• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/percpu.h>
13 #include <linux/slab.h>
14 
15 #include <asm/asm-offsets.h>
16 #include <asm/cacheflush.h>
17 #include <asm/cacheops.h>
18 #include <asm/idle.h>
19 #include <asm/mips-cm.h>
20 #include <asm/mips-cpc.h>
21 #include <asm/mipsmtregs.h>
22 #include <asm/pm.h>
23 #include <asm/pm-cps.h>
24 #include <asm/smp-cps.h>
25 #include <asm/uasm.h>
26 
27 /*
28  * cps_nc_entry_fn - type of a generated non-coherent state entry function
29  * @online: the count of online coupled VPEs
30  * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
31  *
32  * The code entering & exiting non-coherent states is generated at runtime
33  * using uasm, in order to ensure that the compiler cannot insert a stray
34  * memory access at an unfortunate time and to allow the generation of optimal
35  * core-specific code particularly for cache routines. If coupled_coherence
36  * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
37  * returns the number of VPEs that were in the wait state at the point this
38  * VPE left it. Returns garbage if coupled_coherence is zero or this is not
39  * the entry function for CPS_PM_NC_WAIT.
40  */
41 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
42 
43 /*
44  * The entry point of the generated non-coherent idle state entry/exit
45  * functions. Actually per-core rather than per-CPU.
46  */
47 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
48 				  nc_asm_enter);
49 
50 /* Bitmap indicating which states are supported by the system */
51 DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
52 
53 /*
54  * Indicates the number of coupled VPEs ready to operate in a non-coherent
55  * state. Actually per-core rather than per-CPU.
56  */
57 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
58 
59 /* Indicates online CPUs coupled with the current CPU */
60 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
61 
62 /*
63  * Used to synchronize entry to deep idle states. Actually per-core rather
64  * than per-CPU.
65  */
66 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
67 
68 /* Saved CPU state across the CPS_PM_POWER_GATED state */
69 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
70 
71 /* A somewhat arbitrary number of labels & relocs for uasm */
72 static struct uasm_label labels[32] __initdata;
73 static struct uasm_reloc relocs[32] __initdata;
74 
75 /* CPU dependant sync types */
76 static unsigned stype_intervention;
77 static unsigned stype_memory;
78 static unsigned stype_ordering;
79 
80 enum mips_reg {
81 	zero, at, v0, v1, a0, a1, a2, a3,
82 	t0, t1, t2, t3, t4, t5, t6, t7,
83 	s0, s1, s2, s3, s4, s5, s6, s7,
84 	t8, t9, k0, k1, gp, sp, fp, ra,
85 };
86 
cps_pm_support_state(enum cps_pm_state state)87 bool cps_pm_support_state(enum cps_pm_state state)
88 {
89 	return test_bit(state, state_support);
90 }
91 
coupled_barrier(atomic_t * a,unsigned online)92 static void coupled_barrier(atomic_t *a, unsigned online)
93 {
94 	/*
95 	 * This function is effectively the same as
96 	 * cpuidle_coupled_parallel_barrier, which can't be used here since
97 	 * there's no cpuidle device.
