• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *	http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <asm/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_core.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36 
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42 
43 /* lock to memory controller's control array */
44 static DEFINE_MUTEX(mem_ctls_mutex);
45 static LIST_HEAD(mc_devices);
46 
47 /*
48  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
49  *	apei/ghes and i7core_edac to be used at the same time.
50  */
51 static void const *edac_mc_owner;
52 
53 static struct bus_type mc_bus[EDAC_MAX_MCS];
54 
edac_dimm_info_location(struct dimm_info * dimm,char * buf,unsigned len)55 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
56 			         unsigned len)
57 {
58 	struct mem_ctl_info *mci = dimm->mci;
59 	int i, n, count = 0;
60 	char *p = buf;
61 
62 	for (i = 0; i < mci->n_layers; i++) {
63 		n = snprintf(p, len, "%s %d ",
64 			      edac_layer_name[mci->layers[i].type],
65 			      dimm->location[i]);
66 		p += n;
67 		len -= n;
68 		count += n;
69 		if (!len)
70 			break;
71 	}
72 
73 	return count;
74 }
75 
76 #ifdef CONFIG_EDAC_DEBUG
77 
edac_mc_dump_channel(struct rank_info * chan)78 static void edac_mc_dump_channel(struct rank_info *chan)
79 {
80 	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
81 	edac_dbg(4, "    channel = %p\n", chan);
82 	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
83 	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
84 }
85 
edac_mc_dump_dimm(struct dimm_info * dimm,int number)86 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
87 {
88 	char location[80];
89 
90 	edac_dimm_info_location(dimm, location, sizeof(location));
91 
92 	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
93 		 dimm->mci->csbased ? "rank" : "dimm",
94 		 number, location, dimm->csrow, dimm->cschannel);
95 	edac_dbg(4, "  dimm = %p\n", dimm);
96 	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
97 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
98 	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
99 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
100 }
101 
edac_mc_dump_csrow(struct csrow_info * csrow)102 static void edac_mc_dump_csrow(struct csrow_info *csrow)
103 {
104 	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
105 	edac_dbg(4, "  csrow = %p\n", csrow);
106 	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
107 	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
108 	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
109 	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
110 	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
111 	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
112 }
113 
edac_mc_dump_mci(struct mem_ctl_info * mci)114 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
115 {
116 	edac_dbg(3, "\tmci = %p\n", mci);
117 	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
118 	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
119 	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
120 	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
121 	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
122 		 mci->nr_csrows, mci->csrows);
123 	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
124 		 mci->tot_dimms, mci->dimms);
125 	edac_dbg(3, "\tdev = %p\n", mci->pdev);
126 	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
127 		 mci->mod_name, mci->ctl_name);
128 	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
129 }
130 
131 #endif				/* CONFIG_EDAC_DEBUG */
132 
133 const char * const edac_mem_types[] = {
134 	[MEM_EMPTY]	= "Empty csrow",
135 	[MEM_RESERVED]	= "Reserved csrow type",
136 	[MEM_UNKNOWN]	= "Unknown csrow type",
137 	[MEM_FPM]	= "Fast page mode RAM",
138 	[MEM_EDO]	= "Extended data out RAM",
139 	[MEM_BEDO]	= "Burst Extended data out RAM",
140 	[MEM_SDR]	= "Single data rate SDRAM",
141 	[MEM_RDR]	= "Registered single data rate SDRAM",
142 	[MEM_DDR]	= "Double data rate SDRAM",
143 	[MEM_RDDR]	= "Registered Double data rate SDRAM",
144 	[MEM_RMBS]	= "Rambus DRAM",
145 	[MEM_DDR2]	= "Unbuffered DDR2 RAM",
146 	[MEM_FB_DDR2]	= "Fully buffered DDR2",
147 	[MEM_RDDR2]	= "Registered DDR2 RAM",
148 	[MEM_XDR]	= "Rambus XDR",
149 	[MEM_DDR3]	= "Unbuffered DDR3 RAM",
150 	[MEM_RDDR3]	= "Registered DDR3 RAM",
151 	[MEM_LRDDR3]	= "Load-Reduced DDR3 RAM",
152 	[MEM_DDR4]	= "Unbuffered DDR4 RAM",
153 	[MEM_RDDR4]	= "Registered DDR4 RAM",
154 };
155 EXPORT_SYMBOL_GPL(edac_mem_types);
156 
157 /**
158  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
159  * @p:		pointer to a pointer with the memory offset to be used. At
160  *		return, this will be incremented to point to the next offset
161  * @size:	Size of the data structure to be reserved
162  * @n_elems:	Number of elements that should be reserved
163  *
164  * If 'size' is a constant, the compiler will optimize this whole function
165  * down to either a no-op or the addition of a constant to the value of '*p'.
166  *
167  * The 'p' pointer is absolutely needed to keep the proper advancing
168  * further in memory to the proper offsets when allocating the struct along
169  * with its embedded structs, as edac_device_alloc_ctl_info() does it
170  * above, for example.
171  *
172  * At return, the pointer 'p' will be incremented to be used on a next call
173  * to this function.
174  */
edac_align_ptr(void ** p,unsigned size,int n_elems)175 void *edac_align_ptr(void **p, unsigned size, int n_elems)
176 {
177 	unsigned align, r;
178 	void *ptr = *p;
179 
180 	*p += size * n_elems;
181 
182 	/*
183 	 * 'p' can possibly be an unaligned item X such that sizeof(X) is
184 	 * 'size'.  Adjust 'p' so that its alignment is at least as
185 	 * stringent as what the compiler would provide for X and return
186 	 * the aligned result.
