• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Scatterlist Cryptographic API.
3  *
4  * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5  * Copyright (c) 2002 David S. Miller (davem@redhat.com)
6  * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
7  *
8  * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
9  * and Nettle, by Niels Möller.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the Free
13  * Software Foundation; either version 2 of the License, or (at your option)
14  * any later version.
15  *
16  */
17 #ifndef _LINUX_CRYPTO_H
18 #define _LINUX_CRYPTO_H
19 
20 #include <linux/atomic.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/bug.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/completion.h>
28 
29 /*
30  * Autoloaded crypto modules should only use a prefixed name to avoid allowing
31  * arbitrary modules to be loaded. Loading from userspace may still need the
32  * unprefixed names, so retains those aliases as well.
33  * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
34  * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
35  * expands twice on the same line. Instead, use a separate base name for the
36  * alias.
37  */
38 #define MODULE_ALIAS_CRYPTO(name)	\
39 		__MODULE_INFO(alias, alias_userspace, name);	\
40 		__MODULE_INFO(alias, alias_crypto, "crypto-" name)
41 
42 /*
43  * Algorithm masks and types.
44  */
45 #define CRYPTO_ALG_TYPE_MASK		0x0000000f
46 #define CRYPTO_ALG_TYPE_CIPHER		0x00000001
47 #define CRYPTO_ALG_TYPE_COMPRESS	0x00000002
48 #define CRYPTO_ALG_TYPE_AEAD		0x00000003
49 #define CRYPTO_ALG_TYPE_BLKCIPHER	0x00000004
50 #define CRYPTO_ALG_TYPE_ABLKCIPHER	0x00000005
51 #define CRYPTO_ALG_TYPE_GIVCIPHER	0x00000006
52 #define CRYPTO_ALG_TYPE_DIGEST		0x00000008
53 #define CRYPTO_ALG_TYPE_HASH		0x00000008
54 #define CRYPTO_ALG_TYPE_SHASH		0x00000009
55 #define CRYPTO_ALG_TYPE_AHASH		0x0000000a
56 #define CRYPTO_ALG_TYPE_RNG		0x0000000c
57 #define CRYPTO_ALG_TYPE_AKCIPHER	0x0000000d
58 #define CRYPTO_ALG_TYPE_PCOMPRESS	0x0000000f
59 
60 #define CRYPTO_ALG_TYPE_HASH_MASK	0x0000000e
61 #define CRYPTO_ALG_TYPE_AHASH_MASK	0x0000000c
62 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK	0x0000000c
63 
64 #define CRYPTO_ALG_LARVAL		0x00000010
65 #define CRYPTO_ALG_DEAD			0x00000020
66 #define CRYPTO_ALG_DYING		0x00000040
67 #define CRYPTO_ALG_ASYNC		0x00000080
68 
69 /*
70  * Set this bit if and only if the algorithm requires another algorithm of
71  * the same type to handle corner cases.
72  */
73 #define CRYPTO_ALG_NEED_FALLBACK	0x00000100
74 
75 /*
76  * This bit is set for symmetric key ciphers that have already been wrapped
77  * with a generic IV generator to prevent them from being wrapped again.
78  */
79 #define CRYPTO_ALG_GENIV		0x00000200
80 
81 /*
82  * Set if the algorithm has passed automated run-time testing.  Note that
83  * if there is no run-time testing for a given algorithm it is considered
84  * to have passed.
85  */
86 
87 #define CRYPTO_ALG_TESTED		0x00000400
88 
89 /*
90  * Set if the algorithm is an instance that is build from templates.
91  */
92 #define CRYPTO_ALG_INSTANCE		0x00000800
93 
94 /* Set this bit if the algorithm provided is hardware accelerated but
95  * not available to userspace via instruction set or so.
96  */
97 #define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000
98 
99 /*
100  * Mark a cipher as a service implementation only usable by another
101  * cipher and never by a normal user of the kernel crypto API
102  */
103 #define CRYPTO_ALG_INTERNAL		0x00002000
104 
105 /*
106  * Transform masks and values (for crt_flags).
107  */
108 #define CRYPTO_TFM_REQ_MASK		0x000fff00
109 #define CRYPTO_TFM_RES_MASK		0xfff00000
110 
111 #define CRYPTO_TFM_REQ_WEAK_KEY		0x00000100
112 #define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200
113 #define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400
114 #define CRYPTO_TFM_RES_WEAK_KEY		0x00100000
115 #define CRYPTO_TFM_RES_BAD_KEY_LEN   	0x00200000
116 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 	0x00400000
117 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 	0x00800000
118 #define CRYPTO_TFM_RES_BAD_FLAGS 	0x01000000
119 
120 /*
121  * Miscellaneous stuff.
122  */
123 #define CRYPTO_MAX_ALG_NAME		64
124 
125 /*
126  * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
127  * declaration) is used to ensure that the crypto_tfm context structure is
128  * aligned correctly for the given architecture so that there are no alignment
129  * faults for C data types.  In particular, this is required on platforms such
130  * as arm where pointers are 32-bit aligned but there are data types such as
131  * u64 which require 64-bit alignment.
132  */
133 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
134 
135 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
136 
137 struct scatterlist;
138 struct crypto_ablkcipher;
139 struct crypto_async_request;
140 struct crypto_blkcipher;
141 struct crypto_hash;
142 struct crypto_tfm;
143 struct crypto_type;
144 struct skcipher_givcrypt_request;
145 
146 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
147 
148 /**
149  * DOC: Block Cipher Context Data Structures
150  *
151  * These data structures define the operating context for each block cipher
152  * type.
153  */
154 
155 struct crypto_async_request {
156 	struct list_head list;
157 	crypto_completion_t complete;
158 	void *data;
159 	struct crypto_tfm *tfm;
160 
161 	u32 flags;
162 };
163 
164 struct ablkcipher_request {
165 	struct crypto_async_request base;
166 
167 	unsigned int nbytes;
168 
169 	void *info;
170 
171 	struct scatterlist *src;
172 	struct scatterlist *dst;
173 
174 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
175 };
176 
177 struct blkcipher_desc {
178 	struct crypto_blkcipher *tfm;
179 	void *info;
180 	u32 flags;
181 };
182 
183 struct cipher_desc {
184 	struct crypto_tfm *tfm;
185 	void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
186 	unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
187 			     const u8 *src, unsigned int nbytes);
188 	void *info;
189 };
190 
191 struct hash_desc {
192 	struct crypto_hash *tfm;
193 	u32 flags;
194 };
195 
196 /**
197  * DOC: Block Cipher Algorithm Definitions
198  *
199  * These data structures define modular crypto algorithm implementations,
200  * managed via crypto_register_alg() and crypto_unregister_alg().
201  */
202 
203 /**
204  * struct ablkcipher_alg - asynchronous block cipher definition
205  * @min_keysize: Minimum key size supported by the transformation. This is the
206  *		 smallest key length supported by this transformation algorithm.
207  *		 This must be set to one of the pre-defined values as this is
208  *		 not hardware specific. Possible values for this field can be
209  *		 found via git grep "_MIN_KEY_SIZE" include/crypto/
210  * @max_keysize: Maximum key size supported by the transformation. This is the
211  *		 largest key length supported by this transformation algorithm.
212  *		 This must be set to one of the pre-defined values as this is
213  *		 not hardware specific. Possible values for this field can be
214  *		 found via git grep "_MAX_KEY_SIZE" include/crypto/
215  * @setkey: Set key for the transformation. This function is used to either
216  *	    program a supplied key into the hardware or store the key in the
217  *	    transformation context for programming it later. Note that this
218  *	    function does modify the transformation context. This function can
219  *	    be called multiple times during the existence of the transformation
220  *	    object, so one must make sure the key is properly reprogrammed into
221  *	    the hardware. This function is also responsible for checking the key
222  *	    length for validity. In case a software fallback was put in place in
223  *	    the @cra_init call, this function might need to use the fallback if
224  *	    the algorithm doesn't support all of the key sizes.
225  * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
226  *	     the supplied scatterlist containing the blocks of data. The crypto
227  *	     API consumer is responsible for aligning the entries of the
228  *	     scatterlist properly and making sure the chunks are correctly
229  *	     sized. In case a software fallback was put in place in the
230  *	     @cra_init call, this function might need to use the fallback if
231  *	     the algorithm doesn't support all of the key sizes. In case the
232  *	     key was stored in transformation context, the key might need to be
233  *	     re-programmed into the hardware in this function. This function
234  *	     shall not modify the transformation context, as this function may
235  *	     be called in parallel with the same transformation object.
236  * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
237  *	     and the conditions are exactly the same.
238  * @givencrypt: Update the IV for encryption. With this function, a cipher
239  *	        implementation may provide the function on how to update the IV
240  *	        for encryption.
241  * @givdecrypt: Update the IV for decryption. This is the reverse of
242  *	        @givencrypt .
243  * @geniv: The transformation implementation may use an "IV generator" provided
244  *	   by the kernel crypto API. Several use cases have a predefined
245  *	   approach how IVs are to be updated. For such use cases, the kernel
246  *	   crypto API provides ready-to-use implementations that can be
247  *	   referenced with this variable.