98 	 */
99 
100 	if (!coupled_coherence)
101 		return;
102 
103 	smp_mb__before_atomic();
104 	atomic_inc(a);
105 
106 	while (atomic_read(a) < online)
107 		cpu_relax();
108 
109 	if (atomic_inc_return(a) == online * 2) {
110 		atomic_set(a, 0);
111 		return;
112 	}
113 
114 	while (atomic_read(a) > online)
115 		cpu_relax();
116 }
117 
cps_pm_enter_state(enum cps_pm_state state)118 int cps_pm_enter_state(enum cps_pm_state state)
119 {
120 	unsigned cpu = smp_processor_id();
121 	unsigned core = current_cpu_data.core;
122 	unsigned online, left;
123 	cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
124 	u32 *core_ready_count, *nc_core_ready_count;
125 	void *nc_addr;
126 	cps_nc_entry_fn entry;
127 	struct core_boot_config *core_cfg;
128 	struct vpe_boot_config *vpe_cfg;
129 
130 	/* Check that there is an entry function for this state */
131 	entry = per_cpu(nc_asm_enter, core)[state];
132 	if (!entry)
133 		return -EINVAL;
134 
135 	/* Calculate which coupled CPUs (VPEs) are online */
136 #ifdef CONFIG_MIPS_MT
137 	if (cpu_online(cpu)) {
138 		cpumask_and(coupled_mask, cpu_online_mask,
139 			    &cpu_sibling_map[cpu]);
140 		online = cpumask_weight(coupled_mask);
141 		cpumask_clear_cpu(cpu, coupled_mask);
142 	} else
143 #endif
144 	{
145 		cpumask_clear(coupled_mask);
146 		online = 1;
147 	}
148 
149 	/* Setup the VPE to run mips_cps_pm_restore when started again */
150 	if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
151 		/* Power gating relies upon CPS SMP */
152 		if (!mips_cps_smp_in_use())
153 			return -EINVAL;
154 
155 		core_cfg = &mips_cps_core_bootcfg[core];
156 		vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(&current_cpu_data)];
157 		vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
158 		vpe_cfg->gp = (unsigned long)current_thread_info();
159 		vpe_cfg->sp = 0;
160 	}
161 
162 	/* Indicate that this CPU might not be coherent */
163 	cpumask_clear_cpu(cpu, &cpu_coherent_mask);
164 	smp_mb__after_atomic();
165 
166 	/* Create a non-coherent mapping of the core ready_count */
167 	core_ready_count = per_cpu(ready_count, core);
168 	nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
169 				   (unsigned long)core_ready_count);
170 	nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
171 	nc_core_ready_count = nc_addr;
172 
173 	/* Ensure ready_count is zero-initialised before the assembly runs */
174 	ACCESS_ONCE(*nc_core_ready_count) = 0;
175 	coupled_barrier(&per_cpu(pm_barrier, core), online);
176 
177 	/* Run the generated entry code */
178 	left = entry(online, nc_core_ready_count);
179 
180 	/* Remove the non-coherent mapping of ready_count */
181 	kunmap_noncoherent();
182 
183 	/* Indicate that this CPU is definitely coherent */
184 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
185 
186 	/*
187 	 * If this VPE is the first to leave the non-coherent wait state then
188 	 * it needs to wake up any coupled VPEs still running their wait
189 	 * instruction so that they return to cpuidle, which can then complete
190 	 * coordination between the coupled VPEs & provide the governor with
191 	 * a chance to reflect on the length of time the VPEs were in the
192 	 * idle state.
193 	 */
194 	if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
195 		arch_send_call_function_ipi_mask(coupled_mask);
196 
197 	return 0;
198 }
199 
cps_gen_cache_routine(u32 ** pp,struct uasm_label ** pl,struct uasm_reloc ** pr,const struct cache_desc * cache,unsigned op,int lbl)200 static void __init cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
201 					 struct uasm_reloc **pr,
202 					 const struct cache_desc *cache,
203 					 unsigned op, int lbl)
204 {
205 	unsigned cache_size = cache->ways << cache->waybit;
206 	unsigned i;
207 	const unsigned unroll_lines = 32;
208 
209 	/* If the cache isn't present this function has it easy */
210 	if (cache->flags & MIPS_CACHE_NOT_PRESENT)
211 		return;
212 
213 	/* Load base address */
214 	UASM_i_LA(pp, t0, (long)CKSEG0);
215 
216 	/* Calculate end address */
217 	if (cache_size < 0x8000)
218 		uasm_i_addiu(pp, t1, t0, cache_size);
219 	else
220 		UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
221 
222 	/* Start of cache op loop */
223 	uasm_build_label(pl, *pp, lbl);
224 
225 	/* Generate the cache ops */
226 	for (i = 0; i < unroll_lines; i++) {
227 		if (cpu_has_mips_r6) {
228 			uasm_i_cache(pp, op, 0, t0);
229 			uasm_i_addiu(pp, t0, t0, cache->linesz);
230 		} else {
231 			uasm_i_cache(pp, op, i * cache->linesz, t0);
232 		}
233 	}
234 
235 	if (!cpu_has_mips_r6)
236 		/* Update the base address */
237 		uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
238 
239 	/* Loop if we haven't reached the end address yet */
240 	uasm_il_bne(pp, pr, t0, t1, lbl);
241 	uasm_i_nop(pp);
242 }
243 
cps_gen_flush_fsb(u32 ** pp,struct uasm_label ** pl,struct uasm_reloc ** pr,const struct cpuinfo_mips * cpu_info,int lbl)244 static int __init cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
245 				    struct uasm_reloc **pr,
246 				    const struct cpuinfo_mips *cpu_info,
247 				    int lbl)
248 {
249 	unsigned i, fsb_size = 8;
250 	unsigned num_loads = (fsb_size * 3) / 2;
251 	unsigned line_stride = 2;
252 	unsigned line_size = cpu_info->dcache.linesz;
253 	unsigned perf_counter, perf_event;
254 	unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
255 
256 	/*
257 	 * Determine whether this CPU requires an FSB flush, and if so which
258 	 * performance counter/event reflect stalls due to a full FSB.