187 	 * Here we assume that the alignment of a "long long" is the most
188 	 * stringent alignment that the compiler will ever provide by default.
189 	 * As far as I know, this is a reasonable assumption.
190 	 */
191 	if (size > sizeof(long))
192 		align = sizeof(long long);
193 	else if (size > sizeof(int))
194 		align = sizeof(long);
195 	else if (size > sizeof(short))
196 		align = sizeof(int);
197 	else if (size > sizeof(char))
198 		align = sizeof(short);
199 	else
200 		return (char *)ptr;
201 
202 	r = (unsigned long)p % align;
203 
204 	if (r == 0)
205 		return (char *)ptr;
206 
207 	*p += align - r;
208 
209 	return (void *)(((unsigned long)ptr) + align - r);
210 }
211 
_edac_mc_free(struct mem_ctl_info * mci)212 static void _edac_mc_free(struct mem_ctl_info *mci)
213 {
214 	int i, chn, row;
215 	struct csrow_info *csr;
216 	const unsigned int tot_dimms = mci->tot_dimms;
217 	const unsigned int tot_channels = mci->num_cschannel;
218 	const unsigned int tot_csrows = mci->nr_csrows;
219 
220 	if (mci->dimms) {
221 		for (i = 0; i < tot_dimms; i++)
222 			kfree(mci->dimms[i]);
223 		kfree(mci->dimms);
224 	}
225 	if (mci->csrows) {
226 		for (row = 0; row < tot_csrows; row++) {
227 			csr = mci->csrows[row];
228 			if (csr) {
229 				if (csr->channels) {
230 					for (chn = 0; chn < tot_channels; chn++)
231 						kfree(csr->channels[chn]);
232 					kfree(csr->channels);
233 				}
234 				kfree(csr);
235 			}
236 		}
237 		kfree(mci->csrows);
238 	}
239 	kfree(mci);
240 }
241 
242 /**
243  * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
244  * @mc_num:		Memory controller number
245  * @n_layers:		Number of MC hierarchy layers
246  * layers:		Describes each layer as seen by the Memory Controller
247  * @size_pvt:		size of private storage needed
248  *
249  *
250  * Everything is kmalloc'ed as one big chunk - more efficient.
251  * Only can be used if all structures have the same lifetime - otherwise
252  * you have to allocate and initialize your own structures.
253  *
254  * Use edac_mc_free() to free mc structures allocated by this function.
255  *
256  * NOTE: drivers handle multi-rank memories in different ways: in some
257  * drivers, one multi-rank memory stick is mapped as one entry, while, in
258  * others, a single multi-rank memory stick would be mapped into several
259  * entries. Currently, this function will allocate multiple struct dimm_info
260  * on such scenarios, as grouping the multiple ranks require drivers change.
261  *
262  * Returns:
263  *	On failure: NULL
264  *	On success: struct mem_ctl_info pointer
265  */
edac_mc_alloc(unsigned mc_num,unsigned n_layers,struct edac_mc_layer * layers,unsigned sz_pvt)266 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
267 				   unsigned n_layers,
268 				   struct edac_mc_layer *layers,
269 				   unsigned sz_pvt)
270 {
271 	struct mem_ctl_info *mci;
272 	struct edac_mc_layer *layer;
273 	struct csrow_info *csr;
274 	struct rank_info *chan;
275 	struct dimm_info *dimm;
276 	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
277 	unsigned pos[EDAC_MAX_LAYERS];
278 	unsigned size, tot_dimms = 1, count = 1;
279 	unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
280 	void *pvt, *p, *ptr = NULL;
281 	int i, j, row, chn, n, len, off;
282 	bool per_rank = false;
283 
284 	BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
285 	/*
286 	 * Calculate the total amount of dimms and csrows/cschannels while
287 	 * in the old API emulation mode
288 	 */
289 	for (i = 0; i < n_layers; i++) {
290 		tot_dimms *= layers[i].size;
291 		if (layers[i].is_virt_csrow)
292 			tot_csrows *= layers[i].size;
293 		else
294 			tot_channels *= layers[i].size;
295 
296 		if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
297 			per_rank = true;
298 	}
299 
300 	/* Figure out the offsets of the various items from the start of an mc
301 	 * structure.  We want the alignment of each item to be at least as
302 	 * stringent as what the compiler would provide if we could simply
303 	 * hardcode everything into a single struct.
304 	 */
305 	mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
306 	layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
307 	for (i = 0; i < n_layers; i++) {
308 		count *= layers[i].size;
309 		edac_dbg(4, "errcount layer %d size %d\n", i, count);
310 		ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
311 		ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
312 		tot_errcount += 2 * count;
313 	}
314 
315 	edac_dbg(4, "allocating %d error counters\n", tot_errcount);
316 	pvt = edac_align_ptr(&ptr, sz_pvt, 1);
317 	size = ((unsigned long)pvt) + sz_pvt;
318 
319 	edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
320 		 size,
321 		 tot_dimms,
322 		 per_rank ? "ranks" : "dimms",
323 		 tot_csrows * tot_channels);
324 
325 	mci = kzalloc(size, GFP_KERNEL);
326 	if (mci == NULL)
327 		return NULL;
328 
329 	/* Adjust pointers so they point within the memory we just allocated
330 	 * rather than an imaginary chunk of memory located at address 0.
