• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12 
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <linux/string_helpers.h>
24 #include <asm/uaccess.h>
25 #include <linux/poll.h>
26 #include <linux/seq_file.h>
27 #include <linux/proc_fs.h>
28 #include <linux/net.h>
29 #include <linux/workqueue.h>
30 #include <linux/mutex.h>
31 #include <linux/pagemap.h>
32 #include <asm/ioctls.h>
33 #include <linux/sunrpc/types.h>
34 #include <linux/sunrpc/cache.h>
35 #include <linux/sunrpc/stats.h>
36 #include <linux/sunrpc/rpc_pipe_fs.h>
37 #include "netns.h"
38 
39 #define	 RPCDBG_FACILITY RPCDBG_CACHE
40 
41 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
42 static void cache_revisit_request(struct cache_head *item);
43 
cache_init(struct cache_head * h,struct cache_detail * detail)44 static void cache_init(struct cache_head *h, struct cache_detail *detail)
45 {
46 	time_t now = seconds_since_boot();
47 	INIT_HLIST_NODE(&h->cache_list);
48 	h->flags = 0;
49 	kref_init(&h->ref);
50 	h->expiry_time = now + CACHE_NEW_EXPIRY;
51 	if (now <= detail->flush_time)
52 		/* ensure it isn't already expired */
53 		now = detail->flush_time + 1;
54 	h->last_refresh = now;
55 }
56 
57 static void cache_fresh_unlocked(struct cache_head *head,
58 				struct cache_detail *detail);
59 
sunrpc_cache_lookup(struct cache_detail * detail,struct cache_head * key,int hash)60 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
61 				       struct cache_head *key, int hash)
62 {
63 	struct cache_head *new = NULL, *freeme = NULL, *tmp = NULL;
64 	struct hlist_head *head;
65 
66 	head = &detail->hash_table[hash];
67 
68 	read_lock(&detail->hash_lock);
69 
70 	hlist_for_each_entry(tmp, head, cache_list) {
71 		if (detail->match(tmp, key)) {
72 			if (cache_is_expired(detail, tmp))
73 				/* This entry is expired, we will discard it. */
74 				break;
75 			cache_get(tmp);
76 			read_unlock(&detail->hash_lock);
77 			return tmp;
78 		}
79 	}
80 	read_unlock(&detail->hash_lock);
81 	/* Didn't find anything, insert an empty entry */
82 
83 	new = detail->alloc();
84 	if (!new)
85 		return NULL;
86 	/* must fully initialise 'new', else
87 	 * we might get lose if we need to
88 	 * cache_put it soon.
89 	 */
90 	cache_init(new, detail);
91 	detail->init(new, key);
92 
93 	write_lock(&detail->hash_lock);
94 
95 	/* check if entry appeared while we slept */
96 	hlist_for_each_entry(tmp, head, cache_list) {
97 		if (detail->match(tmp, key)) {
98 			if (cache_is_expired(detail, tmp)) {
99 				hlist_del_init(&tmp->cache_list);
100 				detail->entries --;
101 				freeme = tmp;
102 				break;
103 			}
104 			cache_get(tmp);
105 			write_unlock(&detail->hash_lock);
106 			cache_put(new, detail);
107 			return tmp;
108 		}
109 	}
110 
111 	hlist_add_head(&new->cache_list, head);
112 	detail->entries++;
113 	cache_get(new);
114 	write_unlock(&detail->hash_lock);
115 
116 	if (freeme) {
117 		cache_fresh_unlocked(freeme, detail);
118 		cache_put(freeme, detail);
119 	}
120 	return new;
121 }
122 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
123 
124 
125 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
126 
cache_fresh_locked(struct cache_head * head,time_t expiry,struct cache_detail * detail)127 static void cache_fresh_locked(struct cache_head *head, time_t expiry,
128 			       struct cache_detail *detail)
129 {
130 	time_t now = seconds_since_boot();
131 	if (now <= detail->flush_time)
132 		/* ensure it isn't immediately treated as expired */
133 		now = detail->flush_time + 1;
134 	head->expiry_time = expiry;
135 	head->last_refresh = now;
136 	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
137 	set_bit(CACHE_VALID, &head->flags);
138 }
139 
cache_fresh_unlocked(struct cache_head * head,struct cache_detail * detail)140 static void cache_fresh_unlocked(struct cache_head *head,
141 				 struct cache_detail *detail)
142 {
143 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
144 		cache_revisit_request(head);
145 		cache_dequeue(detail, head);
146 	}
147 }
148 
sunrpc_cache_update(struct cache_detail * detail,struct cache_head * new,struct cache_head * old,int hash)149 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
150 				       struct cache_head *new, struct cache_head *old, int hash)
151 {
152 	/* The 'old' entry is to be replaced by 'new'.
153 	 * If 'old' is not VALID, we update it directly,
154 	 * otherwise we need to replace it
155 	 */
156 	struct cache_head *tmp;
157 
158 	if (!test_bit(CACHE_VALID, &old->flags)) {
159 		write_lock(&detail->hash_lock);
160 		if (!test_bit(CACHE_VALID, &old->flags)) {
161 			if (test_bit(CACHE_NEGATIVE, &new->flags))
162 				set_bit(CACHE_NEGATIVE, &old->flags);
163 			else
164 				detail->update(old, new);
165 			cache_fresh_locked(old, new->expiry_time, detail);
166 			write_unlock(&detail->hash_lock);
167 			cache_fresh_unlocked(old, detail);
168 			return old;
169 		}
170 		write_unlock(&detail->hash_lock);
171 	}
172 	/* We need to insert a new entry */
173 	tmp = detail->alloc();
174 	if (!tmp) {
175 		cache_put(old, detail);
176 		return NULL;
177 	}
178 	cache_init(tmp, detail);
179 	detail->init(tmp, old);
180 
181 	write_lock(&detail->hash_lock);
182 	if (test_bit(CACHE_NEGATIVE, &new->flags))
183 		set_bit(CACHE_NEGATIVE, &tmp->flags);
184 	else
185 		detail->update(tmp, new);
186 	hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
187 	detail->entries++;
188 	cache_get(tmp);
189 	cache_fresh_locked(tmp, new->expiry_time, detail);
190 	cache_fresh_locked(old, 0, detail);
191 	write_unlock(&detail->hash_lock);
192 	cache_fresh_unlocked(tmp, detail);
193 	cache_fresh_unlocked(old, detail);
194 	cache_put(old, detail);
195 	return tmp;
196 }
197 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
198 
cache_make_upcall(struct cache_detail * cd,struct cache_head * h)199 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
200 {
201 	if (cd->cache_upcall)
202 		return cd->cache_upcall(cd, h);
203 	return sunrpc_cache_pipe_upcall(cd, h);
204 }
205 
cache_is_valid(struct cache_head * h)206 static inline int cache_is_valid(struct cache_head *h)
207 {
208 	if (!test_bit(CACHE_VALID, &h->flags))
209 		return -EAGAIN;
210 	else {
211 		/* entry is valid */
212 		if (test_bit(CACHE_NEGATIVE, &h->flags))
213 			return -ENOENT;
214 		else {
215 			/*
216 			 * In combination with write barrier in
217 			 * sunrpc_cache_update, ensures that anyone
218 			 * using the cache entry after this sees the
219 			 * updated contents:
220 			 */
221 			smp_rmb();
222 			return 0;
223 		}
224 	}
225 }
226 
try_to_negate_entry(struct cache_detail * detail,struct cache_head * h)227 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
228 {
229 	int rv;
230 
231 	write_lock(&detail->hash_lock);
232 	rv = cache_is_valid(h);
233 	if (rv == -EAGAIN) {
234 		set_bit(CACHE_NEGATIVE, &h->flags);
235 		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
236 				   detail);
237 		rv = -ENOENT;
238 	}
239 	write_unlock(&detail->hash_lock);
240 	cache_fresh_unlocked(h, detail);
241 	return rv;
242 }
243 
244 /*
245  * This is the generic cache management routine for all
246  * the authentication caches.
247  * It checks the currency of a cache item and will (later)
248  * initiate an upcall to fill it if needed.