248  * @ivsize: IV size applicable for transformation. The consumer must provide an
249  *	    IV of exactly that size to perform the encrypt or decrypt operation.
250  *
251  * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
252  * mandatory and must be filled.
253  */
254 struct ablkcipher_alg {
255 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
256 	              unsigned int keylen);
257 	int (*encrypt)(struct ablkcipher_request *req);
258 	int (*decrypt)(struct ablkcipher_request *req);
259 	int (*givencrypt)(struct skcipher_givcrypt_request *req);
260 	int (*givdecrypt)(struct skcipher_givcrypt_request *req);
261 
262 	const char *geniv;
263 
264 	unsigned int min_keysize;
265 	unsigned int max_keysize;
266 	unsigned int ivsize;
267 };
268 
269 /**
270  * struct blkcipher_alg - synchronous block cipher definition
271  * @min_keysize: see struct ablkcipher_alg
272  * @max_keysize: see struct ablkcipher_alg
273  * @setkey: see struct ablkcipher_alg
274  * @encrypt: see struct ablkcipher_alg
275  * @decrypt: see struct ablkcipher_alg
276  * @geniv: see struct ablkcipher_alg
277  * @ivsize: see struct ablkcipher_alg
278  *
279  * All fields except @geniv and @ivsize are mandatory and must be filled.
280  */
281 struct blkcipher_alg {
282 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
283 	              unsigned int keylen);
284 	int (*encrypt)(struct blkcipher_desc *desc,
285 		       struct scatterlist *dst, struct scatterlist *src,
286 		       unsigned int nbytes);
287 	int (*decrypt)(struct blkcipher_desc *desc,
288 		       struct scatterlist *dst, struct scatterlist *src,
289 		       unsigned int nbytes);
290 
291 	const char *geniv;
292 
293 	unsigned int min_keysize;
294 	unsigned int max_keysize;
295 	unsigned int ivsize;
296 };
297 
298 /**
299  * struct cipher_alg - single-block symmetric ciphers definition
300  * @cia_min_keysize: Minimum key size supported by the transformation. This is
301  *		     the smallest key length supported by this transformation
302  *		     algorithm. This must be set to one of the pre-defined
303  *		     values as this is not hardware specific. Possible values
304  *		     for this field can be found via git grep "_MIN_KEY_SIZE"
305  *		     include/crypto/
306  * @cia_max_keysize: Maximum key size supported by the transformation. This is
307  *		    the largest key length supported by this transformation
308  *		    algorithm. This must be set to one of the pre-defined values
309  *		    as this is not hardware specific. Possible values for this
310  *		    field can be found via git grep "_MAX_KEY_SIZE"
311  *		    include/crypto/
312  * @cia_setkey: Set key for the transformation. This function is used to either
313  *	        program a supplied key into the hardware or store the key in the
314  *	        transformation context for programming it later. Note that this
315  *	        function does modify the transformation context. This function
316  *	        can be called multiple times during the existence of the
317  *	        transformation object, so one must make sure the key is properly
318  *	        reprogrammed into the hardware. This function is also
319  *	        responsible for checking the key length for validity.
320  * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
321  *		 single block of data, which must be @cra_blocksize big. This
322  *		 always operates on a full @cra_blocksize and it is not possible
323  *		 to encrypt a block of smaller size. The supplied buffers must
324  *		 therefore also be at least of @cra_blocksize size. Both the
325  *		 input and output buffers are always aligned to @cra_alignmask.
326  *		 In case either of the input or output buffer supplied by user
327  *		 of the crypto API is not aligned to @cra_alignmask, the crypto
328  *		 API will re-align the buffers. The re-alignment means that a
329  *		 new buffer will be allocated, the data will be copied into the
330  *		 new buffer, then the processing will happen on the new buffer,
331  *		 then the data will be copied back into the original buffer and
332  *		 finally the new buffer will be freed. In case a software
333  *		 fallback was put in place in the @cra_init call, this function
334  *		 might need to use the fallback if the algorithm doesn't support
335  *		 all of the key sizes. In case the key was stored in
336  *		 transformation context, the key might need to be re-programmed
337  *		 into the hardware in this function. This function shall not
338  *		 modify the transformation context, as this function may be
339  *		 called in parallel with the same transformation object.
340  * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
341  *		 @cia_encrypt, and the conditions are exactly the same.
342  *
343  * All fields are mandatory and must be filled.
344  */
345 struct cipher_alg {
346 	unsigned int cia_min_keysize;
347 	unsigned int cia_max_keysize;
348 	int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
349 	                  unsigned int keylen);
350 	void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
351 	void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
352 };
353 
354 struct compress_alg {
355 	int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
356 			    unsigned int slen, u8 *dst, unsigned int *dlen);
357 	int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
358 			      unsigned int slen, u8 *dst, unsigned int *dlen);
359 };
360 
361 
362 #define cra_ablkcipher	cra_u.ablkcipher
363 #define cra_blkcipher	cra_u.blkcipher
364 #define cra_cipher	cra_u.cipher
365 #define cra_compress	cra_u.compress
366 
367 /**
368  * struct crypto_alg - definition of a cryptograpic cipher algorithm
369  * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
370  *	       CRYPTO_ALG_* flags for the flags which go in here. Those are
371  *	       used for fine-tuning the description of the transformation
372  *	       algorithm.
373  * @cra_blocksize: Minimum block size of this transformation. The size in bytes
374  *		   of the smallest possible unit which can be transformed with
375  *		   this algorithm. The users must respect this value.
376  *		   In case of HASH transformation, it is possible for a smaller
377  *		   block than @cra_blocksize to be passed to the crypto API for
378  *		   transformation, in case of any other transformation type, an
379  * 		   error will be returned upon any attempt to transform smaller
380  *		   than @cra_blocksize chunks.
381  * @cra_ctxsize: Size of the operational context of the transformation. This
382  *		 value informs the kernel crypto API about the memory size
383  *		 needed to be allocated for the transformation context.
384  * @cra_alignmask: Alignment mask for the input and output data buffer. The data
385  *		   buffer containing the input data for the algorithm must be
386  *		   aligned to this alignment mask. The data buffer for the
387  *		   output data must be aligned to this alignment mask. Note that
388  *		   the Crypto API will do the re-alignment in software, but
389  *		   only under special conditions and there is a performance hit.
390  *		   The re-alignment happens at these occasions for different
391  *		   @cra_u types: cipher -- For both input data and output data
392  *		   buffer; ahash -- For output hash destination buf; shash --
393  *		   For output hash destination buf.
394  *		   This is needed on hardware which is flawed by design and
395  *		   cannot pick data from arbitrary addresses.
396  * @cra_priority: Priority of this transformation implementation. In case
397  *		  multiple transformations with same @cra_name are available to
398  *		  the Crypto API, the kernel will use the one with highest
399  *		  @cra_priority.
400  * @cra_name: Generic name (usable by multiple implementations) of the
401  *	      transformation algorithm. This is the name of the transformation
402  *	      itself. This field is used by the kernel when looking up the
403  *	      providers of particular transformation.
404  * @cra_driver_name: Unique name of the transformation provider. This is the
405  *		     name of the provider of the transformation. This can be any
406  *		     arbitrary value, but in the usual case, this contains the
407  *		     name of the chip or provider and the name of the
408  *		     transformation algorithm.
409  * @cra_type: Type of the cryptographic transformation. This is a pointer to
410  *	      struct crypto_type, which implements callbacks common for all
411  *	      transformation types. There are multiple options:
412  *	      &crypto_blkcipher_type, &crypto_ablkcipher_type,
413  *	      &crypto_ahash_type, &crypto_rng_type.
414  *	      This field might be empty. In that case, there are no common
415  *	      callbacks. This is the case for: cipher, compress, shash.
416  * @cra_u: Callbacks implementing the transformation. This is a union of
417  *	   multiple structures. Depending on the type of transformation selected
418  *	   by @cra_type and @cra_flags above, the associated structure must be
419  *	   filled with callbacks. This field might be empty. This is the case
420  *	   for ahash, shash.
421  * @cra_init: Initialize the cryptographic transformation object. This function
422  *	      is used to initialize the cryptographic transformation object.
423  *	      This function is called only once at the instantiation time, right
424  *	      after the transformation context was allocated. In case the
425  *	      cryptographic hardware has some special requirements which need to
426  *	      be handled by software, this function shall check for the precise
427  *	      requirement of the transformation and put any software fallbacks
428  *	      in place.
429  * @cra_exit: Deinitialize the cryptographic transformation object. This is a
430  *	      counterpart to @cra_init, used to remove various changes set in
431  *	      @cra_init.
432  * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
433  * @cra_list: internally used
434  * @cra_users: internally used
435  * @cra_refcnt: internally used
436  * @cra_destroy: internally used
437  *
438  * The struct crypto_alg describes a generic Crypto API algorithm and is common
439  * for all of the transformations. Any variable not documented here shall not
440  * be used by a cipher implementation as it is internal to the Crypto API.
