• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * General Purpose functions for the global management of the
3  * Communication Processor Module.
4  * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
5  *
6  * In addition to the individual control of the communication
7  * channels, there are a few functions that globally affect the
8  * communication processor.
9  *
10  * Buffer descriptors must be allocated from the dual ported memory
11  * space.  The allocator for that is here.  When the communication
12  * process is reset, we reclaim the memory available.  There is
13  * currently no deallocator for this memory.
14  * The amount of space available is platform dependent.  On the
15  * MBX, the EPPC software loads additional microcode into the
16  * communication processor, and uses some of the DP ram for this
17  * purpose.  Current, the first 512 bytes and the last 256 bytes of
18  * memory are used.  Right now I am conservative and only use the
19  * memory that can never be used for microcode.  If there are
20  * applications that require more DP ram, we can expand the boundaries
21  * but then we have to be careful of any downloaded microcode.
22  */
23 #include <linux/errno.h>
24 #include <linux/sched.h>
25 #include <linux/kernel.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/param.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h>
32 #include <linux/module.h>
33 #include <linux/spinlock.h>
34 #include <linux/slab.h>
35 #include <asm/page.h>
36 #include <asm/pgtable.h>
37 #include <asm/8xx_immap.h>
38 #include <asm/cpm1.h>
39 #include <asm/io.h>
40 #include <asm/tlbflush.h>
41 #include <asm/rheap.h>
42 #include <asm/prom.h>
43 #include <asm/cpm.h>
44 
45 #include <asm/fs_pd.h>
46 
47 #ifdef CONFIG_8xx_GPIO
48 #include <linux/of_gpio.h>
49 #endif
50 
51 #define CPM_MAP_SIZE    (0x4000)
52 
53 cpm8xx_t __iomem *cpmp;  /* Pointer to comm processor space */
54 immap_t __iomem *mpc8xx_immr;
55 static cpic8xx_t __iomem *cpic_reg;
56 
57 static struct irq_domain *cpm_pic_host;
58 
cpm_mask_irq(struct irq_data * d)59 static void cpm_mask_irq(struct irq_data *d)
60 {
61 	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
62 
63 	clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
64 }
65 
cpm_unmask_irq(struct irq_data * d)66 static void cpm_unmask_irq(struct irq_data *d)
67 {
68 	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
69 
70 	setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
71 }
72 
cpm_end_irq(struct irq_data * d)73 static void cpm_end_irq(struct irq_data *d)
74 {
75 	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
76 
77 	out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
78 }
79 
80 static struct irq_chip cpm_pic = {
81 	.name = "CPM PIC",
82 	.irq_mask = cpm_mask_irq,
83 	.irq_unmask = cpm_unmask_irq,
84 	.irq_eoi = cpm_end_irq,
85 };
86 
cpm_get_irq(void)87 int cpm_get_irq(void)
88 {
89 	int cpm_vec;
90 
91 	/* Get the vector by setting the ACK bit and then reading
92 	 * the register.
93 	 */
94 	out_be16(&cpic_reg->cpic_civr, 1);
95 	cpm_vec = in_be16(&cpic_reg->cpic_civr);
96 	cpm_vec >>= 11;
97 
98 	return irq_linear_revmap(cpm_pic_host, cpm_vec);
99 }
100 
cpm_pic_host_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)101 static int cpm_pic_host_map(struct irq_domain *h, unsigned int virq,
102 			  irq_hw_number_t hw)
103 {
104 	pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
105 
106 	irq_set_status_flags(virq, IRQ_LEVEL);
107 	irq_set_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
108 	return 0;
109 }
110 
111 /* The CPM can generate the error interrupt when there is a race condition
112  * between generating and masking interrupts.  All we have to do is ACK it
113  * and return.  This is a no-op function so we don't need any special
114  * tests in the interrupt handler.
