx\n");
4668 
4669 static int
i915_ring_test_irq_get(void * data,u64 * val)4670 i915_ring_test_irq_get(void *data, u64 *val)
4671 {
4672 	struct drm_device *dev = data;
4673 	struct drm_i915_private *dev_priv = dev->dev_private;
4674 
4675 	*val = dev_priv->gpu_error.test_irq_rings;
4676 
4677 	return 0;
4678 }
4679 
4680 static int
i915_ring_test_irq_set(void * data,u64 val)4681 i915_ring_test_irq_set(void *data, u64 val)
4682 {
4683 	struct drm_device *dev = data;
4684 	struct drm_i915_private *dev_priv = dev->dev_private;
4685 	int ret;
4686 
4687 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4688 
4689 	/* Lock against concurrent debugfs callers */
4690 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4691 	if (ret)
4692 		return ret;
4693 
4694 	dev_priv->gpu_error.test_irq_rings = val;
4695 	mutex_unlock(&dev->struct_mutex);
4696 
4697 	return 0;
4698 }
4699 
4700 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4701 			i915_ring_test_irq_get, i915_ring_test_irq_set,
4702 			"0x%08llx\n");
4703 
4704 #define DROP_UNBOUND 0x1
4705 #define DROP_BOUND 0x2
4706 #define DROP_RETIRE 0x4
4707 #define DROP_ACTIVE 0x8
4708 #define DROP_ALL (DROP_UNBOUND | \
4709 		  DROP_BOUND | \
4710 		  DROP_RETIRE | \
4711 		  DROP_ACTIVE)
4712 static int
i915_drop_caches_get(void * data,u64 * val)4713 i915_drop_caches_get(void *data, u64 *val)
4714 {
4715 	*val = DROP_ALL;
4716 
4717 	return 0;
4718 }
4719 
4720 static int
i915_drop_caches_set(void * data,u64 val)4721 i915_drop_caches_set(void *data, u64 val)
4722 {
4723 	struct drm_device *dev = data;
4724 	struct drm_i915_private *dev_priv = dev->dev_private;
4725 	int ret;
4726 
4727 	DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4728 
4729 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
4730 	 * on ioctls on -EAGAIN. */
4731 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4732 	if (ret)
4733 		return ret;
4734 
4735 	if (val & DROP_ACTIVE) {
4736 		ret = i915_gpu_idle(dev);
4737 		if (ret)
4738 			goto unlock;
4739 	}
4740 
4741 	if (val & (DROP_RETIRE | DROP_ACTIVE))
4742 		i915_gem_retire_requests(dev);
4743 
4744 	if (val & DROP_BOUND)
4745 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4746 
4747 	if (val & DROP_UNBOUND)
4748 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4749 
4750 unlock:
4751 	mutex_unlock(&dev->struct_mutex);
4752 
4753 	return ret;
4754 }
4755 
4756 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4757 			i915_drop_caches_get, i915_drop_caches_set,
4758 			"0x%08llx\n");
4759 
4760 static int
i915_max_freq_get(void * data,u64 * val)4761 i915_max_freq_get(void *data, u64 *val)
4762 {
4763 	struct drm_device *dev = data;
4764 	struct drm_i915_private *dev_priv = dev->dev_private;
4765 	int ret;
4766 
4767 	if (INTEL_INFO(dev)->gen < 6)
4768 		return -ENODEV;
4769 
4770 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4771 
4772 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4773 	if (ret)
4774 		return ret;
4775 
4776 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4777 	mutex_unlock(&dev_priv->rps.hw_lock);
4778 
4779 	return 0;
4780 }
4781 
4782 static int
i915_max_freq_set(void * data,u64 val)4783 i915_max_freq_set(void *data, u64 val)
4784 {
4785 	struct drm_device *dev = data;
4786 	struct drm_i915_private *dev_priv = dev->dev_private;
4787 	u32 hw_max, hw_min;
4788 	int ret;
4789 
4790 	if (INTEL_INFO(dev)->gen < 6)
4791 		return -ENODEV;
4792 
4793 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4794 
4795 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4796 
4797 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4798 	if (ret)
4799 		return ret;
4800 
4801 	/*
4802 	 * Turbo will still be enabled, but won't go above the set value.
