1 /*
2 * Copyright (C) 2014 Imagination Technologies
3 * Author: Paul Burton <paul.burton@imgtec.com>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 */
10
11 #include <linux/init.h>
12 #include <linux/percpu.h>
13 #include <linux/slab.h>
14
15 #include <asm/asm-offsets.h>
16 #include <asm/cacheflush.h>
17 #include <asm/cacheops.h>
18 #include <asm/idle.h>
19 #include <asm/mips-cm.h>
20 #include <asm/mips-cpc.h>
21 #include <asm/mipsmtregs.h>
22 #include <asm/pm.h>
23 #include <asm/pm-cps.h>
24 #include <asm/smp-cps.h>
25 #include <asm/uasm.h>
26
27 /*
28 * cps_nc_entry_fn - type of a generated non-coherent state entry function
29 * @online: the count of online coupled VPEs
30 * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
31 *
32 * The code entering & exiting non-coherent states is generated at runtime
33 * using uasm, in order to ensure that the compiler cannot insert a stray
34 * memory access at an unfortunate time and to allow the generation of optimal
35 * core-specific code particularly for cache routines. If coupled_coherence
36 * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
37 * returns the number of VPEs that were in the wait state at the point this
38 * VPE left it. Returns garbage if coupled_coherence is zero or this is not
39 * the entry function for CPS_PM_NC_WAIT.
40 */
41 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
42
43 /*
44 * The entry point of the generated non-coherent idle state entry/exit
45 * functions. Actually per-core rather than per-CPU.
46 */
47 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
48 nc_asm_enter);
49
50 /* Bitmap indicating which states are supported by the system */
51 DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
52
53 /*
54 * Indicates the number of coupled VPEs ready to operate in a non-coherent
55 * state. Actually per-core rather than per-CPU.
56 */
57 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
58
59 /* Indicates online CPUs coupled with the current CPU */
60 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
61
62 /*
63 * Used to synchronize entry to deep idle states. Actually per-core rather
64 * than per-CPU.
65 */
66 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
67
68 /* Saved CPU state across the CPS_PM_POWER_GATED state */
69 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
70
71 /* A somewhat arbitrary number of labels & relocs for uasm */
72 static struct uasm_label labels[32] __initdata;
73 static struct uasm_reloc relocs[32] __initdata;
74
75 /* CPU dependant sync types */
76 static unsigned stype_intervention;
77 static unsigned stype_memory;
78 static unsigned stype_ordering;
79
80 enum mips_reg {
81 zero, at, v0, v1, a0, a1, a2, a3,
82 t0, t1, t2, t3, t4, t5, t6, t7,
83 s0, s1, s2, s3, s4, s5, s6, s7,
84 t8, t9, k0, k1, gp, sp, fp, ra,
85 };
86
cps_pm_support_state(enum cps_pm_state state)87 bool cps_pm_support_state(enum cps_pm_state state)
88 {
89 return test_bit(state, state_support);
90 }
91
coupled_barrier(atomic_t * a,unsigned online)92 static void coupled_barrier(atomic_t *a, unsigned online)
93 {
94 /*
95 * This function is effectively the same as
96 * cpuidle_coupled_parallel_barrier, which can't be used here since
97 * there's no cpuidle device.