115  */
cpm_error_interrupt(int irq,void * dev)116 static irqreturn_t cpm_error_interrupt(int irq, void *dev)
117 {
118 	return IRQ_HANDLED;
119 }
120 
121 static struct irqaction cpm_error_irqaction = {
122 	.handler = cpm_error_interrupt,
123 	.flags = IRQF_NO_THREAD,
124 	.name = "error",
125 };
126 
127 static const struct irq_domain_ops cpm_pic_host_ops = {
128 	.map = cpm_pic_host_map,
129 };
130 
cpm_pic_init(void)131 unsigned int cpm_pic_init(void)
132 {
133 	struct device_node *np = NULL;
134 	struct resource res;
135 	unsigned int sirq = NO_IRQ, hwirq, eirq;
136 	int ret;
137 
138 	pr_debug("cpm_pic_init\n");
139 
140 	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
141 	if (np == NULL)
142 		np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
143 	if (np == NULL) {
144 		printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
145 		return sirq;
146 	}
147 
148 	ret = of_address_to_resource(np, 0, &res);
149 	if (ret)
150 		goto end;
151 
152 	cpic_reg = ioremap(res.start, resource_size(&res));
153 	if (cpic_reg == NULL)
154 		goto end;
155 
156 	sirq = irq_of_parse_and_map(np, 0);
157 	if (sirq == NO_IRQ)
158 		goto end;
159 
160 	/* Initialize the CPM interrupt controller. */
161 	hwirq = (unsigned int)virq_to_hw(sirq);
162 	out_be32(&cpic_reg->cpic_cicr,
163 	    (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
164 		((hwirq/2) << 13) | CICR_HP_MASK);
165 
166 	out_be32(&cpic_reg->cpic_cimr, 0);
167 
168 	cpm_pic_host = irq_domain_add_linear(np, 64, &cpm_pic_host_ops, NULL);
169 	if (cpm_pic_host == NULL) {
170 		printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
171 		sirq = NO_IRQ;
172 		goto end;
173 	}
174 
175 	/* Install our own error handler. */
176 	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
177 	if (np == NULL)
178 		np = of_find_node_by_type(NULL, "cpm");
179 	if (np == NULL) {
180 		printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
181 		goto end;
182 	}
183 
184 	eirq = irq_of_parse_and_map(np, 0);
185 	if (eirq == NO_IRQ)
186 		goto end;
187 
188 	if (setup_irq(eirq, &cpm_error_irqaction))
189 		printk(KERN_ERR "Could not allocate CPM error IRQ!");
190 
191 	setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
192 
193 end:
194 	of_node_put(np);
195 	return sirq;
196 }
197 
cpm_reset(void)198 void __init cpm_reset(void)
199 {
200 	sysconf8xx_t __iomem *siu_conf;
201 
202 	mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
203 	if (!mpc8xx_immr) {
204 		printk(KERN_CRIT "Could not map IMMR\n");
205 		return;
206 	}
207 
208 	cpmp = &mpc8xx_immr->im_cpm;
209 
210 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
211 	/* Perform a reset.
212 	*/
213 	out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
214 
215 	/* Wait for it.
216 	*/
217 	while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
218 #endif
219 
220 #ifdef CONFIG_UCODE_PATCH
221 	cpm_load_patch(cpmp);
222 #endif
223 
224 	/* Set SDMA Bus Request priority 5.
225 	 * On 860T, this also enables FEC priority 6.  I am not sure
226 	 * this is what we really want for some applications, but the
227 	 * manual recommends it.