4803 	 */
4804 	val = intel_freq_opcode(dev_priv, val);
4805 
4806 	hw_max = dev_priv->rps.max_freq;
4807 	hw_min = dev_priv->rps.min_freq;
4808 
4809 	if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4810 		mutex_unlock(&dev_priv->rps.hw_lock);
4811 		return -EINVAL;
4812 	}
4813 
4814 	dev_priv->rps.max_freq_softlimit = val;
4815 
4816 	intel_set_rps(dev, val);
4817 
4818 	mutex_unlock(&dev_priv->rps.hw_lock);
4819 
4820 	return 0;
4821 }
4822 
4823 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4824 			i915_max_freq_get, i915_max_freq_set,
4825 			"%llu\n");
4826 
4827 static int
i915_min_freq_get(void * data,u64 * val)4828 i915_min_freq_get(void *data, u64 *val)
4829 {
4830 	struct drm_device *dev = data;
4831 	struct drm_i915_private *dev_priv = dev->dev_private;
4832 	int ret;
4833 
4834 	if (INTEL_INFO(dev)->gen < 6)
4835 		return -ENODEV;
4836 
4837 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4838 
4839 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4840 	if (ret)
4841 		return ret;
4842 
4843 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4844 	mutex_unlock(&dev_priv->rps.hw_lock);
4845 
4846 	return 0;
4847 }
4848 
4849 static int
i915_min_freq_set(void * data,u64 val)4850 i915_min_freq_set(void *data, u64 val)
4851 {
4852 	struct drm_device *dev = data;
4853 	struct drm_i915_private *dev_priv = dev->dev_private;
4854 	u32 hw_max, hw_min;
4855 	int ret;
4856 
4857 	if (INTEL_INFO(dev)->gen < 6)
4858 		return -ENODEV;
4859 
4860 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4861 
4862 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4863 
4864 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4865 	if (ret)
4866 		return ret;
4867 
4868 	/*
4869 	 * Turbo will still be enabled, but won't go below the set value.
4870 	 */
4871 	val = intel_freq_opcode(dev_priv, val);
4872 
4873 	hw_max = dev_priv->rps.max_freq;
4874 	hw_min = dev_priv->rps.min_freq;
4875 
4876 	if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4877 		mutex_unlock(&dev_priv->rps.hw_lock);
4878 		return -EINVAL;
4879 	}
4880 
4881 	dev_priv->rps.min_freq_softlimit = val;
4882 
4883 	intel_set_rps(dev, val);
4884 
4885 	mutex_unlock(&dev_priv->rps.hw_lock);
4886 
4887 	return 0;
4888 }
4889 
4890 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4891 			i915_min_freq_get, i915_min_freq_set,
4892 			"%llu\n");
4893 
4894 static int
i915_cache_sharing_get(void * data,u64 * val)4895 i915_cache_sharing_get(void *data, u64 *val)
4896 {
4897 	struct drm_device *dev = data;
4898 	struct drm_i915_private *dev_priv = dev->dev_private;
4899 	u32 snpcr;
4900 	int ret;
4901 
4902 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4903 		return -ENODEV;
4904 
4905 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4906 	if (ret)
4907 		return ret;
4908 	intel_runtime_pm_get(dev_priv);
4909 
4910 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4911 
4912 	intel_runtime_pm_put(dev_priv);
4913 	mutex_unlock(&dev_priv->dev->struct_mutex);
4914 
4915 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4916 
4917 	return 0;
4918 }
4919 
4920 static int
i915_cache_sharing_set(void * data,u64 val)4921 i915_cache_sharing_set(void *data, u64 val)
4922 {
4923 	struct drm_device *dev = data;
4924 	struct drm_i915_private *dev_priv = dev->dev_private;
4925 	u32 snpcr;
4926 
4927 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4928 		return -ENODEV;
4929 
4930 	if (val > 3)
4931 		return -EINVAL;
4932 
4933 	intel_runtime_pm_get(dev_priv);
4934 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4935 
4936 	/* Update the cache sharing policy here as well */
4937 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4938 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
