• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/arch/arm/kernel/setup.c
3  *
4  *  Copyright (C) 1995-2001 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/utsname.h>
16 #include <linux/initrd.h>
17 #include <linux/console.h>
18 #include <linux/bootmem.h>
19 #include <linux/seq_file.h>
20 #include <linux/screen_info.h>
21 #include <linux/of_iommu.h>
22 #include <linux/of_platform.h>
23 #include <linux/init.h>
24 #include <linux/kexec.h>
25 #include <linux/of_fdt.h>
26 #include <linux/cpu.h>
27 #include <linux/interrupt.h>
28 #include <linux/smp.h>
29 #include <linux/proc_fs.h>
30 #include <linux/memblock.h>
31 #include <linux/bug.h>
32 #include <linux/compiler.h>
33 #include <linux/sort.h>
34 #include <linux/psci.h>
35 
36 #include <asm/unified.h>
37 #include <asm/cp15.h>
38 #include <asm/cpu.h>
39 #include <asm/cputype.h>
40 #include <asm/elf.h>
41 #include <asm/fixmap.h>
42 #include <asm/procinfo.h>
43 #include <asm/psci.h>
44 #include <asm/sections.h>
45 #include <asm/setup.h>
46 #include <asm/smp_plat.h>
47 #include <asm/mach-types.h>
48 #include <asm/cacheflush.h>
49 #include <asm/cachetype.h>
50 #include <asm/tlbflush.h>
51 #include <asm/xen/hypervisor.h>
52 
53 #include <asm/prom.h>
54 #include <asm/mach/arch.h>
55 #include <asm/mach/irq.h>
56 #include <asm/mach/time.h>
57 #include <asm/system_info.h>
58 #include <asm/system_misc.h>
59 #include <asm/traps.h>
60 #include <asm/unwind.h>
61 #include <asm/memblock.h>
62 #include <asm/virt.h>
63 
64 #include "atags.h"
65 
66 
67 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
68 char fpe_type[8];
69 
fpe_setup(char * line)70 static int __init fpe_setup(char *line)
71 {
72 	memcpy(fpe_type, line, 8);
73 	return 1;
74 }
75 
76 __setup("fpe=", fpe_setup);
77 #endif
78 
79 extern void init_default_cache_policy(unsigned long);
80 extern void paging_init(const struct machine_desc *desc);
81 extern void early_paging_init(const struct machine_desc *);
82 extern void sanity_check_meminfo(void);
83 extern enum reboot_mode reboot_mode;
84 extern void setup_dma_zone(const struct machine_desc *desc);
85 
86 unsigned int processor_id;
87 EXPORT_SYMBOL(processor_id);
88 unsigned int __machine_arch_type __read_mostly;
89 EXPORT_SYMBOL(__machine_arch_type);
90 unsigned int cacheid __read_mostly;
91 EXPORT_SYMBOL(cacheid);
92 
93 unsigned int __atags_pointer __initdata;
94 
95 unsigned int system_rev;
96 EXPORT_SYMBOL(system_rev);
97 
98 const char *system_serial;
99 EXPORT_SYMBOL(system_serial);
100 
101 unsigned int system_serial_low;
102 EXPORT_SYMBOL(system_serial_low);
103 
104 unsigned int system_serial_high;
105 EXPORT_SYMBOL(system_serial_high);
106 
107 unsigned int elf_hwcap __read_mostly;
108 EXPORT_SYMBOL(elf_hwcap);
109 
110 unsigned int elf_hwcap2 __read_mostly;
111 EXPORT_SYMBOL(elf_hwcap2);
112 
113 
114 #ifdef MULTI_CPU
115 struct processor processor __read_mostly;
116 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
117 struct processor *cpu_vtable[NR_CPUS] = {
118 	[0] = &processor,
119 };
120 #endif
121 #endif
122 #ifdef MULTI_TLB
123 struct cpu_tlb_fns cpu_tlb __read_mostly;
124 #endif
125 #ifdef MULTI_USER
126 struct cpu_user_fns cpu_user __read_mostly;
127 #endif
128 #ifdef MULTI_CACHE
129 struct cpu_cache_fns cpu_cache __read_mostly;
130 #endif
131 #ifdef CONFIG_OUTER_CACHE
132 struct outer_cache_fns outer_cache __read_mostly;
133 EXPORT_SYMBOL(outer_cache);
134 #endif
135 
136 /*
137  * Cached cpu_architecture() result for use by assembler code.
138  * C code should use the cpu_architecture() function instead of accessing this
139  * variable directly.