331 	 */
332 	layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
333 	for (i = 0; i < n_layers; i++) {
334 		mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
335 		mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
336 	}
337 	pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
338 
339 	/* setup index and various internal pointers */
340 	mci->mc_idx = mc_num;
341 	mci->tot_dimms = tot_dimms;
342 	mci->pvt_info = pvt;
343 	mci->n_layers = n_layers;
344 	mci->layers = layer;
345 	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
346 	mci->nr_csrows = tot_csrows;
347 	mci->num_cschannel = tot_channels;
348 	mci->csbased = per_rank;
349 
350 	/*
351 	 * Alocate and fill the csrow/channels structs
352 	 */
353 	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
354 	if (!mci->csrows)
355 		goto error;
356 	for (row = 0; row < tot_csrows; row++) {
357 		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
358 		if (!csr)
359 			goto error;
360 		mci->csrows[row] = csr;
361 		csr->csrow_idx = row;
362 		csr->mci = mci;
363 		csr->nr_channels = tot_channels;
364 		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
365 					GFP_KERNEL);
366 		if (!csr->channels)
367 			goto error;
368 
369 		for (chn = 0; chn < tot_channels; chn++) {
370 			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
371 			if (!chan)
372 				goto error;
373 			csr->channels[chn] = chan;
374 			chan->chan_idx = chn;
375 			chan->csrow = csr;
376 		}
377 	}
378 
379 	/*
380 	 * Allocate and fill the dimm structs
381 	 */
382 	mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
383 	if (!mci->dimms)
384 		goto error;
385 
386 	memset(&pos, 0, sizeof(pos));
387 	row = 0;
388 	chn = 0;
389 	for (i = 0; i < tot_dimms; i++) {
390 		chan = mci->csrows[row]->channels[chn];
391 		off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
392 		if (off < 0 || off >= tot_dimms) {
393 			edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
394 			goto error;
395 		}
396 
397 		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
398 		if (!dimm)
399 			goto error;
400 		mci->dimms[off] = dimm;
401 		dimm->mci = mci;
402 
403 		/*
404 		 * Copy DIMM location and initialize it.
405 		 */
406 		len = sizeof(dimm->label);
407 		p = dimm->label;
408 		n = snprintf(p, len, "mc#%u", mc_num);
409 		p += n;
410 		len -= n;
411 		for (j = 0; j < n_layers; j++) {
412 			n = snprintf(p, len, "%s#%u",
413 				     edac_layer_name[layers[j].type],
414 				     pos[j]);
415 			p += n;
416 			len -= n;
417 			dimm->location[j] = pos[j];
418 
419 			if (len <= 0)
420 				break;
421 		}
422 
423 		/* Link it to the csrows old API data */
424 		chan->dimm = dimm;
425 		dimm->csrow = row;
426 		dimm->cschannel = chn;
427 
428 		/* Increment csrow location */
429 		if (layers[0].is_virt_csrow) {
430 			chn++;
431 			if (chn == tot_channels) {
432 				chn = 0;
433 				row++;
434 			}
435 		} else {
436 			row++;
437 			if (row == tot_csrows) {
438 				row = 0;
439 				chn++;
440 			}
441 		}
442 
443 		/* Increment dimm location */
444 		for (j = n_layers - 1; j >= 0; j--) {
445 			pos[j]++;
446 			if (pos[j] < layers[j].size)
447 				break;
448 			pos[j] = 0;
449 		}
450 	}
451 
452 	mci->op_state = OP_ALLOC;
453 
454 	return mci;
455 
456 error:
457 	_edac_mc_free(mci);
458 
459 	return NULL;
460 }
461 EXPORT_SYMBOL_GPL(edac_mc_alloc);
462 
463 /**
464  * edac_mc_free
465  *	'Free' a previously allocated 'mci' structure
466  * @mci: pointer to a struct mem_ctl_info structure
467  */
edac_mc_free(struct mem_ctl_info * mci)468 void edac_mc_free(struct mem_ctl_info *mci)
469 {
470 	edac_dbg(1, "\n");
471 
472 	/* If we're not yet registered with sysfs free only what was allocated
473 	 * in edac_mc_alloc().
474 	 */
475 	if (!device_is_registered(&mci->dev)) {
476 		_edac_mc_free(mci);
477 		return;
478 	}
479 
480 	/* the mci instance is freed here, when the sysfs object is dropped */
481 	edac_unregister_sysfs(mci);
482 }
483 EXPORT_SYMBOL_GPL(edac_mc_free);
484 
485 
486 /**
487  * find_mci_by_dev
488  *
489  *	scan list of controllers looking for the one that manages
490  *	the 'dev' device
491  * @dev: pointer to a struct device related with the MCI
492  */
find_mci_by_dev(struct device * dev)493 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
494 {
495 	struct mem_ctl_info *mci;
496 	struct list_head *item;
497 
498 	edac_dbg(3, "\n");
499 
500 	list_for_each(item, &mc_devices) {
501 		mci = list_entry(item, struct mem_ctl_info, link);
502 
503 		if (mci->pdev == dev)
504 			return mci;
505 	}
506 
507 	return NULL;
508 }
509 EXPORT_SYMBOL_GPL(find_mci_by_dev);
510 
511 /*
512  * handler for EDAC to check if NMI type handler has asserted interrupt
513  */
edac_mc_assert_error_check_and_clear(void)514 static int edac_mc_assert_error_check_and_clear(void)