4939 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4940 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4941 
4942 	intel_runtime_pm_put(dev_priv);
4943 	return 0;
4944 }
4945 
4946 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4947 			i915_cache_sharing_get, i915_cache_sharing_set,
4948 			"%llu\n");
4949 
4950 struct sseu_dev_status {
4951 	unsigned int slice_total;
4952 	unsigned int subslice_total;
4953 	unsigned int subslice_per_slice;
4954 	unsigned int eu_total;
4955 	unsigned int eu_per_subslice;
4956 };
4957 
cherryview_sseu_device_status(struct drm_device * dev,struct sseu_dev_status * stat)4958 static void cherryview_sseu_device_status(struct drm_device *dev,
4959 					  struct sseu_dev_status *stat)
4960 {
4961 	struct drm_i915_private *dev_priv = dev->dev_private;
4962 	int ss_max = 2;
4963 	int ss;
4964 	u32 sig1[ss_max], sig2[ss_max];
4965 
4966 	sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4967 	sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4968 	sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4969 	sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4970 
4971 	for (ss = 0; ss < ss_max; ss++) {
4972 		unsigned int eu_cnt;
4973 
4974 		if (sig1[ss] & CHV_SS_PG_ENABLE)
4975 			/* skip disabled subslice */
4976 			continue;
4977 
4978 		stat->slice_total = 1;
4979 		stat->subslice_per_slice++;
4980 		eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4981 			 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4982 			 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4983 			 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4984 		stat->eu_total += eu_cnt;
4985 		stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
4986 	}
4987 	stat->subslice_total = stat->subslice_per_slice;
4988 }
4989 
gen9_sseu_device_status(struct drm_device * dev,struct sseu_dev_status * stat)4990 static void gen9_sseu_device_status(struct drm_device *dev,
4991 				    struct sseu_dev_status *stat)
4992 {
4993 	struct drm_i915_private *dev_priv = dev->dev_private;
4994 	int s_max = 3, ss_max = 4;
4995 	int s, ss;
4996 	u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4997 
4998 	/* BXT has a single slice and at most 3 subslices. */
4999 	if (IS_BROXTON(dev)) {
5000 		s_max = 1;
5001 		ss_max = 3;
5002 	}
5003 
5004 	for (s = 0; s < s_max; s++) {
5005 		s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5006 		eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5007 		eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5008 	}
5009 
5010 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5011 		     GEN9_PGCTL_SSA_EU19_ACK |
5012 		     GEN9_PGCTL_SSA_EU210_ACK |
5013 		     GEN9_PGCTL_SSA_EU311_ACK;
5014 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5015 		     GEN9_PGCTL_SSB_EU19_ACK |
5016 		     GEN9_PGCTL_SSB_EU210_ACK |
5017 		     GEN9_PGCTL_SSB_EU311_ACK;
5018 
5019 	for (s = 0; s < s_max; s++) {
5020 		unsigned int ss_cnt = 0;
5021 
5022 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5023 			/* skip disabled slice */
5024 			continue;
5025 
5026 		stat->slice_total++;
5027 
5028 		if (IS_SKYLAKE(dev))
5029 			ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5030 
5031 		for (ss = 0; ss < ss_max; ss++) {
5032 			unsigned int eu_cnt;
5033 
5034 			if (IS_BROXTON(dev) &&
5035 			    !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5036 				/* skip disabled subslice */
5037 				continue;
5038 
5039 			if (IS_BROXTON(dev))
5040 				ss_cnt++;
5041 
5042 			eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5043 					       eu_mask[ss%2]);
5044 			stat->eu_total += eu_cnt;
5045 			stat->eu_per_subslice = max(stat->eu_per_subslice,