98 */
99
100 if (!coupled_coherence)
101 return;
102
103 smp_mb__before_atomic();
104 atomic_inc(a);
105
106 while (atomic_read(a) < online)
107 cpu_relax();
108
109 if (atomic_inc_return(a) == online * 2) {
110 atomic_set(a, 0);
111 return;
112 }
113
114 while (atomic_read(a) > online)
115 cpu_relax();
116 }
117
cps_pm_enter_state(enum cps_pm_state state)118 int cps_pm_enter_state(enum cps_pm_state state)
119 {
120 unsigned cpu = smp_processor_id();
121 unsigned core = current_cpu_data.core;
122 unsigned online, left;
123 cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
124 u32 *core_ready_count, *nc_core_ready_count;
125 void *nc_addr;
126 cps_nc_entry_fn entry;
127 struct core_boot_config *core_cfg;
128 struct vpe_boot_config *vpe_cfg;
129
130 /* Check that there is an entry function for this state */
131 entry = per_cpu(nc_asm_enter, core)[state];
132 if (!entry)
133 return -EINVAL;
134
135 /* Calculate which coupled CPUs (VPEs) are online */
136 #ifdef CONFIG_MIPS_MT
137 if (cpu_online(cpu)) {
138 cpumask_and(coupled_mask, cpu_online_mask,
139 &cpu_sibling_map[cpu]);
140 online = cpumask_weight(coupled_mask);
141 cpumask_clear_cpu(cpu, coupled_mask);
142 } else
143 #endif
144 {
145 cpumask_clear(coupled_mask);
146 online = 1;
147 }
148
149 /* Setup the VPE to run mips_cps_pm_restore when started again */
150 if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
151 /* Power gating relies upon CPS SMP */
152 if (!mips_cps_smp_in_use())
153 return -EINVAL;
154
155 core_cfg = &mips_cps_core_bootcfg[core];
156 vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(¤t_cpu_data)];
157 vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
158 vpe_cfg->gp = (unsigned long)current_thread_info();
159 vpe_cfg->sp = 0;
160 }
161
162 /* Indicate that this CPU might not be coherent */
163 cpumask_clear_cpu(cpu, &cpu_coherent_mask);
164 smp_mb__after_atomic();
165
166 /* Create a non-coherent mapping of the core ready_count */
167 core_ready_count = per_cpu(ready_count, core);
168 nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
169 (unsigned long)core_ready_count);
170 nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
171 nc_core_ready_count = nc_addr;
172
173 /* Ensure ready_count is zero-initialised before the assembly runs */
174 ACCESS_ONCE(*nc_core_ready_count) = 0;
175 coupled_barrier(&per_cpu(pm_barrier, core), online);
176
177 /* Run the generated entry code */
178 left = entry(online, nc_core_ready_count);
179
180 /* Remove the non-coherent mapping of ready_count */
181 kunmap_noncoherent();
182
183 /* Indicate that this CPU is definitely coherent */
184 cpumask_set_cpu(cpu, &cpu_coherent_mask);
185
186 /*
187 * If this VPE is the first to leave the non-coherent wait state then
188 * it needs to wake up any coupled VPEs still running their wait
189 * instruction so that they return to cpuidle, which can then complete
190 * coordination between the coupled VPEs & provide the governor with
191 * a chance to reflect on the length of time the VPEs were in the
192 * idle state.
193 */
194 if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
195 arch_send_call_function_ipi_mask(coupled_mask);
196
197 return 0;
198 }
199
cps_gen_cache_routine(u32 ** pp,struct uasm_label ** pl,struct uasm_reloc ** pr,const struct cache_desc * cache,unsigned op,int lbl)200 static void __init cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
201 struct uasm_reloc **pr,
202 const struct cache_desc *cache,
203 unsigned op, int lbl)
204 {
205 unsigned cache_size = cache->ways << cache->waybit;
206 unsigned i;
207 const unsigned unroll_lines = 32;
208
209 /* If the cache isn't present this function has it easy */
210 if (cache->flags & MIPS_CACHE_NOT_PRESENT)
211 return;
212
213 /* Load base address */
214 UASM_i_LA(pp, t0, (long)CKSEG0);
215
216 /* Calculate end address */
217 if (cache_size < 0x8000)
218 uasm_i_addiu(pp, t1, t0, cache_size);
219 else
220 UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
221
222 /* Start of cache op loop */
223 uasm_build_label(pl, *pp, lbl);
224
225 /* Generate the cache ops */
226 for (i = 0; i < unroll_lines; i++) {
227 if (cpu_has_mips_r6) {
228 uasm_i_cache(pp, op, 0, t0);
229 uasm_i_addiu(pp, t0, t0, cache->linesz);
230 } else {
231 uasm_i_cache(pp, op, i * cache->linesz, t0);
232 }
233 }
234
235 if (!cpu_has_mips_r6)
236 /* Update the base address */
237 uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
238
239 /* Loop if we haven't reached the end address yet */
240 uasm_il_bne(pp, pr, t0, t1, lbl);
241 uasm_i_nop(pp);
242 }
243
cps_gen_flush_fsb(u32 ** pp,struct uasm_label ** pl,struct uasm_reloc ** pr,const struct cpuinfo_mips * cpu_info,int lbl)244 static int __init cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
245 struct uasm_reloc **pr,
246 const struct cpuinfo_mips *cpu_info,
247 int lbl)
248 {
249 unsigned i, fsb_size = 8;
250 unsigned num_loads = (fsb_size * 3) / 2;
251 unsigned line_stride = 2;
252 unsigned line_size = cpu_info->dcache.linesz;
253 unsigned perf_counter, perf_event;
254 unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
255
256 /*
257 * Determine whether this CPU requires an FSB flush, and if so which
258 * performance counter/event reflect stalls due to a full FSB.