228 	 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
229 	 */
230 	siu_conf = immr_map(im_siu_conf);
231 	out_be32(&siu_conf->sc_sdcr, 1);
232 	immr_unmap(siu_conf);
233 
234 	cpm_muram_init();
235 }
236 
237 static DEFINE_SPINLOCK(cmd_lock);
238 
239 #define MAX_CR_CMD_LOOPS        10000
240 
cpm_command(u32 command,u8 opcode)241 int cpm_command(u32 command, u8 opcode)
242 {
243 	int i, ret;
244 	unsigned long flags;
245 
246 	if (command & 0xffffff0f)
247 		return -EINVAL;
248 
249 	spin_lock_irqsave(&cmd_lock, flags);
250 
251 	ret = 0;
252 	out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
253 	for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
254 		if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
255 			goto out;
256 
257 	printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
258 	ret = -EIO;
259 out:
260 	spin_unlock_irqrestore(&cmd_lock, flags);
261 	return ret;
262 }
263 EXPORT_SYMBOL(cpm_command);
264 
265 /* Set a baud rate generator.  This needs lots of work.  There are
266  * four BRGs, any of which can be wired to any channel.
267  * The internal baud rate clock is the system clock divided by 16.
268  * This assumes the baudrate is 16x oversampled by the uart.
269  */
270 #define BRG_INT_CLK		(get_brgfreq())
271 #define BRG_UART_CLK		(BRG_INT_CLK/16)
272 #define BRG_UART_CLK_DIV16	(BRG_UART_CLK/16)
273 
274 void
cpm_setbrg(uint brg,uint rate)275 cpm_setbrg(uint brg, uint rate)
276 {
277 	u32 __iomem *bp;
278 
279 	/* This is good enough to get SMCs running.....
280 	*/
281 	bp = &cpmp->cp_brgc1;
282 	bp += brg;
283 	/* The BRG has a 12-bit counter.  For really slow baud rates (or
284 	 * really fast processors), we may have to further divide by 16.
285 	 */
286 	if (((BRG_UART_CLK / rate) - 1) < 4096)
287 		out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
288 	else
289 		out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
290 			      CPM_BRG_EN | CPM_BRG_DIV16);
291 }
292 
293 struct cpm_ioport16 {
294 	__be16 dir, par, odr_sor, dat, intr;
295 	__be16 res[3];
296 };
297 
298 struct cpm_ioport32b {
299 	__be32 dir, par, odr, dat;
300 };
301 
302 struct cpm_ioport32e {
303 	__be32 dir, par, sor, odr, dat;
304 };
305 
cpm1_set_pin32(int port,int pin,int flags)306 static void cpm1_set_pin32(int port, int pin, int flags)
307 {
308 	struct cpm_ioport32e __iomem *iop;
309 	pin = 1 << (31 - pin);
310 
311 	if (port == CPM_PORTB)
312 		iop = (struct cpm_ioport32e __iomem *)
313 		      &mpc8xx_immr->im_cpm.cp_pbdir;
314 	else
315 		iop = (struct cpm_ioport32e __iomem *)
316 		      &mpc8xx_immr->im_cpm.cp_pedir;
317 
318 	if (flags & CPM_PIN_OUTPUT)
319 		setbits32(&iop->dir, pin);
320 	else
321 		clrbits32(&iop->dir, pin);
322 
323 	if (!(flags & CPM_PIN_GPIO))
324 		setbits32(&iop->par, pin);
325 	else
326 		clrbits32(&iop->par, pin);
327 
328 	if (port == CPM_PORTB) {
329 		if (flags & CPM_PIN_OPENDRAIN)
330 			setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
331 		else
332 			clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
333 	}
334 
335 	if (port == CPM_PORTE) {
336 		if (flags & CPM_PIN_SECONDARY)
337 			setbits32(&iop->sor, pin);
338 		else
339 			clrbits32(&iop->sor, pin);
340 
341 		if (flags & CPM_PIN_OPENDRAIN)
342 			setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
343 		else