140  */
141 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
142 
143 struct stack {
144 	u32 irq[3];
145 	u32 abt[3];
146 	u32 und[3];
147 	u32 fiq[3];
148 } ____cacheline_aligned;
149 
150 #ifndef CONFIG_CPU_V7M
151 static struct stack stacks[NR_CPUS];
152 #endif
153 
154 char elf_platform[ELF_PLATFORM_SIZE];
155 EXPORT_SYMBOL(elf_platform);
156 
157 static const char *cpu_name;
158 static const char *machine_name;
159 static char __initdata cmd_line[COMMAND_LINE_SIZE];
160 const struct machine_desc *machine_desc __initdata;
161 
162 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
163 #define ENDIANNESS ((char)endian_test.l)
164 
165 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
166 
167 /*
168  * Standard memory resources
169  */
170 static struct resource mem_res[] = {
171 	{
172 		.name = "Video RAM",
173 		.start = 0,
174 		.end = 0,
175 		.flags = IORESOURCE_MEM
176 	},
177 	{
178 		.name = "Kernel code",
179 		.start = 0,
180 		.end = 0,
181 		.flags = IORESOURCE_MEM
182 	},
183 	{
184 		.name = "Kernel data",
185 		.start = 0,
186 		.end = 0,
187 		.flags = IORESOURCE_MEM
188 	}
189 };
190 
191 #define video_ram   mem_res[0]
192 #define kernel_code mem_res[1]
193 #define kernel_data mem_res[2]
194 
195 static struct resource io_res[] = {
196 	{
197 		.name = "reserved",
198 		.start = 0x3bc,
199 		.end = 0x3be,
200 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
201 	},
202 	{
203 		.name = "reserved",
204 		.start = 0x378,
205 		.end = 0x37f,
206 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
207 	},
208 	{
209 		.name = "reserved",
210 		.start = 0x278,
211 		.end = 0x27f,
212 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
213 	}
214 };
215 
216 #define lp0 io_res[0]
217 #define lp1 io_res[1]
218 #define lp2 io_res[2]
219 
220 static const char *proc_arch[] = {
221 	"undefined/unknown",
222 	"3",
223 	"4",
224 	"4T",
225 	"5",
226 	"5T",
227 	"5TE",
228 	"5TEJ",
229 	"6TEJ",
230 	"7",
231 	"7M",
232 	"?(12)",
233 	"?(13)",
234 	"?(14)",
235 	"?(15)",
236 	"?(16)",
237 	"?(17)",
238 };
239 
240 #ifdef CONFIG_CPU_V7M
__get_cpu_architecture(void)241 static int __get_cpu_architecture(void)
242 {
243 	return CPU_ARCH_ARMv7M;
244 }
245 #else
__get_cpu_architecture(void)246 static int __get_cpu_architecture(void)
247 {
248 	int cpu_arch;
249 
250 	if ((read_cpuid_id() & 0x0008f000) == 0) {
251 		cpu_arch = CPU_ARCH_UNKNOWN;
252 	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
253 		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
254 	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
255 		cpu_arch = (read_cpuid_id() >> 16) & 7;
256 		if (cpu_arch)
257 			cpu_arch += CPU_ARCH_ARMv3;
258 	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
259 		/* Revised CPUID format. Read the Memory Model Feature
260 		 * Register 0 and check for VMSAv7 or PMSAv7 */
261 		unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
262 		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
263 		    (mmfr0 & 0x000000f0) >= 0x00000030)
264 			cpu_arch = CPU_ARCH_ARMv7;
265 		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
266 			 (mmfr0 & 0x000000f0) == 0x00000020)
267 			cpu_arch = CPU_ARCH_ARMv6;
268 		else
269 			cpu_arch = CPU_ARCH_UNKNOWN;
270 	} else
271 		cpu_arch = CPU_ARCH_UNKNOWN;
272 
273 	return cpu_arch;
274 }
275 #endif
276 
cpu_architecture(void)277 int __pure cpu_architecture(void)
278 {
279 	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
280 
281 	return __cpu_architecture;
282 }
283 
cpu_has_aliasing_icache(unsigned int arch)284 static int cpu_has_aliasing_icache(unsigned int arch)
285 {
286 	int aliasing_icache;
287 	unsigned int id_reg, num_sets, line_size;
288 
289 	/* PIPT caches never alias. */
290 	if (icache_is_pipt())
291 		return 0;
292 
293 	/* arch specifies the register format */
294 	switch (arch) {
295 	case CPU_ARCH_ARMv7:
296 		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
297 		    : /* No output operands */
298 		    : "r" (1));
299 		isb();
300 		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
301 		    : "=r" (id_reg));
302 		line_size = 4 << ((id_reg & 0x7) + 2);
303 		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
304 		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
305 		break;