259 */
260 switch (__get_cpu_type(cpu_info->cputype)) {
261 case CPU_INTERAPTIV:
262 perf_counter = 1;
263 perf_event = 51;
264 break;
265
266 case CPU_PROAPTIV:
267 /* Newer proAptiv cores don't require this workaround */
268 if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
269 return 0;
270
271 /* On older ones it's unavailable */
272 return -1;
273
274 default:
275 /* Assume that the CPU does not need this workaround */
276 return 0;
277 }
278
279 /*
280 * Ensure that the fill/store buffer (FSB) is not holding the results
281 * of a prefetch, since if it is then the CPC sequencer may become
282 * stuck in the D3 (ClrBus) state whilst entering a low power state.
283 */
284
285 /* Preserve perf counter setup */
286 uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
287 uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
288
289 /* Setup perf counter to count FSB full pipeline stalls */
290 uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
291 uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
292 uasm_i_ehb(pp);
293 uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
294 uasm_i_ehb(pp);
295
296 /* Base address for loads */
297 UASM_i_LA(pp, t0, (long)CKSEG0);
298
299 /* Start of clear loop */
300 uasm_build_label(pl, *pp, lbl);
301
302 /* Perform some loads to fill the FSB */
303 for (i = 0; i < num_loads; i++)
304 uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
305
306 /*
307 * Invalidate the new D-cache entries so that the cache will need
308 * refilling (via the FSB) if the loop is executed again.
309 */
310 for (i = 0; i < num_loads; i++) {
311 uasm_i_cache(pp, Hit_Invalidate_D,
312 i * line_size * line_stride, t0);
313 uasm_i_cache(pp, Hit_Writeback_Inv_SD,
314 i * line_size * line_stride, t0);
315 }
316
317 /* Completion barrier */
318 uasm_i_sync(pp, stype_memory);
319 uasm_i_ehb(pp);
320
321 /* Check whether the pipeline stalled due to the FSB being full */
322 uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
323
324 /* Loop if it didn't */
325 uasm_il_beqz(pp, pr, t1, lbl);
326 uasm_i_nop(pp);
327
328 /* Restore perf counter 1. The count may well now be wrong... */
329 uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
330 uasm_i_ehb(pp);
331 uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
332 uasm_i_ehb(pp);
333
334 return 0;
335 }
336
cps_gen_set_top_bit(u32 ** pp,struct uasm_label ** pl,struct uasm_reloc ** pr,unsigned r_addr,int lbl)337 static void __init cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
338 struct uasm_reloc **pr,
339 unsigned r_addr, int lbl)
340 {
341 uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
342 uasm_build_label(pl, *pp, lbl);
343 uasm_i_ll(pp, t1, 0, r_addr);
344 uasm_i_or(pp, t1, t1, t0);
345 uasm_i_sc(pp, t1, 0, r_addr);
346 uasm_il_beqz(pp, pr, t1, lbl);
347 uasm_i_nop(pp);
348 }
349
cps_gen_entry_code(unsigned cpu,enum cps_pm_state state)350 static void * __init cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
351 {
352 struct uasm_label *l = labels;
353 struct uasm_reloc *r = relocs;
354 u32 *buf, *p;
355 const unsigned r_online = a0;
356 const unsigned r_nc_count = a1;
357 const unsigned r_pcohctl = t7;
358 const unsigned max_instrs = 256;
359 unsigned cpc_cmd;
360 int err;
361 enum {
362 lbl_incready = 1,
363 lbl_poll_cont,
364 lbl_secondary_hang,
365 lbl_disable_coherence,
366 lbl_flush_fsb,
367 lbl_invicache,
368 lbl_flushdcache,
369 lbl_hang,
370 lbl_set_cont,
371 lbl_secondary_cont,
372 lbl_decready,
373 };
374
375 /* Allocate a buffer to hold the generated code */
376 p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
377 if (!buf)
378 return NULL;
379
380 /* Clear labels & relocs ready for (re)use */
381 memset(labels, 0, sizeof(labels));
382 memset(relocs, 0, sizeof(relocs));
383
384 if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
385 /* Power gating relies upon CPS SMP */
386 if (!mips_cps_smp_in_use())
387 goto out_err;
388
389 /*
390 * Save CPU state. Note the non-standard calling convention
391 * with the return address placed in v0 to avoid clobbering
392 * the ra register before it is saved.