441  */
442 struct crypto_alg {
443 	struct list_head cra_list;
444 	struct list_head cra_users;
445 
446 	u32 cra_flags;
447 	unsigned int cra_blocksize;
448 	unsigned int cra_ctxsize;
449 	unsigned int cra_alignmask;
450 
451 	int cra_priority;
452 	atomic_t cra_refcnt;
453 
454 	char cra_name[CRYPTO_MAX_ALG_NAME];
455 	char cra_driver_name[CRYPTO_MAX_ALG_NAME];
456 
457 	const struct crypto_type *cra_type;
458 
459 	union {
460 		struct ablkcipher_alg ablkcipher;
461 		struct blkcipher_alg blkcipher;
462 		struct cipher_alg cipher;
463 		struct compress_alg compress;
464 	} cra_u;
465 
466 	int (*cra_init)(struct crypto_tfm *tfm);
467 	void (*cra_exit)(struct crypto_tfm *tfm);
468 	void (*cra_destroy)(struct crypto_alg *alg);
469 
470 	struct module *cra_module;
471 } CRYPTO_MINALIGN_ATTR;
472 
473 /*
474  * A helper struct for waiting for completion of async crypto ops
475  */
476 struct crypto_wait {
477 	struct completion completion;
478 	int err;
479 };
480 
481 /*
482  * Macro for declaring a crypto op async wait object on stack
483  */
484 #define DECLARE_CRYPTO_WAIT(_wait) \
485 	struct crypto_wait _wait = { \
486 		COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
487 
488 /*
489  * Async ops completion helper functioons
490  */
491 void crypto_req_done(struct crypto_async_request *req, int err);
492 
crypto_wait_req(int err,struct crypto_wait * wait)493 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
494 {
495 	switch (err) {
496 	case -EINPROGRESS:
497 	case -EBUSY:
498 		wait_for_completion(&wait->completion);
499 		reinit_completion(&wait->completion);
500 		err = wait->err;
501 		break;
502 	};
503 
504 	return err;
505 }
506 
crypto_init_wait(struct crypto_wait * wait)507 static inline void crypto_init_wait(struct crypto_wait *wait)
508 {
509 	init_completion(&wait->completion);
510 }
511 
512 /*
513  * Algorithm registration interface.
514  */
515 int crypto_register_alg(struct crypto_alg *alg);
516 int crypto_unregister_alg(struct crypto_alg *alg);
517 int crypto_register_algs(struct crypto_alg *algs, int count);
518 int crypto_unregister_algs(struct crypto_alg *algs, int count);
519 
520 /*
521  * Algorithm query interface.
522  */
523 int crypto_has_alg(const char *name, u32 type, u32 mask);
524 
525 /*
526  * Transforms: user-instantiated objects which encapsulate algorithms
527  * and core processing logic.  Managed via crypto_alloc_*() and
528  * crypto_free_*(), as well as the various helpers below.
529  */
530 
531 struct ablkcipher_tfm {
532 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
533 	              unsigned int keylen);
534 	int (*encrypt)(struct ablkcipher_request *req);
535 	int (*decrypt)(struct ablkcipher_request *req);
536 	int (*givencrypt)(struct skcipher_givcrypt_request *req);
537 	int (*givdecrypt)(struct skcipher_givcrypt_request *req);
538 
539 	struct crypto_ablkcipher *base;
540 
541 	unsigned int ivsize;
542 	unsigned int reqsize;
543 };
544 
545 struct blkcipher_tfm {
546 	void *iv;
547 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
548 		      unsigned int keylen);
549 	int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
550 		       struct scatterlist *src, unsigned int nbytes);
551 	int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
552 		       struct scatterlist *src, unsigned int nbytes);
553 };
554 
555 struct cipher_tfm {
556 	int (*cit_setkey)(struct crypto_tfm *tfm,
557 	                  const u8 *key, unsigned int keylen);
558 	void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
559 	void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
560 };
561 
562 struct hash_tfm {
563 	int (*init)(struct hash_desc *desc);
564 	int (*update)(struct hash_desc *desc,
565 		      struct scatterlist *sg, unsigned int nsg);
566 	int (*final)(struct hash_desc *desc, u8 *out);
567 	int (*digest)(struct hash_desc *desc, struct scatterlist *sg,
568 		      unsigned int nsg, u8 *out);
569 	int (*setkey)(struct crypto_hash *tfm, const u8 *key,
570 		      unsigned int keylen);
571 	unsigned int digestsize;
572 };
573 
574 struct compress_tfm {
575 	int (*cot_compress)(struct crypto_tfm *tfm,
576 	                    const u8 *src, unsigned int slen,
577 	                    u8 *dst, unsigned int *dlen);
578 	int (*cot_decompress)(struct crypto_tfm *tfm,
579 	                      const u8 *src, unsigned int slen,
580 	                      u8 *dst, unsigned int *dlen);
581 };
582 
583 #define crt_ablkcipher	crt_u.ablkcipher
584 #define crt_blkcipher	crt_u.blkcipher
585 #define crt_cipher	crt_u.cipher
586 #define crt_hash	crt_u.hash
587 #define crt_compress	crt_u.compress
588 
589 struct crypto_tfm {
590 
591 	u32 crt_flags;
592 
593 	union {
594 		struct ablkcipher_tfm ablkcipher;
595 		struct blkcipher_tfm blkcipher;
596 		struct cipher_tfm cipher;
597 		struct hash_tfm hash;
598 		struct compress_tfm compress;
599 	} crt_u;
600 
601 	void (*exit)(struct crypto_tfm *tfm);
602 
603 	struct crypto_alg *__crt_alg;
604 
605 	void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
606 };
607 
608 struct crypto_ablkcipher {
609 	struct crypto_tfm base;
610 };
611 
612 struct crypto_blkcipher {
613 	struct crypto_tfm base;
614 };
615 
616 struct crypto_cipher {
617 	struct crypto_tfm base;
618 };
619 
620 struct crypto_comp {
621 	struct crypto_tfm base;
622 };
623 
624 struct crypto_hash {
625 	struct crypto_tfm base;
626 };
627 
628 enum {
629 	CRYPTOA_UNSPEC,
630 	CRYPTOA_ALG,
631 	CRYPTOA_TYPE,
632 	CRYPTOA_U32,
633 	__CRYPTOA_MAX,
634 };
635 
636 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
637 
638 /* Maximum number of (rtattr) parameters for each template. */
639 #define CRYPTO_MAX_ATTRS 32
640 
641 struct crypto_attr_alg {
642 	char name[CRYPTO_MAX_ALG_NAME];
643 };
644 
645 struct crypto_attr_type {
646 	u32 type;
647 	u32 mask;
648 };
649 
650 struct crypto_attr_u32 {
651 	u32 num;
652 };
653 
654 /*
655  * Transform user interface.
656  */
657 
658 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
659 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
660 
crypto_free_tfm(struct crypto_tfm * tfm)661 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
662 {
663 	return crypto_destroy_tfm(tfm, tfm);
664 }
665 
666 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
667 
668 /*
669  * Transform helpers which query the underlying algorithm.
670  */
crypto_tfm_alg_name(struct crypto_tfm * tfm)671 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
672 {
673 	return tfm->__crt_alg->cra_name;
674 }
675 
crypto_tfm_alg_driver_name(struct crypto_tfm * tfm)676 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
677 {
678 	return tfm->__crt_alg->cra_driver_name;
679 }
680 
crypto_tfm_alg_priority(struct crypto_tfm * tfm)681 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
682 {
683 	return tfm->__crt_alg->cra_priority;
684 }
685 
crypto_tfm_alg_type(struct crypto_tfm * tfm)686 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
687 {
688 	return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
689 }
690 
crypto_tfm_alg_blocksize(struct crypto_tfm * tfm)691 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
692 {
693 	return tfm->__crt_alg->cra_blocksize;
694 }
695 
crypto_tfm_alg_alignmask(struct crypto_tfm * tfm)696 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
697 {
698 	return tfm->__crt_alg->cra_alignmask;
699 }
700 
crypto_tfm_get_flags(struct crypto_tfm * tfm)701 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
702 {
703 	return tfm->crt_flags;
704 }
705 
crypto_tfm_set_flags(struct crypto_tfm * tfm,u32 flags)706 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
707 {
708 	tfm->crt_flags |= flags;
709 }
710 
crypto_tfm_clear_flags(struct crypto_tfm * tfm,u32 flags)711 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
712 {
713 	tfm->crt_flags &= ~flags;
714 }
715 
crypto_tfm_ctx(struct crypto_tfm * tfm)716 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
717 {
718 	return tfm->__crt_ctx;
719 }
720 
crypto_tfm_ctx_alignment(void)721 static inline unsigned int crypto_tfm_ctx_alignment(void)
722 {
723 	struct crypto_tfm *tfm;
724 	return __alignof__(tfm->__crt_ctx);
725 }
726 
727 /*
728  * API wrappers.