5046 						    eu_cnt);
5047 		}
5048 
5049 		stat->subslice_total += ss_cnt;
5050 		stat->subslice_per_slice = max(stat->subslice_per_slice,
5051 					       ss_cnt);
5052 	}
5053 }
5054 
broadwell_sseu_device_status(struct drm_device * dev,struct sseu_dev_status * stat)5055 static void broadwell_sseu_device_status(struct drm_device *dev,
5056 					 struct sseu_dev_status *stat)
5057 {
5058 	struct drm_i915_private *dev_priv = dev->dev_private;
5059 	int s;
5060 	u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5061 
5062 	stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5063 
5064 	if (stat->slice_total) {
5065 		stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5066 		stat->subslice_total = stat->slice_total *
5067 				       stat->subslice_per_slice;
5068 		stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5069 		stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5070 
5071 		/* subtract fused off EU(s) from enabled slice(s) */
5072 		for (s = 0; s < stat->slice_total; s++) {
5073 			u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5074 
5075 			stat->eu_total -= hweight8(subslice_7eu);
5076 		}
5077 	}
5078 }
5079 
i915_sseu_status(struct seq_file * m,void * unused)5080 static int i915_sseu_status(struct seq_file *m, void *unused)
5081 {
5082 	struct drm_info_node *node = (struct drm_info_node *) m->private;
5083 	struct drm_device *dev = node->minor->dev;
5084 	struct sseu_dev_status stat;
5085 
5086 	if (INTEL_INFO(dev)->gen < 8)
5087 		return -ENODEV;
5088 
5089 	seq_puts(m, "SSEU Device Info\n");
5090 	seq_printf(m, "  Available Slice Total: %u\n",
5091 		   INTEL_INFO(dev)->slice_total);
5092 	seq_printf(m, "  Available Subslice Total: %u\n",
5093 		   INTEL_INFO(dev)->subslice_total);
5094 	seq_printf(m, "  Available Subslice Per Slice: %u\n",
5095 		   INTEL_INFO(dev)->subslice_per_slice);
5096 	seq_printf(m, "  Available EU Total: %u\n",
5097 		   INTEL_INFO(dev)->eu_total);
5098 	seq_printf(m, "  Available EU Per Subslice: %u\n",
5099 		   INTEL_INFO(dev)->eu_per_subslice);
5100 	seq_printf(m, "  Has Slice Power Gating: %s\n",
5101 		   yesno(INTEL_INFO(dev)->has_slice_pg));
5102 	seq_printf(m, "  Has Subslice Power Gating: %s\n",
5103 		   yesno(INTEL_INFO(dev)->has_subslice_pg));
5104 	seq_printf(m, "  Has EU Power Gating: %s\n",
5105 		   yesno(INTEL_INFO(dev)->has_eu_pg));
5106 
5107 	seq_puts(m, "SSEU Device Status\n");
5108 	memset(&stat, 0, sizeof(stat));
5109 	if (IS_CHERRYVIEW(dev)) {
5110 		cherryview_sseu_device_status(dev, &stat);
5111 	} else if (IS_BROADWELL(dev)) {
5112 		broadwell_sseu_device_status(dev, &stat);
5113 	} else if (INTEL_INFO(dev)->gen >= 9) {
5114 		gen9_sseu_device_status(dev, &stat);
5115 	}
5116 	seq_printf(m, "  Enabled Slice Total: %u\n",
5117 		   stat.slice_total);
5118 	seq_printf(m, "  Enabled Subslice Total: %u\n",
5119 		   stat.subslice_total);
5120 	seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
5121 		   stat.subslice_per_slice);
5122 	seq_printf(m, "  Enabled EU Total: %u\n",
5123 		   stat.eu_total);
5124 	seq_printf(m, "  Enabled EU Per Subslice: %u\n",
5125 		   stat.eu_per_subslice);
5126 
5127 	return 0;
5128 }
5129 
i915_forcewake_open(struct inode * inode,struct file * file)5130 static int i915_forcewake_open(struct inode *inode, struct file *file)
5131 {
5132 	struct drm_device *dev = inode->i_private;
5133 	struct drm_i915_private *dev_priv = dev->dev_private;
5134 
5135 	if (INTEL_INFO(dev)->gen < 6)
5136 		return 0;
5137 
5138 	intel_runtime_pm_get(dev_priv);
5139 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5140 
5141 	return 0;
5142 }
5143 