393 */
394 UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
395 uasm_i_jalr(&p, v0, t0);
396 uasm_i_nop(&p);
397 }
398
399 /*
400 * Load addresses of required CM & CPC registers. This is done early
401 * because they're needed in both the enable & disable coherence steps
402 * but in the coupled case the enable step will only run on one VPE.
403 */
404 UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
405
406 if (coupled_coherence) {
407 /* Increment ready_count */
408 uasm_i_sync(&p, stype_ordering);
409 uasm_build_label(&l, p, lbl_incready);
410 uasm_i_ll(&p, t1, 0, r_nc_count);
411 uasm_i_addiu(&p, t2, t1, 1);
412 uasm_i_sc(&p, t2, 0, r_nc_count);
413 uasm_il_beqz(&p, &r, t2, lbl_incready);
414 uasm_i_addiu(&p, t1, t1, 1);
415
416 /* Ordering barrier */
417 uasm_i_sync(&p, stype_ordering);
418
419 /*
420 * If this is the last VPE to become ready for non-coherence
421 * then it should branch below.
422 */
423 uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
424 uasm_i_nop(&p);
425
426 if (state < CPS_PM_POWER_GATED) {
427 /*
428 * Otherwise this is not the last VPE to become ready
429 * for non-coherence. It needs to wait until coherence
430 * has been disabled before proceeding, which it will do
431 * by polling for the top bit of ready_count being set.
432 */
433 uasm_i_addiu(&p, t1, zero, -1);
434 uasm_build_label(&l, p, lbl_poll_cont);
435 uasm_i_lw(&p, t0, 0, r_nc_count);
436 uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
437 uasm_i_ehb(&p);
438 uasm_i_yield(&p, zero, t1);
439 uasm_il_b(&p, &r, lbl_poll_cont);
440 uasm_i_nop(&p);
441 } else {
442 /*
443 * The core will lose power & this VPE will not continue
444 * so it can simply halt here.
445 */
446 uasm_i_addiu(&p, t0, zero, TCHALT_H);
447 uasm_i_mtc0(&p, t0, 2, 4);
448 uasm_build_label(&l, p, lbl_secondary_hang);
449 uasm_il_b(&p, &r, lbl_secondary_hang);
450 uasm_i_nop(&p);
451 }
452 }
453
454 /*
455 * This is the point of no return - this VPE will now proceed to
456 * disable coherence. At this point we *must* be sure that no other
457 * VPE within the core will interfere with the L1 dcache.
458 */
459 uasm_build_label(&l, p, lbl_disable_coherence);
460
461 /* Invalidate the L1 icache */
462 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
463 Index_Invalidate_I, lbl_invicache);
464
465 /* Writeback & invalidate the L1 dcache */
466 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
467 Index_Writeback_Inv_D, lbl_flushdcache);
468
469 /* Completion barrier */
470 uasm_i_sync(&p, stype_memory);
471 uasm_i_ehb(&p);
472
473 /*
474 * Disable all but self interventions. The load from COHCTL is defined
475 * by the interAptiv & proAptiv SUMs as ensuring that the operation
476 * resulting from the preceding store is complete.