729  */
__crypto_ablkcipher_cast(struct crypto_tfm * tfm)730 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
731 	struct crypto_tfm *tfm)
732 {
733 	return (struct crypto_ablkcipher *)tfm;
734 }
735 
crypto_skcipher_type(u32 type)736 static inline u32 crypto_skcipher_type(u32 type)
737 {
738 	type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
739 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
740 	return type;
741 }
742 
crypto_skcipher_mask(u32 mask)743 static inline u32 crypto_skcipher_mask(u32 mask)
744 {
745 	mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
746 	mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
747 	return mask;
748 }
749 
750 /**
751  * DOC: Asynchronous Block Cipher API
752  *
753  * Asynchronous block cipher API is used with the ciphers of type
754  * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
755  *
756  * Asynchronous cipher operations imply that the function invocation for a
757  * cipher request returns immediately before the completion of the operation.
758  * The cipher request is scheduled as a separate kernel thread and therefore
759  * load-balanced on the different CPUs via the process scheduler. To allow
760  * the kernel crypto API to inform the caller about the completion of a cipher
761  * request, the caller must provide a callback function. That function is
762  * invoked with the cipher handle when the request completes.
763  *
764  * To support the asynchronous operation, additional information than just the
765  * cipher handle must be supplied to the kernel crypto API. That additional
766  * information is given by filling in the ablkcipher_request data structure.
767  *
768  * For the asynchronous block cipher API, the state is maintained with the tfm
769  * cipher handle. A single tfm can be used across multiple calls and in
770  * parallel. For asynchronous block cipher calls, context data supplied and
771  * only used by the caller can be referenced the request data structure in
772  * addition to the IV used for the cipher request. The maintenance of such
773  * state information would be important for a crypto driver implementer to
774  * have, because when calling the callback function upon completion of the
775  * cipher operation, that callback function may need some information about
776  * which operation just finished if it invoked multiple in parallel. This
777  * state information is unused by the kernel crypto API.
778  */
779 
780 /**
781  * crypto_alloc_ablkcipher() - allocate asynchronous block cipher handle
782  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
783  *	      ablkcipher cipher
784  * @type: specifies the type of the cipher
785  * @mask: specifies the mask for the cipher
786  *
787  * Allocate a cipher handle for an ablkcipher. The returned struct
788  * crypto_ablkcipher is the cipher handle that is required for any subsequent
789  * API invocation for that ablkcipher.
790  *
791  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
792  *	   of an error, PTR_ERR() returns the error code.
793  */
794 struct crypto_ablkcipher *crypto_alloc_ablkcipher(const char *alg_name,
795 						  u32 type, u32 mask);
796 
crypto_ablkcipher_tfm(struct crypto_ablkcipher * tfm)797 static inline struct crypto_tfm *crypto_ablkcipher_tfm(
798 	struct crypto_ablkcipher *tfm)
799 {
800 	return &tfm->base;
801 }
802 
803 /**
804  * crypto_free_ablkcipher() - zeroize and free cipher handle
805  * @tfm: cipher handle to be freed
806  */
crypto_free_ablkcipher(struct crypto_ablkcipher * tfm)807 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
808 {
809 	crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
810 }
811 
812 /**
813  * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
814  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
815  *	      ablkcipher
816  * @type: specifies the type of the cipher
817  * @mask: specifies the mask for the cipher
818  *
819  * Return: true when the ablkcipher is known to the kernel crypto API; false
820  *	   otherwise
821  */
crypto_has_ablkcipher(const char * alg_name,u32 type,u32 mask)822 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
823 					u32 mask)
824 {
825 	return crypto_has_alg(alg_name, crypto_skcipher_type(type),
826 			      crypto_skcipher_mask(mask));
827 }
828 
crypto_ablkcipher_crt(struct crypto_ablkcipher * tfm)829 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
830 	struct crypto_ablkcipher *tfm)
831 {
832 	return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
833 }
834 
835 /**
836  * crypto_ablkcipher_ivsize() - obtain IV size
837  * @tfm: cipher handle
838  *
839  * The size of the IV for the ablkcipher referenced by the cipher handle is
840  * returned. This IV size may be zero if the cipher does not need an IV.
841  *
842  * Return: IV size in bytes
843  */
crypto_ablkcipher_ivsize(struct crypto_ablkcipher * tfm)844 static inline unsigned int crypto_ablkcipher_ivsize(
845 	struct crypto_ablkcipher *tfm)
846 {
847 	return crypto_ablkcipher_crt(tfm)->ivsize;
848 }
849 
850 /**
851  * crypto_ablkcipher_blocksize() - obtain block size of cipher
852  * @tfm: cipher handle
853  *
854  * The block size for the ablkcipher referenced with the cipher handle is
855  * returned. The caller may use that information to allocate appropriate
856  * memory for the data returned by the encryption or decryption operation
857  *
858  * Return: block size of cipher
859  */
crypto_ablkcipher_blocksize(struct crypto_ablkcipher * tfm)860 static inline unsigned int crypto_ablkcipher_blocksize(
861 	struct crypto_ablkcipher *tfm)
862 {
863 	return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
864 }
865 
crypto_ablkcipher_alignmask(struct crypto_ablkcipher * tfm)866 static inline unsigned int crypto_ablkcipher_alignmask(
867 	struct crypto_ablkcipher *tfm)
868 {
869 	return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
870 }
871 
crypto_ablkcipher_get_flags(struct crypto_ablkcipher * tfm)872 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
873 {
874 	return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
875 }
876 
crypto_ablkcipher_set_flags(struct crypto_ablkcipher * tfm,u32 flags)877 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
878 					       u32 flags)
879 {
880 	crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
881 }
882 
crypto_ablkcipher_clear_flags(struct crypto_ablkcipher * tfm,u32 flags)883 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
884 						 u32 flags)
885 {
886 	crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
887 }
888 
889 /**
890  * crypto_ablkcipher_setkey() - set key for cipher
891  * @tfm: cipher handle
892  * @key: buffer holding the key
893  * @keylen: length of the key in bytes
894  *
895  * The caller provided key is set for the ablkcipher referenced by the cipher
896  * handle.
897  *
898  * Note, the key length determines the cipher type. Many block ciphers implement
899  * different cipher modes depending on the key size, such as AES-128 vs AES-192
900  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
901  * is performed.
902  *
903  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
904  */
crypto_ablkcipher_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int keylen)905 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
906 					   const u8 *key, unsigned int keylen)
907 {
908 	struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
909 
910 	return crt->setkey(crt->base, key, keylen);
911 }
912 
913 /**
914  * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
915  * @req: ablkcipher_request out of which the cipher handle is to be obtained
916  *
917  * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
918  * data structure.
919  *
920  * Return: crypto_ablkcipher handle
921  */
crypto_ablkcipher_reqtfm(struct ablkcipher_request * req)922 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
923 	struct ablkcipher_request *req)
924 {
925 	return __crypto_ablkcipher_cast(req->base.tfm);
926 }
927 
928 /**
929  * crypto_ablkcipher_encrypt() - encrypt plaintext
930  * @req: reference to the ablkcipher_request handle that holds all information
931  *	 needed to perform the cipher operation
932  *
933  * Encrypt plaintext data using the ablkcipher_request handle. That data
934  * structure and how it is filled with data is discussed with the
935  * ablkcipher_request_* functions.
936  *
937  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
938  */
crypto_ablkcipher_encrypt(struct ablkcipher_request * req)939 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
940 {
941 	struct ablkcipher_tfm *crt =
942 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
943 	return crt->encrypt(req);
944 }
945 
946 /**
947  * crypto_ablkcipher_decrypt() - decrypt ciphertext
948  * @req: reference to the ablkcipher_request handle that holds all information
949  *	 needed to perform the cipher operation
950  *
951  * Decrypt ciphertext data using the ablkcipher_request handle. That data
952  * structure and how it is filled with data is discussed with the
953  * ablkcipher_request_* functions.
954  *
955  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
956  */
crypto_ablkcipher_decrypt(struct ablkcipher_request * req)957 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
958 {
959 	struct ablkcipher_tfm *crt =
960 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
961 	return crt->decrypt(req);
962 }
963 
964 /**
965  * DOC: Asynchronous Cipher Request Handle
966  *
967  * The ablkcipher_request data structure contains all pointers to data
968  * required for the asynchronous cipher operation. This includes the cipher
969  * handle (which can be used by multiple ablkcipher_request instances), pointer
970  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
971  * as a handle to the ablkcipher_request_* API calls in a similar way as
972  * ablkcipher handle to the crypto_ablkcipher_* API calls.
973  */
974 
975 /**
976  * crypto_ablkcipher_reqsize() - obtain size of the request data structure
977  * @tfm: cipher handle
978  *
979  * Return: number of bytes
980  */
crypto_ablkcipher_reqsize(struct crypto_ablkcipher * tfm)981 static inline unsigned int crypto_ablkcipher_reqsize(
982 	struct crypto_ablkcipher *tfm)
983 {
984 	return crypto_ablkcipher_crt(tfm)->reqsize;
985 }
986 
987 /**
988  * ablkcipher_request_set_tfm() - update cipher handle reference in request
989  * @req: request handle to be modified
990  * @tfm: cipher handle that shall be added to the request handle
991  *
992  * Allow the caller to replace the existing ablkcipher handle in the request
993  * data structure with a different one.