259 	 */
260 	switch (__get_cpu_type(cpu_info->cputype)) {
261 	case CPU_INTERAPTIV:
262 		perf_counter = 1;
263 		perf_event = 51;
264 		break;
265 
266 	case CPU_PROAPTIV:
267 		/* Newer proAptiv cores don't require this workaround */
268 		if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
269 			return 0;
270 
271 		/* On older ones it's unavailable */
272 		return -1;
273 
274 	default:
275 		/* Assume that the CPU does not need this workaround */
276 		return 0;
277 	}
278 
279 	/*
280 	 * Ensure that the fill/store buffer (FSB) is not holding the results
281 	 * of a prefetch, since if it is then the CPC sequencer may become
282 	 * stuck in the D3 (ClrBus) state whilst entering a low power state.
283 	 */
284 
285 	/* Preserve perf counter setup */
286 	uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
287 	uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
288 
289 	/* Setup perf counter to count FSB full pipeline stalls */
290 	uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
291 	uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
292 	uasm_i_ehb(pp);
293 	uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
294 	uasm_i_ehb(pp);
295 
296 	/* Base address for loads */
297 	UASM_i_LA(pp, t0, (long)CKSEG0);
298 
299 	/* Start of clear loop */
300 	uasm_build_label(pl, *pp, lbl);
301 
302 	/* Perform some loads to fill the FSB */
303 	for (i = 0; i < num_loads; i++)
304 		uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
305 
306 	/*
307 	 * Invalidate the new D-cache entries so that the cache will need
308 	 * refilling (via the FSB) if the loop is executed again.
309 	 */
310 	for (i = 0; i < num_loads; i++) {
311 		uasm_i_cache(pp, Hit_Invalidate_D,
312 			     i * line_size * line_stride, t0);
313 		uasm_i_cache(pp, Hit_Writeback_Inv_SD,
314 			     i * line_size * line_stride, t0);
315 	}
316 
317 	/* Completion barrier */
318 	uasm_i_sync(pp, stype_memory);
319 	uasm_i_ehb(pp);
320 
321 	/* Check whether the pipeline stalled due to the FSB being full */
322 	uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
323 
324 	/* Loop if it didn't */
325 	uasm_il_beqz(pp, pr, t1, lbl);
326 	uasm_i_nop(pp);
327 
328 	/* Restore perf counter 1. The count may well now be wrong... */
329 	uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
330 	uasm_i_ehb(pp);
331 	uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
332 	uasm_i_ehb(pp);
333 
334 	return 0;
335 }
336 
cps_gen_set_top_bit(u32 ** pp,struct uasm_label ** pl,struct uasm_reloc ** pr,unsigned r_addr,int lbl)337 static void __init cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
338 				       struct uasm_reloc **pr,
339 				       unsigned r_addr, int lbl)
340 {
341 	uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
342 	uasm_build_label(pl, *pp, lbl);
343 	uasm_i_ll(pp, t1, 0, r_addr);
344 	uasm_i_or(pp, t1, t1, t0);
345 	uasm_i_sc(pp, t1, 0, r_addr);
346 	uasm_il_beqz(pp, pr, t1, lbl);
347 	uasm_i_nop(pp);
348 }
349 
cps_gen_entry_code(unsigned cpu,enum cps_pm_state state)350 static void * __init cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
351 {
352 	struct uasm_label *l = labels;
353 	struct uasm_reloc *r = relocs;
354 	u32 *buf, *p;
355 	const unsigned r_online = a0;
356 	const unsigned r_nc_count = a1;
357 	const unsigned r_pcohctl = t7;
358 	const unsigned max_instrs = 256;
359 	unsigned cpc_cmd;
360 	int err;
361 	enum {
362 		lbl_incready = 1,
363 		lbl_poll_cont,
364 		lbl_secondary_hang,
365 		lbl_disable_coherence,
366 		lbl_flush_fsb,
367 		lbl_invicache,
368 		lbl_flushdcache,
369 		lbl_hang,
370 		lbl_set_cont,
371 		lbl_secondary_cont,
372 		lbl_decready,
373 	};
374 
375 	/* Allocate a buffer to hold the generated code */
376 	p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
377 	if (!buf)
378 		return NULL;
379 
380 	/* Clear labels & relocs ready for (re)use */
381 	memset(labels, 0, sizeof(labels));
382 	memset(relocs, 0, sizeof(relocs));
383 
384 	if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
385 		/* Power gating relies upon CPS SMP */
386 		if (!mips_cps_smp_in_use())
387 			goto out_err;
388 
389 		/*
390 		 * Save CPU state. Note the non-standard calling convention
391 		 * with the return address placed in v0 to avoid clobbering
392 		 * the ra register before it is saved.