306 	case CPU_ARCH_ARMv6:
307 		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
308 		break;
309 	default:
310 		/* I-cache aliases will be handled by D-cache aliasing code */
311 		aliasing_icache = 0;
312 	}
313 
314 	return aliasing_icache;
315 }
316 
cacheid_init(void)317 static void __init cacheid_init(void)
318 {
319 	unsigned int arch = cpu_architecture();
320 
321 	if (arch == CPU_ARCH_ARMv7M) {
322 		cacheid = 0;
323 	} else if (arch >= CPU_ARCH_ARMv6) {
324 		unsigned int cachetype = read_cpuid_cachetype();
325 		if ((cachetype & (7 << 29)) == 4 << 29) {
326 			/* ARMv7 register format */
327 			arch = CPU_ARCH_ARMv7;
328 			cacheid = CACHEID_VIPT_NONALIASING;
329 			switch (cachetype & (3 << 14)) {
330 			case (1 << 14):
331 				cacheid |= CACHEID_ASID_TAGGED;
332 				break;
333 			case (3 << 14):
334 				cacheid |= CACHEID_PIPT;
335 				break;
336 			}
337 		} else {
338 			arch = CPU_ARCH_ARMv6;
339 			if (cachetype & (1 << 23))
340 				cacheid = CACHEID_VIPT_ALIASING;
341 			else
342 				cacheid = CACHEID_VIPT_NONALIASING;
343 		}
344 		if (cpu_has_aliasing_icache(arch))
345 			cacheid |= CACHEID_VIPT_I_ALIASING;
346 	} else {
347 		cacheid = CACHEID_VIVT;
348 	}
349 
350 	pr_info("CPU: %s data cache, %s instruction cache\n",
351 		cache_is_vivt() ? "VIVT" :
352 		cache_is_vipt_aliasing() ? "VIPT aliasing" :
353 		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
354 		cache_is_vivt() ? "VIVT" :
355 		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
356 		icache_is_vipt_aliasing() ? "VIPT aliasing" :
357 		icache_is_pipt() ? "PIPT" :
358 		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
359 }
360 
361 /*
362  * These functions re-use the assembly code in head.S, which
363  * already provide the required functionality.
364  */
365 extern struct proc_info_list *lookup_processor_type(unsigned int);
366 
early_print(const char * str,...)367 void __init early_print(const char *str, ...)
368 {
369 	extern void printascii(const char *);
370 	char buf[256];
371 	va_list ap;
372 
373 	va_start(ap, str);
374 	vsnprintf(buf, sizeof(buf), str, ap);
375 	va_end(ap);
376 
377 #ifdef CONFIG_DEBUG_LL
378 	printascii(buf);
379 #endif
380 	printk("%s", buf);
381 }
382 
cpuid_init_hwcaps(void)383 static void __init cpuid_init_hwcaps(void)
384 {
385 	int block;
386 	u32 isar5;
387 
388 	if (cpu_architecture() < CPU_ARCH_ARMv7)
389 		return;
390 
391 	block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
392 	if (block >= 2)
393 		elf_hwcap |= HWCAP_IDIVA;
394 	if (block >= 1)
395 		elf_hwcap |= HWCAP_IDIVT;
396 
397 	/* LPAE implies atomic ldrd/strd instructions */
398 	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
399 	if (block >= 5)
400 		elf_hwcap |= HWCAP_LPAE;
401 
402 	/* check for supported v8 Crypto instructions */
403 	isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
404 
405 	block = cpuid_feature_extract_field(isar5, 4);
406 	if (block >= 2)
407 		elf_hwcap2 |= HWCAP2_PMULL;
408 	if (block >= 1)
409 		elf_hwcap2 |= HWCAP2_AES;
410 
411 	block = cpuid_feature_extract_field(isar5, 8);
412 	if (block >= 1)
413 		elf_hwcap2 |= HWCAP2_SHA1;
414 
415 	block = cpuid_feature_extract_field(isar5, 12);
416 	if (block >= 1)
417 		elf_hwcap2 |= HWCAP2_SHA2;
418 
419 	block = cpuid_feature_extract_field(isar5, 16);
420 	if (block >= 1)
421 		elf_hwcap2 |= HWCAP2_CRC32;
422 }
423 
elf_hwcap_fixup(void)424 static void __init elf_hwcap_fixup(void)
425 {
426 	unsigned id = read_cpuid_id();
427 
428 	/*
429 	 * HWCAP_TLS is available only on 1136 r1p0 and later,
430 	 * see also kuser_get_tls_init.
431 	 */
432 	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
433 	    ((id >> 20) & 3) == 0) {
434 		elf_hwcap &= ~HWCAP_TLS;
435 		return;
436 	}
437 
438 	/* Verify if CPUID scheme is implemented */
439 	if ((id & 0x000f0000) != 0x000f0000)
440 		return;
441 
442 	/*
443 	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
444 	 * avoid advertising SWP; it may not be atomic with
445 	 * multiprocessing cores.
446 	 */
447 	if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
448 	    (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
449 	     cpuid_feature_extract(CPUID_EXT_ISAR3, 20) >= 3))
450 		elf_hwcap &= ~HWCAP_SWP;
451 }
452 
453 /*
454  * cpu_init - initialise one CPU.