249  *
250  *
251  * Returns 0 if the cache_head can be used, or cache_puts it and returns
252  * -EAGAIN if upcall is pending and request has been queued
253  * -ETIMEDOUT if upcall failed or request could not be queue or
254  *           upcall completed but item is still invalid (implying that
255  *           the cache item has been replaced with a newer one).
256  * -ENOENT if cache entry was negative
257  */
cache_check(struct cache_detail * detail,struct cache_head * h,struct cache_req * rqstp)258 int cache_check(struct cache_detail *detail,
259 		    struct cache_head *h, struct cache_req *rqstp)
260 {
261 	int rv;
262 	long refresh_age, age;
263 
264 	/* First decide return status as best we can */
265 	rv = cache_is_valid(h);
266 
267 	/* now see if we want to start an upcall */
268 	refresh_age = (h->expiry_time - h->last_refresh);
269 	age = seconds_since_boot() - h->last_refresh;
270 
271 	if (rqstp == NULL) {
272 		if (rv == -EAGAIN)
273 			rv = -ENOENT;
274 	} else if (rv == -EAGAIN ||
275 		   (h->expiry_time != 0 && age > refresh_age/2)) {
276 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
277 				refresh_age, age);
278 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
279 			switch (cache_make_upcall(detail, h)) {
280 			case -EINVAL:
281 				rv = try_to_negate_entry(detail, h);
282 				break;
283 			case -EAGAIN:
284 				cache_fresh_unlocked(h, detail);
285 				break;
286 			}
287 		}
288 	}
289 
290 	if (rv == -EAGAIN) {
291 		if (!cache_defer_req(rqstp, h)) {
292 			/*
293 			 * Request was not deferred; handle it as best
294 			 * we can ourselves:
295 			 */
296 			rv = cache_is_valid(h);
297 			if (rv == -EAGAIN)
298 				rv = -ETIMEDOUT;
299 		}
300 	}
301 	if (rv)
302 		cache_put(h, detail);
303 	return rv;
304 }
305 EXPORT_SYMBOL_GPL(cache_check);
306 
307 /*
308  * caches need to be periodically cleaned.
309  * For this we maintain a list of cache_detail and
310  * a current pointer into that list and into the table
311  * for that entry.
312  *
313  * Each time cache_clean is called it finds the next non-empty entry
314  * in the current table and walks the list in that entry
315  * looking for entries that can be removed.
316  *
317  * An entry gets removed if:
318  * - The expiry is before current time
319  * - The last_refresh time is before the flush_time for that cache
320  *
321  * later we might drop old entries with non-NEVER expiry if that table
322  * is getting 'full' for some definition of 'full'
323  *
324  * The question of "how often to scan a table" is an interesting one
325  * and is answered in part by the use of the "nextcheck" field in the
326  * cache_detail.
327  * When a scan of a table begins, the nextcheck field is set to a time
328  * that is well into the future.
329  * While scanning, if an expiry time is found that is earlier than the
330  * current nextcheck time, nextcheck is set to that expiry time.
331  * If the flush_time is ever set to a time earlier than the nextcheck
332  * time, the nextcheck time is then set to that flush_time.
333  *
334  * A table is then only scanned if the current time is at least
335  * the nextcheck time.
336  *
337  */
338 
339 static LIST_HEAD(cache_list);
340 static DEFINE_SPINLOCK(cache_list_lock);
341 static struct cache_detail *current_detail;
342 static int current_index;
343 
344 static void do_cache_clean(struct work_struct *work);
345 static struct delayed_work cache_cleaner;
346 
sunrpc_init_cache_detail(struct cache_detail * cd)347 void sunrpc_init_cache_detail(struct cache_detail *cd)
348 {
349 	rwlock_init(&cd->hash_lock);
350 	INIT_LIST_HEAD(&cd->queue);
351 	spin_lock(&cache_list_lock);
352 	cd->nextcheck = 0;
353 	cd->entries = 0;
354 	atomic_set(&cd->readers, 0);
355 	cd->last_close = 0;
356 	cd->last_warn = -1;
357 	list_add(&cd->others, &cache_list);
358 	spin_unlock(&cache_list_lock);
359 
360 	/* start the cleaning process */
361 	schedule_delayed_work(&cache_cleaner, 0);
362 }
363 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
364 
sunrpc_destroy_cache_detail(struct cache_detail * cd)365 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
366 {
367 	cache_purge(cd);
368 	spin_lock(&cache_list_lock);
369 	write_lock(&cd->hash_lock);
370 	if (cd->entries || atomic_read(&cd->inuse)) {
371 		write_unlock(&cd->hash_lock);
372 		spin_unlock(&cache_list_lock);
373 		goto out;
374 	}
375 	if (current_detail == cd)
376 		current_detail = NULL;
377 	list_del_init(&cd->others);
378 	write_unlock(&cd->hash_lock);
379 	spin_unlock(&cache_list_lock);
380 	if (list_empty(&cache_list)) {
381 		/* module must be being unloaded so its safe to kill the worker */
382 		cancel_delayed_work_sync(&cache_cleaner);
383 	}
384 	return;
385 out:
386 	printk(KERN_ERR "RPC: failed to unregister %s cache\n", cd->name);
387 }
388 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
389 
390 /* clean cache tries to find something to clean
391  * and cleans it.
392  * It returns 1 if it cleaned something,
393  *            0 if it didn't find anything this time
394  *           -1 if it fell off the end of the list.
395  */
cache_clean(void)396 static int cache_clean(void)
397 {
398 	int rv = 0;
399 	struct list_head *next;
400 
401 	spin_lock(&cache_list_lock);
402 
403 	/* find a suitable table if we don't already have one */
404 	while (current_detail == NULL ||
405 	    current_index >= current_detail->hash_size) {
406 		if (current_detail)
407 			next = current_detail->others.next;
408 		else
409 			next = cache_list.next;
410 		if (next == &cache_list) {
411 			current_detail = NULL;
412 			spin_unlock(&cache_list_lock);
413 			return -1;
414 		}
415 		current_detail = list_entry(next, struct cache_detail, others);
416 		if (current_detail->nextcheck > seconds_since_boot())
417 			current_index = current_detail->hash_size;
418 		else {
419 			current_index = 0;
420 			current_detail->nextcheck = seconds_since_boot()+30*60;
421 		}
422 	}
423 
424 	/* find a non-empty bucket in the table */
425 	while (current_detail &&
426 	       current_index < current_detail->hash_size &&
427 	       hlist_empty(&current_detail->hash_table[current_index]))
428 		current_index++;
429 
430 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
431 
432 	if (current_detail && current_index < current_detail->hash_size) {
433 		struct cache_head *ch = NULL;
434 		struct cache_detail *d;
435 		struct hlist_head *head;
436 		struct hlist_node *tmp;
437 
438 		write_lock(&current_detail->hash_lock);
439 
440 		/* Ok, now to clean this strand */
441 
442 		head = &current_detail->hash_table[current_index];
443 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
444 			if (current_detail->nextcheck > ch->expiry_time)
445 				current_detail->nextcheck = ch->expiry_time+1;
446 			if (!cache_is_expired(current_detail, ch))
447 				continue;
448 
449 			hlist_del_init(&ch->cache_list);
450 			current_detail->entries--;
451 			rv = 1;
452 			break;
453 		}
454 
455 		write_unlock(&current_detail->hash_lock);
456 		d = current_detail;
457 		if (!ch)
458 			current_index ++;
459 		spin_unlock(&cache_list_lock);
460 		if (ch) {
461 			set_bit(CACHE_CLEANED, &ch->flags);
462 			cache_fresh_unlocked(ch, d);
463 			cache_put(ch, d);
464 		}
465 	} else
466 		spin_unlock(&cache_list_lock);
467 
468 	return rv;
469 }
470 
471 /*
472  * We want to regularly clean the cache, so we need to schedule some work ...