393 		 */
394 		UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
395 		uasm_i_jalr(&p, v0, t0);
396 		uasm_i_nop(&p);
397 	}
398 
399 	/*
400 	 * Load addresses of required CM & CPC registers. This is done early
401 	 * because they're needed in both the enable & disable coherence steps
402 	 * but in the coupled case the enable step will only run on one VPE.
403 	 */
404 	UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
405 
406 	if (coupled_coherence) {
407 		/* Increment ready_count */
408 		uasm_i_sync(&p, stype_ordering);
409 		uasm_build_label(&l, p, lbl_incready);
410 		uasm_i_ll(&p, t1, 0, r_nc_count);
411 		uasm_i_addiu(&p, t2, t1, 1);
412 		uasm_i_sc(&p, t2, 0, r_nc_count);
413 		uasm_il_beqz(&p, &r, t2, lbl_incready);
414 		uasm_i_addiu(&p, t1, t1, 1);
415 
416 		/* Ordering barrier */
417 		uasm_i_sync(&p, stype_ordering);
418 
419 		/*
420 		 * If this is the last VPE to become ready for non-coherence
421 		 * then it should branch below.
422 		 */
423 		uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
424 		uasm_i_nop(&p);
425 
426 		if (state < CPS_PM_POWER_GATED) {
427 			/*
428 			 * Otherwise this is not the last VPE to become ready
429 			 * for non-coherence. It needs to wait until coherence
430 			 * has been disabled before proceeding, which it will do
431 			 * by polling for the top bit of ready_count being set.
432 			 */
433 			uasm_i_addiu(&p, t1, zero, -1);
434 			uasm_build_label(&l, p, lbl_poll_cont);
435 			uasm_i_lw(&p, t0, 0, r_nc_count);
436 			uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
437 			uasm_i_ehb(&p);
438 			uasm_i_yield(&p, zero, t1);
439 			uasm_il_b(&p, &r, lbl_poll_cont);
440 			uasm_i_nop(&p);
441 		} else {
442 			/*
443 			 * The core will lose power & this VPE will not continue
444 			 * so it can simply halt here.
445 			 */
446 			uasm_i_addiu(&p, t0, zero, TCHALT_H);
447 			uasm_i_mtc0(&p, t0, 2, 4);
448 			uasm_build_label(&l, p, lbl_secondary_hang);
449 			uasm_il_b(&p, &r, lbl_secondary_hang);
450 			uasm_i_nop(&p);
451 		}
452 	}
453 
454 	/*
455 	 * This is the point of no return - this VPE will now proceed to
456 	 * disable coherence. At this point we *must* be sure that no other
457 	 * VPE within the core will interfere with the L1 dcache.
458 	 */
459 	uasm_build_label(&l, p, lbl_disable_coherence);
460 
461 	/* Invalidate the L1 icache */
462 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
463 			      Index_Invalidate_I, lbl_invicache);
464 
465 	/* Writeback & invalidate the L1 dcache */
466 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
467 			      Index_Writeback_Inv_D, lbl_flushdcache);
468 
469 	/* Completion barrier */
470 	uasm_i_sync(&p, stype_memory);
471 	uasm_i_ehb(&p);
472 
473 	/*
474 	 * Disable all but self interventions. The load from COHCTL is defined
475 	 * by the interAptiv & proAptiv SUMs as ensuring that the operation
476 	 * resulting from the preceding store is complete.