344 			clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
345 	}
346 }
347 
cpm1_set_pin16(int port,int pin,int flags)348 static void cpm1_set_pin16(int port, int pin, int flags)
349 {
350 	struct cpm_ioport16 __iomem *iop =
351 		(struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
352 
353 	pin = 1 << (15 - pin);
354 
355 	if (port != 0)
356 		iop += port - 1;
357 
358 	if (flags & CPM_PIN_OUTPUT)
359 		setbits16(&iop->dir, pin);
360 	else
361 		clrbits16(&iop->dir, pin);
362 
363 	if (!(flags & CPM_PIN_GPIO))
364 		setbits16(&iop->par, pin);
365 	else
366 		clrbits16(&iop->par, pin);
367 
368 	if (port == CPM_PORTA) {
369 		if (flags & CPM_PIN_OPENDRAIN)
370 			setbits16(&iop->odr_sor, pin);
371 		else
372 			clrbits16(&iop->odr_sor, pin);
373 	}
374 	if (port == CPM_PORTC) {
375 		if (flags & CPM_PIN_SECONDARY)
376 			setbits16(&iop->odr_sor, pin);
377 		else
378 			clrbits16(&iop->odr_sor, pin);
379 	}
380 }
381 
cpm1_set_pin(enum cpm_port port,int pin,int flags)382 void cpm1_set_pin(enum cpm_port port, int pin, int flags)
383 {
384 	if (port == CPM_PORTB || port == CPM_PORTE)
385 		cpm1_set_pin32(port, pin, flags);
386 	else
387 		cpm1_set_pin16(port, pin, flags);
388 }
389 
cpm1_clk_setup(enum cpm_clk_target target,int clock,int mode)390 int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
391 {
392 	int shift;
393 	int i, bits = 0;
394 	u32 __iomem *reg;
395 	u32 mask = 7;
396 
397 	u8 clk_map[][3] = {
398 		{CPM_CLK_SCC1, CPM_BRG1, 0},
399 		{CPM_CLK_SCC1, CPM_BRG2, 1},
400 		{CPM_CLK_SCC1, CPM_BRG3, 2},
401 		{CPM_CLK_SCC1, CPM_BRG4, 3},
402 		{CPM_CLK_SCC1, CPM_CLK1, 4},
403 		{CPM_CLK_SCC1, CPM_CLK2, 5},
404 		{CPM_CLK_SCC1, CPM_CLK3, 6},
405 		{CPM_CLK_SCC1, CPM_CLK4, 7},
406 
407 		{CPM_CLK_SCC2, CPM_BRG1, 0},
408 		{CPM_CLK_SCC2, CPM_BRG2, 1},
409 		{CPM_CLK_SCC2, CPM_BRG3, 2},
410 		{CPM_CLK_SCC2, CPM_BRG4, 3},
411 		{CPM_CLK_SCC2, CPM_CLK1, 4},
412 		{CPM_CLK_SCC2, CPM_CLK2, 5},
413 		{CPM_CLK_SCC2, CPM_CLK3, 6},
414 		{CPM_CLK_SCC2, CPM_CLK4, 7},
415 
416 		{CPM_CLK_SCC3, CPM_BRG1, 0},
417 		{CPM_CLK_SCC3, CPM_BRG2, 1},
418 		{CPM_CLK_SCC3, CPM_BRG3, 2},
419 		{CPM_CLK_SCC3, CPM_BRG4, 3},
420 		{CPM_CLK_SCC3, CPM_CLK5, 4},
421 		{CPM_CLK_SCC3, CPM_CLK6, 5},
422 		{CPM_CLK_SCC3, CPM_CLK7, 6},
423 		{CPM_CLK_SCC3, CPM_CLK8, 7},
424 
425 		{CPM_CLK_SCC4, CPM_BRG1, 0},
426 		{CPM_CLK_SCC4, CPM_BRG2, 1},
427 		{CPM_CLK_SCC4, CPM_BRG3, 2},
428 		{CPM_CLK_SCC4, CPM_BRG4, 3},
429 		{CPM_CLK_SCC4, CPM_CLK5, 4},
430 		{CPM_CLK_SCC4, CPM_CLK6, 5},
431 		{CPM_CLK_SCC4, CPM_CLK7, 6},
432 		{CPM_CLK_SCC4, CPM_CLK8, 7},
433 
434 		{CPM_CLK_SMC1, CPM_BRG1, 0},
435 		{CPM_CLK_SMC1, CPM_BRG2, 1},
436 		{CPM_CLK_SMC1, CPM_BRG3, 2},
437 		{CPM_CLK_SMC1, CPM_BRG4, 3},
438 		{CPM_CLK_SMC1, CPM_CLK1, 4},
439 		{CPM_CLK_SMC1, CPM_CLK2, 5},
440 		{CPM_CLK_SMC1, CPM_CLK3, 6},
441 		{CPM_CLK_SMC1, CPM_CLK4, 7},
442 
443 		{CPM_CLK_SMC2, CPM_BRG1, 0},
444 		{CPM_CLK_SMC2, CPM_BRG2, 1},
445 		{CPM_CLK_SMC2, CPM_BRG3, 2},
446 		{CPM_CLK_SMC2, CPM_BRG4, 3},
447 		{CPM_CLK_SMC2, CPM_CLK5, 4},
448 		{CPM_CLK_SMC2, CPM_CLK6, 5},
449 		{CPM_CLK_SMC2, CPM_CLK7, 6},
450 		{CPM_CLK_SMC2, CPM_CLK8, 7},
451 	};
452 
453 	switch (target) {
454 	case CPM_CLK_SCC1:
455 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
456 		shift = 0;
457 		break;
458 
459 	case CPM_CLK_SCC2:
460 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
461 		shift = 8;
462 		break;
463 
464 	case CPM_CLK_SCC3:
465 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
466 		shift = 16;
467 		break;
468 
469 	case CPM_CLK_SCC4:
470 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
471 		shift = 24;
472 		break;
473 
474 	case CPM_CLK_SMC1:
475 		reg = &mpc8xx_immr->im_cpm.cp_simode;
476 		shift = 12;
477 		break;
478 
479 	case CPM_CLK_SMC2:
480 		reg = &mpc8xx_immr->im_cpm.cp_simode;
481 		shift = 28;
482 		break;
483 
484 	default:
485 		printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
486 		return -EINVAL;
487 	}
488 
489 	for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
490 		if (clk_map[i][0] == target && clk_map[i][1] == clock) {
491 			bits = clk_map[i][2];
492 			break;
493 		}
494 	}
495 
496 	if (i == ARRAY_SIZE(clk_map)) {
497 		printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
498 		return -EINVAL;
499 	}
500 
501 	bits <<= shift;
502 	mask <<= shift;
503 
504 	if (reg == &mpc8xx_immr->im_cpm.cp_sicr) {
505 		if (mode == CPM_CLK_RTX) {
506 			bits |= bits << 3;
507 			mask |= mask << 3;
508 		} else if (mode == CPM_CLK_RX) {
509 			bits <<= 3;
510 			mask <<= 3;
511 		}
512 	}
513 
514 	out_be32(reg, (in_be32(reg) & ~mask) | bits);
515 
516 	return 0;
517 }
518 
519 /*
520  * GPIO LIB API implementation
521  */
522 #ifdef CONFIG_8xx_GPIO
523 
524 struct cpm1_gpio16_chip {
525 	struct of_mm_gpio_chip mm_gc;
526 	spinlock_t lock;
527 
528 	/* shadowed data register to clear/set bits safely */
529 	u16 cpdata;
530 };
531 
532 static inline struct cpm1_gpio16_chip *
to_cpm1_gpio16_chip(struct of_mm_gpio_chip * mm_gc)533 to_cpm1_gpio16_chip(struct of_mm_gpio_chip *mm_gc)
534 {
535 	return container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc);
536 }
537 
cpm1_gpio16_save_regs(struct of_mm_gpio_chip * mm_gc)538 static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc)
539 {
540 	struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
541 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
542 
543 	cpm1_gc->cpdata = in_be16(&iop->dat);
544 }
545 
cpm1_gpio16_get(struct gpio_chip * gc,unsigned int gpio)546 static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio)
547 {
548 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
549 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
550 	u16 pin_mask;
551 
552 	pin_mask = 1 << (15 - gpio);
553 
554 	return !!(in_be16(&iop->dat) & pin_mask);
555 }
556 
__cpm1_gpio16_set(struct of_mm_gpio_chip * mm_gc,u16 pin_mask,int value)557 static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask,
558 	int value)
559 {
560 	struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
561 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
562 
563 	if (value)
564 		cpm1_gc->cpdata |= pin_mask;
565 	else
566 		cpm1_gc->cpdata &= ~pin_mask;
567 
568 	out_be16(&iop->dat, cpm1_gc->cpdata);
569 }
570 
cpm1_gpio16_set(struct gpio_chip * gc,unsigned int gpio,int value)571 static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value)
572 {
573 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
574 	struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
575 	unsigned long flags;
576 	u16 pin_mask = 1 << (15 - gpio);
577 
578 	spin_lock_irqsave(&cpm1_gc->lock, flags);