455  *
456  * cpu_init sets up the per-CPU stacks.
457  */
cpu_init(void)458 void notrace cpu_init(void)
459 {
460 #ifndef CONFIG_CPU_V7M
461 	unsigned int cpu = smp_processor_id();
462 	struct stack *stk = &stacks[cpu];
463 
464 	if (cpu >= NR_CPUS) {
465 		pr_crit("CPU%u: bad primary CPU number\n", cpu);
466 		BUG();
467 	}
468 
469 	/*
470 	 * This only works on resume and secondary cores. For booting on the
471 	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
472 	 */
473 	set_my_cpu_offset(per_cpu_offset(cpu));
474 
475 	cpu_proc_init();
476 
477 	/*
478 	 * Define the placement constraint for the inline asm directive below.
479 	 * In Thumb-2, msr with an immediate value is not allowed.
480 	 */
481 #ifdef CONFIG_THUMB2_KERNEL
482 #define PLC_l	"l"
483 #define PLC_r	"r"
484 #else
485 #define PLC_l	"I"
486 #define PLC_r	"I"
487 #endif
488 
489 	/*
490 	 * setup stacks for re-entrant exception handlers
491 	 */
492 	__asm__ (
493 	"msr	cpsr_c, %1\n\t"
494 	"add	r14, %0, %2\n\t"
495 	"mov	sp, r14\n\t"
496 	"msr	cpsr_c, %3\n\t"
497 	"add	r14, %0, %4\n\t"
498 	"mov	sp, r14\n\t"
499 	"msr	cpsr_c, %5\n\t"
500 	"add	r14, %0, %6\n\t"
501 	"mov	sp, r14\n\t"
502 	"msr	cpsr_c, %7\n\t"
503 	"add	r14, %0, %8\n\t"
504 	"mov	sp, r14\n\t"
505 	"msr	cpsr_c, %9"
506 	    :
507 	    : "r" (stk),
508 	      PLC_r (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
509 	      "I" (offsetof(struct stack, irq[0])),
510 	      PLC_r (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
511 	      "I" (offsetof(struct stack, abt[0])),
512 	      PLC_r (PSR_F_BIT | PSR_I_BIT | UND_MODE),
513 	      "I" (offsetof(struct stack, und[0])),
514 	      PLC_r (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
515 	      "I" (offsetof(struct stack, fiq[0])),
516 	      PLC_l (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
517 	    : "r14");
518 #endif
519 }
520 
521 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
522 
smp_setup_processor_id(void)523 void __init smp_setup_processor_id(void)
524 {
525 	int i;
526 	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
527 	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
528 
529 	cpu_logical_map(0) = cpu;
530 	for (i = 1; i < nr_cpu_ids; ++i)
531 		cpu_logical_map(i) = i == cpu ? 0 : i;
532 
533 	/*
534 	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
535 	 * using percpu variable early, for example, lockdep will
536 	 * access percpu variable inside lock_release
537 	 */
538 	set_my_cpu_offset(0);
539 
540 	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
541 }
542 
543 struct mpidr_hash mpidr_hash;
544 #ifdef CONFIG_SMP
545 /**
546  * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
547  *			  level in order to build a linear index from an
548  *			  MPIDR value. Resulting algorithm is a collision
549  *			  free hash carried out through shifting and ORing
550  */
smp_build_mpidr_hash(void)551 static void __init smp_build_mpidr_hash(void)
552 {
553 	u32 i, affinity;
554 	u32 fs[3], bits[3], ls, mask = 0;
555 	/*
556 	 * Pre-scan the list of MPIDRS and filter out bits that do
557 	 * not contribute to affinity levels, ie they never toggle.
558 	 */
559 	for_each_possible_cpu(i)
560 		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
561 	pr_debug("mask of set bits 0x%x\n", mask);
562 	/*
563 	 * Find and stash the last and first bit set at all affinity levels to
564 	 * check how many bits are required to represent them.
565 	 */
566 	for (i = 0; i < 3; i++) {
567 		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
568 		/*
569 		 * Find the MSB bit and LSB bits position
570 		 * to determine how many bits are required
571 		 * to express the affinity level.
572 		 */
573 		ls = fls(affinity);
574 		fs[i] = affinity ? ffs(affinity) - 1 : 0;
575 		bits[i] = ls - fs[i];
576 	}
577 	/*
578 	 * An index can be created from the MPIDR by isolating the
579 	 * significant bits at each affinity level and by shifting
580 	 * them in order to compress the 24 bits values space to a
581 	 * compressed set of values. This is equivalent to hashing
582 	 * the MPIDR through shifting and ORing. It is a collision free
583 	 * hash though not minimal since some levels might contain a number
584 	 * of CPUs that is not an exact power of 2 and their bit
585 	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
586 	 */
587 	mpidr_hash.shift_aff[0] = fs[0];
588 	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
589 	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
590 						(bits[1] + bits[0]);
591 	mpidr_hash.mask = mask;
592 	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
593 	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
594 				mpidr_hash.shift_aff[0],
595 				mpidr_hash.shift_aff[1],
596 				mpidr_hash.shift_aff[2],
597 				mpidr_hash.mask,
598 				mpidr_hash.bits);
599 	/*
600 	 * 4x is an arbitrary value used to warn on a hash table much bigger
601 	 * than expected on most systems.