515 {
516 	int old_state;
517 
518 	if (edac_op_state == EDAC_OPSTATE_POLL)
519 		return 1;
520 
521 	old_state = edac_err_assert;
522 	edac_err_assert = 0;
523 
524 	return old_state;
525 }
526 
527 /*
528  * edac_mc_workq_function
529  *	performs the operation scheduled by a workq request
530  */
edac_mc_workq_function(struct work_struct * work_req)531 static void edac_mc_workq_function(struct work_struct *work_req)
532 {
533 	struct delayed_work *d_work = to_delayed_work(work_req);
534 	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
535 
536 	mutex_lock(&mem_ctls_mutex);
537 
538 	/* if this control struct has movd to offline state, we are done */
539 	if (mci->op_state == OP_OFFLINE) {
540 		mutex_unlock(&mem_ctls_mutex);
541 		return;
542 	}
543 
544 	/* Only poll controllers that are running polled and have a check */
545 	if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
546 		mci->edac_check(mci);
547 
548 	mutex_unlock(&mem_ctls_mutex);
549 
550 	/* Reschedule */
551 	queue_delayed_work(edac_workqueue, &mci->work,
552 			msecs_to_jiffies(edac_mc_get_poll_msec()));
553 }
554 
555 /*
556  * edac_mc_workq_setup
557  *	initialize a workq item for this mci
558  *	passing in the new delay period in msec
559  *
560  *	locking model:
561  *
562  *		called with the mem_ctls_mutex held
563  */
edac_mc_workq_setup(struct mem_ctl_info * mci,unsigned msec,bool init)564 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec,
565 				bool init)
566 {
567 	edac_dbg(0, "\n");
568 
569 	/* if this instance is not in the POLL state, then simply return */
570 	if (mci->op_state != OP_RUNNING_POLL)
571 		return;
572 
573 	if (init)
574 		INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
575 
576 	mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
577 }
578 
579 /*
580  * edac_mc_workq_teardown
581  *	stop the workq processing on this mci
582  *
583  *	locking model:
584  *
585  *		called WITHOUT lock held
586  */
edac_mc_workq_teardown(struct mem_ctl_info * mci)587 static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
588 {
589 	mci->op_state = OP_OFFLINE;
590 
591 	cancel_delayed_work_sync(&mci->work);
592 	flush_workqueue(edac_workqueue);
593 }
594 
595 /*
596  * edac_mc_reset_delay_period(unsigned long value)
597  *
598  *	user space has updated our poll period value, need to
599  *	reset our workq delays
600  */
edac_mc_reset_delay_period(unsigned long value)601 void edac_mc_reset_delay_period(unsigned long value)
602 {
603 	struct mem_ctl_info *mci;
604 	struct list_head *item;
605 
606 	mutex_lock(&mem_ctls_mutex);
607 
608 	list_for_each(item, &mc_devices) {
609 		mci = list_entry(item, struct mem_ctl_info, link);
610 
611 		edac_mc_workq_setup(mci, value, false);
612 	}
613 
614 	mutex_unlock(&mem_ctls_mutex);
615 }
616 
617 
618 
619 /* Return 0 on success, 1 on failure.
620  * Before calling this function, caller must
621  * assign a unique value to mci->mc_idx.
622  *
623  *	locking model:
624  *
625  *		called with the mem_ctls_mutex lock held
626  */
add_mc_to_global_list(struct mem_ctl_info * mci)627 static int add_mc_to_global_list(struct mem_ctl_info *mci)
628 {
629 	struct list_head *item, *insert_before;
630 	struct mem_ctl_info *p;
631 
632 	insert_before = &mc_devices;
633 
634 	p = find_mci_by_dev(mci->pdev);
635 	if (unlikely(p != NULL))
636 		goto fail0;
637 
638 	list_for_each(item, &mc_devices) {
639 		p = list_entry(item, struct mem_ctl_info, link);
640 
641 		if (p->mc_idx >= mci->mc_idx) {
642 			if (unlikely(p->mc_idx == mci->mc_idx))
643 				goto fail1;
644 
645 			insert_before = item;
646 			break;
647 		}
648 	}
649 
650 	list_add_tail_rcu(&mci->link, insert_before);
651 	atomic_inc(&edac_handlers);
652 	return 0;
653 
654 fail0:
655 	edac_printk(KERN_WARNING, EDAC_MC,
656 		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
657 		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
658 	return 1;
659 
660 fail1:
661 	edac_printk(KERN_WARNING, EDAC_MC,
662 		"bug in low-level driver: attempt to assign\n"
663 		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
664 	return 1;
665 }
666 
del_mc_from_global_list(struct mem_ctl_info * mci)667 static int del_mc_from_global_list(struct mem_ctl_info *mci)
668 {
669 	int handlers = atomic_dec_return(&edac_handlers);
670 	list_del_rcu(&mci->link);
671 
672 	/* these are for safe removal of devices from global list while
673 	 * NMI handlers may be traversing list
674 	 */
675 	synchronize_rcu();
676 	INIT_LIST_HEAD(&mci->link);
677 
678 	return handlers;
679 }
680 
681 /**
682  * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
683  *
684  * If found, return a pointer to the structure.
685  * Else return NULL.
686  *
687  * Caller must hold mem_ctls_mutex.