i915_forcewake_release(struct inode * inode,struct file * file)5144 static int i915_forcewake_release(struct inode *inode, struct file *file)
5145 {
5146 	struct drm_device *dev = inode->i_private;
5147 	struct drm_i915_private *dev_priv = dev->dev_private;
5148 
5149 	if (INTEL_INFO(dev)->gen < 6)
5150 		return 0;
5151 
5152 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5153 	intel_runtime_pm_put(dev_priv);
5154 
5155 	return 0;
5156 }
5157 
5158 static const struct file_operations i915_forcewake_fops = {
5159 	.owner = THIS_MODULE,
5160 	.open = i915_forcewake_open,
5161 	.release = i915_forcewake_release,
5162 };
5163 
i915_forcewake_create(struct dentry * root,struct drm_minor * minor)5164 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5165 {
5166 	struct drm_device *dev = minor->dev;
5167 	struct dentry *ent;
5168 
5169 	ent = debugfs_create_file("i915_forcewake_user",
5170 				  S_IRUSR,
5171 				  root, dev,
5172 				  &i915_forcewake_fops);
5173 	if (!ent)
5174 		return -ENOMEM;
5175 
5176 	return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5177 }
5178 
i915_debugfs_create(struct dentry * root,struct drm_minor * minor,const char * name,const struct file_operations * fops)5179 static int i915_debugfs_create(struct dentry *root,
5180 			       struct drm_minor *minor,
5181 			       const char *name,
5182 			       const struct file_operations *fops)
5183 {
5184 	struct drm_device *dev = minor->dev;
5185 	struct dentry *ent;
5186 
5187 	ent = debugfs_create_file(name,
5188 				  S_IRUGO | S_IWUSR,
5189 				  root, dev,
5190 				  fops);
5191 	if (!ent)
5192 		return -ENOMEM;
5193 
5194 	return drm_add_fake_info_node(minor, ent, fops);
5195 }
5196 
5197 static const struct drm_info_list i915_debugfs_list[] = {
5198 	{"i915_capabilities", i915_capabilities, 0},
5199 	{"i915_gem_objects", i915_gem_object_info, 0},
5200 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
5201 	{"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5202 	{"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5203 	{"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5204 	{"i915_gem_stolen", i915_gem_stolen_list_info },
5205 	{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5206 	{"i915_gem_request", i915_gem_request_info, 0},
5207 	{"i915_gem_seqno", i915_gem_seqno_info, 0},
5208 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5209 	{"i915_gem_interrupt", i915_interrupt_info, 0},
5210 	{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5211 	{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5212 	{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5213 	{"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5214 	{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5215 	{"i915_guc_info", i915_guc_info, 0},
5216 	{"i915_guc_load_status", i915_guc_load_status_info, 0},
5217 	{"i915_guc_log_dump", i915_guc_log_dump, 0},
5218 	{"i915_frequency_info", i915_frequency_info, 0},
5219 	{"i915_hangcheck_info", i915_hangcheck_info, 0},
5220 	{"i915_drpc_info", i915_drpc_info, 0},
5221 	{"i915_emon_status", i915_emon_status, 0},
5222 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
5223 	{"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5224 	{"i915_fbc_status", i915_fbc_status, 0},
5225 	{"i915_ips_status", i915_ips_status, 0},
5226 	{"i915_sr_status", i915_sr_status, 0},
5227 	{"i915_opregion", i915_opregion, 0},
5228 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5229 	{"i915_context_status", i915_context_status, 0},
5230 	{"i915_dump_lrc", i915_dump_lrc, 0},
5231 	{"i915_execlists", i915_execlists, 0},
5232 	{"i915_forcewake_domains", i915_forcewake_domains, 0},
5233 	{"i915_swizzle_info", i915_swizzle_info, 0},
5234 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