602 	 */
603 	if (mpidr_hash_size() > 4 * num_possible_cpus())
604 		pr_warn("Large number of MPIDR hash buckets detected\n");
605 	sync_cache_w(&mpidr_hash);
606 }
607 #endif
608 
609 /*
610  * locate processor in the list of supported processor types.  The linker
611  * builds this table for us from the entries in arch/arm/mm/proc-*.S
612  */
lookup_processor(u32 midr)613 struct proc_info_list *lookup_processor(u32 midr)
614 {
615 	struct proc_info_list *list = lookup_processor_type(midr);
616 
617 	if (!list) {
618 		pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n",
619 		       smp_processor_id(), midr);
620 		while (1)
621 		/* can't use cpu_relax() here as it may require MMU setup */;
622 	}
623 
624 	return list;
625 }
626 
setup_processor(void)627 static void __init setup_processor(void)
628 {
629 	unsigned int midr = read_cpuid_id();
630 	struct proc_info_list *list = lookup_processor(midr);
631 
632 	cpu_name = list->cpu_name;
633 	__cpu_architecture = __get_cpu_architecture();
634 
635 	init_proc_vtable(list->proc);
636 #ifdef MULTI_TLB
637 	cpu_tlb = *list->tlb;
638 #endif
639 #ifdef MULTI_USER
640 	cpu_user = *list->user;
641 #endif
642 #ifdef MULTI_CACHE
643 	cpu_cache = *list->cache;
644 #endif
645 
646 	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
647 		list->cpu_name, midr, midr & 15,
648 		proc_arch[cpu_architecture()], get_cr());
649 
650 	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
651 		 list->arch_name, ENDIANNESS);
652 	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
653 		 list->elf_name, ENDIANNESS);
654 	elf_hwcap = list->elf_hwcap;
655 
656 	cpuid_init_hwcaps();
657 
658 #ifndef CONFIG_ARM_THUMB
659 	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
660 #endif
661 #ifdef CONFIG_MMU
662 	init_default_cache_policy(list->__cpu_mm_mmu_flags);
663 #endif
664 	erratum_a15_798181_init();
665 
666 	elf_hwcap_fixup();
667 
668 	cacheid_init();
669 	cpu_init();
670 }
671 
dump_machine_table(void)672 void __init dump_machine_table(void)
673 {
674 	const struct machine_desc *p;
675 
676 	early_print("Available machine support:\n\nID (hex)\tNAME\n");
677 	for_each_machine_desc(p)
678 		early_print("%08x\t%s\n", p->nr, p->name);
679 
680 	early_print("\nPlease check your kernel config and/or bootloader.\n");
681 
682 	while (true)
683 		/* can't use cpu_relax() here as it may require MMU setup */;
684 }
685 
arm_add_memory(u64 start,u64 size)686 int __init arm_add_memory(u64 start, u64 size)
687 {
688 	u64 aligned_start;
689 
690 	/*
691 	 * Ensure that start/size are aligned to a page boundary.
692 	 * Size is rounded down, start is rounded up.
693 	 */
694 	aligned_start = PAGE_ALIGN(start);
695 	if (aligned_start > start + size)
696 		size = 0;
697 	else
698 		size -= aligned_start - start;
699 
700 #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
701 	if (aligned_start > ULONG_MAX) {
702 		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
703 			(long long)start);
704 		return -EINVAL;
705 	}
706 
707 	if (aligned_start + size > ULONG_MAX) {
708 		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
709 			(long long)start);
710 		/*
711 		 * To ensure bank->start + bank->size is representable in
712 		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
713 		 * This means we lose a page after masking.
714 		 */
715 		size = ULONG_MAX - aligned_start;
716 	}
717 #endif
718 
719 	if (aligned_start < PHYS_OFFSET) {
720 		if (aligned_start + size <= PHYS_OFFSET) {
721 			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
722 				aligned_start, aligned_start + size);
723 			return -EINVAL;
724 		}
725 
726 		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
727 			aligned_start, (u64)PHYS_OFFSET);
728 
729 		size -= PHYS_OFFSET - aligned_start;
730 		aligned_start = PHYS_OFFSET;
731 	}
732 
733 	start = aligned_start;
734 	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
735 
736 	/*
737 	 * Check whether this memory region has non-zero size or
738 	 * invalid node number.