579 
580 	__cpm1_gpio16_set(mm_gc, pin_mask, value);
581 
582 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
583 }
584 
cpm1_gpio16_dir_out(struct gpio_chip * gc,unsigned int gpio,int val)585 static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
586 {
587 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
588 	struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
589 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
590 	unsigned long flags;
591 	u16 pin_mask = 1 << (15 - gpio);
592 
593 	spin_lock_irqsave(&cpm1_gc->lock, flags);
594 
595 	setbits16(&iop->dir, pin_mask);
596 	__cpm1_gpio16_set(mm_gc, pin_mask, val);
597 
598 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
599 
600 	return 0;
601 }
602 
cpm1_gpio16_dir_in(struct gpio_chip * gc,unsigned int gpio)603 static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio)
604 {
605 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
606 	struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
607 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
608 	unsigned long flags;
609 	u16 pin_mask = 1 << (15 - gpio);
610 
611 	spin_lock_irqsave(&cpm1_gc->lock, flags);
612 
613 	clrbits16(&iop->dir, pin_mask);
614 
615 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
616 
617 	return 0;
618 }
619 
cpm1_gpiochip_add16(struct device_node * np)620 int cpm1_gpiochip_add16(struct device_node *np)
621 {
622 	struct cpm1_gpio16_chip *cpm1_gc;
623 	struct of_mm_gpio_chip *mm_gc;
624 	struct gpio_chip *gc;
625 
626 	cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
627 	if (!cpm1_gc)
628 		return -ENOMEM;
629 
630 	spin_lock_init(&cpm1_gc->lock);
631 
632 	mm_gc = &cpm1_gc->mm_gc;
633 	gc = &mm_gc->gc;
634 
635 	mm_gc->save_regs = cpm1_gpio16_save_regs;
636 	gc->ngpio = 16;
637 	gc->direction_input = cpm1_gpio16_dir_in;
638 	gc->direction_output = cpm1_gpio16_dir_out;
639 	gc->get = cpm1_gpio16_get;
640 	gc->set = cpm1_gpio16_set;
641 
642 	return of_mm_gpiochip_add(np, mm_gc);
643 }
644 
645 struct cpm1_gpio32_chip {
646 	struct of_mm_gpio_chip mm_gc;
647 	spinlock_t lock;
648 
649 	/* shadowed data register to clear/set bits safely */
650 	u32 cpdata;
651 };
652 
653 static inline struct cpm1_gpio32_chip *
to_cpm1_gpio32_chip(struct of_mm_gpio_chip * mm_gc)654 to_cpm1_gpio32_chip(struct of_mm_gpio_chip *mm_gc)
655 {
656 	return container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc);
657 }
658 
cpm1_gpio32_save_regs(struct of_mm_gpio_chip * mm_gc)659 static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
660 {
661 	struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
662 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
663 
664 	cpm1_gc->cpdata = in_be32(&iop->dat);
665 }
666 
cpm1_gpio32_get(struct gpio_chip * gc,unsigned int gpio)667 static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
668 {
669 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
670 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
671 	u32 pin_mask;
672 
673 	pin_mask = 1 << (31 - gpio);
674 
675 	return !!(in_be32(&iop->dat) & pin_mask);
676 }
677 
__cpm1_gpio32_set(struct of_mm_gpio_chip * mm_gc,u32 pin_mask,int value)678 static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
679 	int value)
680 {
681 	struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