5235 	{"i915_llc", i915_llc, 0},
5236 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
5237 	{"i915_sink_crc_eDP1", i915_sink_crc, 0},
5238 	{"i915_energy_uJ", i915_energy_uJ, 0},
5239 	{"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5240 	{"i915_power_domain_info", i915_power_domain_info, 0},
5241 	{"i915_display_info", i915_display_info, 0},
5242 	{"i915_semaphore_status", i915_semaphore_status, 0},
5243 	{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5244 	{"i915_dp_mst_info", i915_dp_mst_info, 0},
5245 	{"i915_wa_registers", i915_wa_registers, 0},
5246 	{"i915_ddb_info", i915_ddb_info, 0},
5247 	{"i915_sseu_status", i915_sseu_status, 0},
5248 	{"i915_drrs_status", i915_drrs_status, 0},
5249 	{"i915_rps_boost_info", i915_rps_boost_info, 0},
5250 };
5251 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5252 
5253 static const struct i915_debugfs_files {
5254 	const char *name;
5255 	const struct file_operations *fops;
5256 } i915_debugfs_files[] = {
5257 	{"i915_wedged", &i915_wedged_fops},
5258 	{"i915_max_freq", &i915_max_freq_fops},
5259 	{"i915_min_freq", &i915_min_freq_fops},
5260 	{"i915_cache_sharing", &i915_cache_sharing_fops},
5261 	{"i915_ring_stop", &i915_ring_stop_fops},
5262 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5263 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
5264 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
5265 	{"i915_error_state", &i915_error_state_fops},
5266 	{"i915_next_seqno", &i915_next_seqno_fops},
5267 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5268 	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5269 	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5270 	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5271 	{"i915_fbc_false_color", &i915_fbc_fc_fops},
5272 	{"i915_dp_test_data", &i915_displayport_test_data_fops},
5273 	{"i915_dp_test_type", &i915_displayport_test_type_fops},
5274 	{"i915_dp_test_active", &i915_displayport_test_active_fops}
5275 };
5276 
intel_display_crc_init(struct drm_device * dev)5277 void intel_display_crc_init(struct drm_device *dev)
5278 {
5279 	struct drm_i915_private *dev_priv = dev->dev_private;
5280 	enum pipe pipe;
5281 
5282 	for_each_pipe(dev_priv, pipe) {
5283 		struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5284 
5285 		pipe_crc->opened = false;
5286 		spin_lock_init(&pipe_crc->lock);
5287 		init_waitqueue_head(&pipe_crc->wq);
5288 	}
5289 }
5290 
i915_debugfs_init(struct drm_minor * minor)5291 int i915_debugfs_init(struct drm_minor *minor)
5292 {
5293 	int ret, i;
5294 
5295 	ret = i915_forcewake_create(minor->debugfs_root, minor);
5296 	if (ret)
5297 		return ret;
5298 
5299 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5300 		ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5301 		if (ret)
5302 			return ret;
5303 	}
5304 
5305 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5306 		ret = i915_debugfs_create(minor->debugfs_root, minor,
5307 					  i915_debugfs_files[i].name,
5308 					  i915_debugfs_files[i].fops);
5309 		if (ret)
5310 			return ret;
5311 	}
5312 
5313 	return drm_debugfs_create_files(i915_debugfs_list,
5314 					I915_DEBUGFS_ENTRIES,
5315 					minor->debugfs_root, minor);
5316 }
5317 
i915_debugfs_cleanup(struct drm_minor * minor)5318 void i915_debugfs_cleanup(struct drm_minor *minor)
5319 {
5320 	int i;
5321 
5322 	drm_debugfs_remove_files(i915_debugfs_list,
5323 				 I915_DEBUGFS_ENTRIES, minor);
5324 
5325 	drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5326 				 1, minor);
5327 
5328 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5329 		struct drm_info_list *info_list =
5330 			(struct drm_info_list *)&i915_pipe_crc_data[i];
5331 