739 	 */
740 	if (size == 0)
741 		return -EINVAL;
742 
743 	memblock_add(start, size);
744 	return 0;
745 }
746 
747 /*
748  * Pick out the memory size.  We look for mem=size@start,
749  * where start and size are "size[KkMm]"
750  */
751 
early_mem(char * p)752 static int __init early_mem(char *p)
753 {
754 	static int usermem __initdata = 0;
755 	u64 size;
756 	u64 start;
757 	char *endp;
758 
759 	/*
760 	 * If the user specifies memory size, we
761 	 * blow away any automatically generated
762 	 * size.
763 	 */
764 	if (usermem == 0) {
765 		usermem = 1;
766 		memblock_remove(memblock_start_of_DRAM(),
767 			memblock_end_of_DRAM() - memblock_start_of_DRAM());
768 	}
769 
770 	start = PHYS_OFFSET;
771 	size  = memparse(p, &endp);
772 	if (*endp == '@')
773 		start = memparse(endp + 1, NULL);
774 
775 	arm_add_memory(start, size);
776 
777 	return 0;
778 }
779 early_param("mem", early_mem);
780 
request_standard_resources(const struct machine_desc * mdesc)781 static void __init request_standard_resources(const struct machine_desc *mdesc)
782 {
783 	struct memblock_region *region;
784 	struct resource *res;
785 
786 	kernel_code.start   = virt_to_phys(_text);
787 	kernel_code.end     = virt_to_phys(__init_begin - 1);
788 	kernel_data.start   = virt_to_phys(_sdata);
789 	kernel_data.end     = virt_to_phys(_end - 1);
790 
791 	for_each_memblock(memory, region) {
792 		res = memblock_virt_alloc(sizeof(*res), 0);
793 		res->name  = "System RAM";
794 		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
795 		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
796 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
797 
798 		request_resource(&iomem_resource, res);
799 
800 		if (kernel_code.start >= res->start &&
801 		    kernel_code.end <= res->end)
802 			request_resource(res, &kernel_code);
803 		if (kernel_data.start >= res->start &&
804 		    kernel_data.end <= res->end)
805 			request_resource(res, &kernel_data);
806 	}
807 
808 	if (mdesc->video_start) {
809 		video_ram.start = mdesc->video_start;
810 		video_ram.end   = mdesc->video_end;
811 		request_resource(&iomem_resource, &video_ram);
812 	}
813 
814 	/*
815 	 * Some machines don't have the possibility of ever
816 	 * possessing lp0, lp1 or lp2
817 	 */
818 	if (mdesc->reserve_lp0)
819 		request_resource(&ioport_resource, &lp0);
820 	if (mdesc->reserve_lp1)
821 		request_resource(&ioport_resource, &lp1);
822 	if (mdesc->reserve_lp2)
823 		request_resource(&ioport_resource, &lp2);
824 }
825 
826 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
827 struct screen_info screen_info = {
828  .orig_video_lines	= 30,
829  .orig_video_cols	= 80,
830  .orig_video_mode	= 0,
831  .orig_video_ega_bx	= 0,
832  .orig_video_isVGA	= 1,
833  .orig_video_points	= 8
834 };
835 #endif
836 
customize_machine(void)837 static int __init customize_machine(void)
838 {
839 	/*
840 	 * customizes platform devices, or adds new ones
841 	 * On DT based machines, we fall back to populating the
842 	 * machine from the device tree, if no callback is provided,
843 	 * otherwise we would always need an init_machine callback.
844 	 */
845 	of_iommu_init();
846 	if (machine_desc->init_machine)
847 		machine_desc->init_machine();
848 #ifdef CONFIG_OF
849 	else
850 		of_platform_populate(NULL, of_default_bus_match_table,
851 					NULL, NULL);
852 #endif
853 	return 0;
854 }
855 arch_initcall(customize_machine);
856 
init_machine_late(void)857 static int __init init_machine_late(void)
858 {
859 	struct device_node *root;
860 	int ret;
861 
862 	if (machine_desc->init_late)
863 		machine_desc->init_late();
864 
865 	root = of_find_node_by_path("/");
866 	if (root) {
867 		ret = of_property_read_string(root, "serial-number",
868 					      &system_serial);
869 		if (ret)
870 			system_serial = NULL;
871 	}
872 
873 	if (!system_serial)
874 		system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
875 					  system_serial_high,
876 					  system_serial_low);
877 
878 	return 0;
879 }
880 late_initcall(init_machine_late);
881 
882 #ifdef CONFIG_KEXEC
get_total_mem(void)883 static inline unsigned long long get_total_mem(void)
884 {
885 	unsigned long total;
886 
887 	total = max_low_pfn - min_low_pfn;
888 	return total << PAGE_SHIFT;
889 }
890 
891 /**
892  * reserve_crashkernel() - reserves memory are for crash kernel
893  *
894  * This function reserves memory area given in "crashkernel=" kernel command
895  * line parameter. The memory reserved is used by a dump capture kernel when
896  * primary kernel is crashing.