473  */
do_cache_clean(struct work_struct * work)474 static void do_cache_clean(struct work_struct *work)
475 {
476 	int delay = 5;
477 	if (cache_clean() == -1)
478 		delay = round_jiffies_relative(30*HZ);
479 
480 	if (list_empty(&cache_list))
481 		delay = 0;
482 
483 	if (delay)
484 		schedule_delayed_work(&cache_cleaner, delay);
485 }
486 
487 
488 /*
489  * Clean all caches promptly.  This just calls cache_clean
490  * repeatedly until we are sure that every cache has had a chance to
491  * be fully cleaned
492  */
cache_flush(void)493 void cache_flush(void)
494 {
495 	while (cache_clean() != -1)
496 		cond_resched();
497 	while (cache_clean() != -1)
498 		cond_resched();
499 }
500 EXPORT_SYMBOL_GPL(cache_flush);
501 
cache_purge(struct cache_detail * detail)502 void cache_purge(struct cache_detail *detail)
503 {
504 	time_t now = seconds_since_boot();
505 	if (detail->flush_time >= now)
506 		now = detail->flush_time + 1;
507 	/* 'now' is the maximum value any 'last_refresh' can have */
508 	detail->flush_time = now;
509 	detail->nextcheck = seconds_since_boot();
510 	cache_flush();
511 }
512 EXPORT_SYMBOL_GPL(cache_purge);
513 
514 
515 /*
516  * Deferral and Revisiting of Requests.
517  *
518  * If a cache lookup finds a pending entry, we
519  * need to defer the request and revisit it later.
520  * All deferred requests are stored in a hash table,
521  * indexed by "struct cache_head *".
522  * As it may be wasteful to store a whole request
523  * structure, we allow the request to provide a
524  * deferred form, which must contain a
525  * 'struct cache_deferred_req'
526  * This cache_deferred_req contains a method to allow
527  * it to be revisited when cache info is available
528  */
529 
530 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
531 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
532 
533 #define	DFR_MAX	300	/* ??? */
534 
535 static DEFINE_SPINLOCK(cache_defer_lock);
536 static LIST_HEAD(cache_defer_list);
537 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
538 static int cache_defer_cnt;
539 
__unhash_deferred_req(struct cache_deferred_req * dreq)540 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
541 {
542 	hlist_del_init(&dreq->hash);
543 	if (!list_empty(&dreq->recent)) {
544 		list_del_init(&dreq->recent);
545 		cache_defer_cnt--;
546 	}
547 }
548 
__hash_deferred_req(struct cache_deferred_req * dreq,struct cache_head * item)549 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
550 {
551 	int hash = DFR_HASH(item);
552 
553 	INIT_LIST_HEAD(&dreq->recent);
554 	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
555 }
556 
setup_deferral(struct cache_deferred_req * dreq,struct cache_head * item,int count_me)557 static void setup_deferral(struct cache_deferred_req *dreq,
558 			   struct cache_head *item,
559 			   int count_me)
560 {
561 
562 	dreq->item = item;
563 
564 	spin_lock(&cache_defer_lock);
565 
566 	__hash_deferred_req(dreq, item);
567 
568 	if (count_me) {
569 		cache_defer_cnt++;
570 		list_add(&dreq->recent, &cache_defer_list);
571 	}
572 
573 	spin_unlock(&cache_defer_lock);
574 
575 }
576 
577 struct thread_deferred_req {
578 	struct cache_deferred_req handle;
579 	struct completion completion;
580 };
581 
cache_restart_thread(struct cache_deferred_req * dreq,int too_many)582 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
583 {
584 	struct thread_deferred_req *dr =
585 		container_of(dreq, struct thread_deferred_req, handle);
586 	complete(&dr->completion);
587 }
588 
cache_wait_req(struct cache_req * req,struct cache_head * item)589 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
590 {
591 	struct thread_deferred_req sleeper;
592 	struct cache_deferred_req *dreq = &sleeper.handle;
593 
594 	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
595 	dreq->revisit = cache_restart_thread;
596 
597 	setup_deferral(dreq, item, 0);
598 
599 	if (!test_bit(CACHE_PENDING, &item->flags) ||
600 	    wait_for_completion_interruptible_timeout(
601 		    &sleeper.completion, req->thread_wait) <= 0) {
602 		/* The completion wasn't completed, so we need
603 		 * to clean up
604 		 */
605 		spin_lock(&cache_defer_lock);
606 		if (!hlist_unhashed(&sleeper.handle.hash)) {
607 			__unhash_deferred_req(&sleeper.handle);
608 			spin_unlock(&cache_defer_lock);
609 		} else {
610 			/* cache_revisit_request already removed
611 			 * this from the hash table, but hasn't
612 			 * called ->revisit yet.  It will very soon
613 			 * and we need to wait for it.
614 			 */
615 			spin_unlock(&cache_defer_lock);
616 			wait_for_completion(&sleeper.completion);
617 		}
618 	}
619 }
620 
cache_limit_defers(void)621 static void cache_limit_defers(void)
622 {
623 	/* Make sure we haven't exceed the limit of allowed deferred
624 	 * requests.
625 	 */
626 	struct cache_deferred_req *discard = NULL;
627 
628 	if (cache_defer_cnt <= DFR_MAX)
629 		return;
630 
631 	spin_lock(&cache_defer_lock);
632 
633 	/* Consider removing either the first or the last */
634 	if (cache_defer_cnt > DFR_MAX) {
635 		if (prandom_u32() & 1)
636 			discard = list_entry(cache_defer_list.next,
637 					     struct cache_deferred_req, recent);
638 		else
639 			discard = list_entry(cache_defer_list.prev,
640 					     struct cache_deferred_req, recent);
641 		__unhash_deferred_req(discard);
642 	}
643 	spin_unlock(&cache_defer_lock);
644 	if (discard)
645 		discard->revisit(discard, 1);
646 }
647 
648 /* Return true if and only if a deferred request is queued. */
cache_defer_req(struct cache_req * req,struct cache_head * item)649 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
650 {
651 	struct cache_deferred_req *dreq;
652 
653 	if (req->thread_wait) {
654 		cache_wait_req(req, item);
655 		if (!test_bit(CACHE_PENDING, &item->flags))
656 			return false;
657 	}
658 	dreq = req->defer(req);
659 	if (dreq == NULL)
660 		return false;
661 	setup_deferral(dreq, item, 1);
662 	if (!test_bit(CACHE_PENDING, &item->flags))
663 		/* Bit could have been cleared before we managed to
664 		 * set up the deferral, so need to revisit just in case
665 		 */
666 		cache_revisit_request(item);
667 
668 	cache_limit_defers();
669 	return true;
670 }
671 
cache_revisit_request(struct cache_head * item)672 static void cache_revisit_request(struct cache_head *item)
673 {
674 	struct cache_deferred_req *dreq;
675 	struct list_head pending;
676 	struct hlist_node *tmp;
677 	int hash = DFR_HASH(item);
678 
679 	INIT_LIST_HEAD(&pending);
680 	spin_lock(&cache_defer_lock);
681 
682 	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
683 		if (dreq->item == item) {
684 			__unhash_deferred_req(dreq);
685 			list_add(&dreq->recent, &pending);
686 		}
687 
688 	spin_unlock(&cache_defer_lock);
689 
690 	while (!list_empty(&pending)) {
691 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
692 		list_del_init(&dreq->recent);
693 		dreq->revisit(dreq, 0);
694 	}
695 }
696 
cache_clean_deferred(void * owner)697 void cache_clean_deferred(void *owner)
698 {
699 	struct cache_deferred_req *dreq, *tmp;
700 	struct list_head pending;
701 
702 
703 	INIT_LIST_HEAD(&pending);
704 	spin_lock(&cache_defer_lock);
705 
706 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
707 		if (dreq->owner == owner) {
708 			__unhash_deferred_req(dreq);
709 			list_add(&dreq->recent, &pending);
710 		}
711 	}
712 	spin_unlock(&cache_defer_lock);
713 
714 	while (!list_empty(&pending)) {
715 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
716 		list_del_init(&dreq->recent);
717 		dreq->revisit(dreq, 1);
718 	}
719 }
720 
721 /*
722  * communicate with user-space
723  *
724  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
725  * On read, you get a full request, or block.
726  * On write, an update request is processed.
727  * Poll works if anything to read, and always allows write.