477 */
478 uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core);
479 uasm_i_sw(&p, t0, 0, r_pcohctl);
480 uasm_i_lw(&p, t0, 0, r_pcohctl);
481
482 /* Sync to ensure previous interventions are complete */
483 uasm_i_sync(&p, stype_intervention);
484 uasm_i_ehb(&p);
485
486 /* Disable coherence */
487 uasm_i_sw(&p, zero, 0, r_pcohctl);
488 uasm_i_lw(&p, t0, 0, r_pcohctl);
489
490 if (state >= CPS_PM_CLOCK_GATED) {
491 err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
492 lbl_flush_fsb);
493 if (err)
494 goto out_err;
495
496 /* Determine the CPC command to issue */
497 switch (state) {
498 case CPS_PM_CLOCK_GATED:
499 cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
500 break;
501 case CPS_PM_POWER_GATED:
502 cpc_cmd = CPC_Cx_CMD_PWRDOWN;
503 break;
504 default:
505 BUG();
506 goto out_err;
507 }
508
509 /* Issue the CPC command */
510 UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
511 uasm_i_addiu(&p, t1, zero, cpc_cmd);
512 uasm_i_sw(&p, t1, 0, t0);
513
514 if (state == CPS_PM_POWER_GATED) {
515 /* If anything goes wrong just hang */
516 uasm_build_label(&l, p, lbl_hang);
517 uasm_il_b(&p, &r, lbl_hang);
518 uasm_i_nop(&p);
519
520 /*
521 * There's no point generating more code, the core is
522 * powered down & if powered back up will run from the
523 * reset vector not from here.
524 */
525 goto gen_done;
526 }
527
528 /* Completion barrier */
529 uasm_i_sync(&p, stype_memory);
530 uasm_i_ehb(&p);
531 }
532
533 if (state == CPS_PM_NC_WAIT) {
534 /*
535 * At this point it is safe for all VPEs to proceed with
536 * execution. This VPE will set the top bit of ready_count
537 * to indicate to the other VPEs that they may continue.
538 */
539 if (coupled_coherence)
540 cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
541 lbl_set_cont);
542
543 /*
544 * VPEs which did not disable coherence will continue
545 * executing, after coherence has been disabled, from this
546 * point.
547 */
548 uasm_build_label(&l, p, lbl_secondary_cont);
549
550 /* Now perform our wait */
551 uasm_i_wait(&p, 0);
552 }
553
554 /*
555 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
556 * will run this. The first will actually re-enable coherence & the
557 * rest will just be performing a rather unusual nop.
558 */
559 uasm_i_addiu(&p, t0, zero, CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK);
560 uasm_i_sw(&p, t0, 0, r_pcohctl);
561 uasm_i_lw(&p, t0, 0, r_pcohctl);
562
563 /* Completion barrier */
564 uasm_i_sync(&p, stype_memory);
565 uasm_i_ehb(&p);
566
567 if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
568 /* Decrement ready_count */
569 uasm_build_label(&l, p, lbl_decready);
570 uasm_i_sync(&p, stype_ordering);
571 uasm_i_ll(&p, t1, 0, r_nc_count);
572 uasm_i_addiu(&p, t2, t1, -1);
573 uasm_i_sc(&p, t2, 0, r_nc_count);
574 uasm_il_beqz(&p, &r, t2, lbl_decready);
575 uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
576
577 /* Ordering barrier */
578 uasm_i_sync(&p, stype_ordering);
579 }
580
581 if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
582 /*
583 * At this point it is safe for all VPEs to proceed with
584 * execution. This VPE will set the top bit of ready_count
585 * to indicate to the other VPEs that they may continue.
586 */
587 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
588
589 /*
590 * This core will be reliant upon another core sending a
591 * power-up command to the CPC in order to resume operation.