897  */
reserve_crashkernel(void)898 static void __init reserve_crashkernel(void)
899 {
900 	unsigned long long crash_size, crash_base;
901 	unsigned long long total_mem;
902 	int ret;
903 
904 	total_mem = get_total_mem();
905 	ret = parse_crashkernel(boot_command_line, total_mem,
906 				&crash_size, &crash_base);
907 	if (ret)
908 		return;
909 
910 	ret = memblock_reserve(crash_base, crash_size);
911 	if (ret < 0) {
912 		pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
913 			(unsigned long)crash_base);
914 		return;
915 	}
916 
917 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
918 		(unsigned long)(crash_size >> 20),
919 		(unsigned long)(crash_base >> 20),
920 		(unsigned long)(total_mem >> 20));
921 
922 	crashk_res.start = crash_base;
923 	crashk_res.end = crash_base + crash_size - 1;
924 	insert_resource(&iomem_resource, &crashk_res);
925 }
926 #else
reserve_crashkernel(void)927 static inline void reserve_crashkernel(void) {}
928 #endif /* CONFIG_KEXEC */
929 
hyp_mode_check(void)930 void __init hyp_mode_check(void)
931 {
932 #ifdef CONFIG_ARM_VIRT_EXT
933 	sync_boot_mode();
934 
935 	if (is_hyp_mode_available()) {
936 		pr_info("CPU: All CPU(s) started in HYP mode.\n");
937 		pr_info("CPU: Virtualization extensions available.\n");
938 	} else if (is_hyp_mode_mismatched()) {
939 		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
940 			__boot_cpu_mode & MODE_MASK);
941 		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
942 	} else
943 		pr_info("CPU: All CPU(s) started in SVC mode.\n");
944 #endif
945 }
946 
setup_arch(char ** cmdline_p)947 void __init setup_arch(char **cmdline_p)
948 {
949 	const struct machine_desc *mdesc;
950 
951 	setup_processor();
952 	mdesc = setup_machine_fdt(__atags_pointer);
953 	if (!mdesc)
954 		mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
955 	machine_desc = mdesc;
956 	machine_name = mdesc->name;
957 	dump_stack_set_arch_desc("%s", mdesc->name);
958 
959 	if (mdesc->reboot_mode != REBOOT_HARD)
960 		reboot_mode = mdesc->reboot_mode;
961 
962 	init_mm.start_code = (unsigned long) _text;
963 	init_mm.end_code   = (unsigned long) _etext;
964 	init_mm.end_data   = (unsigned long) _edata;
965 	init_mm.brk	   = (unsigned long) _end;
966 
967 	/* populate cmd_line too for later use, preserving boot_command_line */
968 	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
969 	*cmdline_p = cmd_line;
970 
971 	if (IS_ENABLED(CONFIG_FIX_EARLYCON_MEM))
972 		early_fixmap_init();
973 
974 	parse_early_param();
975 
976 #ifdef CONFIG_MMU
977 	early_paging_init(mdesc);
978 #endif
979 	setup_dma_zone(mdesc);
980 	sanity_check_meminfo();
981 	arm_memblock_init(mdesc);
982 
983 	paging_init(mdesc);
984 	request_standard_resources(mdesc);
985 
986 	if (mdesc->restart)
987 		arm_pm_restart = mdesc->restart;
988 
989 	unflatten_device_tree();
990 
991 	arm_dt_init_cpu_maps();
992 	psci_dt_init();
993 	xen_early_init();
994 #ifdef CONFIG_SMP
995 	if (is_smp()) {
996 		if (!mdesc->smp_init || !mdesc->smp_init()) {
997 			if (psci_smp_available())
998 				smp_set_ops(&psci_smp_ops);
999 			else if (mdesc->smp)
1000 				smp_set_ops(mdesc->smp);
1001 		}
1002 		smp_init_cpus();
1003 		smp_build_mpidr_hash();
1004 	}
1005 #endif
1006 
1007 	if (!is_smp())
1008 		hyp_mode_check();
1009 
1010 	reserve_crashkernel();
1011 
1012 #ifdef CONFIG_MULTI_IRQ_HANDLER
1013 	handle_arch_irq = mdesc->handle_irq;
1014 #endif
1015 
1016 #ifdef CONFIG_VT
1017 #if defined(CONFIG_VGA_CONSOLE)
1018 	conswitchp = &vga_con;
1019 #elif defined(CONFIG_DUMMY_CONSOLE)
1020 	conswitchp = &dummy_con;
1021 #endif
1022 #endif
1023 
1024 	if (mdesc->init_early)
1025 		mdesc->init_early();
1026 }
1027 
1028 
topology_init(void)1029 static int __init topology_init(void)
1030 {
1031 	int cpu;
1032 
1033 	for_each_possible_cpu(cpu) {