688  */
edac_mc_find(int idx)689 struct mem_ctl_info *edac_mc_find(int idx)
690 {
691 	struct list_head *item;
692 	struct mem_ctl_info *mci;
693 
694 	list_for_each(item, &mc_devices) {
695 		mci = list_entry(item, struct mem_ctl_info, link);
696 
697 		if (mci->mc_idx >= idx) {
698 			if (mci->mc_idx == idx)
699 				return mci;
700 
701 			break;
702 		}
703 	}
704 
705 	return NULL;
706 }
707 EXPORT_SYMBOL(edac_mc_find);
708 
709 /**
710  * edac_mc_add_mc_with_groups: Insert the 'mci' structure into the mci
711  *	global list and create sysfs entries associated with mci structure
712  * @mci: pointer to the mci structure to be added to the list
713  * @groups: optional attribute groups for the driver-specific sysfs entries
714  *
715  * Return:
716  *	0	Success
717  *	!0	Failure
718  */
719 
720 /* FIXME - should a warning be printed if no error detection? correction? */
edac_mc_add_mc_with_groups(struct mem_ctl_info * mci,const struct attribute_group ** groups)721 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
722 			       const struct attribute_group **groups)
723 {
724 	int ret = -EINVAL;
725 	edac_dbg(0, "\n");
726 
727 	if (mci->mc_idx >= EDAC_MAX_MCS) {
728 		pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
729 		return -ENODEV;
730 	}
731 
732 #ifdef CONFIG_EDAC_DEBUG
733 	if (edac_debug_level >= 3)
734 		edac_mc_dump_mci(mci);
735 
736 	if (edac_debug_level >= 4) {
737 		int i;
738 
739 		for (i = 0; i < mci->nr_csrows; i++) {
740 			struct csrow_info *csrow = mci->csrows[i];
741 			u32 nr_pages = 0;
742 			int j;
743 
744 			for (j = 0; j < csrow->nr_channels; j++)
745 				nr_pages += csrow->channels[j]->dimm->nr_pages;
746 			if (!nr_pages)
747 				continue;
748 			edac_mc_dump_csrow(csrow);
749 			for (j = 0; j < csrow->nr_channels; j++)
750 				if (csrow->channels[j]->dimm->nr_pages)
751 					edac_mc_dump_channel(csrow->channels[j]);
752 		}
753 		for (i = 0; i < mci->tot_dimms; i++)
754 			if (mci->dimms[i]->nr_pages)
755 				edac_mc_dump_dimm(mci->dimms[i], i);
756 	}
757 #endif
758 	mutex_lock(&mem_ctls_mutex);
759 
760 	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
761 		ret = -EPERM;
762 		goto fail0;
763 	}
764 
765 	if (add_mc_to_global_list(mci))
766 		goto fail0;
767 
768 	/* set load time so that error rate can be tracked */
769 	mci->start_time = jiffies;
770 
771 	mci->bus = &mc_bus[mci->mc_idx];
772 
773 	if (edac_create_sysfs_mci_device(mci, groups)) {
774 		edac_mc_printk(mci, KERN_WARNING,
775 			"failed to create sysfs device\n");
776 		goto fail1;
777 	}
778 
779 	/* If there IS a check routine, then we are running POLLED */
780 	if (mci->edac_check != NULL) {
781 		/* This instance is NOW RUNNING */
782 		mci->op_state = OP_RUNNING_POLL;
783 
784 		edac_mc_workq_setup(mci, edac_mc_get_poll_msec(), true);
785 	} else {
786 		mci->op_state = OP_RUNNING_INTERRUPT;
787 	}
788 
789 	/* Report action taken */
790 	edac_mc_printk(mci, KERN_INFO,
791 		"Giving out device to module %s controller %s: DEV %s (%s)\n",
792 		mci->mod_name, mci->ctl_name, mci->dev_name,
793 		edac_op_state_to_string(mci->op_state));
794 
795 	edac_mc_owner = mci->mod_name;
796 
797 	mutex_unlock(&mem_ctls_mutex);
798 	return 0;
799 
800 fail1:
801 	del_mc_from_global_list(mci);
802 
803 fail0:
804 	mutex_unlock(&mem_ctls_mutex);
805 	return ret;
806 }
807 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
808 
809 /**
810  * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
811  *                 remove mci structure from global list
812  * @pdev: Pointer to 'struct device' representing mci structure to remove.
813  *
814  * Return pointer to removed mci structure, or NULL if device not found.
815  */
edac_mc_del_mc(struct device * dev)816 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
817 {
818 	struct mem_ctl_info *mci;
819 
820 	edac_dbg(0, "\n");
821 
822 	mutex_lock(&mem_ctls_mutex);
823 
824 	/* find the requested mci struct in the global list */
825 	mci = find_mci_by_dev(dev);
826 	if (mci == NULL) {
827 		mutex_unlock(&mem_ctls_mutex);
828 		return NULL;
829 	}
830 
831 	if (!del_mc_from_global_list(mci))
832 		edac_mc_owner = NULL;
833 	mutex_unlock(&mem_ctls_mutex);
834 
835 	/* flush workq processes */
836 	edac_mc_workq_teardown(mci);
837 
838 	/* marking MCI offline */
839 	mci->op_state = OP_OFFLINE;
840 
841 	/* remove from sysfs */
842 	edac_remove_sysfs_mci_device(mci);
843 
844 	edac_printk(KERN_INFO, EDAC_MC,
845 		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
846 		mci->mod_name, mci->ctl_name, edac_dev_name(mci));
847 
848 	return mci;
849 }
850 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
851 
edac_mc_scrub_block(unsigned long page,unsigned long offset,u32 size)852 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
853 				u32 size)
854 {
855 	struct page *pg;
856 	void *virt_addr;
857 	unsigned long flags = 0;
858 
859 	edac_dbg(3, "\n");
860 
861 	/* ECC error page was not in our memory. Ignore it. */
862 	if (!pfn_valid(page))
863 		return;
864 
865 	/* Find the actual page structure then map it and fix */
866 	pg = pfn_to_page(page);
867 
868 	if (PageHighMem(pg))
869 		local_irq_save(flags);
870 