994  */
ablkcipher_request_set_tfm(struct ablkcipher_request * req,struct crypto_ablkcipher * tfm)995 static inline void ablkcipher_request_set_tfm(
996 	struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
997 {
998 	req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
999 }
1000 
ablkcipher_request_cast(struct crypto_async_request * req)1001 static inline struct ablkcipher_request *ablkcipher_request_cast(
1002 	struct crypto_async_request *req)
1003 {
1004 	return container_of(req, struct ablkcipher_request, base);
1005 }
1006 
1007 /**
1008  * ablkcipher_request_alloc() - allocate request data structure
1009  * @tfm: cipher handle to be registered with the request
1010  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1011  *
1012  * Allocate the request data structure that must be used with the ablkcipher
1013  * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
1014  * handle is registered in the request data structure.
1015  *
1016  * Return: allocated request handle in case of success; IS_ERR() is true in case
1017  *	   of an error, PTR_ERR() returns the error code.
1018  */
ablkcipher_request_alloc(struct crypto_ablkcipher * tfm,gfp_t gfp)1019 static inline struct ablkcipher_request *ablkcipher_request_alloc(
1020 	struct crypto_ablkcipher *tfm, gfp_t gfp)
1021 {
1022 	struct ablkcipher_request *req;
1023 
1024 	req = kmalloc(sizeof(struct ablkcipher_request) +
1025 		      crypto_ablkcipher_reqsize(tfm), gfp);
1026 
1027 	if (likely(req))
1028 		ablkcipher_request_set_tfm(req, tfm);
1029 
1030 	return req;
1031 }
1032 
1033 /**
1034  * ablkcipher_request_free() - zeroize and free request data structure
1035  * @req: request data structure cipher handle to be freed
1036  */
ablkcipher_request_free(struct ablkcipher_request * req)1037 static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1038 {
1039 	kzfree(req);
1040 }
1041 
1042 /**
1043  * ablkcipher_request_set_callback() - set asynchronous callback function
1044  * @req: request handle
1045  * @flags: specify zero or an ORing of the flags
1046  *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1047  *	   increase the wait queue beyond the initial maximum size;
1048  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1049  * @compl: callback function pointer to be registered with the request handle
1050  * @data: The data pointer refers to memory that is not used by the kernel
1051  *	  crypto API, but provided to the callback function for it to use. Here,
1052  *	  the caller can provide a reference to memory the callback function can
1053  *	  operate on. As the callback function is invoked asynchronously to the
1054  *	  related functionality, it may need to access data structures of the
1055  *	  related functionality which can be referenced using this pointer. The
1056  *	  callback function can access the memory via the "data" field in the
1057  *	  crypto_async_request data structure provided to the callback function.
1058  *
1059  * This function allows setting the callback function that is triggered once the
1060  * cipher operation completes.
1061  *
1062  * The callback function is registered with the ablkcipher_request handle and
1063  * must comply with the following template
1064  *
1065  *	void callback_function(struct crypto_async_request *req, int error)
1066  */
ablkcipher_request_set_callback(struct ablkcipher_request * req,u32 flags,crypto_completion_t compl,void * data)1067 static inline void ablkcipher_request_set_callback(
1068 	struct ablkcipher_request *req,
1069 	u32 flags, crypto_completion_t compl, void *data)
1070 {
1071 	req->base.complete = compl;
1072 	req->base.data = data;
1073 	req->base.flags = flags;
1074 }
1075 
1076 /**
1077  * ablkcipher_request_set_crypt() - set data buffers
1078  * @req: request handle
1079  * @src: source scatter / gather list
1080  * @dst: destination scatter / gather list
1081  * @nbytes: number of bytes to process from @src
1082  * @iv: IV for the cipher operation which must comply with the IV size defined
1083  *      by crypto_ablkcipher_ivsize
1084  *
1085  * This function allows setting of the source data and destination data
1086  * scatter / gather lists.
1087  *
1088  * For encryption, the source is treated as the plaintext and the
1089  * destination is the ciphertext. For a decryption operation, the use is
1090  * reversed - the source is the ciphertext and the destination is the plaintext.
1091  */
ablkcipher_request_set_crypt(struct ablkcipher_request * req,struct scatterlist * src,struct scatterlist * dst,unsigned int nbytes,void * iv)1092 static inline void ablkcipher_request_set_crypt(
1093 	struct ablkcipher_request *req,
1094 	struct scatterlist *src, struct scatterlist *dst,
1095 	unsigned int nbytes, void *iv)
1096 {
1097 	req->src = src;
1098 	req->dst = dst;
1099 	req->nbytes = nbytes;
1100 	req->info = iv;
1101 }
1102 
1103 /**
1104  * DOC: Synchronous Block Cipher API
1105  *
1106  * The synchronous block cipher API is used with the ciphers of type
1107  * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1108  *
1109  * Synchronous calls, have a context in the tfm. But since a single tfm can be
1110  * used in multiple calls and in parallel, this info should not be changeable
1111  * (unless a lock is used). This applies, for example, to the symmetric key.
1112  * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1113  * structure for synchronous blkcipher api. So, its the only state info that can
1114  * be kept for synchronous calls without using a big lock across a tfm.
1115  *
1116  * The block cipher API allows the use of a complete cipher, i.e. a cipher
1117  * consisting of a template (a block chaining mode) and a single block cipher
1118  * primitive (e.g. AES).
1119  *
1120  * The plaintext data buffer and the ciphertext data buffer are pointed to
1121  * by using scatter/gather lists. The cipher operation is performed
1122  * on all segments of the provided scatter/gather lists.
1123  *
1124  * The kernel crypto API supports a cipher operation "in-place" which means that
1125  * the caller may provide the same scatter/gather list for the plaintext and
1126  * cipher text. After the completion of the cipher operation, the plaintext
1127  * data is replaced with the ciphertext data in case of an encryption and vice
1128  * versa for a decryption. The caller must ensure that the scatter/gather lists
1129  * for the output data point to sufficiently large buffers, i.e. multiples of
1130  * the block size of the cipher.
1131  */
1132 
__crypto_blkcipher_cast(struct crypto_tfm * tfm)1133 static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1134 	struct crypto_tfm *tfm)
1135 {
1136 	return (struct crypto_blkcipher *)tfm;
1137 }
1138 
crypto_blkcipher_cast(struct crypto_tfm * tfm)1139 static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1140 	struct crypto_tfm *tfm)
1141 {
1142 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1143 	return __crypto_blkcipher_cast(tfm);
1144 }
1145 
1146 /**
1147  * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1148  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1149  *	      blkcipher cipher
1150  * @type: specifies the type of the cipher
1151  * @mask: specifies the mask for the cipher
1152  *
1153  * Allocate a cipher handle for a block cipher. The returned struct
1154  * crypto_blkcipher is the cipher handle that is required for any subsequent
1155  * API invocation for that block cipher.
1156  *
1157  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1158  *	   of an error, PTR_ERR() returns the error code.
1159  */
crypto_alloc_blkcipher(const char * alg_name,u32 type,u32 mask)1160 static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1161 	const char *alg_name, u32 type, u32 mask)
1162 {
1163 	type &= ~CRYPTO_ALG_TYPE_MASK;
1164 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1165 	mask |= CRYPTO_ALG_TYPE_MASK;
1166 
1167 	return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1168 }
1169 
crypto_blkcipher_tfm(struct crypto_blkcipher * tfm)1170 static inline struct crypto_tfm *crypto_blkcipher_tfm(
1171 	struct crypto_blkcipher *tfm)
1172 {
1173 	return &tfm->base;
1174 }
1175 
1176 /**
1177  * crypto_free_blkcipher() - zeroize and free the block cipher handle
1178  * @tfm: cipher handle to be freed
1179  */
crypto_free_blkcipher(struct crypto_blkcipher * tfm)1180 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1181 {
1182 	crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1183 }
1184 
1185 /**
1186  * crypto_has_blkcipher() - Search for the availability of a block cipher
1187  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1188  *	      block cipher
1189  * @type: specifies the type of the cipher
1190  * @mask: specifies the mask for the cipher
1191  *
1192  * Return: true when the block cipher is known to the kernel crypto API; false
1193  *	   otherwise
1194  */
crypto_has_blkcipher(const char * alg_name,u32 type,u32 mask)1195 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1196 {
1197 	type &= ~CRYPTO_ALG_TYPE_MASK;
1198 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1199 	mask |= CRYPTO_ALG_TYPE_MASK;
1200 
1201 	return crypto_has_alg(alg_name, type, mask);
1202 }
1203 
1204 /**
1205  * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1206  * @tfm: cipher handle
1207  *
1208  * Return: The character string holding the name of the cipher
1209  */
crypto_blkcipher_name(struct crypto_blkcipher * tfm)1210 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1211 {
1212 	return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1213 }
1214 
crypto_blkcipher_crt(struct crypto_blkcipher * tfm)1215 static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1216 	struct crypto_blkcipher *tfm)
1217 {
1218 	return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1219 }
1220 
crypto_blkcipher_alg(struct crypto_blkcipher * tfm)1221 static inline struct blkcipher_alg *crypto_blkcipher_alg(
1222 	struct crypto_blkcipher *tfm)
1223 {
1224 	return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1225 }
1226 
1227 /**
1228  * crypto_blkcipher_ivsize() - obtain IV size
1229  * @tfm: cipher handle
1230  *
1231  * The size of the IV for the block cipher referenced by the cipher handle is
1232  * returned. This IV size may be zero if the cipher does not need an IV.