477 	 */
478 	uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core);
479 	uasm_i_sw(&p, t0, 0, r_pcohctl);
480 	uasm_i_lw(&p, t0, 0, r_pcohctl);
481 
482 	/* Sync to ensure previous interventions are complete */
483 	uasm_i_sync(&p, stype_intervention);
484 	uasm_i_ehb(&p);
485 
486 	/* Disable coherence */
487 	uasm_i_sw(&p, zero, 0, r_pcohctl);
488 	uasm_i_lw(&p, t0, 0, r_pcohctl);
489 
490 	if (state >= CPS_PM_CLOCK_GATED) {
491 		err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
492 					lbl_flush_fsb);
493 		if (err)
494 			goto out_err;
495 
496 		/* Determine the CPC command to issue */
497 		switch (state) {
498 		case CPS_PM_CLOCK_GATED:
499 			cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
500 			break;
501 		case CPS_PM_POWER_GATED:
502 			cpc_cmd = CPC_Cx_CMD_PWRDOWN;
503 			break;
504 		default:
505 			BUG();
506 			goto out_err;
507 		}
508 
509 		/* Issue the CPC command */
510 		UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
511 		uasm_i_addiu(&p, t1, zero, cpc_cmd);
512 		uasm_i_sw(&p, t1, 0, t0);
513 
514 		if (state == CPS_PM_POWER_GATED) {
515 			/* If anything goes wrong just hang */
516 			uasm_build_label(&l, p, lbl_hang);
517 			uasm_il_b(&p, &r, lbl_hang);
518 			uasm_i_nop(&p);
519 
520 			/*
521 			 * There's no point generating more code, the core is
522 			 * powered down & if powered back up will run from the
523 			 * reset vector not from here.
524 			 */
525 			goto gen_done;
526 		}
527 
528 		/* Completion barrier */
529 		uasm_i_sync(&p, stype_memory);
530 		uasm_i_ehb(&p);
531 	}
532 
533 	if (state == CPS_PM_NC_WAIT) {
534 		/*
535 		 * At this point it is safe for all VPEs to proceed with
536 		 * execution. This VPE will set the top bit of ready_count
537 		 * to indicate to the other VPEs that they may continue.
538 		 */
539 		if (coupled_coherence)
540 			cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
541 					    lbl_set_cont);
542 
543 		/*
544 		 * VPEs which did not disable coherence will continue
545 		 * executing, after coherence has been disabled, from this
546 		 * point.
547 		 */
548 		uasm_build_label(&l, p, lbl_secondary_cont);
549 
550 		/* Now perform our wait */
551 		uasm_i_wait(&p, 0);
552 	}
553 
554 	/*
555 	 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
556 	 * will run this. The first will actually re-enable coherence & the
557 	 * rest will just be performing a rather unusual nop.
558 	 */
559 	uasm_i_addiu(&p, t0, zero, CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK);
560 	uasm_i_sw(&p, t0, 0, r_pcohctl);
561 	uasm_i_lw(&p, t0, 0, r_pcohctl);
562 
563 	/* Completion barrier */
564 	uasm_i_sync(&p, stype_memory);
565 	uasm_i_ehb(&p);
566 
567 	if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
568 		/* Decrement ready_count */
569 		uasm_build_label(&l, p, lbl_decready);
570 		uasm_i_sync(&p, stype_ordering);
571 		uasm_i_ll(&p, t1, 0, r_nc_count);
572 		uasm_i_addiu(&p, t2, t1, -1);
573 		uasm_i_sc(&p, t2, 0, r_nc_count);
574 		uasm_il_beqz(&p, &r, t2, lbl_decready);
575 		uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
576 
577 		/* Ordering barrier */
578 		uasm_i_sync(&p, stype_ordering);
579 	}
580 
581 	if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
582 		/*
583 		 * At this point it is safe for all VPEs to proceed with
584 		 * execution. This VPE will set the top bit of ready_count
585 		 * to indicate to the other VPEs that they may continue.
586 		 */
587 		cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
588 
589 		/*
590 		 * This core will be reliant upon another core sending a
591 		 * power-up command to the CPC in order to resume operation.