1034 		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1035 		cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1036 		register_cpu(&cpuinfo->cpu, cpu);
1037 	}
1038 
1039 	return 0;
1040 }
1041 subsys_initcall(topology_init);
1042 
1043 #ifdef CONFIG_HAVE_PROC_CPU
proc_cpu_init(void)1044 static int __init proc_cpu_init(void)
1045 {
1046 	struct proc_dir_entry *res;
1047 
1048 	res = proc_mkdir("cpu", NULL);
1049 	if (!res)
1050 		return -ENOMEM;
1051 	return 0;
1052 }
1053 fs_initcall(proc_cpu_init);
1054 #endif
1055 
1056 static const char *hwcap_str[] = {
1057 	"swp",
1058 	"half",
1059 	"thumb",
1060 	"26bit",
1061 	"fastmult",
1062 	"fpa",
1063 	"vfp",
1064 	"edsp",
1065 	"java",
1066 	"iwmmxt",
1067 	"crunch",
1068 	"thumbee",
1069 	"neon",
1070 	"vfpv3",
1071 	"vfpv3d16",
1072 	"tls",
1073 	"vfpv4",
1074 	"idiva",
1075 	"idivt",
1076 	"vfpd32",
1077 	"lpae",
1078 	"evtstrm",
1079 	NULL
1080 };
1081 
1082 static const char *hwcap2_str[] = {
1083 	"aes",
1084 	"pmull",
1085 	"sha1",
1086 	"sha2",
1087 	"crc32",
1088 	NULL
1089 };
1090 
c_show(struct seq_file * m,void * v)1091 static int c_show(struct seq_file *m, void *v)
1092 {
1093 	int i, j;
1094 	u32 cpuid;
1095 
1096 	for_each_online_cpu(i) {
1097 		/*
1098 		 * glibc reads /proc/cpuinfo to determine the number of
1099 		 * online processors, looking for lines beginning with
1100 		 * "processor".  Give glibc what it expects.
1101 		 */
1102 		seq_printf(m, "processor\t: %d\n", i);
1103 		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1104 		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1105 			   cpu_name, cpuid & 15, elf_platform);
1106 
1107 #if defined(CONFIG_SMP)
1108 		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1109 			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1110 			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1111 #else
1112 		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1113 			   loops_per_jiffy / (500000/HZ),
1114 			   (loops_per_jiffy / (5000/HZ)) % 100);
1115 #endif
1116 		/* dump out the processor features */
1117 		seq_puts(m, "Features\t: ");
1118 
1119 		for (j = 0; hwcap_str[j]; j++)
1120 			if (elf_hwcap & (1 << j))
1121 				seq_printf(m, "%s ", hwcap_str[j]);
1122 
1123 		for (j = 0; hwcap2_str[j]; j++)
1124 			if (elf_hwcap2 & (1 << j))
1125 				seq_printf(m, "%s ", hwcap2_str[j]);
1126 
1127 		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1128 		seq_printf(m, "CPU architecture: %s\n",
1129 			   proc_arch[cpu_architecture()]);
1130 
1131 		if ((cpuid & 0x0008f000) == 0x00000000) {
1132 			/* pre-ARM7 */
1133 			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1134 		} else {
1135 			if ((cpuid & 0x0008f000) == 0x00007000) {
1136 				/* ARM7 */
1137 				seq_printf(m, "CPU variant\t: 0x%02x\n",
1138 					   (cpuid >> 16) & 127);
1139 			} else {
1140 				/* post-ARM7 */
1141 				seq_printf(m, "CPU variant\t: 0x%x\n",
1142 					   (cpuid >> 20) & 15);
1143 			}
1144 			seq_printf(m, "CPU part\t: 0x%03x\n",
1145 				   (cpuid >> 4) & 0xfff);
1146 		}
1147 		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1148 	}
1149 
1150 	seq_printf(m, "Hardware\t: %s\n", machine_name);
1151 	seq_printf(m, "Revision\t: %04x\n", system_rev);
1152 	seq_printf(m, "Serial\t\t: %s\n", system_serial);
1153 
1154 	return 0;
1155 }
1156 
c_start(struct seq_file * m,loff_t * pos)1157 static void *c_start(struct seq_file *m, loff_t *pos)
1158 {
1159 	return *pos < 1 ? (void *)1 : NULL;
1160 }
1161 
c_next(struct seq_file * m,void * v,loff_t * pos)1162 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1163 {
1164 	++*pos;
1165 	return NULL;
1166 }
1167 
c_stop(struct seq_file * m,void * v)1168 static void c_stop(struct seq_file *m, void *v)
1169 {
1170 }
1171 
1172 const struct seq_operations cpuinfo_op = {
1173 	.start	= c_start,
1174 	.next	= c_next,
1175 	.stop	= c_stop,
1176 	.show	= c_show
1177 };
1178