5332 		drm_debugfs_remove_files(info_list, 1, minor);
5333 	}
5334 
5335 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5336 		struct drm_info_list *info_list =
5337 			(struct drm_info_list *) i915_debugfs_files[i].fops;
5338 
5339 		drm_debugfs_remove_files(info_list, 1, minor);
5340 	}
5341 }
5342 
5343 struct dpcd_block {
5344 	/* DPCD dump start address. */
5345 	unsigned int offset;
5346 	/* DPCD dump end address, inclusive. If unset, .size will be used. */
5347 	unsigned int end;
5348 	/* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5349 	size_t size;
5350 	/* Only valid for eDP. */
5351 	bool edp;
5352 };
5353 
5354 static const struct dpcd_block i915_dpcd_debug[] = {
5355 	{ .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5356 	{ .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5357 	{ .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5358 	{ .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5359 	{ .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5360 	{ .offset = DP_SET_POWER },
5361 	{ .offset = DP_EDP_DPCD_REV },
5362 	{ .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5363 	{ .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5364 	{ .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5365 };
5366 
i915_dpcd_show(struct seq_file * m,void * data)5367 static int i915_dpcd_show(struct seq_file *m, void *data)
5368 {
5369 	struct drm_connector *connector = m->private;
5370 	struct intel_dp *intel_dp =
5371 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5372 	uint8_t buf[16];
5373 	ssize_t err;
5374 	int i;
5375 
5376 	if (connector->status != connector_status_connected)
5377 		return -ENODEV;
5378 
5379 	for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5380 		const struct dpcd_block *b = &i915_dpcd_debug[i];
5381 		size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5382 
5383 		if (b->edp &&
5384 		    connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5385 			continue;
5386 
5387 		/* low tech for now */
5388 		if (WARN_ON(size > sizeof(buf)))
5389 			continue;
5390 
5391 		err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5392 		if (err <= 0) {
5393 			DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5394 				  size, b->offset, err);
5395 			continue;
5396 		}
5397 
5398 		seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5399 	}
5400 
5401 	return 0;
5402 }
5403 
i915_dpcd_open(struct inode * inode,struct file * file)5404 static int i915_dpcd_open(struct inode *inode, struct file *file)
5405 {
5406 	return single_open(file, i915_dpcd_show, inode->i_private);
5407 }
5408 
5409 static const struct file_operations i915_dpcd_fops = {
5410 	.owner = THIS_MODULE,
5411 	.open = i915_dpcd_open,
5412 	.read = seq_read,
5413 	.llseek = seq_lseek,
5414 	.release = single_release,
5415 };
5416 
5417 /**
5418  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5419  * @connector: pointer to a registered drm_connector
5420  *
5421  * Cleanup will be done by drm_connector_unregister() through a call to
5422  * drm_debugfs_connector_remove().
5423  *
5424  * Returns 0 on success, negative error codes on error.
5425  */
i915_debugfs_connector_add(struct drm_connector * connector)5426 int i915_debugfs_connector_add(struct drm_connector *connector)
5427 {
5428 	struct dentry *root = connector->debugfs_entry;
5429 
5430 	/* The connector must have been registered beforehands. */
5431 	if (!root)
5432 		return -ENODEV;
5433 
5434 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5435 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5436 		debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5437 				    &i915_dpcd_fops);
5438 
5439 	return 0;
5440 }
5441