682 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
683 
684 	if (value)
685 		cpm1_gc->cpdata |= pin_mask;
686 	else
687 		cpm1_gc->cpdata &= ~pin_mask;
688 
689 	out_be32(&iop->dat, cpm1_gc->cpdata);
690 }
691 
cpm1_gpio32_set(struct gpio_chip * gc,unsigned int gpio,int value)692 static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
693 {
694 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
695 	struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
696 	unsigned long flags;
697 	u32 pin_mask = 1 << (31 - gpio);
698 
699 	spin_lock_irqsave(&cpm1_gc->lock, flags);
700 
701 	__cpm1_gpio32_set(mm_gc, pin_mask, value);
702 
703 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
704 }
705 
cpm1_gpio32_dir_out(struct gpio_chip * gc,unsigned int gpio,int val)706 static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
707 {
708 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
709 	struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
710 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
711 	unsigned long flags;
712 	u32 pin_mask = 1 << (31 - gpio);
713 
714 	spin_lock_irqsave(&cpm1_gc->lock, flags);
715 
716 	setbits32(&iop->dir, pin_mask);
717 	__cpm1_gpio32_set(mm_gc, pin_mask, val);
718 
719 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
720 
721 	return 0;
722 }
723 
cpm1_gpio32_dir_in(struct gpio_chip * gc,unsigned int gpio)724 static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
725 {
726 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
727 	struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
728 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
729 	unsigned long flags;
730 	u32 pin_mask = 1 << (31 - gpio);
731 
732 	spin_lock_irqsave(&cpm1_gc->lock, flags);
733 
734 	clrbits32(&iop->dir, pin_mask);
735 
736 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
737 
738 	return 0;
739 }
740 
cpm1_gpiochip_add32(struct device_node * np)741 int cpm1_gpiochip_add32(struct device_node *np)
742 {
743 	struct cpm1_gpio32_chip *cpm1_gc;
744 	struct of_mm_gpio_chip *mm_gc;
745 	struct gpio_chip *gc;
746 
747 	cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
748 	if (!cpm1_gc)
749 		return -ENOMEM;
750 
751 	spin_lock_init(&cpm1_gc->lock);
752 
753 	mm_gc = &cpm1_gc->mm_gc;
754 	gc = &mm_gc->gc;
755 
756 	mm_gc->save_regs = cpm1_gpio32_save_regs;
757 	gc->ngpio = 32;
758 	gc->direction_input = cpm1_gpio32_dir_in;
759 	gc->direction_output = cpm1_gpio32_dir_out;
760 	gc->get = cpm1_gpio32_get;
761 	gc->set = cpm1_gpio32_set;
762 
763 	return of_mm_gpiochip_add(np, mm_gc);
764 }
765 
cpm_init_par_io(void)766 static int cpm_init_par_io(void)
767 {
768 	struct device_node *np;
769 
770 	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-a")
771 		cpm1_gpiochip_add16(np);
772 
773 	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-b")
774 		cpm1_gpiochip_add32(np);
775 
776 	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-c")
777 		cpm1_gpiochip_add16(np);
778 
779 	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-d")
780 		cpm1_gpiochip_add16(np);
781 
782 	/* Port E uses CPM2 layout */
783 	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-e")
784 		cpm2_gpiochip_add32(np);
785 	return 0;
786 }
787 arch_initcall(cpm_init_par_io);
788 
789 #endif /* CONFIG_8xx_GPIO */
790