728  *
729  * Implemented by linked list of requests.  Each open file has
730  * a ->private that also exists in this list.  New requests are added
731  * to the end and may wakeup and preceding readers.
732  * New readers are added to the head.  If, on read, an item is found with
733  * CACHE_UPCALLING clear, we free it from the list.
734  *
735  */
736 
737 static DEFINE_SPINLOCK(queue_lock);
738 static DEFINE_MUTEX(queue_io_mutex);
739 
740 struct cache_queue {
741 	struct list_head	list;
742 	int			reader;	/* if 0, then request */
743 };
744 struct cache_request {
745 	struct cache_queue	q;
746 	struct cache_head	*item;
747 	char			* buf;
748 	int			len;
749 	int			readers;
750 };
751 struct cache_reader {
752 	struct cache_queue	q;
753 	int			offset;	/* if non-0, we have a refcnt on next request */
754 };
755 
cache_request(struct cache_detail * detail,struct cache_request * crq)756 static int cache_request(struct cache_detail *detail,
757 			       struct cache_request *crq)
758 {
759 	char *bp = crq->buf;
760 	int len = PAGE_SIZE;
761 
762 	detail->cache_request(detail, crq->item, &bp, &len);
763 	if (len < 0)
764 		return -EAGAIN;
765 	return PAGE_SIZE - len;
766 }
767 
cache_read(struct file * filp,char __user * buf,size_t count,loff_t * ppos,struct cache_detail * cd)768 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
769 			  loff_t *ppos, struct cache_detail *cd)
770 {
771 	struct cache_reader *rp = filp->private_data;
772 	struct cache_request *rq;
773 	struct inode *inode = file_inode(filp);
774 	int err;
775 
776 	if (count == 0)
777 		return 0;
778 
779 	mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
780 			      * readers on this file */
781  again:
782 	spin_lock(&queue_lock);
783 	/* need to find next request */
784 	while (rp->q.list.next != &cd->queue &&
785 	       list_entry(rp->q.list.next, struct cache_queue, list)
786 	       ->reader) {
787 		struct list_head *next = rp->q.list.next;
788 		list_move(&rp->q.list, next);
789 	}
790 	if (rp->q.list.next == &cd->queue) {
791 		spin_unlock(&queue_lock);
792 		mutex_unlock(&inode->i_mutex);
793 		WARN_ON_ONCE(rp->offset);
794 		return 0;
795 	}
796 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
797 	WARN_ON_ONCE(rq->q.reader);
798 	if (rp->offset == 0)
799 		rq->readers++;
800 	spin_unlock(&queue_lock);
801 
802 	if (rq->len == 0) {
803 		err = cache_request(cd, rq);
804 		if (err < 0)
805 			goto out;
806 		rq->len = err;
807 	}
808 
809 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
810 		err = -EAGAIN;
811 		spin_lock(&queue_lock);
812 		list_move(&rp->q.list, &rq->q.list);
813 		spin_unlock(&queue_lock);
814 	} else {
815 		if (rp->offset + count > rq->len)
816 			count = rq->len - rp->offset;
817 		err = -EFAULT;
818 		if (copy_to_user(buf, rq->buf + rp->offset, count))
819 			goto out;
820 		rp->offset += count;
821 		if (rp->offset >= rq->len) {
822 			rp->offset = 0;
823 			spin_lock(&queue_lock);
824 			list_move(&rp->q.list, &rq->q.list);
825 			spin_unlock(&queue_lock);
826 		}
827 		err = 0;
828 	}
829  out:
830 	if (rp->offset == 0) {
831 		/* need to release rq */
832 		spin_lock(&queue_lock);
833 		rq->readers--;
834 		if (rq->readers == 0 &&
835 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
836 			list_del(&rq->q.list);
837 			spin_unlock(&queue_lock);
838 			cache_put(rq->item, cd);
839 			kfree(rq->buf);
840 			kfree(rq);
841 		} else
842 			spin_unlock(&queue_lock);
843 	}
844 	if (err == -EAGAIN)
845 		goto again;
846 	mutex_unlock(&inode->i_mutex);
847 	return err ? err :  count;
848 }
849 
cache_do_downcall(char * kaddr,const char __user * buf,size_t count,struct cache_detail * cd)850 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
851 				 size_t count, struct cache_detail *cd)
852 {
853 	ssize_t ret;
854 
855 	if (count == 0)
856 		return -EINVAL;
857 	if (copy_from_user(kaddr, buf, count))
858 		return -EFAULT;
859 	kaddr[count] = '\0';
860 	ret = cd->cache_parse(cd, kaddr, count);
861 	if (!ret)
862 		ret = count;
863 	return ret;
864 }
865 
cache_slow_downcall(const char __user * buf,size_t count,struct cache_detail * cd)866 static ssize_t cache_slow_downcall(const char __user *buf,
867 				   size_t count, struct cache_detail *cd)
868 {
869 	static char write_buf[8192]; /* protected by queue_io_mutex */
870 	ssize_t ret = -EINVAL;
871 
872 	if (count >= sizeof(write_buf))
873 		goto out;
874 	mutex_lock(&queue_io_mutex);
875 	ret = cache_do_downcall(write_buf, buf, count, cd);
876 	mutex_unlock(&queue_io_mutex);
877 out:
878 	return ret;
879 }
880 
cache_downcall(struct address_space * mapping,const char __user * buf,size_t count,struct cache_detail * cd)881 static ssize_t cache_downcall(struct address_space *mapping,
882 			      const char __user *buf,
883 			      size_t count, struct cache_detail *cd)
884 {
885 	struct page *page;
886 	char *kaddr;
887 	ssize_t ret = -ENOMEM;
888 
889 	if (count >= PAGE_CACHE_SIZE)
890 		goto out_slow;
891 
892 	page = find_or_create_page(mapping, 0, GFP_KERNEL);
893 	if (!page)
894 		goto out_slow;
895 
896 	kaddr = kmap(page);
897 	ret = cache_do_downcall(kaddr, buf, count, cd);
898 	kunmap(page);
899 	unlock_page(page);
900 	page_cache_release(page);
901 	return ret;
902 out_slow:
903 	return cache_slow_downcall(buf, count, cd);
904 }
905 
cache_write(struct file * filp,const char __user * buf,size_t count,loff_t * ppos,struct cache_detail * cd)906 static ssize_t cache_write(struct file *filp, const char __user *buf,
907 			   size_t count, loff_t *ppos,
908 			   struct cache_detail *cd)
909 {
910 	struct address_space *mapping = filp->f_mapping;
911 	struct inode *inode = file_inode(filp);
912 	ssize_t ret = -EINVAL;
913 
914 	if (!cd->cache_parse)
915 		goto out;
916 
917 	mutex_lock(&inode->i_mutex);
918 	ret = cache_downcall(mapping, buf, count, cd);
919 	mutex_unlock(&inode->i_mutex);
920 out:
921 	return ret;
922 }
923 
924 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
925 
cache_poll(struct file * filp,poll_table * wait,struct cache_detail * cd)926 static unsigned int cache_poll(struct file *filp, poll_table *wait,
927 			       struct cache_detail *cd)
928 {
929 	unsigned int mask;
930 	struct cache_reader *rp = filp->private_data;
931 	struct cache_queue *cq;
932 
933 	poll_wait(filp, &queue_wait, wait);
934 
935 	/* alway allow write */
936 	mask = POLLOUT | POLLWRNORM;
937 
938 	if (!rp)
939 		return mask;
940 
941 	spin_lock(&queue_lock);
942 
943 	for (cq= &rp->q; &cq->list != &cd->queue;
944 	     cq = list_entry(cq->list.next, struct cache_queue, list))
945 		if (!cq->reader) {
946 			mask |= POLLIN | POLLRDNORM;
947 			break;
948 		}
949 	spin_unlock(&queue_lock);
950 	return mask;
951 }
952 
cache_ioctl(struct inode * ino,struct file * filp,unsigned int cmd,unsigned long arg,struct cache_detail * cd)953 static int cache_ioctl(struct inode *ino, struct file *filp,
954 		       unsigned int cmd, unsigned long arg,
955 		       struct cache_detail *cd)
956 {
957 	int len = 0;
958 	struct cache_reader *rp = filp->private_data;
959 	struct cache_queue *cq;
960 
961 	if (cmd != FIONREAD || !rp)
962 		return -EINVAL;
963 
964 	spin_lock(&queue_lock);
965 