871 	virt_addr = kmap_atomic(pg);
872 
873 	/* Perform architecture specific atomic scrub operation */
874 	edac_atomic_scrub(virt_addr + offset, size);
875 
876 	/* Unmap and complete */
877 	kunmap_atomic(virt_addr);
878 
879 	if (PageHighMem(pg))
880 		local_irq_restore(flags);
881 }
882 
883 /* FIXME - should return -1 */
edac_mc_find_csrow_by_page(struct mem_ctl_info * mci,unsigned long page)884 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
885 {
886 	struct csrow_info **csrows = mci->csrows;
887 	int row, i, j, n;
888 
889 	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
890 	row = -1;
891 
892 	for (i = 0; i < mci->nr_csrows; i++) {
893 		struct csrow_info *csrow = csrows[i];
894 		n = 0;
895 		for (j = 0; j < csrow->nr_channels; j++) {
896 			struct dimm_info *dimm = csrow->channels[j]->dimm;
897 			n += dimm->nr_pages;
898 		}
899 		if (n == 0)
900 			continue;
901 
902 		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
903 			 mci->mc_idx,
904 			 csrow->first_page, page, csrow->last_page,
905 			 csrow->page_mask);
906 
907 		if ((page >= csrow->first_page) &&
908 		    (page <= csrow->last_page) &&
909 		    ((page & csrow->page_mask) ==
910 		     (csrow->first_page & csrow->page_mask))) {
911 			row = i;
912 			break;
913 		}
914 	}
915 
916 	if (row == -1)
917 		edac_mc_printk(mci, KERN_ERR,
918 			"could not look up page error address %lx\n",
919 			(unsigned long)page);
920 
921 	return row;
922 }
923 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
924 
925 const char *edac_layer_name[] = {
926 	[EDAC_MC_LAYER_BRANCH] = "branch",
927 	[EDAC_MC_LAYER_CHANNEL] = "channel",
928 	[EDAC_MC_LAYER_SLOT] = "slot",
929 	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
930 	[EDAC_MC_LAYER_ALL_MEM] = "memory",
931 };
932 EXPORT_SYMBOL_GPL(edac_layer_name);
933 
edac_inc_ce_error(struct mem_ctl_info * mci,bool enable_per_layer_report,const int pos[EDAC_MAX_LAYERS],const u16 count)934 static void edac_inc_ce_error(struct mem_ctl_info *mci,
935 			      bool enable_per_layer_report,
936 			      const int pos[EDAC_MAX_LAYERS],
937 			      const u16 count)
938 {
939 	int i, index = 0;
940 
941 	mci->ce_mc += count;
942 
943 	if (!enable_per_layer_report) {
944 		mci->ce_noinfo_count += count;
945 		return;
946 	}
947 
948 	for (i = 0; i < mci->n_layers; i++) {
949 		if (pos[i] < 0)
950 			break;
951 		index += pos[i];
952 		mci->ce_per_layer[i][index] += count;
953 
954 		if (i < mci->n_layers - 1)
955 			index *= mci->layers[i + 1].size;
956 	}
957 }
958 
edac_inc_ue_error(struct mem_ctl_info * mci,bool enable_per_layer_report,const int pos[EDAC_MAX_LAYERS],const u16 count)959 static void edac_inc_ue_error(struct mem_ctl_info *mci,
960 				    bool enable_per_layer_report,
961 				    const int pos[EDAC_MAX_LAYERS],
962 				    const u16 count)
963 {
964 	int i, index = 0;
965 
966 	mci->ue_mc += count;
967 
968 	if (!enable_per_layer_report) {
969 		mci->ue_noinfo_count += count;
970 		return;
971 	}
972 
973 	for (i = 0; i < mci->n_layers; i++) {
974 		if (pos[i] < 0)
975 			break;
976 		index += pos[i];
977 		mci->ue_per_layer[i][index] += count;
978 
979 		if (i < mci->n_layers - 1)
980 			index *= mci->layers[i + 1].size;
981 	}
982 }
983 
edac_ce_error(struct mem_ctl_info * mci,const u16 error_count,const int pos[EDAC_MAX_LAYERS],const char * msg,const char * location,const char * label,const char * detail,const char * other_detail,const bool enable_per_layer_report,const unsigned long page_frame_number,const unsigned long offset_in_page,long grain)984 static void edac_ce_error(struct mem_ctl_info *mci,
985 			  const u16 error_count,
986 			  const int pos[EDAC_MAX_LAYERS],
987 			  const char *msg,
988 			  const char *location,
989 			  const char *label,
990 			  const char *detail,
991 			  const char *other_detail,
992 			  const bool enable_per_layer_report,
993 			  const unsigned long page_frame_number,
994 			  const unsigned long offset_in_page,
995 			  long grain)
996 {
997 	unsigned long remapped_page;
998 	char *msg_aux = "";
999 
1000 	if (*msg)
1001 		msg_aux = " ";
1002 
1003 	if (edac_mc_get_log_ce()) {
1004 		if (other_detail && *other_detail)
1005 			edac_mc_printk(mci, KERN_WARNING,
1006 				       "%d CE %s%son %s (%s %s - %s)\n",
1007 				       error_count, msg, msg_aux, label,
1008 				       location, detail, other_detail);
1009 		else
1010 			edac_mc_printk(mci, KERN_WARNING,
1011 				       "%d CE %s%son %s (%s %s)\n",
1012 				       error_count, msg, msg_aux, label,
1013 				       location, detail);
1014 	}
1015 	edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
1016 
1017 	if (mci->scrub_mode == SCRUB_SW_SRC) {
1018 		/*
1019 			* Some memory controllers (called MCs below) can remap
1020 			* memory so that it is still available at a different
1021 			* address when PCI devices map into memory.
1022 			* MC's that can't do this, lose the memory where PCI
1023 			* devices are mapped. This mapping is MC-dependent
1024 			* and so we call back into the MC driver for it to
1025 			* map the MC page to a physical (CPU) page which can
1026 			* then be mapped to a virtual page - which can then
1027 			* be scrubbed.