592 * Thus an arbitrary VPE can't trigger the core leaving the
593 * idle state and the one that disables coherence might as well
594 * be the one to re-enable it. The rest will continue from here
595 * after that has been done.
596 */
597 uasm_build_label(&l, p, lbl_secondary_cont);
598
599 /* Ordering barrier */
600 uasm_i_sync(&p, stype_ordering);
601 }
602
603 /* The core is coherent, time to return to C code */
604 uasm_i_jr(&p, ra);
605 uasm_i_nop(&p);
606
607 gen_done:
608 /* Ensure the code didn't exceed the resources allocated for it */
609 BUG_ON((p - buf) > max_instrs);
610 BUG_ON((l - labels) > ARRAY_SIZE(labels));
611 BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
612
613 /* Patch branch offsets */
614 uasm_resolve_relocs(relocs, labels);
615
616 /* Flush the icache */
617 local_flush_icache_range((unsigned long)buf, (unsigned long)p);
618
619 return buf;
620 out_err:
621 kfree(buf);
622 return NULL;
623 }
624
cps_gen_core_entries(unsigned cpu)625 static int __init cps_gen_core_entries(unsigned cpu)
626 {
627 enum cps_pm_state state;
628 unsigned core = cpu_data[cpu].core;
629 void *entry_fn, *core_rc;
630
631 for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
632 if (per_cpu(nc_asm_enter, core)[state])
633 continue;
634 if (!test_bit(state, state_support))
635 continue;
636
637 entry_fn = cps_gen_entry_code(cpu, state);
638 if (!entry_fn) {
639 pr_err("Failed to generate core %u state %u entry\n",
640 core, state);
641 clear_bit(state, state_support);
642 }
643
644 per_cpu(nc_asm_enter, core)[state] = entry_fn;
645 }
646
647 if (!per_cpu(ready_count, core)) {
648 core_rc = kmalloc(sizeof(u32), GFP_KERNEL);
649 if (!core_rc) {
650 pr_err("Failed allocate core %u ready_count\n", core);
651 return -ENOMEM;
652 }
653 per_cpu(ready_count, core) = core_rc;
654 }
655
656 return 0;
657 }
658
cps_pm_init(void)659 static int __init cps_pm_init(void)
660 {
661 unsigned cpu;
662 int err;
663
664 /* Detect appropriate sync types for the system */
665 switch (current_cpu_data.cputype) {
666 case CPU_INTERAPTIV:
667 case CPU_PROAPTIV:
668 case CPU_M5150:
669 case CPU_P5600:
670 case CPU_I6400:
671 stype_intervention = 0x2;
672 stype_memory = 0x3;
673 stype_ordering = 0x10;
674 break;
675
676 default:
677 pr_warn("Power management is using heavyweight sync 0\n");
678 }
679
680 /* A CM is required for all non-coherent states */
681 if (!mips_cm_present()) {
682 pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
683 goto out;
684 }
685
686 /*
687 * If interrupts were enabled whilst running a wait instruction on a
688 * non-coherent core then the VPE may end up processing interrupts
689 * whilst non-coherent. That would be bad.
690 */
691 if (cpu_wait == r4k_wait_irqoff)
692 set_bit(CPS_PM_NC_WAIT, state_support);
693 else
694 pr_warn("pm-cps: non-coherent wait unavailable\n");
695
696 /* Detect whether a CPC is present */
697 if (mips_cpc_present()) {
698 /* Detect whether clock gating is implemented */
699 if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK)
700 set_bit(CPS_PM_CLOCK_GATED, state_support);
701 else
702 pr_warn("pm-cps: CPC does not support clock gating\n");
703
704 /* Power gating is available with CPS SMP & any CPC */
705 if (mips_cps_smp_in_use())
706 set_bit(CPS_PM_POWER_GATED, state_support);
707 else
708 pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
709 } else {
710 pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
711 }
712
713 for_each_present_cpu(cpu) {
714 err = cps_gen_core_entries(cpu);
715 if (err)
716 return err;
717 }
718 out:
719 return 0;
720 }
721 arch_initcall(cps_pm_init);
722