966 	/* only find the length remaining in current request,
967 	 * or the length of the next request
968 	 */
969 	for (cq= &rp->q; &cq->list != &cd->queue;
970 	     cq = list_entry(cq->list.next, struct cache_queue, list))
971 		if (!cq->reader) {
972 			struct cache_request *cr =
973 				container_of(cq, struct cache_request, q);
974 			len = cr->len - rp->offset;
975 			break;
976 		}
977 	spin_unlock(&queue_lock);
978 
979 	return put_user(len, (int __user *)arg);
980 }
981 
cache_open(struct inode * inode,struct file * filp,struct cache_detail * cd)982 static int cache_open(struct inode *inode, struct file *filp,
983 		      struct cache_detail *cd)
984 {
985 	struct cache_reader *rp = NULL;
986 
987 	if (!cd || !try_module_get(cd->owner))
988 		return -EACCES;
989 	nonseekable_open(inode, filp);
990 	if (filp->f_mode & FMODE_READ) {
991 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
992 		if (!rp) {
993 			module_put(cd->owner);
994 			return -ENOMEM;
995 		}
996 		rp->offset = 0;
997 		rp->q.reader = 1;
998 		atomic_inc(&cd->readers);
999 		spin_lock(&queue_lock);
1000 		list_add(&rp->q.list, &cd->queue);
1001 		spin_unlock(&queue_lock);
1002 	}
1003 	filp->private_data = rp;
1004 	return 0;
1005 }
1006 
cache_release(struct inode * inode,struct file * filp,struct cache_detail * cd)1007 static int cache_release(struct inode *inode, struct file *filp,
1008 			 struct cache_detail *cd)
1009 {
1010 	struct cache_reader *rp = filp->private_data;
1011 
1012 	if (rp) {
1013 		spin_lock(&queue_lock);
1014 		if (rp->offset) {
1015 			struct cache_queue *cq;
1016 			for (cq= &rp->q; &cq->list != &cd->queue;
1017 			     cq = list_entry(cq->list.next, struct cache_queue, list))
1018 				if (!cq->reader) {
1019 					container_of(cq, struct cache_request, q)
1020 						->readers--;
1021 					break;
1022 				}
1023 			rp->offset = 0;
1024 		}
1025 		list_del(&rp->q.list);
1026 		spin_unlock(&queue_lock);
1027 
1028 		filp->private_data = NULL;
1029 		kfree(rp);
1030 
1031 		cd->last_close = seconds_since_boot();
1032 		atomic_dec(&cd->readers);
1033 	}
1034 	module_put(cd->owner);
1035 	return 0;
1036 }
1037 
1038 
1039 
cache_dequeue(struct cache_detail * detail,struct cache_head * ch)1040 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1041 {
1042 	struct cache_queue *cq, *tmp;
1043 	struct cache_request *cr;
1044 	struct list_head dequeued;
1045 
1046 	INIT_LIST_HEAD(&dequeued);
1047 	spin_lock(&queue_lock);
1048 	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1049 		if (!cq->reader) {
1050 			cr = container_of(cq, struct cache_request, q);
1051 			if (cr->item != ch)
1052 				continue;
1053 			if (test_bit(CACHE_PENDING, &ch->flags))
1054 				/* Lost a race and it is pending again */
1055 				break;
1056 			if (cr->readers != 0)
1057 				continue;
1058 			list_move(&cr->q.list, &dequeued);
1059 		}
1060 	spin_unlock(&queue_lock);
1061 	while (!list_empty(&dequeued)) {
1062 		cr = list_entry(dequeued.next, struct cache_request, q.list);
1063 		list_del(&cr->q.list);
1064 		cache_put(cr->item, detail);
1065 		kfree(cr->buf);
1066 		kfree(cr);
1067 	}
1068 }
1069 
1070 /*
1071  * Support routines for text-based upcalls.
1072  * Fields are separated by spaces.
1073  * Fields are either mangled to quote space tab newline slosh with slosh
1074  * or a hexified with a leading \x
1075  * Record is terminated with newline.
1076  *
1077  */
1078 
qword_add(char ** bpp,int * lp,char * str)1079 void qword_add(char **bpp, int *lp, char *str)
1080 {
1081 	char *bp = *bpp;
1082 	int len = *lp;
1083 	int ret;
1084 
1085 	if (len < 0) return;
1086 
1087 	ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1088 	if (ret >= len) {
1089 		bp += len;
1090 		len = -1;
1091 	} else {
1092 		bp += ret;
1093 		len -= ret;
1094 		*bp++ = ' ';
1095 		len--;
1096 	}
1097 	*bpp = bp;
1098 	*lp = len;
1099 }
1100 EXPORT_SYMBOL_GPL(qword_add);
1101 
qword_addhex(char ** bpp,int * lp,char * buf,int blen)1102 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1103 {
1104 	char *bp = *bpp;
1105 	int len = *lp;
1106 
1107 	if (len < 0) return;
1108 
1109 	if (len > 2) {
1110 		*bp++ = '\\';
1111 		*bp++ = 'x';
1112 		len -= 2;
1113 		while (blen && len >= 2) {
1114 			bp = hex_byte_pack(bp, *buf++);
1115 			len -= 2;
1116 			blen--;
1117 		}
1118 	}
1119 	if (blen || len<1) len = -1;
1120 	else {
1121 		*bp++ = ' ';
1122 		len--;
1123 	}
1124 	*bpp = bp;
1125 	*lp = len;
1126 }
1127 EXPORT_SYMBOL_GPL(qword_addhex);
1128 
warn_no_listener(struct cache_detail * detail)1129 static void warn_no_listener(struct cache_detail *detail)
1130 {
1131 	if (detail->last_warn != detail->last_close) {
1132 		detail->last_warn = detail->last_close;
1133 		if (detail->warn_no_listener)
1134 			detail->warn_no_listener(detail, detail->last_close != 0);
1135 	}
1136 }
1137 
cache_listeners_exist(struct cache_detail * detail)1138 static bool cache_listeners_exist(struct cache_detail *detail)
1139 {
1140 	if (atomic_read(&detail->readers))
1141 		return true;
1142 	if (detail->last_close == 0)
1143 		/* This cache was never opened */
1144 		return false;
1145 	if (detail->last_close < seconds_since_boot() - 30)
1146 		/*
1147 		 * We allow for the possibility that someone might
1148 		 * restart a userspace daemon without restarting the
1149 		 * server; but after 30 seconds, we give up.
1150 		 */
1151 		 return false;
1152 	return true;
1153 }
1154 
1155 /*
1156  * register an upcall request to user-space and queue it up for read() by the
1157  * upcall daemon.
1158  *
1159  * Each request is at most one page long.
1160  */
sunrpc_cache_pipe_upcall(struct cache_detail * detail,struct cache_head * h)1161 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1162 {
1163 
1164 	char *buf;
1165 	struct cache_request *crq;
1166 	int ret = 0;
1167 
1168 	if (!detail->cache_request)
1169 		return -EINVAL;
1170 
1171 	if (!cache_listeners_exist(detail)) {
1172 		warn_no_listener(detail);
1173 		return -EINVAL;
1174 	}
1175 	if (test_bit(CACHE_CLEANED, &h->flags))
1176 		/* Too late to make an upcall */
1177 		return -EAGAIN;
1178 
1179 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1180 	if (!buf)
1181 		return -EAGAIN;
1182 
1183 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1184 	if (!crq) {
1185 		kfree(buf);
1186 		return -EAGAIN;
1187 	}
1188 
1189 	crq->q.reader = 0;
1190 	crq->buf = buf;
1191 	crq->len = 0;
1192 	crq->readers = 0;
1193 	spin_lock(&queue_lock);
1194 	if (test_bit(CACHE_PENDING, &h->flags)) {
1195 		crq->item = cache_get(h);
1196 		list_add_tail(&crq->q.list, &detail->queue);
1197 	} else
1198 		/* Lost a race, no longer PENDING, so don't enqueue */
1199 		ret = -EAGAIN;
1200 	spin_unlock(&queue_lock);
1201 	wake_up(&queue_wait);
1202 	if (ret == -EAGAIN) {
1203 		kfree(buf);
1204 		kfree(crq);
1205 	}
1206 	return ret;
1207 }
1208 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1209 
1210 /*
1211  * parse a message from user-space and pass it
1212  * to an appropriate cache
1213  * Messages are, like requests, separated into fields by
1214  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1215  *
1216  * Message is
1217  *   reply cachename expiry key ... content....