1028 			*/
1029 		remapped_page = mci->ctl_page_to_phys ?
1030 			mci->ctl_page_to_phys(mci, page_frame_number) :
1031 			page_frame_number;
1032 
1033 		edac_mc_scrub_block(remapped_page,
1034 					offset_in_page, grain);
1035 	}
1036 }
1037 
edac_ue_error(struct mem_ctl_info * mci,const u16 error_count,const int pos[EDAC_MAX_LAYERS],const char * msg,const char * location,const char * label,const char * detail,const char * other_detail,const bool enable_per_layer_report)1038 static void edac_ue_error(struct mem_ctl_info *mci,
1039 			  const u16 error_count,
1040 			  const int pos[EDAC_MAX_LAYERS],
1041 			  const char *msg,
1042 			  const char *location,
1043 			  const char *label,
1044 			  const char *detail,
1045 			  const char *other_detail,
1046 			  const bool enable_per_layer_report)
1047 {
1048 	char *msg_aux = "";
1049 
1050 	if (*msg)
1051 		msg_aux = " ";
1052 
1053 	if (edac_mc_get_log_ue()) {
1054 		if (other_detail && *other_detail)
1055 			edac_mc_printk(mci, KERN_WARNING,
1056 				       "%d UE %s%son %s (%s %s - %s)\n",
1057 				       error_count, msg, msg_aux, label,
1058 				       location, detail, other_detail);
1059 		else
1060 			edac_mc_printk(mci, KERN_WARNING,
1061 				       "%d UE %s%son %s (%s %s)\n",
1062 				       error_count, msg, msg_aux, label,
1063 				       location, detail);
1064 	}
1065 
1066 	if (edac_mc_get_panic_on_ue()) {
1067 		if (other_detail && *other_detail)
1068 			panic("UE %s%son %s (%s%s - %s)\n",
1069 			      msg, msg_aux, label, location, detail, other_detail);
1070 		else
1071 			panic("UE %s%son %s (%s%s)\n",
1072 			      msg, msg_aux, label, location, detail);
1073 	}
1074 
1075 	edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1076 }
1077 
1078 /**
1079  * edac_raw_mc_handle_error - reports a memory event to userspace without doing
1080  *			      anything to discover the error location
1081  *
1082  * @type:		severity of the error (CE/UE/Fatal)
1083  * @mci:		a struct mem_ctl_info pointer
1084  * @e:			error description
1085  *
1086  * This raw function is used internally by edac_mc_handle_error(). It should
1087  * only be called directly when the hardware error come directly from BIOS,
1088  * like in the case of APEI GHES driver.
1089  */
edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,struct mem_ctl_info * mci,struct edac_raw_error_desc * e)1090 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1091 			      struct mem_ctl_info *mci,
1092 			      struct edac_raw_error_desc *e)
1093 {
1094 	char detail[80];
1095 	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1096 
1097 	/* Memory type dependent details about the error */
1098 	if (type == HW_EVENT_ERR_CORRECTED) {
1099 		snprintf(detail, sizeof(detail),
1100 			"page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1101 			e->page_frame_number, e->offset_in_page,
1102 			e->grain, e->syndrome);
1103 		edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1104 			      detail, e->other_detail, e->enable_per_layer_report,
1105 			      e->page_frame_number, e->offset_in_page, e->grain);
1106 	} else {
1107 		snprintf(detail, sizeof(detail),
1108 			"page:0x%lx offset:0x%lx grain:%ld",
1109 			e->page_frame_number, e->offset_in_page, e->grain);
1110 
1111 		edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1112 			      detail, e->other_detail, e->enable_per_layer_report);
1113 	}
1114 
1115 
1116 }
1117 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1118 
1119 /**
1120  * edac_mc_handle_error - reports a memory event to userspace
1121  *
1122  * @type:		severity of the error (CE/UE/Fatal)
1123  * @mci:		a struct mem_ctl_info pointer
1124  * @error_count:	Number of errors of the same type
1125  * @page_frame_number:	mem page where the error occurred
1126  * @offset_in_page:	offset of the error inside the page
1127  * @syndrome:		ECC syndrome
1128  * @top_layer:		Memory layer[0] position
1129  * @mid_layer:		Memory layer[1] position
1130  * @low_layer:		Memory layer[2] position
1131  * @msg:		Message meaningful to the end users that
1132  *			explains the event
1133  * @other_detail:	Technical details about the event that
1134  *			may help hardware manufacturers and
1135  *			EDAC developers to analyse the event
1136  */
edac_mc_handle_error(const enum hw_event_mc_err_type type,struct mem_ctl_info * mci,const u16 error_count,const unsigned long page_frame_number,const unsigned long offset_in_page,const unsigned long syndrome,const int top_layer,const int mid_layer,const int low_layer,const char * msg,const char * other_detail)1137 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1138 			  struct mem_ctl_info *mci,
1139 			  const u16 error_count,
1140 			  const unsigned long page_frame_number,
1141 			  const unsigned long offset_in_page,
1142 			  const unsigned long syndrome,
1143 			  const int top_layer,
1144 			  const int mid_layer,
1145 			  const int low_layer,
1146 			  const char *msg,
1147 			  const char *other_detail)
1148 {
1149 	char *p;
1150 	int row = -1, chan = -1;
1151 	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1152 	int i, n_labels = 0;
1153 	u8 grain_bits;
1154 	struct edac_raw_error_desc *e = &mci->error_desc;
1155 
1156 	edac_dbg(3, "MC%d\n", mci->mc_idx);
1157 
1158 	/* Fills the error report buffer */
1159 	memset(e, 0, sizeof (*e));
1160 	e->error_count = error_count;
1161 	e->top_layer = top_layer;
1162 	e->mid_layer = mid_layer;
1163 	e->low_layer = low_layer;
1164 	e->page_frame_number = page_frame_number;
1165 	e->offset_in_page = offset_in_page;
1166 	e->syndrome = syndrome;
1167 	e->msg = msg;
1168 	e->other_detail = other_detail;
1169 
1170 	/*
1171 	 * Check if the event report is consistent and if the memory
1172 	 * location is known. If it is known, enable_per_layer_report will be
1173 	 * true, the DIMM(s) label info will be filled and the per-layer
1174 	 * error counters will be incremented.