1233  *
1234  * Return: IV size in bytes
1235  */
crypto_blkcipher_ivsize(struct crypto_blkcipher * tfm)1236 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1237 {
1238 	return crypto_blkcipher_alg(tfm)->ivsize;
1239 }
1240 
1241 /**
1242  * crypto_blkcipher_blocksize() - obtain block size of cipher
1243  * @tfm: cipher handle
1244  *
1245  * The block size for the block cipher referenced with the cipher handle is
1246  * returned. The caller may use that information to allocate appropriate
1247  * memory for the data returned by the encryption or decryption operation.
1248  *
1249  * Return: block size of cipher
1250  */
crypto_blkcipher_blocksize(struct crypto_blkcipher * tfm)1251 static inline unsigned int crypto_blkcipher_blocksize(
1252 	struct crypto_blkcipher *tfm)
1253 {
1254 	return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1255 }
1256 
crypto_blkcipher_alignmask(struct crypto_blkcipher * tfm)1257 static inline unsigned int crypto_blkcipher_alignmask(
1258 	struct crypto_blkcipher *tfm)
1259 {
1260 	return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1261 }
1262 
crypto_blkcipher_get_flags(struct crypto_blkcipher * tfm)1263 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1264 {
1265 	return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1266 }
1267 
crypto_blkcipher_set_flags(struct crypto_blkcipher * tfm,u32 flags)1268 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1269 					      u32 flags)
1270 {
1271 	crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1272 }
1273 
crypto_blkcipher_clear_flags(struct crypto_blkcipher * tfm,u32 flags)1274 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1275 						u32 flags)
1276 {
1277 	crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1278 }
1279 
1280 /**
1281  * crypto_blkcipher_setkey() - set key for cipher
1282  * @tfm: cipher handle
1283  * @key: buffer holding the key
1284  * @keylen: length of the key in bytes
1285  *
1286  * The caller provided key is set for the block cipher referenced by the cipher
1287  * handle.
1288  *
1289  * Note, the key length determines the cipher type. Many block ciphers implement
1290  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1291  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1292  * is performed.
1293  *
1294  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1295  */
crypto_blkcipher_setkey(struct crypto_blkcipher * tfm,const u8 * key,unsigned int keylen)1296 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1297 					  const u8 *key, unsigned int keylen)
1298 {
1299 	return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1300 						 key, keylen);
1301 }
1302 
1303 /**
1304  * crypto_blkcipher_encrypt() - encrypt plaintext
1305  * @desc: reference to the block cipher handle with meta data
1306  * @dst: scatter/gather list that is filled by the cipher operation with the
1307  *	ciphertext
1308  * @src: scatter/gather list that holds the plaintext
1309  * @nbytes: number of bytes of the plaintext to encrypt.
1310  *
1311  * Encrypt plaintext data using the IV set by the caller with a preceding
1312  * call of crypto_blkcipher_set_iv.
1313  *
1314  * The blkcipher_desc data structure must be filled by the caller and can
1315  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1316  * with the block cipher handle; desc.flags is filled with either
1317  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1318  *
1319  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1320  */
crypto_blkcipher_encrypt(struct blkcipher_desc * desc,struct scatterlist * dst,struct scatterlist * src,unsigned int nbytes)1321 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1322 					   struct scatterlist *dst,
1323 					   struct scatterlist *src,
1324 					   unsigned int nbytes)
1325 {
1326 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1327 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1328 }
1329 
1330 /**
1331  * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1332  * @desc: reference to the block cipher handle with meta data
1333  * @dst: scatter/gather list that is filled by the cipher operation with the
1334  *	ciphertext
1335  * @src: scatter/gather list that holds the plaintext
1336  * @nbytes: number of bytes of the plaintext to encrypt.
1337  *
1338  * Encrypt plaintext data with the use of an IV that is solely used for this
1339  * cipher operation. Any previously set IV is not used.
1340  *
1341  * The blkcipher_desc data structure must be filled by the caller and can
1342  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1343  * with the block cipher handle; desc.info is filled with the IV to be used for
1344  * the current operation; desc.flags is filled with either
1345  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1346  *
1347  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1348  */
crypto_blkcipher_encrypt_iv(struct blkcipher_desc * desc,struct scatterlist * dst,struct scatterlist * src,unsigned int nbytes)1349 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1350 					      struct scatterlist *dst,
1351 					      struct scatterlist *src,
1352 					      unsigned int nbytes)
1353 {
1354 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1355 }
1356 
1357 /**
1358  * crypto_blkcipher_decrypt() - decrypt ciphertext
1359  * @desc: reference to the block cipher handle with meta data
1360  * @dst: scatter/gather list that is filled by the cipher operation with the
1361  *	plaintext
1362  * @src: scatter/gather list that holds the ciphertext
1363  * @nbytes: number of bytes of the ciphertext to decrypt.
1364  *
1365  * Decrypt ciphertext data using the IV set by the caller with a preceding
1366  * call of crypto_blkcipher_set_iv.
1367  *
1368  * The blkcipher_desc data structure must be filled by the caller as documented
1369  * for the crypto_blkcipher_encrypt call above.
1370  *
1371  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1372  *
1373  */
crypto_blkcipher_decrypt(struct blkcipher_desc * desc,struct scatterlist * dst,struct scatterlist * src,unsigned int nbytes)1374 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1375 					   struct scatterlist *dst,
1376 					   struct scatterlist *src,
1377 					   unsigned int nbytes)
1378 {
1379 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1380 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1381 }
1382 
1383 /**
1384  * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1385  * @desc: reference to the block cipher handle with meta data
1386  * @dst: scatter/gather list that is filled by the cipher operation with the
1387  *	plaintext
1388  * @src: scatter/gather list that holds the ciphertext
1389  * @nbytes: number of bytes of the ciphertext to decrypt.
1390  *
1391  * Decrypt ciphertext data with the use of an IV that is solely used for this
1392  * cipher operation. Any previously set IV is not used.
1393  *
1394  * The blkcipher_desc data structure must be filled by the caller as documented
1395  * for the crypto_blkcipher_encrypt_iv call above.
1396  *
1397  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1398  */
crypto_blkcipher_decrypt_iv(struct blkcipher_desc * desc,struct scatterlist * dst,struct scatterlist * src,unsigned int nbytes)1399 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1400 					      struct scatterlist *dst,
1401 					      struct scatterlist *src,
1402 					      unsigned int nbytes)
1403 {
1404 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1405 }
1406 
1407 /**
1408  * crypto_blkcipher_set_iv() - set IV for cipher
1409  * @tfm: cipher handle
1410  * @src: buffer holding the IV
1411  * @len: length of the IV in bytes
1412  *
1413  * The caller provided IV is set for the block cipher referenced by the cipher
1414  * handle.
1415  */
crypto_blkcipher_set_iv(struct crypto_blkcipher * tfm,const u8 * src,unsigned int len)1416 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1417 					   const u8 *src, unsigned int len)
1418 {
1419 	memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1420 }
1421 
1422 /**
1423  * crypto_blkcipher_get_iv() - obtain IV from cipher
1424  * @tfm: cipher handle
1425  * @dst: buffer filled with the IV
1426  * @len: length of the buffer dst
1427  *
1428  * The caller can obtain the IV set for the block cipher referenced by the
1429  * cipher handle and store it into the user-provided buffer. If the buffer
1430  * has an insufficient space, the IV is truncated to fit the buffer.
1431  */
crypto_blkcipher_get_iv(struct crypto_blkcipher * tfm,u8 * dst,unsigned int len)1432 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1433 					   u8 *dst, unsigned int len)
1434 {
1435 	memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1436 }
1437 
1438 /**
1439  * DOC: Single Block Cipher API
1440  *
1441  * The single block cipher API is used with the ciphers of type
1442  * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1443  *
1444  * Using the single block cipher API calls, operations with the basic cipher
1445  * primitive can be implemented. These cipher primitives exclude any block
1446  * chaining operations including IV handling.
1447  *
1448  * The purpose of this single block cipher API is to support the implementation
1449  * of templates or other concepts that only need to perform the cipher operation
1450  * on one block at a time. Templates invoke the underlying cipher primitive
1451  * block-wise and process either the input or the output data of these cipher
1452  * operations.
1453  */
1454 
__crypto_cipher_cast(struct crypto_tfm * tfm)1455 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1456 {
1457 	return (struct crypto_cipher *)tfm;
1458 }
1459 
crypto_cipher_cast(struct crypto_tfm * tfm)1460 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1461 {
1462 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1463 	return __crypto_cipher_cast(tfm);
1464 }
1465 
1466 /**
1467  * crypto_alloc_cipher() - allocate single block cipher handle
1468  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1469  *	     single block cipher
1470  * @type: specifies the type of the cipher
1471  * @mask: specifies the mask for the cipher
1472  *
1473  * Allocate a cipher handle for a single block cipher. The returned struct
1474  * crypto_cipher is the cipher handle that is required for any subsequent API
1475  * invocation for that single block cipher.