1218  *
1219  * key and content are both parsed by cache
1220  */
1221 
qword_get(char ** bpp,char * dest,int bufsize)1222 int qword_get(char **bpp, char *dest, int bufsize)
1223 {
1224 	/* return bytes copied, or -1 on error */
1225 	char *bp = *bpp;
1226 	int len = 0;
1227 
1228 	while (*bp == ' ') bp++;
1229 
1230 	if (bp[0] == '\\' && bp[1] == 'x') {
1231 		/* HEX STRING */
1232 		bp += 2;
1233 		while (len < bufsize - 1) {
1234 			int h, l;
1235 
1236 			h = hex_to_bin(bp[0]);
1237 			if (h < 0)
1238 				break;
1239 
1240 			l = hex_to_bin(bp[1]);
1241 			if (l < 0)
1242 				break;
1243 
1244 			*dest++ = (h << 4) | l;
1245 			bp += 2;
1246 			len++;
1247 		}
1248 	} else {
1249 		/* text with \nnn octal quoting */
1250 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1251 			if (*bp == '\\' &&
1252 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1253 			    isodigit(bp[2]) &&
1254 			    isodigit(bp[3])) {
1255 				int byte = (*++bp -'0');
1256 				bp++;
1257 				byte = (byte << 3) | (*bp++ - '0');
1258 				byte = (byte << 3) | (*bp++ - '0');
1259 				*dest++ = byte;
1260 				len++;
1261 			} else {
1262 				*dest++ = *bp++;
1263 				len++;
1264 			}
1265 		}
1266 	}
1267 
1268 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1269 		return -1;
1270 	while (*bp == ' ') bp++;
1271 	*bpp = bp;
1272 	*dest = '\0';
1273 	return len;
1274 }
1275 EXPORT_SYMBOL_GPL(qword_get);
1276 
1277 
1278 /*
1279  * support /proc/sunrpc/cache/$CACHENAME/content
1280  * as a seqfile.
1281  * We call ->cache_show passing NULL for the item to
1282  * get a header, then pass each real item in the cache
1283  */
1284 
cache_seq_start(struct seq_file * m,loff_t * pos)1285 void *cache_seq_start(struct seq_file *m, loff_t *pos)
1286 	__acquires(cd->hash_lock)
1287 {
1288 	loff_t n = *pos;
1289 	unsigned int hash, entry;
1290 	struct cache_head *ch;
1291 	struct cache_detail *cd = m->private;
1292 
1293 	read_lock(&cd->hash_lock);
1294 	if (!n--)
1295 		return SEQ_START_TOKEN;
1296 	hash = n >> 32;
1297 	entry = n & ((1LL<<32) - 1);
1298 
1299 	hlist_for_each_entry(ch, &cd->hash_table[hash], cache_list)
1300 		if (!entry--)
1301 			return ch;
1302 	n &= ~((1LL<<32) - 1);
1303 	do {
1304 		hash++;
1305 		n += 1LL<<32;
1306 	} while(hash < cd->hash_size &&
1307 		hlist_empty(&cd->hash_table[hash]));
1308 	if (hash >= cd->hash_size)
1309 		return NULL;
1310 	*pos = n+1;
1311 	return hlist_entry_safe(cd->hash_table[hash].first,
1312 				struct cache_head, cache_list);
1313 }
1314 EXPORT_SYMBOL_GPL(cache_seq_start);
1315 
cache_seq_next(struct seq_file * m,void * p,loff_t * pos)1316 void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1317 {
1318 	struct cache_head *ch = p;
1319 	int hash = (*pos >> 32);
1320 	struct cache_detail *cd = m->private;
1321 
1322 	if (p == SEQ_START_TOKEN)
1323 		hash = 0;
1324 	else if (ch->cache_list.next == NULL) {
1325 		hash++;
1326 		*pos += 1LL<<32;
1327 	} else {
1328 		++*pos;
1329 		return hlist_entry_safe(ch->cache_list.next,
1330 					struct cache_head, cache_list);
1331 	}
1332 	*pos &= ~((1LL<<32) - 1);
1333 	while (hash < cd->hash_size &&
1334 	       hlist_empty(&cd->hash_table[hash])) {
1335 		hash++;
1336 		*pos += 1LL<<32;
1337 	}
1338 	if (hash >= cd->hash_size)
1339 		return NULL;
1340 	++*pos;
1341 	return hlist_entry_safe(cd->hash_table[hash].first,
1342 				struct cache_head, cache_list);
1343 }
1344 EXPORT_SYMBOL_GPL(cache_seq_next);
1345 
cache_seq_stop(struct seq_file * m,void * p)1346 void cache_seq_stop(struct seq_file *m, void *p)
1347 	__releases(cd->hash_lock)
1348 {
1349 	struct cache_detail *cd = m->private;
1350 	read_unlock(&cd->hash_lock);
1351 }
1352 EXPORT_SYMBOL_GPL(cache_seq_stop);
1353 
c_show(struct seq_file * m,void * p)1354 static int c_show(struct seq_file *m, void *p)
1355 {
1356 	struct cache_head *cp = p;
1357 	struct cache_detail *cd = m->private;
1358 
1359 	if (p == SEQ_START_TOKEN)
1360 		return cd->cache_show(m, cd, NULL);
1361 
1362 	ifdebug(CACHE)
1363 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1364 			   convert_to_wallclock(cp->expiry_time),
1365 			   atomic_read(&cp->ref.refcount), cp->flags);
1366 	cache_get(cp);
1367 	if (cache_check(cd, cp, NULL))
1368 		/* cache_check does a cache_put on failure */
1369 		seq_printf(m, "# ");
1370 	else {
1371 		if (cache_is_expired(cd, cp))
1372 			seq_printf(m, "# ");
1373 		cache_put(cp, cd);
1374 	}
1375 
1376 	return cd->cache_show(m, cd, cp);
1377 }
1378 
1379 static const struct seq_operations cache_content_op = {
1380 	.start	= cache_seq_start,
1381 	.next	= cache_seq_next,
1382 	.stop	= cache_seq_stop,
1383 	.show	= c_show,
1384 };
1385 
content_open(struct inode * inode,struct file * file,struct cache_detail * cd)1386 static int content_open(struct inode *inode, struct file *file,
1387 			struct cache_detail *cd)
1388 {
1389 	struct seq_file *seq;
1390 	int err;
1391 
1392 	if (!cd || !try_module_get(cd->owner))
1393 		return -EACCES;
1394 
1395 	err = seq_open(file, &cache_content_op);
1396 	if (err) {
1397 		module_put(cd->owner);
1398 		return err;
1399 	}
1400 
1401 	seq = file->private_data;
1402 	seq->private = cd;
1403 	return 0;
1404 }
1405 
content_release(struct inode * inode,struct file * file,struct cache_detail * cd)1406 static int content_release(struct inode *inode, struct file *file,
1407 		struct cache_detail *cd)
1408 {
1409 	int ret = seq_release(inode, file);
1410 	module_put(cd->owner);
1411 	return ret;
1412 }
1413 
open_flush(struct inode * inode,struct file * file,struct cache_detail * cd)1414 static int open_flush(struct inode *inode, struct file *file,
1415 			struct cache_detail *cd)
1416 {
1417 	if (!cd || !try_module_get(cd->owner))
1418 		return -EACCES;
1419 	return nonseekable_open(inode, file);
1420 }
1421 
release_flush(struct inode * inode,struct file * file,struct cache_detail * cd)1422 static int release_flush(struct inode *inode, struct file *file,
1423 			struct cache_detail *cd)
1424 {
1425 	module_put(cd->owner);
1426 	return 0;
1427 }
1428 
read_flush(struct file * file,char __user * buf,size_t count,loff_t * ppos,struct cache_detail * cd)1429 static ssize_t read_flush(struct file *file, char __user *buf,
1430 			  size_t count, loff_t *ppos,
1431 			  struct cache_detail *cd)
1432 {
1433 	char tbuf[22];
1434 	unsigned long p = *ppos;
1435 	size_t len;
1436 
1437 	snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time));
1438 	len = strlen(tbuf);
1439 	if (p >= len)
1440 		return 0;
1441 	len -= p;
1442 	if (len > count)
1443 		len = count;
1444 	if (copy_to_user(buf, (void*)(tbuf+p), len))
1445 		return -EFAULT;
1446 	*ppos += len;
1447 	return len;
1448 }
1449 
write_flush(struct file * file,const char __user * buf,size_t count,loff_t * ppos,struct cache_detail * cd)1450 static ssize_t write_flush(struct file *file, const char __user *buf,
1451 			   size_t count, loff_t *ppos,
1452 			   struct cache_detail *cd)
1453 {
1454 	char tbuf[20];
1455 	char *bp, *ep;
1456 	time_t then, now;
1457 
1458 	if (*ppos || count > sizeof(tbuf)-1)
1459 		return -EINVAL;
1460 	if (copy_from_user(tbuf, buf, count))
1461 		return -EFAULT;
1462 	tbuf[count] = 0;
1463 	simple_strtoul(tbuf, &ep, 0);
1464 	if (*ep && *ep != '\n')
1465 		return -EINVAL;
1466 
1467 	bp = tbuf;
1468 	then = get_expiry(&bp);
1469 	now = seconds_since_boot();
1470 	cd->nextcheck = now;
1471 	/* Can only set flush_time to 1 second beyond "now", or
1472 	 * possibly 1 second beyond flushtime.  This is because
1473 	 * flush_time never goes backwards so it mustn't get too far
1474 	 * ahead of time.