592 		 * Thus an arbitrary VPE can't trigger the core leaving the
593 		 * idle state and the one that disables coherence might as well
594 		 * be the one to re-enable it. The rest will continue from here
595 		 * after that has been done.
596 		 */
597 		uasm_build_label(&l, p, lbl_secondary_cont);
598 
599 		/* Ordering barrier */
600 		uasm_i_sync(&p, stype_ordering);
601 	}
602 
603 	/* The core is coherent, time to return to C code */
604 	uasm_i_jr(&p, ra);
605 	uasm_i_nop(&p);
606 
607 gen_done:
608 	/* Ensure the code didn't exceed the resources allocated for it */
609 	BUG_ON((p - buf) > max_instrs);
610 	BUG_ON((l - labels) > ARRAY_SIZE(labels));
611 	BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
612 
613 	/* Patch branch offsets */
614 	uasm_resolve_relocs(relocs, labels);
615 
616 	/* Flush the icache */
617 	local_flush_icache_range((unsigned long)buf, (unsigned long)p);
618 
619 	return buf;
620 out_err:
621 	kfree(buf);
622 	return NULL;
623 }
624 
cps_gen_core_entries(unsigned cpu)625 static int __init cps_gen_core_entries(unsigned cpu)
626 {
627 	enum cps_pm_state state;
628 	unsigned core = cpu_data[cpu].core;
629 	void *entry_fn, *core_rc;
630 
631 	for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
632 		if (per_cpu(nc_asm_enter, core)[state])
633 			continue;
634 		if (!test_bit(state, state_support))
635 			continue;
636 
637 		entry_fn = cps_gen_entry_code(cpu, state);
638 		if (!entry_fn) {
639 			pr_err("Failed to generate core %u state %u entry\n",
640 			       core, state);
641 			clear_bit(state, state_support);
642 		}
643 
644 		per_cpu(nc_asm_enter, core)[state] = entry_fn;
645 	}
646 
647 	if (!per_cpu(ready_count, core)) {
648 		core_rc = kmalloc(sizeof(u32), GFP_KERNEL);
649 		if (!core_rc) {
650 			pr_err("Failed allocate core %u ready_count\n", core);
651 			return -ENOMEM;
652 		}
653 		per_cpu(ready_count, core) = core_rc;
654 	}
655 
656 	return 0;
657 }
658 
cps_pm_init(void)659 static int __init cps_pm_init(void)
660 {
661 	unsigned cpu;
662 	int err;
663 
664 	/* Detect appropriate sync types for the system */
665 	switch (current_cpu_data.cputype) {
666 	case CPU_INTERAPTIV:
667 	case CPU_PROAPTIV:
668 	case CPU_M5150:
669 	case CPU_P5600:
670 	case CPU_I6400:
671 		stype_intervention = 0x2;
672 		stype_memory = 0x3;
673 		stype_ordering = 0x10;
674 		break;
675 
676 	default:
677 		pr_warn("Power management is using heavyweight sync 0\n");
678 	}
679 
680 	/* A CM is required for all non-coherent states */
681 	if (!mips_cm_present()) {
682 		pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
683 		goto out;
684 	}
685 
686 	/*
687 	 * If interrupts were enabled whilst running a wait instruction on a
688 	 * non-coherent core then the VPE may end up processing interrupts
689 	 * whilst non-coherent. That would be bad.
690 	 */
691 	if (cpu_wait == r4k_wait_irqoff)
692 		set_bit(CPS_PM_NC_WAIT, state_support);
693 	else
694 		pr_warn("pm-cps: non-coherent wait unavailable\n");
695 
696 	/* Detect whether a CPC is present */
697 	if (mips_cpc_present()) {
698 		/* Detect whether clock gating is implemented */
699 		if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK)
700 			set_bit(CPS_PM_CLOCK_GATED, state_support);
701 		else
702 			pr_warn("pm-cps: CPC does not support clock gating\n");
703 
704 		/* Power gating is available with CPS SMP & any CPC */
705 		if (mips_cps_smp_in_use())
706 			set_bit(CPS_PM_POWER_GATED, state_support);
707 		else
708 			pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
709 	} else {
710 		pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
711 	}
712 
713 	for_each_present_cpu(cpu) {
714 		err = cps_gen_core_entries(cpu);
715 		if (err)
716 			return err;
717 	}
718 out:
719 	return 0;
720 }
721 arch_initcall(cps_pm_init);
722