1476  *
1477  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1478  *	   of an error, PTR_ERR() returns the error code.
1479  */
crypto_alloc_cipher(const char * alg_name,u32 type,u32 mask)1480 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1481 							u32 type, u32 mask)
1482 {
1483 	type &= ~CRYPTO_ALG_TYPE_MASK;
1484 	type |= CRYPTO_ALG_TYPE_CIPHER;
1485 	mask |= CRYPTO_ALG_TYPE_MASK;
1486 
1487 	return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1488 }
1489 
crypto_cipher_tfm(struct crypto_cipher * tfm)1490 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1491 {
1492 	return &tfm->base;
1493 }
1494 
1495 /**
1496  * crypto_free_cipher() - zeroize and free the single block cipher handle
1497  * @tfm: cipher handle to be freed
1498  */
crypto_free_cipher(struct crypto_cipher * tfm)1499 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1500 {
1501 	crypto_free_tfm(crypto_cipher_tfm(tfm));
1502 }
1503 
1504 /**
1505  * crypto_has_cipher() - Search for the availability of a single block cipher
1506  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1507  *	     single block cipher
1508  * @type: specifies the type of the cipher
1509  * @mask: specifies the mask for the cipher
1510  *
1511  * Return: true when the single block cipher is known to the kernel crypto API;
1512  *	   false otherwise
1513  */
crypto_has_cipher(const char * alg_name,u32 type,u32 mask)1514 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1515 {
1516 	type &= ~CRYPTO_ALG_TYPE_MASK;
1517 	type |= CRYPTO_ALG_TYPE_CIPHER;
1518 	mask |= CRYPTO_ALG_TYPE_MASK;
1519 
1520 	return crypto_has_alg(alg_name, type, mask);
1521 }
1522 
crypto_cipher_crt(struct crypto_cipher * tfm)1523 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1524 {
1525 	return &crypto_cipher_tfm(tfm)->crt_cipher;
1526 }
1527 
1528 /**
1529  * crypto_cipher_blocksize() - obtain block size for cipher
1530  * @tfm: cipher handle
1531  *
1532  * The block size for the single block cipher referenced with the cipher handle
1533  * tfm is returned. The caller may use that information to allocate appropriate
1534  * memory for the data returned by the encryption or decryption operation
1535  *
1536  * Return: block size of cipher
1537  */
crypto_cipher_blocksize(struct crypto_cipher * tfm)1538 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1539 {
1540 	return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1541 }
1542 
crypto_cipher_alignmask(struct crypto_cipher * tfm)1543 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1544 {
1545 	return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1546 }
1547 
crypto_cipher_get_flags(struct crypto_cipher * tfm)1548 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1549 {
1550 	return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1551 }
1552 
crypto_cipher_set_flags(struct crypto_cipher * tfm,u32 flags)1553 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1554 					   u32 flags)
1555 {
1556 	crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1557 }
1558 
crypto_cipher_clear_flags(struct crypto_cipher * tfm,u32 flags)1559 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1560 					     u32 flags)
1561 {
1562 	crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1563 }
1564 
1565 /**
1566  * crypto_cipher_setkey() - set key for cipher
1567  * @tfm: cipher handle
1568  * @key: buffer holding the key
1569  * @keylen: length of the key in bytes
1570  *
1571  * The caller provided key is set for the single block cipher referenced by the
1572  * cipher handle.
1573  *
1574  * Note, the key length determines the cipher type. Many block ciphers implement
1575  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1576  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1577  * is performed.
1578  *
1579  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1580  */
crypto_cipher_setkey(struct crypto_cipher * tfm,const u8 * key,unsigned int keylen)1581 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1582                                        const u8 *key, unsigned int keylen)
1583 {
1584 	return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1585 						  key, keylen);
1586 }
1587 
1588 /**
1589  * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1590  * @tfm: cipher handle
1591  * @dst: points to the buffer that will be filled with the ciphertext
1592  * @src: buffer holding the plaintext to be encrypted
1593  *
1594  * Invoke the encryption operation of one block. The caller must ensure that
1595  * the plaintext and ciphertext buffers are at least one block in size.
1596  */
crypto_cipher_encrypt_one(struct crypto_cipher * tfm,u8 * dst,const u8 * src)1597 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1598 					     u8 *dst, const u8 *src)
1599 {
1600 	crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1601 						dst, src);
1602 }
1603 
1604 /**
1605  * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1606  * @tfm: cipher handle
1607  * @dst: points to the buffer that will be filled with the plaintext
1608  * @src: buffer holding the ciphertext to be decrypted
1609  *
1610  * Invoke the decryption operation of one block. The caller must ensure that
1611  * the plaintext and ciphertext buffers are at least one block in size.
1612  */
crypto_cipher_decrypt_one(struct crypto_cipher * tfm,u8 * dst,const u8 * src)1613 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1614 					     u8 *dst, const u8 *src)
1615 {
1616 	crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1617 						dst, src);
1618 }
1619 
1620 /**
1621  * DOC: Synchronous Message Digest API
1622  *
1623  * The synchronous message digest API is used with the ciphers of type
1624  * CRYPTO_ALG_TYPE_HASH (listed as type "hash" in /proc/crypto)
1625  */
1626 
__crypto_hash_cast(struct crypto_tfm * tfm)1627 static inline struct crypto_hash *__crypto_hash_cast(struct crypto_tfm *tfm)
1628 {
1629 	return (struct crypto_hash *)tfm;
1630 }
1631 
crypto_hash_cast(struct crypto_tfm * tfm)1632 static inline struct crypto_hash *crypto_hash_cast(struct crypto_tfm *tfm)
1633 {
1634 	BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_HASH) &
1635 	       CRYPTO_ALG_TYPE_HASH_MASK);
1636 	return __crypto_hash_cast(tfm);
1637 }
1638 
1639 /**
1640  * crypto_alloc_hash() - allocate synchronous message digest handle
1641  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1642  *	      message digest cipher
1643  * @type: specifies the type of the cipher
1644  * @mask: specifies the mask for the cipher
1645  *
1646  * Allocate a cipher handle for a message digest. The returned struct
1647  * crypto_hash is the cipher handle that is required for any subsequent
1648  * API invocation for that message digest.
1649  *
1650  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1651  * of an error, PTR_ERR() returns the error code.
1652  */
crypto_alloc_hash(const char * alg_name,u32 type,u32 mask)1653 static inline struct crypto_hash *crypto_alloc_hash(const char *alg_name,
1654 						    u32 type, u32 mask)
1655 {
1656 	type &= ~CRYPTO_ALG_TYPE_MASK;
1657 	mask &= ~CRYPTO_ALG_TYPE_MASK;
1658 	type |= CRYPTO_ALG_TYPE_HASH;
1659 	mask |= CRYPTO_ALG_TYPE_HASH_MASK;
1660 
1661 	return __crypto_hash_cast(crypto_alloc_base(alg_name, type, mask));
1662 }
1663 
crypto_hash_tfm(struct crypto_hash * tfm)1664 static inline struct crypto_tfm *crypto_hash_tfm(struct crypto_hash *tfm)
1665 {
1666 	return &tfm->base;
1667 }
1668 
1669 /**
1670  * crypto_free_hash() - zeroize and free message digest handle
1671  * @tfm: cipher handle to be freed
1672  */
crypto_free_hash(struct crypto_hash * tfm)1673 static inline void crypto_free_hash(struct crypto_hash *tfm)
1674 {
1675 	crypto_free_tfm(crypto_hash_tfm(tfm));
1676 }
1677 
1678 /**
1679  * crypto_has_hash() - Search for the availability of a message digest
1680  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1681  *	      message digest cipher
1682  * @type: specifies the type of the cipher
1683  * @mask: specifies the mask for the cipher
1684  *
1685  * Return: true when the message digest cipher is known to the kernel crypto
1686  *	   API; false otherwise
1687  */
crypto_has_hash(const char * alg_name,u32 type,u32 mask)1688 static inline int crypto_has_hash(const char *alg_name, u32 type, u32 mask)
1689 {
1690 	type &= ~CRYPTO_ALG_TYPE_MASK;
1691 	mask &= ~CRYPTO_ALG_TYPE_MASK;
1692 	type |= CRYPTO_ALG_TYPE_HASH;
1693 	mask |= CRYPTO_ALG_TYPE_HASH_MASK;
1694 
1695 	return crypto_has_alg(alg_name, type, mask);
1696 }
1697 
crypto_hash_crt(struct crypto_hash * tfm)1698 static inline struct hash_tfm *crypto_hash_crt(struct crypto_hash *tfm)
1699 {
1700 	return &crypto_hash_tfm(tfm)->crt_hash;
1701 }
1702 
1703 /**
1704  * crypto_hash_blocksize() - obtain block size for message digest
1705  * @tfm: cipher handle
1706  *
1707  * The block size for the message digest cipher referenced with the cipher
1708  * handle is returned.