1475 	 */
1476 	if (then >= now) {
1477 		/* Want to flush everything, so behave like cache_purge() */
1478 		if (cd->flush_time >= now)
1479 			now = cd->flush_time + 1;
1480 		then = now;
1481 	}
1482 
1483 	cd->flush_time = then;
1484 	cache_flush();
1485 
1486 	*ppos += count;
1487 	return count;
1488 }
1489 
cache_read_procfs(struct file * filp,char __user * buf,size_t count,loff_t * ppos)1490 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1491 				 size_t count, loff_t *ppos)
1492 {
1493 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1494 
1495 	return cache_read(filp, buf, count, ppos, cd);
1496 }
1497 
cache_write_procfs(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1498 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1499 				  size_t count, loff_t *ppos)
1500 {
1501 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1502 
1503 	return cache_write(filp, buf, count, ppos, cd);
1504 }
1505 
cache_poll_procfs(struct file * filp,poll_table * wait)1506 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1507 {
1508 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1509 
1510 	return cache_poll(filp, wait, cd);
1511 }
1512 
cache_ioctl_procfs(struct file * filp,unsigned int cmd,unsigned long arg)1513 static long cache_ioctl_procfs(struct file *filp,
1514 			       unsigned int cmd, unsigned long arg)
1515 {
1516 	struct inode *inode = file_inode(filp);
1517 	struct cache_detail *cd = PDE_DATA(inode);
1518 
1519 	return cache_ioctl(inode, filp, cmd, arg, cd);
1520 }
1521 
cache_open_procfs(struct inode * inode,struct file * filp)1522 static int cache_open_procfs(struct inode *inode, struct file *filp)
1523 {
1524 	struct cache_detail *cd = PDE_DATA(inode);
1525 
1526 	return cache_open(inode, filp, cd);
1527 }
1528 
cache_release_procfs(struct inode * inode,struct file * filp)1529 static int cache_release_procfs(struct inode *inode, struct file *filp)
1530 {
1531 	struct cache_detail *cd = PDE_DATA(inode);
1532 
1533 	return cache_release(inode, filp, cd);
1534 }
1535 
1536 static const struct file_operations cache_file_operations_procfs = {
1537 	.owner		= THIS_MODULE,
1538 	.llseek		= no_llseek,
1539 	.read		= cache_read_procfs,
1540 	.write		= cache_write_procfs,
1541 	.poll		= cache_poll_procfs,
1542 	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1543 	.open		= cache_open_procfs,
1544 	.release	= cache_release_procfs,
1545 };
1546 
content_open_procfs(struct inode * inode,struct file * filp)1547 static int content_open_procfs(struct inode *inode, struct file *filp)
1548 {
1549 	struct cache_detail *cd = PDE_DATA(inode);
1550 
1551 	return content_open(inode, filp, cd);
1552 }
1553 
content_release_procfs(struct inode * inode,struct file * filp)1554 static int content_release_procfs(struct inode *inode, struct file *filp)
1555 {
1556 	struct cache_detail *cd = PDE_DATA(inode);
1557 
1558 	return content_release(inode, filp, cd);
1559 }
1560 
1561 static const struct file_operations content_file_operations_procfs = {
1562 	.open		= content_open_procfs,
1563 	.read		= seq_read,
1564 	.llseek		= seq_lseek,
1565 	.release	= content_release_procfs,
1566 };
1567 
open_flush_procfs(struct inode * inode,struct file * filp)1568 static int open_flush_procfs(struct inode *inode, struct file *filp)
1569 {
1570 	struct cache_detail *cd = PDE_DATA(inode);
1571 
1572 	return open_flush(inode, filp, cd);
1573 }
1574 
release_flush_procfs(struct inode * inode,struct file * filp)1575 static int release_flush_procfs(struct inode *inode, struct file *filp)
1576 {
1577 	struct cache_detail *cd = PDE_DATA(inode);
1578 
1579 	return release_flush(inode, filp, cd);
1580 }
1581 
read_flush_procfs(struct file * filp,char __user * buf,size_t count,loff_t * ppos)1582 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1583 			    size_t count, loff_t *ppos)
1584 {
1585 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1586 
1587 	return read_flush(filp, buf, count, ppos, cd);
1588 }
1589 
write_flush_procfs(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1590 static ssize_t write_flush_procfs(struct file *filp,
1591 				  const char __user *buf,
1592 				  size_t count, loff_t *ppos)
1593 {
1594 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1595 
1596 	return write_flush(filp, buf, count, ppos, cd);
1597 }
1598 
1599 static const struct file_operations cache_flush_operations_procfs = {
1600 	.open		= open_flush_procfs,
1601 	.read		= read_flush_procfs,
1602 	.write		= write_flush_procfs,
1603 	.release	= release_flush_procfs,
1604 	.llseek		= no_llseek,
1605 };
1606 
remove_cache_proc_entries(struct cache_detail * cd,struct net * net)1607 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1608 {
1609 	struct sunrpc_net *sn;
1610 
1611 	if (cd->u.procfs.proc_ent == NULL)
1612 		return;
1613 	if (cd->u.procfs.flush_ent)
1614 		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1615 	if (cd->u.procfs.channel_ent)
1616 		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1617 	if (cd->u.procfs.content_ent)
1618 		remove_proc_entry("content", cd->u.procfs.proc_ent);
1619 	cd->u.procfs.proc_ent = NULL;
1620 	sn = net_generic(net, sunrpc_net_id);
1621 	remove_proc_entry(cd->name, sn->proc_net_rpc);
1622 }
1623 
1624 #ifdef CONFIG_PROC_FS
create_cache_proc_entries(struct cache_detail * cd,struct net * net)1625 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1626 {
1627 	struct proc_dir_entry *p;
1628 	struct sunrpc_net *sn;
1629 
1630 	sn = net_generic(net, sunrpc_net_id);
1631 	cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1632 	if (cd->u.procfs.proc_ent == NULL)
1633 		goto out_nomem;
1634 	cd->u.procfs.channel_ent = NULL;
1635 	cd->u.procfs.content_ent = NULL;
1636 
1637 	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1638 			     cd->u.procfs.proc_ent,
1639 			     &cache_flush_operations_procfs, cd);
1640 	cd->u.procfs.flush_ent = p;
1641 	if (p == NULL)
1642 		goto out_nomem;
1643 
1644 	if (cd->cache_request || cd->cache_parse) {
1645 		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1646 				     cd->u.procfs.proc_ent,
1647 				     &cache_file_operations_procfs, cd);
1648 		cd->u.procfs.channel_ent = p;
1649 		if (p == NULL)
1650 			goto out_nomem;
1651 	}
1652 	if (cd->cache_show) {
1653 		p = proc_create_data("content", S_IFREG|S_IRUSR,
1654 				cd->u.procfs.proc_ent,
1655 				&content_file_operations_procfs, cd);
1656 		cd->u.procfs.content_ent = p;
1657 		if (p == NULL)
1658 			goto out_nomem;
1659 	}
1660 	return 0;
1661 out_nomem:
1662 	remove_cache_proc_entries(cd, net);
1663 	return -ENOMEM;
1664 }
1665 #else /* CONFIG_PROC_FS */
create_cache_proc_entries(struct cache_detail * cd,struct net * net)1666 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1667 {