1175 	 */
1176 	for (i = 0; i < mci->n_layers; i++) {
1177 		if (pos[i] >= (int)mci->layers[i].size) {
1178 
1179 			edac_mc_printk(mci, KERN_ERR,
1180 				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1181 				       edac_layer_name[mci->layers[i].type],
1182 				       pos[i], mci->layers[i].size);
1183 			/*
1184 			 * Instead of just returning it, let's use what's
1185 			 * known about the error. The increment routines and
1186 			 * the DIMM filter logic will do the right thing by
1187 			 * pointing the likely damaged DIMMs.
1188 			 */
1189 			pos[i] = -1;
1190 		}
1191 		if (pos[i] >= 0)
1192 			e->enable_per_layer_report = true;
1193 	}
1194 
1195 	/*
1196 	 * Get the dimm label/grain that applies to the match criteria.
1197 	 * As the error algorithm may not be able to point to just one memory
1198 	 * stick, the logic here will get all possible labels that could
1199 	 * pottentially be affected by the error.
1200 	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1201 	 * to have only the MC channel and the MC dimm (also called "branch")
1202 	 * but the channel is not known, as the memory is arranged in pairs,
1203 	 * where each memory belongs to a separate channel within the same
1204 	 * branch.
1205 	 */
1206 	p = e->label;
1207 	*p = '\0';
1208 
1209 	for (i = 0; i < mci->tot_dimms; i++) {
1210 		struct dimm_info *dimm = mci->dimms[i];
1211 
1212 		if (top_layer >= 0 && top_layer != dimm->location[0])
1213 			continue;
1214 		if (mid_layer >= 0 && mid_layer != dimm->location[1])
1215 			continue;
1216 		if (low_layer >= 0 && low_layer != dimm->location[2])
1217 			continue;
1218 
1219 		/* get the max grain, over the error match range */
1220 		if (dimm->grain > e->grain)
1221 			e->grain = dimm->grain;
1222 
1223 		/*
1224 		 * If the error is memory-controller wide, there's no need to
1225 		 * seek for the affected DIMMs because the whole
1226 		 * channel/memory controller/...  may be affected.
1227 		 * Also, don't show errors for empty DIMM slots.
1228 		 */
1229 		if (e->enable_per_layer_report && dimm->nr_pages) {
1230 			if (n_labels >= EDAC_MAX_LABELS) {
1231 				e->enable_per_layer_report = false;
1232 				break;
1233 			}
1234 			n_labels++;
1235 			if (p != e->label) {
1236 				strcpy(p, OTHER_LABEL);
1237 				p += strlen(OTHER_LABEL);
1238 			}
1239 			strcpy(p, dimm->label);
1240 			p += strlen(p);
1241 			*p = '\0';
1242 
1243 			/*
1244 			 * get csrow/channel of the DIMM, in order to allow
1245 			 * incrementing the compat API counters
1246 			 */
1247 			edac_dbg(4, "%s csrows map: (%d,%d)\n",
1248 				 mci->csbased ? "rank" : "dimm",
1249 				 dimm->csrow, dimm->cschannel);
1250 			if (row == -1)
1251 				row = dimm->csrow;
1252 			else if (row >= 0 && row != dimm->csrow)
1253 				row = -2;
1254 
1255 			if (chan == -1)
1256 				chan = dimm->cschannel;
1257 			else if (chan >= 0 && chan != dimm->cschannel)
1258 				chan = -2;
1259 		}
1260 	}
1261 
1262 	if (!e->enable_per_layer_report) {
1263 		strcpy(e->label, "any memory");
1264 	} else {
1265 		edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1266 		if (p == e->label)
1267 			strcpy(e->label, "unknown memory");
1268 		if (type == HW_EVENT_ERR_CORRECTED) {
1269 			if (row >= 0) {
1270 				mci->csrows[row]->ce_count += error_count;
1271 				if (chan >= 0)
1272 					mci->csrows[row]->channels[chan]->ce_count += error_count;
1273 			}
1274 		} else
1275 			if (row >= 0)
1276 				mci->csrows[row]->ue_count += error_count;
1277 	}
1278 
1279 	/* Fill the RAM location data */
1280 	p = e->location;
1281 
1282 	for (i = 0; i < mci->n_layers; i++) {
1283 		if (pos[i] < 0)
1284 			continue;
1285 
1286 		p += sprintf(p, "%s:%d ",
1287 			     edac_layer_name[mci->layers[i].type],
1288 			     pos[i]);
1289 	}
1290 	if (p > e->location)
1291 		*(p - 1) = '\0';
1292 
1293 	/* Report the error via the trace interface */
1294 	grain_bits = fls_long(e->grain) + 1;
1295 	trace_mc_event(type, e->msg, e->label, e->error_count,
1296 		       mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
1297 		       (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1298 		       grain_bits, e->syndrome, e->other_detail);
1299 
1300 	edac_raw_mc_handle_error(type, mci, e);
1301 }
1302 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1303