1709  *
1710  * Return: block size of cipher
1711  */
crypto_hash_blocksize(struct crypto_hash * tfm)1712 static inline unsigned int crypto_hash_blocksize(struct crypto_hash *tfm)
1713 {
1714 	return crypto_tfm_alg_blocksize(crypto_hash_tfm(tfm));
1715 }
1716 
crypto_hash_alignmask(struct crypto_hash * tfm)1717 static inline unsigned int crypto_hash_alignmask(struct crypto_hash *tfm)
1718 {
1719 	return crypto_tfm_alg_alignmask(crypto_hash_tfm(tfm));
1720 }
1721 
1722 /**
1723  * crypto_hash_digestsize() - obtain message digest size
1724  * @tfm: cipher handle
1725  *
1726  * The size for the message digest created by the message digest cipher
1727  * referenced with the cipher handle is returned.
1728  *
1729  * Return: message digest size
1730  */
crypto_hash_digestsize(struct crypto_hash * tfm)1731 static inline unsigned int crypto_hash_digestsize(struct crypto_hash *tfm)
1732 {
1733 	return crypto_hash_crt(tfm)->digestsize;
1734 }
1735 
crypto_hash_get_flags(struct crypto_hash * tfm)1736 static inline u32 crypto_hash_get_flags(struct crypto_hash *tfm)
1737 {
1738 	return crypto_tfm_get_flags(crypto_hash_tfm(tfm));
1739 }
1740 
crypto_hash_set_flags(struct crypto_hash * tfm,u32 flags)1741 static inline void crypto_hash_set_flags(struct crypto_hash *tfm, u32 flags)
1742 {
1743 	crypto_tfm_set_flags(crypto_hash_tfm(tfm), flags);
1744 }
1745 
crypto_hash_clear_flags(struct crypto_hash * tfm,u32 flags)1746 static inline void crypto_hash_clear_flags(struct crypto_hash *tfm, u32 flags)
1747 {
1748 	crypto_tfm_clear_flags(crypto_hash_tfm(tfm), flags);
1749 }
1750 
1751 /**
1752  * crypto_hash_init() - (re)initialize message digest handle
1753  * @desc: cipher request handle that to be filled by caller --
1754  *	  desc.tfm is filled with the hash cipher handle;
1755  *	  desc.flags is filled with either CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1756  *
1757  * The call (re-)initializes the message digest referenced by the hash cipher
1758  * request handle. Any potentially existing state created by previous
1759  * operations is discarded.
1760  *
1761  * Return: 0 if the message digest initialization was successful; < 0 if an
1762  *	   error occurred
1763  */
crypto_hash_init(struct hash_desc * desc)1764 static inline int crypto_hash_init(struct hash_desc *desc)
1765 {
1766 	return crypto_hash_crt(desc->tfm)->init(desc);
1767 }
1768 
1769 /**
1770  * crypto_hash_update() - add data to message digest for processing
1771  * @desc: cipher request handle
1772  * @sg: scatter / gather list pointing to the data to be added to the message
1773  *      digest
1774  * @nbytes: number of bytes to be processed from @sg
1775  *
1776  * Updates the message digest state of the cipher handle pointed to by the
1777  * hash cipher request handle with the input data pointed to by the
1778  * scatter/gather list.
1779  *
1780  * Return: 0 if the message digest update was successful; < 0 if an error
1781  *	   occurred
1782  */
crypto_hash_update(struct hash_desc * desc,struct scatterlist * sg,unsigned int nbytes)1783 static inline int crypto_hash_update(struct hash_desc *desc,
1784 				     struct scatterlist *sg,
1785 				     unsigned int nbytes)
1786 {
1787 	return crypto_hash_crt(desc->tfm)->update(desc, sg, nbytes);
1788 }
1789 
1790 /**
1791  * crypto_hash_final() - calculate message digest
1792  * @desc: cipher request handle
1793  * @out: message digest output buffer -- The caller must ensure that the out
1794  *	 buffer has a sufficient size (e.g. by using the crypto_hash_digestsize
1795  *	 function).
1796  *
1797  * Finalize the message digest operation and create the message digest
1798  * based on all data added to the cipher handle. The message digest is placed
1799  * into the output buffer.
1800  *
1801  * Return: 0 if the message digest creation was successful; < 0 if an error
1802  *	   occurred
1803  */
crypto_hash_final(struct hash_desc * desc,u8 * out)1804 static inline int crypto_hash_final(struct hash_desc *desc, u8 *out)
1805 {
1806 	return crypto_hash_crt(desc->tfm)->final(desc, out);
1807 }
1808 
1809 /**
1810  * crypto_hash_digest() - calculate message digest for a buffer
1811  * @desc: see crypto_hash_final()
1812  * @sg: see crypto_hash_update()
1813  * @nbytes:  see crypto_hash_update()
1814  * @out: see crypto_hash_final()
1815  *
1816  * This function is a "short-hand" for the function calls of crypto_hash_init,
1817  * crypto_hash_update and crypto_hash_final. The parameters have the same
1818  * meaning as discussed for those separate three functions.
1819  *
1820  * Return: 0 if the message digest creation was successful; < 0 if an error
1821  *	   occurred
1822  */
crypto_hash_digest(struct hash_desc * desc,struct scatterlist * sg,unsigned int nbytes,u8 * out)1823 static inline int crypto_hash_digest(struct hash_desc *desc,
1824 				     struct scatterlist *sg,
1825 				     unsigned int nbytes, u8 *out)
1826 {
1827 	return crypto_hash_crt(desc->tfm)->digest(desc, sg, nbytes, out);
1828 }
1829 
1830 /**
1831  * crypto_hash_setkey() - set key for message digest
1832  * @hash: cipher handle
1833  * @key: buffer holding the key
1834  * @keylen: length of the key in bytes
1835  *
1836  * The caller provided key is set for the message digest cipher. The cipher
1837  * handle must point to a keyed hash in order for this function to succeed.
1838  *
1839  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1840  */
crypto_hash_setkey(struct crypto_hash * hash,const u8 * key,unsigned int keylen)1841 static inline int crypto_hash_setkey(struct crypto_hash *hash,
1842 				     const u8 *key, unsigned int keylen)
1843 {
1844 	return crypto_hash_crt(hash)->setkey(hash, key, keylen);
1845 }
1846 
__crypto_comp_cast(struct crypto_tfm * tfm)1847 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1848 {
1849 	return (struct crypto_comp *)tfm;
1850 }
1851 
crypto_comp_cast(struct crypto_tfm * tfm)1852 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1853 {
1854 	BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1855 	       CRYPTO_ALG_TYPE_MASK);
1856 	return __crypto_comp_cast(tfm);
1857 }
1858 
crypto_alloc_comp(const char * alg_name,u32 type,u32 mask)1859 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1860 						    u32 type, u32 mask)
1861 {
1862 	type &= ~CRYPTO_ALG_TYPE_MASK;
1863 	type |= CRYPTO_ALG_TYPE_COMPRESS;
1864 	mask |= CRYPTO_ALG_TYPE_MASK;
1865 
1866 	return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1867 }
1868 
crypto_comp_tfm(struct crypto_comp * tfm)1869 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1870 {
1871 	return &tfm->base;
1872 }
1873 
crypto_free_comp(struct crypto_comp * tfm)1874 static inline void crypto_free_comp(struct crypto_comp *tfm)
1875 {
1876 	crypto_free_tfm(crypto_comp_tfm(tfm));
1877 }
1878 
crypto_has_comp(const char * alg_name,u32 type,u32 mask)1879 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1880 {
1881 	type &= ~CRYPTO_ALG_TYPE_MASK;
1882 	type |= CRYPTO_ALG_TYPE_COMPRESS;
1883 	mask |= CRYPTO_ALG_TYPE_MASK;
1884 
1885 	return crypto_has_alg(alg_name, type, mask);
1886 }
1887 
crypto_comp_name(struct crypto_comp * tfm)1888 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1889 {
1890 	return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1891 }
1892 
crypto_comp_crt(struct crypto_comp * tfm)1893 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1894 {
1895 	return &crypto_comp_tfm(tfm)->crt_compress;
1896 }
1897 
crypto_comp_compress(struct crypto_comp * tfm,const u8 * src,unsigned int slen,u8 * dst,unsigned int * dlen)1898 static inline int crypto_comp_compress(struct crypto_comp *tfm,
1899                                        const u8 *src, unsigned int slen,
1900                                        u8 *dst, unsigned int *dlen)
1901 {
1902 	return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1903 						  src, slen, dst, dlen);
1904 }
1905 
crypto_comp_decompress(struct crypto_comp * tfm,const u8 * src,unsigned int slen,u8 * dst,unsigned int * dlen)1906 static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1907                                          const u8 *src, unsigned int slen,
1908                                          u8 *dst, unsigned int *dlen)
1909 {
1910 	return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1911 						    src, slen, dst, dlen);
1912 }
1913 
1914 #endif	/* _LINUX_CRYPTO_H */
1915 
1916