1668 	return 0;
1669 }
1670 #endif
1671 
cache_initialize(void)1672 void __init cache_initialize(void)
1673 {
1674 	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1675 }
1676 
cache_register_net(struct cache_detail * cd,struct net * net)1677 int cache_register_net(struct cache_detail *cd, struct net *net)
1678 {
1679 	int ret;
1680 
1681 	sunrpc_init_cache_detail(cd);
1682 	ret = create_cache_proc_entries(cd, net);
1683 	if (ret)
1684 		sunrpc_destroy_cache_detail(cd);
1685 	return ret;
1686 }
1687 EXPORT_SYMBOL_GPL(cache_register_net);
1688 
cache_unregister_net(struct cache_detail * cd,struct net * net)1689 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1690 {
1691 	remove_cache_proc_entries(cd, net);
1692 	sunrpc_destroy_cache_detail(cd);
1693 }
1694 EXPORT_SYMBOL_GPL(cache_unregister_net);
1695 
cache_create_net(struct cache_detail * tmpl,struct net * net)1696 struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1697 {
1698 	struct cache_detail *cd;
1699 	int i;
1700 
1701 	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1702 	if (cd == NULL)
1703 		return ERR_PTR(-ENOMEM);
1704 
1705 	cd->hash_table = kzalloc(cd->hash_size * sizeof(struct hlist_head),
1706 				 GFP_KERNEL);
1707 	if (cd->hash_table == NULL) {
1708 		kfree(cd);
1709 		return ERR_PTR(-ENOMEM);
1710 	}
1711 
1712 	for (i = 0; i < cd->hash_size; i++)
1713 		INIT_HLIST_HEAD(&cd->hash_table[i]);
1714 	cd->net = net;
1715 	return cd;
1716 }
1717 EXPORT_SYMBOL_GPL(cache_create_net);
1718 
cache_destroy_net(struct cache_detail * cd,struct net * net)1719 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1720 {
1721 	kfree(cd->hash_table);
1722 	kfree(cd);
1723 }
1724 EXPORT_SYMBOL_GPL(cache_destroy_net);
1725 
cache_read_pipefs(struct file * filp,char __user * buf,size_t count,loff_t * ppos)1726 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1727 				 size_t count, loff_t *ppos)
1728 {
1729 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1730 
1731 	return cache_read(filp, buf, count, ppos, cd);
1732 }
1733 
cache_write_pipefs(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1734 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1735 				  size_t count, loff_t *ppos)
1736 {
1737 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1738 
1739 	return cache_write(filp, buf, count, ppos, cd);
1740 }
1741 
cache_poll_pipefs(struct file * filp,poll_table * wait)1742 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1743 {
1744 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1745 
1746 	return cache_poll(filp, wait, cd);
1747 }
1748 
cache_ioctl_pipefs(struct file * filp,unsigned int cmd,unsigned long arg)1749 static long cache_ioctl_pipefs(struct file *filp,
1750 			      unsigned int cmd, unsigned long arg)
1751 {
1752 	struct inode *inode = file_inode(filp);
1753 	struct cache_detail *cd = RPC_I(inode)->private;
1754 
1755 	return cache_ioctl(inode, filp, cmd, arg, cd);
1756 }
1757 
cache_open_pipefs(struct inode * inode,struct file * filp)1758 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1759 {
1760 	struct cache_detail *cd = RPC_I(inode)->private;
1761 
1762 	return cache_open(inode, filp, cd);
1763 }
1764 
cache_release_pipefs(struct inode * inode,struct file * filp)1765 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1766 {
1767 	struct cache_detail *cd = RPC_I(inode)->private;
1768 
1769 	return cache_release(inode, filp, cd);
1770 }
1771 
1772 const struct file_operations cache_file_operations_pipefs = {
1773 	.owner		= THIS_MODULE,
1774 	.llseek		= no_llseek,
1775 	.read		= cache_read_pipefs,
1776 	.write		= cache_write_pipefs,
1777 	.poll		= cache_poll_pipefs,
1778 	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1779 	.open		= cache_open_pipefs,
1780 	.release	= cache_release_pipefs,
1781 };
1782 
content_open_pipefs(struct inode * inode,struct file * filp)1783 static int content_open_pipefs(struct inode *inode, struct file *filp)
1784 {
1785 	struct cache_detail *cd = RPC_I(inode)->private;
1786 
1787 	return content_open(inode, filp, cd);
1788 }
1789 
content_release_pipefs(struct inode * inode,struct file * filp)1790 static int content_release_pipefs(struct inode *inode, struct file *filp)
1791 {
1792 	struct cache_detail *cd = RPC_I(inode)->private;
1793 
1794 	return content_release(inode, filp, cd);
1795 }
1796 
1797 const struct file_operations content_file_operations_pipefs = {
1798 	.open		= content_open_pipefs,
1799 	.read		= seq_read,
1800 	.llseek		= seq_lseek,
1801 	.release	= content_release_pipefs,
1802 };
1803 
open_flush_pipefs(struct inode * inode,struct file * filp)1804 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1805 {
1806 	struct cache_detail *cd = RPC_I(inode)->private;
1807 
1808 	return open_flush(inode, filp, cd);
1809 }
1810 
release_flush_pipefs(struct inode * inode,struct file * filp)1811 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1812 {
1813 	struct cache_detail *cd = RPC_I(inode)->private;
1814 
1815 	return release_flush(inode, filp, cd);
1816 }
1817 
read_flush_pipefs(struct file * filp,char __user * buf,size_t count,loff_t * ppos)1818 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1819 			    size_t count, loff_t *ppos)
1820 {
1821 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1822 
1823 	return read_flush(filp, buf, count, ppos, cd);
1824 }
1825 
write_flush_pipefs(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1826 static ssize_t write_flush_pipefs(struct file *filp,
1827 				  const char __user *buf,
1828 				  size_t count, loff_t *ppos)
1829 {
1830 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1831 
1832 	return write_flush(filp, buf, count, ppos, cd);
1833 }
1834 
1835 const struct file_operations cache_flush_operations_pipefs = {
1836 	.open		= open_flush_pipefs,
1837 	.read		= read_flush_pipefs,
1838 	.write		= write_flush_pipefs,
1839 	.release	= release_flush_pipefs,
1840 	.llseek		= no_llseek,
1841 };
1842 
sunrpc_cache_register_pipefs(struct dentry * parent,const char * name,umode_t umode,struct cache_detail * cd)1843 int sunrpc_cache_register_pipefs(struct dentry *parent,
1844 				 const char *name, umode_t umode,
1845 				 struct cache_detail *cd)
1846 {
1847 	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1848 	if (IS_ERR(dir))
1849 		return PTR_ERR(dir);
1850 	cd->u.pipefs.dir = dir;
1851 	return 0;
1852 }
1853 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1854 
sunrpc_cache_unregister_pipefs(struct cache_detail * cd)1855 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1856 {
1857 	rpc_remove_cache_dir(cd->u.pipefs.dir);
1858 	cd->u.pipefs.dir = NULL;
1859 }
1860 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1861 
1862